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SUMMARY 
Atherosclerosis is a major cause of morbidity and mortality in western world. 

Bone morphogenetic proteins are secreted regulatory proteins that regulate various 

processes throughout human body. Recent studies indicate their presence in 

atherosclerotic plaques and emerging role in plaque development. Since monocytes 

are the key effector cells in atherosclerosis, the aim of this thesis was to investigate 

the actions of BMP-2 and -7 on monocyte thrombogenicity and motility. 

In our first paper we investigated the effects of BMP-2 on TF expression in 

human mononuclear cells (MNCs). We showed that BMP-2 induced phosphorylation 

of Smad 1/5/8, thus activating the canonical BMP signaling pathway. Though BMP-2 

had no effect on the baseline TF expression, it was able to significantly reduce LPS-

induced TF expression. When MNCs were pretreated with BMP-2 prior to LPS 

stimulation, a marked decrease in phosphorylation of ERK1/2, JNK and p38 was 

observed. BMP-2 also blocked the activation of AP-1 transcription factor, as was 

shown by use of AP-1 or NFkB sensitive luciferase constructs. This study shows that 

BMP-2 reduces LPS-induced TF expression in human MNCs by reducing activation 

of ERK1/2, JNK and p38 as well as blockade of AP-1 transcription factor. 

In our second and third papers we investigated the signaling pathways behind 

the ability of BMP-7 to induce TF in human MNCs. We showed that BMP-7 

upregulates both TF protein levels, surface presentation and procoagulant activity as 

well as mRNA levels. BMP-7 was able to induce phosphorylation of ERK1/2, JNK 

and p38, signaling kinases essential in regulation of TF gene expression. Using 

luciferase constructs driven by either wildtype or mutated F3 gene promoters we 

showed that intact NFkB binding site on the F3 promoter is necessary for BMP-7-

induced TF expression. Experiments with NFkB inhibitor, JSH-23, supported this 

finding. 

In our forth paper we present a novel function for BMP-7 – regulation of 

monocyte motility. We showed that human monocytes pretreated with BMP-7 crawl 

for longer distances, attach to endothelium more readily and migrate faster through 

endothelial monolayers and show higher levels of active b2 integrins on the cell 

surface. The observed effects were dependent on the activation of Akt/FAK signaling 

pathway and were not dependent on de novo integrin expression. Finally, the effect of 

BMP-7 on monocyte motility can be blocked by either natural BMP antagonist 

Noggin or synthetic BMP type 1 receptor inhibitor, Dorsomorphin. 
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VLA-4 – very late antigen 4 
VSMC – vascular smooth muscle cells 



	 10	

 

  



	 11	

1. INTRODUCTION 

1.1. Bone morphogenetic proteins 
Bone morphogenetic proteins (BMPs) are members of the transforming growth 

factor-b (TGF-b) family of cytokines.  

The name BMP comes from papers by Urist et al. published as early as 1965 

and 1971 (1, 2). They isolated the protein component of demineralized rat bone 

matrix and showed its ability to induce bone formation in rat muscle. Human bone 

morphogenetic protein was first isolated as a 17 kDa fraction from human bone in 

1983 (3). Since then, over 30 proteins have been identified. 

BMPs are highly conserved between species, with human BMP-4 gene 

sequence sharing a significant portion with Drosophila analogue dpp(4), and human 

BMP-5, -6 and -7 harbor 73% homology of their sequence with Drosophila gene 

glass bottom boat (gbb, also known as  60A) (5). 

The functions of BMPs in human development are extensive, and include bone 

and cartilage tissue formation, axonal growth, development of the kidney and the eye 

(6-16), as well as the nervous system (17). The importance of BMPs in development 

is illustrated by knockout studies in mice (14): BMP-2 knockout mice are nonviable 

due to extensive developmental malformations (12, 18). Knockout of BMP-7 in mice 

leads to skeletal abnormalities, kidney agenesis (7), and eye defects (6, 10). 

Mutation in genes coding BMPs or elements of their signaling pathways were 

shown to be associated with various diseases, the most prominent being non-

thromboembolic pulmonary artery hypertension (PAH). This condition is associated 

with mutations in the genes coding BMP receptors Alk1, Alk6, BMPR2, and 

signaling protein Smad8 (19-21). These mutations account for the majority of familial 

cases and 10-40% of idiopathic cases of PAH. Another example is hereditary 

hemorrhagic telangiectasia (HHT, or Rendu–Osler–Weber syndrome), known to be 

associated with mutations in genes coding Alk1, Smad4 and BMP-9 (22). 

BMPs may also have an important regulatory function and role in pathobiology 

of the cardiovascular system, as measurable levels of BMPs are present in 

vasculature, especially within atherosclerotic plaques (23, 24). Furthermore, levels of 

different BMP antigens correlate with plaque morphology and extent of plaque 

calcification (25, 26).  It has been shown that BMP-2 is responsible for calcification 

of arteries via activation of Wnt/b-Catenin signaling (27).  On the other hand, BMP-7 
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has an opposite effect on vascular calcification in mice (28). The effect of BMPs in 

regulation of plaque calcification has been substantiated by the studies where the 

blockade of BMP signaling with a specific inhibitor LDN-193189 reduced both 

plaque calcification and the extent of atherosclerosis in LDLR-/- mice (29). In 

humans, levels of BMP-2 and -4 correlate with atherosclerotic burden in diabetic 

patients (30, 31).  Moreover, BMP-4 was shown to up-regulate eNOS uncoupling and 

expression of COX2 and NOX1 genes in endothelial cells, thus contributing to 

endothelial dysfunction, inflammation and, possibly, oxidation of LDL within the 

vessel wall (32). In addition, BMP-2 is upregulated in endothelial cells by pro-

inflammatory stimuli such as TNF and in turn increases ROS production by activating 

NADPH oxidase (33). 

1.1.1. Classification 

The Transforming Growth Factor (TGF) b family of proteins is divided into 

several groups on the basis of homology/receptor interactions: 1) TGFbs, 2) BMPs, 

and 3) activins. The BMP subgroup alone, being the most numerous, contains 33 

members. 

BMP-1 is a metalloproteinase and not technically a member of the TGFβ 

family. However, the genuine BMPs share structural similarities, namely cysteine 

knot structures, that consist of six cysteines, of which four are arranged in the motif 

C2-X-G-X-C3 and C6-X-C7-X-Stop, thus establishing an eight-membered ring. A 

third disulfide bond formed between the first and the fifth cysteine residue penetrates 

this ring, thereby tying the knot. 

Human BMP-2 and -4 share 86% of amino acid sequence, BMP-5, -6, and -7 

share 71-80% homology (34). Based on the sequence similarity and receptor affinity, 

BMPs are subdivided into the following subgroups: 

• BMP-2/4 group,  

• OP-1 group (BMP-5, -6, -7, -8),  

• BMP-9 (BMPs -9 and -10), 

• Growth and differentiation factors (GDF)-5 group (GDF-5, -6, -7).  

BMPs, as all TGFb ligands except GDF15, are synthesized as large pre-

proproteins comprising a signal peptide, a large prodomain (200 aa) and a mature 

region of 100–150 aa in length. For activation, propeptides are cleaved at conserved 

Arg-XX-Arg dibasic sequence by specific convertases (35). The data on the role of 
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these massive prodomains in BMPs are sparse, with only some showing distinct roles 

as in BMP-9, where the prodomain covers receptor epitopes on the mature peptide 

(36), effectively blocking the formation of the ligand-receptor complex. 

While BMPs act mainly as homodimers, heterodimers of BMP-2/6 and BMP-

2/7 have been identified in vitro (37). These findings were confirmed in an in vivo 

system (38). 

1.1.2. BMP signaling pathway 

1.1.2.1 BMP receptors 

BMPs, as other members of the TGFb family, exert their effects through cell 

surface dimer receptors, consisting of type 1 and type 2 receptors.  

Type 1 receptors include: BMPRIa, BMRIb, ALK1, ALK2, ALK3, ActRIb. 

Type 2 receptors are: BMPRII, ActRIIA, ActRIIB. BMPRII is specific for 

BMPs, while ActRIIA and ActRIIB can bind BMPs, activins, and myostatin. 

Type 3 receptors are: endoglin, betaglycan, and repulsive guidance molecules 

(39, 40).  

Under normal conditions, BMPs have very low affinity to standalone type 2 

receptors, while having higher affinity to type 1 receptors (41). This is significantly 

increased when type 2 receptors form complexes with type 1 receptors (8). Moreover, 

the structure of the receptor heterodimer appears to regulate different functions, 

depending on the type 1 receptor subunits. Oligomerization of the receptors may 

explain the distinct functions of BMPs in different organs and/or at different time-

points in human development (42). 

The main difference between type 1 and type 2 receptors is the presence of the 

membrane-proximal serine-glycine rich sequence (GS-region) located towards the N-

terminus to the intrinsic serine/threonine kinase domain in type 1 receptors, although 

ligand-binding sites differ significantly between receptors.  

BMPR2 is considered to be constitutively active, as it is capable of 

autophosphorylation in vitro (43).  
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The exact mechanisms for regulation of cellular responses to BMPs are studied 

not as extensively as those of TGFbs (Figure 1). Most of the BMP receptors can bind 

several ligands with varying affinity. The promiscuity of the BMP receptor – ligand 

interactions is not well characterized today, however, studies in BMP-2 – BMP type 2 

receptor interaction show that, unlike TGFbs, there are only few hydrogen bonds 

formed between receptors and the ligand, while most of the interaction is attributed to 

hydrophobic interactions (44). This may explain the low affinity interaction with type 

2 receptor. 

Upon BMP dimer binding to the receptor, the GS domain in type 1 receptor is 

phosphorylated by constitutively active type 2 receptor, thus changing its 

conformation to the active form (45). Mutations in these regions can lead to 

constitutively activated type 1 receptors. The receptor-ligand interaction is different 

from TGFb, where the type 2 receptor is capable of binding ligands on its own and 

Figure 1. BMP signaling pathway. Binding of BMPs to BMP receptor heterodimer initiates 
phosphorylation of type 1 receptor, which in turn leads to activation of Smad signaling as well 
as activation of several alternative pathways, including MAPK and Akt-FAK, which 
ultimately results in activation of transcription factors. BMP signaling can be inhibited by 
extracellular inhibitors (Noggin, Chordin, Gremlin, Follistatin), decoy receptor BAMBI and 
intracellularly by inhibitory Smads 6 and 7. TrF – transcription factors	
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subsequently recruits the type 1 receptor to propagate signaling events (46). When in 

the active conformation, the type 1 BMP receptor extends the L45 loop that can bind 

receptor Smads (R-Smads) and phosphorylate them by interaction with MH2 domain 

of Smads (47), shown previously on an example of Smad1 phosphorylation by Alk2 

receptor (48). 

1.1.2.2 Smad family of proteins 

Smad (orthologues of Mad in Drosophila and Sma in Caenorhabditis elegans) 

proteins are common signaling molecules for TGFb and BMPs. Smads 1, 5 and 8 

possess a high degree of structural similarity and are generally activated by BMP 

signaling (48), while they can also be transiently activated by other members of TGFb 

protein family (49). 

The main feature common to all regulatory Smads (R-Smads) is the presence of 

two Mad homology domains (MH1 and MH2). MH2 domains are preserved among 

all SMADs, while MH1 domains are specific for R-Smads and the common mediator 

Smad (co-Smad) Smad 4 (50). MH2 domains are responsible for interaction with 

receptors and transcription factors (51), while MH1 is capable of directly binding to 

DNA. The phosphorylation of SSxS (ser-ser-x-ser) motif, common to R-Smads, by 

the type 1 receptor disrupts the interaction between the MH domains present in the 

inactive state and enables the interaction with co-Smad.  

To facilitate Smad-receptor interactions, R-Smads can be connected to the cell 

membrane by a variety of anchoring proteins (52-54). Upon binding of a BMP dimer 

to a heterodimeric receptor, the constitutively active type 2 receptor serine-threonine 

kinase site phosphorylates the intracellular part of type 1 receptor, which, in turn, 

induces phosphorylation of R-Smads (1/5/8), that forms a heteromeric complex with 

co-Smad4, which is then translocated to the nucleus (55). Within the nucleus, Smads 

spend most of the time in complex with transcription factors such as Runx2, NFkB, 

AP-1. 

Phosphorylation of R-Smads by receptors increases the affinity for nuclear 

factors thus adding to the transport of the factors to the nucleus. Dephosphorylation 

by phosphatases reverses this effect, transporting R-Smads closer to the cell 

membrane and receptors (56, 57). R-Smads have a sequence that is capable of binding 

DNA on its own, albeit weakly. There are several genes that incorporate so-called 

BMP responsive elements and are regulated by BMPs: Id1, Id2, Id3, and Hex, to 
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name a few (58, 59). However, BMP responsive elements are evolutionary conserved 

and may be found in a vast variety of genes. 

1.1.2.3 Non-canonical BMP signaling 

There is abundant evidence that BMPs and TGFbs in general exert their 

biological effects through means other than just canonical Smad signaling. To name 

the classical example, the p38 MAPK signaling pathway was shown to be strongly 

activated by the Alk2 BMP receptor (60). 

TGFbs were shown to be able to activate ERK kinase in epithelial cells (61), 

breast cancer cells (62), and fibroblasts (63). ERK activation in response to TGFb 

signaling varies greatly, with activation times ranging from minutes to days, 

suggesting that ERK can be activated either directly by receptor interaction or through 

gene regulation. ERK is able to phosphorylate a BMP-specific R-Smad1 (64), 

suppressing its activity. In turn, the interplay between ERK and Smads seems to 

regulate the activity of AP-1 transcription by interacting with c-Jun/c-Fos subunits 

(65). 

TGFβ can rapidly activate JNK through MKK4 and p38 MAPK through 

MKK3/6 in various cell lines (66-68), and JNK signaling appears to be Smad-

independent (66). Mutation in the Smad- binding epitope in TGFb type I receptor 

(TbRI) effectively blocks Smad signaling, while preserving the ability of the receptor 

to induce JNK and p38 kinases(68, 69). Interestingly, activation of JNK and p38 

depends on the interaction of the receptor with TRAF6 protein (70, 71). Members of 

the TGFb family, including BMPs, are also known to activate the PI3K/Akt/mTOR 

pathway (72-75) independently of SMAD activation. 

1.1.2.4 Regulation of BMP signaling 

BMP signaling is tightly regulated by a number of mechanisms, including decoy 

receptors, extracellular antagonists, as well as intracellular inhibitors. 

BAMBI (BMP and Activin Membrane-Bound Inhibitor homolog) is a decoy 

receptor for BMPs, similar in structure to type 1 receptor, but lacking the intracellular 

domain for signal propagation (76). It is upregulated by BMPs as part of the negative 

feedback loop for autoregulation, and is co-expressed with BMP-4 during embryonic 

development (13, 16).  
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BMP signaling can be inhibited extracellularly by BMP antagonists (Noggin, 

Gremlin, Follistatin, Dan family proteins, Chordin). These antagonists bind BMP 

dimers with high affinity, efficiently blocking the formation of the BMP-receptor 

complex (11, 77-80). 

Recently, another member of the TGFb family, activin A, was shown to have 

high affinity for the ActRIIA and ActRIIB type 2 BMP receptors, competing with 

BMP-6 and -9 for the receptor, thus inhibiting signaling through those receptors (81). 

Activin A has low affinity towards BMPR2, thus not affecting BMP-2 and -4 

signaling, providing a mechanism of regulating TGFb effects through differential 

expression patterns and TGFb members antagonism. 

Inhibitory Smads (I-Smads 6 and 7) bind to BMP type I receptors, thus 

preventing the activation of R-Smads. They also compete with Smad1 for Smad4 

binding intracellularly, and, finally are able to disrupt the binding of R-Smad-co-

Smad complexes to DNA (82-84). 

1.2 Atherosclerosis 
Atherosclerosis is the number one cause of non-communicable disease 

morbidity and mortality in the world (85). It is characterized by localized deposition 

of lipids and inflammatory cells mainly in the tunica intima in the walls of arteries, 

generally in areas with disturbed blood flow.  

1.2.2 Classification 

Currently, the predominant classification used in practice is the American Heart 

Association classification (86, 87). It classifies atherosclerosis as a staged process - 

lesions are marked according to severity by a roman numeral from I to VI (Figure 2). 

Stages I-II are initial lesions, defined by minimal lipid deposition in the intima and 

isolated groups of macrophage foam cells (type I lesion, or initial lesion). 

Type II lesions include fatty streaks; they are subdivided into type IIa, or 

progression prone, and type IIb, or progression-resistant lesions, depending on the 

composition and location in the vasculature.  

Type III is an intermediate transitional lesion or preatheroma. These lesions 

contain more free cholesterol, fatty acids, sphingomyelin, lysolecithin, and 

triglycerides than type II lesions. 
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Type IV lesions (atheroma) are distinguished by accumulation of the 

characteristic lipid core. This is the first advanced lesion, with intimal deterioration, 

though without immediate danger for rupture.  

Type V is characterized by prominent fibrous tissue and calcification. Type Va 

lesion is called fibroatheroma, with predominant development of fibrous tissue, type 

Vb is characterized by extensive calcification, and type Vc by minimal or no lipid 

core. 

Type VI (a-c) lesions – unstable, vulnerable lesions, characterized by the 

presence of hematoma, hemorrhage, and / or thrombosis. Type VIabc indicates the 

presence of all three features. 

Virmani et al. (88) proposed in 2000 a modification of AHA classification 

based on morphological appearance of the plaque and specifically defining Type I and 

Type II lesions as “non-atherosclerotic” to emphasize their relation to atheromas 

(advanced lesions) as non-continuous.  

Naghavi et al. (89) proposed the term “vulnerable plaque” for those plaques 

prone to become culprit lesions, and they put forward several criteria for defining a 

vulnerable plaque. 

Figure 2. Progression of atherosclerotic lesion. The initial stages of atherosclerosis are 
characterized by deposition of lipids in the vascular wall and recruitment of leukocytes. In later 
stages, formation of necrotic core and foam cells leads to thickening of the vessel wall and 
consequent rupture of the fibrous cap that ultimately leads to thrombosis. TF+MV – TF positive 
microvesicles. 
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1.2.3 Lipids 

At the site of the future atherosclerotic plaque, activated endothelium becomes 

permeable for lipids, which, in turn, leads to the formation of reactive oxygen species 

(ROS) and further enhances endothelial dysfunction (90-92). 

Retention of lipids in the vascular wall is initiated either in places with 

disrupted endothelium (93), where the elastin layer is absent and matrix proteoglycans 

become exposed to blood flow, or by passive diffusion. ApoB100-LDL binding to 

exposed proteoglycans starts the accumulation of lipids in the vessel wall, where they 

are oxidized in the presence of free superoxide anions that are produced by a number 

of oxidases (NADPH and xanthine oxidases) highly present in atherosclerotic lesions 

(94). 

Oxidized LDL (oxLDL) are able to induce integrin activation in endothelial 

cells and serve as chemoattractants for monocytes/macrophages (95). Phagocytes, in 

turn, engulf oxLDL and become foam cells, which produce chemokines to recruit 

more phagocytes, thus promoting the formation of the lesion.  

1.2.4 Vascular smooth muscle cells (VSMCs) 

VSMCs, along with endothelial cells and leukocytes, comprise the main cellular 

components of atherosclerotic plaque. They produce collagen and other extracellular 

matrix proteins, creating and maintaining the fibrous cap. Induction of VSMC 

apoptosis leads to the enlargement of the necrotic core and thinning of the fibrous cap 

in plaques, leading to the development of unstable plaques (96). Disruption of VSMC 

apoptosis and proliferation by deletion of Akt1 also leads to the formation of 

vulnerable plaques and severe atherosclerosis in mice (97).  It is possible that VSMC-

macrophage transition occurs in the plaque, with smooth muscle cells engulfing lipids 

and transforming into foam cells (98). Studies show that, upon lipid loading, VSMCs 

acquire characteristic CD68 macrophage markers in mice and humans, and that a 

significant part of foam cells in atherosclerotic lesions are of VSMC lineage (99-101). 

It is possible that as much as 50% of foam cells in human atherosclerotic lesions are 

of VSMC lineage (102-104). 

1.2.5 Monocytes and macrophages 

Monocytes are phagocytic leukocytes comprising 2-10% of the total blood 

leukocyte population. In early publications they were defined as short-lived 
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precursors of macrophages (105), yet their actions are varied and include antigen 

presentation and phagocytosis of microorganisms, apoptotic cells, etc. 

Monocytes originate in the bone marrow from common myeloid progenitor 

cells (CMP) through a series of precursor cells (106), although there is evidence of 

extramedullary monocytopoiesis (107, 108) during atherosclerosis and myocardial 

infarction.  

One of their most important functions is to provide a pool of precursors for 

tissue macrophages and dendritic cells. 

In humans, there are three main populations of monocytes, divided by the 

expression of surface markers. In a recent study it was shown that those subsets have 

distinct protein expression profiles (109). Different subpopulations of monocytes can 

have unique roles in coronary artery disease (110). 

Three monocyte subsets in humans are CD14++CD16-(classical), 

CD14++CD16+(intermediate) and CD14+CD16++ (non-classical) (111), that apperar to 

differ significantly in their biological roles. For example, long-range crawling 

behavior is characteristic for classical and non-classical monocytes, but not for the 

intermediate subset. CD14+CD16++ and CD14++CD16+ monocytes showed a 

preference for adhering to microvascular over macrovascular endothelium, in contrast 

to classical subset (112). CD14+CD16++ monocytes are dependent on fractalkine 

(CX3CR1) to adhere and interact with endothelium (113). Knockout of CX3CR1 in 

mice showed a reduction in atherosclerotic burden by minimizing monocyte 

extravasation. Furthermore, CX3CR1 upregulates MMP-9, IL-6, CCL2, attributing to 

further vascular injury and recruitment of inflammatory cells to the lesion (114).  

It is believed that monocytes are attracted to the atherosclerotic lesions by a 

combination of factors, including endothelial dysfunction, chemoattractants, and 

oxidized lipoproteins in the vessel wall, where they become macrophages,  one of the 

main types of inflammatory cells in the plaques. While traditionally considered to be 

the final step in the differentiation of blood monocytes (105), there is evidence of 

possible macrophage proliferation in plaques (115-118). Studies in mice show that 

tissue resident macrophages can either multiply by cell division or be recruited 

directly form bone marrow precursors (116, 118). 

Macrophages play a central role in the development of atherosclerotic plaques 

and regulate the plaque milieu in various ways – by engulfing and oxidizing lipids, 

contributing to the formation of foam cells, regulating cell apoptosis and the 
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formation of necrotic core, as well as secreting an array of pro- and anti-inflammatory 

cytokines (TNF, interleukins (IL)) and chemokines (MCP-1, RANTES), and acting as 

antigen presenting cells. Cytokines released by macrophages facilitate further 

recruitment of monocytes and lymphocytes into the plaque (119). They are also 

thought to be the major source of tissue factor (TF) in atherosclerotic plaques (120).  

Lipid uptake by macrophages via scavenger receptors, namely Scavenger 

Receptors Class A-I/II and CD36, is a major pathogenic mechanism in the 

development of atherosclerosis (121). Knockout of CD36 protects against 

atherosclerosis in ApoE knockout mice (122), suggesting a pivotal role for this 

scavenger receptor in plaque formation.  

Macrophages can be subdivided into several groups, according to their surface 

marker/cytokine production. The first classification included M1 (proinflammatory, 

classical) and M2 phenotypes (anti-inflammatory, non-classical) (123-126), based on 

the response to various stimuli (IFN-g, IL-4, LPS). This division was later challenged, 

due to the fact that macrophage responses do not entirely fit within this dichotomy 

(127-129). Evidence exists for macrophages changing their “polarization” by 

continuously adjusting to their environment (129, 130). In 2014, a group of experts 

proposed a unified classification of macrophages(131) framed around the two 

extremes observed in vitro by polarizing macrophages using either IFN-g or IL-4, and 

further named according for the predominant stimulus used (e.g. M(IL-4), M(IFN-γ), 

M(LPS), etc.). Worthy of mentioning is the concept of a macrophage “spectrum of 

activation”, which may be the best to reflect in vivo conditions (132). This concept 

marks three distinct populations (classically activated, wound-healing, and regulatory 

macrophages) with any amount of interplay in-between. 

1.2.6 Monocyte extravasation 

Adhesion of leukocytes to the vascular wall is enhanced by several conventional 

cardiovascular risk factors such as smoking, high blood pressure, and hyperglycemia 

through the regulation of adhesion molecules on monocyte and endothelial cell 

surface. It was shown that endothelial dysfunction caused by smoking and 

inflammation dramatically upregulates the expression of adhesion molecules on the 

endothelium and additionally changes their affinity status (133-135). 

The extravasation process starts with the interaction between E- and P-selectins 

on the activated endothelium and P-selectin glycoprotein ligand 1 (PSGL-1) on the 
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monocytes (136, 137). PSGL-1 is the predominant ligand for all three types of 

selectins (138).  

In animal models, knockout of P-selectin and ICAM-1 expression on the 

endothelium was shown to be protective against atherosclerosis (139). The expression 

of endothelial adhesion molecules VCAM-1 and ICAM-1 is enhanced in 

atherosclerotic lesions (140). 

Selectin-PSGL-1 interaction does not only regulate rolling on the endothelium, 

but also serves as a signaling input for cytokine production (e.g. TNF) and integrin 

activation (141-143). While rolling over inflamed endothelium, monocytes come in 

contact with pro-inflammatory cytokines (ILs, TNF, MCP-1), which, in turn, prepare 

the adhesion machinery for the next step – firm adhesion (144). 

	
Figure 3. Monocyte extravasation. Monocyte extravasation begins with PSGL-1- selectin interaction. 
Monocyte come in contact with chemokines. This activates migratory machinery in the cells, leading to 
firm adhesion and transendothelial migration.	

The main classes of monocyte integrins involved in extravasation are CD18 

(b2) integrins LFA-1 (CD11a CD18; aLb2) and MAC-1 (CD11b CD18; aMb2), and 

VLA4 (CD49d CD29, a4b1) (145, 146). Absence of either LFA-1 or MAC-1 results 

in a decrease in numbers of adhered leukocytes, with LFA-1 reducing the adhesion by 

80%, suggesting a pivotal role of this integrin in creating a firm adhesion(147, 148),  

MAC-1 regulates monocyte rolling on the endothelium. VLA4 binding to vascular 

cell adhesion molecule 1 (VCAM-1) mediates rolling as well as firm adhesion (149). 

VLA-4 also contributes to mediate cell arrest on the endothelium (150). The role of 

VLA-4 is supported by ex vivo studies in ApoE-/- mice, where functional blockade of 

the integrin resulted in 75% decrease in cell adhesion to endothelium (151). General 

integrin activation mechanisms involve conformational change from a bent 

conformation to an extended one (152). High-affinity (extended) conformation 

significantly increases the adhesive properties of integrins, especially LFA-1 (153). 
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The final step of leukocyte extravasation is transendothelial migration, when 

monocytes traverse the endothelial lining of the vessel to get into the lesion. 

Junctional adhesion molecules (JAM) are one of the crucial players, with LFA-1 

binding JAM-A and MAC-1 interacting with JAM-C (154, 155) on the endothelium. 

JAM-C interacts with b2 integrins on the endothelial surface and opens intercellular 

contacts for leukocytes. Of note, JAM-C is upregulated by oxLDL(156) and is 

responsible for preventing backwards migration of monocytes through the 

endothelium (157). 

Other cell types that are involved in atherosclerosis are dendritic cells, 

lymphocytes and neutrophils (158). Dendritic cells are often confused with plaque 

macrophages as some of them come from the same lineage and possess similar 

surface markers. Dendritic cells are found in the normal intima and accumulate in the 

plaques (159-161). They possess CD11c and provide stimuli for immune response 

and activation of the T-lymphocyte system (162, 163). They are also capable of 

engulfing lipids and generating foam cells (164). 

 

1.3 Tissue Factor 
Tissue factor (TF) is a 47 kDa transmembrane glycoprotein, comprised of 263 

amino acids.  The cDNA sequence was 

discovered in 1987 simultaneously by three 

independent groups (165-167), shortly followed 

by the discovery of the full gene sequence in 

1989 (168). TF is encoded by the F3 gene 

located on chromosome 1 in the p22-p21 region. 

The molecular weight of TF is heavily 

influenced by posttranslational modifications 

(169). 

The TF molecule consists of three 

domains (170-172): the extracellular domain 

that binds FVII (Fig. 3, pink), the 

transmembrane domain (Fig. 3, green) and the 

cytoplasmic carboxyterminal domain (Fig. 3, 

blue). 

Figure 4. Tissue factor molecule. 
Schematic representation of TF interaction 
with FVII and FX. The TF extracellular 
domain is shown in pink, the transmembrane 
domain in green, and the intracellular 
domain in blue. 
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TF is present in two isoforms, full-length TF (flTF), and alternatively spliced 

TF (asTF). The mRNA sequence of the latter lacks the exon 5 sequence, and exon 4 is 

directly linked to exon 6(173). Thus, the mature protein sequence of asTF lacks the 

transmembrane domain and is not capable of procoagulant activity. 

TF undergoes a variety of posttranslational modifications, including 

glycosylation (169) and palmitoylation (174) which were shown to be important for 

the regulation of its procoagulant activity (175), although some controversy still exists 

(176, 177).  

Under physiologic conditions, TF does not come into contact with blood, 

existing as a ”hemostatic envelope” in the vasculature (178) aimed at stopping the 

bleeding in the event of vessel rupture.  This leads to an abundance of TF on the 

surface of vascular smooth muscle cells, fibroblasts and pericytes (178). TF is also 

abundant in atherosclerotic plaques. The amount of TF in atherosclerotic plaques 

increases with the progression of the lesion (179, 180). 

TF expression patterns show increased TF prevalence in brain (astrocytes), 

heart (cardiac myocytes), kidney, placenta (178, 181, 182) as well as stromal cells in 

human endometrium (183), reflecting the evolutional adaptation for the increased risk 

of bleeding in these organs. The primary source of TF in blood is thought to be 

monocytes, yet there are some publications showing TF expression in neutrophils 

(184), eosinophils (185) and lymphocytes (186). Monocytes may potentially serve as 

the primary source of TF in whole blood, later transferring it to granulocytes and 

platelets (187, 188). An important point to bear in mind in in vitro studies is that 

cultured cells show significant changes in TF activity throughout the culturing 

process, and may not represent the in vivo situation (189). 

TF association with the cell membrane is necessary for its function as forms 

lacking the transmembrane domain are not capable of executing its procoagulant 

function due to the lack of anchoring to the cellular membrane (171). The TF 

procoagulant activity is induced by Ca2+ influx in the cell and influenced by the 

phosphatidylserine distribution in the membrane (190). Phospholipids are essential for 

full TF procoagulant activity (191). 

The primary function of flTF is to be a cellular receptor for FVII and FVIIa, 

which it binds with high affinity (192). This interaction triggers the coagulation 

cascade by activating  FIX (193) and FX (194). Activated FXa in association with its 

cofactor Va, the prothrombinase complex, cleaves prothrombin to thrombin, which in 
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turn cleaves fibrinogen to fibrin(195). TF-induced FVII activation is blocked by TFPI, 

that blocks the formation of TF:FVII complex and also inhibits FXa (196). 

The promoter of the TF gene has binding sites for Sp1, AP-1 and NFkB 

transcription factors (197). Deletion studies show that binding sites for Sp1 are 

responsible for basal expression of TF, while induced expression is dependent on AP-

1 and NFkB. The F3 gene promoter also contains a binding site for a transcriptional 

repressor. Activation of AP-1 and NFkB transcription factors is essential for TF 

expression (198-200). To our knowledge, there are no previous reports showing 

BMP-responsive elements or Smad-binding sequences in the human TF promoter. 

1.3.2 Non-coagulant functions of tissue factor 

Apart from activation of FIX and FX in complex with FVIIa, TF exerts a 

number of non-procoagulant functions. Over 20 years ago, TF was found to be 

heavily expressed in tumors, with a significantly higher prevalence in malignancy 

(201) and in correlation with thrombotic complications. Later, TF expression was 

found to be associated with metastasis in patients with non-small-cell lung carcinoma 

(202). It also strongly correlates with the histological grade of pancreatic cancer 

(203). An elegant study in mice using specific TF mutants provided evidence that TF 

contributes to cancer metastasis by a pathway independent of coagulation (204). TF 

inhibits cellular apoptosis and promotes cell survival, thus contributing to tumor 

growth (205). Blockade of non-coagulant TF signaling by antibodies suppresses 

tumor growth by reducing TF association with b1 integrins and inhibiting PAR2 

mediated signaling (206). PAR2-independent TF signaling has a potential role in 

angiogenesis in the tumor environment by integrin ligation (207).  

TF-FVIIa interaction is able to induce activation of several signaling kinases, 

including ERK1/2 by activation of PAR2 (208) in human colon cancer cell line, while 

FVIIa and FX binding to TF increases phosphorylation of ERK1/2, p38 and JNK in 

human keratinocytes (209). TF activates PAR2 by the TF-FVIIa complex and 

indirectly via activation of FX (210). Activation of PAR2 by TF-FVIIa enhances 

migration of human coronary smooth muscle cells (211) and fibroblasts (212). TF 

also colocalizes with cytoskeletal proteins in lamellipodia of migrating SMCs (213) 

and endothelial cells (214), suggesting involvement in cell migration.  

TF-FVIIa interaction results in upregulation of IL-8 and IL-6 in human 

keratinocytes (215) and endothelial cells (216) in cell cultures. 
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2 AIMS OF THE STUDY 
Overall aim 

• To investigate the actions of BMP-2 and -7 on monocyte thrombogenicity and 

motility 

 

Specific aims 

1. To investigate signaling events behind BMP-2-mediated inhibition of tissue 

factor activity 

2. To study the involvement of ERK1/2, p38, and JNK in BMP-7 induced TF 

expression in human MNCs 

3. To study the effect of BMP-7 on TF protein, mRNA expression, and surface 

presentation in human MNCs 

4. To study the transcriptional regulation of the F3 gene by BMP-7 in human 

MNCs 

5. To investigate the effect of BMP-7 on motility of human MNCs 

6. To investigate signaling events behind BMP-7-attenuated motility of human 

MNCs 
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3 SUMMARY OF THE RESULTS 

3.1 Summary paper I 

BMP-2 inhibits TF expression in human monocytes by shutting down MAPK 

signaling and AP-1 transcriptional activity. 

Egorina EM, Sovershaev TA, Hansen JB, Sovershaev MA. 

Thromb Res. 2012 Apr;129(4):e106-11. doi: 10.1016/j.thromres.2011.10.024.  

 

Bone morphogenetic protein-2 (BMP-2) is a known inducer of vascular 

calcification. BMP-2 is abundant in stable, calcified atherosclerotic lesions. We have 

previously shown that BMP-2 is capable of downregulating induced TF expression in 

human monocytes. In this paper, we investigated signaling mechanisms behind the 

observed events. 

LPS (strain 026:B6) stimulation led to a 5-fold increase in TF surface 

presentation, which was accompanied by an increase in TF-positive cells from 

1.3±0.3% to 67.1±13.0%. Pretreatment of whole blood with BMP-2 prior to LPS 

stimulation prevented the increase in TF surface presentation and significantly 

reduced the number of TF positive cells. 

By means of confocal microscopy, we showed that treatment of human 

mononuclear cells (MNCs) isolated by density gradient centrifugation with 300 ng/ml 

BMP-2 for 2 hours leads to an 11-fold increase in phosphorylation of Smads 1/5/8 

(p<0.05), revealing activation of canonical BMP signaling. Of interest, when MNCs 

were treated with a combination of LPS and BMP-2 for two hours, the 

phosphorylation of Smad proteins was significantly reduced. BMP-2 did not change 

basal TF expression, but was capable of significantly reducing LPS-induced TF 

expression.  

We then looked at the activation status of ERK1/2, JNK, and p38 signaling 

kinases. As judged by immunoblotting, LPS is capable of inducing phosphorylation of 

all three kinases. Pretreatment with 300 ng/ml BMP-2 prior to addition of LPS 

resulted in significant reduction of ERK1/2, JNK, and p38 phosphorylation. Next, in 

order to look at the effects of BMP-2 on AP-1 and NFkB transcription factors, we 

transfected MNCs with synthetic constructs where the luciferase gene was driven by 

either AP-1 or NFkB sensitive promoter, and the activation was assessed by 

measuring luciferase activity by means of luminescence-based assay. LPS was able to 
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induce both AP-1 and NFkB sensitive plasmids. Treatment with BMP-2 abolished the 

effect of LPS on activation of AP-1 sensitive plasmid. Interestingly, while BMP-2 did 

reduce activation of NFkB sensitive plasmids it was unable to completely negate the 

effects of LPS. This is in line with our data on the weak decrease of IkB degradation, 

suggesting that BMP-2 has little effect on NFkB activation. 

In this study we sought to shed some light on the signaling mechanisms behind 

the effects of BMP-2 on LPS-induced TF upregulation. We discovered that BMP-2 is 

capable of downregulating phosphorylation of MAPKs ERK1/2, JNK, and p38. In our 

luciferase experiments we showed that BMP-2 negates the effect of LPS on activation 

of AP-1 transcription factor and, while significantly reducing the activation of NFkB, 

is not capable of completely reversing its activation. The presence of BMP-2 in 

atherosclerotic plaques, therefore, contributes to plaque stability not only by inducing 

calcification of the plaque, but may also hamper thrombogenicity by downregulating 

monocyte TF production.  

 

3.2 Summary paper II 

Increased expression of TF in BMP-7-treated human mononuclear cells depends 

on activation of select MAPK signaling pathways 

Sovershaev MA, Egorina EM, Sovershaev TA, Svensson B, Hansen JB. 

Thromb Res. 2011 Dec;128(6):e154-9. doi: 10.1016/j.thromres.2011.07.027.  

 

BMP-7 is present in lipid-rich, rupture-prone atherosclerotic plaques. It is a 

known inhibitor of vascular calcification. BMP-7 can contribute to plaque 

thrombogenicity by activation of TF. TF is present in atherosclerotic plaques and is a 

major contributor to plaque thrombogenicity. Monocytes are a major cellular 

component of atherosclerotic plaque and the source of TF in blood. MAPKs can be 

activated by BMPs and contribute to the induction of TF by LPS. BMPs are capable 

of activating MAPK signaling alongside with canonical Smad pathway. In this study, 

we explored whether the activation of the aforementioned pathways is connected with 

TF upregulation by BMP-7. 

Treatment of whole blood with 300 ng/ml of BMP-7 for 2 hours resulted in a 7-

fold increase over vehicle (p<0.001) in TF protein levels as measured by western 

blotting. The observed rise in TF protein levels was accompanied by an increase in TF 
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functional activity (16- fold vs vehicle control, p<0.001). LPS was used as a positive 

control.  

When lysates of MNCs treated with vehicle or BMP-7 where subjected to 

western blotting, we observed that BMP-7 increases phosphorylation of Smads 1/5/8, 

thus confirming the activation of canonical signaling. This data was also proven by 

confocal microscopy of MNCs stained for intracellular p-Smads.  

Next, we looked into activation status of ERK1/2, JNK, and p38 signaling 

kinases. BMP-7 was capable of significantly increasing phosphorylation of those 

kinases (western blotting) to the level comparable with LPS stimulation. 

To prove that observed kinase activation is relevant for TF upregulation, we 

utilized In-Cell Western assay to study the effect of kinase inhibition. The use of 

ERK1/2 inhibitor PD98059 led to a significant reduction in BMP-7-induced TF 

expression, while p38 inhibitor SB203580 reduced it almost to baseline levels.  

Taken together, out data suggests that TF regulation by BMP-7 is dependent on 

the activation of ERK1/2 and p38 kinase pathways, with p38 playing the major role in 

the observed effects, while ERK1/2 is only partially responsible for TF induction by 

BMP-7. 

 

3.3 Summary paper III 

BMP-7 induces TF expression in human monocytes by increasing F3 

transcriptional activity. 

Sovershaev TA, Egorina EM, Unruh D, Bogdanov VY, Hansen JB, Sovershaev 

MA. 

Thromb Res. 2015 Feb;135(2):398-403. doi: 10.1016/j.thromres.2014.11.031. 

 

In over previous work, we showed that BMP-7 is capable of upregulating TF 

expression in human mononuclear cells. This effect is dependent on the activation of 

MAPKs p38 and ERK1/2. In this study, we aimed to delineate the involvement of two 

transcription factors responsible for TF gene regulation, AP-1 and NFkB.  

First, we measured the response of monocytes to BMP-7 stimulation by means 

of Western blotting and TF procoagulant activity assay. Stimulation with 300 ng/ml 

BMP-7 resulted in a time-dependent TF upregulation that was accompanied by an 
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increase in TF procoagulant activity. The increase in TF protein levels was confirmed 

by ELISA.  

On the basis of those experiments, we utilized the 2-hour time point in 

subsequent experiments.  LPS was used as a positive control in all experiments. 

To investigate the underlying mechanisms responsible for the upregulation of 

TF expression by BMP-7, we studied the activation status of two transcription factors, 

AP-1 and NFkB, known to be essential for the regulation of F3 expression. BMP-7 

markedly increased the levels of phosphorylated c-Jun in MNCs. However, BMP-7 

did not change the transcriptional activity of a synthetic AP-1-sensitive reporter 

construct. 

BMP-7 also led to a loss of IkB-α protein in the lysates of MNCs, which was 

similar to that measured in the samples stimulated with LPS. This was accompanied 

by increased transcriptional activity of an NFkB-sensitive luciferase reporter 

construct.  

Next, we used a reporter construct in which luciferase expression was driven by 

either wild type F3 promoter, or F3 promoter mutated in the NFkB or AP-1 binding 

sites. Cells transfected with the NFkB mutant reporter construct did not respond to 

BMP-7, while both the wild type and the AP-1 mutant constructs responded with a 6- 

and 1.5- fold increase, respectively. 

Having established that BMP-7 increases transcriptional activity of NFkB, we 

subjected monocytes or THP-1 cells to BMP-7 stimulation in the presence of JSH-23, 

a small molecule inhibitor of NFkB. Two hours of BMP-7 stimulation led to a 

significant increase in TF mRNA levels in human monocytes and THP-1 cells, while 

pretreatment with JSH-23 abolished the BMP-7-induced increase in TF mRNA. We 

also investigated the effect of BMP-7 and NFkB inhibition on the surface presentation 

of TF and got similar results. While BMP-7 was capable of enhancing TF surface 

presentation more than 2-fold, inhibition of NFkB with JSH-23 abolished the increase 

in BMP-7-induced fraction of CD14 + TF+ cells.  

Taken together, in this study we show that the F3 gene upregulation and TF 

protein production by BMP-7 is mediated via the NFkB transcription factor, with 

involvement of AP-1. 
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3.4 Summary paper IV 

A novel role of bone morphogenetic protein-7 in the regulation of adhesion and 

migration of human monocytic cells 

Sovershaev TA, Unruh D, Sveinbjørnsson B, Fallon JT, Hansen JB,  Bogdanov 

VY, Sovershaev MA; accepted, Thromb Res 2016. doi: 

10.1016/j.thromres.2016.09.018 

 

BMP-7 is present in atherosclerotic plaques. It is abundant in lipid-rich 

vulnerable plaques, and can regulate plaque thrombogenicity via upregulation of 

monocyte / macrophage TF. Monocyte extravasation is a crucial step in the formation 

of atherosclerotic plaques. BMP signaling pathways are involved in the regulation of 

integrins in endothelial cells. BMPs are chemotactic for human monocytic cells, and, 

recently, BMP-2 and -4 were found to be able to recruit monocytes into 

atherosclerotic lesions (217). In this paper we investigated the effects of BMP-7 on 

integrin function in monocytes and its effect on the regulation of monocyte migration. 

First, using immunostaining of human carotid atherosclerotic plaques, we 

identified the spatial relation between BMP-7 and macrophages in human 

atherosclerotic plaques. Of note, BMP-7 is highly present in the intimal region of the 

diseased vessel, possibly contributing to activation of endothelial cells as well as 

patrolling monocytes. We then explored the functional effects.  

First, we utilized a live cell imaging system, where we recorded videos of THP-

1 cells or human monocytes crawling with or without BMP stimulation. Indeed, when 

treated with BMP-7, monocytes crawled faster and for longer distances (1.76±0.21-

fold increase in crawling distance vs vehicle control, p<0.001). 

Next, we observed that, under orbital shear conditions, monocytes attach more 

readily to microvascular endothelium when treated with BMP-7 (2.57±0.97-fold vs 

control, p <0,001).  

As a final step, we examined transmigration of monocytes and THP-1 cells 

through microvascular cell monolayers towards MCP-1 gradient (10 ng/ml) in a 

modified Boyden chamber assay. BMP-7 increased the amount of monocytes 

transmigrated 2.96±0.65 fold (p<0.001) over vehicle control. Thus, BMP-7 is capable 

of inducing all three major steps of monocyte extravasation.  

We then sought to investigate the effect of BMP-7 on integrin activation by 

means of highly selective monoclonal antibody to high-affinity conformation of b2 
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integrins, which have a pivotal role in all stages of monocyte recruitment into the 

plaque. By means of confocal microscopy (2-fold increase in MFI over vehicle, 

p<0.001) and flow cytometry (more than 3-fold increase) we showed that BMP-7 is 

capable of activating integrins as early as after 30 minutes of stimulation. 

Next, to explore signaling pathways behind the observed events, we 

investigated the activation status of Akt/FAK signaling kinases, known to be central 

in cell migration.  

BMP-7 was capable of increasing the phosphorylation of AKT kinase as early 

as 15 minutes after stimulation, which was then followed by a dramatic increase in 

phosphorylation of focal adhesion kinase at 30 minutes post-stimulation. 

To prove that observed effects are BMP-specific, we utilized Noggin and 

Dorsomorphin to inhibit either BMP-7 binding to the receptor or the phosphorylation 

of the BMP receptor. Indeed, the use of both inhibitors resulted in a significant 

reduction of BMP-7 effects on monocyte crawling and adhesion. 

Lastly, to see whether Akt and FAK kinases are involved in the observed 

functional effects, we utilized specific kinase inhibitors for Akt 1/2 and FAK. 

Application of either of the two resulted in significant reduction in cell crawling 

distance and adhesion to endothelium under orbital shear.  

To summarize, in this paper we present a novel function for BMP-7 – regulation 

of monocyte motility. For the first time, we showed that BMP-7 rapidly activates b2 

integrins on the monocyte cell surface. Increased presence of BMP-7 in intimal lining 

over atherosclerotic plaques clearly shows that BMPs are present at the very onset of 

monocyte extravasation.  

Next, we show that BMP-7 makes monocytes more motile and significantly 

enhances their adhesive and migratory properties, enhancing all step of monocyte 

extravasation. This suggests a novel role for BMP-7 in regulation of plaque formation 

and monocyte extravasation.  

  



	 33	

4 DISCUSSION OF MAJOR FINDINGS 
Since the discovery in the 1960s, bone morphogenetic proteins were extensively 

studied and now adhere to the name only historically. A wide variety of BMP 

functions are now recognized both during embryonic development as well as in 

several diseases. BMPs were first described in atherosclerotic lesions over twenty 

years ago (23). BMP expression patterns correlate well with the morphology of the 

plaques, with calcified plaques having more BMP-2 than lipid rich plaques, and an 

inverse relation with BMP-7 (25, 26). Thrombogenicity of atherosclerotic plaques is 

heavily dependent on monocyte / macrophage TF (180). Recently, we and others 

showed that levels of BMP-2 positively correlate with vascular calcification in 

atherosclerosis and negatively regulate TF expression in human MNCs (25, 26, 31).  

Our data further clarifies the involvement of BMP signaling in the development 

of atherosclerosis.  

In our first paper, we provide evidence implying that some of the MAPK 

signaling pathways are involved in the inhibition of LPS-induced TF upregulation in 

monocytes. Monocytes have functional BMP receptors on their surface (218) and 

BMP-2 is capable of activating canonical BMP signaling, which is evident from 

increased phosphorylation of Smads 1, 5, and 8. By means of flow cytometry and 

confocal microscopy we show that BMP-2 does not affect resting TF levels in human 

MNCs. Although LPS is a well-known regulator of TF activity in mononuclear cells 

(219), we confirmed that LPS increases TF expression by flow cytometry and 

confocal microscopy. We also show that LPS is capable of inducing several signaling 

pathways (ERK1/2, p38, JNK) that are relevant for TF gene expression. Moreover, 

LPS activated AP-1- and NFkB-sensitive constructs, showing the activation of 

transcription factors is vital for TF expression (168). BMP-2 pretreatment resulted in 

significant reduction of LPS-induced TF expression. The plausible mechanisms 

include BMP-2 acting through dampening of the activation of the aforementioned 

signaling kinases (ERK, p38, JNK). 

While we clearly observe the negative effect of BMP-2 on the activation of 

kinases in human MNCs, recent data indicates that BMP-2 can induce 

phosphorylation of the MAPKs in the gastric cancer cell lines (220) and also activate 

NFkB transcription factor. This may be attributed to either cell-type specific 
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differences, specifically the probability of signaling through different surface 

receptors that can activate various downstream pathways (41). 

One may question the relevance of LPS as a TF regulator in atherosclerosis. 

There are several lines of evidence that infectious agents are present in atherosclerotic 

lesions (221-223) and may play a role in the pathogenesis of the disease. However, 

we suppose that one may study the inhibitory effects of BMP-2 on human monocytes, 

activated via LPS, since LPS stimulation of monocytes starts with CD14 and TLR4 

(224) and activates a variety of signaling pathways; the most relevant for TF 

regulation are MAPK kinases (225) and activation of AP-1 and NFkB transcription 

factors (226). Further studies may shed more light on BMP-2-mediated regulation of 

TF in monocytes activated by oxLDL, TNF, and interleukins. 

BMP-2 is present in atherosclerotic plaques and is able to recruit monocytes 

into the lesions (217). BMP-2 therefore has a double role in atherogenesis by 

increasing monocyte influx into the plaque, and, in the later stages of atherosclerosis, 

by adding to the stabilization of the process by lowering the thrombogenicity via 

downregulation of tissue factor and induction of calcification. It would be interesting 

to look deeper into the association between various subsets of monocytes and 

macrophages in the plaque and BMP-2 chemotactic activity, since BMP-2 may be a 

differential stimulus for also recruiting anti-inflammatory cells into the plaque. 

In our second and third papers, we sought to identify the signaling pathways 

responsible for the BMP-7-mediated TF (F3) gene regulation. We found that BMP-7 

induces TF surface presentation, upregulates F3 mRNA production, and increases TF 

protein levels in a time-dependent manner, as well as TF procoagulant activity.  

We found that stimulation with BMP-7 induces phosphorylation of Smads 

1/5/8, thus indicating the activation of canonical signaling. BMP-7 also significantly 

increased the phosphorylation of ERK1/2, JNK, and p38. Pharmacological blockade 

of ERK1/2 and p38 signaling resulted in a significant reduction of TF expression, 

stressing the importance of the aforementioned pathways in TF regulation by BMP-7. 

Next, we studied the activation of transcription factors involved in the 

regulation of F3 expression. We found that BMP-7 increases phosphorylation of c-

Jun, a measure of AP-1 activation. This was accompanied by increased degradation of 

the NFkB inhibitory subunit IkBa, thus enabling the NFkB complex to be transferred 

into the nucleus. When we utilized a luciferase construct driven by the TF promoter, 



	 35	

we showed that both AP-1 and NFkB binding sites are required for full-scale 

activation of F3 expression by BMP-7. The NFkB binding site is essential for TF 

upregulation by BMP-7. To further substantiate our findings, we utilized a small-

molecule compound, JSH-23, that prevents NFkB translocation to the nucleus (227). 

This compound completely negated the effect of BMP-7 on both TF surface 

presentation as well as F3 mRNA production.  

These data show that the signaling pathway involved in the regulation of TF 

expression by BMP-7 includes non-canonical BMP signaling through MAPKs and 

activation of AP-1 and NFkB transcription factors. 

The effects of BMP-7 on the activation of NFkB in atherosclerosis may extend 

beyond the regulation of TF expression. There is a significant amount of data on the 

activation of NFkB in atherosclerosis, and specifically, coronary artery disease (228). 

The activation of this transcription factor leads to induction of vascular inflammation 

(229) and its inhibition protects from atherosclerosis (230).  

Activation of NFkB is central in proinflammatory response (231) and leads to 

the expression of a variety of genes, including TNF, IL-6, IL-8 and matrix 

metalloproteinases. This may have implications far beyond thrombogenicity of the 

plaque. Recently, the BMP-specific antagonist Noggin was shown to have an anti-

inflammatory effect on endothelial cells (232). The use of small molecule inhibitors 

of BMP signaling can affect various pathogenetic mechanisms of atherosclerosis (29), 

including plaque formation, vascular calcification, and plasma LDL levels in murine 

models, possibly by reducing BMP-2-induced ApoB100 expression. 

In our fourth paper we present a novel function for BMP-7 – regulation of 

monocyte motility, adhesion, and transendothelial migration by acting solely on 

monocytes and not through endothelium / chemoattractant activity. In our present 

work we demonstrate that BMP-7 is expressed in the intimal region of the vessels as 

well as inside the plaques. We show that BMP-7 induces a high-affinity conformation 

in β2 integrins as early as 30 minutes after stimulation, allowing for enhanced firm 

adhesion and transendothelial migration. Activation of β2 integrins is known to 

potentiate adhesion, crawling, and transendothelial migration of leukocytes (233, 

234). Exposure to BMP-7 triggers intracellular signaling events leading to the 

activation of the Akt-FAK pathway crucial to integrin-mediated cell migration (235). 
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The use of specific inhibitors of BMP signaling, Noggin and Dorsomorphin, proves 

that the observed effects are BMP-specific. 

When we used FAK inhibitor, the effects of BMP-7 on monocyte crawling were 

abolished, and blockade of Akt eliminated BMP-7-induced crawling and adhesion to 

endothelium. Blockade of Akt reduced phosphorylation of FAK at Tyr397. 

Interestingly, while abolishing the effects of BMP-7 on cell motility, small molecule 

inhibitor of FAK (FAK inhibitor 14) did not affect phosphorylation of the kinase at 

Tyr397. We note that Akt directly regulates FAK through physical association of the 

two kinases and phosphorylation of FAK on Tyr397 (236), and our findings may 

suggest that both Akt and FAK are essential for the observed effects. Our results 

agree with the previous reports on the involvement of PI3K/Akt pathways in BMPR2-

mediated chemotaxis in cultured mouse WEHI 274.1 and human THP-1 cells (237).  

Previous data indicates that BMPs act as chemotactic factors for monocytic cells (217, 

238) and induce a proinflammatory phenotype in the endothelial cells (33). It is 

noteworthy that, in the present study, monocytes were pretreated with BMP-7 and 

then allowed to interact with untreated endothelial cells. This substantiates the notion 

that BMP-7 activates intracellular machinery within monocytes, regardless of 

endothelial involvement. In addition, monocytes preconditioned with BMP-7 

migrated faster towards the MCP-1 gradient in the absence of BMP-7 in the medium.  

In this work, we outline the importance of bone morphogenetic proteins in the 

pathogenesis of atherosclerosis. Our results suggest that BMP-7 takes part in 

regulation of major events in the development of atherosclerotic plaques. First, they 

enhance the extravasation of monocytes into the vascular wall – a crucial event in the 

formation of early atherosclerotic lesions (95).  

Activation of b2 integrins in monocytes is in line with the data on involvement 

of BMP signaling in integrin activation on endothelial cells (239). We observe a 

certain degree of colocalization between b2 integrins and BMPR2 in our work 

(unpublished data) and together these findings suggest a possible new mode of 

interaction between BMP and integrin signaling. Our data is limited to the 

observations obtained from immunostaining of the two proteins in vitro using 

fluorescent microscopy. Further delineation of this interaction is needed using 

techniques suitable to verification of the genuine protein-protein interaction e.g. 

FRET and co-immunoprecipitation.  
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In our studies we also observed a degree of activation of VLA4 (unpublished 

data) by BMP-7 in monocytes. These data further substantiate our conclusions on the 

role of BMP-7 in monocyte migration. 

Interestingly, a study in ApoE-/- mice showed an inverse relation between 

BMPR2 in the endothelium and atherosclerosis (240). This may also be attributed to 

the negative feedback between BMPs and BMP receptor expression in the 

endothelium.  

BMP-7 actions are quite diverse in atherosclerosis – the protein is a known 

inhibitor of calcification, helps monocytes to enter the plaque, and in later stages of 

the diseases contributes to thrombogenicity via upregulation of tissue factor 

expression and its procoagulant activity. However, some reports show that BMP-7 

promotes alternative activation of macrophages(241), shifting polarization towards 

expression of anti-inflammatory markers, and may reduce atherosclerotic burden in 

mice (242). Moreover, BMP-7 reduced vascular calcification in a murine model of 

chronic kidney failure and atherosclerosis (28). However, we have not looked into the 

effects of BMP-7 on macrophages in the context of atherosclerosis. Moreover, the 

data presented in the studies mentioned were obtained from murine models and THP-

1 cells, which may not necessarily reflect the behavior of human macrophages (243-

245).  

One of the naturally occurring BMP antagonists, Noggin, has recently been 

shown to reduce inflammation and leukocyte chemotaxis (217, 232), and it is thus 

plausible to postulate the existence of anti-atherogenic properties of Noggin, as well 

as other BMP antagonists. In the fourth paper we show that Noggin is capable of 

suppressing of BMP-7-induced monocyte motility. This again suggests a novel role of 

BMP signaling in atherogenesis. 

4.1 Methodological considerations 

There are several limitations to the observations in our study. First, data on the 

regulation of tissue factor expression in mononuclear cells was produced in density 

gradient-isolated human mononuclear cells that contain a significant portion of 

lymphocytes. The best option would have been to use a population of monocytes 

negatively selected from buffy coats. However, monocytes are the major source of 

blood-borne TF, with only one report indicating the expression of TF by lymphocytes 

(186). Moreover, our data on BMP-7-induced TF expression in monocytes is 
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substantiated by findings in THP-1 cells, the most widely used human monocytic cell 

line.   

Another consideration is the use of synthetic AP-1- or NFkB-sensitive 

promoters. The expression of TF is tightly regulated by an interplay between several 

transcription factors and thus the use of synthetic promoters may not reflect the in 

vivo gene expression, yet will provide data on the activation of specific transcription 

factors. A more correct way is to use a wild-type gene promoter incorporated into the 

luciferase construct, thus providing a more “real” system, which we utilized in our 

third paper. 

We did not evaluate the effect of BMP-2 on TF procoagulant activity. While we 

observe that BMP-2 does not change TF surface presentation or total protein levels in 

resting monocytes, the TF procoagulant activity may not directly correlate with 

protein levels due to possible encrypted TF on the cell membrane.  

In our fourth paper, we utilized attachment to plastic to isolate human 

monocytes from blood. A recent study show that, after 2 days in culture monocytes 

still bear characteristic CD14 and CD16 surface markers (246). Another study showed 

no difference in surface marker expression between MNCs isolated by adherence and 

CD14 positive selection, yet demonstrated loss of CD14dim population when isolating 

with CD14-positive beads (247), and one showed no difference between either bead-

isolated or attachment isolated monocytes in their ability to form DCs (248). While 

negative selection would most probably be the best option, adhesion may serve as an 

easy and reliable alternative. 

Thus, while monocytes may be activated by plastic (249), an overnight 

incubation will not significantly alter the phenotype of human monocytes. Moreover, 

relevant controls were utilized, and similar results were obtained in the human 

monocytic cell line THP-1.  
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5 CONCLUSIONS 
1. BMP-2 inhibits LPS-induced TF expression in human MNCs by inhibition of 

phosphorylation of ERK1/2, p 38, and JNK signaling kinases and inhibition of 

LPS-induced activation of AP-1 and NFkB transcription factors. 

2. BMP-7-induced phosphorylation of ERK1/2, p38, and JNK in human MNCs 

plays an important role in TF induction by BMP-7. 

3. BMP-7 increases TF protein and mRNA expression, procoagulant activity, 

and TF surface presentation in human MNCs. 

4. BMP-7-mediated F3 upregulation is mediated by activation of NFkB and AP-

1 transcription factors. NFkB is essential for the F3 gene upregulation by 

BMP-7, and AP-1 is necessary for full-scale activation of the F3 gene 

promoter by BMP-7.  

5. BMP-7 enhances crawling, adhesion, and transendothelial migration of human 

monocytes and THP-1 cell line. 

6. BMP-7 rapidly induces the active conformation in b2 integrins. BMP-7-

induced crawling and adhesion are dependent on activation of Akt and FAK. 

7. Noggin and Dorsomorphin completely reverse the effects of BMP-7 on 

monocyte crawling and adhesion.  
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6 FUTURE DIRECTIONS 
This work can be expanded in several ways. First of all, a study on the role of 

other members of the BMP family in atherosclerosis may be beneficial. There is now 

sufficient evidence to support their role in atherosclerotic processes. 

The observed effects of BMPs on monocytes are performed in vitro. It would be 

compelling to confirm our findings in vivo in a mouse model and observe how 

administration of BMPs / BMP inhibitors can change the morphology of plaques, 

monocyte / macrophage burden, and plaque thrombogenicity. The resulting data may 

provide a certain basis for developing new treatment strategies. Moreover, data on the 

role of BMP signaling in atherosclerotic burden can further be substantiated by the 

use of conditional knockouts of BMP receptors/signaling molecules. 

While in our fourth paper we focused on the CD18 integrins, a study on the 

effects of BMPs on the activation of various adhesion molecules in monocytes, 

including VLA-4, PSGL-1 and selectins is warranted to provide additional data on the 

effects of BMPs on leukocyte migratory machinery.  

It would be also of interest to elaborate on the BMP receptor – integrin 

interaction. In our work we observed a rapid increase in colocalization of BMPR2 and 

CD18 integrins on the surface of THP-1 cells activated with BMPs. The interaction 

was previously shown in endothelial cells under shear stress (239), yet no studies so 

far have examined the role of such an interaction in activation of leukocyte motility 

and its role in monocyte extravasation. A variety of techniques can be utilized, 

including yeast 2 hybrid (250), fluorescence resonance energy transfer (251), and 

immunoprecipitation.
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