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Abstract

In this thesis we present the development of a distributed and parallel envi-
ronment which offers functionality to robots to support them in their task
performance. We want the environment to be a framework where students
can experiment with robots, and in which we can arrange robot competitions.

Our motivation for this thesis is an earlier developed robot system at
our department. It was used as an instrument to demonstrate the principles
and practice of distributed and high performance parallel computing. The
system was used by students on advanced courses on cluster architecture and
programming, and popular competitions were held in it. The old system had
many infrastructure demands and had to be closed. We want to make a new
system that has less infrastructure demands and more functionality.

The environment has control over a certain amount of work space where
the robots can operate. Within this work space, the environment offers
functionality that includes context awareness, location, mapping, naming,
and structured interfaces for interaction between the different components.
Users can control the robots through the environment, and they assign tasks
to the robots. Users can also download extensions to robots through the
environment, and robots can upload data to the environment.

The state of the environment, the robots and the work space is visualized
on a display wall. Users can interact with this visualization and assign simple
tasks through it.
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Chapter 1

Introduction

1.1 Background and motivation

During the years 2000 to 2004 the department of computer science at the uni-
versity of Tromsg worked on a robot system, called ROBO. ROBO was used
as an instrument to demonstrate the principles and practice of distributed
and high performance parallel computing. The system developed was used
by students on advanced courses on cluster architecture and programming.
The goal was that through the system they would get good understanding
of distributed and parallel systems. Also they would learn how to utilize
the resources in a distributed system in practice. The goal was also to make
the system portable so that it could be used both in university courses, on
exhibitions and other demonstration arenas [1].

The system consisted of several Lego robots with small on-board com-
puters which operated inside an arena after some given rules. The arena
was a physical frame on the floor that prevented the robots to drive out of
reach. The robots had low processing, memory and I/O performance and

Black seever

Robot laplops Filg server
Scoraboard
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Figure 1.1: The technical solution of the old robot system.
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were therefore supported by a computer each. They were also supported
by a cluster and a file server. These were used to some heavy computing
that the robots should perform. The location data came from a position-
ing computer with a video camera attached. The camera was mounted over
the arena. A scoreboard computer monitored the state and progress of the
system. This dat was showed with a projector. A control and management
computer started and stopped the system and manipulated it according to
user input. To make the system independent of other infrastructures and
networks, an infrastructure computer provided network services [1]. All this
is showed in figure 1.1.

As seen from the description above, the system had high infrastructure
demands. It demanded a large room for the robot arena and lots of instal-
lation before it could be used. When everything were installed, the room
could not be used for other purposes. All this installation work made the
system less portable than intendent.

Another drawback was the nature of the Lego robots. They had low
battery capacity and were hard to debug. The experience was that the
students used much of their time understanding how the robots worked and
less time on the distributed and parallel computing concepts.

In the end the project was put on ice. The infrastructure demands were
too big and when the room situation changed, there were nowhere place it.

This thesis documents the development of a new environment for robots
which demand less equipment and can be installed practically everywhere.
The goal is to reduce the physical infrastructure and make the system more
virtual. In addition to a replacement for the old system, we want this new
system to support more than one type of robots. We also want that parts or
the whole system easily can be replaced or extended. This is because we want
to have a system that we can change as our demands change. In this way
we hope that there will be continuing work with robots on the department.

One other motivation is the students’ wishes to have robot competitions.
The sudent assignments in the old ROBO system were made as competitions.
The competitions drew lot of attention from other computer science students
who also wanted to participate. Our intention is to make an environment
in which students can experiment with robots on their own, and in which it
can be held competitions.

1.2 Problem definition

The main purpose of this thesis is to develop a distributed and parallel
environment that supports a dynamic number of robots with functionality.
This functionality will aid the robots in their tasks.

The nature of the tasks can vary. They can be as complex as a “search
end rescue” setting (|8]) or as simple as moving from one point to another.
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This means that the environment must be able to handle all kinds of tasks.
Single robots or groups of robots enter and leave the environment dy-
namically. When robots enter the environment, they receive downloads that
enable them to use the functionality offered.
The environment exists on servers and on each robot. Functionality and
services offered by the environment include:

e Context awareness. The environment has information about the area
in which the robots operate. This information is given to the robots
so that they can react accordingly. Such information can be obstacles
to avoid, difficult surface to drive on or air temperatures.

e Location of each robot. The environment keeps track of the location
of each robot. The location data helps the robots in their navigation.

e A map over the area which the environment covers. This map con-
tains all the location based information the environment knows about
included robots’ positions, known obstacles and objects discovered by
robots. The knowledge is shared with the robots. They can either
know the whole map, or just a piece of it.

e Naming of each robot. Each robot gets a unique name to be used
whenever the robot contacts the environment or the other way round.

e Structured interfaces for interaction between the environment and the
robots. These interfaces include reporting, monitoring and visualiza-
tion of state and sensor data from the robots.

1.3 Requirements

We have a few more requirements to the environment. One thing the old
ROBO system lacked was an easy way handle input to and output from
robots while they were operating. This is a useful feature in most operations
except when the robots are supposed to operate fully autonomously. Exam-
ples on output are a robot’s sensor state and data found during execution
of a task. Input can for example be new code or new tasks for the robot to
execute. The Lego robots could be loaded with simple byte code, and the
sensor state could be read. But this code is specialized for the Lego robts
and can not be used by other robots.

We want the new environment to support this feature. It should be
possible for the environment or a user controlling some robots to download
data and code to robots. It should also be possible for robots to upload data
to the environment.

The state of the environment and the robots operating within should
be visualized on a display wall, or a computer screen if no display wall is
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available. This visualization is both for demonstration purposes and for users
controlling robots to get an overview of the whole situation. New information
that the robots find is reflected in the visualization. When for example a
new obstacle is found, this will be reported to the environment and shown
on the display wall.

It should be possible to interact with the visualization where this is ap-
propriate. Following the earlier example; When a new object is shown, a
user can get all known information of it by marking it with the mouse. It
can also be possible to give tasks to robots via the visualization.

With these two features robots will be able to succeed in their tasks with
feedback from users. The robots will in other words not be fully autonomous.

1.4 Limitations

The environment is meant as an expansible platform. It offers a few services,
but there exist an infinite number of services that can be offered. In stead
of supporting all possible services, we give the opportunity to add support
for new services as they are needed.

There are no limitations to robot types that can operate inside the envi-
ronment. The only requirement to robots is that they can use the existing
interfaces. They must be able to contact the environment and use the in-
terfaces it offers, and they must be able to receive connections from the
environment and offer a interface the environment knows. Except for these,
there are no specific requirements to the robots.

Because of this limitation to the robots, we have not focused on robot Al
or robotics. But in order to test the environment, robots are needed. The
developed robots are not optimized. They are only made for demonstration
and testing purposes.

1.5 Method

The primary purpose of this thesis is to investigate how to make the envi-
ronment described above. We have had an experimental approach. We have
made a prototype that includes all features we needed and wanted. Then we
have tested the prototype to see how it works, how it can be used and what
it can not be used for.

1.6 Outline

The rest of this thesis is outlined as follows:
Chapter 2 describes the architecture of the environment.
Chapter 3 presents the design.
Chapter 4 describes the implementation.



1.6 Outline

Chapter 5 explains the tests made.

Chapter 6 presents and discusses the results of the tests.
Chapter 7 evaluates the thesis.

Chapter 8 gives an overview over related work.
Chapter 9 concludes the thesis.
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Chapter 2

Architecture

2.1 Overview

There are four main components in the system; the infrastructure, the robots,
the visualization module and a user. The infrastructure, the robots and the
visualization module make the environment. See figure 2.1. All components
communicate through a network. The user can only reach the robots by
going through the infrastructure. He can interact with the infrastructure
either by a direct connection or through the visualization module. The robots
communicate with each other through the infrastructure. The visualization
module shows a graphical output of the robots and their work space based
on information from the infrastructure.

In this chapter we will describe the architecture of the infrastructure, the
robots, the visualization module and the user.

e ———

infrastructure

. visualization

\\module
\_.
\-'h..__-

user

Figure 2.1: The system architecture. A user communicates to
the infrastructure either directly or through the visualization
module. Robots communicate with each other through the
infrastructure.
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:DI infrastructure

robots positioning

IDI system
I I

map service

visualization
module

Figure 2.2: The architecture model. The infrastructure is
divided in a controller and a map service. Users and robots
communicate with the controller. Localization and visualiza-
tion data are sent to the map service.

2.2 Infrastructure

We have divided the infrastructure in two parts; a controller and a map
service. This can be seen in figure 2.2.

The map service takes care of localization functionality. The localization
functionality includes storing a map and locating robots. The map contains
all known, relevant information about the area in which the robots are op-
erating, i.e. the robots’ work space. Location of robots is done through a
positioning system.

The controller takes care of communication with the robots and the user.
It also takes care of task conveying and events coming from the visualization
module. Following is a description of the two parts.

2.2.1 Controller

The controller offers structured interfaces for interaction with map service,
robots and user.The robots contact it to get information of, for example,
where other robots are or where they are themselves. A user contacts the
controller to deliver tasks to robots or to get some information about the
state of the environment.

The controller also takes care of conveying tasks and assisting in execu-
tion of tasks. A user tells the controller what task to be done by which robot.
The controller then forwards the task to the desired robot. The robot will
need some information during task execution, such as an updated map or
the robot’s position. The robot requests this information from the controller.
The controller will then get this information from the map service and send
it to the robot.
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Figure 2.3: The positioning system. Monitors in the roof re-
ceive ultrasonic signals from tags mounted on moving objects.
The positions are written to a *.xyz-file.

A user can also retrieve information from the infrastructure. This request
will also go to the controller that gets the information from the right place
and sends it back to user. The visualization module takes contact when a
user has initiated some action through the graphical output (see section 2.3).

2.2.2 Map service

The map service gets localization data from a positioning system described
under. The map is updated according to the positioning data. The map
service is also responsible for sending data to the visualization module. All
events that cause some changes in the map, and the the movements of the
robots are sent to the visualization module to be shown graphically.

Localization

The map service uses a positioning system to get the location of the robots.
The positioning system available for this project is HX5 ultrasonic position-
ing system, delivered by Hexamite. It works as follows (See also figure 2.3):

Signal receivers, or monitors, are mounted in the roof of a room in such a
way that they cover the whole area which they shall monitor. Signal trans-
mitters, or tags, are mounted on the moving objects to be monitored, in our
case: the robots. The tags send out ultrasound signals which are registered
by the monitors. The monitors are connected together in a network with
a 4 conductor telephone cable. When they receive a signal, they forward it
on this network. A network controller controls the network and communi-
cation with a personal computer. A program, called xyz.exe, reads the data
from the network controller and calculates the position of the transmitters
detected. The program stores the position in a file together with tag-id and
the time the signal was received. A user or other programs can read this file
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Figure 2.4: A few of the ER1 robots that we have used.

either in real time as it is written, or later. In our case it is the map service
that reads the position data.

2.3 Visualization module

The visualization module uses a display wall to produce a graphical output
of the robot’s work space with all its contents. The graphical output is made
based on data sent from the map service. We also want to produce graphical
output of monitor data from robots. Monitor data from different robots
must be clearly separated from each other. Which robots to monitor at a
given time is decided by user. We want to see both the map and the monitor
data at the same time and clearly separated from each other, so that it is
easy for users to get an overview of the current situation.

2.4 Robots

The robots used are ER1s delivered by Evolution Robotics. Figure 2.4 shows
a few of the ER1s we have available. They are delivered as kits that can be
assembled in many different ways, but the hardware and software is the same
on every one, so they are homogeneous.

The ER1 robots consists of three hardware components; a notebook on
which the software is running, a robot control module (RCM), which con-
trols the motors that drives the robot, and a web camera used for obstacle
avoidance and object recognition. The components are shown in figure 2.5.
The camera and the RCM are both connected to the notebook with USB.
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Camera

O]_“;bg/% RCM
=

motors and wheels

Figure 2.5: The robot architecture. The robot consists of the
Robot Control Module (RCM), two motors with wheels, a
notebook and a USB web camera.

The RCM, and thus the ER1, is controlled from a robot control center
(RCC). The RCC is a program running on the notebook and can be accessed
from a graphical user interface or a command line interface. The graphical
user interface is used to make simple behaviors for the robot. For more
“brain”, we write our own program that accesses the RCC from the command
line interface. The communication with the command line interface is done
via a telnet connection. Commands and responses are sent as strings over the
telnet connection. From the RCC’s point of view it does not matter where
the telnet connection comes from. It can be from the robot’s notebook or a
remote host.

2.5 User

A user wants to retrieve monitor data from robots, he wants to get a full
overview of the situation, and he wants to give tasks to robots.

The full overview of the situation with all the robots and their work space
is got from the visualization module. The user can interact with the map
and do simple tasks through it, like choosing a robot to monitor. Monitor
data can also be retrieved by telling the controller part of the infrastructure
which robot or robots to get such data from. Task assignment is done through
the controller. The user tells which robot to perform which task, and the
controller convey this to the right robot.

The user interacts with a user application. This application takes care of
the communication with the controller. When a user gives a command, the
user application sends it to the controller, and deliver responses back to the
user.

In a competition situation there may be more than one team operating
in the work space. This means that more than one user can be connected to
the interface concurrently, so the controller must be able handle more than
one user at the same time. The controller must also assure that members of
one team can not control robots of an other team.



12

Architecture




Chapter 3

Design

3.1 Overview

In this chapter we will look at the design of the environment. First we will
present the design of the infrastructure introduced in chapter 2. Then we
will present the design of the visualization module, the robot design, the user
application design, how the navigation is designed, the different interfaces,
and the different states the environment can be in.

3.2 Infrastructure

Figure 3.1 shows the design of the infrastructure. The arrows indicates the
communication lines. The dotted arrows show the communication lines going
over the network. These communication lines use XML-RPC.

XML-RPC is a remote procedure call protocol that uses HTTP as the
transport and XML as the encoding. It is a simple protocol that allows com-
plex data structures to be sent across the network, and it can be used across
different platforms. We have chosen XML-RPC because of its simplicity and
the transparency it gives. It supports few but quite complex data structures
as parameters for the procedure calls [13].

In this section we will describe the design of the two parts of the in-
frastructure, the controller and the map service, presented in the previous
chapter.

3.2.1 Controller

The controller must handle events from the user, the visualization module,
the map service and the robots. The interaction with the different actors is
done through three interfaces; the user interface, the map service interface
and the robot interface. An event handler acts upon the events coming from
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controller map service
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Figure 3.1: The infrastructure design. Arrows indicate com-

munication lines. The dotted arrows shows communication
lines that use XML-RPC
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Figure 3.2: The controller design. The map service, robots
and users connects to different interfaces. An event handler
handles events from the interfaces and redirects them to the
right place.
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(-

visualization
module

Figure 3.3: The map service design. A map server module
handles events coming from the controller and the visual-
ization module. A robot location module gets data from the
positioning system. The map is stored in a map storage mod-
ule.

the interfaces. See figure 3.2. How the components work together is best
described with an example:

Assume that the user wants to move a specific robot to point A. He uses
the controller’s user interface to express this task. The user interface makes
the event handler aware of the task. The event handler gives the task to
the robot interface, which sends it to the robot. The robot navigates to the
point with help from a map. To get a map, or to update the existing, the
robot must send a request to the controller’s robot interface. The interface
sends the request to the event handler which redirect it to the map service
interface. The response, i.e. the map, is sent from the map service interface,
through the event handler and to the robot interface which sends it back to
the robot. The robot executes the task and when that is done, it reports
this to the robot interface. The event handler sends a message to the user
interface that the task is completed.

The user can also give some commands through the visualization module.
He uses a mouse to initiate these commands. The mouse actions are sent
from the visualization module to the user interface.

It is not only the user that can initiate some action. Both the robots and
the map service can trigger events in their interfaces that the event handler
needs to react upon. What these events might be is described later in this
chapter.

3.2.2 Map service

The map service is responsible for localization and storing the map. More
precisely its responsibilities are:
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e Locating the robots by using the positioning system.

e Making and maintaining the map (i.e. the data structure representing
the area the robots are operating in). The map must be able to store
all the different objects that can be in the area (i.e. robots, walls,things
that the robots can find etc), where they are and what they are.

e Give data to the visualization module.
e Response on events coming from the controller.

How the map service is designed can be seen in figure 3.3. A map server
module oversees and controls all that happens. This includes to take care of
the communication with the controller and the visualization module. Infor-
mation about the work space, known objects and obstacles are given by the
controller. The storing module stores this information and creates a map
from it.

The map is basically a system of coordinates, where the coordinates
correspond to real world positions. When an object, an obstacle or a robot
is registered at a position, it is stored at the corresponding coordinates in
the map. It is the map that is visualized in the visualization module. The
visualization module uses the information stored in the map and shows it
graphically.

The positions from the positioning system are handled by the robot lo-
cation module. When a robot wants to know its position, the map server
asks the robot locating module for it. The robot location module returns
the position, and the map server send it back to the controller. For more
description on how localization is done, see section 3.6.

3.3 Visualization module

The visualization module is responsible to make a graphical output of the
robot’s workspace with all its contents. The data comes from the map service
as it stores new information. The visualization module also handles mouse
events from a user in the graphical output. It makes an appropriate choice
on how to act upon the event, and tells this to the controller.

For and example of how the graphical output looks like, see figure 4.4 on
page 38. How a robot’s monitor data is presented can be seen in figure 4.5
on page 40.

The visualization module’s design is shown in figure 3.4. The commu-
nication with the map service uses XML-RPC. The user uses a mouse to
trigger events in the graphical output on the display wall.

The visualization module does not have to run for the rest of the envi-
ronment to work. The graphical output is only meant as a support for the
users so they easily can get the full overview.
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Figure 3.4: The visualization module gets data from the map
service and makes a graphical output of it. Users can interact
with the graphical output by using a mouse.

3.4 Robots

Figure 3.5 shows a high level view of the robot design. As mentioned in the
architecture chapter, if a program wants to control the robot, it needs to
communicate with the command line interface of the robot control center
(RCC). This communication is done via telnet, and the RCC does not care
if the program is run on the same notebook as itself or on a remote host.
We have chosen to run the program on the robot’s notebook because of fault
tolerance. If the program is run on a remote host, it is dependent on having
a reliable network connection all the time. If the network connection is lost,
the robot is lost. A connection between two processes on the same computer
is not lost. The robot is still dependent on a network connection on order to
keep in touch with the rest of the world, but it is possible to save the robot
even if the network connection is lost for a short period. If, for example, a
robot discovers it has lost its network contact, it stops all its task execution
and movement, and tries to get contact again.

A ERI1 has two sensors; a rotation sensor that is used to control how
much the wheels rotate, and a web camera that can be used for object
recognition and obstacle avoidance. These are two important features for
a robot to operate autonomously. From earlier work with the robots ([12])
we know that the obstacle avoidance feature is not working very well. The
object recognition feature is not very good, but it can be used. In addition
to object recognition, we want to be able to take pictures and video streams
of the surroundings. Picture taking is not supported by the RCC. After
some testing, which are described in the discussion and evaluation chapter
(chapter 7), we ended up using two cameras. The RCC uses one for object
recognition and our robot program uses the other for video making.

Figure 3.6 shows how the robot program is designed. From now on we
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Figure 3.5: High level of robot design. The RCC and the
robot program runs on the notebook. The RCC communi-
cates with the RCM. The robot program communicates with
the controller. One web camera is used by the RCC, the
second by the robot program.
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Figure 3.6: The different parts that makes up the robot pro-
gram. The robot-infrastructure interface is downloaded from
the infrastructure during start up.
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denote this program the “robot” because it is here all the functionality lies
that makes our robot. The communication with the RCC is done through
an interface module, the robot-RCC interface. This module takes care of all
the extra overhead with the telnet communication. The extra overhead is
for example to make sure that all commands are received by the RCC, and
to make a new sending if it was not received.

Accessing the second camera is done through a video making module.
This module takes care of all picture taking and video making. The map
module makes the robot’s map and maintains the its state. It is also respon-
sible for finding safe paths that the robot can follow.

The navigation module is told where the robot is and where it is going.
The module accesses the map module to get a path to follow. Then it
calculates distances and directions to move and uses the robot-RCC interface
module to move the robot.

This design is developed for the ER1 robots we have used. Other types
of robots with different design than this should also be able to operate in the
environment. In order to get this work as smooth as possible, all robots must
download an interface from the controller that they use in communication
with the controller. This interface is the same for all types of robots and
it is each robot’s responsibility to integrate with this interface. How this
interface is downloaded is described in subsection 3.4.2.

The last module is a main module that is in charge for everything. It is
responsible for the communication with the controller through the interface,
handling downloads and uploads and executing tasks. This is the module
that students will replace in later projects and competitions.

3.4.1 Task Execution

A task is some action performed by a robot. It can be as simple as to move
from A to B, or more complex like to explore a big area and report all objects
found.

The robots can have some predefined tasks they can perform without
receiving new code on how to do it each time. Such tasks can be tasks that
we expect to occur often, like moving to a given point. Each robot reports its
predefined tasks to the controller. They are announced to the user through
the user interface so he will know how to use them. Our ER1 robots have
three predefined tasks, namely:

1. Move to a given point. The robot will find a path to the given point
and move to it.

2. Follow a given path. The user will give a path which the robot shall
follow.

3. Examine a small, given area. The robot will move to the given point
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and take a video of the surroundings of this point. The video is then
sent to the controller to be stored.

Robots are given new tasks by the controller. When a user has assigned
a new task to a robot, the controller checks if the robot is executing some
task already. If so, the controller stores the task so that it can be given later.
When a robot reports that it is finished with one task, a new one is given to
it if there are pending tasks for this robot.

Sometimes we want to interrupt a robot in its task execution. The reason
for this can for example be when we see that a robot is on its way towards
some stairs or when a new and more important task is ready to be executed.
Because of this, when a task is started, we must assure that the robot can be
interrupted. And we must be able to stop the robot from moving with im-
mediate effect. How this is done is described in the implementation chapter,
section 4.4.3.

3.4.2 Downloads and uploads

There are basically two types of downloads a robot can receive from the
infrastructure; code to be executed and new extensions. The two types need
different treatment. To execute some given code which we have no idea of
what contains is a bit risky. For all we know, the code can take completely
control of the robot and the robot can be lost for the environment. We
assume that the code sent to robots is of the “kind” type, sticking to the
rules. The reason we allow given code to do what it wants is that we want to
have the opportunity to change the whole robot’s software on the fly. This
cannot be done if we set some restrictions to what the code can and cannot
do.

Extensions are code that extend a robot’s functionality. An example is
a set of new tasks the robot can perform. When an extension is received,
it will be imported in the existing code so that it is ready to be used. The
existing code can not use the new features unless it receives code for doing
S0.

The most important download is the interface used in communication
with infrastructure’s controller. This download is done during the start up
phase described in section 3.8.1. This is a standard interface that ensures
all robots look the same to the controller. The robot program interfere with
the interface when it communicates with the controller. The interface hides
the controllers complexity from the robot and the other way round. A more
detailed description of the interface’s contents can be found in section 3.7.1.

Since the main module is responsible for the communication with the
robot-controller interface, it is also responsible for the downloads and up-
loads. The transmission and receiving of data is done in the interface, but
what to be sent and what to do with the data received is decided by the
control module.
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In the previous section we mentioned that in one of the predefined tasks
the robot should take a video of its surroundings and send it to the controller.
This is an example on data upload from robots to the infrastructure. Other
data that can be uploaded is a robot’s state. In order to do an upload, a
robot needs to know the destination, so uploads are never initiated by a
robot. They are told by the controller or the user what to upload where.

3.5 User-application

The user-application is the connection between the user and the infrastruc-
ture. It gets input from the user and send requests to the infrastructure’s
controller based on this input. The user-application’s goal is to make an
interface to the user that is easy to use.

The best would be if this interface were graphical. We have not managed
this because of time constraints. The interface we have developed is text
based. Users meet a set of menus and make choices from these by typing
some number or some text. Through the menus, the application decides
what the user wants and sends the request over to the controller.

The user application is made so that it can determine what a user wants
before sending the request to the controller. This implicates that the menus
and decision making are made based on the infrastructure’s basic function-
ality. It also implicates that the menus are updated all time. When we here
speak of the menus we mean both the text menus presented to user and the
functionality that translates user choices to valid requests to be sent to the
controller (i.e. the decision making).

When new functionality is added to the infrastructure, the menus must
be updated so that they reflect the changes. If they are not updated, no user
will know that new functionality is added or how to use it.

Following is a description of the initial menu offered to users.

3.5.1 Main menu

The main menu looks like this:

***x%  WELCOME! skxx

3k 3k 3k 3k 3k >k 3k >k 5k 3k 3k 3k >k 5k >k 5k 5k %k %k k

What do you want to do? (Make a choice)
Get List of robots

Monitor robot

Give task to a robot

Give new code or module to a robot
STOP ROBOT

. Quit

DO W N
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This is what the user meets after the different choices:

1. Get List of robots. This will return a list of all the robot tags and
their last known positions.

2. Monitor robot. The user will be asked to write the tag of the robot
he wants to monitor. Then a text based monitor data from that robot
will be shown. (If the user wants to see the monitor data graphically,
he must use the visualization module.)

3. Give task to a robot. After this choice the user will be asked to
write the tag of the robot he wants to give a task to. Then a list of
this robot’s predefined tasks will appear and the user is asked to write
in the name of the task he wants preformed. After this, the user is
asked to write the arguments to the task. Arguments can for example
be the coordinates to the point where the user wants the robot to move.
The user must also say if the robot should be given the new task right
away, i.e. interrupt the robot, or if it can be executed when robot asks
for a new task. Then the task is sent to the controller. The user can
make other choices and do other things while the task is executed. A
notice will show when the task is done.

4. Give new code or module to a robot. The user will be asked to
type the tag of the robot the code or module should be given to. Then
he must write the name of the file which contains the code. And before
it is sent, he must tell if the it is a module extension he sends or code
or be executed.

5. STOP ROBOT. User must give the tag of the robot he wants to
stop.

6. Quit. Quits the user application.

3.6 Navigation

The Hexamite positioning system turned out to not work. It arrived approx-
imately in the middle of the project period and after some weeks of testing,
we concluded that it could not be used. The design and implementation
were at this point based on that the positioning system would work the way
it was supposed to, and the development process had evolved so far that it
was hard to turn around and do it all over. We decided to keep the design
the way it was, and simulate data coming from a positioning system.

The reason for this decision is that we do not have any other way of
doing positioning. We tested one alternative navigation method. One of the
technical staff in our department made some ultrasonic sensors that consist
of a transmitter and receiver, and that measure the distance between the
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sensors and objects around them. These sensors were mounted on one of the
robots and used to avoid driving into walls. The sensors were made very late
in the project period, and we did not manage to incorporate this method
properly into the system. A description of what we did is found in appendix
B.

The rest of this section describes the navigation design made based on a
working positioning system like Hexamite.

3.6.1 Tracking vs. guidance

A positioning system like Hexamite gives two possibilities of finding posi-
tions; tracking and guidance. Tracking refers to when a central unit, for
example a computer, monitors the positions of moving objects relative to
fixed points. That is, putting the monitors at fixed positions and the tags
on the robots as shown in figure 2.3. The moving objects are not aware
of their positions unless they are told by the central unit. Guidance refers
to when moving objects calculate their own positions relative to satellite
objects. That is, putting the monitors on the robots and the tags at fixed
locations. We are using tracking. This is because of the competition aspect.
For example, the position data can be encrypted. In order to get their posi-
tions, the robots must decrypt this data. Fast decryption methods will then
be one of the challenges in the competition.

3.6.2 Navigation method

As described in section 2.2.2 the positioning system calculates positions in a
program called xyz.exe and writes the positions to a file called *.xyz. This
file is read by the robot location module in the map service. If the positions
need to be recalculated to fit the map, this is done in this module.

Because of the not working position system, we ended up giving the
robots their positions when they ask for them. Between these requests,
the robots navigate by using dead reckoning. This navigation method is
best described as “walking blindfolded”. The only known information about
where to go is on the form: “three steps forward, turn to the left and go
two steps forward”. If we take the slightest smaller steps than required and
turn a little bit less than 90 degrees, which is very easy done, we will not
end exactly where we wanted. With regular updates from the positioning
system, the deviation will quickly be corrected.

3.6.3 Path planning

Except for getting their positions on request, all the navigation is done by
the robots. The robots have their own copy of the map. When some new
object is detected, this is reported to the map service and propagated to all
the robots. The robots use the map for path planning. Path planning is
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the task of planning the motions of a robot so that it avoids collisions with
objects in the workspace.

Path planning is not a part of this thesis. But it is hard to work with
robots that should operate freely within an area without any planning of
their motions. During resent robot projects in our department there has not
been developed any algorithm that we can use in this thesis. The RoMo
project [12]| solved this problem by using a central map server. All robots
contacted this to get paths to follow. In this thesis we want to move the
path planning to the robots. This is because different robots with different
sensors can plan their movements and paths differently. And path planning
is a good theme for robot competitions.

We have used a very easy and far from optimized path planning method.
The basic thought is that every robot get their own copy of the map. This
map is two dimensional. This is because it is easier to work in two dimen-
sions than in three, and because our robots drive on the floor in very stable
environments. All furniture and other objects that are placed on the floor
are marked in the map so that the robot will avoid driving into them. This
map is then split in equal sized squares. Then we have a two dimensional
array and we can use common search algorithms to find paths between two
points.

We have chosen to use the A* search algorithm for our path planning. A
short description of this algorithm can be found in appendix A. A* is one of
the most used path finding algorithm in AI game development today ([3]).
A* will always find the best way between two points, if a path exist between
them. It is also relative effective and easy to implement.

3.6.4 Obstacle avoidance

As mentioned in section 3.4, the obstacle avoidance software delivered with
the ER1s is not working. This means that there is no way a robot can avoid
running into walls, objects like tables and chairs, or other robots. Combining
this with dead reckoning navigation can cause chaos as robots drive into each
other and getting out off track.

We tried to solve this by giving each robot their own piece of the map
where they could operate freely without risking a crash with another robots.
But this solution raised many questions, and because of the limited time
and because path planning is not a part of this thesis, we decided not to use
much time on developing this solution. The solution and the questions we
met are described in the discussion and evaluation chapter (chapter 7).

We have chosen to give each robot the whole map and assume that the
user will make sure no robots crash. This is of course far from an optimal
solution. We find it sufficient here because finding a better solution can be
part of the competition challenges.
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3.7 Interfaces

According to the problem definition, the environment should provide “Struc-
tured interfaces for interaction between the environment and the robots.
These interfaces include reporting, monitoring and visualization of state and
sensor data from the robots.” In this section we will describe these interfaces
in addition to the interface between the user and the controller, the interface
between the controller and the map service, and the interface between the
map service and the visualization module. See figure 3.7.

3.7.1 Controller - robots

<_><_>

Figure 3.8: Controller - robot interface.

The infrastructure, or more precisely the controller, must be able to
contact the robots in order to get monitor data and to give tasks. The
robots must be able to contact the controller in order to use the services
offered. Both must be able to initiate contact with the other because the
controller does not know when the robots need it and the other way round.

We can look at this communication as two separate channels. One
controller-to-robot and one robot-to-controller. Each channel can be mod-
eled in two ways; As a client-server model or as a pull based model.

In a pull based model the controller has a queue for each robot where it
can put tasks and commands. The controller must be able to reorder and
remove tasks and commands pending in the queue. The robots will access
the queue only when they are finished executing their current tasks. But
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what if we want to abort a current task? This will be a problem when the
controller only can give commands through the queue.

In a client-server model, the robots will act as servers and the controller,
as a client. The controller can at any time send a new command or task to
a robot, and the robot will execute it upon arrival. Tasks can be executed
concurrently with serving new commands. Because of this flexibility, the
client-server model is chosen for the controller to robot communication.

For the robots-to-controller channel, the client-server model is also cho-
sen. In a pull based model there is no guarantee when a request will be
executed only that it eventually will. The robots depend on responses on
their requests before they can continue execution. A pull based model will
delay them. Thus, in this communication channel the controller acts as a
server and the robots as clients.

I will now describe the two communication channels in more detail. As
we are using XML-RPC as the communication mechanism, are the interfaces
described with the callable functions.

Controller to robots channel
Each robot offers the following interface to the controller:
e executeTask() - Execute a task given by the controller.

e runCode() - Run some code given by the controller. The robot does
not know what the code does.

e importModule() - Import some module that extends the robot’s func-
tionality.

e getMonitorData() - Return relevant sensor data and context informa-
tion.

e updateMap() - Update the robot’s map because some new information
has been registered.

e stop() - Stop the robot’s movement immediately.

Robots to controller channel
The controller offers the following interface to the robots:

e welcome() - Welcome and register new robots to the environment. A
robot gives information about itself, like its ip-address, and gets in
return it’s position and a map.

e taskOptions() - Register a robot’s predefined tasks.

e reportPosition() - Robot reports a new position.
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e getNewMap() - Return a new, updated map to the robot who requested
it.
e storeFile() - Store uploaded data from robot.

e taskDone() - Register that a robot is done executing its task. Returns
a new task if any is pending.

e robotDisconnect() - A robot reports it leaves the environment.

3.7.2 Controller - user

Figure 3.9: Controller - user interface.

The communication between the controller and the user-application uses
the client-server model where the controller acts as the server and the user-
application as the client. The same goes for communication between the
visualization module and the controller. Following is a description on the
interface offered to the user-application by the controller. The visualization
module uses only two of these, namely monitor() and giveTask().

e getRobotList() - The controller returns a list of all the robots it knows
about. More precisely their tags.

e monitor() - Takes a robot tag as input and returns this robot’s monitor
data in text format.

o giveTask() - Gives a task to a robot.

e sendCode() - The user send some code to be executed or a module to
import by a robot.

e checkDone() - Checks if a robot has reported that its task execution is
done.

3.7.3 Controller - map service

Controller Interface Map service

Figure 3.10: Controller - map service interface.

In the communication between the controller and the map service, the
controller gives new information to the map service, or it needs some infor-
mation from the map service. The client-server model is used in this com-
munication, where the controller acts as the client and the map service as
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the server. Following is a description of the interface offered to the controller
by the map service
Controller to map service channel

e makeMap() - Make the map. The controller must provide all the in-
formation needed to make and manage the map: the size of the map,
all known information about the area and the size of the robots map
pieces.

e getMap() - Return a robot’s map, and where the robot is placed within
it.

e moveRobot() - Reports a robot’s new position to the visualization mod-
ule. Also verifies the reported position with the positioning system.
Returns the correct position.

e markNewObject() - Store information of a new object in the map.

e noContactRobot() - Mark in the map that a robot is lost.

3.7.4 Map service - visualization module

‘

Figure 3.11: Map service - visualization module interface.

This interface is based on the client-server model since the visualization
module can be started after the rest of the infrastructure has been running for
a while. Following is a description on the interface offered to the visualization
module by the map service.

e startUp() - Returns all data needed to get a graphical output up and
running. This data includes size of workspace and known object, walls
and other obstacles within it. Map service registers that the visualiza-
tion module is running and starts to store new events to be displayed.

e getKnownRobots() - If the map service has been running for a while,
this will return a list of all the robots in the work space and their po-
sitions. This will always be the newest information about the robots.
The map service will not store the whole history of the robots move-
ments

e getNewEvent() - Returns new events to be shown in the graphical
output.
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e newUserEvent() - Visualization Module sends the command initiated
by a user via the graphical output.

e disconnect() - Visualization Module calls this when it shuts down. Map
service registers this and stops storing events.

3.8 Phases

We will now describe the three main states the environment can be in; start
up, execution and stopping.

3.8.1 Start up

Controller: The main purpose for the controller during start up is to get
the event handler and all the interfaces up and running. All the interfaces
must run concurrently because they act as front ends to the different actors
which can connect to the controller at all times.

Map service: The first thing that happens during the map service’s
start up is that the map is made. In order to do this, the map service needs
information about the map’s size and all known walls, obstacles and objects
that have known positions. This information is gotten from the controller.

When the map is made, data needed for the graphical output is sent
to the visualization module. The map service also makes contact with the
positioning system before it is ready to enter the execution phase.

Visualization Module: The visualization module can start indepen-
dent from the other parts. This means that it can be started during execution
phase of the other parts.

During start up it gets all needed information form the map service. The
map service will store this information during its execution so that it can be
retrieved at any time.

If the map is small or very big, a “zoom factor” must be calculated. The
zoom factor denotes the amount of pixels needed to draw one length-unit.
Assume that the robot’s work space has the size 2002200 cm. In a 1:1
mapping, 1 cm in real world would correspond to one pixel. In this case
we would get a picture with 2002200 pixels. This may be too small on the
display wall or even on a computer screen. In other cases the map may be
too large to fit the screen it is shown on. In these cases, the zoom factor is
used to scale down the map. The zoom factor is used to get a workable size
of the graphical output.

Robots: When started, the robots will call the infrastructure’s controller
to get the interface downloaded. When this is loaded, it starts the server
that will accept events from the controller. The start up phase is finished
when the first task is received.
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User application: The user application does not have a start up phase.
It is however not allowed to start before the task scheduler has entered the
execution phase. If a user tries to initiate some action before that, he will
be asked to wait.

3.8.2 Execution

Controller:  During execution, the controller receives events from the
different actors and responds to them. The event handler handles all the
incoming events from the different interfaces. The controller stores all known
information of all robots operating within the work space. This information
is stored here because the task scheduler is the one that most frequently
accesses and uses this data.

Map service: The map service updates the map according to data
from the controller, sends updates to the visualization module, and delivers
localization data to the task scheduler.

Visualization module: The visualization module will continue to re-
ceive new data from the map service and show them graphically. It also
registers mouse events from the user and send the user’s requests to the map
service

Robots: Robots are occupied with task execution during execution
phase. Task execution runs concurrently with the server that handles events
from the controller. When the robot has no task to perform, it will ask the
controller for a new task and stay idle until one is received.

User application: The user application serves the user as best it can.
The user expresses his wishes by using menus. And based on these will the
user application send events to the infrastructure’s controller. It contains
no data or state except for a small history log of the users actions. This
history log is only used for the user application itself in order to remember
which menu to show and which requests correspond to the responses from
the controller.

Concurrently with serving the user is the user application listening on
events from the controller. When a user initiated task is done, it is told the
user application, which tells it to the user.

3.8.3 Stopping

Controller: If the controller is stopped while robots are executing tasks,
it is considered as a system crash and recovery must start. Only when all
robots are idle and the user application is stopped, can the controller stop
running without lots of fuzz.

Map service: The map service can not stop execution before after or at
the same time as the controller. The user can choose to stop the visualization
during execution phase without stopping the whole map service.
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Visualization module: The visualization can be stopped at any time
independent from the other parts. It is done by closing the window to the
graphical output.

Robots: How to stop the robots totally and not only stop their move-
ment can vary. One way to stop them is to make all go to the same point
where they are turned off manually. Another way is to send some code that
stops the robots.

Robots can stop whenever they want. If they stop during task execution
they are considered as missed.

User application: When the user is finished with all he wants he stops
the user application. The user application can be stopped and started again
many tomes during the infrastructure’s execution phase.
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Chapter 4

Implementation

4.1 Overview

Before we look at the implementation of the system’s different parts, we will
discuss some general implementation requirements and choices.

There is one important requirement to the implementation. It must
support that different components run on different platforms. The robot
control center (RCC) runs on Microsoft Windows. The display wall and the
computers connected to the display wall lab all run on Linux or Mac OS. So
at least the visualization module must run on Linux. Because most of the
machines we use run on Linux, the rest of the infrastructure and the user
application also run on Linux.

The code is written in Python. We made this choice because Python is
highly portable among different platforms. Also, XML-RPC is easily done in
Python. Python has a library module called xmlrpclib. This library hides
all the details of connecting to a server, sending a request, and receiving a
response. For setting up a server, Python offers a basic server framework in
the library module SimpleXMLRPCServer. This library hides the details of
setting up the server, handling requests and sending responses.

There is one drawback with XML-RPC which the programmer must re-
member. XML-RPC has no support for None. Since all Python methods
return None as default, some transparency is lost. The programmer must
make sure that all methods that can be called by RPC must have a return
value.

In the rest of this chapter we will describe the most important imple-
mentation issues of the system. First we look at the infrastructure, then we
will look at the visualization module, the robots, and at last we will describe
the user application.
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Figure 4.1: The infrastructure design. Arrows indicate com-
munication lines. The dotted arrows shows communication
lines that use XML-RPC

4.2 Infrastructure

In this section we will look at the implementation of the infrastructure. The
section is divided in a description of the controller and a description of the
map service.

A copy of figure 3.1, the infrastructure design is put here as a reference.
See figure 4.1.

4.2.1 Controller

Roughly we can say that the controller is a server handling requests from
several different types of clients. It offers interfaces special made for each
client type in order to serve them the best way. The interface’s job is to redi-
rect requests from clients to the event handler, and from the event handler to
clients. The event handler is the boss that decides what to do with different
requests and where to send responses. The map service interface is the only
one not running a server. This is because all communication between the
controller and map server is initiated from the controller.

Each interface server runs in its own thread. They get the address and
port number to use in initialization of their servers upon initialization. Each
interface server use different port numbers. The address and port numbers
are hard coded into the controller. The interfaces also get a pointer to the
event handler, so that they know where to redirect requests.

The robot interface must be able to handle more than one concurrent
robot connection. So this server is made asynchronous. The user interface
should also be able to handle more than one user at a time, but the current
implementation supports only one.

Two of the interfaces acts as clients, namely the map service interface
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and the robot interface. This is so they can be able to redirect requests from
the event handler to the map service or robots. The map service address
and port number are hard coded into the controller. All robots use the
same port number on their servers. The different addresses are stored at
the event handler together with the other known information of each robot.
Each robot has to tell its address when it calls the welcome() method and
registers for the first time.

The connection to the map service is established during initialization of
the map service interface. Connections to the robots are made on the fly as
needed. This means that each time a request is sent to a robot, a new client
is set up.

The list of all known robots is stored at the controller. For each robot is
the following information stored:

e A tag unique for each robot.

The robot’s ip address. Used to connect to the robot.

The robot’s last reported position.

Whether the robot is connected to the controller or considered lost.

The current task that the robot executes.

A list of tasks that the robot has executed and how execution went.

e A string containing the robot’s possible tasks.

Also, the controller stores a list of tasks not given to a robot yet. It exists
one such list for each robot.

As mentioned earlier, the controller is not intelligent when it comes to
task assignment and following up task execution. It does not store any
state and if it crashes, all data is lost. The design is so that this can be
implemented, but due to time constraints, again, this is not implemented.
We considered it not to be a crucial part to test and demonstrate the use of
the infrastructure.

4.2.2 Map service

The map service’s main function is to make, store and maintain the map.
The map is implemented as a list where every element is again a list of
empty strings. In figure 4.2 we can see how a map consisting of 10210 units
is implemented. Walls are marked in the representation with a w.

Objects discovered by robots are stored at the map service, but not in
the map. They are stored in a dictionary indexed by an object’s unique iden-
tification assigned upon registration. Information stored about each object
includes its position and the tag of the robot that discovered it. If pictures
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(a) (b)

Figure 4.2: The map is implemented as a list where every
element is again a list of empty strings. Figure b) shows the
data representation of the map in figure a). Walls are marked
with a w in the implementation.

were taken of the object or area around, this is also stored here. It is this
list that is sent to robots so that they can update their map.

We wanted to simulate the data from the positioning system, but this
turned out to be a lot of work and having it should not prove or show any
more than not having it. So when robots wants to know their position, the
map service returns the same positions the robots think they have.

4.3 Visualization Module

The implementation of the visualization module does not correspond to the
design. This is due to short of time. The current implementation is based on
an earlier design where the visualization module was part of the infrastruc-
ture. Before we describe how the implementation is done, we will look at this
older design version. We will see that even though the design is different,
the implementation is not so different from what it would be with the newer
design version.

4.3.1 Old design version

In the design version that the current implementation is based on, the map
service is responsible for visualization. See figure 4.3. As the map server
handles events from the controller and updates the map, it also updates the
graphical output. The graphical output can be closed during run time, but
it can not be started again.

The map server tells the visualization module what to display. The visu-
alization module gets information about the map from the storing module.
Mouse events form the user are registered in the visualization module and
handled in the map server.
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Figure 4.3: In the old design of the visualization module, the
map service is responsible for visualization. The visualization
module is here part of the map service.

The reason why we did not end up with this design is simplicity. The
graphical output will always start, a user has to manually close it if he does
not want it. Also it is not possible to run more than one visualization module.
There may be occasions when we want to have a graphical output on more
than one screen or display wall.

4.3.2 Current implementation

The visualization module run as a thread from the map service. The map
server and the visualization module use queues to communicate. One queue
is used for messages to the visualization module one for messages to the map
server.

There are three types of messages going to the visualization module.
These are: newQObj, move and lost. The first is used to mark a new object
in the map. The object can either be a robot or an object a robot has
discovered. The move message is used when an object, or more precisely
a robot, has a new position. The last message, lost, is used to mark that
contact with a robot is lost. Included in these messages is an instance of
a class containing all information needed to draw the object in question in
the graphical output. The messages going to the map server is more simple.
They consist of either a tag or a position. These indicates what was clicked
by a user. We will describe them more in the next section.

We use Pygame for making the graphical output. Pygame is “a set of
Python modules designed for writing games”!. Pygame is also excellent for
other graphical representations. To display an object graphically, we need to
have an image of it. Currently, we use three images, one for the robots when
the infrastructure has contact with them, one for when the contact with a

"http://www.pygame.org/wiki/about
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Figure 4.4: The graphical output. This situation shows on
lost robot and two operational robots. The red square marks
a object discovered by a robot.

robot is lost and one for discovered objects. These images can all be seen in
figure 4.4.

Figure 4.4 is a picture of how the graphical output looks like. The work
space is very simple with only a small wall to watch out for (the black line).
There are marked three robots, but only two of them are operational. The
robot with the red cross is marked as lost. Down in the right corner is an
object discovered by a robot marked. For the two operational robots we can
see their directions through the green line.

We will not describe the details of Pygame here. This can be found at
the Pygame project’s pages on the Internet ([11]). We will now describe how
a user can interact with the graphical output.

4.3.3 User interaction

A user can do two things in the graphical output. He can get information
about the objects and robots displayed, and he can give two types of tasks
to a robot. Monitor data for a specific robot will pop up if a robot image is
double-clicked. If an object image is clicked once, all known information of
this object will appear. The user can initiate a goTo-task and a followPath-
task. A goTo-task is initiated by clicking once on the robot to move and
once at the point where the robot should go to. In a followPath-task, the
user clicks the robot and then one click for each point to pass in the path.
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So how do we distinct between the different mouse actions? Pygame
registers many types of events. Among these is if a mouse button is pressed
down. This is the event we use to register a user’s mouse actions. Each
mouse events is registered by the visualization module. The module checks
if the the mouse’s position is within any image of the objects displayed, i.e.
if the user clicked any of the objects. If so, the tag of this object is sent to
the map server. If not so, the mouse position is sent.

When receiving a mouse event message, the map server does the follow-
ing:

1. If the message is a tag of any robot, it checks if it get an equal message
within a second. If such a message is received, i.e. a new message with
the same tag, it means that the user has double clicked the image. So
the map server calls the showMonitorData() method at the controller.
The controller will then display monitor data for the robot that was
clicked. If the message does not contain the a tag, it contains a posi-
tion. This means that the user wants to give a task. The position is
registered. To figure out if the task is a goTo-task or a followPath-task
, the map server checks if a new position is received within a second.
If not, it is a goTo-task, and the newRobotTask() method at the con-
troller is called with the goTo-task and the position as an argument.
If a new position is received, it is a followPath-task. New positions are
then registered as long as new positions are received within one and
a half second after the previous. One and a half second may not be
long enough in big graphical outputs. In the current implementation
this waiting time is hard coded. For big graphical outputs, is should
be configurable. The registered positions are saved in a list. When no
new position is received, the whole path is sent to the newRobotTask()
method at the controller.

2. If the message is a tag of a discovered object, all known data of this
object is displayed to the user. If there is a video saved for this object,
this is also shown. This data is, as mentioned earlier, saved at the map
server and not at the controller.

3. If the message is a position, nothing happens.

The user will know from the updates in the graphical output when a task
is executed.

Figure 4.5 shows monitor data for a robot that the user double clicked.
We can see that this robot has the tag 101, its last known position and that
it is connected. We can also see that it does not have a task at the moment,
and that it has executed a goTo-task to its current position. At last there is
a list of the predefined tasks that this robot has.
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Figure 4.5: The window shows monitor data for a robot that
the user double clicked.

4.3.4 Display wall

The display wall on the department of computer science at the university of
Tromsg is 6x2.5 meters and illuminated from behind by a tiled cluster of 28
projectors. The resolution is 716823072 pixels and it is because of this very
high resolution we want to use the display wall for visualization and not an
ordinary screen. But because of portability is it possible to use an ordinary
screen if no display wall is available. The data sent from the map service is
independent of the resolution of the screen.

With low resolution on the display it is hard to see the details in the
map, especially if there are many details in a small area. And with a small
display, different robot’s monitor data and the map must fight for the space
to be visible.

4.4 Robots

In this section we will look at the implementation issues for the robots. First
we will look at the start up phase. Then, how threads are used, and how
the path planning is done. After that we will describe the implementation
of the video making module and task execution. Last we describe how code
execution is done.

Remember from the design chapter and figure 3.1 that when the robots
communicate with the infrastructure, they talk to the controller. Through-
out this section when we say “infrastructure”, we mean “controller”. We use
“infrastructure” because it is more easy to to keep the different participants
from each other then.
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4.4.1 Start up phase

When started, the robot’s control module invokes the RCC through the
ER1 command line interface. Communication to this interface goes over a
telnet connection. The implementation of the communication is done with
Python’s telnetlib module.

After connected to the RCC, the robot contacts the infrastructure in
order to download the interface to use between them. The robot sets up a
client to the XML-RPC server at the infrastructure. To do so, it needs the
server’s address and port number. These are hard coded in the robots. We
wanted to make a start up phase where the robots entered some new area
and sent out a “is anyone out there?’-message on a common known address.
The controller would constantly listen to this address and respond to such
messages with its address and port number. Then in the next step, the robot
could set up a client with this information. We did however not manage to
implement this.

When the connection is set, the robot calls the initPhase() method. This
will return the interface to use in communication with the infrastructure.
More precisely it returns a object of the Binary class, and a string. The
Binary object contains the code for the interface class. The string is the
name of this class. The code is written to a file and the class is imported
with the __import__ command.

The interface contains code for setting up a server that the infrastructure
can use. The robot’s control module must give the interface a reference to
itself. This so that the interface can call the robots methods when the
infrastructure calls them.

When the interface is imported and ready to use, the robot calls the
infrastructure’s welcome() function. welcome() takes as an argument the
robot’s address. The port number should be the same for all robots and
are known to the infrastructure from its start. In return the robot gets
information about its map, like the size and objects known to be in it. The
robot also gets it position and a tag to identify it from the other robots. This
tag should be used every time the robot make a request to the infrastructure.

4.4.2 Execution threads

When a robot is idle, it runs two concurrent threads; one server thread
responsible for receiving events from the infrastructure, and one main thread.
The main thread is in the current implementation not doing anything. It is
in this thread we can put functionality that for instance stops the robot if
the network connection is lost.

Tasks are assigned to the robot by the controller. The server thread is
the one receiving the tasks. When is receives a task, it will start a new
thread, called the task thread, that executes the task. This is because the
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task is received in a remote procedure call which must return so that the
infrastructure can continue its execution. Execution of one task can take
long time, and the infrastructure must be able to do other things in the
meanwhile. When the task thread is started, the procedure call can return.

When the task thread is started it will start a fourth thread called the
task-kill thread before the actual task execution is started. This thread is
constantly checking if a global interrupt variable is set. When this variable
is set, it means that the server thread has received a new task and that the
robot must stop its current task execution.

When the task is executed, the global interrupt variable is deliberately
set by the main thread in order to kill the task-kill thread. The two threads
are joined and task execution finished.

So, there will at least be two running threads all the time. During task
execution there will four threads running concurrently.

4.4.3 Task execution

We define a task as some assignment a robot is ordered to do. The initiator
for every task is a user. The user decides what should be done by whom.
The user can give a task either by selecting one of a robot’s predefined tasks,
or by writing some code to make up a new task and make the robot execute
that. We will now describe how a task is given and executed.

As mentioned the robots can have predefined tasks. What predefined
tasks that exist can vary from robot to robot. One robot may have many
tasks and another none. The robots must therefore tell the infrastructure
what predefined tasks they have.

When a robot has received its map and is ready to start execution, it
sends a string describing its predefined tasks to the infrastructure. This
string is then stored at the infrastructure together with all the other informa-
tion of that robot. The predefined tasks our ER1 robots have are described
in section 3.4.1. The string that these robots send to the infrastructure looks
like this:

“¢goTo( (x,y) ) - go to point (x,y)
followPath( path ) - path is a list of
at least one point of
the type (x,y)
examineArea( (x,y) ) - go to (x,y) and take
a video of the area’’

A task is given to a robot as a Python type tuple in the following form:
(task,arguments) where the Python type of task is string and the Python
type of arguments is 1ist. When a user wants to get a task done, he first
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asks for what predefined task the robot he wants to use has. Then this string
is displayed for him and he can choose if he wants to give some of these tasks
or if he wants to do something else. Assume the user wants to give robot
A a goTo-task. The user application asks for which robot the user wants to
give a task to. Then the user is prompted to write the name of the task. In
this case, the user writes goTo. Then the application asks for the arguments
and the user writes the coordinates he want the robot to move to. The user
application will then put the task and argument in the form just described,
and send this together with the robot tag to the infrastructure.

The infrastructure will look up the robot tag in its list of known robots
to find the right ip address. Then it sets up a connection with the robot and
sends the task.

It is first when the robot receives the task that it is checked if the user
has written the task right and if everything is all right. If not so, it will
send a return message that describes the problem. This message is sent as a
remote procedure call. The robot calls the same function as it does when a
task is successfully performed. The procedure take as an argument a status
message in addition to the robot’s tag. This message is a string which tells
how task execution went. This string is shown to the user, who will decide
what to do.

The reason why the check is not done at the user application or the
infrastructure is that neither of these know what tasks are supported by
which robots. We have done it this way because of the competition aspect.
In other settings, like a real search and rescue setting, it could be better if
the infrastructure knew all the tasks. The whole system would thus be more
autonomous. An other reason is that different tasks have different status
messages to send in return. Take for example the examineArea-task. This
task is dependent on having a second camera. If this is not mounted properly,
a status message no camera is sent in return from the robot. This message
will never be returned from a followPath-task because this task does not use
the camera. In order for the infrastructure to be able to react upon an error
message, it needs to know all types of messages that can occur. As new tasks
are added to a robot, types of error messages will increase. If we want the
infrastructure to handle error messages, we must add support for this when
we add new tasks to a robot. In other words, we must add extensions two
places instead of only one.

If a user wants to interrupt the robot in its current task execution to give
it a new task, the global interrupt variable is set. This will make the task
execution stop, but before that, the robot will finish its current movement.
This is because of the dead reckoning navigation method. If we interrupt
the robot’s movement, we will not know how much of the movement was
completed. The new position can be sent from the positioning system. But
if the robot was turning, there is no way to tell what its direction might
be. There is of course a stop method that stops the robot’s movement
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immediately. This function is used for example if the robot is about to go
down some stairs. But unless it is an emergency, we will avoid using it.
Instead we use the interrupt variable to stop the task execution.

We will now describe the three predefined tasks in more detail.

The goTo-task

The goTo-task is a simple task moving the robot from its current position
to a position given as an argument. The task execution goes as follows:

1. Use the A* algorithm to find a path to the given position.

2. Follow the path if one exists. Return an error message if no path is
found.

3. Send a message to the infrastructure that the task is executed.

The followPath-task

The followPath-task differs from the goTo-task in that the argument is a list
of points to visit. For every point in the given path the action performed is
the same as for the goTo-task.

The examineArea-task

The examineArea-task is the most complex of the predefined tasks. It takes
as an argument a point where the user wants the robot to go. At this point
the robot shall take a video of the surroundings and save the movie on the
place given as a second argument. The task execution goes as follows:

1. Find a path to the point.

2. Move to the last point on the path before the goal point.

3. Start a thread which moves the robot the last part of the path and
turns the robot 360 degrees. Concurrently with this thread start taking

pictures.

4. When movement is over, stop taking pictures and put them together
in a movie. Save the movie at the given location.

5. Send a message to the infrastructure that the task is executed.
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4.4.4 Navigation

Navigation consists of two parts; path planning and path following.

A robot’s map is stored in the same way as at the map service. The
A* search algorithm is implemented as described in appendix A. A straight
forward implementation is not done because of performance. We will now
describe an optimization we have done to get better performance.

The node with the lowest F cost in the OPEN list becomes the new
current node. If we add new nodes to the end of the OPEN list without
sorting them on the F cost, we have to search through the whole list every
time we must find a new current node. Such search takes long time. So a
good point in increasing performance is to sort the OPEN list on the F cost.
We sort the list so that the node with the lowest F cost is the first element
in the list. Then we only have to do a cheap pop operation to get the new
current node. One problem however is to insert new nodes. This can take
very long time if the F cost of the node to be added is high. We may have
to search through big parts of the list before we find the place to insert the
new element. We have chosen to sort the OPEN list as a binary heap. There
are two reasons for this choice. First, heap sort is a very efficient sorting
algorithm [4]. And second, Python has a library module called heapq which
provides an implementation of heap sort.

Because of the ER1 robots lack of sensors we have decided that they
only can turn in 90 degrees angels. This means that the robots can only
drive in four directions; north, south, east and west. If the robots could
turn in all angles, the possibility of a robot far off track would be higher
than with this restriction. It is also easier to make the map implementation
and path planning this way. It is by no means the best solution, but with
the restrictions in lack of sensors and a not working position system, this
solution is the easiest.

A* returns a safe path that the robot can follow to get to its goal. The
path is a list of all the point the robot should drive trough. The path for
getting from (1,1) to (5,1) will look like this, assuming no objects between
the points: [(1,1), (2,1), (3,1), (4,1), (5,1)]. There are two ways of following
this part. The first is to move from one step in the path to the next. The
ER1’s move command is on the form:

‘move <distance> <units>’

Units can be ¢m or foot. To move backwards, a “-” must be added before
the distance. (Turns are done with the same move command where the unit
is degree and distance is the number of degrees to turn.)

If we follow the path above by moving from point to point, we would send
four move commands to the robot, which again will drive the same amount
of distance four times. This is clearly a unpractical way to do it. The second
way to follow a path is to find the distance to move in one direction before
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the goal is reached or a turn is to be made. By doing it this way, the robot
will move four units instead of one unit four times. This is more natural and
faster.

To make sure the robot is not driving out off course, it periodically sends
a position report to the infrastructure. This report is forwarded to the
map service. The map service will check the reported position against the
positioning system. The position the positioning system says the robot has is
sent back to the robot. If this position differ from the one it reported, it has
to correct its position and drive to the position where it is supposed to be.
Because of the lack of a positioning system, we have not implemented it this
way. The robots report their positions, but they will always get the same
position in return. The robots work space is a stable laboratory environment.
As long as we know the robot turns nearly or exactly 90 degrees and drives
nearly or exactly the distance it is supposed to, it will not cause seriously
trouble to assume it is always at the position it thinks it is.

4.4.5 Video making module

To access a camera in order to get the raw video stream from it, is not
easily done on Windows. Luckily there exists a Python extension for Win32
that does this; the VideoCapture extension?. VideoCapture consist of two
module levels. The low level native module (vidcap.pyd) uses DirectShow,
which is included in DirectX 8.0 and higher. The RCC also uses DirectX,
so there is no need to install this after installing the RCC. The high level
module uses Python Image Library (PIL)? to produce images of the pixel
data form the camera.

VideoCapture and PIL give us pictures in any file format we wish, but
not the raw video stream. The best thing would be if we could get the raw
stream and do analysis on that. The second best option is then to take lots
of pictures for a period and make a video of them. For this purpose we use
ffmpeg. ffmpeg is one of several components of the FFmpeg project* which is
a complete solution to record, convert and stream audio and video. FFmpeg
is developed under Linux, but it can be compiled under Windows. To do
this, Msys and MinGW? are used. We use ffmpeg to merge a set of jpeg files
to a mp4 file.

All the latest versions of this software is included on the CD. See appendix
C for a short installation guide.

During implementation we came across a problem with the video making.
As described under the thread execution section, all tasks, except for the ones
the robot has asked for, run in a thread. VideoCapture is not able to access

*http://videocapture.sourceforge.net
3http://www.pythonware.com/products/pil/index.htm
*http://fmpeg.sourceforge.net /index.php
Shttp://www.mingw.org
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the camera properly unless in runs in the originally parent thread. This is,
as discussed over, not possible. Our solution is to run the video making
module in an own process. Variables such as duration of picture taking and
the frame rate is set through a file. The thread writes the variables to a file
which the video making module reads when it starts.

An other problem has also been that ffmpeg on Windows has been a bit
unstable. Sometimes it works just well, and other times it crashes. We have
not managed to find the reason for this, and because of time restrictions, we
made a “work around”. Instead of sending the movie to the infrastructure,
we send all the taken pictures and then the infrastructure, which runs on
Linux, uses ffmpeg to merge the pictures to a movie. This is not the best
solution because the infrastructure should not do work that could be done
at the robots, but it works.

4.4.6 Downloads and uploads

In order to upload the content of a file, we must wrap the content in an
instance of the Binary wrapper class. Binary data is a type which can be
marshaled through XML. It is also possible to send it as a string, as this also
is a type that XML supports. But the string has to be free of characters that
are not allowed in XML. These include < and > which are very common in
code written in any language. This is why we use the Binary wrapper class.

Upload of a file to the robots or to the infrastructure is done through RPC
with the file name and the Binary object as arguments. When received, the
content of the Binary object, e.g. the data, is written to a file named as the
file name-argument specifies.

4.4.7 Code execution

The code to be executed by the robots must be implemented as a Python
module. As mentioned earlier, Python can import new modules during run
time, and this is what we do with the code. All new modules, e.g. modules
that are imported during run time, are stored in a dictionary where the key
is the file name of the module. The file name is needed in the __import__
command and is given as an argument to the function (see 4.4.6).

After the module is imported, a thread is started. This thread executes
a function in the new module called init() and takes as arguments the robot
object, so that the new module can access the variables and function in the
robot object, and a flag. When the init() method has initiated and started
whatever it is the code is suppose to do, it raises this flag. When the flag
is raised, the RPC returns. Again, the code execution task is initiated by a
RPC from the infrastructure. This procedure call must return so that the
infrastructure can continue with its work. However, since we do not know
what the code will do, we cannot just start it in a thread and then leave it to
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itself. For all we know the writer of the code does not want it to be started
like this. So we give the control to the init() method and when this says it
is okay to return, the RPC returns.

In other words, we set some requirements to the code to be executed. It
must be a Python module that is possible to import during run time. Also
it must contain an nit() method which takes as arguments the robot object
and the flag. The init() method is responsible for raising the flag when the
RPC can return.

4.5 User application

The user application is implemented as a client that connects to the infras-
tructure’s controller. More precisely, it communicates with the controller’s
user interface. It can not be started unless the controller is running. A sim-
ple RPC is done to test if the controller is running. The address and port
number to the controller, is given as arguments during start up. This means
that the user starting up the application needs to know these data before
starting the application.

A thread is periodically polling the controller for tasks that is done, i.e.
executed. When a task is done, the controller puts information about it and
how the execution went, in a queue at the user interface. It is this queue
that the user application checks. Elements taken from the queue is shown
to the user.

There is currently no logging of a user’s actions. Nor is it possible for
more than one user to be connected at a time. Because of lack of time, we
have not thought about how to prevent users of one robot team to interfere
with other teams. Our focus has been making a prototype of the infrastruc-
ture and experiment with it to see if it can be used the way we want. This
can be done with only one user.



Chapter 5

Testing

We have done three different tests. In this chapter we will describe these.
First we have tested the robot’s predefined tasks. Second we have tested code
execution. And third the implemented A* searching algorithm is tested.

Tests results are presented and discussed in the next chapter (chapter 6
Results).

5.1 The predefined tasks

We have tested that the predefined tasks work the way they are described
in 4.4.3. The goTo-task and the followPath-task are started from both the
graphical output and the user application. The examineArea-task can only
be started from the user application. We check that the task is transferred
to the robot, that the robot executes the task the way it should, and that
when the task is done, the robot sends a message to the infrastructure that
the user gets.

We also tests how long time it takes for the robot to stop its movement
when a stop command is sent from the user interface. This is the most
critical command since it can be a question about loosing a robot if it drives
down some stairs or something like that.

The last thing we test is if the robot acts the way we described in subsec-
tion 4.4.3 when we interrupt the robot with a new task. The right behavior
is to stop task execution after the current robot movement is done.

5.2 Code execution

We have tested that files containing Python modules can be loaded from the
user, through the infrastructure and to the robots. The Python modules are
both code to be executed and new extensions to be stored and used later.
We have made two Python modules for this testing; squareCode and
executeCode. The first module consists of a single function that makes a
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robot drive in a square. This module shall only be imported by the robot
so that it can be used later. We want this function to be a task equal with
the other predefined tasks. This new task is called the square-task. But the
existing code does not support this new task. So if a user sends a square-task
command to the robot where the squareCode module is imported, this robot
will not recognize this task. The second module fixes this problem.

The executeCode module consists of code to be executed. During code
execution, the robot’s method doTask() is replaced with a new version. The
doTask() method decides what task to be performed based on the command
received (see subsection 4.4.3 for how a task command looks). The original
doTask() method supports only the predefined tasks. The new version sup-
ports the previous imported square-task in addition to the predefined tasks.
The new version of the doTask() method replaces the original version per-
manently as long as the robot code executes. When the robot is restarted,
the new code must be added again.

5.3 A*

To test the implemented A* algorithm we search for a path from the top-left
corner to the bottom-right corner of a map. This is, except for the other
diagonal, the longest path in a map with no obstacles. We have tested A*
in five different maps with different special cases. Figure 5.1 shows these
five different maps. The first map consists of no obstacles. The second has
a wall that parts the map in two pieces. There exists no path between the
two point in this map. The third and forth maps have openings in one of
the ends of the wall from map two. The reason for these two rather similar
cases is that we want to see if the order in which we visit the neighbors of the
current node, is relevant for the execution time (which neighbor is visited
when, is described more in the results in chapter 6). The last map has an
opening in the middle of the wall.

For each map we test with different map sizes. We take the time from
when the search is started and till when it returns.

5.3.1 Different map levels

Some initial testing of the A* algorithm indicates that it is very slow in
big graphs, i.e. when the map size is big. We also know from [3] that if
there are no obstacles between the starting point and the goal, A* will be
too slow. Our solution to this has been to make a “high-level-map” of the
original map. This high-level-map has a higher scale than the original map,
so that in stead of searching in a map of many coordinates, we search in a
map with few coordinates.

The size of the high-level-map is decided from the size of the original
map and experiences made from results of the A* testing. This means that
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(a) With no obstacles.

(c) Opening at the top-right corner.

=

(b) With no path.

(d) Opening at the bottom-left corner.

(e) Opening in the middle of the wall.

Figure 5.1: The five different maps in which we tested the
A* algorithm. We want to find a path between the green
coordinate in the top left corner to the red coordinate at the

bottom right corner.
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(a) The original map. (b) Finding high-level- (c) The high-level-
map. map.

Figure 5.2: How to make a high-level-map from a map with
no obstacles. Instead of searching through a map with the
size 12212 we can do a faster search in a map with the size
3x3.

we can not say at this point how big the high-level-map will be. Let us
assume the tests show that execution is going too slow when the map size
is bigger than 2002200. This will then be the size of the high-level-map of
all original maps with size bigger than 2002200. How the high-level-map
is made is easier to explain through the figure 5.2. In this example, the
high-level-map size is 32:3 as can be seen in figure 5.2(c). When the original
map in figure 5.2(a) has the size 12212, each square, or coordinate, in the
high-level-map will correspond to 4x4 squares of the original map (see figure
5.2(b)). When there are no obstacles in any of the original map coordinates
that corresponds to one coordinate in the high-level-map, it means that a
robot safely can drive straight through this area.

Figure 5.3(a) shows an original map situation equal to the one in figure
5.1(e). The difference is that this map’s size is 12212 and the map’s size in
figure 5.1(e) is 10210. We want to find a path between the green upper-left
corner to the red bottom-right corner.

When an original map coordinate is marked with an obstacle, the high-
level-map coordinate covering this original map coordinate is also marked
with an obstacle. As we can see in figure 5.3(b), the high-level-map coor-
dinate (1,1), the one in the middle, must be marked with an obstacle. We
can see in the original map in figure 5.3(a) that it is possible to find a path
between the start and end points. We can not see this in the high-level-map
in figure 5.3(c). This means that if a coordinate in the high-level-map is
marked with and obstacle, we do not know if there exist a path between the
two points.

A path search with a high-level-map is performed as follows: First we
will search for a path between the start and end points in the high-level-
map. If we find a path here, the coordinates are “translated” to original map
coordinates so the path can be followed. If we do not find a path, which
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(a) The original map. (b) Finding high-level- (c) The high-level-
map. map.

Figure 5.3: We can see in (a) that there exist a path between
the green upper-left corner and the red bottom-right corner.
This is not reflected in the high-level-map in (c). In order to
be sure if a path exists between the two points, we have to do
a search in the original map after a search in the high-level-
map fails.

would be the case with the high-level-map in figure 5.3(c), we have to do a
search in the original map before we can conclude if there exist a path or
not.

We will test to see if the solution with a high-level-map will reduce the
search time in the five cases earlier tested. We will do the same tests with the
five different maps again, using a high-level-map when the map size grows
big.
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Chapter 6

Results

In this chapter we will discuss the results of the testings described in the
previous chapter. First we will discuss the results of the predefined tasks
tests, then the code execution tests, and last the results of the A* testing.

6.1 The predefined tasks

This section is divided in two. First we will describe the results of the goTo-
and followPath-task testings, and then we will describe the results of the
examineArea-task testing.

6.1.1 goTo- and followPath-tasks

Assignment of these tasks was correct done both through the graphical out-
put and the user application. As long as the robot could finish its current
task before staring a new, everything works fine. The task is correct sent
to the robot, the robot performs its task, and sends a status message back
to the infrastructure. This status message is forwarded to the user applica-
tion. When the robot has moved to a new position, it reports this to the
infrastructure which updates the map. The graphical output is also updated.

Small problems arise when we try to stop the robots movement and when
we try interrupt its current task execution. We will look at the movement
stopping first, and then the task interruption.

Stopping robots

When we here talk about to stop the robot, we mean to stop its movement.
After a robot has been stopped, it should be able to receive and execute new
tasks. A stop command can only be given through the user application. We
took the time from when the stop command was sent via a RPC and till the
RPC returned. In addition to this time comes the time it takes for the user
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to type the command of choice, and the robot tag to stop. But this time we
did not measure because it can vary from user to user.

First we tried to stop the robot during a goTo-task. The average time it
took to stop the robot was 0.55797 seconds or 557.97 milliseconds. This is a
good reaction time. The only catch is that the user must be able to see if a
robot should be stopped a few seconds before it goes wrong. This so he gets
the time to type all that is needed to send the command.

Second we tried to stop the robot during a followPath-task. The com-
mand was sent correctly and the robot stopped as quick as with the first
tests, but the RPC did not return. Hence, we did not get a time of how long
it took to stop the robot, and the user application hanged, i.e. waited for
the RPC to return and could not do anything else. This is a bad design of
the user application. It should be possible to send a stop command and not
wait for a RPC to return before the user can type new commands.

Problems occur at the robots also. After a goTo-task is stopped, the
robot returns that it has stopped, but then it can not do anything else. A
quick look in the code shows that this is due to a stopping variable not being
set to the right value after a stop. A programming error, in other words. It is
also the robot that is the reason for why the RPC from the user application
does not return in the followPath-task stopping. It turns out that this is also
due to an error in the code. In this case, we have forgotten to adapt some
early written code to the latest version.

Interrupting robots

Interruption of a task is done by sending a new task to the robot. We can
interrupt a robot both through the user application and the graphical output.
The tests showed no difference in where from the new task was given. The
results were the same.

The behavior we want when a robot is interrupted, is that the robot
finishes its current movement, reports its position and then stops executing
its current task and starts executing the new task. This works just the way
we want when a goTo-task is interrupted. Interruption of a followPath-task
has variable results. If the robot is in the middle of a movement forwards,
the interruption goes well, meaning that the current task is stopped the way
we want, and the new task is executed correctly. However, if the robot got
the interruption signal in the middle of a turn, the robot stops its movement
and hangs. This is the same reaction as when a stop signal is received in a
followPath-task, and is due to the same program error.

6.1.2 examineArea

The examineArea-task is the task where we use the second camera to take
pictures and make a video that is sent and stored at the infrastructure.
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We have not been able to test this task when it comes to stopping and
interruption. This is because of trouble with the video making.

As described in subsection 4.4.5 on page 46, the pictures are merged to
a movie by using ffmpeg. We chose ffmpeg because it worked the way we
wanted when we tested it. When we first made the examineArea-task, and
did the initial testings, everything went the way we wanted. However when
we did the last testings, ffmpeg stopped working. It will not merge the taken
pictures into a movie. We have not been able to find out the reasons for this.
And because of little time, this task is currently not working. The robot
does everything but the merging,.

6.2 Code execution

The code execution feature works the way we want. If the user, before he has
given the two python modules described in the testing chapter (section 5.2
on page 49), tries to give a square-task to a robot, he gets a return message
saying that this task is not supported. Then the user gives the squareCode
module to the robot. The robot imports this module correctly. If the user
now tries to give a square-task, he gets the same message as before.

Then the user gives the robot the executeCode module. After this mod-
ule is imported, the robot can execute the square-task. It also executes the
other predefined tasks the same way as before.

These results show that we are able to: 1) download code to the robots,
2) get the robots import the new modules, and 3) replace code at the robots.

6.3 A*

The results of the first test of the A* algorithm can be seen in table 6.1. In
the far left column we can see the map sizes we tested with. When we from
here on speak of map sizes of 10 and 100 and so forth, we mean map sizes
10210 and 1002100. The rest of the columns in table 6.1 shows the search
time in seconds for each of the five different maps in figure 5.1.

As we can see, for three of the maps we did not test with all the map
sizes. We interrupted these tests because they took too long time.

The results are visualized in figure 6.1. We can see that, as map sizes
grow, the algorithm performs more badly. Since a run time over 1 second is
very bad, we made figure 6.2 to see the results better.

In general we can say that the performance is not very good.

When there are no obstacles in the map, i.e. map 1, the search time
passes 1 second somewhere between map size 2000 and 3000. When there
are no path between the two point, i.e. map 2, the search time passes 1
second somewhere between map size 100 and 200.
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Time in sec

Table 6.1: Results first A* testing.

map size | map 1 | map 2 | map 3 | map 4 ‘ map 5 |
10 0.0 0.0 0.0 0.01000 | 0.0

100 0.03000 | 0.68100 | 0.02000 | 0.52100 | 0.15000
200 0.06000 | 2.21300 | 0.06000 | 2.24300 | 0.63100
300 0.09000 | 5.64800 | 0.09000 | 2.65400 | 0.62100
400 0.12000 | 11.25600 | 0.1400 | 2.874000 | 0.69100
500 0.16100 | 19.83900 | 0.16000 | 2.67300 | 0.70100
600 0.19000 | 35.27100 | 0.19100 | 2.88400 | 0.79100
700 0.24100 | 62.04900 | 0.24000 | 2.85400 | 0.75100
800 0.28100 0.27000 | 2.88400 | 0.80100
900 0.32100 0.32100 | 2.94400 | 0.87200
1000 0.36100 0.36100 | 2.90400 | 0.93100
2000 0.81100 0.73100 93.5540
3000 1.46200 1.37200

4000 1.66200 1.85300

5000 2.50300 2.84500

25 |

T
map1 —+—
map 2 .
map 3 ---*--
map 4 -8

500 1000

1500 2000

2500 3000
Map size

3500 4000

4500

Figure 6.1: Graph showing the results of table 6.1

5000
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Figure 6.2: Higher resolution of graph in figure 6.1

Remember from figure 5.1 that map 3 and 4 are very similar. Map 3
has an opening at the top-right corner, map 4 in the bottom-left corner.
We wanted to see if the order in which we visited the neighbors could have
something to say for the searching time. We can conclude that it has. Each
node has four neighbors to check. Four because the robot only drives in four
directions. The order in which the neighbors are visited is: east, south, west,
north. East corresponds to the neighbor on the right, south to the neighbor
behind /under, and so fourth. Explained more graphically (C stands for the
current node):

3C1
2

This means that the search works its way towards east first and then
towards south, which is the reason why the search times in map 3 are better
than the ones in map 4. In fact as we can see in figure 6.1, search time in
map 4 starts out as bad as when no path exists (map 2). Then the time
stabilizes between 2.5 sec and 3 sec until map size passes 1000. The search
times for map 3 almost equals the ones for map 1. This is because they
find the same path (top-left corner to top-right corner and then the goal
bottom-right corner).

The search times for map 5 is better than for map 2 and 4, but it is not
quite good. We have not managed to find out why the A* algorithm has so
bad performance. If it is because of a bad implementation or if it is because
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the A* algorithm is a bad choice for big maps. Because of its popularity
amongst Al game developers, it most likely is our implementation of it that
is not optimized the way it can be. We have chosen not investigate this more
or to test with other algorithms because it is not an essential part of this
thesis to have an totally optimized path searching algorithm. Also, the maps
we have used during testing has not been bigger than 300. The algorithm
works good enough for our testing purposes.

6.3.1 With a high level map

Our expectations for the tests with high-level-maps are that the search time
in original map sizes bigger than high-level-map sizes always will be the
same as the search time for an original map with high-level-map size when
the “obstacle situation” is the same for both maps. In other words: assume
a high-level-map size of 10 and an original map size of 100. We expect the
search time for this map to be the same as if the original map size was 10.
This depends on that the “obstacle situation”, i.e. where the obstacles are,
is the same for the high-level-map as in an original map with the same size.
When in a high-level-map there exist no path between the points, we expect
the total search time to be a bit higher when using a high-level-map. This
is because the search time in the high-level-map corresponds to the search
time of an original map on the same size with no path. The total search
time we expect to be the search time in the high-level-map plus the search
time in the original map.

Table 6.2 shows the results of the testing of A* with a high-level map
when the high-level map size is 1002100. This choice of size is based on the
results in table 6.1. The search time for a map with no obstacles (map 1)
in table 6.1 is 30 milliseconds. This is an OK search time. As we can see
in table 6.2, the search time for map 1, when original map size is 5000, is
the same as when original map size is 200 in table 6.2. Figure 6.3 shows the
results in table 6.2 graphically.

If we compare the two tables and figure 6.3 and figure 6.1, we can see
that when it comes to map 1 the results agree with our expectations. With
a high-level-map size of 100, the search times are the same for all map sizes
up to 1000. After that, the search time increases a bit, but not so much
as without a high-level-map. When it comes to the other maps, which all
have a high-level-map with no existing path, our expectation agree less. The
search time with a high-level-map is not higher than without. There are so
small differences that we can not say that one is better than the other.

We also did tests with high-level-map sizes 200 and 300, but these tests
failed. The reason for this is that our code can not handle the cases where the
original map size divided by the high-level-map size does not yield accurate
results. This division is important because it gives how many coordinates of
the original map will correspond to on high-level-map coordinate.
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Table 6.2: Results of A* testing with high-level map. High-
level map size is 1002100

| map size | map 1 | map 2 | map 3 | map4 | mapb
10 0.01000 | 0.0 0.0 0.0 0.01000
100 0.03000 | 0.51100 | 0.02000 | 0.52100 | 0.14000
200 0.03000 | 2.70400 | 0.06000 | 2.24300 | 0.68100
300 0.03000 | 6.30900 | 0.11000 | 2.62400 | 0.63100
400 0.03000 | 12.3780 | 0.12100 | 2.86400 | 0.69100
500 0.03000 | 21.3810 | 0.16000 | 2.73400 | 0.70100
600 0.03000 | 34.6500 | 0.19000 | 2.89500 | 0.78100
700 0.02000 | 61.9890 | 0.24000 | 2.83400 | 0.76100
800 0.02000 | 82.9490 | 0.27100 | 2.89500 | 0.80100
900 0.03000 0.31100 | 2.94400 | 0.86200
1000 0.03100 0.37100 | 2.95400 | 0.93100
2000 0.04000 0.77100 92.1319
3000 0.04000 1.38200
4000 0.07000 1.86300
5000 0.06100 2.44400
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Figure 6.3: Graph showing the results of table 6.2
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We do not get the best impression of how the search time is when a high-
level-map is used. It is only in map 1 a high-level-map will make a difference
because in all the other maps, a path will not be found in a high-level-map.
But we can conclude that using a high-level-map will reduce the search time
when a path exists in the high-level-map.



Chapter 7

Evaluation

7.1 Overview

In this chapter we will evaluate the developed environment. We will also
discuss some of the points where we met problems or why we chose the
solution we ended up with.

First we will evaluate how we have met the requirements we stated in
section 1.3. Then we will discuss fault tolerance, why we ended up with two
cameras on the robots and an obstacle avoidance method we tried. We will
also discuss some navigation issues and our experiences with the ER1 robots.

7.2 System requirements

In the problem definition (section 1.2, page 2) we said that: “The main pur-
pose of this thesis is to developed a distributed and parallel environment that
supports a dynamic number of robots with functionality. This functionality
will aid the robots in their tasks.” And then we stated some requirements
(section 1.3, page 3). We will now evaluate how the problem definition and
the requirements have been met.

Task assignment and execution

Because we do not know all kinds of tasks the robots will be performing in
the future, the environment must be able to handle all kinds of tasks. This
point has been partly met.

As it is now, all work with task performing is done at the robots. The
infrastructure is only forwarding task assignments to them, and reporting
status messages back when a task is done. During task execution, the infras-
tructure offers some functionality to the robots, but it can not help them if
they meet problems with a specific task. The infrastructure, as it is now, is
not intelligent. The robots, on the other hand, are able to handle new tasks



64 Evaluation

as long as they get to know how to execute them (i.e. gets the code that
says how to do it).

It is possible to assign tasks to robots through the user application and
through the graphical output. The tasks assigned through the graphical
output are only simple move tasks, but through the user application, all
task-types can be assigned.

Support for a dynamic number of robots

The infrastructure will not be able to recognize teams of robots. From the
infrastructure’s point of view, all robots operate on its own. Except from
this small drawback, the requirement is fully met. Robots can enter the work
space at any time, get the required downloads, and leave the work space again
as they wish. The only thing is that they must know the address and port
number to connect to in order to communicate with the infrastructure.

Offered functionality

Functionality and services offered by the environment should include: con-
text awareness, location, mapping, naming, and structured interfaces for
interaction between the different components. This requirement is almost
fully met.

The robots get all known information of the work space they are operating
in. They also get their positions upon request. But we do not have a way to
keep track of the robots’ locations because of the missing positioning system.
A map covering the work space exists and it contains all known information.
This includes robot positions, obstacles and other objects. Each robot gets
its own tag which uniquely identifies it. The tag is used in all communication
between a robot and the infrastructure.

The interfaces provide layers between the different parts that communi-
cates over the network. Both sides of an interfaces can be changed without
the other side knowing it because they always use the interface.

Downloads and uploads

The requirements state that it should be possible for the infrastructure and a
user to download data and code to the robots and the robots should be able
to upload data to the infrastructure. This requirement is fully met. We have
proved through the tests that data can be successfully loaded both ways.

Visualization

The visualization module makes a graphical output of the map and all the
information it stores. This graphical output is shown on a display wall. We
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Figure 7.1: An example of how the event handler and robot
interface of the infrastructure’s controller can be distributed.

have also tested that it can be shown on a ordinary computer screen as long
as the scaling is correct.

A user can interact with the graphical output by using a mouse. He
can get information about all the robots and objects discovered by robots
through it (the graphical output). Two simple tasks can also be assigned
through it, namely a goTo- and a followPath-task.

7.3 Fault tolerance

We have not implemented a fault tolerant system. This has to do with our
goal with this thesis. We wanted to make a prototype that we could test and
investigate to see if this is the right way to go. The infrastructure is however
designed so that it can be distributed and then be more able to handle faults.
In this section we will describe how this distribution is thought done.

As we can see from figure 3.1 on page 14, the controller’ s event handler
is a potential bottleneck. All traffic is directed through it and when heavy
loaded, it can slow down the performance. We can also see from the figure
that with many robots, the controller’s robot interface can become a bottle
neck as well because of all the traffic it must handle. These are the two most
obvious parts that can be distributed.

The event handler can be distributed so that there are one for each
interface. This is illustrated in figure 7.1. The different event handlers know
about each other and communicate so that each one can reach all the others.
In this way, when, for example, a task is forwarded from the user interface to
a robot, the task is going directly between the two event handlers involved,
not the other. From the interfaces point of view it looks as if there is only
one event handler.

Figure 7.1 also illustrates a way to distribute the robot interface. Some
robots are communicating with one interface, and others with an other inter-
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face. If there are very many robots and robot interfaces, we can have more
than one event handler handling the interfaces.

The event handler logs all events. The log is used in recovery from a
execution stop and for debugging. It is stored as a file that can be read
during or after execution. The log is cleared after the controller is started,
but before new events are received. In this way, no data is lost during
recovery, and the order of events can be read after execution for debugging.

7.4 The two cameras problem

As mentioned in the description of the robot design in section 3.4, page
17, we ended up with two cameras on the robots in order to use both the
RCC’s object recognition and take pictures of the surroundings. We will
here explain why we ended up with two cameras.

The best way to solve the problem would be to let our robot program
control the camera and develop our own object recognition feature. Making
a whole new object recognition module is out of scope for this thesis, so we
have tried to use a module developed before.

In the old robot system in the department, obstacle avoidance and ob-
ject recognition were given through the attached video camera. Remember
that a camera was mounted above the arena (see figure 1.1). The camera
could recognize some graphical tags that the robots had on top of them-
selves. Through these tags the camera could tell the robots where they were
and where the other robots were in order to avoid collisions. Also an algo-
rithm was developed that recognized tennis balls that were spread around
the arena. This algorithm used the raw video stream from the camera and
analyzed this to find forms that could be tennis balls.

We tried to use this algorithm as our object recognition module. If we
could get it work, the robots could recognize tennis balls, and no other ob-
jects. But even this would be better than the RCC’s object recognition
feature. Adapting the algorithm for our robots, turned out difficult. One of
the main problems was that the algorithm was developed under Linux and
used libraries developed for Linux. We did not find good enough replace-
ments to use the algorithm under Windows without changing most of the
code. Considering the time limits we decided not to follow this through.

The next thing we tried was to share the camera between the RCC and
our robot program so it could be used for both object recognition and picture
taking. This solution did not work either. This was because the RCC will
not let any other process access the camera after it, the RCC, has taken
control of it. Also, if another process has taken the camera first, the RCC is
not able to use it.

In order to get robots that supported both features, and not use enormous
amount of time developing object recognition code, the solution became to
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Figure 7.2: Each robot get their own area where they can op-
erate freely without risking a crash with another robot. The
figure shows an example situation with three robots. Robots
B and C shares an area. Robot A has a smaller area than
the other two because its position is close to the work space’s
borders.

use two cameras. One that the RCC could use for object recognition and
one that our robot program could use to take pictures with.

7.5 Obstacle avoidance

In subsection 3.6.4, page 24 we mentioned that we have tried to give each
robot their own piece of the map. Within the area this map piece covers they
could operate freely without risking a crash with other robots. This would
solve the problem of robots driving into each other. We will now describe
this solution and the reason for why we decided not to use it. See also figure
7.2.

The size of a robot’s area is decided by the robot’s position and a prede-
fined maximum size. The robot’s position becomes the middle of the area.
Based on the predefined maximum size, the borders of the area are drawn
around the robot. Robots close to an edge of the work space will thus get a
smaller area than robots closer to the middle. See robot A and B in figure
7.2. Robot B has an area with the maximum size. Robot A has a smaller
area because its position is close to the border of the work space.

When a robot gets the map of it’s area, it also gets all the known infor-
mation about that area. As we can see in figure 7.2, robot B has a part of a
wall inside it’s area. If it didn’t knew about this, it could drive right into it.

Areas are distributed as new robots arrive. When robot C entered the
scene in figure 7.2, it’s position was so close to robot B that the areas over-
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Figure 7.3: The figures show a situation where a robot is not
able to find a way to the goal point X. The reason is that
it does not know about the situation outside its own area,
except for its global position.

lapped. The overlapped area is marked as “shared” in robot C’s map. Robot
B’s map is left unchanged. When a robot has some “shared” areas in it’s map
it means that it cannot go inside this area because the robot that “owns” the
area can be there. This way we avoid robot collisions.

Depending on the settings, a robot can know that it is operating in a
bigger area and where it is placed within it, or it can be unaware of this
and only know about it’s own little world. Both approaches will cause some
problems when a robot is ordered to move to a position outside its own map.
When a robot does not know that there exist a bigger world outside it’s map,
it can hardly calculate a path to a point far out in the big map.

Assume the first approach is used, and the robot knows where it is in the
big world. To reach a position outside its own map, it can first find a path
to the position inside its area which is closest to the goal. Then the robot
can ask for a new map and do the same over again until the goal is within
its area and can be reached. Figure 7.3 shows an example of how it can go
with this method.

Robot R is going to position X. Between them is a wall, but there is room
to get around it. R’s area is marked with blue. The closest point to X inside
the area is marked with green. The robot goes to this position and asks for
a new map (picture 1). The closest point to X within the area is calculated
from X’s position. The robot does not know where walls and objects are
outside it’s area. This is the reason for why the robot in picture 2 and 3
goes to the right and not towards the opening in the wall. Finally in picture
4 the robot reaches the edge of the work space. When it now goes to the
closest point within its area and asks for a new map, we will end up in the
same situation as picture 3. As we can see, with this method, the robot will
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not reach the goal point.

There are ways around this problem. One way is to let the map service
do the path planning and the send whole path to the robot. It is also possible
to make smart algorithms that remember where the robot has been and try
other ways when situations like the one described occurs. As we explained
in subsection 3.6.4, we have not solved this problems. Both because path
planning is not a part of this thesis, but also because this is a good topic for
future student assignments and competitions.

7.6 Localization

The lack of a working and reliable localization method has been a problem
for several projects using the ER1 robots. It is hard working with the robots
when they can not navigate properly. There are two problems with not
having localization.

First, the robots have no guarantee that they can move safely around
because they can not be sure that they have the position told by the location
system. Second, the robots themselves do not have sensors that can be used
in obstacle avoidance. If they had this, and/or other sensors that could
say something about the surroundings, they could be able to navigate and
correct their positions by themselves.

It is the combination of no usable sensors and no localization that gives
the problems. If one of these is eliminated, further work with the ER1s will
be much easier and more fun.

7.7 ERI1 experiences

What we experience as the biggest problems in the work with the ERI1s, is
the lack of sensors. However, work on this problem has been started during
the end of the work on this thesis.

In appendix B we describe a side track of this thesis which investigated
the use of ultrasonic sensors that we mounted on one of the robots. With
these sensors the robot became much more safe in the sense that it did not
run into walls or objects unless they were not discovered by the sensors.
There have also been made a ultrasonic sonar which we did not have time to
test on the robots. Our expectations to these sensors are that the robots will
be more navigable and as a result, we can do more interesting investigations
with them.

One other big problem with the ER1s is that we can not control the
rotation sensors, and thus control the robots, through the command line
interface of the RCC. The command line interface sets many restrictions of
what we can do with the robots. What would be the best is to have direct
access to the rotation sensors. To do this, we must get the stream coming
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from the USB cable connected to the Robot Control Module (RCM), that is
connected to the rotation sensors. See figure 2.5 on page 11 for a reminder
of the ER1 architecture.

Work on this has also been started. Already there has been made a small
program running on Linux that accesses the RCM and control the wheels.
Data coming from the RCM has also been caught. Unfortunately, also this
work started too late to be used in the work with this thesis.



Chapter 8

Related work

8.1 Overview

What we have been working with in this thesis is in literature called a mul-
tiple mobile robot system. A multiple mobile robot system is a system of
a team or teams of mobile robots that cooperate to reach a goal. Robot
teams can consist of homogeneous or heterogeneous robots, or a mixture.
The thought is that a team of robots can perform bigger and more advanced
operations than one single robot. Also economy can be a factor. A big ad-
vanced multifunctional robot may be more expensive than many smaller and
less advanced. A third factor is fault tolerance. A team of robots is more
likely to be able to adapt failures and unexpected changes.

We can easily see that many of the challenges in a multiple mobile robot
system are the same as for distributed and parallel systems [14]. In addition
to these challenges comes the aspect that the robots should be autonomous.

In this chapter we will first give an introduction to multiple mobile robot
systems. Then we will give a short description of three different, and a bit
elder, multiple mobile robot systems that to some extent are similar to our
system. We will look at similarities and differences and why we made our
choices. Then we will look at the state of the art.

8.2 Multiple mobile robot systems

Typical applications for multiple mobile robot systems are search and rescue
situations, and war and terrorist situations. Common for these application
areas are that the robots must be able to cooperate in exploration of un-
known areas and environments. One important force that drives the research
on multiple mobile robot systems is the prospects of reducing the need of
humans in dangerous situations [10]. By sending in mobile robots more lives
can be saved both victims and rescue forces. Victims can be found faster
and analysis on how to get them safe out can be done quicker. Rescue forces
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will not have to take too big risks in saving others.

Multiple mobile robot systems can be placed on an line from deliberative
to reactive systems [5]. Fully deliberative systems have centralized control
and a detailed world model. Fully reactive systems expect that the system
will emerge through the different robots’ behaviors. Most multiple mobile
robot systems, including ours, are hybrids of these models. Fully deliberative
systems suffer from not having the ability to smoothly adapt to changes in
the environment. Fully reactive models are more dynamic when it comes to
adapt to changes, but they can be hard to make from “off-the-shelf”-robots
like ours.

Most multiple mobile robot systems are focusing on architectures that
get heterogeneous robots to cooperate on motions and mission performing.
We have been focusing on developing a general framework that offers basic
functionality. The framework can be used by a variety of multiple mobile
robot system architectures.

8.3 RAVE

RAVE is “a software framework that provides a Real And Virtual Environ-
ment for running and managing multiple heterogeneous mobile-robot sys-
tems” [5]. It is developed at the institute for complex engineered systems
at Carnegie Mellon University. They recognize that “developing multiple
mobile robot systems requires many supporting capabilities such as commu-
nications, user interfaces and support for simulation.” To keep their focus on
algorithms and architecture for collaborative behavior, they have developed
RAVE that provides these capabilities.

RAVE allows multi robot systems to be developed and tested in simula-
tion. When a system is ready to be deployed, it can seamlessly be transferred
to real robots. Any robot program can be run on either a simulated or real
robot. This simulation capability is extensively used for testing sensors, both
real and virtual. Virtual sensors can be used on real robots, and investigat-
ing sensor configuration can be done in software rather than hardware. The
advantages of this are that they can determine if sensors types are useful
and where the best placement on a robot is. This feature is helpful because
it saves a lot of time. Also RAVE allows to place virtual obstacles in the
world model so that real robots operating in real world avoids them. Real
robots and virtual robots can operate simultaneously in the world model and
interact with each other.

The RAVE framework consists of robot libraries, information servers and
user interfaces. The robot library’s provides a standard interface to real and
virtual robots. The interfaces form a layer between the high level robot pro-
grams and the low level robot interaction. The information servers consists of
an environment manager and a graphical user interface (GUI) server. These
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controls the system’s state. The system state is defined as the robots’ posi-
tions and virtual obstacles. The robots report periodically their state to the
environment manager. The environment manager distributes information to
the real and virtual robots. The GUI server sends updates to the different
user interfaces. The user interfaces show the system’s current state. There
are three different types of users; observers, commanders and super-users.
The different types have different limitations to what they can do in their
GUL

The ideas of RAVE are the same as ours; development of a framework
that offers basic functionality to different robot architectures. The main
difference is the simulation. We do not yet have the need for this type of
simulation. RAVE was constructed for investigating collaborative behavior
in multiple mobile robot systems. We want a frame work for supporting mul-
tiple mobile robot systems in their missions. Then later we can expand the
frame work to what the needs might be, based on experiences. Development
towards a system like RAVE can be the natural way to go if we want to do
research on collaborative behavior in multiple mobile robot systems.

8.4 Dynamite

Dynamite is a multiple mobile robots system made in 1993, and is interesting
because of its age. It is a testbed for multiple mobile robots, based on off-
board vision and off-board computation [2]. Although their focus has been
on robot soccer games, Dynamite can be used by other robot applications
as well.

Dynamite is a part of a project called Dynamo (Dynamics and Mobile
Robots) at the laboratory for computational intelligence, department of com-
puter science, university of British Columbia. Dynamo is an on going project
still, that “makes use of multiple radio-controlled vehicles to investigate prob-
lems in multi-agent robotics” 1. Their goal is to “generate the appropriate
cooperative and competitive behaviors for complex tasks such as playing
soccer.”

Dynamite has a very similar architecture as the old robot system in our
department (see chapter 1). Their soccer field has a wall around it which
prevent the ball and players to drive off the field. Then there is a single color
camera mounted above the soccer field. The video output is transmitted to a
vision engine which produces an absolute position of all objects in the soccer
field. Movement of all vehicles is controlled through a radio link. The robots
used were so small that the computation had to be done off broad.

Dynamite was a successful testbed for experiments with multiple radio
controlled robots. They showed that off-broad vision and computation could
be used for real time control of mobile robots. But this was 13 years ago

"http://www.cs.ubc.ca/nest/Ici/about.html
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and the hardware available today together with the enormous development in
technology has made this approach unsuitable for our demands. We want the
robots operating in our system to be as autonomously as possible. Hence we
want the computation to be done at the robots and not off board. Off board
computation demands more infrastructure just like the old robot system in
our department, which is one of the things we wanted to avoid.

8.5 ALLIANCE

ALLIANCE is a fully distributed behavior-based architecture that offers
fault-tolerant control of heterogeneous multi robot teams [10]. The devel-
opers want to solve the problem of “multi robot cooperation for small- to
medium-sized teams of heterogeneous robots performing missions composed
of independent sub-tasks that may have ordering dependencies.”

The developers of ALLIANCE recognizes that robots will fail and that
unexpected events will occur. Robot teams in ALLIANCE will be able to
perform their mission even with failing robots and unexpected changes.

There exists no centralized unit to do task allocation. The robots are
able to determine their own actions themselves. A robot’s decision on what
action to perform is based on its current situation. What actions a robot
can perform is dependent on its behavior sets. A behavior set is the actions
that the robot must perform in order to get a task done. The robots have
several behavior sets, but only one can be active at a time. I.e. the robots
can only perform one task at a time.

Which behavior set to activate is decided through use of motivational
behaviors. There exist two motivational behaviors - robot impatience and
robot acquiescence. The impatience behavior helps a robot to handle situa-
tions where other robots than itself fail to perform a task. The acquiescence
behavior helps a robot to handle situations where itself, is failing to perform
its task.

How are these motivational behaviors used? A robot team has a mission
to perform. The mission consists of several sub-tasks. Each robot has an
increasing impatience to get the different sub-tasks done. If a robot is cur-
rently working on a sub-task, the other robots’ impatience for this sub-task
will increase at a slower speed than for sub-tasks that no robot is working on.
If robot A notes that robot B is no longer working on the sub-task it says it
works on, and A’s patience is gone, robot A will take over B’s sub-task. The
reason why B is no longer working on what it says can be malfunctioning
sensors.

Robots fail. Hence the acquiescence motivation. Each robot has some
degree of acquiescence to get the sub-task it is working on done. If its
sensors are telling it that it fails in its sub-task performing, it will stop the
performance by itself and find some other sub-task to do.
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ALLIANCE assumes that the robots with help from their sensors will
discover if no robot is working on a sub-task or if a robot is failing in the
sub-task it is working on.

ALLIANCE is a fully reactive system. The robots work autonomously
and can adapt to changes in the environment by them selves. This approach
is very good when no sorts of network or other infrastructure are available.
This is the reality of most environments where we want multiple mobile robot
systems to be used. The main drawback for fully deliberative systems and
hybrids is that they depend on some infrastructure in order to work. For a
real world application, ALLIANCE is much better suited than our system,
because of the few infrastructure demands.

ALLIANCE has a totally different approach than us. It is more a multiple
mobile robot system architecture than an infrastructure supporting different
multiple mobile robot systems. Also, robots using ALLIANCE must have a
lot of computational power and advanced sensors. An important requirement
for us is to see what we can do with “of-the-shelf” robots. These are not so
advanced yet. But with an infrastructure like ours, we are able to do research
on what teams of such robots can do.

8.6 State of the art

There are few systems like ours out there, that offer an infrastructure with
services to single robots or robot teams. Most multiple mobile robot systems
today are reactive models with no centralized unit controlling the robots.

[9] realizes that even though robots have become quite advanced and can
do advanced missions, humans still do better evaluation of a situation and
take better decisions. They have developed a multiple mobile robot system
that is supervised by a human operator. Here the robots are controlled by
the operator in stead of operating autonomously. This is almost the same
approach as we have taken. We say that the robots will success in their
missions with feedback from users. Not controlled bu users.

[6] gives an introduction to research on small robots, each of them spe-
cialized to sense or do one thing. When these robots are operating in teams,
they can get a good impression of the conditions in an environment. Usage
for such teams is for example, in a building taken by terrorists. A team of
small robots can be sent into the building and report back useful informa-
tion. This information can then be used to plan an attack. These robots
demonstrates what can be done when appropriate and different sensors are
available.

Much ongoing research in multiple mobile robot systems today investi-
gate swarms of robots. The idea behind a swarm of robots is taken from
animal swarms. A good example is ants. A swarm of ants can in coopera-
tion build amazing things. One single ant is not good for much (unless it is
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the queen of course). In robotics this is called swarm intelligence. A robot
swarm consists of an army of small, mostly homogeneous robots. iRobot?
works with the world’s largest swarm, consisting of over one hundred robots3.
Their distributed algorithms function with groups of 10 or 10,000 robots.
An closed European project that worked with swarms was SWARM-BOTS
[7]. They studied self-organizing and self-assembling robots. Amongst their
achievements they managed to get a swarm of 20 robots to self-assemble into
four smaller swarms and pull a child on the floor.

2http://www.irobot.com
Shttp://www.irobot.com/sp.cfm?pageid=149
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Concluding remarks

This chapter concludes this thesis by describing our achievements and out-
lining directions for future work.

9.1 Achievements

In this thesis we have developed a distributed and parallel environment which
offers functionality to robots to support them in their task performance. All
types of robots are supported, as long as they can use an interface provided by
the environment. All communication between robots and the environment
goes through this interface. The environment has control over a certain
amount of work space where the robots can operate. Within this work space,
the environment offers functionality that includes:

e Information about the work space. This information can be obstacles
to avoid and other robots.

e Location of each robot. This is not working properly because we do
not have a positioning system that can give location data. But the
environment can give the last reported position from each robot known
to be in the work space.

e A map over the work space which contains all information the envi-
ronment knows about it.

e Naming of each robot. Each robot gets an unique name used in all
communication with the environment.

e Structured interfaces for interaction with robots and users.

Users can control the robots through the environment. The users provide
tasks to the robots. What tasks a robot can perform vary from robot to
robot. Each robot is equipped with some predefined tasks they can perform
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upon orders from a user. It is possible to provide the robots with new
functionality during run time. Users can download extensions to robots
through the environment, and replace parts or the whole code running on
the robots during run time.

Robots can upload data to the environment. Data that is currently
uploaded is pictures taken with the robots’ camera.

All known information about the work space, including robots, is shown
graphically on a display wall. It is possible to interact with this graphical
output by using a mouse. A user can assign simple moving tasks to robots
through the graphical output. The graphical output can also show monitor
data of the robots and objects discovered by robots.

Our intention with this thesis was to make an environment in which
students could experiment with robots on their own, and in which it could
be held competitions. This we have almost achieved. The biggest problem
is that we do not have a proper way to do localization. This brings us over
to future work.

9.2 Future work

We will now outline some of the areas that can be elaborated in future work.
These include:

e Improvement of the environment. The environment developed is only a
first prototype. There are many areas to improve, such as a possibility
to extend the infrastructure during run time just the way we do it with
the robots. Other improvements are to prevent users of one competing
team from access another team’s robots, and to make the environment
support more than one concurrent user.

e Fault tolerance. If the environment shall be used for student experi-
ments and competitions, it must be able to handle failures. Logging of
all actions for recovery and debugging purposes is one way to do this.
The user application can log the user actions. The infrastructure can
log all incoming and outgoing events. One possible solution in making
the environment more fault tolerant is outlined in section 7.3 , page
65.

e Improvement of user application. The user application should be pre-
sented with a graphical user interface (GUI) in stead of a text based
user interface like it is now. In a GUI, commands can be given faster
because the mouse can be used. To type commands in more than one
step is not very user friendly, it takes more time than using a mouse,
and misspellings that leads to wrong commands happens often.
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e Improvements of the ER1s. If more big projects shall include the ER1s,
we recommend that more work on the Linux patch that accesses the
robot control module (RCM), is done first (see section 7.7, page 69).
We believe that the ER1s will be more easier to work with if we can

control the rotation sensors without going through the robot control
module (RCC).

e A solution to the localization problem. Work with robots, that are
supposed to be autonomous, without reliable localization is very hard.
There are many ways to go when it comes to choosing a localization
method. We believe in the work started with the ultrasonic sensors
(see appendix B). The few tests we have done with these sensors are
very promising.
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Appendix A

The A* search algorithm

This appendix is a short introduction to the A* search algorithm (pro-
nounced A-star). It is a graph searching algorithm that uses heuristic infor-
mation to find minimum cost paths.

A graph is a set of nodes connected with edges. The edges may have
costs associated with them, and in some cases they can be directed. This
means for example that we can go from node A to node B but not from B
to A. A* is used on graphs where the edges have costs, but are not directed.
If we translate this to this thesis, the graph is the map, the nodes are the
squares or coordinates in the map, and the edges are the movement from
one node to an adjacent node.

A* uses two lists in its search. The OPEN list contains all nodes that
need further exploration. The CLOSED list contains all nodes that have
been explored.

The path is generated by repeatedly going through the OPEN list and
choosing the node with the lowest F' score. F' = G 4+ H where G is the
movement cost to move from the starting node to a given node using the
path generated to get there, and H is the estimated movement cost from
that given node to the final destination.

The G cost to a given node correspond to the sum of all edges of the
graph used to get there from the starting node. We can assign different
costs to the nodes to indicate that they are undesirable to be used in a path.
Assume there is a table standing in the robots workspace. It is possible for
the robots to move around it very close without crashing, but it is safer if
they keep some distance from it. To make the robots keep some distance
we add more cost to the nodes surrounding the table in the map. The A*
algorithm will then avoid using those high cost nodes if it can. We operate
with a normal cost of 1 and a high cost of 10.

H is the heuristic. It can be estimated in many ways. We estimate it by
calculating the total number of nodes or map coordinates moved horizontally
and vertically from the current node to the destination node, ignoring any
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obstacle that might be in the way. Then we multiply the sum by the normal
cost of moving from one node to an adjacent, that is 1.

For each square in the map there are eight adjacent squares. As men-
tioned in section 4.4.4, the robots we have been working with will only make
90 degrees turns. This means we are operating with only four adjacent
squares.

We will no go through the A* search step by step.

The search

Each explored node is given a parent node. The parent node is part of the
shortest path to this node from the start node, and is used in the end of the
search to find the path.

1. Mark the starting node as the current node.
2. Add the current node to the CLOSED list

3. For each of the current node’s four adjacent nodes do:

e If the node is part of a wall or some object that makes the node
unwalkable, or if it is in the CLOSED list, ignore it.

e If the node is not in the OPENED list, add it to this list. Make
the current node the parent of this node and set the F,G and H
costs.

e If the node is in the OPEN list, use the GG cost to calculate if this
path to the node is better than the one found before. If so, make
the current node the parent of this node and recalculate the F, G
and H costs.

4. Search the OPEN list for the node with the lowest F' cost. Mark this
node as the current node.

5. Repeat step 2 to 4 until:

e the destination node is added to the CLOSED list or

e the OPEN list is empty which means that there exists no path
between the starting and destination nodes.

The next part is to save the path. Start by working backwards from
the destination node, searching the CLOSED list for it’s parent node, and
continue finding the parents until the starting node is reached.
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Ultrasonic sensor navigation

B.1 Introduction

In this appendix we will describe a navigation method we tested during the
project period. This work started late, and we did not manage to incorporate
this method properly into the system within the required time. The results
of this testing are very promising when it comes to making the robots able
to move more freely and become more autonomous. This is the reason why
we have this description here.

One of the technical staff in our department, Ken-Arne Jensen, has made
a ultrasonic sensor kit that we have attached to one of the robots. The ultra-
sonic sensors are used to measure distances between the robot and objects
around it. Our goal is to make the robot move by itself through a corridor
and safely pass some stairs.

B.2 Design and implementation

The ultrasonic sensors used are BASIC stamp 2 Devantech SRF04 ultrasonic
Range Finder #28015. They are attached to a Velleman USB Interface Ex-
periment Board K8055 (after this called the K8055). The USB is connected
to the notebook on the ER1 robot. For getting contact with the K8055,
we use ctype. ctype is an advanced Foreign Function Interface package for
Python. It “allows to call functions exposed from dlls/shared libraries and
has extensive facilities to create, access and manipulate simple and com-
plicated C data types in Python - in other words: wrap libraries in pure
Python.”! The ultrasonic sensors can measure distances from approximately
10 cm to approximately 300 cm from itself.

The four ultrasonic sensors are attached to the robot as can bee seen
in the picture B.1. One in the front, one on each side, and one pointing
down. This last sensor is meant to measure if the robot is driving toward an

"http://starship.python.net /crew/theller/ctypes/
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Figure B.1: Ultrasonic sensors attached to a ERI.

edge, like stairs. The one in front measures if the robot is about to run into
something ahead. The two on the sides measures the distances to walls and
objects on the sides.

We read the sensors in a round robin fashion. The senors a re numbered
1-4 and we read them in the sequence 1 2 3 4 and the we start in lagain.
There has to be a delay of at least 10 milliseconds between each time a sensor
is sending out a signal. If a smaller delay, the readings may be wrong.

The program we have made is just a simple testing program. Some places
we have just chosen a value for how much to turn or how long distance to
drive. When we here say that the robot turns or drives “a bit”, it means that
it is one of these places.

The robot is programmed to drive on “the right hand side of the road”.
By this we mean that it keeps close to walls on the right hand side of itself.
As long as the sensor on the right hand side of the robot shows distances
between 30 cm and 60 cm to the wall, the robot continues to drive forward.
If the distance is smaller than 30 cm, the robot turns a bit to the left. If
the distance is bigger than 60 cm, the robot turns a bit to the right. If the
sensor on the left hand side of the robot shows a distance less than 30 cm,
the robot turns a bit to the right.

If the sensor on the right hand side shows a distance bigger than 100 cm,
it assumes that it has reached a corner. In order to turn this corner safely,
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it drives 30 cm forward (so that it gets room to turn) and turns 90 degrees
to the right. Then it continues forward.

When the sensor in front of the robot shows a distance of less than 50 cm
ahead, it means that the robot is about to run into something. Assuming
this is a wall, the robot backs a bit and turns left. Then it continues forward.

When the sensor pointing down shows a distance bigger than 35 cm, it
indicates an edge. The reason for 35 cm is that the robot drives with a speed
of 10 cm/sec and that there can be more than one second between each time
the sensor is read. 35 cm is the minimum safe stop distance.

B.3 Evaluation

Our goal with testing these sensors was to make the robot move by itself
through a corridor and safely pass some stairs. This we almost achieved.
Keeping the distance to the wall on the right hand side, went very well. Also
avoid driving into something in front of the robot went very well. The tricky
part was to turn corners and not driving down the stairs.

The trouble with turning corners was that the robot thought it saw a
corner when it actually saw down the corridor. For example, the robot may
stand in the middle of a corridor facing the wall and have free sight both
upwards and downwards the corridor on the sides. We assume here that the
wall in front of the robot is more than 50 cm away. In this situation, the
right hand side sensor will correctly show a distance bigger than 100 cm.
But it is wrong of the robot to then assume it must turn a corner. This
problem is easily fixed by making the robot not assume it is always facing a
corner in these cases.

We have not managed to get the robot avoid the stairs. This is due to
bad readings from the sensor pointing down. The floor in the hall where
the stairs are is the reason for these bad readings. The floor is made of
small stones. Between these stones are small spaces that are one to two mm
lower than the stones. Our theory is that the ultrasonic signal gets a wrong
angle when it hits these spaces. The sensor readings will then show wrong
distances. We faced two problems on this floor. The robot could detect an
edge in the middle of the floor, and it could miss to detect the stairs.

A solution we did not have time to test, is to make the sensor point
straight down and not in an angle like it points now. If we would do this we
also would have to place it on a longer arm in front of the robot. This so
that the robot could have a safe stop distance.

Another problem has been that the sensors does not discover legs of
tables and chairs. This makes the robot run into these if they are standing
in its way. How to avoid this, we have not had time to look at.

Despite these small problems, which can be solved, we find that this is
a big step towards getting fully self-navigating robots. It was fun working
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with it, and it can easily be extended to be more dynamic and handle more
situations.



Appendix C

Installation guide

This is an installation guide for all the extra software needed on the robots
in this project.

In the implementation chapter (chapter 4) we introduced all the software
we have used on the robots in order to implement the video making module.
These are: the VideoCapture extension to get the video stream from the
camera, PIL that VideoCapture uses to produce pictures, and ffmpeg to
merge the pictures to a movie. In addition we need Msys and MinGW to
compile the fimpeg under Windows. All this software is included on the CD.

In this section, we will give information on how to install the software.
The information is collected from the homepages of the different software.
This guide is only meant as a short help. If any problems should occur during
installation, please see the respective software’s homepage.

C.1 VideoCapture

Packages on CD: VideoCapture-0.9.zip
Homepage: http://videocapture.sourceforge.net /

How to install:
1. Unzip the file.

2. Copy the files from the “PythonXX” folder to the corresponding fold-
ers of your “PythonXX” installation, where XX must match with the
version of Python you have installed on your system.
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C.2 Python Image Library (PIL)

Packages on CD: PIL-1.1.5.win32-py2.4

Homepage: http://www.pythonware.com/products/
pil/index.htm

How to install:

e Execute the PIL-1.1.5.win32-py2.4 file.

C.3 FFmpeg

Packages on CD: ffmpeg-0.4.9-pre.1.tar
Homepage: http://fimpeg.sourceforge.net /index.php

The following instructions are copied directly from the FFmpeg docu-
mentation (see homepage), point 6.3.1 Native Windows compilation. For
this project we do not need FFplay. The needed packages for Msys and
MinGW are also included on the CD. See next section.

e Install the current versions of MSYS and MinGW from
http://www.mingw.org/. You can find detailed installation instruc-
tions in the download section and the FAQ.

e If you want to test the FFplay, also download the MinGW devel-
opment library of SDL 1.2.x (‘SDL-devel-1.2.x-mingw32.tar.gz’) from
http://www.libsdl.org. Unpack it in a temporary directory, and unpack
the archive ‘i386-mingw32msvc.tar.gz’ in the MinGW tool directory.
Edit the ‘sdl-config’ script so that it gives the correct SDL directory
when invoked.

e Extract the current version of FFmpeg.
e Start the MSYS shell (file ‘msys.bat’).

e Change to the FFmpeg directory and follow the instructions of how to
compile FFmpeg (file INSTALL’). Usually, launching ‘. /configure’ and
‘make’ suffices. If you have problems using SDL, verify that ‘sdl-config’
can be launched from the MSYS command line.

e You can install FFmpeg in ‘Program Files/FFmpeg’ by typing ‘make

install’. Don’t forget to copy ‘SDL.dIl’ to the place you launch ‘ffplay’
from.

Notes:
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e The target ‘make wininstaller’ can be used to create a Nullsoft based
Windows installer for FFmpeg and FFplay. ‘SDL.dII’ must be copied
to the FFmpeg directory in order to build the installer.

e By using ./configure —enable-shared when configuring FFmpeg, you can
build ‘avcodec.dll’ and ‘avformat.dll’. With make install you install the
FFmpeg DLLs and the associated headers in ‘Program Files/FFmpeg’.

e Visual C++ compatibility: If you used ./configure —enable-shared
when configuring FFmpeg, FFmpeg tries to use the Microsoft Visual
C++ lib tool to build avcodec.lib and avformat.lib. With these li-
braries you can link your Visual C++ code directly with the FFmpeg
DLLs (see below).

C.4 MinGW and Msys

Packages on CD: MinGW-5.0.0.exe,
MSYS-1.0.10.exe,
msysDTK-1.0.1.exe

Homepage: http://www.mingw.org

1. Execute the MinGW-5.0.0.exe file. Install MinGW in for example c:
2. Execute the MSYS-1.0.10.exe file. Install MSYS in for example

3. Execute the msysDTK-1.0.1.exe. This package gives autoconf, au-
tomake, libtool, cvs, etc.

MinGW is “a collection of freely available and freely distributable Win-
dows specific header files and import libraries combined with GNU toolsets
that allow one to produce native Windows programs that do not rely on any
3rd-party C runtime DLLs.”?

MSYS is “a Minimal SYStem to provide POSIX/Bourne configure scripts
the ability to execute and create a Makefile used by make.”?

We need MinGW and MSYS in order to install ffmpeg because ffmpeg is
developed under Linux.

"http://www.mingw.org/
*http://www.mingw.org/
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Appendix D

Source code

The rest of this document contains the source code. It is organized as follows:
controller/

e controller.py

e eventhandler.py
e mapServicelntf.py
e robotIntf.py

o userIntf.py

e robotInfrastructIntf.py
e objects.py

map/

e mapService.py

e storeHouse.py

e visualize.py

e objects.py
therobot/

e robot.py

e robotERintf.py

e robotMapping.py

e astar.py
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Source code

e navigation.py
e video.py
e common.py

o ultradistRobot.py

ultradist.py
user/

e user-app.py

e longstrings.py
e squareCode.py

e executeCode.py



Printed by Marte Karidatter Skadsem

May 13, 06 15:55 controller.py Page 1/2 May 13, 06 15:55 controller.py Page 2/2
S known_obj = [] # coordinates to all known objects
#
# The controller part of the infrastructure. data = map_si ze_x, map_size_y, map_factor, nmap_piece_size, known_obj

# Starts up all the interfaces and the eventhandl er and gives the
# control to the eventhandler.

#

# Witten by Marte K Skasdem 2005/2006

#
BHUHHHHHHHH BB HRHHHH R R H AR AR R

# python library nodul es
inport threading

# own written nodul es

from mapServicel ntf inport MapServicelnterface
fromrobotIntf inport Robotlnterface
fromuserintf inport Userlnterface

from event Handl er i nport EventHandl er

class Controller:
def __init__(self):
# ipaddr to the maschine the controller runs on
addr = ' 129.242.19.46' #addr to rocksvv where tests has been done
# initializes the different interfaces
map_i ntf_port = 8080
sel f. mapServi ce_interface = MapServi cel nterface(addr, map_intf_port)
rob_intf_port = 8081

sel f.robot _interface = RobotInterface(addr, rob_intf_port)

usr_intf_port = 8082
sel f.user_interface = Userlnterface(addr, usr_intf_port)
# initializes the eventhandl er
sel f. event _handl er = Event Handl er (sel f.robot _interface,
sel f.user_interface,
sel f. mapServi ce_i nterface)

def main(self):
# make map
sel f.initMp()

sel f. mapServi ce_i nterface. get Event Handl er (sel f. event _handl er)
sel f.robot _i nterface. get Event Handl er (sel f. event _handl er)
sel f.user_interface. get Event Handl er (sel f. event _handl er)

# start interfaces in threads
sel f.initThreads()

# give control to the event handler
sel f. event _handl er. nai n()

def initMp(self):
'’ " Givesthe map service the information in needs to mak

the map.
# the ipaddr to the conputer the nap service runs on
map_addr = ' 129.242.19.46

# the port nunber to use to connect to map service
map_port = 8091

map_si ze_x = 200 # length of map

map_si ze_y = 200 # hei ght of map

map_factor = 10 # the display factor

map_pi ece_size = 200 # size of nmap piece to give to robots

e)

if

sel f. mapServi ce_i nterface.initMap(nmap_addr, map_port, data)

def initThreads(self):
' Starts of athread for each interface. The threads handles
inncomming calls from the other partisipants.

I

mapService_intf_thread = threadi ng. Thread(target=
sel f. mapServi ce_interface. serv

mapServi ce_i ntf_t hread. set Daenon( Tr ue)

robot _intf_thread = threadi ng. Thread(target=sel f.robot_interface.serve)
robot _i ntf _t hread. set Daenon( True)

user_intf_thread = threading. Thread(target=sel f.user_interface. serve)
user_i ntf_t hread. set Daenon(True)

mapService_intf_thread.start()

robot _intf_thread.start()

user_intf_thread. start()

__name__ =="'__man_':
exSrv = Controller()
exSrv. main()

Saturday May 13, 2006

controller.py
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HHE A A
#

# The event handler module.
# Handles incomming events from the interfaces.
#

# Written by Marte K Skasdem, 2005/2006

#

BT

inmport threading, tine

from objects inport Robot Qbj

cl ass Event Handl er:

def __init__(self, robotlntf,

sel f.robotIntf = robotlntf

sel f.userIntf = userintf
sel f. mapServi cel ntf = mapServicelntf

userIntf, mapServicelntf):

sel f.robot _|ist {} # all known robots key=tag, value=robot object
sel f.task_I | st = # tasks not waiting to be executed.

# key=robot tag, value=waiting tasks

# key=ipaddr, value=tag

self.tag_list = {}
100 # tag given to robots (incremental)

self.tag =

def main(self):
print ' Controller ready to start’
whil e True:
tine. sl eep(5)

#
# functions called from map manipulator interface
#

#def getMonitorData(self, tag):
# declared together with functions
# called from user interface

# def giveRobotTask(self, task, tag):
# declared together with functions
# called from user interface

#
# functions called from robot interface
#

def appendRobot (sel f, ipaddr):
'’ 7 Registers anew robot. The new robot is assigned a unique
tag stored in alist with al known data about it data. Then
the map service is contacted to get amap for the robot.
The tag and map satais returned to robot.

# check if robot has been registered before
if self.tag_list.has_key(ipaddr):
# robot was lost, but is now found

_tag = self.tag_list[ipaddr]

sel f.robot_list[_tag].status = ' Connected
el se:

# robot new to infrastructure

self.tag += 1

self.tag_list[ipaddr] = self.tag

_tag = self.tag
sel f.robot _list[_tag] = Robot Obj(_tag,

i paddr)
self.task_list[_tag] =[]

# get map data
map_data = sel f.get MapPi ece(_t ag)

return _tag, nap_data

def get MapPi ece(sel f, tag):
7" Contacts the map service to get amap piece and the
position of the robot.
map_pi ece,

map_si ze, rob_pos,

# store the position
sel f.robot_list[tag].pos = rob_pos
return map_pi ece, dat a

map_si ze, rob_pos,

def taskOptions(self, tag, possible_tasks):
""" A robot reportsits possbletasks Thisinformationis
stored together with the rest information of this robot.

sel f.robot _list[tag].possible_tasks

return True

def request NewTask(self, tag):
'’ " Returns the next task to be executed by the calling
robot if any iswaiting.

if not len(self.task _list[tag]) ==
# task is waiting to be executed
task = self.task_list[tag][0]
sel f.task_list[tag].renmove(task)
sel f.robot _list[tag].task = task
return task

# no task available
return Fal se

def reportPosition(self, tag, pos, direction):
'’ 7 Robots call thisto report a new position. The reported

position istold to the map service in order for it to

storeit. Real position is returned from map service and

returned to robot.

pos = sel f.mapServicel ntf. noveRobot (tag, pos, direction)
sel f.robot_list[tag].pos = pos
self.robot_list[tag].direction = direction
return pos
def markNewQbj ect (sel f, tag, inageid):
'’ " Reports to the map service that a new object is discovered.
The object is discovered by the calling robot.
pos = self.robot_list[tag].pos
return sel f. mapServi cel ntf. mar kNewCbj ect ( pos,
tag,
i magei d)

def done(self, tag, task, nsg):
""" A robot reportsthat it has executed a task. This
is stored and reported to the user.

data = sel f. mapServicel ntf.get MapPi ece(tag

= possi bl e_t asks

Saturday May 13, 2006

eventHandler.py

2/10
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sel f.robot _list[tag].task = task
sel f.robot _|ist[tag].done_tasks.append( (task, msg) ) i paddr = self.robot_list[tag].ipaddr
sel f.robot_list[tag].task = Fal se
sel f.robot | ntf.gi veRobot Task(i paddr, task)
# report to user
sel f.userIntf.robotDone(tag, task, msg) return True
return True
def gi veRobot Modul e(sel f, tag, filenanme, binary_obj):
" Gives amodule to the requested robot.
def robot Di sconnect (self, tag): T
'’ Called by arobot that leaves the work space area. i paddr = self.robot_list[tag].ipaddr
Registers thet the robot islost.
Y return sel f.robotlntf.exportMdul e(i paddr,
sel f.robot _|ist[tag].status = ' Lostcontact filenane,
bi nary_obj)
sel f. mapServi cel nt f. noCont act Robot (t ag)
return True
def gi veRobot Code(sel f, tag, filenanme, binary_obj):
'’ Gives some code to the requested robot
# Ve
# functions called from user interface i paddr = self.robot_list[tag].ipaddr
#
def get RobotLi st (self): return sel f.robotlIntf.runCode(i paddr,
"’ " Returnsalist of al robot tags known to bein thea area. filenane,
Y bi nary_obj)
if len(self.robot_list) ==
return Fal se
def stopRobot (self, tag):
data = [] ' Stops the requested robot
for rob in self.robot_list:
dat a. append(r ob) i paddr = self.robot_list[tag].ipaddr
return data return sel f.robotlntf.stopRobot (i paddr)
def get MonitorData(self, tag):
""" Returns all known information of the robot requested.
if not self.robot_list.has_key(tag):
return Fal se
data = self.robot_list[tag].makeMonitorData()
return data
def get Possi bl eTasks(sel f, tag):
" Returns the possibel tasks for the robot requested.
if not self.robot_list.has_key(tag):
return Fal se
data = self.robot_list[tag].possible_tasks
return data
def gi veRobot Task(sel f, tag, task, wait=None):
" Givesthe given task to the requested robot. If the wait
parameter is set, it means that the task can be stored and
given to robot upon request formiit.
if wait:
# add task to robot's task list
sel f.task_list[tag].append(task)
se:
### OBS! This will interrupt the robot in the task it is doing
Saturday May 13, 2006 eventHandler.py 3/10
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B T def mar kNewbj ect (sel f, tag, pos, data):
# """ Marks new object, discovered by the given
# The Interface to the map service. robot, in the map.

# Itis run as a XML RPC server, and uses a xmirpclib client to T
# call the map service. return sel f. map. mar kNewObj ect (t ag, pos, data)
#
# Written by Marte K Skasdem, 2005/2006
# def get MapPi ece(sel f, tag):
B R R T R R '’ " Gets amap piece for the given robot.
i nport Queue return sel f. map. get MapPi ece(t ag)
fromxmrpclib inport ServerProxy
from Si npl eXMLRPCSer ver inport Sinpl eXM.RPCServer def noveRobot (self, tag, pos, direction):
'’ Registers new position of robot.
cl ass MapServicel nterface: o
def __init_ (self, server_addr, server_port): return sel f. map. nroveRobot (tag, pos, direction)
sel f.server_addr = server_addr
sel f.server_port = server_port
def noCont act Robot (sel f, tag):
# initiate server " Marksthat arobot is lost
sel f.ny_server = Sinpl eXM_RPCServer( (server_addr, server_port) ) Y
return sel f. map. noCont act Robot (t ag)
# register functions
sel f.ny_server.register_function(self.getMnitorData)
sel f.ny_server.register_function(sel f.newRobot Task)
def initMap(self, nap_addr, map_port, data):
' Initiates contact with map service and givesit
information to make the map of.
sel f.map = ServerProxy(’ http:/// + map_addr + ' + str(nmap_port))
sel f. map. makeMap(sel f.server_addr, self.server_port, data)
def get Event Handl er(sel f, event_handler):
'’ Gets apointer to the event handler
sel f. event Handl er = event_handl er
def serve(self):
17 Startsthe server
sel f.ny_server. serve_forever()
#
# functions started from map manipulator
#
def getMonitorData(self, tag):
" Gets monitor data for a requested robot
print ' Get monitor datafor map service'
return sel f.event Handl er. get Moni t or Dat a(t ag)
def newRobot Task(sel f, tag, task):
' Givestask to requested robot
print ' Givetask to robot. Given by map service'
return sel f.event Handl er. gi veRobot Task(t ag, task)
#
# functions called from event handler
#
Saturday May 13, 2006 mapServicelntf.py 4/10
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B T
# return "robotlnfrastructintf.py", bi nary_obj
# The controller’s interface to the robots.
# Itis run as an asyncron XML RPC server that can serve
# several clients concurrently. def wel come(sel f, ipaddr):
# '’ Welcomes arobot. Returns map information and a tag.
# Written by Marte K Skasdem, 2005/2006 Y
# return sel f.event Handl er. appendRobot (i paddr)
B R R T R R
i nport os def taskOptions(self, tag, possible_tasks):
i nport Socket Server '’ Receives arobots possible tasks.
i mport socket Y
return sel f.eventHandl er.taskOpti ons(tag, possible_tasks)
from Si npl eXMLRPCSer ver inport Sinpl eXM.RPCServer, Si npl eXM_LRPCRequest Handl er
fromxmrpclib inport ServerProxy, Binary
def requestNewTask(self, tag):
cl ass AsynchVLRPCServer(Socket Server. Thr eadi ngM xI n, Si npl eXMLRPCSer ver): 7" Returns anew task if one exist.
def server_bind(self):
sel f. socket . set sockopt (socket . SOL_SOCKET, socket.SO REUSEADDR, True) return sel f.event Handl er. r equest NewTask(t ag)
sel f. socket. bi nd(sel f.server_address)
def reportPosition(self, tag, pos, direction):
cl ass Robot I nterface: '’ Robots cal thisto reportanew position.
def __init__(self, addr, port):
# initialize server return sel f.eventHandl er.reportPosition(tag, pos, direction)
sel f.initServer(addr, port)
# register server functions def newMap(self, tag):
sel f.ny_server.register_function(self.initphase) T
sel f.ny_server.register_function(self.wel cone) T
sel f.ny_server.register_function(self.taskOptions) return sel f.eventHandl er. get MapPi ece(t ag)
sel f.ny_server.register_function(self.request NewTask)
sel f.ny_server.register_function(self.reportPosition)
sel f.ny_server.register_function(sel f.new\ap) def storeFile(self, tag, binary_obj, filenane):
sel f.ny_server.register_function(self.storeFile) ' Storesfile given by arobot.
sel f.ny_server.register_function(sel f.taskDone) Y
sel f. ny_server.register_function(sel f.robotD sconnect) outfile = open("files"+filenanme, "w")
outfile.wite(binary_obj.data)
outfile.close()
def initServer(self, addr, port):
"7 Initiates the xml rpc server sel f. event Handl er . mar kNewObj ect (tag, ' files” +fil enane)
sel f.ny_server = AsyncXM_RPCServer ((addr, port), return True
Si npl eXMLRPCRequest Handl er)
def taskDone(self, tag, task, nsg):
def get Event Handl er (sel f, event_handl er): 7" A robot is done executing a task.
7" Gets a pointer to the event handler Y
T return sel f.eventHandl er. done(tag, task, nsg)
sel f. event Handl er = event _handl er
def robotDi sconnect(self, tag):
def serve(self): " A robot isleaving the area.
' Startsthe server e
o sel f. event Handl er. robot Di sconnect (t ag)
sel f.ny_server.serve_forever() return True
#
# FROM ROBOT #
# # TO ROBOT
def initphase(self): #
'’ " Sends the robotl nfrastructIntf to the calling robot. def gi veRobot Task(sel f, ipaddr, task):
T """ Gives new task to robot
intf = open("robotinfrastructintf.py", "r") Y
data = intf.read() print "newTask:" + str(task)
intf.close() robot = sel f.connect Robot (i paddr)
return robot. gi veRobot Task(t ask)
bi nary_obj = Bi nary(data)
Saturday May 13, 2006 robotIntf.py 5/10
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def exportMdul e(sel f, ipaddr, nodul ename, binary_obj):
' ' 7 Sends a new module to robot.
print "newmodule" + nodul enane
robot = sel f.connect Robot (i paddr)

return robot.inportMdul e(nodul enane, binary_obj)

def runCode(sel f, ipaddr, codefilenanme, binary_obj):
" Sends afile with code to execute to robot and asks
ittorunit.

print "runcode:" + codefilenane
robot = sel f.connect Robot (i paddr)

return robot.runCode(codefil ename, binary_obj)

def get MonitorData(self, ipaddr):
7" Gets monitor data from robot.
robot = sel f.connect Robot (i paddr)
return robot. get MonitorData()

def uppdat eMap(sel f, ipaddr, object_list):
"7 Sendsanew list of objects to robot so that it
can update its map.

robot = sel f.connect Robot ()
return robot. uppdat eMap(object _|ist)

def stopRobot (self, ipaddr):
'’ Stops robots movement
print "stoprobot" + ipaddr
robot = sel f.connect Robot (i paddr)
return robot.stop()

#
# LOCALE FUNCTIONS
#

def connect Robot (sel f, ipaddr):
'’ 7 Opens a connection to the given robot.
robot _connecti on = Server Proxy(’ http://" +\
i paddr +\
':8090' )
return robot_connection
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HHE A A
#

# The controller’s interface to the user.
# Itis run as a XML RPC server.
#

# Written by Marte K Skasdem, 2005/2006
#
BT

i mport Queue
from Si npl eXMLRPCSer ver inport Sinpl eXM_.RPCServer

class Userlnterface:
def __init_ (self, addr, port):
# a queue to hold done robot tasks
sel f.doneQ = Queue. Queue()

# initiate server
sel f.ny_server = Sinpl eXM_.RPCServer ( (addr,
port) )

# register server functions

sel f.ny_server.register_function(self.testConnection)
sel f.ny_server.register_function(sel f.getRobotLi st)

sel f.ny_server.register_function(self. nmonitorRobot)

sel f.ny_server.register_function(sel f.giveTask)

sel f.ny_server.register_function(sel f.getPossi bl eTasks)
sel f.ny_server.register_function(sel f.sendCode)

sel f.ny_server.register_function(sel f.checkDone)

sel f.ny_server.register_function(self.stopRobot)

def get Event Handl er (sel f, event_handl er):
'’ " Gets apointer to the event handler
sel f. event Handl er = event_handl er
def serve(self):
17 Startsthe server
sel f.ny_server.serve_forever()
#
def testConnection(self):
"7 User tests its connection
return True
def get Robot Li st (self):
"7’ Returns alist with tags of all known robots.
return sel f.eventHandl er. get Robot Li st ()
def nonitorRobot(self, tag):
'’ Returns arobots monitor data
return sel f.event Handl er. get Moni t or Dat a(t ag)
def giveTask(self, tag, task, wait=None):

"' Givesanew task to arobot.

if wait:

# do not interrupt robot

return sel f.eventHandl er. gi veRobot Task(t ag,
el se:

task, True)

# interrup robot in its current task

'’ Sends afileto arobot.
if code:

# the file is code to execute
return sel f.eventHandl er. gi veRobot Code(t ag,

e:
# the file is a module

def checkDone(sel f):
""" Checksthe queueif arobot is finished with a

task execution.
try:
result = sel f.doneQ get (Fal se)
return result
except:

return Fal se

st opRobot (sel f, tag):
"7 " Returns when requested robot has stopped

return sel f.event Handl er. st opRobot (t ag)

# From eventhandler
#

def robot Done(self, tag, task, nsg):
" " A robot is done with atask execution. Puts

information about in the queue

sel f.doneQ put ( (tag,
return True

task, nsg) )

return sel f.event Handl er. gi veRobot Modul e(t ag,
bi nary_obj)

return sel f.event Handl er. gi veRobot Task(tag, task)
def get Possi bl eTasks(sel f, tag):
"’ Returns arobots possible tasks.
return sel f.event Handl er. get Possi bl eTasks(t ag)
def sendCode(self, tag, codefilename, binary_obj, code=None):

codefi | enane,

bi nary_obj)

codefi |l enane,
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B T
# def newMap(sel f, tag):
# The robot’s interface to the infrastructure. '’ Requests a new map piece.
# Itis run as a XML RPC server, and uses a xmirpclib client to T
# call the infrastructure. return sel f.infrastructure. newMap(tag)
#
# Written by Marte K Skasdem, 2005/2006
# def streanFile(self, tag, filedirectory, filenane):
B R R T R R ' ' Streams afile to the infrastructure.
inport time, os print 'streamFile():’ + filedirectory+filenane
f = open(filedirectory + filenanme, 'r)
fromxmrpclib inport ServerProxy, Binary stream = f.read()
from Si npl eXMLRPCSer ver inport Sinpl eXM.RPCServer f.close()
bi nary_obj = Bi nary(streamn
class RobotlInfrastructurelntf: return self.infrastructure.storeFile(tag, binary_obj, filenange)
def __init_ (self, ny_robot, infrastruct_addr, infrastruct_port, my_port):
sel f.ny_robot = ny_robot # pointer to robot class
def done(self, tag, task, nsg):
# set up a client to the infrastructure server '’ Reports that atask is done and how it went.
self.infrastructure = ServerProxy(’ http://’ + infrastruct_addr + \ Y
" 4+ str(infrastruct_port)) return self.infrastructure.taskDone(tag, task, nsg)
# set up robot’s server
sel f.ny_server = Sinpl eXM.RPCServer( (my_robot.addr, my_port) ) def disconnect(self, tag):
'’ " Reports that robot leaves the area
# register server functions Y
sel f.ny_server.regi ster_function(sel f.gi veRobot Task) sel f.infrastructure.robot D sconnect (tag)
sel f.ny_server.register_function(self.runCode)
sel f.ny_server.register_function(self.inportMdule) #
sel f.ny_server.register_function(sel f.getMnitorData) # FUNCTIONS CALLED BY INFRASTRUCTURE
sel f.ny_server.register_function(sel f.uppdat eMap) #
sel f.ny_server.register_function(self.stop) def gi veRobot Task(sel f, task):
" Interrupts the robot in its current tasks and
givesit anew.
def serve(self):
T Starts server. sel f.interrup()
Y return sel f.ny_robot. execut eTask(t ask)
sel f.ny_server.serve_forever()
def runCode(sel f, codefil enane, code):
# ' Stores the file containing code to execute. Interrupts
# FUNCTIONS CALLED BY ROBOT the robot in its current task execution and starts the
# code execution.
def call Wl come(sel f, addr): T
'’ Returns information about the map of the robot. outFil e = open(codefil ename, "w")
outFile.wite(code. data)
return self.infrastructure. wel cone(addr) outFile.close()
self.interrup()
def taskOptions(self, tag, possible_tasks):
'’ 7 Sends astring containing a description of return sel f.ny_robot.runCode(codefil enane)
possible tasks the robot can execute.
return self.infrastructure.taskOptions(tag, possible_tasks) def inportMdul e(sel f, nodul enane, code):
' 7 Stores the file containing the module to be imported.
def request NewTask(self, tag): out Fil e = open(nodul enane, "w")
"'’ Requests anew task from the infrastructure. outFile. wite(code.data)
out File.close()
return self.infrastructure.request NewTask(tag)
nmodul enane = nmodul enane. split(’'.)[0]
def reportPosition(self, tag, pos, direction): return sel f.ny_robot.inportMdul e( modul enane)
'’ Reports anew position.
return self.infrastructure.reportPosition(tag, pos, direction) def get MonitorData(self):
""" Returnsinformation that can be shown in monitoring of
Saturday May 13, 2006 robotinfrastructintf.py 8/10
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the robot.

return sel f.ny_robot. get MonitorData()

uppdat eMap(sel f, |ist_of_objects):

'’ Uppdates the map according to new list of objects.

return sel f.ny_robot. uppdateMap(list_of_objects)
stop(self):

' " Stops robot movement.

sel f.ny_robot. stop()
return True

#
# LOCALE FUNCTIONS

#

def

interrup(self):
"' " Interrupts the robot in its current task execution.

Returns when robot is ready for new task execution.

print ’ Gotinterruption signa’

sel f.ny_robot.interrupt = True

whil e not self.ny_robot.stopped:
tine.sleep(1)

return True
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HHI TR R R R R R R R R R
#

# Robot object class.

#

# Witten by Marte K Skasdem 2005/2006
#

cl ass Robot Obj :
def __init_ (self, tag, ipaddr):
""" Thisistherobot object. Here all information
about arobot should be saved.
tag = the robot s uniqueid

self.tag = tag

sel f.ipaddr = i paddr

sel f.pos = (0,0)

sel f.status = ' Connected’
sel f.task = Fal se

sel f.done_tasks = []

sel f. possible_tasks ="’

def nakeMonitorData(self):
'’ Returns astring containig the current situation of the
robot.
txt_done_tasks = '\n’
for task in sel f.done_tasks:
txt _done_tasks = txt_done_tasks + str(task) + '\n’
data - ’************************************************\n’ +\
' Tag: t + str(self.tag) + '\n" +\
" Last known position:\t' + str(sel f.pos) + '\n'" +\
' Status: \t' + str(self.status) + '\n° +\
"Currenttask: \t' + str(self.task) + "\n" +\
" Done tasks: \t' + txt_done_tasks +\
' Possibletasks\n’ + sel f. possible_tasks + \n" +\

P RA KA A KK KKK KKK KA KKK KKK KKK K KA KA I KA KE A KA KKK KKK XA\

return data
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BT R
# def initServer(self):
# The map service. 7" Initializes server and registers server functions.
# It runs a XML RPC server that the controller uses to get data Y
# form the map. It also starts off a visuaization thread that addr = ' 129.242.19.46' # addr to computer where map
# makes graphical output of the map, and handles moouse events reported # service has been tested
# by thhis visualization thread. port = 8091
#
# Written by Marte Karidatter Skadsem, 2005/2006 sel f.ny_server = Sinpl eXM.RPCServer( (addr, port) )
#
sel f.ny_server.register_function(sel f. makeMap)
sel f.ny_server.register_function(sel f.get MapPi ece)
import Queue, threading, os, tinme sel f.ny_server.register_function(sel f.nmveRobot)
sel f.ny_server.register_function(self.mrkNewObj ect)
fromxmrpclib inport ServerProxy sel f.ny_server.register_function(sel f.noContact Robot)
from Si npl eXMLRPCSer ver inport Sinpl eXM.RPCServer
fromvisualize inport Visualize def serve(self):
fromobjects inport Draw ng ' Starts server
from storeHouse inport StoreHouse Y
sel f.ny_server. serve_forever ()
cl ass MapServi ce:
def __init__(self):
sel f.robots = {} # all robots, key=tag, value=drawing object #
self.controller = Fal se # pointer to controller server # Main functions
self.list_of _objects =[] #list of known objects #
sel f.ready = Fal se # set when ready to handle data from controller def handl eMobuseEvent s(sel f):
sel f.connected = Fal se # set when controller is connected ' " Handles mouse events from visualization thread. Calls
controller to perform actions.
def nmain(self): path = Fal se
# init server and start server thread whil e True:
sel f.initServer() data = self.inQget()
server_thread = threadi ng. Thread(target=sel f.serve) # mouseclick occured
server _t hread. set Daenon( Tr ue) if self.robots. has_key(data):
server _thread. start() # user clicked a robot
tag = data
# wait for connection from task manager try:
print ' Waiting to be connected....’ # check if double click or task giving
whil e not self.connected: data = self.inQget(True, 1.5)
tine.sleep(2) if data == tag:
# get monitor data of robot
if self.robots[tag].status == ' Connected’ :
# initialize the visualizating module sel f. show\bni t or Dat a(t ag)
sel f.out Q = Queue. Queue() # queue for messages to the el se:
# visualization thread # make path
sel f.display = Visualize(self.outQ self.store) path =[]
self.inQ = self.display.outQ # queue for messages from the while True:
# visualization thread pat h. append( dat a)
data = self.inQget(True, 1)
except:
# start visualization thread # no new mous event, task giving finished
sel f.viso_thread = threadi ng. Thread(target=sel f.display.runVisualize) if path:
sel f.viso_thread. set Daenon( Tr ue) if len(path) ==
self.viso_thread. start() # only one position given => goTo-task
task = (' goTo', path[O0])
# start handling mouse events from user se:
nmouse_t hread = threadi ng. Thread(target=sel f. handl eMbuseEvents) # folloPath—task
nmouse_t hr ead. set Daenon( Tr ue) task = (' followPath’ , path)
nouse_t hread. start ()
if self.robots[tag].status == " Connected’ :
sel f.startpos = 10 # give task
sel f.control |l er. newRobot Task(tag, task)
# ready to take events from controller path = Fal se
sel f.ready = True
elif self.list_of_objects. has_key(data):
while True: # user clicked a discovered object
tine. sl eep(5) if self.list_of_objects[data]. novie:
# show information of object
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print self.list_of_objects[data].novie def noveRobot (self, tag, pos, direction):
#cmd = 'DISPLAY=:0 screen —d -m mplayer ' +\ '’ Finds the right robot to be moved and returns it
#  selflist_of_objects[tag].video with the new position.
#0s.system(cmd) Y
# wait until ready
whil e not self.ready:
def showhbnitorData(self, tag): time. sl eep(l)

'’ Stores received monitor data in a .txt file and show it
in an oen window. robot = sel f.robots[tag]

data = self.controller.getMnitorData(tag) #robot.pos = self.positioning.getPosition(tag)

filename = 'monitor +str(tag)+ .txt' robot . pos = pos

f=open(filenane,’ w) robot.direction = direction

f.wite(data) robot . get | mage()

f.close

0s. syst en(’ xmessage —file +fi | ename+ &) # draw changes

nmsg = 'moveé, robot
sel f.out Q put (nsg)
#
# Server functions return robot. pos
#
def nakeMap(sel f, contr_addr, contr_port, data):

' Initiates a client to the controller and makes the map def mar kNewObj ect (sel f, pos, tag, novie):
based on the parameters '’ Appends new unldentlfyed object to list_of_objects.
Y Puts object in the queue to be drawn.

self.controller = ServerPr oxy( http /I + contr_addr + \ Y

'+ str(contr_port)) # wait until ready

sel f.store = StoreHouse(data) whil e not self.ready:

self.list_of _objects = self.store.list_of_objects tine.sleep(1)

sel f.connected = True

return True # aquire store house’s lock to edit data stored

whil e self.store. | ock:
time. sl eep(0.5)
def get MapPi ece(sel f, tag): sel f.store.lock = True

"7’ Finds map information to a robot and puts robot in the
queue to be drawn. #store new object
mark = sel f.store. newObj ect (pos, tag, novie)

# wait until ready

whil e not self.ready: # release lock

tine.sleep(l1) sel f.store.lock = Fal se

# get position from a non existing position system # put object on queue to be drawn

pos = (self.startpos, 10) msg = 'newObj, self.list_of_objects[mark]

sel f.startpos = self.startpos + 50 sel f. out Q put (nsg)

# aquire store house’s lock to edit data stored return True

while self.store. | ock:

tine.sleep(0.5)

sel f.store.lock = True def noCont act Robot (sel f, tag):

'’ Lost conntact with a robot. Uppdates the status.

# make map piece T

map_pi ece, map_size, rob_pos, data = self.store. nakeMapPi ece(tag, pos) # wait until ready

whil e not self.ready:
# release store house’s lock tine.sleep(l)
self.store.lock = Fal se
sel f.robots[tag].status = ’lost
if not self.robots. has_key(tag):
# make new drawing object if robot is new # show changes in graphical output
sel f.robots[tag] = Draw ng(tag, rob_pos, map_piece, nmp_size) msg = 'lost, self.robots[tag]
el se: sel f. out Q put (nsg)
sel f.robots[tag].status = ' Connected
return True

# put the drawing object on queue to be drawn

nsg = 'newObj, self.robots[tag]

sel f. out Q put (nsg)

if __pane__ =="'_ main_":
return nap_pi ece, map_size, rob_pos, data exsrv = MapSerw ce()
exSrv. mai n()
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B T i s stored in self.display_factor.
#
# The store house. disp_x, disp_y = disp_pos
# Makes and maintains the map. real_x = disp_x / self.display_factor
# real_y = disp_y / self.display_factor
# Written by Marte Karidatter Skadsem, 2005/2006 return (real_x, real_y)
#
HE S R T R
def newObject(self, pos, tag, movie):
f r omobjects i mpor t UnidfObj self.mark += 1
self.list_of_objects[self.mark] = UnidfObj(self.mark,
cl ass StoreHouse: pos,
def __init_ (self, data): tag,
X, Y, factor, map_piece_size, known_obj = data movie)
ret ur n self.mark
# the mapping factor
self.display_factor = factor
def makeMapPiece(self, tag, pos):
# size of robot maps " Finds the map mpiece to be given to arobot. The maximum
self. map_piece_size = map_piece_size size of the piece is determined by self.map_piece size. The
piece is made so that the robot is placed in the midle.
# list of all known objects The only information given back to the robot is how big the
self.known_obj = known_obj map is, where it is placed, known objects inside the map
piece and if it shares som aera of the map piece with another
# size of the display robot.
self.disp_size_x, self.disp_size_y = self.findDisplayPositions((x,y))
i f self.map_piece_size == len(self.map):
# make the map # size of map piece equals map size
self.map = self.initMap(x, y) map_piece = (0, 0)
for o in self.known_obj: map_size = (self. map_piece_size, self.map_piece_size)
0._X,0y=0 rob_pos = pos
self.map[o_y][o_x] ="’ w data = self.known_obj, []
# some global variables el se:
self.mark =0 # unique number for new objects robx, roby = pos
self.list_of objects = {} # all found object key=id, value=unidf obj
self.pieces = {} # key=robot id, value=map_piece # find the start and end x-values for the piece
self.lock = False # to prevent several threads from startx, endx = self.findvalue( len(self.mapl[0]),
# accessing the same datastructure robx — (self.map_piece_size/2) )
# map’s length
lenx = endx — startx
def initMap(self, x, y):
Makes the map # find the start and end y—values for the piece
starty, endy = self.findvalue( len(self.map),
new_map = roby — (self.map_piece_size/2) )
for i inrange(y): # map’s height
new_map.append([]) leny = endy — starty
for j inrange(x):
new_mapli].append(”) # find known objects in map piece
obj =]
return new_map for o in self.known_obj:
0X, 0y =0
i f ox >= startx and ox <= endx:
def findDisplayPositions(self, real_pos): i f oy >= starty and oy <= endy:
Take aposition from the real world and find local_ox = ox — startx
the corresponding display position. local_oy = oy — starty
The map is not always drawn 1:1. The relationship obj.append(local_ox, local_oy)
is stored in self.display_factor.
# check if mp piece overlaps with ither pieces
real_x, real_y = real_pos overlap = self.checkMapPiece(tag, startx, starty)
disp_x = real_x * self.display_factor self.pieces[tag] = (startx, starty)
disp_y = real_y * self.display_factor
ret urn (disp_x, disp_y) map_piece = (startx, starty)
map_size = (lenx, leny)
rob_pos = (robx, roby)
def findRealPositions(self, disp_pos): data = obj, overlap
" Take adisplay position and find the corresponding
real world position. r et ur n map_piece, map_size, rob_pos, data
The disp is not allways drawn 1:1. The relationship
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robendx = robstartx + self.map_piece_size - 1
def findvalue(self, length, start): robendy = robstarty + self.map_piece_size - 1
Find a valid value for start— and end-
coordinates. overlap =]
i f corner==" ul’:
end = start + self.map_piece_size - 1 for i inrange(startx, robendx+1):
i f start<O0: start=0 for j i n range(starty, robendy+1):
i f end >=length: end = length — 1 self.map[j][i] = s
r et ur n (start, end) localx =i — startx
localy = j — starty
overlap. append((localx localy))
def checkMapPiece(self, id, startx, starty): el i f corner == dl’:
Check if there are other robots sharing some for i inrange(startx, robendx+1):
parts of the map piece. for j inrange(robstarty, endy+1):
self.map[j][i] =’
overlap =[] localx =i — startx
endx = startx + self.map_piece_size — 1 localy = j — starty
endy = starty + self.map_piece_size - 1 overlap. append((localx localy))
el if corner==
for tag in self.pieces: fori in range(robstartx endx+1):
if not tag==id: for j inrange(starty, robendy+1):
robstartx, robstarty = self.pieces[tag] self.map[j][i] ="’ s
robendx = robstartx + self.map_piece_size - 1 localx =i — startx
robendy = robstarty + self.map_piece_size — 1 localy = j - starty
overlap.append((localx, localy))
i f startx >= robstartx and startx <= robendx: el se:
# the left corner is inside another robot's map piece #corner =="dr".
i f starty >= robstarty and starty <= robendy: for i inrange(robstartx, endx+1):
# up-left corner for j i n range(robstarty, endy+1):
overlap.append(self.findintersection(’ ul’, self.map[j][i] =
startx, localx =i — startx
starty, localy = j — starty
robstartx, overlap.append((localx, localy))
robstarty) ret urn overlap
el i f endy >= robstarty and endy <= robendy:
# down-left corner
overlap.append(self.findintersection(’ dr,
startx,
starty,
robstartx,
robstarty)
el 1 f endx >= robstartx and endx <= robendx:
# the right corner is inside another robot's map piece
i f starty >= robstarty and starty <= robendy:
# up-right corner
overlap.append(self.findintersection(’ ur,
startx,
starty,
robstartx,
robstarty)
el i f endy >= robstarty and endy <= robendy:
# down-right corner
overlap.append(self.findintersection(’ dr,
startx,
starty,
robstartx,
robstarty)
ret ur n overlap
def findintersection(self, corner, startx, starty, robstartx, robstarty):
" Find the exact coordinates of shared aeras in the map piece
endx = startx + self.map_piece_size - 1
endy = starty + self.map_piece_size - 1
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B T
#
# Th evisualizatioon module def runVisualize(self):
# This class takes care of all the pygame-stuff and produces 7’ The main function.
# a graphical output. Starts a thread for checking whether to kill
# the display window, and gets events from the in—queue.
# Written by Marte K Skadsem, autum 2005 Y
# nmouse_t hread = threading. Thread(target=sel f.captureEvents)
B R R T R R nouse_t hr ead. set Daenmon( Tr ue)
nmouse_t hread. start ()
i nport pygane
from pygane. | ocals inport * whil e not self.stop:
import threadi ng, Queue, tine task, obj = self.inQget()
if task == 'newOb] :
class Visualize: sel f. newO)J ect(obj )
def __init__(self, inQ storeHouse): elif task == 'mové
self.inQ = inQ # queue to get uppdates from map server sel f. rmveOOJ ect(obj )
sel f.out Q = Queue. Queue() # queue to put messages to mapserver elif task == ’los
sel f. | ost Cont act (obj)
sel f.store = storeHouse # where the map is stored el se:
print ' Unkknown task
# aquire store house’s lock to edit stored data
while self.store. | ock: print 'QUITY
tine.sleep(0.3)
self.store.lock = True
def newObj ect(self, obj):
# get size odf displayed map '’ Puts a new object in map_objects
x = self.store.disp_size_x type(obj) = Drawing object
y = self.store.disp_size_y Y
sel f. map_obj ects[obj.id] = obj.rect
sel f.stop = Fal se # decides when thread stops
sel f. novehj ect (obj)
# initialize PyGame
pygane.init()
pygane. di spl ay. set _capti on(’ Where is the robot?) def noveObject(self, obj):
'’ Moves the given robot to the new position.
# adds the size of the robot image and the size of the T
# display so that robots will not be drawn outside display sel f.screen.blit(sel f.background, obj.rect, obj.rect)
sel f.robot _i mage = pygane. i mage. | oad("../pygamelmg/N.prit)
rob _imy_width, rob_ing_height = self. r obot _i mage. get _si ze() for tag, drawn_rect in self.nmap_objects.iteritens():
:x+rob|rrg_wdth if not tag == obj.id:
y =y + rob_ing_hei ght if drawn_rect.topleft == obj.rect.topleft:
i mage = sel f.store. ||st of _obj ects[tag].imge
# create the display surface sel f.screen. blit(image, drawn_rect)
sel f.screen = pygane. di spl ay. set _node( (Xx,y) )
sel f.screen. fill ((255, 255, 255)) if obj.status == ’lost :
obj.status = ' ok
# makes a white background, blits on the screen, and shows the updates
sel f . background = pygane. Surface((x,Y)) obj.rect = obj.image.get_rect()
sel f. background. fill ((255, 255, 255))
while self.store. | ock:
#fill in walls tine.sleep(0.3)
for x,y in self.store.list_of_objects: sel f.store.lock = True
for i in range(self. store. display_factor): obj.rect.topleft = self.store.findD splayPositions(obj.pos)
for j in range(self.store.display factor): self.store.lock = Fal se
background. set _at ((x+i,y+j), (0,0,0))
sel f. drawObj ect (obj)
# release store lock sel f. map_obj ects[obj.id] = obj.rect
self.store.lock = Fal se
sel f.screen. blit(sel f.background, (0,0)) def drawObject(self, obj):
pygane. di spl ay. updat e() '’ ' Draws the given robot on the display screen.
# displayed objects key=tag/id value=rect sel f.screen.blit(obj.inmage, obj.rect)
sel f. map_objects = {} pygane. di spl ay. updat e()
# size of mouse
sel f. nouse = pygane. Rect(0, 0, 5, 5) def |ostContact(self, obj):
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"' Lost conntact with a robot. Uppdates display
accordingly.

rect = obj.rect
sel f.screen.blit(sel f.background, rect, rect)

noCont act _i mage = pygane. i mage. | oad("../pygamelmg/NoConntact.phy
new_rect = noContact_i nage. get_rect()

new rect.topleft = rect.topleft

sel f.screen. blit(noContact_i mage, new_rect)

pygane. di spl ay. updat e()

obj.rect = new_rect
obj .status = ' lost
sel f. map_obj ects[obj.id] = obj.rect

def captureEvents(self):

' '’ The quit-thread. If a certant event occur, it
kills the display window and set a global stop—
variable so that the whole visualization thread
stops. It also registers mouse events.

whil e not self.stop:
for event in pygane.event.get():

if event.type == QUIT:
sel f.stop = True

elif event.type == KEYDOMWN and event. key == K_ESCAPE:
sel f.stop = True

elif event.type == MOUSEBUTTONDOMN:
sel f. sel ect Rect ()

pygane. quit ()

def sel ectRect(self):
' If the mouse clicked on a robot or an object,
send the tag, else send teh position of the mouse.

nouse_pos = pygane. nouse. get _pos()
sel f. nouse. topl eft = (npuse_pos)

for tag, rect in self.map_objects.iteritens():
if self.nouse.colliderect(rect):
sel f.out Q put(tag)
return

whil e self.store. | ock:
tine.sleep(0.3)
self.store.lock = True
real _pos = self.store.findReal Positions(nouse_pos)
self.store.lock = Fal se

sel f. out Q put (real _pos)
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#
# Classes for storing data relevant for the graphical output.

#
# Witten by Marte Karidatter Skadsem 2005/2006
#

i mport pygane
from pygane. |l ocals inport *

class Uni df Qoj :

' ' " Class for storing drawing inforamtion about a discovered object.

def __init__(self, nark, pos, tag, novie):
self.id = mark
sel f.pos = pos
self.finder = tag
self.novie = novie
sel f.inmage = pygane.image. | oad(" /pygamelmg/mdfObj png")
sel f.rect = self.inage.get rect() nove( pos
sel f.video = Fal se
self.status = ' new'

cl ass Draw ng:
' Class for storing drawing information about a robot.

def init_ (self, tag, pos, nap_piece, nmap_size):
self.id = tag
sel f.pos = pos
sel f.status = ' Connected’

sel f. map_pi ece = map_pi ece
sel f. map_si ze = nap_si ze
self.direction = 'N

sel f.inmage = pygane. i mage. | oad("../pygamelmg/N.png" )

#surface.get _rect() returns a rect covering the entire surface
#rect.nove() returns a new rect that is noved by the given offset
# => type(di s_pos)=rect

self.rect = self.inage.get_rect().nove(pos)

def getlnage(self):
"’ " Asthe robot moves it changes directions. The image of the
robot changes accordingly to reflect this changes.

if self.direction == "N':

sel f.inmage = pygane. i mage. | oad(" ../pygamelmg/N.png" )
elif self.direction == "E':

sel f.inmage = pygane i mege. | oad(" ../pygamelmg/E.png" )
elif self.direction == 'S :

sel f.inmage = pygarre i mage. | oad("../pygamelmg/S.png")
el se:

# W

sel f.inmage = pygane. i mage. | oad("../pygamelmg/W.png")
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B
#

# The robot.

#

# Written by Marte K Skadsem, 2005/2006

#

#
B

# python modules
inport sys, os, threading, tine
fromxmrpclib inport ServerProxy

# own written modules

i nport commmon

fromrobot ERi ntf inport RobotERInNtf
from robot Mappi ng i nport Robot Mappi ng
from navigation inport Navigation

cl ass Robot :
def __init__(self, connected):
# connect to robot control center (RCC)
if connected:
self.erl = Robot ERI ntf (' localhost,
el se: self.erl = Fal se

9000)

sel f.addr = common. ROBOT_ADDR # robot’s ipaddress
self.tag = 0 # robot’s tag/id
sel f.ny_pos = (0,0) # robot's pos

# start navigation module
sel f.driving_control = Navigation(self.erl)

# some global variables used to stop running threads
self.interrupt = Fal se
sel f.stopped = True

# list of modules imported during runtime
sel f. new_nmodul es = {}

#infrastructure interface
self.infra_intf = Fal se

def main(self):

' "' Downloads interface from infrastructure, registers at
the infrastructure, gets map information and makes a map,
starts the server, registers pre—-defined tasks, and ends
in a while loop polling the infrastructure for new tasks.

# 1) init phase
sel f.initphase()

# 2) call welcome to get map and stuff
reply = self.infra_intf.call Wl conme(self.addr)

tag, rest = reply[0], reply[1]
map_pi ece = rest[0][0], rest[0][1]
map_size = rest[1][0], rest[1][1]
rob_pos = rest[2][0], rest[2][1]
data= rest[3][0], rest[3][1]

self.tag = tag
sel f.ny_pos = rob_pos

# 3) make map

sel f. map = Robot Mappi ng(map_pi ece, map_si ze, data)
# 4) set up server thread
sel f.server_thread = threading. Thread(target=self.infra_intf.serve)

sel f.server_t hread. set Daenon( Tr ue)

sel f.server_thread.start()

# 5) send a list of all possible tasks that tm can call
sel f. sendTaskOpti ons()

# 6) main loop
print ' Going in while loop
whil e True:
if self.stopped:
if not self.interrupt:
task = self.infra_intf.request NewTask(self.tag)
if task:
sel f.task = task
print ' Received task from requést
sel f. doTask()
tine. sl eep(5)

def initphase(self):

'’ ' Connects to the infrastructure and downloads a file
containing the interface to use in communication with it.
The file is a python module. This is dynamically imported,
and the interface is initiated.

infrastru_addr = conmon. | NFRASTRU_ADDR
infrastru_port = comon. | NFRASTRU_PORT

infrastructure = ServerProxy( http// + infrastru_addr + \
+ str(infrastru_port))

filename, obj = infrastructure.initphase()

new file = open(filenane, 'w)

new file.wite(obj.data)

new file.close()

nodul e_name = filename.split(’'.)[0]
infra_intf = __inport__(nmodul e_nane)

self.infra_intf = infra_intf.Robotlnfrastructurelntf(self,
infrastru addr,
infrastru_port,

conmon. SERVE_PORT)

def sendTaskOptions(self):
'’ Sends a descriotion of all predefined tasks to
infrastructure.

possi bl e_tasks = "goTo( (x,y) - go to point (x,y)\n +\
foIIowPath( path ) - pathis a list of\n+\

at least one point 6f\rr\

the type (X,y)\n+\
examlneArea( (x,y) ) — go to (x,y) and take\r-\

a video of the aréa\n

self.infra_intf.taskOptions(self.tag, possible_tasks)

#
# SERVER FUNCTIONS (called by infrastructure)
#

def executeTask(self, task):
' ' Starts a task thread. When this is called, we know that
the robot is idle because the infrastructure stoped it first.

print ' Gota task from user.
sel f.task = task
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self.interrupt = Fal se
self.driving_control.interrupt = Fal se print "Got STOP ordér
task_thread = threadi ng. Thread(target=sel f.doTask) if self.erl: self.erl.stop()
task_t hread. set Daenon( Tr ue) sel f.stopped = True
task_thread. start ()
self.interrupt = True
return True sel f.driving_control.interrupt = True
return True
def runCode(sel f, nodul e_nane):
'’ Imports and starts execution of given code in a thread.

The file is stored by the interface. Returns when a #

"ready"-flag is raised. # TASK EXECUTION FUNCTIONS

v #
print ' Preapare code execution def doTask(self):

'’ Executes the new task and starts the task-kill thread.
nodul e_nane = nodul e_nane.split(’.)[0] Cleans up after execution.
# import module print 'Executetask + str(self.task)
sel f. i nport Modul e( nodul e_nane)
sel f.stopped = Fal se
nmodul e = sel f. new_nodul es[ nodul e_nane]
# start taskkill thread
ready = [] # the ready-flag taskki |l _thread = threading. Thread(target=self.taskKill)
code_t hread = threadi ng. Thread(target=nodule.init,args=(self, ready)) taskki |l _thread. set Daenon( Tr ue)
code_t hr ead. set Daenon( Tr ue) taskkill_thread.start()
code_t hread. start()
# check what task to do
# wait until flag is raised if self.task[0] == "goTd":
while len(ready) == msg = self.goTo( (self.task[1][0],self.task[1][1]) )
tine.sleep(0.5) elif self.task[0] == "followPatH :
nsg = sel f.followPath(self.task[1])
return True elif self.task[0] == "examineArea:
msg = sel f.exanm neArea( (self.task[1][0],self.task[1][1]) )
el se:

def inportMdul e(sel f, nodul e_nane): nsg = "do not support this task
7 Imports a new module. It is stored in a dictionary

where key = module name and value = module, so that it # report that task is done

can be accessed afterwards. if not self.interrupt:

Y self.infra_intf.done(self.tag, self.task, nsg)
print "import module? + nodul e_nane self.interrupt = True  # setin order to stop taskkill thread
nmod = __inport__(nodul e_nane) # wait until thread is stopped
sel f. new_nmodul es[ nodul e_nane] = nod taskkill_thread.join()
return True # make ready for new task

self.interrupt = Fal se
self.driving_control.interrupt = Fal se

def get MonitorData(self): sel f.stopped = True
7’ Returns information that can be shown in monitoring of

the robot.

def taskKill (self):
data = "The goal is that this would be a stream of sensor"data, "' " The task—kill thread. Checks for interrupt signal. When

" i.e. video stream. Have not thought on how to do it. received, stops task execution at the driving control.
return data
while not self.interrupt:
tine.sleep(0.3)

def uppdateMap(sel f, 1ist_of_objects):

"7 Gets a list of new objects and obstacles discovered in self.driving_control.interrupt = True

the work space. Uppdates map accordingly.
sel f. map. uppdat eMap(li st_of _obj ects) #
return True def goTo(self, point):

"7’ The goTo-task. Goes to the point given.
def stop(self): print 'Goingto’ + str(point)
'’ Stops the movement of the robot and interrupts task
execution. # report position
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direction = self.driving_control.direction # follow path
self.my_pos = self.infra_intf.reportPosition(self.tag, msg = self.driving_control.followPath(part)
self.my_pos,
direction) direction = self.driving_control.direction
self.my_pos = self.my_pos[0], self.my_pos[1] if msg==" doné:
# all went well, report new position
# find a path between current position and goal self.my_pos = self.infra_intf.reportPosition(self.tag,
path = self.map.findPath(self.my_pos, point) path[i+1],
direction)
if not path: self.my_pos = self.my_| pos[O] self.my_pos[1]
return’ doné elif type(msg) == tuple :
i f path==" unwalkable # got interrupted, report current point
return’ Cannot go there. Path is unwalkable. self.my_pos = self.infra_intf. reportP05|t|on(seIf.tag,
elif path==" nopath: msg,
return’ No path exists betweénr str(self.my_pos) +\ direction)
! and’ + str(point) +°’ . Cannot go there. self.my_pos = self.my_pos|[0], self.my_pos[1]
returnmsg
# follow path elif not msg==" done:
msg = self.driving_control.followPath(path) return msg
direction = self.driving_control.direction # finished. report position
if msg==" doné: direction = self.driving_control.direction
# all went well, report position, which is at goal point self.my_pos = self.infra_intf.reportPosition(self.tag,
self.my_pos = self.infra_intf.reportPosition(self.tag, path[len(path)-1],
point, direction)
direction) self.my_pos = self.my_pos|[0], self.my_pos[1]
self.my_pos = self. my_| pos[O] self.my_pos[1]
el i f type(msg) == tuple : return msg
# got interrupted, report current point
self.my_pos = self.infra_intf. reportPosition(seIf.tag,
msg, def makePath(self, _path):
direction) " The xmlrpclib treats makes lists of tuple arguments. Need
self.my_pos = self.my_pos|[0], self.my_pos[1] to "translate" the list of lists, that the _path is, to a
list of tuples.
print ' Return messageé: str(msg)
returnmsg for i inrange(len(_path)):
_path[i] = (_path[I][O] _path[ij[1])
return _path
def followPath(self, _path):
The followPath-task. Follows a user given path.
def examineArea(self, point):
print ' Path to follow: + str(_path) The examineArea-task. Goes to one step before goal point.
Starts a process that takes pictures and makes a movie.
# report position Concurrently with this process, moves the last part of the
direction = self.driving_control.direction path and turns 360 degrees. Sends the movie to the
self.my_pos = self.infra_intf.reportPosition(self.tag, infrastructure.
self.my_pos,
direction) print ' Examine ared:+ str(point)
self.my_pos = self.my_pos|[0], self.my_pos[1]
# report position
# translates path into a list of tuples direction = self.driving_control.direction
_path = self. makePath(_path) self.my_pos = self.infra_intf.reportPosition(self.tag,
self.my_pos,
path = [self.my_pos] direction)
path.extend(_path) self.my_pos = self.my_pos[0], self.my_pos[1]
for i 1nrange(len(path)—1):
# for each step in path # find path
i f self.interrupt: return path = self.map.findPath(self.my_pos, point)
# finds path between current step and next step in path i f path==" unwalkablé
part = self. map.findPath(path[i], path[i+1]) return’ Cannot go there. Path is unwalkable.
elif path==" nopath:
if part: return’ No path exists betweén str(self.my_pos) +\
if part==" unwalkablé& and’ + str(point) +’ . Cannot go therke.
return’ Cannot go there. Path is unwalkable.
elif part==" nopath: last_part = [path[len(path)-2],path.pop()]
return’ No path exists betweén str(path[i]) +\
’ and’ + str(path[i+1]) +°’ . Cannot go there. # follow path to one step before goal point
msg = self.driving_control.followPath(path)
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direction = self.driving_control.direction
if msg=="done"
# all went well, report new position

self.my_pos = self.infra_intf.reportPosition(self.tag,
path[len(path)-1],
direction)
self.my_pos = self. my_| pos[O] self.my_pos[1]
el 1 f type(msg) == tuple
# got interrupt ed report current point
self.my_pos = seIf.infra_intf.reportPosition(seIf.tag,

msg,
direction)
self.my_pos = self.my_pos[0], self.my_pos[1]
returnmsg
el se:
returnmsg
i f self.interrupt: return

# thread in which the robot drives the last part of the path
video_thread = threading.Thread(target=self.driving_control.driveNturn,
args=(last_part,))
video_thread.setDaemon(True)
video_thread.start()

# start taking pictures

print ' Start picture taking process
imageid = str(point[0]) +° _'+ str(point[1]) +’ _
os.system(" python "+common.PATH+" video.py "+imageid)

i f self.interrupt: return

# join the two threads
video_thread.join()

# report position
self.my_pos = last_part[1]
direction = self.driving_control.direction
self.my_pos = self.infra_intf.reportPosition(self.tag,
self.my_pos,
direction)
self.my_pos = self.my_pos|[0], self.my_pos[1]

# make novie and del ete pictures
print ' Makemovie
filename = self.camera.makeMovie(common.FFMPEG, common.INFILES_DIR,
|mage|d common.OUTFILE DIR)
os.system(’ del " + common.INFILES_DIR +’ *jpg’)

# streamnovie file to task manager
self.infra_intf.streamFile(self.tag, common.INFILES_DIR, imageid)
os.system(’ del’ + common.INFILES_DIR +’ *.jipg)

r et ur n imageid

if __name__ == __main__’
exSrv = Robot(True)

exSrv.main()
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#

# The communication with the ER1 (RCC’s command line inteface). #————— sense command #
# Sends commands to the robot using telnet. def senseOn(self, sensor):
# Turns on the specified sensror

# Written by Marte K Skadsem, spring 2005
# Modifyed by Marte K Skadsem, autumn 2005 self.connection.write(’ sense + sensor +’ \n’)
#

self.recAck(1,2)
HEHHHEH R T T o R R

i nport telnetlib def senseOff(self, sensor):
i nport sys Turns off the specified sensror
i mport time
self.connection.write(’ sense + sensor + ' off\n’)
cl ass RobotERIntf: self.recAck(1,2)

def __init__(self, host, port):
Establish the telnet connection

m

#m———— clear command #
self.host = host def clear(self):
self.port = port Throws away all events which have not yet been sent to user
print ' connecting to RCM
self.connection = telnetlib.Telnet(self.host, self.port) self.connection.write(’ clear\n)

self.recAck(1,2)
#check if connection is okay

self.connection.write(’ \n’)
self.recAck(1,2) #———— events command #
def eventsOn(self):
Turns on the events—command
#———— move commands #
def move(self, cmd): self.connection.write(’ events\)
" Moves the robot in specified direction self.recAck(1,2)
self.connection.write(’ move’' +cmd +’ \n’)
ack=1 def eventsOff(self):
self.recAck(ack,2) Turns off the events—command
self.connection.write(’ \n’)
def rotateToward(self, what, args): self.recAck(1,2)
The robot rotates toward what is specifyed (can
be object or color)
#m————— set command #
self.connection.write(’ move rotate towart+ \ def set(self, cmd):
what +’ '+args +’ \n") self.connection.write(’ set’ +cmd +’ \n")
self.recAck(1,2) self.recAck(1,2)
def driveToward(self, what, args): #-———read commands (NOT INCLUDED IN THE API) ————#
The robot drives toward what is specifyed (can def waitFor(self, cmd, timeout):
be object or color) " Reads the connection until cmd or timeout appears
self.connection.write(’ move drive toward + \ t_takenl = time.time()
what +’ '+args +’ \n’) reply = self.connection.read_until(cmd, timeout)
self.recAck(1,2) t_taken2 = time.time()
i f t taken2 - t_takenl >=timeout:
——————— play command # return’ timeout
def playPhrase(self, phrase):
Robots says the specified phrase return reply
self.connection.write(’ play phrase™+ phrase + ' "\n’)
self.recAck(1,2) def recAck(self, acks, time):
Receive specifyed number of acks
——————— stop command # whi | e not acks ==
def stop(self): acks =1
Stops any robot motion or soounds which are in progress ok = self. connectlon read_until(’ OoK\n\n', time)
if ok==":
self.connection.write(’ stop\nl) #dld hor receive an OK, try again
self.recAck(1,2) ok = self.connection.read_until(’ OK\n\n', time)
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if ok =="":
print ' robot: Did not receive an OK’
sel f. connecti on. cl ose()
sys. exit(0)
elif ok.__contains__ (' Error'):
#some error occured
print ' Errormessage:’ + str(ok.split(’\nn"))
sel f. connecti on. cl ose()
sys. exit(0)

def readConnection(self):
'’ ' Reads the connection.
Returns whatever was read.

reply = self.connection.read_until ('\n\n", 5)
# reply is a string
return reply
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#

# The map nodul e. Makes and maintains the robot’s nap and finds paths in it.

# Gets infornation about the map at start up. Uses the a searching

# algorithmto find paths. In this case, the A* algorithm

#

# Witten by Marte K Skadsem 2005/2006

#

SR R R R R R R R
i nport time

fromastar inport Astar

cl ass RobotMapping:
def __init__(self, map_piece, map_size, data):
Initializes the map. The parameters are:
map_piece = the top |eft coordinate in the map (inicates where
map piece starts)
map_size = size of map_piece
data = two lists. One with knownj object and one with overlaping
areas.
self.map_piece = map_piece
self.lenx, self.leny = map_size
self.known_obj, self.overlap = data

self.map = self.initMap(self.lenx, self.leny)

i f len(self.map[0]) > 100:
self.high_level_map = self.splitMap()
el se: self.high_level_map = False

self.search = Astar()

self.free = True # a lock to prevent nore than one
# thread access the nap

def initMap(self, x, y):
Makes the map and fillsit with information.

"

new_map = self. makeMap(x,y)

map_p_x, map_p_y = self.map_piece
for o i n self.known_obj:

0_X,0_y=0

new_map[o_y — map_p_y][o_x — map_p_x] ="’ w’
for o in self.overlap:

0_X,0_y=0

new_map[o_y — map_p_y][o_x — map_p_x] ="’ s

ret ur n new_map

def makeMap(self, x, y):
Makesamap

"

new_map =]

for i inrange(y):
new_map.append([])
or j inrange(x):

new_mapli].append(”)
ret urn new_map

def splitMap(self):
Makes a high level map out of the originally map.

Done to make searches over big areas faster.

high_level_map = self. makeMap(10, 10)
self.map_factor = len(self.map[0]) / 10

for o in self.known_obj:
0_X,0 y=0
high_level_map[o_y/self.map_factor][o_x/self.map_factor] =’ w

r et ur n high_level_map

def findPath(self, start, stop):
Finds a path between start and stop. If ahighlevel
map exists and the distance bewteen start and stop is big,
searches the hig level map first.

i f start == stop:
return False

whi | e not self.free:
time.sleep(0.5)

self.free = False
path = []

i f self.high_level_map and self.distance(start, stop) > 100:
# searchng high | evel

# enpty earlier searching data from map
self.search.emptyLists(self.map)

hi_start = start[0]/self.map_factor, start[1]/self.map_factor
hi_stop = stop[0]/self.map_factor, stop[1]/self.map_factor

path_hl = self.search.aStar(hl_start, hl_stop,
self.high_level_map, 1)

i f path_hl==" nopath’:
path_hl = self.search.findClosest(hl_start,
self.high_level map)

# translate into normal |evel coordinates
path_hl = self.resolvePath(path_hl)

# enpty earlier searching data from map
self.search.emptyLists(self.high_level_map)

i f not path_hl[0] == sta
path = self.search.aStar(start, path hi[1], self.map, 1)

path.pop()
path_hl.remove(path_hl[0])
path.extend(path_hl)
el se: path = path_hl
start = path[len(path)-1]

# enpty earlier searching data from map
self.search.emptyLists(self.map)

# search nornal |evel
part = self.search.aStar(start, stop, self.map, 1)

self.free = True
if not path ==

path.pop()
path.extend(part)
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el se: path = part

ret urn path

def distance(self, start, stop):
Roughly estimated distance bewteen start and stop
i f stop[0] > start[0]: dist = stop[0] — start[0]
el se: dist = start[0] — stop[0]

i f stop[1] > start[1]: dist2 = stop[1] — start[1]
el se: dist2 = start[1] - stop[1]

r et ur n max(dist, dist2)

def resolvePath(self, path):
Trandlates a path with high level coordinates to
a path with normal level coordinates.
_path=]
forstep inp
_path.append( (step[O]*seIf map_factor, step[1]*self.map_factor) )

return _path

def uppdateMap(self, list_of_objects):
Uppdates the map with new information.
whi | e not self.free:
time.sleep(0.5)

self.free = False

for o in self.known_obj:
0_X,0_y=0
new_map[map_p_y — o_y][map_p_x - o_x] ="

self.known_obj = list_of_objects
for o in self.known_obj:
0_X,0.y=0
new_map[map_p_y — o_yl[map_p_x—-o0_x] ="’ w

self.free = True
return True
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HHE A A
#

# The A* algorithm.
# The opened-list is implemented with a binary heap.
#

# Written by Marte K Skadsem, autum 2005

#
BT
i mport heapq

#
# Objects of the Node class is used
# in the heap.

#

cl ass Node:
def __init__(self, name, parent, g, h, t):
self.name = name
self.parent = parent

selfg=g #movement cost to get to this node from startpoint
selfh=h #estimated movement cost from this node to the endpoint
selff=g+h #score of the node

self.time =t #used to deside which node is newest

self.list=" operi  #the list this node belongs to

def __cmp__(self, y):

This function will override compare() when
two nodes are compared. We want the node that was
added last in the heap (the open list) to be on

top of the others with the same f-value

if selff<y.f:
return-1

if selff==y.f
return-1

returnl

and self.time > y.time:

def printinfo(self):
Used to print all the information of a node.

"

print self.name, self.parent, self.f, self.g, self. h

# The class tha implements the A*
# algorithm.
#

cl ass Astar:
def __init_ (self):
self.open_list =]
self.closed_list =[]
self.neighbours =[(1,0),(0,1),(-1,0),(0,-1)]

def aStar(self, start, stop, robo_map, map_factor):

The main function.

start — startpoint

end - endpoint

robo_map — memory reference to the map to be used
map_factor — denotes if we are woriking on low lwvwl map or
high level map

Returns path if found else nopath or unwalkable.

i f map_factor == 1:
i f not self.checkWakable(start, stop, robo_map):
return’ unwalkablé
g=10
time =0

current = Node(start,0,0,0,0)

_ whil e not current.name == stop:
time +=1
current_x, current_y = current.name

self.switchToClosedList(current,robo_map)

for n in self.neighbours:

#for all neighbours of current
n[0] + current_x
n[1] + current_y

n_x=
ny=
i f self.neighbourlnsideMap(n_x, n_y, robo_map):

#if neighbour is inside map:

i f robo_map[n_yl[n_x]._ class__ == Node:
i f robo_map[n_y][n_x].list =="
#check if shorter path
tmp = robo_map[n_y][n_x]
i f tmp.g > current.g + g:
#change parent to the neighbour
tmp.parent = current.name
#recalculate g anf f
tmp.g = current.g + g
tmp.f = tmp.g + tmp.h

el i f robo_map[n_y][n_x]==":
#add neighbour to open_list
h = self.findH( (n_x,n_y), stop) * g
new = Node((n_x,n_y),
current.name,
current.g+g,

time)
heapq.heappush(self.open_list, new)
robo_map[n_y][n_x] = new

i f len(self.open_list) == 0:
return’ nopath

current = heapqg.heappop(self.open_list)

self.switchToClosedList(current,robo_map)
r et ur n self.savePath(start, current, robo_map)

def emptyLists(self, robo_map):
Need to clean the map for old
data before used again.
for i in self.open_list:
i f not type(robo_map[i.name[1]][i.name[0]]) == str
map[i.name[1]][i.name[0]]) == str:
robo_mapl[i.name[1]][i.name[0]] = "

for i in self.closed_list:
i f not type(robo_map[i.name[1]][i.name[0]]) == str
ap[i.name[1]][i.name[0]]) == str:
robo_map[i.name[1]][i.name[0]] ="

self.open_list =[]
self.closed_list =[]

def checkWakable(self, start, stop, robo_map):
Cheks if there is an object at the start
position or end position.

operi:

or

or

not type(robo_

not str(robo_m
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i f robo_map[start[1]][start[0]] ==" w'
return False h = self.closed_list[1].h
i f robo map[stop[l]][stop[O] w’: pos =0
return for i inrange(l, len(self.closed_list)-1):
if robo_map[stop[l]][stop[O] s: i f self.closed_list[i].h <= h:
return False h = self.closed_list[i].h
return True pos =i
r et ur n self.savePath(start, self.closed_list[pos], robo_map)
def switchToClosedList(self, current, robo_map):
Switches the current node from the opened list def printMap(self, robo_map):
to the closed list. Prints the map
self.closed_list.append(current) print’ ’
for p inrobo_map:
i f type(robo_map[current.name[1]][current.name[0]]) == str: cmd = )
robo_map[current.name[1]][current.name[0]] = current forq inp:
| f type(q) str
robo_map[current.name[1]][current.name[0]].list =’ closed fq=
cmd +="' -
el se:
def neighbourlnsideMap(self, n_x, n_y, robo_map): cmd=cmd+q+’ I
Checks that n_x and n_y are inside the map. el se:
cmd =cmd + q.list +’ [
ifnx>0 andn_y>=0: print cmd
i f n_x <len(robo_map[0]) and n_y < len(robo_map): print’ .
return True
return False def printList(self, which):
Prints the given list.
def findH(self, here, stop): i f which==" openi:
Finds the h—value for the here-node. print ' Opened List:
for o in self.open_list:
X,y = here o.printinfo()
endx, endy = stop el se:
n=0 print ' Closed List:
for o in self.closed_list:
if endy>=y:n=endy -y o.printinfo()
el se:n=y-endy
i f endx>=x:n=n+ (endx - x)
el se:n=n+ (x - endx)
returnn
def savePath(self, start, this, robo_map, txt=None):
Returns the path from the this—node to the sart
position.
path = []
whi | e not this.name == start:
path.append(this.name)
parent = this.parent
this = robo_map[parent[1]][parent[0]]
path.append(this.name)
path.reverse()
i f txt: path.append(txt)
ret urn path
def findClosest(self, start, robo_map):
Returns the path from the start position to
the node with the lowest h-value <=> the node assumingly
closest to the end position.
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BT R
#
# The navigation module. def findHeading(self, this, next):
# Contains code for following a given path Returns which heading to take next
#
# Written by Marte K Skadsem, 2005/2006 myx, myy = this
nextx, nexty = next
############################################################################### i f nextx > myx and nexty == myy:
i mport time, sys return’ E
el i f nextx < myx and nexty == myy:
i nport common return’ W’
el i f nexty > myy and nextx == myx:
cl ass Navigation: return’ S
def __init__(self, erl): el i f nexty < myy and nextx == myx:
# the erl is the robotER1Interface module return’ N’
self.erl =erl el se:
r et ur n self.direction
# some driving relevant information
self.fw = common.FW # denotes if robot’s motors are
# turned back—forward def turn(self, heading)
self.direction = common.DIRECTION # robot’s heading Truns the robot in right direction.
self.nittideg = common.NITTIDEG # denotes how many degrees makes
# robot turn 90 # find how much to turn
self.map = None dirs=[ N, E,” S, W]
self.interrupt = False # set if robot is interrupted deg = dirs. mdex(headmg) - dirs. mdex(self direction)
if deg or deg == -3:
def followPath(self, path): cmd ="’ =+ str(self. nlttldeg)
Follows a given path. elif deg==-1  or deg==
The parameter path is a list of points starting with the current cmd = str(self.nittideg)
position. elif deg== or deg ==-
cmd = str(self.nittideg * 2)
idx=0 el se:
whi | e idx < len(path)-1: return
i f self.interrupt: r et ur n path[idx] self.direction = heading
| f not self.validate(path[idx], path[idx+1]): cmd=cmd +’ degrees
msg = Error! tries to go from + str(path[idx]) +
’ to’ + str(path[idx+1]) i f self.interrupt: return
return msg
i f self.erl:
#turn #turn
self.turn( self.findHeading(path[idx], path[idx+1]) ) self.erl.move(cmd)
self.erl.eventsOn()
i f self.interrupt: r et ur n path[idx] whi | e True:
reply = self.erl.waitFor(’ move done\r\h 3)
# find distance to move i f reply.__contains__(’ move dong:
dist, idx = self.findDist(path, idx) br eak
# move robot
self.move(dist) def findDist(self, path, idx):
Finds distance to move in same direction
i f self.interrupt: r et ur n path[idx]
dist=0
# all went well X, y = path[idx]
msg ="’ doné idx +=1
return msg nextx, nexty = path[idx]
try:
i f nextx ==x:
def validate(self, this, next): # moving North—South
validates that start and end points in the whi | e nextx == x:
path are not the same i f self.direction ==" N’
dist = dist + (y—nexty)
i f this == next: el se:
return True dist = dist + (nexty-y)
el i f this[0] == next[0] or this[1] == next[1]: X, y = path[idx]
return True idx +=1
el se: nextx, nexty = path[idx]
return False el se:
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# moving East-West
whi | e nexty ==y:
i f self.direction ==" W
dist = dist + (x—nextx)
el se:
dist = dist + (nextx—x)
X, y = path[idx]
idx +=1
nextx, nexty = path[idx]
except IndexError:
idx —=
return (dist, idx)

idx-=1
return (dist, idx)

def move(self, dist):
Moves the robot the spesifyed distance forward.
Returns when move is done

m

i f self.interrupt: return

i f self.erl:
self.erl.move(self.fw + str(dist) +’ cm’)
self.erl.eventsOn()

whi | e True:
reply = self.erl.waitFor(’ move done\r\n’, 3)
i f reply.__contains__(’ move donge’):
br eak

def driveNturn(self, last_part):
Used in the examina areatask. Dirvesthe last part
of path forward and makes a 360 degree turn.

self.followPath(last_part)

i f self.interrupt: return

i f self.erl:
self.erl.move(’ 360 d")
self.erl.eventsOn()

whi | e True:
reply = self.erl.waitFor(’ move done\r\n’, 3)
i f reply.__contains__(’ move donge’):
br eak
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HHI TR R R R R R R R R R
# if __name__ ==’ main_":
# The picture taking and video nmaki ng process. exSrv = V|deoMak|ng() -
# exSrv.main(sys.argv[1])
# OBS! Uses the VideoCapture nodule. Make sure it is installed.

# Can only run on W ndows.
#
# Witten by Marte K Skadsem 2005/2006
#
HHH TR R R R R R S R R R
i mport time, string, 0s, sys
f r omVideoCapture i mport Device
i nport common
cl ass VideoMaking:
def __init_ (self):
If you get horizontal stripes or other errors in the captured
picture (especially at high resolutions), try setting
showVideoWindow:O.
self.cam = Device(devnum=0, showVideoWindow=1)
#sel f. cam = Devi ce(devnumzl showVi deoW ndow=1)
def main(self, imageid):
The parameter imageid is the name to identify
the pictures taken.
self.takePictures(common.PIC_IN_SEC,
common.DURATION,
common.IMAGEDIR,
imageid)
def takePictures(self, pic_in_sec, duration, savedir, imgid):
Takes pictures. The pictures are saved as jpeg files.
The parameters means:
pic_in_sec = how many pictures to take in a second
duration = how long time to take pictures (in sec)
savedir = where to save pictures
imgid = identifyer for the pictures taken
# Specify the anpbunt of seconds to wait between individual captures.
sec_betw_cap = 1.0/ pic_in_sec
num_pic = 0
starttime = time.time()
elapsedtime = 0
whi | e elapsedtime < duration:
# take a picture and store it
self.cam.saveSnapshot(savedir + imgid + \
string.zfill(str(num_pic), 4) +’ Jpg,
timestamp=3, boldfont=1)
num_pic +=1
time.sleep(sec_betw_cap)
elapsedtime = time.time() - starttime
def makeMovie(self, ffmpeg, infiles_dir, imageid, outfile_dir):
Uses ffmpeg to merge jpeg gfiles to a mp4 file.
os.system(ffmpeg + " -r5-i"+\
infiles_dir + imageid + " %04d.jpg" +\
outfile_dir + imageid + " movie.mp4)
r et ur n outfile_dir + imageid + " movie.mp4
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HHLBHHAH R ARG A A A A
#

This file contains variables used by robot. py,

vi deo. py and

HHFHH

Witten by Marte Karidatter Skadsem 2005/2006

H*

robot’ s i paddr
ROBOT_ADDR = ' 129.242.18.166

# address and port to infrastructure
| NFRASTRU_ADDR = ' 129.242.19.46
| NFRASTRU_PORT = 8081

# port to robot’s sinpl eXM.RPCServer
SERVE_PORT = 8090

# paths for storing inmages and vi deos
PATH = " ~\\therobot\t

| MAGEDI R = PATH+" imagesW

I NFI LES DI R = PATH+"images\t

OUTFI LE_DI R = PATH+"images\t

FFMPEG = " ~\\FFmpeg\\ffmpeg.exé

# data for picture taking
PIC IN_SEC = 24
DURATI ON = 20

# sonme driving relevant information
FW="'-

DI RECTION = ' N’

NI TTI DEG = 90

Monday May 15, 2006
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B T # senslist[4] =t
# i f (t-senslist[1]) > 6.0:
# This is the robot code that uses the ulstrasound sensors. s =
# The robot stays in a distance bewteen 30 and 60 cm from the wall on the senslist[1] =t
# right hand side.
# self.flagQ.put(s)
# We stopped using the fourth sensor, the one pointing forward and downward,
# because of many error readings. # read sensor
# sensor, dist = self.sensorQ.get()
# Written by Marte Karidatter Skadsem, spring 2006 print sensor, dist
#
R # if sensor == 4:
i mport threading, time, Queue, sys # self.checkS4( (sensor,dist) )
f r omultradist i npor t Ultradist i f sensor==1:
f r omrobotERIntf I mpor t RobotERIntf self.checkS1( (sensor, dist) )
cl ass UltraRobot: el if sensor==3:
def __init__(self, connected): i f dist<=30:
# connect to robot control center print ' turn right
self.connected_robot = connected self.moving = False
i f self.connected_robot: self.erl.move( -20d)
self.erl = RobotERIntf(’ 127.0.0.1, 9000) self.erl.waitFor(’ move done\r\h 60)
el se: self.erl = False
el se:
# some driving relevant information # sensor ==
self.fw = False # robot's motors are turned back—forward # if self.stairs:
self.direction ="’ N’ # robot’s heading # if dist <= 61:
# self.stairs = False
# init ultrasound sensors i f dist<=30:
self.sensorQ = Queue.Queue() print ' turnleft
self.flagQ = Queue.Queue() self.moving = False
self.ultraSense = Ultradist(self.sensorQ, self.flagQ) self.erl.move(’ 20d)
self.falseAlarm = False self.erl.waitFor(’ move done\r\) 60)
el if dist>=62:
i f dist>100:
def main(self): # first reading — cannot be a corner
# set the robot’s speed i f not dist3==0:
self.erl.set(’ v 10) i f max(dist,dist3) — min(dist,dist3) > 100:
self.turning(sensor,dist3)
# how many sensors are used el se:
ports = self.ultraSense.ports print ' adjust alignment
self.moving = False
senslist = [(0,0)] self.erl.move(’ -20d)
dist3 =0 self.erl.waitFor(’ move done\r\i 60)
dist3 = dist
# start ultradist thread (starts the sensors)
self.udthread = threading.Thread(target=self.ultraSense.main) i f not self.moving:
self.udthread.setDaemon(True) self.erl.move( -1000 cm)
self.udthread.start() self.moving = True
# read first readings from all sensors s+=1
# this reading is almost allways wrong, so we ignore them # ifs==5:s=1
for i inrange(l,ports+1): ifs==4:s=1
self.flagQ.put(i)
print self.sensorQ.get() def turning(self, sensor, dist):
senslist.append(time.time()) Turns to the right to turn a corner
# start driving forward print ' turn corner
self.erl.move(’ -1000 cn) self.erl.eventsOff()
self.moving = True self.erl.move(’ -30 cm)
self.stairs = False t1 = time.time()
whi | e True:
# check sensors # self.flagQ.put(4)
s=1 # if not self.checkS4(self.sensorQ.get()):
whi | e True: # stairs ahead
t = time.time() # return
# if (t — senslist[4]) > 1.0: self.flagQ.put(1)
# s=4 i f not self.checkS1(self.sensorQ.get()):
Monday May 15, 2006 ultradistRobot.py 15/18



Printed by Marte Karidatter Skadsem

May 15, 06 5:11 ultradistRobot.py Page 3/4 May 15, 06 5:11 ultradistRobot.py Page 4/4
# wal | ahead elif dist>35:
return print ' stairs!
t2 = time.time() self.erl.move(’ 35 cni)

ift2-11>=3.0: self.erl.waitFor(’ move done\r\i 60)

br eak self.erl.move(’ 90 d)
self.erl.waitFor(’ move done\r\h 60)
self.erl.move(’ -90d

)
self.erl.waitFor(’ move done\r\ 30)
length = dist + 30
delay = length / 10
t1 = time.time()
self.erl.move( ="+ str(length) +’ cn)
whi | e True:
sel f.flagQ put (4)
if not self.checkS4(self.sensorQget()):
# stairs ahead
# return
self.flagQ.put(1)
i f not self.checkS1(self.sensorQ.get()):
# wal | ahead
return
t2 = time.time()
i f t2-1t1 >=delay:
br eak
self.moving = False
return

3+ H

def checkSi(self, sensorData):

Check if there is something in front of the robot.

If so, backs and turn left to follow the wall in front.

dist = sensorData[1]

i f dist<51:
print ' Crash!!

length = str(50 - dist)
self.erl.move(length +’ cm)
self.erl.waitFor(’ move done\r\i 60)
self.erl.move(’ 90 d)
self.erl.waitFor(’ move done\r\h 60)

self.moving = False
ret urn False

return True

def checkS4(self, sensorData):
Check if robot is close to stairs
dist = sensorData[1]
i f dist>90:
i f self.falseAlarm:
print ' stairs!
self.erl.move(’ 35 cni)
self.erl.waitFor(’ move done\r\) 60)
self.erl.move(’ d
self.erl.waitFor(’ move done\r\h 60)
self.stairs = True
rint’ self.stairs
self.moving = False
return False
el se:
print ' possible false alarm
self.flaseAlarm = True
self.flagQ.put(4)
self.checkS4(self.sensorQ.get())

self.stairs = True

self.moving = False
ret ur n False

return True

print ' self.stairs

if _name__ ==’ _ main_":
exSrv = UltraRobot(True)
exSrv.main()
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HHE A A
#

# This program measures distance by using the Velleman K8055 PIC USB
# test kit attached to BASIC stamp 2 Devantech SRF04 ultrasonic Range
# Finder #28015

#

# KAJ feb 2006

# Ultrasound distance usb Velleman K8055 hack
# Thanks to

# Bob Dempsey

# bdempsey_64@msn.com

# for supplying me with the k8055dll library for unix
#

# This python code is tranlsated from a originale ¢ code.

#

# Translated to Python by Marte Karidatter Skadsem, feb/march 2006

#

T T

fromctypes inport *
i nport time, Queue

cl ass Ultradist:
def __init__(self, sensorQ, flagQ):
Adapt the frequency to the 555 timer to reflect distance
Current 555 oscillating frequency setting is: 1.700 Khz
Gives 1 sample every 20 cm speed of sound
This gives distance: 10cm/pulse (back and forth)
Multiply this number with the number og count in the counter

# Define speed of sound
self.sndspd = 331.46

# Room temperature higher temperature gives higher speed of sound
self.roomtemp = 25.0 # In degrees Celcius

# Set current 555 timer oscillation frequency in HZ
self.frequency = 1700.0

# Number of attached sensors, maximum 8
self.ports = 3

# Minimum time (in sec) from end of last trig pulse to next
self.min_delay = 0.28

# Verbose flag - for debug purpose
self.verbose = False

# Number of loops, 0 means infinite
self.loops =0

self.dev = 0x00
self.str_len = 256

# Queues used in communication with ultradistRobot.py
self.sensorQ = sensorQ
self.flagQ = flagQ

def my_sleep(self, min_delay):
sleep min_delay sec

i=delay=0

t1 = time.time()
whi | e delay < min_delay:

whi | e not i==1000:
i+=1
delay = time.time() - t1

def main(self):
usec_start =[]
line=""

loops = self.loops

k8055d = windIl.k8055D
fd = kB055d.OpenDevice(c_long(self.dev))

if not fd==0:
print " Couldn't open DEV="+ str(fd) + \
OpenDevice returned " + str(self.dev)

# Set counter debounce time to 0 ms, max sample rate 2000s/sec
k8055d.SetCounterDebounceTime(c_| |nt(1) c_long(0))
k8055d.SetCounterDebounceTime(c_int(2), c_long(0))

# Init all timers
for p inrange(self.ports):
usec_start.append(time.time())

whi | e loops >=0
if not self.loops ==
loops —=1

# Don’t count down if LOOPS ==

# Trig all sensors 1-4, 1-front, 2-right, 3-left, 4—down
#for s in range(1,self.ports+1):
s = self.flagQ.get()

# Check that it was at least 10 ms since last trig
delay = time.time() — usec_start[s-1]
i f self.verbose:
line = line +" delay port " + str(s) +\
! ="+ str(delay) +" usec”

i f delay < self.min_delay:
i f self.verbose:
line =line +"
str(self.min_delay — delay) +"
self.my_sleep(self.min_delay - delay)

Sleeping additional " + \
microseconds’

# Set ultrasound control pin high for next trig pulse

# Reset counters

# 1 do a read of counter registers after ResetCounter()

# Without they may not reset properly — a k8055dll BUG here?
k8055d.ResetCounter(c_long(1))
cntl = k8055d.ReadCounter(c_long(1))
k8055d.ResetCounter(c_long(2))
cnt2 = k8055d.ReadCounter(c_long(2))

k8055d.ClearDigitalChannel(c_long(s))

line = line + " Distance sensor " + str(s) + " =
# Wait for response pulse to go high attached to dig. inp1

cntl=0

tmout =0

whi | e cntl == 0:
cntl = k8055d.ReadCounter(c_long(1))
self.my_ sleep(self min_delay)

f self.verbose: line =line +" cntl=" + str(cntl) +"
# Report timeout, and break loop
# — may indicate failure in sensor
tmout += 1
i f tmout>5:
line =line +"

Timeout sensor " + str(s)
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self.sensorQ.put( (s, ’ tmout’) )
br eak

# Here we have either trmout or just reached end of sensor pul se
# Start timer since we have to wait at least 10 ns for next trig
usec_start[s—1] = time.time()

# Read digital counter on port 2
cnt2 = kB055d.ReadCounter(c_long(2))
i f self.verbose: line = line +" cnt2=" + str(cnt2) +"

# On the new version on the PING sensor from Parallax we need to
# hold the signal output |ow during response sanpling
k8055d.SetDigitalChannel(c_long(s))

# Report distance in cm unless tineout

i f tmout <=5:
dist = float(cnt2) * 100 * (self.sndspd+0.6*self.roomtemp)/self.
frequency/2
line = line + str(dist) + " cm (" + str(ent2) + " ticks) "

self.sensorQ.put( (s, dist) )

# Print a visual bar

for i inrange(cnt2):
line =line +"
i f self.verbose: print line+" \n"

line =""
# Next sensor
# Next |oop

k8055d.CloseDevice()

if _name__ ==’ _ man_"
exSrv = Ultradist()
exSrv.main()
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B HHH R
# def mainChoice(self):
# The user application. Makes appropriate actions based on user choices
# from main menu.
# Witten by Marte K Skadsem 2005/2006
# choice = raw_input()
HHHBH BT i f not choice.isdigit():
print longstrings. WRONG_TYPE
i mport sys, threading, time return
f r omxmlrpclib i nport ServerProxy, Binary i f choice ==" 1"
i f self.getRobotList():
i mport longstrings print longstrings.MENU
return
cl ass User:
def __init__ (self): el i f choice =="’ 2
self.connected = False # set when connected and runni ng self.userhistory.append(’ monitor)
self.userhistory =] # stores the last user action self.monitormenu()
return
def main(self, infra_addr, infra_port):
Connects to the infrastructure and staarts approproate el i f choice ==" o
actions based on the last element in user history. self.userhistory.append(’ task)
self.taskmenu()
try: return
self.infrastructure = ServerProxy(’ http:// + infra_addr +\
’ '+ str(infra_port) ) el i f choice ==" 4"
self.userhistory.append(’ code)
self.infrastructure.testConnection() self.codemenu()
self.connected = True return
except Exception, msg:
print msg el i f choice ==" 5"
sys.exit(0) self.stopRobot()
return
self.userhistory.append(’ welcome)
print longstrings.USER_WELCOME i f choice ==" 6"
print ’ OK. Quitting..!

# thread to report when a task is finished self.userhistory.append(’ quit’)
checkDone_thread = threading.Thread(target=self.checkDone) self.connected = False
checkDone_thread.setDaemon(True) return
checkDone_thread.start() el se:

#snth wrong

# main | oop pri nt longstrings. WRONG_INPUT

whi | e self.connected:
i f self.userhistory[len(self.userhistory)-1] ==" welcome:

self.mainChoice() def getRobotList(self):

Prints a list of all robot tags from the infrastructure.
el i f self.userhistory[len(self.userhistory)-1] ==" monitor':

self.monitor() data = self.infrastructure.getRobotList()

el i f self.userhistory[len(self.userhistory)-1] ==" task: if not data:
self.giveTask() print ' No robots registered.\nReturning to main meru.\n
print longstrings. MENU
el i f self.userhistory[len(self.userhistory)-1] ==" codé: ret urn False
self.sendCode()
print ' \nList of all robot tags:
for tag i nrange(len(data) —1):
def checkDone(self): print str(data[tag])
Polls the infrastructure for tasks that are executed. print data[len(data)-1]
Tells user when a task is done. print’ :
whi | e True: return True
result = self.infrastructure.checkDone()
i f result:
Print ' \n¥—*—k—kkokkk ok kk ok k ki _kk_k_k k% ' def monitormenu(self):
print ' Arobotis done with its task: Prints the monitor menu
print result
rint W *—F—kokokokk ok kkxk k%% _x_%_*\n ’ i f not self.getRobotList():
time.sleep(5) # robot list is enpty
self.userhistory.remove(’ monitor)
user—app.py 1/6
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el se: task_nanme = raw_i nput ()
print longstrings. MONI TOR
# register arguments
print longstrings. d VE_ARGUVENTS
def nonitor(self): args = raw_i nput ()
'’ Gets the monitor data for the specifyed robot from if args == "":
infrastructure and printsit. # no arguments given
Y task = task_nane
choice = raw_i nput () el se:
if not choice.isdigit(): # translate fromstring type to list of tuples
print |ongstrings. WRONG TYPE args = sel f.makeArgs(args)
return task = (task_nane, args)
data = self.infrastructure. nonitorRobot (int(choice)) # interrupt the robot?
if not data: print longstrings. WAI T
#if wong tag is typed three tinmes, return to main nenu _wait = raw_i nput ()
print |ongstrings. WRONG _TAG
sel f. userhistory. append(’ monitor’ ) # send task
if self.userhistory.count(’ monitor) == if _wait == "yes:
print |ongstrings. RETURN_MENU sel f.infrastructure. gi veTask( tag, task )
for i in range(self.userhistory.count(’ monitor)): el se:
sel f. userhistory.renove(’ monitor’ ) sel f.infrastructure. gi veTask( tag, task, True )
return
for i in range(self.userhistory.count(’task')):
el se: sel f. userhistory.renove(’ task’)
print data
print longstrings. MENU # return to nmain nmenu
print |ongstrings. MENU
for i in range(self.userhistory.count (' monitor)):
sel f. userhistory. renove(’ monitor' )
def nekeArgs(self, args):
" Trandates a string of argumentsto alist of tuples.
def tasknenu(sel f): v
" Prints the task menu i =0
v X =
if not self.getRobotList(): y ="’
# robot list is enpty path =[]
sel f. userhistory. renmove(’ task’ ) while not i >= len(args):
el se: #print i
print longstrings. d VE_TASK TAG if args[i] =="(:
i+=1
while not args[i] ==":
def giveTask(self): X = x+args[i]
77 Sends auser given task to the infrastructure together i+=1
with the tag of the robot to perform it. Makes the task from i+=1
serveral inputs from user. while not args[i] ==")":
y = y+args[i]
choice = raw_i nput () i+=1
if not choice.isdigit(): i+=1
print |ongstrings. WRONG TYPE pat h. append( (int(x), int(y) ) )
return X ="
y=""
# get a list of possible tasks for this robot i+=1
data = self.infrastructure. getPossi bl eTasks(int(choice))
if not data: if len(path) == 1:
#if wong tag is typed three tinmes, return to nmain menu return path[0]
print |ongstrings. WRONG_TAG
sel f. userhistory. append(’ task’) return path
if self.userhistory.count(’task’) ==
print |ongstrings. RETURN_MENU
for i in range(self.userhistory.count(’task)): def codenenu(sel f):
sel f.userhistory. renove(’ task’) " Prints code menu.
return Y
print data if not self.getRobotList():
# robot list is enpty
tag = int(choice) sel f.userhistory.renove(’ code' )
el se:
# regi ster task nane print |ongstrings. CODE_TAG
print longstrings.d VE_TASK
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def sendCode(self):
Sends a user given file containing a python module to the
infrastructure together with the tag of the robot to
import it. The fileis wrapped and sent in an instance of
the Binary class because of xml rpc rules.
tag = raw_input()
if not tag.isdigit():
pri nt longstrings. WRONG_TYPE
return
tag = int(tag)
# name of file containing code
print longstrings. CODE_NAME
filename = raw_input()
infile = open(filename, " )
code = infile.read()
infile.close()
binary_obj = Binary(code)
pri nt longstrings. CODE_OR_MODULE
choice = raw_input()
i f choice ==" code’:
# sends code to execute
data = self.infrastructure.sendCode(tag, filename,
binary_obj, True)
el se:
# send nodul e to inport
data = self.infrastructure.sendCode(tag, filename,
binary_obj)
i f not type(data) == str:
print = All went well\n’
el se:
print data
# return to main nmenu
self.userhistory.remove(’ codge’)
pri nt longstrings. MENU
def stopRobot(self):
self.getRobotList()
print ' tagtostop:’
tag = raw_input()
if not tag.isdigit():
print longstrings. WRONG_TYPE
return
tag = int(tag)
t1 = time.time()
i f self.infrastructure.stopRobot(tag):
t2 = time.time()
print ' Robot stoped’
el se:
t2 = time.time()
print ' Goodbye robot!’
print t2 -tl
if _name__ ==’ _ man_"
exSrv = User()
exSrv.main(’ 129.242.19.46', 8082)
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HHE A A
#

# All the menus and long string printed to the user.
#

# Written by Marte K Skadsem, 2005/2006

#

MAIN MENU \n o+ 0\
What do you want to do? (Make achoice)\n’ + \
. Get List of robots\n’  + \
. Monitor robot\n’  + \
. Givetask toarobot\n’ + \
. Give new code or moduleto arobot\n’  + \
. STOPROBOT\n'"  + \
. Quit\n’  +\

oA WNE

USER VELCOME = ' **** WELCOME! ****\n' + MENU

MONI TOR = ' Print the tag of the robot you wish to monitor\n’  + \
tag:?

G VE_TASK_TAG = ' Print the tag of the robot you wish to giveatask\n’  + \
' tag: !

G VE_TASK = ' Print thetask you want to give\n'  +\
" task:’

G VE_ARGUMENTS = ' Print the arguments to the task\n’  +\

" arguments:’

WAI' T = ' Do you want to interrupt the robot in its current taskAn’  +\

' yesor no:’
CODE_TAG = ' Print the tag of the robot you wish to givethecode\n’  + \

"tag’
CODE_NAME = ' Print the name of the file containing the code\n’  +\
" filename: ’

CODE_COR_MODULE = ' If thefileisamodule, write module. If it is code to execute, write code.’

#
# Error messages

#
WRONG_| NPUT = ' Wrong input. Please choose among the numbers given\n\n'  +\
MENU

WRONG_TAG = ' Thereisno robot with thistag. Try again'\n’  +\
' tag: !
RETURN_MENU = ' Wrong again. No moretriesfor you\n’ + \
" Returning to main menu\n\n’  + \

MENU
VRONG_TYPE = ' Wrong input type. Please enter the number of choise\n’
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HHLBHHAH R ARG A A A A
#

# A nodul e to be exported to robots.

#

# Witten by Marte K Skadsem 2005/2006
#

def square(parent):
Drivesin asquare with size 50X50

”

size = 50

# report position
direction = parent.driving_control.direction
parent.my_pos = parent.infra_intf.reportPosition(parent.tag,
parent.my_pos,
direction)
parent.my_pos = parent.my_pos|[0], parent.my_pos[1]

for i inrange(4):
i f parent.interrupt:
return
ifi==0:
X = parent.my_pos[0] + size
y = parent.my_pos[1]
elifi==1:
X = parent.my_pos[0]
y = parent.my_pos[1] + size
elifi==2:
X = parent.my_pos[0] - size
y = parent.my_pos[1]
el se:
X = parent.my_pos[0]
y = parent.my_pos[1] - size

next_corner = (X,y)

# find path
path = parent.map.findPath(parent.my_pos, next_corner)

# follow path
msg = parent.driving_control.followPath(path)

parent.my_pos = next_corner

if msg=="done"
# report position
direction = parent.driving_control.direction
parent.my_pos = parent.infra_intf.reportPosition(parent.tag,
next_corner,
direction)
parent.my_pos = parent.my_pos[0], parent.my_pos[1]

return msg
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HHLBHHAH R ARG A A A A
#

# A nodul e to be exported to and executed by robots.
# 1t replaces a netod in the robot class and adds a task.
#

# Witten by Marte K Skadsem 2005/2006

###############################################################################
inmport threading, tine

def new_doTask(self):
7’ Replaces the originally doTask().
Executes the new task and starts the task—kill thread.
Cleans up after execution.

print 'Executetask + str(self.task)

sel f.stopped = Fal se

# start taskkill thread

taskkill _thread = threading. Thread(target=self.taskKill)
taskki |l _thread. set Daenon( Tr ue)

taskkill_thread.start()

# check what task to do (only predefined tasks)

if self. task[O] == "goTd'
msg = self. goTo( (sel f task[1][O0],self.task[1][1]) )
elif self.task[0] == "followPatH :
nmeg = self.foIIomPath(seIf task[1])
elif self.task[0] == "examineArea:
msg = sel f.exan neArea( (self.task[1][0],self.task[1][1]) )
elif self.task == "squaré:

neg = sel f. new_nodul es["squareCodg] . squar e(sel f)

# report that task is done
if not self.interrupt:
self.infra_intf.done(self.tag, self.task, nsg)
self.interrupt = True # set in order to stop taskkill thread

# wait until thread is stopped
taskkill _thread.join()

# make ready for new task
self.interrupt = Fal se
self.driving_control.interrupt = Fal se
sel f.stopped = True

def init(parent, flag):

"’ " The method that all imported modules to execute must have.
Control is given to the code through this method. Important
responsibility: Must raise the flag parameter when controll
can be given back to main thread.

parent.__class__.doTask = new_doTask

parent.interrupt = Fal se
parent.driving_control.interrupt = Fal se

# finish, raise flag
flag. append(1)
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