UiT Department of physics and technology

THEARCTIC On the improvement and acceleration of
UNIVERSITY) .]
OF NORWAY eigenvalue decomposition in spectral methods

using GPUs

Thomas A. Haugland Johansen

FYS-3941 Master’s thesis in applied physics and mathematics 30 SP
December 2016

/////////////////////////////////////// I NN NN NN NN RN NNy

CAVECEE R VUL EU TRV AL LG CEE LR EL X LAY EC LA YUY Y O LYY OO Y Y LAY I TN Y, //l///////l//
//////////////////l/I///////// T101101 RIRIRERTRI R KEN TR XXX LI T LI TN I IN NI I I I I
HHTELENENLni i inriiiiieniiiilreiid IlII/ll/IIIIIIIIII/IIlIl/IIIIIII/I//IIII/III/I/I///III//IIII/I
l//l///////l////////l/////////////ll/ IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII nrrel
YT EELLEL CLL LN LT L LT LI LT] 1111 TIHTHLTE TR0t iareiiid ettt idri ittt
HITTTENEiiriininieliinitiiliiliiiid III/IIIIIIIIIIIII/IIIIIII/IIIII/IIIIIIIIIIIIIIIIIIIIIIIIIIIII/I
HEEELTTTETRE R I i i iiiiiiiiiiiiddid TELRLERELELiinia i iniieiqiieniqritiitiqriiiitnirtrintiiriinlni
IIIIOIGI/IIIIIICIIICIGII/III/II/III /III
! / /

/ 1111111eeetieee / X RR R RN NN NN 111111 / / 1101rrrl
FEETETTTREET PR R i iadininiiiaddtdiid KIRIRIRIRI0 IR0 I0I0I00 000000 0000010171 (rorcneninennenenent /
/ / 111l 1111/ JREPITERERTRERIREEE IR ad i riaiieiqiiieitrieeririririeiririril

-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
-~
\
-~
\
\
<~
~
~
~
~
~
~
~
~
~
~
-~
~
-~
-~
o s
~
-~
-
~
-~
~
-~
~
-~
~
~
-~
S~
S~
N
S~
\
\
-~
\
\
S
~
~
Al
S~
i
-~
N
-~

reeerieeeeniiene / !
Fesereaearieaaeieaeieaeiiier
"ArriLrrinrrriienrinebinnnr N
YEaaaaaaaaaaaainaiinireeeer i {
"arriiniiinnnn I FEGRRERaaad F00000000000000000000000000000000000000 000000000 00B0BTRLELELNLNLNLNELILI
'IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIlIlIIIIIIIIIII III

~
-~
~
-~
~
-~
d
-~
-
~
-~
~
S~
-~
Ed
~
d
-~
-
-~
-
-~
-~
~
-
-~
-
~
-~
~
-
~
-
-~
-
-~
-~
-~
-~
-~
-~
~
-~
-~
-~
~
-
-—

’
qreRaaaaiiieeaaniny

~

’
TQRRRERR R RN RbRRay 2R ANNANN0 NN 0000000000000000000000000000 00000000000 0000000001
FRQRaRRRbRRRRRNIINY I L R R R R R R R R Ry A
rareasaIIIIng Hnnn 20000000 JprpipiiniInn TNl
" L JATRR0R0000000000000000000000 000000000000 000IIINE

[/ I/
raaaaanaanIng llllllll'lllllll'lllllllll'lllllllllll'l'lll'l'l'lﬂ"l L

(LI anan. QERENNN000000 LA LI L I L I L
IAQRRENl JR000000000000000000000000000000000 'l"'l'l'l ARA0ARAR0000004. "" A800004, ""l'l"'l"""‘
PANANAY JUNQORNONONRNONGNONENRNENANNANGNANARANANANENANENININNQNNNQIQNANANANANONONONNONONONONONAY
I X o o]
Yababy JQ0Q0QBQNQNGNGNONONONENENENENENONONENENENENINGRIRGRNARARGVAVAQARARAQIQIQIANANANANANANANGNGNANY
LI L) '"'l"'l""'l"""'l""'l""""""'l""'l""""""""'""""""""""""ll
YAREY dEARANALNGNNNONONONININGNINGRININANGNANGNANGNANANEANANENENINININNNNRNRNQNONATANRNONON L
Tl 1 L A A A A
L Y Y O f77 aaal

Pl JRARAGAGAGACIONGNOIONENANINANGNINONONGNGNGNGNGNGNGNANANANGRERENIRINIRNNNNTNNQNANANAN LA
157 SOQRARARANARARARIRARANARIRINGRININOINONORONGRORANGRARARORARONERAGARAGAGAGNGAGH ' ." L L
O) L2 L L L L L L L L L L L L T L L Tl T T T Ll YL L T YL I L L T L L T T LT LI

L
1 A0888088. SONGSARINOROFGRGRORARGNORORARGNORANGRATARONOGOGACAGAGAGACAGOGNGNGAGRGNGIGNGN]
O T T T T Y T T T T T

Contents

Acknowledgments

Abstract

Mathematical notation

I.

Introduction

II. Background theory

1.

Linear algebra

1.1. Eigenvalues and eigenvectors
1.2. LU decomposition
1.3. Cholesky decomposition
1.4. QR decomposition

1.4.1. The Gram-Schmidt approach to QR decomposition
1.4.2. QR decomposition using reflectors and rotations

. Eigenvalue algorithms

2.1. Power method
2.2. QR algorithm

Optimization techniques
3.1. Numerical stability
3.2. Permutation matrices

3.3. Symmetric QR algorithm with permutations

Some examples of spectral methods
4.1. Principal component analysis . . .
4.2. Kernel PCA
4.3. Kernel entropy component analysis

vii

ix

12
17
21
22
24

31
31
35

39
39
43
45

49
49
53
o8

Contents

5. General-purpose computing on graphics processing units 61
51. NVIDIA CUDA e 62
5.1.1. GPU architecture 62

5.1.2. Compute infrastructure, 66

5.2. Computationson GPU 73
5.2.1. Kernel execution parameters 76
ITI.Method & analysis 79
6. Spectral methods on GPU 81
6.1. Experiments with eigendecomposition on GPU 82
6.1.1. Comparison of CPU and GPU performance 82

6.1.2. Testing performance bounds of the GPU implementation 85

6.2. Implementing KECAon GPU 86

7. QR algorithm on GPU 89
7.1. Preliminary investigation L. 89
7.2. The proposed GPU implementation 90
IV.Discussion 95
8. Concluding remarks 97
8.1. Future work 98
V. Appendix 101
A. KECA on GPU 103
A.1. RBF kernel matrix computation on GPU 103
A2, MAGMA-based eigensolver 104

B. QR algorithm on GPU 107

i

List of Figures

2.1.1.
2.2.1.

3.3.1.

4.1.1.
4.1.2.
4.1.3.
4.1.4.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.

5.1.1.
5.1.2.
5.1.3.
5.1.4.
5.1.5.
5.1.6.
5.2.1.

6.1.1.
6.1.2.
6.2.1.
6.2.2.
6.2.3.

7.2.1.
7.2.2.
7.2.3.

Eigenvector estimation error of the power method 34
Eigenvector estimation error of the QR algorithm 38
Comparison of the classical and permuted QR algorithms 48
PCA, explained variance L. 50
Gaussian “blobs” 51
Two-dimensional PCA projection of “blobs” 52
One-dimensional PCA projection of “blobs” 52
Two-class, “half moon” dataset 53
Two-dimensional PCA projection of “half moon” dataset 54
One-dimensional PCA projection of “half moon” dataset 54
Two-dimensional KPCA transformation of “half moon” dataset 57
One-dimensional KPCA transformation of “half moon” dataset 58
High-level design comparison of a CPU versus GPU 62
Theoretical throughput comparison of CPU and GPU 64
Theoretical bandwidth comparison of CPU and GPU 64
GPU block scheduling example L. 67
CUDA memory hierarchy 70
CUDA compilation pipeline 72
CUDA kernel block size benchmark 76
Comparison of eigenvalue decomposition on CPU versus GPU 84
Matrix dimensionality benchmark of two MAGMA algorithms 85
Comparison of computing RBF kernel on CPU versus GPU 87
Comparison of KECA on CPU versus GPU 88
Three-dimensional KECA projection comparison 88
Kernel utilization 91
Kernel shared memory usage 92

Kernel occupancy 93

iii

Acknowledgments

First of all, I would like to thank my supervisors, Robert Jenssen, Michael C.
Kampffmeyer, Filippo M. Bianchi, and Arnt-Bgrre Salberg. Their tireless effort in
providing guidance, and motivation in the face of great difficulties, is in the end what
made this thesis possible. Next, I would like to give thanks to my parents, who have
inspired me, and supported all my endeavors, my entire life. Thanks to all my friends,
and family whom have helped me in countless ways, and for never giving up on me.

Last, but not least, I would like to send a special thanks to my office mates, Sara Bjork,
Rolf Ole Jenssen, and Torgeir Brenn. Without your support and help, the process of
writing this thesis would have been a lot more difficult in so many ways. I will forever
cherish the thousands of hours we have spent together in our little office, supporting
each other, and eating lots of cheese.

Special mention and thanks to UiT student Andreas S. Strauman who helped find the
example matriz used throughout the thesis.

Abstract

The key objectives in this thesis are; the study of GPU-accelerated eigenvalue
decomposition in an effort to uncover both benefits and pitfalls, and then to investigate
and facilitate a future GPU implementation of the symmetric QR algorithm with
permutations. With the current trend of having ever larger datasets both in terms
of features and observations, we propose that GPU computation can help ameliorate
the temporal penalties incurred by eigendecomposing large matrices. We successfully
show the benefits of performing eigendecomposition on GPUs, and also highlight some
problems with current GPU implementations. While implementing the QR algorithm
on GPU, we discovered that the GPU-based QR decomposition does not explicitly form
the orthogonal matrix needed as part of the QR algorithm. Therefore, we propose a
novel GPU algorithm for “implicitly” computing the orthogonal matrix Q from the
Householder vectors given by the QR decomposition. To illustrate the benefits of our
methods, we show that the kernel entropy component analysis algorithm on GPU is two
orders of magnitude faster than an equivalent CPU implementation.

vil

Mathematical notation

AoB
diag (A)
A(p:q,r:s)

Matrix.

Vector.

The i-th column vector of the matrix A.

The element on the i-th row and j-th column of the matrix A.
The i-th component of the vector v.

The inner product of the vectors w and v.

The Hadamard product of the matrices A and B.

Diagonal matrix with elements corresponding to the diagonal of A.

The sub-matrix of A for rows p to ¢, and columns r to s.

X

Part 1.

Introduction

Introduction

Many important methods in scientific computing, including machine learning
applications and related techniques, are based on solving eigensystems, which means
finding eigenvalues and eigenvectors of matrices. One of the key problems with these
approaches is that there does not exist a closed form solution to identify eigenvalues
and eigenvectors. We must instead rely on algorithms, most of which end up exploiting
numerical approximations through iterative schemes. Since there is a trend in the field of
machine learning for working with ever larger datasets, characterized by a high number of
features, many iterative eigenvalue algorithms become victims of numerical instabilities.
Unstable numerical calculations can lead to slower convergence rates, which can mean the
iterative procedure could take more time to converge to an optimal numerical solution,
worst case however, such instability yields a solution which is simply incorrect. Another
key problem with solving large eigensystems, which is inherently a problem of working
with big matrices, is that the required computational resources scale exponentially with
the dimensions of the matrices. In other words, the larger the matrix is, the higher the
resulting spatial and temporal complexity will be.

In recent years, since the advent of the graphics processing unit (GPU), there has been
an emergence of general-purpose computing on GPU. This has led to an increase in
affordable, off-the-shelf computational power. GPUs were originally designed to render
computer graphics at high framerates, which ultimately meant they were optimized for
maximum parallel throughput. This turns out to make them very useful for computing
algorithms that are built on e.g. algebraic operations such as matrix and vector
products, which can be computed very efficiently in a parallel scheme. Importantly, many
eigenvalue algorithms are based on computing such matrix and vector products. However,
implementing algorithms on a GPU is a much more involved and difficult process when
compared to working with a normal CPU. This added difficulty and complexity is rooted
both in the differences at both the hardware and software level. Iterative algorithms that
can be trivial to implement on a CPU, can turn out to be very difficult on a GPU, but
perhaps also end up being slower.

Our key aim in this thesis is two-fold; the first objective will be a study of solving
eigensystems on a GPU, in order to discover both benefits and pitfalls. We propose the
use of GPU-based computations as one solution to the scaling problem related to working
with large matrices. To illustrate our results, we will apply GPU-based computations
to a machine learning method called kernel entropy component analysis (KECA) [1].

The second objective will be to investigate and facilitate a GPU implementation of a
specific eigenvalue algorithm recently presented in Krishnamoorthy [2], the symmetric
QR algorithm with permutations. It addresses the key problem related to numerical
instability by optimally reordering rows and columns of matrices at each iteration of
the classic QR algorithm. Because the proposed QR algorithm is based on the use of
permutation matrices to perform the reordering, we conjecture it is vital to retain full
control over most of the implementation details, e.g. if one wants to avoid the explicit
multiplication of permutation matrices by employing a more computationally efficient,
implicit reordering.

The structure of this thesis

In order to better understand how we can alleviate, or perhaps entirely resolve, the
aforementioned computational difficulties and improve the convergence, we will in
Chapter 1 review the linear algebra fundamentals that are required to understand the
methods proposed to estimate eigendecomposition. First we will briefly discuss what
eigenvalues and eigenvectors represent, and how they can be found analytically. Then,
in order to understand numerical approximation methods used to solve large eigensystem
problems we will need to get an understanding of some matrix decompositions.

With the linear algebra foundation covered, Chapter 2 will focus on a small, but highly
relevant, subset of algorithms that can be used to find eigenvalues and eigenvectors of
large systems of equations. During the course of this endeavor we will explain how
these techniques may experience problems such as slow convergence and numerical
instability.

This leads us to Chapter 3 in which a study of various optimization techniques that can
be exploited to alleviate the computational issues. Perhaps more importantly, we will
show how we can improve the convergence rate, which can lead to improved overall
temporal performance. This will include showing experiments in which we partially
reproduce results found in Krishnamoorthy [2]. In the article the authors claim to
increase the convergence rate of the QR algorithm by nearly a factor of two, when applied
to symmetric positive semi-definite matrices. The improved convergence is attributed
to the use of permutation matrices. Our experiments based on the article were CPU-
based.

Some spectral methods used in machine learning, such as PCA, kernel PCA, and KECA
will be outlined in Chapter 4. The emphasis will be on the basic underlying concepts
of each method, in conjunction with simple examples to help explain and showcase the
differences between them. Covering the basics of the methods will be important in order
to understand how, and to what extent, they rely on eigenvalues and eigenvectors.

With the mathematical foundation covered, we will in Chapter 5 give a basic introduction
to GPU computation. We will start by explaining the differences between the approaches
adopted in CPU and GPU computations, by starting with the differences in hardware
architecture. Then we will consider the conceptual differences in terms of how we
approach and implement algorithms on GPUs. Because optimizing GPU computations
is a very difficult topic, we will only briefly cover this with a few selected benchmarks
that will demonstrate the effect of choosing good and bad execution parameters.

In Chapter 6 we will experiment with accelerating spectral methods on GPU, and we
will start by comparing eigenvalue decomposition on CPU versus GPU. To achieve this
we will leverage the Eigen library for the CPU side, and the MAGMA (3, 4, 5, 6, 7, 8,
9, 10, 11] project for our GPU implementations. Having employed and benchmarked an
eigenvalue solver, we will then implement the KECA algorithm, and attempt to improve
its temporal performance by computing the eigenvalues and eigenvectors using a GPU.
This chapter addresses our first objective.

Once we get to Chapter 7, we will address our second objective, which is to investigate
and facilitate the implementation of the symmetric QR algorithm with permutations.
By first implementing the traditional QR algorithm without permutations on GPU,
we will discover what difficulties and challenges one might expect when attempting
implement the permuted QR algorithm on a GPU in some future endeavor. Implementing
a sequential algorithm such as the QR algorithm in a semi-parallel manner is non-trivial,
and unlikely to be fast if approached naively.

For most of our experiments we will rely on the Frey face'dataset, since it is has both the
appropriate dimensionality to suit our needs, but is also a frequently used benchmark
dataset in machine learning. An added benefit is that it consists of small, grayscale
images, which can make studying results visually intuitive and straight-forward.

IThe Frey face dataset consists of 1965 grayscale images with dimensions 20 x 28, and was acquired
from http://www.cs.nyu.edu/~roweis/data.html.

Part 11.

Background theory

Chapter 1.

Linear algebra

1.1. Eigenvalues and eigenvectors

One approach to spectral analysis, or spectral theory, is that of eigenvalues and
eigenvectors of matrices, which are special classes of scalars and vectors. The term
“eigen” is German and translates directly to “own”, but can also be interpreted as e.g.
“characteristic” [12]. Perhaps the earliest introduction of the concept of an eigenvector,
was made by Euler in 1751. He proved that any body, regardless of its shape, can
be assigned an axis of rotation around which the body can rotate freely and with
uniform motion [13]. This has since been further studied and enhanced by a multitude of
mathematicians, notably Cauchy and Lagrange, and later Hilbert who coined the term
eigenvector |14].

Today eigenvalues and eigenvectors are used in many applications beyond their initial use
as principal axes of rotation of rigid bodies. Some of these applications include quantum
mechanics, data transformation and reduction [15], image segmentation [16], ranking
[17], economics, gene-expression, neuroscience, etc. The interpretation of the eigenvalues
and eigenvectors depend upon the application or context.

Before we continue, let us define eigenvectors and eigenvalues mathematically.

Chapter 1. Linear algebra

Definition 1.1

Let V' be any arbitrary vector space, and T : V' — V be some linear operator. Then
a non-zero vector v is an eigenvector of 1" if and only if

T(v) = \v (1.1)

for some scalar A which is also referred to as the corresponding eigenvalue. Note that
a linear operator in a vector space is a matrix, in which case (1.1) can be expressed
as

Av =)v

In essence, if v is an eigenvector of the linear operator T, the transformation resulting
from applying 7" on v, consists of a rescaling of v by A. In fact, the operator T is
equivalent to the identity matrix I (multiplied by some constant A) in the vector space
where v is one of the basis vectors.

Remark. Geometrically, the direction will be reversed if A is negative, but the overall
orientation of the vector will remain unchanged.

As mentioned earlier, eigenvalues and eigenvectors are applied in many contexts, like
graph theory, clustering, principle component analysis, and Google PageRank. The
general approach to finding eigenvalues of a matrix analytically is via the so-called
characteristic equation [12].

Definition 1.2: Characteristic equation

Let A be a n x n matrix. Then A is an eigenvalue of A if and only if
det(A —AXI) =0 (1.2)

where I is the n x n identity matriz.

Before going further it might be helpful to look at a simple example of using (1.2) to
find the eigenvalues of a small matrix — assume we have a matrix

5 -2 -1 0
-2 5 0 1
M =
-1 0 5 2
0 1 2 5

10

1.1. Eigenvalues and eigenvectors

Using (1.2) together with this matrix yields

5—A -2 -1 0
—2 5-A 0 1
det(M — AI) = det =0
~1 0 5-Xx 2
0 1 25—

and when we evaluate the matrix determinant we find that
A=2)A=4)(A—=6)(A—8)=0.

Hence the matrix M has eigenvalues A = {2,4,6,8}.

In order to find the eigenvectors corresponding to a particular eigenvalue, we need to
solve the system of equations

(A—A)v=0, (1.3)

where we want the non-trivial solutions. We call this the null space for the eigenspace
of the matrix A that corresponds to the eigenvalue A. Using our earlier example, we
want to find corresponding eigenvectors for the two eigenvalues. Starting with A = 2 and
using (1.3),

(M — 21) vV = O,
we get the following system of equations

3v11 — 2019 — lv3 =10
—2v11 + 3v1o + 1lvy =0
—1lvyy +3vi3+ 2014, =0
lvig + 2013 + 3v14 = 0.

The solution of the system of equations, up to a constant ¢, can be obtained through
e.g. Gauss-Jordan elimination [18] and is

v = —t, vip=—t, viz=—t, viu=1L,
and equivalently in vector notation,
vi=[-1 -1 -1 1],

where we have dropped the scaling factor ¢ since that only affects the length of the
vector. Repeating the process for A = {4, 6, 8} yields the corresponding eigenvectors

v,=[1 1 -1 1]

11

Chapter 1. Linear algebra

vs=[1 -1 1 1]

As we have seen, for every distinct eigenvalue there exists a corresponding eigenvector.
This means if we have an n X n matrix with n distinct eigenvalues, we will have
to repeat the process of finding the corresponding eigenvectors n times. If we have
repeated eigenvalues, additional methods will have to be employed in order to find the
eigenvectors.

The algorithm that we have used so far to find eigenvectors, does not lend itself very well
to being solved programatically. We need to find alternate algorithms that scale better
and that can be implemented efficiently. Since there exists no closed-form algebraic
solution to polynomials higher than four degrees [19, 20, 21|, the eigenvalues algorithms
naturally also have no closed-form, but are rather expressed as iterative schemes, and
achieve efficiency by using numerical approximations. Moreover, since many of these
algorithms are based on matrix decompositions, we will have to introduce further notions
of linear algebra by looking closer at a few, relevant matrix decompositions.

1.2. LU decomposition

The LU decomposition was formalized by Alan Turing in his pioneering paper on the
rounding-off errors in matrix calculations [22] in 1948. In the paper Turing proves, under
certain restrictions, that any direct method for solving linear systems of equations of the
form Ax = b can be written as matrix decompositions [23].

There are several different variations of the LU decomposition, but the basic underlying
principle remains the same; if the LU decomposition exists for some non-singular matrix
A, then the matrix can be factorized as

A=LU,

where L is a lower triangular matrix and U an upper triangular matrix.

12

1.2. LU decomposition

Definition 1.3: LU decomposition

Let A be a n x n non-singular matrix that can be reduced to row echelon form U
by Gaussian elimination without row pivoting,

E; - EEA =T,

where E;, E,, ..., E; are the elementary matrices corresponding to the elementary
operations used to reduce A to row echelon form [12]. Then L is a lower triangular
matrix formed by the matrix product of the inverted elementary matrices used to
produce the upper triangular matrix Uj;

L=E'E' - E" (1.4)

Remark. Using this general definition, the LU decomposition only exists for matrices
that can be reduced to row echelon form without row permutations.

Using this definition of the LU decomposition, let us find the decomposition of the
example matrix M we used previously.

5 -2 -1 0
-2 5 0 1
M =
-1 0 5 2
0o 1 2 5
i 2 1] i 1 i
1 -2 -1 9 1o 0 0
-2 5 0 1 0O 1 0 0
ElM = El = Rlxé
-1 0 5 2 0 0 1 O
0 1 2 5 0 0 0 1
-) . . - -
1 -2 -1 1 0 0 0
0 2 -2 1 2 1 0 0
EQElM = E2 = Ro+42R,
-1 0 5 2 0 0 1 O
0o 1 2 5 0 0 0 1

13

Chapter 1. Linear algebra

5
RaX 5y

R3+R;

21
100

R3Xx

0
0
21
100

Ry—R2

44
213

Ry

25
96

Ry x

0

0

1
14
21

E,

—ho g

o i

— O

—ho 27m %75
e o NI

— o O

o
~
o
+
o
~
I
o o ja=)
o o —
S o~ A
— (e} o
L
I
0
<)
r
o w7 IR

E; =

Egz

Ey =

E;E.E/M

ElM:

E,- -

E;s--

Es -

E,--

Esg -

14

1.2. LU decomposition

Having found U, we can also find the lower triangular L by using (1.4), which yields

L _ 5
4 _2 100
]' 5 21
4 9%
0 1 21 25

There exists a slightly improved algorithm for constructing the decomposition [12], and
it can be summarized in the following steps

1. Reduce the matrix A to row echelon form U by using Gaussian elimination without
row interchanges, while keeping track of of the row multipliers used to introduce
leading ones and the multipliers used to introduce zeros below the leading ones.

2. For each element along the diagonal of L, place the reciprocal of the row multiplier
that introduced the leading one in the corresponding element in U.

3. For each element below the diagonal of L, place the negative of the multiplier that
was used to introduce the zero in the corresponding element in U.

By following this algorithm there is no longer any need to construct the elementary
matrices, and thus from a computational standpoint, reducing both the time and storage
requirement of the algorithm [12].

The LU decomposition we have defined up until this point is somewhat asymmetric since
U is an upper triangular matrix with a unit diagonal, whereas L has a non-unit diagonal.
This asymmetry in the decomposition is an issue if we want to exploit the symmetry
of the original matrix to simplify the computation of the decomposition. If we want to
obtain a L matrix with a unit diagonal, we have to factor out the diagonal of L into a
new diagonal matrix D [12, 18, 24].

15

Chapter 1. Linear algebra

Definition 1.4: LDU decomposition

Let A be a n xn matrix which has a LU decomposition. Define the diagonal matrix
D = diag (L) such that

lll

D— l22

lnn

and redefine the lower triangular L by dividing every column by its corresponding
diagonal element in order to get a unit diagonal. The LDU decomposition can then
be expressed as

A =1LDU

What is more, if the matrix being decomposed is symmetric, the LDU decomposition
can be further simplified by exploiting the symmetry.

Definition 1.5: LDL decomposition

Let A be a nxn symmetric matrix which has a LDU decomposition. Then it follows
that L = UT, and hence the decomposition can be expressed as

A =LDL' (1.5)

which is a unique decomposition [24].

Looking back at our earlier example where we found a concrete LU decomposition,
we now want to find the corresponding LDU decomposition. We begin by finding the
diagonal matrix,

5 0 0 0

5 0 2L 0 0

o 0 ™ g
21

00 0 ¥

In order to calculate the redefined L we need to scale every column vector in the
original matrix by its corresponding diagonal element. One way to express this is via the

16

1.3. Cholesky decomposition

Hadamard product |25] of the original matrix and a matrix whose row vectors equal the
reciprocal of the diagonal of the original matrix. Thus, we have

1 5 21 25
5 0 0 0 5 21 100 96 1 0 0 0
-9 21 0 0 1 5 21 25 _2 1 0 0
L= 5 o 5 21 100 96 _ 5
2 100 1 5 21 25 1 2
1L =5 5 0 5 21 10 96 5 a0 100
a9 15 2 % 5 on
L 0 1 21 %] | 5 21 10 9 | i 0 5 25 1 i

Additionally, since our example matrix M is symmetric, we know from (1.5) that it can

be decomposed uniquely as

1 0 0 o] 5 0 o0 0_—1—§—§ 0|

M — -2 1 0 0 0o 2 0 0 0 1 - (16)
-+ -% 1 0 0 0 ¥ 0 0o 0 1 £
0 0 % 1[0 0 0o F|][0 0 0 1]

Hence, if we know that we are working with a symmetric matrix, we do not need to
calculate the upper triangular matrix U — we only need L and the diagonal elements
of D. Both of which can be computed directly without first finding the LU or LDU
decomposition, yielding a reduction in both spatial and temporal complexity [26].

1.3. Cholesky decomposition

Before we define the Cholesky decomposition, we need to introduce another definition
in order to guarantee that the Cholesky decomposition exists for that particular type of
matrix [27].

Definition 1.6: Positive definite matrix

Let A be a n x n real, symmetric matrix. Then A is said to be positive definite if
it satisfies the property

v'Av >0, Yv#0ecR"
However, if the quadratic form only satisfies
v Av >0, Yvo#0€cR"

then the matrix A is positive semi-definite.

17

Chapter 1. Linear algebra

Although we could stick to only this general definition of definiteness, it will be beneficial
for us to consider a less general definition that does not require computing the quadratic
form — it only requires checking diagonal elements of a LU decomposition, hence
reducing computational complexity.

Definition 1.7

Let A be a n x n matrix that has a LU decomposition. Then A is positive definite
if all diagonal elements in the decomposition are positive. However, if some of the
diagonal elements are zero, then A is only positive semi-definite [18].

Using the property of positive definiteness as a requirement, we can finally define the
aforementioned Cholesky decomposition.

Definition 1.8: Cholesky decomposition

Let A be a n X n symmetric, positive definite matrix. Then A has a unique
decomposition given by

A =R'R (1.7)
where R is an upper triangular matrix with positive diagonal elements. R is

sometimes referred to as the Cholesky factor.

Remark. If the matrix A is positive semi-definite, the Cholesky decomposition still exists,
but is not unique.

There are several ways to compute the Cholesky decomposition; we will start by
considering the approach based on the LDL decomposition (1.5). Since we know that
D is a diagonal matrix with only positive elements, we can take the square root of the
matrix and the result will remain real;

D= D1/2D1/2
By substituting this into (1.5) we find that
A = LD1/2D1/2LT — LDl/Q(LDl/Q)T,
and we see that this decomposition is equivalent to (1.7) by setting RT = LDY2. Tt

is worth noting that the LDL decomposition itself can be considered equivalent to the
Cholesky decomposition, and may be preferred in some situations.

18

1.3. Cholesky decomposition

Continuing with our previous example matrix M, we found that it has a LDL
decomposition given by (1.6). This means that the Cholesky factor LD/? of M is

1 0
2

LD1/2: 5 1
12
5 21
| 0

V5

_2

_|
1

NG

0

0
0
1

11
25

0

\/i

2
5
2
5

=

V105

21

- o O O

0
0

10
V21
22
5v21

e
0
0
0

0
0
0
46
5

o

21
5

=

ja=) o
—

0
0
0
46
5

Since all diagonal elements of the decomposition are positive, we know that the matrix
M is positive definite. Hence it follows that the Cholesky decomposition of the matrix
M exists, and can be expressed as

Vi 0
_2 21
M=| ¥ ’
1 __2
V5~ Vios
5
-~ O ﬁ

0

S
;

5v/21

o O

o
af, ©

_2 1 0
V5 V5
21 2 5
5 105 21
0 10 22
V21 5v/21
46
0 0 5

Instead of going via the LDL decomposition (or using it outright), it is possible to
compute the Cholesky decomposition directly. There exists several different algorithms
and nuanced variations to each, but we will limit our the one commonly referred to as
the inner product form of the Cholesky decomposition |24, 27].

Algorithm 1.1 Cholesky decomposition (inner product form)

Require: A is a n X n symmetric, positive semi-definite matrix.
Ensure: R is a n x n upper triangular Cholesky factor of A.

i—1 9
Tii < A) Gii = 2 =y Qg

for j=i+1,...,ndo

-1 7—1
Tij < Ty (%‘ - Tkirkj)

end for
end for

19

Chapter 1. Linear algebra

The routine in Algorithm 1.1 describes the inner product form, and yields the upper
triangular R from (1.7). As we can see, the lower triangular part (excluding the diagonal)
of A is never visited, thus saving some computational effort.

Applying Algorithm 1.1 in a step by step manner on the example matrix

5 -2 -1 0
-2 5 0 1
M =
-1 0 5 2
0 1 2 5

gives the following matrix element computations

T =M1 = \/5

-1
T =Ty M2 = —

—1
T3 ="Mz = —

Sl Sl

-1
T14:T11m14:0

7'22:\/7?122—7'%2:\/5—%: %
et ra) 0 ()(-4)) e
Toq4 = 7"2_21(m24 —7"127"14) =1/ %(1 — <—l5> X 0> =1/ %

— 2 2 1 4 _ 10
7’33—\/77133—7’13—7”23—\/5—g—ﬁ—*@

T34 = Ty (Mag — T13T14 — T23T24) = \{?(2 - (‘%) x0— <_ﬁ> (251>) - %

_ 2 22 2 _02_ 5 _ 22 _ 46
7‘44—\/m44 T4 — T24 T34—\/5 0 21~ 525 5 °

Comparing these elements with the R matrix computed in (1.6) reveals that the two
methods give identical results, which is expected since we know from Definition 1.8 that
the Cholesky decomposition of a symmetric, positive definite matrix is unique.

The efficiency of the Cholesky decomposition compared to the LU decomposition, when

it comes to solving systems of equations, has been shown to be about twice as good [28].
Moreover, it is generally also more stable than the LU decomposition [29].

20

1.4. QR decomposition

1.4. QR decomposition

The final decomposition we will investigate is the QR decomposition, and for us its
importance is primarily rooted in its use in an eigenvalue algorithm known as the QR
algorithm, which is covered in Chapter 2.

First of all, let us formally define the QR decomposition.

Definition 1.9: QR decomposition

Let A be a n X n non-singular matrix. Then the QR decomposition of A can be
expressed uniquely as

A =QR,

where Q is a n X n orthogonal matrix, and R is a n X n upper triangular matrix
with positive diagonal elements.

Remark. If the matrix A is singular the decomposition can still exist, but its uniqueness
is no longer guaranteed [24].

The decomposition is typically used, just like the LU decomposition, to solve linear
systems of equations of the form Ax = b. However, the advantage of the QR
decomposition lies in the knowledge that Q'Q = I and that R is upper triangular,
which makes the decomposition more computationally efficient when used for e.g. solving
systems of equations [18, 24].

Before we look at how to compute the QR decomposition, we want to briefly note a
somewhat remarkable connection between the QR and Cholesky decompositions which
will make it easier to study the convergence characteristics of the QR decomposition.
Let us consider that we have a non-singular matrix G which has a QR decomposition
G = QR. Hence we also know that matrix G' G is positive definite, which in turn implies
that it has a Cholesky decomposition. We can then show the connection between the
QR and Cholesky decompositions via

G'G=(QR)'"QR=R"Q"QR =R'R.

This means that R is the Cholesky factor of GTG, which is an attractive result since it is
generally easier to study convergence characteristics of the Cholesky decomposition [2].

In order to compute the factors Q and R one typically uses either the Gram-Schmidt
process, Householder reflections, or Givens rotations [18]. It is worth noting upfront
that only the latter two are numerically stable when it comes to computing the QR

21

Chapter 1. Linear algebra

de

composition, whereas the classical Gram-Schmidt process is unstable in that the

orthogonality is lost when the number of vectors to orthogonalize is sufficiently large [30,

31

, 32]. We will not study the modified Gram-Schmidt process or other variants of the

Gram-Schmidt process. Even though these do (to some extent) resolve the numerical
instability and loss of orthogonality, they are also computationally expensive.

1.

4.1 The Gram-Schmidt approach to QR decomposition

Regardless of the problems with the classical Gram-Schmidt process, let us briefly look

at

Fr

how it can be leveraged to compute a QR decomposition.

Definition 1.10: Gram-Schmidt process

Let A be a n X n non-singular matrix with column vectors A = [a|as] - - |a,].
Then the sequence expressed as

k—1

U = a, uk:ak—quTak, k=2,....n (1.8)
=1

constructs an orthogonal basis for the column space of A. Finally, the Gram-Schmidt
process is completed by normalizing the orthogonal basis vectors,
Uy,
a% == v = |lukl, k=1,2,...,n, (1.9)
k

which gives an orthonormal basis for the column space of A.

om Definition 1.10 we have the relationships
k—1
a; = 14y, ak:quk—’_Zq;rak? k:27"'7n7 (110)

i=1

which can also be expressed in matrix form [18] as

22

1 qiax qias -+ qia,
0 »m gqjas - qja,

lai|as| - |an] = [qy]qo] - la,) [0 0 w5 - glan|- (1.11)
0 0 0 v,

1.4. QR decomposition

Moreover, this result is nothing more than A = QR, where Q is an orthogonal matrix
and R is an upper triangular matrix with positive diagonal elements. Hence we have
shown that a QR decomposition can be computed using the Gram-Schmidt process.

To better understand the Gram-Schmidt orthogonalization process in the context of a
QR decomposition, let us apply the process on our example matrix

5 -2 -1 0
-2 5 0 1
M = = [m1|m2]m3|m4].
-1 0 5 2
0 1 2 5

Computing the orthogonal basis of M using (1.8) yields

which we then normalize using (1.9) to produce an orthonormal basis;

v = /30, a=\&[5 -2-1 0]
vy = /2, &=y 4 1 -2 3]
T g5=/mo| 1 -1 57 27]
vy = /2%, a=\/es[-5 -7 -11 25]".

Having computed the orthonormal basis, we apply (1.10) and (1.11) to find the QR
decomposition of M,

25 16 f121 /25 Ja0 . Jao _ Jio 16

30 150 1100 820 3 30 30 30

_. /4 121 1 _ /49 0 50 _ /64 484

30 150 4100 820 3 150 150

M =

_J1 a4 3249 /121 0 0 656 61504

30 150 4100 820 25 4100

9 729 625 2304

0 150 4100 820 0 0 0 205

23

Chapter 1. Linear algebra

When the decomposition is fully evaluated by multiplying the two factor matrices
together, the result does indeed yield the original matrix. The interested reader can
easily verify the result using applicable software.

1.4.2 QR decomposition using reflectors and rotations

In addition to using the Gram-Schmidt process to compute a QR decomposition, it
is also possible to use other, equivalent techniques for orthogonalization. Two frequent
techniques are the so-called Householder reflections and Givens rotations. Since they
are more numerically stable compared to the classical Gram-Schmidt approach [33] they
should generally always be preferred when computing a QR decomposition.

We will briefly introduce both approaches, but will not cover them in great detail.
Therefore, for the interested reader, we recommend having a look at [33, 34, 35| for
much greater detail on both algorithms.

Householder reflections

Similar to the Gram-Schmidt orthogonalization process, the construction of the
Householder reflectors yields both a triangular matrix, and a set of orthonormal basis
vectors. Furthermore, just as with Gram-Schmidt, these matrices constitute the QR
decomposition of the matrix from which they are constructed. The difference between
the Gram-Schmidt and the Householder processes are found in how we construct the
factor matrices. The former, as presented in the previous section, is built on sequentially
constructing orthogonal basis vectors, whereas the latter is built on the premise of
constructing unitary matrices that transform the original matrix such that we ultimately
end up with a triangular matrix. These matrices are what we call the Householder
reflectors, and the idea is to construct a hyperplane that we can reflect across in order
to introduce the desired zero components post-reflection.

Definition 1.11: Householder reflector

Let v be a nonzero vector of dimension n. Then the n X n matrix given by
H=1-jvv' 5:i (1.12)
’ v '

is called a Householder reflector, and v is often referred to as a Householder vector.

24

1.4. QR decomposition

From this definition is should be clear that we need to choose v such that it introduces
the desired zero components.

Given a vector o that we want to reflect across the hyperplane defined by a given
Householder reflector H. Then we can zero out all components of & except the first one
by defining the Householder vector as

v ==t |x|el, (1.13)
where e is the standard Euclidean unit vector defined as
ee=[1 0 - 0]
Combining this vector with (1.12) yields
Hz = (I- pov') z = F||z|le:. (1.14)

after a bit of vector algebra. What this result tells us is essence that effect off applying
the reflector to its associated vector is equivalent of storing the magnitude of the vector,
or all the information if you will, in a single vector component. In other terms, no
information is lost, it is simply relocated in a sense. Also note that the choice of adding
or subtracting needs to be made with numerical stability in mind. Typically we would
opt for subtraction as that will make the result a positive multiple of the original vector
x. Although, if x is close to e;, subtraction might lead to catastrophic cancellation.
There also exist other approaches for constructing the Householder vector, and we refer
the interested reader to Golub [27] which covers this in great detail.

Before we go further, let us consider a toy example for a vector given by
2V/3 T
=] 2 28], (1.15)
Using (1.13), one corresponding Householder vector can be expressed as

.
— 4/3 2v/38
”*[2-5 T})

since ||x|| = 47\/5. Using this result we can then construct the reflector as
V31
H— 2 2
1 _v3
2 2

It should already be trivial to see that multiplying this reflector with the vector & will
yield the desired result, but for completeness,

Hcc:[hlx h;a:]T7

25

Chapter 1. Linear algebra

where

Rla= Y2 g0y x 2V _2V9
1= t5X g 3
1 3 23
h;-w:, 2_£Xi:

2 2“3

Hence we see that

which also corresponds with (1.14) since we already know that ||x| = 47\/5.
Furthermore, Definition 1.11 can also be expressed in a more algorithmic, pseudocode
manner;

Algorithm 1.2 Householder reflector
1: function HOUSEHOLDER(x)

2: vzt ||z)e > Sign chosen to ensure numerical stability.
3: B+ 2/vTv
4: return (I — BUUT)

5. end function

If we want an upper triangular matrix, we need to introduce zeros in the lower triangular
minor of the matrix. This is exactly what we achieve by applying a sequence of
Householder reflectors on the target matrix in a systematic, column by column fashion.
In other words, we if we have an n X n matrix that we want to compute the QR
decomposition of, we need to sequentially compute and apply n Householder reflectors.
The result of applying all reflectors yield the upper triangular matrix

Han—l ce HlA = R7

whereas the result of multiplying together all the reflectors gives us the orthogonal
matrix

H,--H,=Q.

Hence we have shown how the QR decomposition can be computed via a series of
Householder transformations. Note that we can also express this process in a more
explicitly algorithmic fashion;

26

1.4. QR decomposition

Algorithm 1.3 QR decomposition using Householder reflectors

Require: A is an n X n matrix.
Ensure: Q, is an orthogonal matrix, and R is upper triangular such that A = Q,R.

: R« A

2: Qo<1

3: for j=1,...,ndo

4: H; = HOUSEHOLDER(R(j:n, j))
5 R(j:n,jin) < H;R(j:n, j:n)

7: end for

Let us apply the Householder transformation on our usual example matrix,

5 -2 -1 0
-2 5 0 1
M =
-1 0 5 2
0O 1 2 5

We begin by finding the first Householder reflection vector v,

1
Ulzmlmeluelz[5*\/% -2 -1 O]T, 51:%(6+\/ﬁ),

which we then use to construct the first reflector,

e _.]2 _ /1 0]

30 150 30
. Ja 1 fso 2[4

T 30 5 150 5 30

H =1-pvv =

_Jr o2 J2o 4 [1g

30 5 150 5 30
0 0 01

Comparing this result with our previous QR decomposition of M, we see that the first
column is identical to the first column of the previously found Q matrix. Given the
construction of the subsequent reflectors and the manner in which we will now form
Q, we know that the first column will remain unchanged by, thus we can see how this
method will ultimately yield the same result as found via the Gram-Schmidt approach.
In order to see whether we get the same upper triangular matrix R, we must compute

27

Chapter 1. Linear algebra

the matrix product H; M, which can be expressed as

[20 400 _ /100 _J16]
30 30 30 30
256
30

4 3 16

R—=H;M = 0 1= 2o Vm 5TV
64 16 18 16

0 22—/ 4=vVzm% -V

0 1 9 5

As anticipated, the first column corresponds with the previous computation of the upper
triangular matrix R.

Computing the next Householder transformation is done on the 3 x 3 sub-matrix
R(2:4,2:4), which first gives us

T 3
vy = 1—8#3—5\/2 o Ju 1} By = .
? [15 3 30 b 50 + 161/5 — 516

Computing the reflector Hy can be done, but since the result contains somewhat
convoluted coefficients expressed with nested radicals, we will not present the actual
result here. However, applying the computed reflector on the sub-matrix R(2:4,2:4)
gives

(/30 —. /a0 _ [0 _ 16]
30 30 30
484

0 50 _ /64 _ [484

R = H,H,M = 3 150 150 7
0 0 X X
0 0 X X

where we have omitted some coefficients for the sake of brevity due to the convoluted
form of the exact values. Similarly, we find that

—
[=2}

25
30 w0 XX
4 121

-/ = 2L x
30 150

Q2:H1H2:

—\/5 =/ X X
30 150
0 2 x x

=
ot
o

From the first two steps of Householder approach to QR decomposition, we can readily
see that repeating this process two more times will yield the same result for both
matrices, Q and R, as the ones we found when applying the Gram-Schmidt approach.

28

1.4. QR decomposition
Givens rotations

Another alternative approach to orthogonalization is to use rotations instead of
reflections. The basic premise is similar in some sense, but instead of constructing a
hyperplane used to reflect across, we compute a rotation which achieves the same result.
Consider a trivial 2 x 2 example using trigonometry. Any matrix of the form

7 _ cos 6 sin 6
| —sinf® cosf

can be said to be a rotation transformation, since multiplying a vector with this matrix
is equivalent to rotating the vector by an angle 6. Equivalently we can consider any
matrix of the form

7 _ [cos 6 sm@]

sinf) — cos@

to be a reflection transformation, since multiplying a vector with this matrix is equivalent
to reflecting across the line formed by

span { [cos6/2 sinH/Q]T}.

An intuitive way to think about this is that the result produced by rotating a vector 60°
can also be achieved by reflecting the same vector across a 30° line [27].

Since we will not use, nor consider the Givens rotations further in this thesis, we simply
refer the interested to e.g. Golub [27] for further details.

29

Chapter 2.

Eigenvalue algorithms

In this chapter we will look at a few iterative eigenvalue algorithms that yield
approximate solutions. The first algorithm uses a direct approach, while the others are
based on matrix decompositions. There exists many more approximation techniques than
those we will cover — this is a large field of research, and instead of attempting to give
a complete overview of the field, we will instead focus on a few key algorithms. For more
details and further examples of eigenvalue algorithms, in addition to those covered here,
see e.g. Trefethen 33| and Demmel [36].

2.1. Power method

The power method, which is also referred to as the wvon Mises algorithm or power
iterations, was first introduced by Mises and Pollaczek-Geiringer in a seminal article in
1929 titled “Praktische Verfahren der Gleichungsauflosung.” As we will see, the algorithm
might not be as useful these days as when it was first introduced. Nonetheless, it is
still used indirectly in many other algorithms, and it is in fact used in e.g. the Google
PageRank algorithm [38].

Let us start off by defining the algorithm in a sequential notation;

31

Chapter 2. Eigenvalue algorithms

Definition 2.1: Power method
Let A be a n X n non-singular matrix with eigenvalues

Then given an arbitrarily chosen non-zero vector ry the sequence expressed by

gl

q,=Ar,_, T ve=rAry, k=1,2... (2.1)

converges to the dominant eigenpair (v, A1) of A, where vy =7y, and \; = v,

As we can see, the algorithm is only capable of finding the dominant eigenpair, however
most modern machine learning methods typically need all eigenvectors and eigenvectors
(or at least k such) associated with a given matrix [39].

In order to better understand how and why the power method works, we need to consider
the following definition.

Definition 2.2: Rayleigh quotient

Let A be a n x n matrix, and v be a real, non-zero vector of length n. Then the
Rayleigh quotient is expressed by

r(v) = —F—. (2.2)

where A is an eigenvalue of A. Furthermore, it can also be shown that the Rayleigh
quotient yields a quadratically accurate estimate of an eigenvalue [33] — two very
powerful results. Hence we get some further insight into how the power method works,
since both (2.1) and (2.2) are equivalent because we are using normalized vectors.

It is possible to use the power method to find further eigenvalues and eigenvectors by
using a trick often referred to as deflation. The concept is to reduce the effect of the
dominant eigenpair, thus transforming the matrix in such a manner as to make the
second-most dominant eigenpair into the dominant eigenpair [40, 41, 42]. However, this
technique typically suffers problems with numerical stability partially introduced by

32

2.1. Power method

the deflation trick [36]. An alternative is to use the so-called simultaneous iterations
algorithm, which is a direct extension of the power method [33].

Implementing Definition 2.1 as a sequential algorithm, can be done as follows.

Algorithm 2.1 Power method

Require: A is a n X n non-singular matrix, and 7 is a non-zero vector.
Ensure: (v, \) is the dominant eigenpair of A.

fork=1,2,... do > Iterate until stopping criteria reached.
q; < Arp
e < @i/l
Uy, — r{Ark

end for

(0, A) < (ks Vi) b=k

This is more or less a direct implementation of (2.1), but requires some choice of
convergence criteria; one choice is to compare the relative convergence rate between two
successive iteration steps and stopping if this rate is below some pre-defined threshold.
Another choice could be to simply stop after reaching a desired number of iterations.

Let us look at a simple example of using the power method; given that we have our
usual example matrix

5 -2 -1 0
2 5 0 1
M = ,
-1 0 5 2
0 1 2 5

and an initial, non-zero vector

ro=[1 0 0 0]

Then applying the power method algorithm yields the following results at a few
illustrative iteration steps, where we have rounded to 4 decimals for the sake of brevity;

ro=] 09129 —0.3651 —0.1826 0.0000]", vy =6.67
ry=[07972 —0.5315 —0.2657 —0.1063 ", vy = 7.34
[0.7150 —0.5863 —0.3146 —0.2145]", 5= 7.65

T3

33

Chapter 2. Eigenvalue algorithms

ro=[05278 —0.5268 —0.4716 —0.4706] , 119 = 7.9
riy=[05209 —0.5204 —0.4787 —0.4782]", wy; = 8.00
ria=[05157 —0.5155 —0.4840 —0.4838 ", 115 = 8.00

roy = [0.5009 —0.5009 —0.4991 —0.4991], 15 = 8.00
ros = [0.5007 —0.5007 —0.4993 —0.4993 ", 1p3 = 8.00
ros=[0.5005 —0.5005 —0.4995 —0.4995]", w5 = 8.00

rgp = [05001 —0.5001 —0.4999 —0.4999 |", 14y = 8.00
0.5000 —0.5000 —0.5000 —0.5000 |", w5 = 8.00
0.5000 —0.5000 —0.5000 —0.5000 |", vy = 8.00.

=
o
&
I
—

<
w
~
I

—

From the results we see that the resulting vector changes rapidly in the beginning,
but seems to have more or less converged around iteration 23. We can see the
convergence trend already around the 12th iteration. Since we have no change in the
vector components between iterations 33 and 34, we conclude that the algorithm has
converged. In the case of the eigenvalue, it seems to converge after only 11 iterations. The
performance of the algorithm with respect to convergence to the dominant eigenvalue and
eigenvector is rather good. In fact, from Figure 2.1.1 we can see that the improvement
in the eigenvector estimate after each iteration is exponential.

0 _|
o é 8
< 3 o
5 S 7 < -
> £ I~
E E 9 4
= D o
[(0] -
£ o Q
B S € -
w = T
— o])
s] g T
-}
[Te)
o _| T
o
T T T T T T T 27 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
lteration lteration

Figure 2.1.1. The figure depicts the eigenvector estimation error of using the power method in
conjunction with the example matrix M. Judging from the semi-logarithmic plot on the
right, the improvement after each iteration is exponential.

34

2.2. QR algorithm

Assuming that we have a n X n matrix with eigenvalues
Al = Ao 2 -+ = |,
then the convergence characteristic of the power method is determined by

A2
A1
If this ratio is close to 1, the power method algorithm will converge slowly. The smaller
the ratio, the faster the algorithm will converge [26]. In other words, if the two most
dominant eigenvalues are close in terms of magnitude, the power method will generally
require many iterations before it converges. Looking at Figure 2.1.1, we see that given
our example matrix M, the algorithm has not converged even after 60 iterations when
we use machine precision instead of rounding down to 4 decimals. In fact we found that
we needed ~ 128 iterations to reach convergence when using full machine precision.

. (2.3)

2.2. QR algorithm

As we discussed in Section 2.1, the primary problem with the power method is that it
in general only finds the dominant eigenpair, but we typically need to find the entire
spectrum of a matrix. The QR algorithm [43, 44, 45| is one possible solution to the
problem since it is capable of finding all eigenpairs at once. It does come with its own
pitfalls however, as we shall see later.

Amongst the underlying building blocks of numerical eigenvalue approximation
techniques such as the QR algorithm, we have so-called orthogonal similarity
transformations [26, 46].

Definition 2.3: Orthogonal similarity transformation

Let A be a n x n matrix, and V be an orthogonal n x n matrix. Then a linear
transformation 7 is said to be an orthogonal similarity transformation if

T(A)=VTAV.

From this definition it is possible to show that eigenvalues are preserved under this type
of transformation [26|, which implies that

Av =\ v < VTAVu =), u=V'o.

The QR algorithm is an iterative process based on the QR decomposition, and it exploits
this property. Let us first define the QR algorithm formally.

35

Chapter 2. Eigenvalue algorithms

Definition 2.4: QR algorithm

Let A be a n X n matrix which has a QR decomposition, and a spectral
decomposition given by A = VDVT, where V is a matrix corresponding to the
eigenvectors of A, and D is a diagonal matrix with the eigenvalues of A placed
along the diagonal. Then given that Ay = A, the sequence expressed by

A1 =QrRy, Ar=R;Qi, k=12,... (2.4)

has the following identities [2]

A,=D
Qooi]:
QoQ1-- Qs =V.

Since Qy, is orthogonal we know that QfQ = I, and thus we find that
Ry = QiAs 1.
Hence we can partially reformulate the sequence in (2.4) as
Ap = QLA;_1Qy, (2.5)

which means we save some computational complexity since we do not have to calculate
the full QR decomposition — we no longer require R to be computed. We also note that
(2.5) is an orthogonal similarity transformation, so we know there is no loss or change
of eigenvalues.

Algorithm 2.2 QR algorithm
Require: Ay is a n X n matrix with a QR decomposition Ay = QoRy.

Ensure: diag(Ay,,.) and Vi, has converged to the eigenpairs of Ay.
1: Vo1 > The n x n identity matrix.
2: for k=1,2,... do > Iterate until stopping criteria reached.
3: A, — QLR > Only need to compute Q.
4: Aj Q—IgAk—le
5 Vi Vi1Qp
6: end for

Some intuition as to how the QR algorithm works can be gained by considering that the
algorithm is a specialized implementation of the simultaneous iteration algorithm [33],
which can be further understood as an extension to the power method [24].

36

2.2. QR algorithm

Given its connection to the power method, the QR algorithm is to some extent bounded
by the same convergence constraints as the power method. In particular it will generally
converge slower when e.g. the dominant and second-most dominant eigenvalues are close
in terms of magnitude. Additionally the QR algorithm may produce poor convergence
rates for repeated eigenvalues. In Chapter 3 we will consider some techniques that can
solve, or at the very least reduce, these issues by using e.g. permutation matrices.

Finally, implementing and executing Algorithm 2.2 on our example matrix

5 -2 -1 0
-2 5 0 1
M = ,
-1 0 5 2
0 1 2 5

yielded the following estimated eigenvalues and eigenvectors, which have been truncated
to 4 decimals for the benefit of the reader,

0.5000... —0.5000... —0.4999... —0.4999...
V = 0.4999... 0.5000... 0.4999... —0.4999... 7

—0.4999... —0.4999... 0.5000... —0.5000...

i 0.5000... —0.4999... 0.5000... 0.5000... |

i 4.0000... —0.0000... —=0.0000... —0.0000...]
D —0.0000... 5.9999... 0.0000... 0.0000...
—0.0000... 0.0000... 7.9999... —0.0000...

i 0.0000... —=0.0000... —=0.0000... 1.9999... |

From these results we can see that the algorithm has converged to approximate solutions
of the true eigenvalues and eigenvectors of M, up to some rounding error. In Figure 2.2.1,
we can see the convergence performance of the algorithm measured by the error in the
eigenvalue estimates at each iteration step. It seems that the convergence is mostly
well-behaved with the exception of a sudden “jump” at the 5th iteration step. Studying
the semi-logarithmic plot in the figure, it looks as if the algorithm has converged after
approximately 48 iterations.

37

Chapter 2. Eigenvalue algorithms

Estimation error

5
- [}
5 -
5]
c |
2
T
£
(723 ‘T |
s @
£
S |
(o))
o
-
[e2) s
c}]] Seeco
I I I I I I o I I I I I I
10 20 30 40 50 60 0 10 20 30 40 50 60
Iteration Iteration

Figure 2.2.1. The two plots show the full eigenvalue estimation error of using the QR algorithm in

38

conjunction with the example matrix M. We see from the plot on the left that there is
some instability that occurs around the 5th iteration. However, after that iteration the
convergence behavior seems stable, and exponential. Convergence seems to be reached
after about 50 iterations.

Chapter 3.

Optimization techniques

In this chapter we will consider a few optimization techniques that can improve both
the numerical stability and convergence properties of eigenvalue algorithms, in particular
the QR algorithm. Although before we look at how we can improve the algorithms, we
need to briefly look at how we can determine the numerical stability of an eigenvalue
algorithm.

3.1. Numerical stability

In order to know whether or not our algorithm will converge to a reasonable value,
we generally need to assess the stability of the algorithm, and in our case the numerical
stability in particular. The underlying primary causes of numerical stability are round-off
and truncation errors, and both stem from the limits of the so-called machine precision
inherent to how computers represent numbers [34]. While we can have essentially infinite
precision when we work analytically, but when we perform computations on a computer,
we are not so lucky. This is something we must always keep in mind, otherwise our
algorithms might converge to the wrong result, or not converge at all; small round-
off errors early in an iterative eigenvalue algorithm might propagate throughout the
entire computation and produce wildly incorrect approximations of eigenvalues and
eigenvectors. Let us look at some concrete ways to measure how well-behaved our
computations are. Specifically, how small perturbations in vectors or matrices can in
some scenarios be greatly magnified.

In order to determine how well-behaved a matrix-based computation is, it is common
to consider the so-called condition number of the matrix. However, before we can define
the condition number of a matrix, we must first define how to measure the magnitude
of vectors, and a related concept for matrices. The magnitude of a vector is measured

39

Chapter 3. Optimization techniques

by its p-norm, which can be expressed as

n 1/p
vll, = (Z !Ui|p> :
i=1

For matrices we do not measure their “magnitude” as such, but rather the effect they
have when operating on a vector. Therefore a matrix norm is often computed as an
operator norm or induced norm. As such, the norm induced by the p-norm matrix is
referred to as the matrix p-norm, and it can be formulated as

[Av],

loll,

1], = max

Intuitively we can think of the induced norm as a measure of how the matrix affects the
magnitude of vector — e.g. does it increase or decrease?

Perhaps the two most important and commonly used induced matrix norms are the
1-norm and the infinity-norm,

n

1A, = ggja;;; a1, (3.1)

n

Al = o > lesl (32)
J:

where p = 1 and p = oo respectively. From (3.1) we see that the 1-norm of a matrix is the
largest column-wise sum of the absolute value of the entries. Whereas the infinity-norm,
as expressed by (3.2), is the largest row-wise sum of absolute-valued entries.

Additionally we have the induced 2-norm, which is also known as the spectral norm of a
matrix since it is defined as the square root of the largest eigenvalue of the matrix [47],

Al = vV Amas

This is an expensive norm to compute since it first requires computing the eigenvalues
of the matrix, e.g. using the power method. It can be an important theoretical tool, but
intractable in practical applications when working with large matrices.

As mentioned previously, when an algorithm is built around matrix and vector
operations, it is common to consider the condition number of a matrix to get a sense of
the numerical behavior of the algorithm.

40

3.1. Numerical stability

Definition 3.1: Condition number

Let A be an n x n invertible matrix. Then the condition number of A is given by
rp(A) = [|A],[|A7],,

where [|-[|, can be any matrix p-norm. We say that a matrix is ill-conditioned if its
condition number is much larger than 1. By “much larger”, we typically mean more
than an order of magnitude greater than 1.

The condition number of a matrix can be thought of as a measure of the maximum
“magnification” resulting from the matrix operating on a vector. In other words, if the
condition number is very large, even a very small perturbation in the vector will be
magnified proportional to the condition number.

We commonly use the 1-norm or infinity-norm when we compute the condition number
since both are tractable for reasonably large matrices, but note that they do require
finding the inverse of the matrix. Therefore, if computing the inverse of the matrix is
problematic, the condition number should rather be estimated. For details on how to
estimate the condition number of a matrix, see e.g. Golub [27] and Sauer [34].

Even though it can be considered intractable for large matrices, computing the condition
number can be done easily if we already know the eigenvalues of the matrix. In such
scenarios, the condition number using the spectral norm can be computed trivially;

2(A) = ‘Am | (33)

A min

where A, and A, denote the smallest and largest eigenvalues of A, respectively.

Considering (3.3) for a moment, let us get some intuition as to why a large difference
between the smallest and largest eigenvalue — thus large condition number — is a
problem. If we think in terms of the basis formed by the eigenvectors, the eigenvalue gives
the magnitude (and direction) of its corresponding eigenvector. This means that if there
is a large difference between the smallest and largest eigenvalues, there is an equivalent
difference between the corresponding eigenvectors. Thus if this difference is large, the
largest eigenvector will completely “dominate” the smallest eigenvector. In other words,
there is a big disparity between the largest and smallest values in the matrix. An extreme
example of such a scenario can be as simple as a matrix containing measurements of
people such as height in meters, and weight in grams. For such a matrix there would
be several orders of magnitude difference between the measurements of height compared
to the weight. This ill-conditioned example could be improved by preconditioning, e.g.
scaling or using PCA.

41

Chapter 3. Optimization techniques

Once more, consider our usual example matrix,

5 -2 -1 0
2 5 0 1
M = :
-1 0 5 2
0 1 2 5

which, as we know from Chapter 1, has the eigenvalues {2,4,6,8}. In order to find the
condition number of this matrix, we choose to use (3.3), which yields that

Ko (M) = 8/2 = 4.

Even though this condition number is four times greater than 1, it is still within the
same order of magnitude, so the matrix M can be considered well-conditioned.

Next, let us look at another example matrix,

z_[10 0.0
~ [1.000001 0.000001 | °

This matrix is what is sometimes referred to as almost-singular or numerically singular.
Although it would be even more pronounced with more decimals, we can see how the two
rows are almost linearly dependent. To see what effect this can have on an algorithm,
let us compute the condition number of the matrix. We will need the inverse,

71 _ 1.0 0.0
= |—=1.000001 x 106 1.0 x 10

Computing the condition number is now simply a matter of finding the induced norms
for the two matrices. Opting for the infinity-norm gives us

1Z]| . = 1.000002, [|Z~"||_, = 2.000001 x 10°.

Therefore the condition number of Z is ~ 2 X 108, which is a very large condition number.
The condition number of a singular matrix is often defined to be oo, so the closer we
are to being numerically singular the larger the condition number will be — up to the
maximum machine precision.

Another important problem, one that is of particular importance to us since most
eigenvalue algorithms are based on matrix decompositions, is that of relatively small
diagonal elements [27]. This can lead to an effect of that is sometimes referred to as
swamping [24, 34]. Swamping can lead to huge numerical problems in e.g. Gaussian
elimination. If the leading pivot is relative small, then when it is used to cancel rows,
the other entries on those rows can grow or shrink vastly in several orders of magnitude.

42

3.2. Permutation matrices

To better understand this, let us consider a very simple example matrix, upon which we
perform a LU decomposition.

[0.00000l 1}

1 0] [0.000001 1
1 1

1000000 1 0 —999999

Even for a small matrix like this, with a precision of only 6 decimals, we get some quite
large values in the decomposition. We see how this type of problem can quickly lead to
numerical instability with larger matrices due to the limits of the machine precision.
Round-off and truncation errors are bound to happen, which means computational
precision and subtle information in the data will be lost.

Now, what would happen if we simply permuted the two rows in the example above,
before performing the LU decomposition?

1 1] [1 ot 1 (3.4)
0.000001 1] ~ [0.000001 1] |0 0.999999 '

The resulting LU decomposition for the permuted matrix is much more reasonable in
terms of numerical stability. Also note that since we have the explicit permutation
matrix, we can still use this decomposition to e.g. solve systems of equations of the
form Az = b, or similar [34].

3.2. Permutation matrices

As alluded to in the previous section, the swamping problem in particular can usually
be resolved by permuting the matrix in such a manner as to reduce the effect of small
pivots.

Definition 3.2: Permutation matrix

Let P be a n x n identity matrix in which rows or columns have been permuted.
Then the result of computing

A =PA

is equivalent to performing the same row or column permutations on the matrix A
directly. We refer to P as a permutation matriz.

Before we move on, let us construct a simple example to further demonstrate the concept
of a permutation matrix. Starting with a 3 x 3 identity matrix, we permute the first and

43

Chapter 3. Optimization techniques

second row which gives

100 010
010l —=1100]=P
001 001

Given that we have an arbitrary 3 x 3 matrix defined as

A_:

Q Q.

b
e
h

S S0

Left-multiplying the permutation matrix with this matrix yields

d
PA = |a
g

> o o
S8 0

which is exactly the same as if we permuted the rows of A directly. Furthermore, if we
right-multiply we get

b
AP = |e
h

e Qe
S-S 0

which is the column-permuted version of A where the first and second columns have
been switched. Extending this one step further, the result of APA would yield a matrix
where we first permute the first and second column, then the first and second row of the
column-permuted matrix.

Note that in order to reduce the spatial complexity in the context of an actual machine
implementation with large matrices, we do not have to store the entire permutation
matrix. We only need to represent it as a vector which contains the index of the rows
in the order corresponding to the permutation. In other words the permutation matrix
above can be represented as

p=1[213]".
The use of a permutation matrix to improve the numerical stability of the LU
decomposition by permuting rows, as we saw in (3.4), is usually referred to as LU

decomposition with partial pivoting, or simply PLU decomposition. For further details,
see e.g. Turing [22] and Sauer [34].

44

3.3. Symmetric QR algorithm with permutations

3.3. Symmetric QR algorithm with permutations

Expanding upon the idea of using permutation matrices to improve numerical stability,
we want to consider how the use of permutation matrices can improve the convergence
rate of the QR algorithm. Specifically, we want to look at the techniques described in
Krishnamoorthy [2] (hereafter referred to as the reference paper).

As we know from Chapter 2, the QR algorithm can be thought of as an extension of
the power method. Moreover, from (2.3), we know that the convergence performance
of the power method is bounded by the ratio of the two most-dominant eigenvalues.
This can extended for the QR algorithm such that the convergence can be seen as
being bounded by the ratio of “neighboring” eigenvalues. Thus, the hope is that we can
improve the convergence rate by optimally permuting the matrix decomposition during
each iteration of the QR algorithm. The permutations can also lead to reduced round-off
and truncation errors.

Two permutation schemes are proposed; diagonal ordering (DO), in which the matrix
is permuted such that the diagonal elements are ordered in descending order based on
absolute value, and column ordering (CO), which is similar to the diagonal ordering,
but with the addition that the columns are permuted in descending order based on
their norm. An important realization here is that the shape of the matrix is not
preserved between successive iterations of the algorithm, so optimization techniques
via construction of matrices with special forms will not work as expected [2].

As presented in the reference paper, the proposed symmetric QR algorithm with
permutations requires that we compute the following additions at each k-th iteration,

1. Construct a permutation matrix P, for the current eigenvalue estimate Aj_;.
2. Perform the symmetric permutation of A;_; before QR decomposition.
3. Permute Qy prior to multiplication with current eigenvector estimate Vj_q.

Augmenting the QR algorithm as expressed in Definition 2.4 with these additions means
that the sequence in (2.4) becomes

PiA, 1P = QiR Ar= (PIQy) Ar 1 (PIQ)), k=1,2,...,

where we have incorporated the result from (2.5). The construction of a permutation
matrix that will order a matrix according to the DO scheme, can be done as follows.

45

Chapter 3. Optimization techniques

Algorithm 3.1 Permutation matrix for diagonal ordering

Require: A is a n X n positive-definite matrix.
Ensure: P is a n X n permutation matrix.

1: function DIORD(A)

2 n = NUMROWS(A)

3 d < |diag (A)|

4: p = SORTINDICES(d) > The indices that would sort in descending order.
5 P = PERMUTATIONMATRIX(p) > Creates a permutation matrix from a vector.
6 return P
7: end function

Constructing permutation matrices for the CO scheme can be achieved by invoking
the DIORD function with A? instead of A [2]. We note that computing this matrix
power might be computationally expensive, so consideration needs to be given whether
potential improvements in convergence is worth the additional expense. Furthermore, as
mentioned in the reference paper, other permutation schemes are also bound to exist,
but there will always be some level of trade-off between improved convergence and
computational cost.

Putting all the pieces together, yields the augmented QR algorithm where the use of
diagonal ordering permutations will hopefully yield improved convergence.

Algorithm 3.2 QR algorithm with permutations

Require: A is a n X n matrix with a QR decomposition Ay = QoRy.
Ensure: diag (A, ,.) and Vi has converged to the eigenpairs of Ay.

1: Vo1 > The n x n identity matrix.
2: for k=1,2,... do > Iterate until stopping criteria reached.
3 P). = DIORD(Ag_1) > Diagonal ordering (DO) scheme.
4 P.A. Pl — QiRy > Only need to compute Q.
5: U, + P—]L—Qk

6: A+ UlAquk

7 Vi, + V.U,

8: end for

As we can see from a high-level perspective, the algorithm does not seem to be very
different from the original QR algorithm as expressed in Algorithm 2.2. However, there
is quite a bit of additional computational complexity “hidden” within the algorithm.
First and foremost, the construction of the permutation matrix in the call to DIORD is
non-trivial and likely to be a computational hotspot. Moreover, the additional matrix

46

3.3. Symmetric QR algorithm with permutations

products will also be expensive to compute if the matrices are both dense and large.
The added computational cost versus the improved convergence needs to be considered
on an application-by-application basis.

In order to verify the improvements to the convergence, we mimic the simulation found
in Krishnamoorthy [2], which means using a randomly generated set of 25000 symmetric,
positive definite 4 x 4 matrices. For each matrix in the set, we run both the classical QR
algorithm and the QR algorithm with permutations. Each algorithm runs for a total of
50 iterations on each matrix, and for each iteration we calculate the error in the current
eigenvalue estimate. The eigenvalue error estimate is computed by

B =||Ax —)\||§, Ay, = sort (diag (Ag)), (3.5)

where A\ are the current eigenvalue estimates, A are the target eigenvalues for the matrix
associated with the iteration. Both vectors are then sorted in ascending order.

In order to get a sense of the overall performance, the average error in the eigenvalue
estimates is then computed. The error is computed on a per-algorithm basis across the
results for all of the 25000 matrices, thus yielding a reasonable performance estimate.

The result of applying the permutations to the algorithm can be seen in Figure 3.3.1, and
as we can see the results correspond well with the original results from Krishnamoorthy
[2]. Both permutation schemes produce almost identical results with respect to
convergence. This means that by using permutations to get some optimal reordering
of the vectors during each iteration, we can improve the convergence rate of the QR
algorithm by nearly a factor of two. This is a huge improvement. It essentially means
we can run fewer iterations while still getting equivalent results when compared to the
classical QR algorithm. However, the permutation variant of the algorithm does require
additional computations. Hence, it is likely that even though we run with a lower number
of iterations, the temporal improvements can be significantly diminished due to the
increased computational complexity of each iteration. The factor with which the gain
is diminished by the increased computational effort, depends in part on the cost of
computing the permutation matrix, as mentioned in Chapter 3. We also note that CO
permutation scheme will incur an additional cost compared to the DO scheme due to
having to compute an additional matrix product.

In Chapter 7 we will attempt to overcome the cost of these additional computational
complexities by implementing the algorithm on a GPU. Since many matrix and vector
calculations are embarrassingly parallelizable, and given the appropriate conditions, can
be extremely efficient to compute on a GPU [48], there is some hope that we can overcome
the additional overhead. Although, we should keep in mind that the overall algorithm
is sequential, which means that implementing the algorithm in an efficient manner on a
GPU will not be trivial.

47

Chapter 3. Optimization techniques

1e-01

1e-05 1e-03

Logaritmic estimation error

1e-07

1e-09

Iteration

Figure 3.3.1. The plot shows the average of the squared estimation error defined by (3.5), of the
“classical” QR algorithm compared to the symmetric QR algorithm with permutations.
The latter algorithm shows an almost two-fold increase in convergence performance. Note
that both permutation schemes, DO and CO, produce almost identical results.

48

Chapter 4.

Some examples of spectral methods

Preprocessing can often be a crucial step to successfully training a machine learning
model, both in terms of reducing the amount of redundant or noisy data, but also
to reduce the dimensionality of the input domain. Reducing the dimensionality of
the training data can in many cases be directly correlated to reducing the number of
parameters that need to be optimized in the model. Lowering the number of parameters
will generally reduce the cost of the optimization problem. Redundancy reduction can
also help in this regard, but can additionally help with overfitting, and play a role in
ensuring that models are more generalized [49].

There exists a multitude of dimensionality reduction methods, but since this thesis is
fundamentally based on the study of eigenvalue algorithms, we will limit ourselves to
studying a limited set of (nonlinear) spectral methods.

4.1. Principal component analysis

One of the most commonly used linear dimensionality reduction techniques in data
science is the so-called principal component analysis (PCA), which was introduced
in Pearson [50]. Brieflyy, PCA can be summarized as first finding an orthogonal
transformation based on the eigenvectors of the covariance structure of the input data
that decorrelates the feature space by maximizing the variance. The transformation
equals a change of basis that retains the dimensionality of the feature space. The
dimensionality can be reduced by picking the largest k eigenvectors in descending
order measured by the corresponding eigenvalues. Note that k£ can be chosen somewhat
arbitrarily, but it is common practice to pick a value based on the total variance described
by the chosen eigenvectors. This can be done in several ways, where one possibility is
to use a scree plot of the eigenvalues in descending order, and then look for an “elbow
joint”. In Figure 4.1.1 we can see an example of such an “elbow joint” around the third
eigenvector. In some situations this is a useful and intuitive visual approach for determing

49

Chapter 4. Some examples of spectral methods

where the relative magnitudes of the corresponding eigenvectors are rapidly decreasing,
and thus determine a reasonable k. To understand why the length of an eigenvector in
this context is important, we only need to realize that the eigenvalue describes not only
the length of the corresponding eigenvector, but is also a measure of the variance for a
unique linear combination of input features.

T @) o o o o ~m Y o n n

Figure 4.1.1. Elbow...

An alternative approach to the visual inspection of a scree plot is to simply pick the
number of eigenvectors by calculating the accumulated contribution of each eigenvector
to the total variance. Then we can decide to define k such that the resulting lower-
dimensional representation accounts for e.g. at least 90% of the total variance; e.g.

k
XIN:*M > 0.9,
Zi:l Ai
where the eigenvalues \; are assumed sorted in descending order, and N denotes the
total number of eigenvalues. If we think in terms of Bayesian statistics, we can view
variance as a measure of information. Further, we can consider such a change of basis
as preserving, or explaining, 90% of the information in original data even though the
number of dimensions may have been greatly reduced. Note that for this to be reasonable
we should either assume, or ensure, that the data has been normalized prior to finding
eigenvalues and eigenvectors.

Once a new variance-maximizing basis has been found, mapping the original data to
the basis can be achieved by multiplying the original data in matrix form with the
transformation matrix which consists of the k chosen eigenvectors. Let us consider a
simple example for some m xn matrix X which holds n observations with m features. The
corresponding covariance matrix is denoted K, is positive semi-definite, and therefore
has an eigenvalue decomposition that can be expressed as

K =VDV'".

50

4.1. Principal component analysis

Here V is a n x n matrix that has the eigenvectors of K stored column-wise, and D
is a diagonal matrix with the eigenvalues of K stored on the diagonal. If we assume
that the eigenpairs have been sorted in descending order based on the eigenvalue, the a
k-dimensional PCA transformation of X can be expressed as

cha = XTVk7
where Vy is a m X k matrix holding the k largest eigenvectors.

Figure 4.1.2 shows an example of a simple toy dataset consisting of two sets of
observations, sampled from two distinct, bivariate Gaussian distributions. The two
“blobs” are linearly separable, since it would be easy to draw a straight line that
separates the two classes. Although, if we wanted to create a function that could
discriminate between the two classes, we would need to use both features. Applying
a PCA transformation of the dataset, yields the results seen in Figure 4.1.3, and
Figure 4.1.4. From the latter we see that we could create a one-dimensional classifier,
that would perfectly separate both classes from the two-dimensional input data.

Figure 4.1.2. Synthetic dataset containing two sets of observations, sampled from two distinct, bivariate
Gaussian distributions. Results produced using scikit-learn [51].

o1

Chapter 4. Some examples of spectral methods

o]
°®
°© 0
o @
°
8 & o
® o
© o008 °
$ °
¢
o ©
o ° A
o °

Figure 4.1.3. The result of projecting the Gaussian “blobs” from Figure 4.1.2 into the two-dimensional
PCA space. Separability is maintained, and the rotation gives us a hint that the two classes
might be separable in one dimension. Results produced using scikit-learn [51].

6 SeSEPEBNESEs O 008

Figure 4.1.4. The two-dimensional, two-class problem after having been projecting onto the most
dominant principal component. As we can see, we are now capable of separating the two
classes of observations, using only one feature. Results produced using scikit-learn [51].

52

4.2. Kernel PCA

4.2. Kernel PCA

PCA is based on a linear transformation, which makes it a reasonable choice for data
that is linearly separable, but what if we have a dataset such as the one we can see in
Figure 4.2.17 It should be obvious that it is not separable using linear method such as
PCA, and this can clearly be seen in both Figure 4.2.2, and Figure 4.2.3. Since PCA
attempts to maximize the variance in the data, what we end up finding is a linear
transformation that only slightly rotates the original dataset. In other words, if we hope
to be able to separate the two classes, we will need a nonlinear method or transformation.
One possible approach is to construct an (implicit) mapping from the input feature space
into some higher-dimensional space where the data becomes linearly separable, such that
we can leverage our usual linear methods — this is the premise behind kernel PCA.

Figure 4.2.1. Randomly generated, two-class problem. The half moon structure makes the dataset non-
separable using linear methods. Results produced using scikit-learn [51].

Let us assume for a moment that we have some observation x with n features, and some
mapping function ¢(-) such that

x eR"— ¢(x) € H,

where H is a so-called Hilbert space. Hilbert spaces are complete vector spaces that
possess the inner product [52], and can potentially be infinite-dimensional. Mercer’s
theorem tells us that if we ensure the mapping function preserves the inner products,
then there exists an equivalent representation

(P(@)|@(2)) = K(w, 2),

53

Chapter 4. Some examples of spectral methods

°
® _o
°

o®®

®e
°

Figure 4.2.2. We can clearly see that the “half moon” dataset from Figure 4.2.1 is not linearly separable.

The two-dimensional PCA transformation has only slightly rotated the data in some sense.
Results produced using scikit-learn [51].

> GNP ® ¢ O SOW WO D I W GO

Figure 4.2.3. The one-dimensional linear PCA transformation of the “half moon” data. As we clearly see,

there is no hope of being able to separate the two sets of observations. Results produced
using scikit-learn [51].

54

4.2. Kernel PCA

where k(-,-) is a positive semi-definite kernel function [53|, and H is a so-called
reproducing kernel Hilbert space [54]. The kernel function must satisfy the following
condition,

//C k(x,z)g(x)g(z)dedz > 0,

where
/ g(x)’dx < 0oy | Vg(z),z € C C R™
c

The condition placed on the set of functions g(x) essentially ensures the existence of the
L? norm. Whereas the condition placed directly on the kernel gives us the positive semi-
definite property of the kernel. We also have the so-called Moore-Aronszajn theorem,
which tells us that any symmetric, positive definite kernel has a unique reproducing
kernel Hilbert space [55]. The results granted by these two theorems are in some sense
the foundation of our kernel-based methods.

What the observant reader might have noticed, is that we have no generalized toolkit
at our disposal when it comes to defining these kernel functions. All we really know is
that we must ensure the conditions from Mercer’s theorem are met. In fact, finding such
kernel functions is in itself an entire field of research, so we will not attempt to discuss
this further. Instead we will simply present three commonly used kernel functions.

First we have the perhaps most frequently used kernel, the so-called radial basis function
(RBF) kernel, which can also be referred to as a Gaussian kernel in some literature;

K(z, z) = exp(—7|lz — z[3), 7> 0.

The RBF kernel is based on the squared Euclidean distance (the 2-norm) between the
vectors, which is used as a measure of the (dis)similarity. Thus, we can see that if € = 2z
we get a coefficient equal to 1. The further apart the vectors are (i.e. less similar) the
closer we get to 0, but the kernel does not converge to 0. It can be shown that the
reproducing kernel Hilbert space of a RBF kernel is infinite-dimensional.

Next up, let us consider the polynomial kernel which can be defined as
K(x,z) = (b:cTz +a)q, a>0,b>0¢g>0.

This is perhaps one of the simplest kernel functions, but it can as well shall see later work
remarkably well. It is worth noting that if the vectors given to the kernel are orthogonal,
the resulting scalar is simply a?, and if a = 0 the kernel is sometimes referred to as
homogeneous. Usage of polynomial kernels seem to be popular in the field of natural
language processing [56, 57.

95

Chapter 4. Some examples of spectral methods

Last, but not least, we present the hyperbolic tangent kernel,
k(x, z) = tanh(ﬂa;Tz + a),

where o and 3 needs to be chosen such as to satisfy the conditions of a valid kernel
function. This kernel belongs to a special class of kernels based on sigmoid functions,
which are used in e.g. logistic regression methods.

Armed with a kernel framework, we can begin to consider the kernel PCA method.
Let us first assume we have some dataset X, and our goal is to perform an (implicit)
mapping into a reproducing kernel Hilbert space such that our observations become
linearly separable. Specifically,

xeX— ¢(x) e H.

PCA is based on an eigendecomposition of the covariance (or correlation) matrix, and the
trick now is to perform this on the estimated covariance matrix in the implicitly mapped
kernel space. To simplify matters, let us first assume the dataset X has zero mean, i.e.
it is centered. This gives us that the sample covariance matrix can be expressed

Q=2 o)

As stated, our goal is to find the principal components of this matrix. We need to perform
the eigendecomposition

Qu = \v.

From this, in combination with the definition of the sample covariance matrix, we get
that

=23 (¢(a)Tv) by,

=1

Because Q is positive definite we can this rewrite as

v =Y p(),
i=1

and it can be shown that the eigendecomposition above is equivalent performing an
eigendecomposition of the so-called Gramian matrix of the kernel function [58]. The
Gramian matrix can be defined as

K(i,j) = k(xi, x;),

56

4.2. Kernel PCA

where £(+, -) is the kernel function. As it turns out, the i-th eigenvector of Q corresponds
to the i-th eigenvector of K. This essentially boils down to that all we need to do to
perform kernel PCA is to perform linear PCA on the Gramian matrix K. For the full
derivation of kernel PCA, including normalization considerations, and so forth, see e.g.
Scholkopf, Smola, and Miiller [59], and Theodoridis [39].

We can summarize kernel PCA as a sequence of steps;

1. Calculate the Gramian matrix K(z, j) for all observations, «; and x;.

2. (Optional) Ensure K has zero-mean by “centering” the matrix.

3. Eigendecompose K to find the k£ dominant eigenpairs.

4. Normalize the k dominant eigenvectors.

5. Project the data as represented by K, onto the k& normalized eigenvectors.

Returning to the toy dataset shown in Figure 4.2.1, applying kernel PCA with a RBF
kernel (y = 20) yields the results seen in Figure 4.2.4, and Figure 4.2.5. Comparing
these to the earlier result from using traditional linear PCA, we can see the kernel-based
method has successfully separated the two classes.

BB 00 BOO @ B GO AP SRR OO SREUS O

Figure 4.2.4. The two classes from the “half moon” dataset become linearly separable after being
projected into the kernel PCA space. Results produced using scikit-learn [51].

o7

Chapter 4. Some examples of spectral methods

Figure 4.2.5. The two class “half moon” dataset becomes linearly separable using only a single feature
after being projected into the kernel PCA space. Results produced using scikit-learn [51].

4.3. Kernel entropy component analysis

Kernel entropy component analysis is very similar to kernel PCA. As we know, PCA
methods only take into account the variance of the data. The importance of an
eigenvector in determined by variance maximization. While this in many cases is
sufficient for performing classification, it might not always be sufficient for effective
clustering techniques. KECA addresses this by taking into account the entropy of the
input data, and uses entropy maximization as the scheme for picking eigenvectors. This
approach makes KECA fundamentally different when we compare it to other spectral
methods. KECA can reveal interesting structures in the data, which are not revelead by

e.g. kernel PCA [60].

The KECA method is based on the Renyi quadratic entropy, which can be given as
H(p) = —logV(p), where V(p) = [p*(x)dx, and p(x) is the probability density
function generating the input data [1|. Further, if the probability density function is
estimated by a Parzen window density estimator, then it can be shown that an estimate
for the Renyi entropy can be given by [61]

~ 1 T

where K is the RBF kernel matrix. The kernel matrix has an eigendecomposition

58

4.3. Kernel entropy component analysis

K = VDV, which means we can rewrite the entropy estimator as
~ 1 <& 2
_ /N T
Importantly, it has been shown that the i-th term of this expression, corresponds to
the 4-th principal component in the kernel space [60]. Finally, the k-dimensional KECA
transformation can be expressed by
1
@, =D;V]

For further details on KECA, including good examples illustrating the differences
between kernel PCA and KECA, please see e.g. Jenssen and Storas [61].

59

Chapter 5.

(General-purpose computing on
graphics processing units

Typically when running any type of computation, we run on one or multiple CPUs, on
one or multiple computers, and the computations might either be serial or parallel in
nature. Historically CPUs have followed the oft-cited observation called Moore’s law,
which states that CPU chip complexity will double approximately every two years [62].
This complexity measure can also be thought of in terms of the CPU clock speed being
doubled every two years. For several decades this predication came true, but in recent
years this trend has stopped since the transistors have become so small, that by making
them even smaller, they would become subject to various soft-errors. For instance,
they would become subject to bit-flip errors caused by cosmic background radiation,
due in part to a combination of reduced voltage and capacitance enforced by thermal
limitations. The effect being that the charge carried by an alpha particle originating
from cosmic radiation is enough to flip a bit at the transistor level in the CPU [63].

Since the CPU speed increase trend has flattened, CPU manufacturers have begun
adding more CPU cores. Thus motivating programmers to parallelize algorithms to fully
take advantage of the computing power available in multi-core CPUs. At the same time
as this shift towards multi-core CPUs has taken place, we have also seen the advent
of general-purpose computing on GPU (GPGPU). GPUs are highly specialized devices
which these days typically have several thousand compute cores, and are designed for
massively parallel tasks. Originally these devices were intended for rendering computer
graphics, but have since become general-purpose computational devices. The usage of
GPUs have been crucial to the success of some machine learning methods. One particular
example of such a method, is the so-called convolutional neural network (CNN). This
particular type of neural network lends itself very well to massively parallel computations
since it is, as the name implies, based on convolutions. More importantly, the convolution
operation can be performed as a series of matrix and vector operations [64, 65].
Furthermore, many linear algebra operations, such as the matrix-vector product, can
be considered embarrassingly parallel [66].

61

Chapter 5. General-purpose computing on graphics processing units

5.1. NVIDIA CUDA

Currently there are a few different GPU hardware vendors and GPU platforms, including
programming toolkits, etc. Although, the de facto standard in machine learning at the
time of writing, is the CUDA platform from NVIDIA. It consists of both hardware and
software, and have in recent years seen big improvements both in runtime performance
and the overall development efficiency/effort. However, even though the development
effort has been reduced in the last few years, it is still a highly complex task to write
code that fully utilizes the compute resources offered by a modern GPU, and even more
so when using multiple GPUs at once.

We remark that from this point onward, unless otherwise stated, the term GPU is
implicitly referring to modern NVIDIA GPUs. Therefore, some of the terminology used,
performance metrics, and so forth, might not apply to other GPU platforms.

5.1.1 GPU architecture

We conjecture that in order to fully utilize the entire compute potential afforded by
a modern GPU, it is crucial to have at least a basic understanding of the underlying
hardware architecture, and associated design choices. We cannot approach the GPU as
if it is a CPU. As we will see, the two devices are very different at a fundamental level,
and in order to use both types of devices as efficiently as possible, we need to be aware
of these differences.

Control ALU ALU

CPU GPU

Figure 5.1.1. High-level hardware abstraction illustrating the differences in the design of a modern CPU
chip compared to a modern GPU. From the CPU design we see that a big portion of the
chip is dedicated to cache memory, as well as having a large control unit, and few advanced
ALUs. The GPU design on the other hand has limited amounts of cache memory, and it
is shared across many simple, cooperating ALUs. Each group of ALUs are governed by
small control units. Reprint from CUDA C Programming Guide by NVIDIA [67].

A traditional CPU differs from a GPU in several ways, both conceptually and in how the
actual hardware is designed. Figure 5.1.1 shows a simplified, high-level depiction of the
chip differences. The CPU design has dedicated a rather big portion of the chip to cache,

62

5.1. NVIDIA CUDA

as well as generally supporting much bigger backward and forward compatible scalar and
vector instruction sets, novelties such as branch prediction, out of order execution, etc.
All of this requires bigger and more complex control and logic units. On the other side,
the GPU has limited amounts of cache memory, has little to no support for features such
as branch prediction, out of order execution, etc. Additionally NVIDIA GPUs typically
do not maintain any backward or forward compatibility in the instruction sets, and have a
smaller instruction set in general by virtue of only having support for vector instructions.
This yields much smaller and simpler control and logic units. The net result is that a
GPU has more room on its chip dedicated to small, purely computationally-bound units.
Modern workstation CPUs typically have between 6 and 10 compute cores, and have
support for simultaneous multi-threading (SMT) which means that each core supports
running 2 threads simultaneously. Hence, a high-end, workstation CPU can execute 20
threads at the same time. State of the art server-oriented CPUs currently support up
to 44 hardware threads [68]. The equivalent exists on the GPU side of the spectrum,
but at a much larger scale with the current state of the art GPU supporting up to 60
cores, each core supporting up to 64 simultaneous threads [69]. These cores are part of
what is referred to as a streaming multiprocessor (SM), which is essentially responsibly
for executing GPU threads. A GPU with 60 cores can in theory execute 3840 threads
simultaneously (although due to certain design limitations the actual number is 3584).
This is nearly two orders of magnitude greater than the comparable CPU, which has 44
threads. Although it is important to keep in mind that a single GPU core is much slower
when compared to a single CPU core.

The differences between CPU and GPU chip designs stem primarily from the fact that
the CPU is designed to finish computing each of its tasks as fast as possible, and
since reading from system DRAM is orders of magnitude slower than reading from
on-chip cache memory [70], the CPU therefore has multiple layers of cache to help
reduce the latency incurred by reading from system DRAM. Additionally modern CPUs
have functionality such as prefetching which in some situations can translate to a CPU
effectively having “infinite” cache memory [70, 71]. GPUs have largely been optimized
for maximum throughput — each computation does not have finish executing as fast
as possible. Instead the GPU is designed to run as many computations in parallel as
possible. In order to achieve this design goal while using an equivalent chip size, the
amount of cache memory is sacrificed at the expense of fitting more compute units on
the chip |72, 73].

The chip design differences lead to a vastly improved computational throughput in the
case of the GPU. In Figure 5.1.2 we can see the how the theoretical number of floating
point operations per second has evolved for both CPU and GPU devices in recent years.
Currently a state of the art GPU has about 10 times more theoretical compute power
when compared to a state of the art CPU. We see a similar story when it comes to the
theoretical memory bandwidth, in Figure 5.1.3.

Keep in mind that these performance metrics are the theoretical, optimal performance

63

Chapter 5.

11000
10500 +
10000
9500
9000 -
8500
8000
7500 -+
7000 +
6500
6000
5500 +
5000 +
4500
4000
3500 +
3000 +
2500
2000 -+
1500 +
1000 +

500 +

General-purpose computing on graphics processing units

Theoretical GFLOP/s at base clock

—+—NVIDIA GPU Single Precision
——NVIDIA GPU Double Precision
—+=Intel CPU Single Precision

“+—Intel CPU Double Precision

pe -

0
2003

Figure 5.1.2.

Figure 5.1.3.

64

S - 03 *

2005 2007 2009 2011 2013 2015

The theoretical maximum number of single and double precision floating point operations
per second for comparable CPU and GPU chips, running at base clock speeds, since 2003.
As we can see, initially they were operating within the same order of magnitude, but in
recent years GPUs have gained a huge increase in performance. Today the fastest GPU
has approximately 10 times more computational throughput versus a comparable CPU.
Reprint from CUDA C Programming Guide by NVIDIA [67].

Theoretical Peak GB/s

—+—GeForce GPU

700
——Tesla GPU

——Intel CPU
600

500

200
100
0

2003 2005 2007 2009 2011 2013 2015

Theoretical peak processing power in terms of data processing bandwidth measured in
bytes, comparing consumer GPU, workstation GPU, and comparable CPU chips, since
2003. Both categories of GPU have since their respective introductions, consistently had
more bandwidth than CPUs. It is worth noting that for a while the consumer GPUs
held the lead, with workstation GPUs only taking the lead in the last few years. This
can be attributed primarily to the reduced bandwidth of the error-correcting code (ECC)
memory used in the workstation GPUs. However, in the last few years this overhead has
been resolved. Reprint from CUDA C Programming Guide by NVIDIA [67].

5.1. NVIDIA CUDA

characteristics for both types of compute devices. Implementing an algorithm on a GPU
will not trivially lead to a ten-fold speedup when compared to a CPU implementation
— GPU parallelization is not a panacea. Instead it is a highly specialized tool that can
work remarkably well when applied correctly to appropriate problems.

As we know from earlier, reading from DRAM, the so called device memory, is relatively
slow. It can typically take more than 100 clock cycles on a CPU to read from DRAM,
and this is why a CPU has a lot of cache memory. Regardless, we have to use DRAM to
work with data, and in the realm of CPU-bound computations, having access to large
amounts of device memory is common. The amount of memory can usually be expanded
easily, and affordably. CPU-bound DRAM can be said to be a commodity resource. For
GPUs however, the story is different — memory on commercially available GPUs can
not be expanded. Thus we are limited to the amount of DRAM shipped on the device.
The current state of the art GPU only comes with 16 GB of DRAM [69], and this means
memory is a relatively scarce resource. One key take-away here is noting that a parallel
algorithm executing on a CPU, with a companion dataset that fits entirely in CPU-
bound memory, might not easily be ported to a GPU since the dataset might not fit
in memory. If we are lucky, the algorithm can be batch processed. Otherwise we might
have to rewrite parts of the algorithm, or perhaps approach the problem in an entirely
different manner.

It is important to mention at this point that a GPU is dependent upon a CPU for getting
access to data, receiving instructions to execute GPU programs, as well as making its
computation results available to non-GPU-bound programs. All of this communication
happens via the PCI Express (PCle) bus. In other words, any communication between
CPU and GPU is limited by the transfer speed/bandwidth of the PCle bus which
connects them. From the current hardware specification the maximum theoretical
transfer speed of the PCle bus is approximately 31.5 GB/s [74], but we conjecture
that this is unrealistic. The key points from this insight is to realize that

a) Some level of synchronization between CPU and GPU is always required.

b) The CPU and GPU can operate in parallel with respect to each other, albeit
limited by the previous point.

¢) Since communication is limited by the speed of the PCle bus, we need to ensure
the GPU is given as much work as possible to fully saturate it with work, in order
to reduce the amount of synchronization and data transfer between the GPU and
CPU as much as possible.

Thus, if we want to completely utilize all the compute performance afforded by a GPU,
we must keep these points in mind when developing/implementing algorithms for GPU

acceleration.

Copying data from the CPU memory to GPU memory is handled by units called copy
engines, which are located on the GPU. Modern GPUs have up to two copy engines, and

65

Chapter 5. General-purpose computing on graphics processing units

they work independently of the SMs. This implies that both copying data and performing
computations can be performed in tandem. A GPU with two copy engines is capable of
fully saturating the PCle bus, using one engine per direction of transfer [75].

5.1.2 Compute infrastructure
GPU kernels and the thread hierarchy

The basic building block of GPU programs is referred to as a kernel. Note that this
type of kernel is not related to the kernel functions introduced in Chapter 4. From
this point on, the kernel term will refer to a GPU kernel unless otherwise stated. GPU
kernels are more akin to kernel matrices in the context of digital image processing etc.
There, kernels are commonly defined in relation to filtering based on on the convolution
operation. Executing a GPU kernel can be thought of as convolving a kernel matrix
which represents a filter, across a matrix which represents an image.

Let us briefly look at an example where we compute a grayscale version of a RGB color
image. Assume that the three color channels of the original m xn image are given as three
vectors. Storing the matrices as vectors is a trick to unroll the convolution operation into
a single loop. The filter can then be implemented as follows

void convert_to_grayscale(floatx gray, floatx r, floatx g, floatx b)
{
for (auto 1 =0; i <m *x n; ++i) {
gray[i] = 0.2126 * r[i] + 0.7152 * g[i] + 0.0722 * b[i];
}
}

The logic here is trivial; loop over all m rows and n columns of the image. Since the
matrices have been unwrapped, we instead loop over all components of the vectors.
Finally, the grayscale image is computed as a weighted sum of all three color components.
The equivalent GPU kernel turns out to be quite similar;

—global__
void convert_to_grayscale(float*x gray, floatx r, float* g, floatx b)
{
auto i = threadIdx.x + n x blockIdx.x;
gray[i] = 0.2126 * r[i] + 0.7152 * g[i] + 0.0722 * b[i];
}

As we can see, the loop is missing, and that is because GPU kernels are executed

differently compared to regular functions. Highly simplified, when executing a kernel
we have to specify how many times we want the GPU to invoke the kernel. In our simple

66

5.1. NVIDIA CUDA

example, we want the kernel to be executed m X n times. Then, instead of having a
loop that produces the vector index, we calculate it based on the index of the current
execution. Think of this in terms of the GPU performing the iteration on our behalf.

Executing a GPU kernel cannot be considered trivial in the same sense as invoking a
conventional CPU function, which usually only needs to be given references to (or copies
of) the required data. When invoking a kernel we also need to declare how we want the
thread execution hierarchy to be organized.

The smallest unit of work is a thread, which is organized into something called a warp.
Warps consists of 32 threads [67]. It is important to note that warps are implemented
as hardware threads on the GPU, and thus the smallest unit of execution is always 32
threads.

Multithreaded CUDA Program

GPU with 2 SMs GPU with 4 SMs

SM o SM 1 SM o SM 1 SM 2 SM 3

v

Figure 5.1.4. Example outlining how a kernel split in 8 thread blocks is scheduled for execution on a
GPU with two SMs versus a GPU with four SMs. Note that the actual order of execution
is only meant to be illustrative, and will likely differ in an actual simulation. Reprint from
CUDA C Programming Guide by NVIDIA [67].

Warps are organized into something called blocks, which are structured as either one-,
two-, or three-dimensional groups of threads that consists of at most 32 warps. The
implication of this is that the “volume” of a thread block can not exceed a total of
1024 threads. Therefore we can for example define a block as a vector with a length of
1024, or as a matrix with dimensions such as 32 x 32, or 64 x 16. Thinking in terms of
multi-dimensional matrices, or tensors, we can for instance define a block as 16 x 16 x 2
threads. Usually we opt for a block structure that maps directly to the organization
of the underlying data, and we also stress that we do not have to define thread blocks

67

Chapter 5. General-purpose computing on graphics processing units

such that they reach the maximum of 1024 threads. The important part is to choose
an organization that makes sense for an algorithm, while attempting to maximize the
occupancy on the GPU. The term occupancy can be in simple terms be explained as the
ratio of active SMs in comparison to the total number of SMs on the GPU. In essence,
it measures how much of the GPU is utilized. For details, please see Wilt [75]. We will
consider the consequences of not optimizing the thread block dimensions at a later stage,
but the curious reader can skip ahead to Figure 5.2.1 on page 76 for a sneak-peak.

Just as threads/warps are organized into blocks, blocks are organized as grids. Following
the same concept as blocks, grids are organized into either one, two, or three dimensions.
The maximum number of blocks per grid is 22 [67]. In Figure 5.1.4 we can see a two-
dimensional example of the block and grid hierarchy, and also how blocks are scheduled
for execution across multiple SMs. The number of blocks executing simultaneously is
affected by the number of SMs available on the GPU. Additionally, a block is not
scheduled for execution until the entire block can fit on the device. That means that once
a block is executing, we can rest assured that all threads that comprise the block will
be executing together, sharing memory. This is very important since this means we then
get access to intra-block synchronization which, as we shall see later, is necessary for
certain algorithms to operate efficiently since they can cooperate and share the workload
to some extent. At this point is makes sense to mention that there is no out of the box
support for inter-block synchronization. This means that while we can easily synchronize
work within a thread block, there is no equivalent way of synchronizing work between
multiple blocks.

Keeping in mind this thread hierarchy we have outlined, it should not be too difficult
to understand why having knowledge of these details can be of crucial importance when
implementing a low-level GPU program. If we do not configure an appropriate hierarchy
of threads and blocks, we run the risk of large portions of the compute potential of the
GPU going to waste. Whereas an optimal thread configuration can help ensure the GPU
is wholly saturated with work.

Memory hierarchy

Memory on the GPU can also be divided into a hierarchy, and we can see a simple
depiction of this in Figure 5.1.5. The smallest unit of work, a GPU thread, has access
to a finite amount of private, thread-local memory. Since thread-local memory is stored
in device memory, the amount of available local memory is primarily bounded by the
capabilities of the device. Since the local memory is persisted in the device memory,
it obviously suffers from the same latency and bandwidth issues [67]. This is to some
extent overcome by the fact that local memory access is coalesced, such that adjacent
threads access adjacent, coalesced memory which can be cached, thus reducing latency
considerably. The term coalesced memory in this context refers to how CUDA devices

68

5.1. NVIDIA CUDA

coalesces global memory access, meaning it merges loads and stores of memory, based on
how threads are grouped into warps. This is done to reduce device memory bandwidth
and latency. Since memory coalescence is a difficult topic, and the conditions under
which it occurs on CUDA devices is even more difficult, we refer the interested reader

to Wilt [75], and NVIDIA [67].

Thread blocks have access to shared memory which is shared among all threads in the
block. The amount of shared memory available to a SM depends both on the hardware on
the device, as well as runtime configuration available via the CUDA API. The relevant
API functionality makes it possible to adjust the ratio of memory used for L1 cache
memory, and shared memory. Typical default values for shared memory is 48 KB or 64
KB, and L1 cache memory usually defaults to 16 KB or 24 KB [67].

Once we get to the grid level of hierarchy, the only memory accessible is so called global
memory. This memory behaves slightly differently performance-wise depending upon
whether it is determined by the kernel compiler, or explicitly marked, as read-only. If
the memory is considered to be read-only, it may end up in a read-only cache which will
greatly improve access times. All global memory access is cached in L2 cache memory
[67]. Thus, we should always strive for access memory in a cache-optimal manner to
reduce the cost of accessing device memory. We will however not cover in any detail how
this can be achieved, since that topic is outside the scope of this thesis, and is highly
dependent upon actual algorithms being implemented.

There are other types of memory available, e.g. texture and surface memory, as well
as varied applications for the different types of memory. Additionally, modern GPUs
provide functionality which makes it possible to access CPU-bound memory in various
ways. Covering these concepts is beyond the scope of this thesis; for the further details
on these topics, we refer the interested reader to Wilt 75|, and NVIDIA [67].

CUDA compute capability

As we have alluded to earlier, NVIDIA GPUs are classified by something called
compute capability [67]. This term can briefly be summarized as describing the interplay
between the hardware and software. The actual chip design of specific NVIDIA GPU
models adhere to the specifications for a specific compute capability specification. These
hardware-level specifications naturally affect our implementations due to the tight bond
between hardware and software. These capabilities are to some extent abstracted by
the CUDA application programming interface (API), but we also need to take them
into consideration when writing kernels. The reason being that we have to take the
compute capability into consideration when compiling kernels. The net result of this is
then deciding what compute capabilities we need, and perhaps which would be nice to
have. Some capabilities might not be necessary for implementing a certain algorithm,

69

Chapter 5. General-purpose computing on graphics processing units

Thread

P . Per-thread local
D " memory

Thread Block

Per-block shared
mem ory

A A A A
YYVvy

Grid 0

Block (Block (1, 0) Block (

kg

Block (Block (1, 1) Block (

S

Grid 1
Global memory

Block (0, 0) Block (1, 0)

i

Block (0, 1) Block (1, 1)

=

Block (0, 2) Block (1, 2)

Figure 5.1.5. Somewhat simplified depiction of the CUDA memory hierarchy. Reprint from CUDA C
Programming Guide by NVIDIA [67].

70

5.1. NVIDIA CUDA

but if used can lead to improved computational performance. The compute capability
we target naturally affects the models of GPUs that are capable of running the compiled
kernel, since the capability is built into the GPU hardware. As we shall see later, this
multi-targeting is not too difficult to implement, but we note that it can be difficult to
test and performance benchmark since using this approach typically translates to having
to test the implementation across the supported GPU models. Therefore we recommend
targeting a single compute capability version, specifically the highest capability afforded
by the GPUs on which we intend to implement our algorithms. This will lead to a less
complicated implementation effort, and may result in better performance since newer
compute specifications can lead to better global memory access, etc.

Compiling GPU programs

Even though we do not always have to write and compile GPU kernel code ourselves
in order to leverage GPUs, it is important to consider how it is typically done. In
particular what tools do we have at our disposal, and in simple terms what happens
when we compile a GPU kernel.

The CUDA development toolkit naturally comes bundled with all the necessary tools
in order to compile kernel code. The kernel code itself is written in a specialized C++
grammar, and the majority of the CUDA API is written in C. Files containing CUDA
GPU kernels are usually affixed with the .cu extension. If a code file contains both CPU
and GPU code, referred to as host and device code respectively, we typically refer to the
combined form as mixed-mode code. The C++ features supported in kernel code consists
of a very minimal subset of the full feature set available in modern C++ code [67]. And
since the underlying API is written in pure C, we can not use features of modern C++
which prevents e.g. memory leaks, such as compiler-guaranteed resource allocation and
cleanup, and so forth |76, 77, 78|.

During compilation the code is split into host and device code. Host code can be written
as pure C++, while the device code is governed by the aforementioned limitations. The
original code is referred to as mixed-mode code. After being preprocessed the host code
is sent to a common compiler such as GCC or Clang, depending upon configuration
and operating system. The device code which consists primarily of kernel code, is sent
through a specialized CUDA compiler. Traditionally this CUDA compiler has been
the nvee compiler which is provided by NVIDIA as part of the CUDA development
kit. However, the open source Clang/LLVM compiler has recently received support for
compiling CUDA code. The primary advantage of using this compiler is that is means
being able to use the same compiler for the entire code base. Furthermore, it seems
one of the goals of this effort is to provide nearly full support for modern C++. Note
that this it is still bounded by the limitations enforced by the GPU architecture as
mentioned earlier. In other words, certain features of C++ simply cannot be used on a

71

Chapter 5. General-purpose computing on graphics processing units

GPU, regardless of compiler infrastructure. For further details, we refer the interested
reader to Wu et al. [79] which is a precursor to Clang/LLVM getting CUDA support.

We will not go into further details on how either of the mentioned compilers operate,
but both end up generating an intermediate representation referred to as PTX (parallel
thread execution) assembly. This PTX code is compiled into PTX binary that is either
shipped as-is along with the rest of the program, or sent through another tool which
called ptzas. This tool generates executable GPU microcode instructions for a specific
GPU, based on the PTX [80]. The former approach is sometimes referred to as online
compilation since the result is just-in-time compilation at the time of GPU program
execution. Logically, the latter approach is referred to as offline compilation [75].
We mentioned in a previous section that GPUs have foregone forward and backward
compatibility in their instruction set. Simplistically, it is because of this level of
indirection afforded by the PTX that this design choice is feasible. All that is necessary
to ensure a kernel runs on a future GPU is for the NVIDIA to ship an updated ptxas
tool as part of the GPU driver that is capable of translating an existing PTX binary into
executable microcode for the new GPU. An example of a typical compilation pipeline
of a mixed-mode file can be seen in Figure 5.1.6.

. Device code
Device IR —{ generator F} PTX

CUDA compiler Host compiler
CPU

A

F Fat binary
> Host IR > Host code

Y

Mixed-mode
input code

generator

Figure 5.1.6. Simplified overview of the compilation pipeline employed by CUDA compilers when
compiling GPU programs. The mixed-mode input is separated into device (GPU) and
host (CPU) code, which is then usually processed by separate workflows, before being
compiled into a single “fat binary” which can be executed by a CPU just like any other
program.

Before we move on, be aware that there exists other alternative approaches to writing
low-level GPU code, such as OpenCL [81], and HCC [82, 83]. Although the latter seems to
work more or less as a code generator, sometimes referred to as a transpiler. Briefly put, it
generates GPU code that is then subsequently compiled by an applicable compiler. Such
a layer of indirection can lead to sub-optimal code compared to a tuned, hand-written
GPU kernel. This is an inevitable effect of having to target multiple GPU architectures
which differ at both the hardware and software level.

72

5.2. Computations on GPU

5.2. Computations on GPU

Performing computations on a GPU can be achieved in numerous ways, from writing
custom kernels to using higher-order abstractions in languages such as Python. There
also exists countless libraries that are designed to simplify the task of interacting with
the GPU. Since these are typically well documented, and because we are primarily
interested in custom CUDA kernels, we will not discuss any GPU libraries in this thesis.
The interested reader is encouraged to have a look at the Thrust library (which is bundled
with the CUDA toolkit), and PyCUDA. As part of our experiments later in this thesis,
we will be exploiting the MAGMA library, in addition to a custom C++ header-only
library*.

Typical steps involved in executing a GPU-accelerated program can be summarized as
follows;

Initialize device, and allocate device memory.
Copy memory from host to device.

Launch kernel(s).

Copy memory from device to host.

Release resources.

U b=

Note that most of these steps are asynchronous, which means that when we invoke
some CUDA API function, execution will typically happen out-of-process, and control is
immediately returned to the caller. Additionally, almost all of these API calls can result
in errors — e.g. memory allocation might fail. Combining this with the asynchrony of
interacting with the GPU, requires special API calls to check the error state of the
GPU.

Let us now look at a simple GPU program that uses standard CUDA API functions,
and follows the steps outlined above (sans the error checking). We remark that we will
not attempt to give detailed explanations of every aspect. The intent is to show what is
involved in writing custom GPU programs. Imagine we have a CUDA kernel that simply
sets every element in a given vector to some given constant value;

_global__ void init_const(float* some_vector, float some_constant)

{

const auto idx = threadIdx.x + blockDim.x * blockIdx.x;
some_vector[idx] += some_constant;

}

L Cudalicious is a C++ header-only library we developed during the course of implementing the various
experiments in this thesis. The library is open source, and can be found at
https://github.com/thomasjo/cudalicious

73

Chapter 5. General-purpose computing on graphics processing units

Looking at the kernel, we see that it needs be given two things, the vector we want to
initialize, and a scalar that we want to initialize the vector with. This means that we
need to allocate device memory which is sufficiently large to hold our vector of floats,
and can be done as follows,

float* dev_vector;
cudaMalloc(&dev_vector, sizeof(float) * 32);

The code allocates enough memory on the device to hold a vector of length 32. Note
that when we pass simple types, such as the single constant value we want to hand to
the kernel, memory is automatically allocated on our behalf. This code handles step 1
and 2. Launching the kernel can be done as follows

constexpr auto pi = 3.14159f;
init_const«<l, 32»>(dev_vector, pi);

Without going into details, the “chevron” syntax specifies the grid and block hierarchy
we have discussed earlier. In this case we want to launch a single block of 32 threads,
one thread per vector component. Please note that kernel launches are asynchronous, so
unless a blocking call is made after launching the kernel, the CPU part of the program
will finish executing before the GPU has finished processing. Notably, copying memory
is normally a blocking call. In our example, copying the vector from device memory to
host memory can be achieved by

float result[32];
cudaMemcpy (&result, dev_vector, sizeof(float) * 32, cudaMemcpyDeviceToHost);

Finally, we need to clean up device resources, which in our case can be done as

cudaFree(dev_vector);

If we were to execute this code, we would end up with a 32-dimensional vector with
every component initialized with our specified value.

The example given is trivial, and unlikely to be very useful, but illustrates in some
sense what is typically involved in writing custom CUDA programs. To get a sense
of what might be involved when writing a high-performance CUDA kernel, we refer
to Listing 5.2.1. The code presented there performs, in a very efficient manner, what
is referred to as an add reduce operation. The end result is a summation of all the
components in the vector, yielding a single scalar. Additionally, working with GPUs
might also involve concepts such as unified address space, streams, multi-GPU setups,
and so forth.

74

5.2. Computations on GPU

Listing 5.2.1. Example showcasing a very efficient CUDA kernel implementation of add reduce.

constexpr auto STRIDE = 4u;

template<typename T>
—global__ void add_reduce(T* output, const T input, const size_t num)
{

auto sum = T{0};

auto start_idx = (threadIdx.x + blockIdx.x * blockDim.x) * STRIDE;

#pragma unroll
for (auto idx = start_idx; idx < start_idx + STRIDE && idx < num; ++idx) {
sum += __ldg(input + idx);

}

#pragma unroll
for (auto delta = warpSize / 2; delta >= 1; delta /= 2) {
sum += __shfl_down(sum, delta);

__shared_— T shared_sum;

if (threadIdx.x == 0) {
shared_sum = T{0};

}

__syncthreads();
if (threadIdx.x % warpSize == 0) {
atomicAdd(&shared_sum, sum);

_syncthreads();
if (threadIdx.x == 0) {
atomicAdd(output, shared_sum);
}
}

7

Chapter 5. General-purpose computing on graphics processing units
5.2.1 Kernel execution parameters

The parameters used when launching a GPU kernel often play a critical role in ensuring
optimal temporal performance of GPU computations, since they both affect and are
affected by notions such as occupancy, memory coalescence, etc. To maximize the
occupancy of a kernel we need to ensure we keep as many threads as possible busy
all the time. This is affected by the number of SMs on the GPU, since that will limit the
number of concurrent blocks that can be executed. We need to ensure that each block
will saturate the GPU with work.

Consider for a moment a kernel that efficiently computes matrix-matrix products as
seen in Listing 5.2.2. The result of launching the kernel with different block and grid
dimensions on matrices of varying sizes can be seen in Figure 5.2.1. As we can see,
there is a strong correlation between the number of threads per block and the runtime
characteristics of the kernel. This effect is very much affected by the number of SMs on
the GPU. The GPU used for the benchmark only had 2 SMs. The implication of a block
size of 16 threads on such a GPU means running two blocks, each consisting of a single
warp. Depending upon our kernel implementation this might also mean we only utilize
half of each warp. That will end up having a detrimental effect on the performance since
a large portion of the GPU will not be utilized.

Threads per block //°
- —— 16

64

5.00
|

0.50
|

Logarithmic kernel execution time (msec)
0.05
|

0.01
|

I I I I I I
50 100 150 200 250 300

Matrix size (columns)

Figure 5.2.1. The plotted lines depict the kernel execution time for matrices of varying sizes using
different block sizes. The correlation is linear, as expected.

76

5.2. Computations on GPU

Listing 5.2.2. Kernel that computes matrix-matrix product using blocked sub-matrix multiplication.

template<int BLOCK_SIZE>
—global__ void matrix_mul(float *c, float *xa, float *b, int dim_a, int dim_b)

{

// Block indices.
const auto bx = blockIdx.x;
const auto by = blockIdx.y;

// Thread indices.
const auto tx = threadIdx.x;
const auto ty = threadIdx.y;

// Indices and strides of sub-matrices processed by thread block.
const auto a_begin = dim_a * BLOCK_SIZE * by;

const auto a_end = a_begin + dim_a - 1;

const auto a_step = BLOCK_SIZE;

const auto b_begin = BLOCK_SIZE * bx;

const auto b_step = BLOCK_SIZE * dim_b;

auto c_sub = 0.f; // Stores computed sub-matrix coeffcient

// Loop over all the sub-matrices required to compute blocked sub-matrix.
for (auto a_idx = a_begin, b_idx = b_begin; a_idx <= a_end;
a_idx += a_step, b_idx += b_step) {
// Shared memory arrays used to store the sub-matrices of a and b.
__shared__ float a_sub[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float b_sub[BLOCK_SIZE][BLOCK_SIZE];

// Load the sub-matrices from device memory to shared memory;
// each thread loads one element of each matrix.
a_sub[ty][tx] = ala_idx + dim_a * ty + tx];

b_sub[ty]l[tx] = b[b_idx + dim_b * ty + tx];

_syncthreads(); // Ensure the matrices are loaded

// Multiply the two matrices together;
// each thread computes one element of the block sub-matrix.
#pragma unroll
for (auto k = 0; k < BLOCK_SIZE; ++k) {
c_sub += a_sub[ty][k] * b_sub[k][tx];
}

_syncthreads(); // Ensure all threads have finished computing sub-matrix

// Write the block sub-matrix to device memory; each thread writes one element.
const auto c_idx = dim_b * BLOCK_SIZE * by + BLOCK_SIZE * bx;
cl[c_idx + dim_b * ty + tx] = c_sub;

7

Part 111.

Method & analysis

79

Chapter 6.

Spectral methods on GPU

In this chapter we will perform some experiments in order to study and validate our
proposal with regards to the benefits of performing computations on GPU, in particular
spectral methods. After some preliminary benchmark experiments with eigensolvers on
both CPU and GPU, we will experiment with a KECA implementation on GPU. The
implementation will be leveraging the MAGMA library, in addition to a CUDA kernel
we have designed that computes the RBF kernel matrix K needed as part of the KECA
algorithm.

Experiment infrastructure

Our final experiment results were produced by running experiments on a computer
designed for experimenting with deep learning [84, 85|, methods and was equipped
with a NVIDIA GeForce GTX TITAN X GPU, and an Intel Xeon E5-2630 CPU. This
GPU model has 12 GB of memory, and a total of 3072 CUDA cores. The CPU has
8 cores, where each core supports 2 threads, which yields a total of 16 simultaneous
threads. This setup is referred to as the primary setup. The majority of our initials
experiments were done on a MacBook Pro (mid-2012) with an Intel i7 CPU, and an
NVIDIA GeForce GT 650M GPU with 1 GB of memory. We will refer to this setup
as the secondary setup. While the CPU in this setup only has 8 threads spread across
4 cores, the most noteworthy difference between the two setups is the fact that the
GPU only has 384 CUDA cores. Moreover, the GPUs are from different architecture
generations, and therefore have different CUDA compute capabilities. At this point we
want to stress that not having early access to more modern GPU hardware ultimately
led to multiple issues which had a significant impact on the experimental aspect of the
thesis. Therefore, heed our warning; ensure access to modern GPU infrastructure when
performing GPU-related experiments.

When it comes to implementation details of the experiments, all experiments were

81

Chapter 6. Spectral methods on GPU

implemented using modern C++ and compiled with both the Clang/LLVM compiler
provided via Xcode 8.0 on macOS, and the GCC 4.8 compiler on Ubuntu 14.04 LTS.
Both CUDA toolkit 7.5 and 8.0 were tested, but neither yielded a significant performance
difference in any of the experiments. Since CUDA hardware currently yields better
performance when using 32-bit floating point operations, all experiments were performed
on 32-bit data.

6.1. Experiments with eigendecomposition on GPU

In order to gauge the potential performance impact that using GPU computation can
have on spectral methods, we begun our journey by experimenting solely with eigenvalue
solvers on GPU versus CPU. The goal, to uncover both benefits and pitfalls of using
GPU-based solvers. For this purpose, we opted for using the MAGMA library, which
is pitched as a hybrid implementation that leverages both multi-CPU and multi-GPU
infrastructure. The library is designed to be similar enough to LAPACK [86] to make
it as easy as possible to transition to MAGMA. Since the objective was to show the
benefit of using GPUs, we decided to compare the GPU accelerated MAGMA library
against an equivalent CPU-based library. We chose the Eigen library, which is a C++
header-only linear algebra library capable of leveraging BLAS and LAPACK routines.
The use of BLAS/LAPACK should in theory make it capable of computing eigenvalue
decompositions in a highly optimized manner.

6.1.1 Comparison of CPU and GPU performance

To compare the performance of the CPU and GPU eigenvalue solvers, we measured
the execution time of the methods using randomly generated, n X n positive semi-
definite matrices. Using a randomized scheme should help even out minor numerical
differences across the different implementations, as well as differences in the CPU and
GPU hardware. The size of the matrices started at 32 x 32, and then increasing up to
2048 x 2048 in increments of 32 along each dimensions. Additionally, to counter semi-
random effects that might reduce CPU or GPU performance on the machine during
execution, we simulated with random 10 matrices per increment. In other words, we
generated 10 different n x n matrices. By doing this we can find the average computation
time of each implementation, per matrix increment. Since CUDA hardware currently
performs best with 32-bit data, all randomly generated data was 32-bit. Furthermore, to
ensure each of the implementations being tested produced correct computations (in an
approximate, numerical sense), we compared the 10 most dominant eigenvalues produced
in some of our experiment iterations, against the equivalent eigenvalues produced
by a stable and proven, proprietary software solution. The results of that validation

82

6.1. Experiments with eigendecomposition on GPU

process are not reproduced in this thesis, since the intent was only to validate the
numerical stability of the library implementations, and verify the correctness of our
overall approach.

For the the purely CPU-bound implementation built on the Eigen library, we used
their eigenvalue solver made for symmetric (self-adjoint) matrices. According to their
documentation, this is the fastest and most stable of their solvers. During our
experiments we found it to be numerically stable, and efficient. On the GPU side,
we used two slightly different implementations. The first uses a hybrid CPU/GPU
implementation provided by MAGMA, which uses CPU computations for matrices
smaller than some defined data dimensionality threshold. When the size of the
problem/matrix exceeds the threshold, computations are transitioned to GPU. The
second MAGMA implementation does not have this heuristic, and instead runs mostly on
the GPU. We use the term mostly because the MAGMA library uses a hybrid CPU/GPU
approach. Roughly speaking, this means they aim to fully leverage the benefits of both
compute architectures. Note that both of the MAGMA implementations use the same
underlying divide and conquer algorithm. The only major difference is seemingly whether
the matrix size heuristic is employed. Using the non-heuristic version requires manually
managing device memory, whereas the other handles this on our behalf.

During the implementation of our experiments, we initially tried using the QR iteration
based methods provided by MAGMA, but we encountered several problems. Some of
the problems are believed to be attributed to numerical instability. Additionally the
MAGMA implementation requires several tuned parameters, and it is possible the
problems might stem from an non-optimal parameter. The fact these parameters have to
be given is a drawback of using the MAGMA implementation. Regardless, we ended up
not running our experiments with a QR-based scheme, and instead opted for the divide-
and-conquer approach. We also experienced severe problems while attempting to run the
experiments on the secondary setup, but we are not sure what this can be attributed to.
Whether problems were caused by an implementation detail in MAGMA, or possibly a
problem at the hardware level. These exact problems luckily did not manifest themselves
on the primary setup.

Results of the CPU versus GPU eigensolver experiment can be seen in Figure 6.1.1. First
of all we observe that we have not reached the limit of the GPU during the simulation.
This observation is based on the trend in the GPU graphs, which only increase by a small
factor for each iteration. Even though the size of the matrices being decomposed increases
as a factor of n?, the execution time of the GPU implementations is not increasing
quadratically. For the CPU implementation however, we can see that it is affected to a
much greater extent by the increase in matrix size. The execution time for the CPU-
based test seems almost quadratic. For small matrices, around 128 x 128, we can see the
effect of the heuristic employed by MAGMA — from the clear jump in execution time
we can clearly see where the implementation switches from a CPU to GPU computation
scheme. Also note that it seems the results of the non-heuristic implementation is slightly

83

Chapter 6. Spectral methods on GPU

o
o
8 4
o
o
Q
1%2]
£ 8
o =4
£
o
.8
3 o
O —
$ o
[
2
£
=
kS o _| Implementation
g -
S —e— Eigen
—+— MAGMA (CPU)
_ —— MAGMA (GPU)

I I I I
0 500 1000 1500

Matrix size (columns)

Figure 6.1.1. Comparison of the execution time of an entirely CPU-bound eigenvalue decomposition
algorithm implemented in the Eigen library, compared to two GPU-accelerated algorithms
found in the MAGMA library. The MAGMA implementations differ in that the one labeled
“CPU” employs a heuristic to determine whether to run the computation on CPU or GPU.

better. We hypothesize that this is attributed to some overhead in the heuristic.

The second observation that can be made is that based on where the plotted lines
intercept, we are able to determine approximately how large a matrix needs to be in
order to get a computational benefit of using a GPU. Given our the hardware used in
our primary setup, it looks like the limit is around 500 x 500. Comparing this result with
the heuristic employed by the MAGMA implementation, we propose that the heuristic
can be improved to account for modern GPUs, based on the results we have produced.

From the plotted results it can also be observed that what we are primarily measuring
during the GPU executions is the inherent overhead of copying data to and from
the GPU, and launching GPU kernels, etc. Likely there is some level of CPU-GPU
synchronization taking place, which will also have its own associated overhead. Testing
these hypotheses would require further experiments, and most likely a study of the actual
implementation of the MAGMA library. Therefore, no such attempts were made, and
we simply leave it as an interesting observation.

84

6.1. Experiments with eigendecomposition on GPU
6.1.2 Testing performance bounds of the GPU implementation

Next, we ran an experiment to uncover some practical dimensionality bounds of matrices
when only using the MAGMA library. The experiment was executed on the primary
setup, and was essentially a repeat of the earlier experiment, sans the CPU-based
implementation. We increased the previously set upper-bound on the matrix dimensions
up to 32768 x 32768, in increments of 256. In terms of memory usage, the random
matrices were approximately 4 GB in size at the upper limit. This was believed to
be large enough to test the implementation both in terms of memory requirement and
computational effort. We remark that since the execution time after some size increments
can be measured in minutes, we did not have enough time to repeat the computations
for each size increment multiple times. Hence, we are unable calculate mean execution
times, as in the previous experiment.

In Figure 6.1.2 we can see the results of the simulation. Even though the plotted

0
o
? _|
[0)
al
= _
2 3
£ 3
o [Te}
£
= _
o <
=1 3
3 3
> ~—
[}
) 7
€
=)
= o
s ? —
5 ¢)
S Implementation
N —+— MAGMA (CPU)
o
7 —+— MAGMA (GPU)
[Te}

I I I I I I I
0 5000 10000 15000 20000 25000 30000

Matrix size (columns)

Figure 6.1.2. The plotted curves show the temporal performance of the two MAGMA library functions
used in our experiments to perform eigenvalue decomposition. Both seem to have more or
less identical performance, and scale roughly equivalent the Eigen implementation seen in
Figure 6.1.1. The noise in the sample is thought the be caused by effects such as thermal
throttling, or similar.

results are somewhat noisy, we can still see a clear trend. Once again, we see that
the algorithms scale by some factor which seems to be approximately n?. This result
is expected since running computations on a GPU does not alter the complexity of the
underlying algorithm, it will usually only change some constant factor. It is also worth

85

Chapter 6. Spectral methods on GPU

noting that with matrices of this scale, the temporal performance does not seem affected
by whether we use the heuristic MAGMA implementation or not. In both cases the
results are more or less overlapping. The noise in the data is thought to be caused by
e.g. thermal throttling, which is managed at the hardware level, and out of our control.
Repeating the simulation several times, and averaging, would almost surely yield less
noisy data, as in our earlier experiment.

Before we move on, we would also briefly like to remark that during the final execution,
using a 32768 x 32768 matrix, we experienced a runtime issue caused by illegal memory
access. Our hypothesis is that the MAGMA algorithms we used need about three times
more memory than the input matrix itself. Therefore, when running the execution with
a matrix approximately 4 GB in size, the amount of memory needed by the algorithm
exceeded what was available on the GPU, which was approximately 12 GB. This is
something that must be taken into account when using the MAGMA implementation.

6.2. Implementing KECA on GPU

To illustrate the benefit of using GPU-accelerated eigenvalue solvers, we chose to
implement the KECA algorithm in combination with a RBF kernel. Initially we
implemented the algorithm using purely CPU-bound computations, using C++. This
effort was necessary to understand what is involved in actually computing the kernel
matrix, sorting and picking eigenvectors based on entropy, and so forth. Our initial
implementation was based on the original implementation!. For our experiments we
used the Frey Face dataset, since it is one of the datasets used in Jenssen [1], and it is

sufficiently large to use for GPU benchmarks.

As part of our initial CPU-based implementation effort, we realized that the RBF kernel
matrix computation would be a reasonable candidate for GPU-acceleration. We stress
that our implementation is somewhat naive in the sense that it is not properly coalesced,
and the manner in which we compute the pairwise distance measures can almost surely be
implemented in a more optimal manner. Nonetheless, due to the massively parallel nature
of GPU computations, our implementation is much faster than the CPU implementation.
The comparison benchmark between both implementations can be seen in Figure 6.2.1.
Both algorithms scale equivalently, but the GPU implementation is much faster because
it is massively parallel. We hypothesize that the speedup will be even greater with a
more efficient memory access pattern in the GPU kernel.

The eigendecomposition in our KECA implementation is performed by the previously
discussed Eigen and MAGMA implementations. Therefore we will not benchmark them

Implementation of KECA found at http://ansatte.uit.no/robert.jenssen/software.html.

86

6.2. Implementing KECA on GPU

o
S -
w
o
(93
(2]
3
[} —
£
c o _| 0099
8 0 o
=
8
x
o
L
E 2
£
=
&) o —
g .
9 Implementation
—— CPU
- — 000000 —— GPU

I I I I
0 500 1000 1500

Matrix size (columns)

Figure 6.2.1. Results show the execution time of computing a RBF kernel matrix for a varying number
of observations (columns).

again here, but rather we want to show the overall benefit of performing both the
computation of the kernel and the eigenvalue decomposition on GPU. Note that there
are still parts of the KECA implementation that are executing solely on a CPU, such
as the entropy-based eigenvector selection criterion, and the final subspace projection.
The comparison of running our KECA implementation entirely on CPU in comparison
with mostly on GPU, can be seen in Figure 6.2.2. The speedup is significant — for the
full-size dataset the difference is two orders of magnitude.

Finally, to verify the correctness of our implementations, we ran the original, plus both
of our implementations on the full dataset, and plotted the result of projecting down to
three dimensions. All three results can be seen in Figure 6.2.3. From the results we can
see that all three results are equivalent. The slight difference in our CPU implementation
is merely an effect of the direction of the computed eigenvectors.

87

Chapter 6. Spectral methods on GPU

Q
S
S -
)

= -

o

12}

£

o 8

g =

=

c

L

3
Q

¢ 8

3 -

L

£

=

s

S 2 7 ;

S Implementation

—— CPU
—o— GPU

- —

[[[[
0 500 1000 1500
Matrix size (columns)

Figure 6.2.2. Benchmark results comparing running a full KECA implementation on CPU versus an
implementation that mostly runs on a GPU. The speedup is approximately two orders of
magnitude.

Original Ce+(CPU) C++(GPU)

Figure 6.2.3. The three plots show the result of using KECA to project the Frey Face dataset down
to three dimensions, where the result on the left was made by the original MATLAB
implementation, and the other two using our C++ implementations.

88

Chapter 7.

QR algorithm on GPU

We have stated that it might be necessary to implement our own QR algorithm on
GPU in order to efficiently implement the proposed permutations that improve the
convergence properties of the algorithm. Therefore, in this chapter we will look at some
preliminary experiments we performed in order to uncover what will be involved in
such an effort, as well as discover problems. Our aim was to facilitate future efforts at
implementing a GPU-based symmetric QR algorithm with permutations.

7.1. Preliminary investigation

As we saw in Chapter 6, using the QR algorithm provided by the MAGMA library
has several drawbacks, and therefore we decided to investigate implementing our own
QR algorithm. Instead of having to also implement the QR decomposition ourselves,
we ended up using the QR decomposition implementations provided in the cuSOLVER
library that is bundled with the CUDA toolkit. The implementation we used is based on a
Householder reflection scheme that is based on the equivalent LAPACK implementation.
It has one major drawback; it does not explicitly form the orthogonal matrix Q, which
is needed as part of each iteration in the QR algorithm. Instead what it yields, is a
set of Householder vectors. As we know from Section 1.4.2, we can form Householder
reflectors from the Householder vectors, and from the reflectors we can form the matrix
Q. The main problem is that due to computational complexity, we can not explicitly form
the Householder reflectors and multiply them together to form Q. Briefly summarized,
for an n x n matrix, the Householder QR decomposition yields n Householder vectors.
Therefore we would need to perform n outer products simply to form all the Householder
reflectors. Furthermore, we would then need to multiply all n Householder reflectors
together. The temporal and spatial complexity of this is non-trivial. Because of this, we
instead propose that Q can be formed in an “implicit” manner; for each coefficient of
the matrix Q, perform all the computations necessary to form that single cofficient, as
if it had been given as a result of performing all of the explicit computations.

89

Chapter 7. QR algorithm on GPU

7.2. The proposed GPU implementation

In order to to make our implementation easier to reason about during development,
in particular investigating errors, we decided to limit the implementation to running
entirely on a single thread block. Doing this allowed us to efficiently synchronize threads
to make it easier to debug, etc. Therefore, the max dimensions of matrices is currently
32 x 32. Initial implementations were done on even smaller matrices, and scaled up to
the maximum size towards the end of the experiment.

The preliminary implementation for forming the Q matrix on a GPU using an “implicit”
reflector computation scheme is proposed,

—global _
void construct_g_matrix(float* q, float* source, float* tau, int n)

{

auto row = blockDim.x * blockIdx.x + threadIdx.x;
auto col = blockDim.y * blockIdx.y + threadIdx.y;
auto idx = col * n + row;

if (row >=n || col >= n) return;

for (auto k = 0; k < n; ++k) {
auto inner_product = 0.0f;

for (auto i =0; i < n; ++i) {
auto row_coeff = q[i * n + row];
auto col_coeff = get_reflector_coefficient(source, tau, n, k, i, col);

inner_product += row_coeff * col_coeff;

}

—syncthreads();
ql[idx] = inner_product;
}
}

For every k-th Householder vector given in source, an inner product between a row vector
of Q, and a column vector of Hy is computed. Which row and column is determined
based on the coefficient being processed by the kernel thread. After all threads in the
block have finished step k, each thread updates its coefficient in Q. This necessity to
synchronize threads is caused by the dependency in how all the reflectors are multiplied
together. We remark that this will have to be handled in the future when implementing
support for larger matrices. Additionally, we hypothesize the memory access scheme is
not coalesced.

The necessary device-only function that computes the reflector coefficient for a given
row and column position, and given reflector is proposed as follows,

90

7.2. The proposed GPU implementation

—device__
float get_reflector_coefficient(
float* source, float* tau, int n, int reflector_index, int row, int col)

{
if (row < reflector_index || col < reflector_index) {
return (row == col) ? 1.0f : 0.0f;
}
auto pre_coeff = (row == col) ? 1.0f : 0.0f;
auto row_coeff = (row == reflector_index)
? 1.0f : source[reflector_index * n + row];
auto col_coeff = (col == reflector_index)

? 1.0f : source[reflector_index * n + coll;

return pre_coeff - tau[reflector_index] * row_coeff * col_coeff;

For the complete, working implementation of the proposed, preliminary GPU-accelerated
QR algorithm, please see Appendix B. We stress that while the implementation might
look trivial in some sense, there was significant effort involved in “unrolling” the
computations that construct Q, and translating them into simple inner products.

When running the proposed implementation through the NVIDIA Visual Profiler, we
discovered that approximately 72% of the computation effort is spent finding the QR
decomposition, which is computed by the cuSOLVER library. About 15% is spent
executing our Q matrix kernel, and the remaining time is spent on computing the
matrix-matrix products. These numbers are promising, and at least give us an indication
that our proposed kernel is working reasonably in terms of efficiency. The performance
analysis also indicated that the occupancy is good. Indications are that the block size,
register usage, and shared memory usage of the kernel will allow it to fully utilize all
warps on the device. Some of the results produced by the analysis tool can be seen in
Figure 7.2.1, Figure 7.2.3, and Figure 7.2.2.

100%

<
S 60%] Memory operations
=1
% . [Control-flow operations
= [Arithmetic operations
5 40%

Memory (System)

[B

Compute Memory (System)

Figure 7.2.1. Utilization result for our Q matrix kernel. Generated by NVIDIA Visual Profiler.

The results as seen in the aforementioned figures are not particularily conclusive, due in
part to the small block size and low memory usage, but they are nonetheless promising.

91

Chapter 7. QR algorithm on GPU

Varying Shared Memory Usage

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k 38k 40k 42k 44k 46k 48k
Shared Memory Per Block (bytes)

Figure 7.2.2. Shared memory usage for our Q matrix kernel. Generated by NVIDIA Visual Profiler.

To get more conclusive results, we would likely have to increase the block size, but that
would mean going outside the intended scope of our experiments. Therefore we leave
further investigation as a future effort.

92

7.2. The proposed GPU implementation

Varying Block Size

64T — — — o
! a i 61024
56+ |.___ I—— — —

— [—
{ —
48+ ! —

Z a7

=
v
L PR3
Py
o
2

S ot
16 +—
st
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Threads Per Block
Varying Register Count

64 @

6420

56

48

40

32

244

16

2

0 3744 7488 11232 14976 18720 22464 26208 29952 33696 37440 41184 44928 48672 52416 56160 59904 6553¢

Registers Per Thread

Figure 7.2.3. Occupancy result for our Q matrix kernel. Generated by NVIDIA Visual Profiler.

93

Part 1V.

Discussion

95

Chapter 8.

Concluding remarks

In this thesis we have investigated both the benefits and pitfalls of performing
eigendecomposition on GPU. Our investigation was performed as a series of small
experiments designed to study important features of GPU-based eigensolvers. This
primarily involved leveraging the MAGMA library, and specifically their divide-and-
conquer implementation for computing an eigendecomposition. Our plan was originally
to use the QR algorithm implemented in MAGMA for the eigendecomposition, but we
found that it had problems with numerical stability, and therefor had to rely on the
divide-and-conquer implementation instead. In order to show the proposed benefits of
GPU computation, we compared against a CPU-bound eigensolver provided by the Eigen
library. Our experiments showed that using a GPU-based eigensolver is two orders of
magnitude faster for matrices larger than approximately 500 x 500, when running on
an NVIDIA TITAN X GPU, and a Intel Xeon E5-2630 CPU. For small matrices, we
have shown that using CPU computation is faster. We also performed an experiment
that uncovered one of the limitations of the MAGMA implementation. What we found
is that the employed implementation requires approximately three times the amount of
memory needed to simply store the matrix, to perform its computations. This means
that on a GPU with 12 GB of memory, the matrix cannot exceed 4 GB in size. Once the
initial experiments were done, we then combined our GPU-based eigensolver approach
with our own C++ implementation of KECA. As part of this effort we also proposed
a GPU implementation to compute the RBF kernel, which is at the core of a machine
learning algorithm called KECA. The computation of our proposed GPU kernel was
shown to be about two orders of magnitude faster than the equivalent CPU version,
since the estimation of the kernel function is the leading operation. The overall, proposed
KECA implementation using both GPU-accelerated RBF kernel matrix computation,
and GPU-accelerated eigensolver, was also shown to be two orders of magnitude faster
than the equivalent CPU implementation.

Our second objective in this thesis was to perform a preliminary study into what is
involved in implementing the symmetric QR algorithm with permutations on GPU. The
main advantage of this QR algorithm is that the permutations improve the convergence

97

Chapter 8. Concluding remarks

rate of the eigenvalue estimation by a factor of two. During our initial study we discovered
a problem caused by the fact that the QR decomposition routine we used from the
cuSOLVER library, does not explicitly form the orthogonal matrix Q that we require in
the QR algorithm. Therefore we performed an experiment in which we implemented a
GPU kernel that forms the required matrix from the Householder vectors given by the
QR decomposition implementation. Instead of forming the matrix by constructing the
Householder reflectors for the given vectors, then multiplying the constructed matrices
to form the Q matrix, we instead proposed an “implicit” approach. Our proposed
algorithm is based on constructing each coefficient in the final matrix by the series
of computations that would yield that coefficient if we performed the explicit formation.
We then combined this with an overall QR algorithm GPU implementation, and we
showed that our proposed implementation works under the limitations for which it was
designed. Our proposed implementation is intended to fascilitate a future implementation
of the symmetric QR algorithm with permutations. Given our first-hand experience with
numerical instability in the QR algorithm implemented in MAGMA, we remark that
attempting to implement the permutation approach on GPU seems valuable, since it
addresses numerical instability.

8.1. Future work

There are several additional paths that can be explored in future work. For instance,
when it comes to implementing a permutation scheme, we have alluded to the fact
it might be more efficient to perform a manner of implicit permutation. By this we
mean that to perform permutation of one matrix, before multiplying said matrix with
some other matrix, it is not strictly necessary to compute the permutation explicitly.
It should instead be possible to implement a specialized matrix-matrix multiplication
operation instead. Such that when multiplying two matrices together, we can “translate”
row or column indices according to a permutation. If done efficiently, this type of
implicit permutation should be faster than an explicit permutation. There is one caveat
however; we typically employ block matrix multiplication when multiplying together
large matrices. Combining block matrix multiplication with implicit permutation on
GPU, while ensuring e.g. coalesced memory access, will undoubtedly be very challenging.
However, given the benefits of improved convergence rates, this is worth exploring.

In the field of manifold learning, several algorithms are based on the computation of
eigensystems. We briefly considered on such algorithm that is based on the computation
of the gradient of the Hessian matrix for a small neighborhood around a point in
the dataset, and this is done for all datapoints. Calculating the gradient in this case
involves computing an eigendecomposition of the Hessian matrix. Importantly, these
calculations are independent between all datapoints. Based on this, we performed a few
experiments during the thesis, to attempt to accelerate the algorithm with GPU-based

98

8.1. Future work

eigendecomposition. However, the algorithm computes all the eigendecompositions inside
of an iterative Runge-Kutta scheme. Therefore our experiments were unsuccesful, but
parallel eigendecompositions of many small matrices is still a very interesting idea.

Our proposed GPU kernel implementation that computes the Q matrix uses thread
synchronization, which only works intra-block. In order to scale up the kernel to
handle matrices larger than maximum block dimensions, we will need to investigate
some manner of inter-block synchronization scheme. We are aware of one proposed
implementation, presented in Xiao and Feng [87|, that would be a prime candidate
for further investigation and experimentation.

99

Part V.

Appendix

101

Appendix A.

KECA on GPU

What follows are a few, noteworthy parts of the KECA GPU implementation.

A.1. RBF kernel matrix computation on GPU

—global__

void compute_kernel_matrix(float* kernel_matrix, const floatx input, const float alpha, const

— size_t m, const size_t n)

{
const auto i = threadIdx.y + blockDim.y * blockIdx.y; // Maps to rows ~ "down"
const auto j = threadIdx.x + blockDim.x * blockIdx.x; // Maps to cols ~ "right"
if (i >=n || j >=n) { return; }

// We only want to perform work if we're in the upper diagonal of the kernel matrix...
// Exit early if we're in the lower diagonal part.

if (i > j) { return; }

// Calculate index of within the kernel matrix for the i-th row, and j-th column.
const auto idx =i + n * j;

// If we're on the diagonal, simply set kernel coefficient to 1, and exit early.

if (i ==13j) {
kernel_matrix[idx] = 1.f;
return;

}

// Calculate the pairwise Euclidean distance between vectors "i" and "j".
auto sum = 0.°f;
for (auto k = 0; k < m; ++k) {

const auto idx i = k + m x i; // i-th observation

const auto idx_j = k + m x j; // j-th observation

const auto temp = input[idx_i] - input[idx_j];

sum += temp * temp;

}

103

Appendix A. KECA on GPU

// RBF kernel coefficient based on: K = exp{-alpha * X.”2}
// Note that we've omitted the idempotent operation of squaring a square root.
const auto coeff = std::exp(-alpha * sum);

// Set kernel coefficient in both the upper and lower diagonal.
kernel_matrix[idx] = coeff; // Upper diagonal
kernel_matrix[j + n x i] = coeff; // Lower diagonal

A.2. MAGMA-based eigensolver

auto solve_eigensystem(const std::vector<float>& matrix, const size_t n)
{

// Initialize MAGMA.

magma_init();

magma_int_t info = 0;

magma_device_t device;

magma_getdevice(&device);

magma_queue_t queue;

magma_queue_create(device, &queue);

// Allocate device memory.
float*x dev_matrix;
magma_smalloc(&dev_matrix, n * n);

// Copy from CPU to GPU...
magma_ssetmatrix(n, n, matrix.data(), n, dev_matrix, n, queue);

std:vector<float> eigvals(n);
int num_eigvals;

float*x work_matrix;
magma_smalloc_cpu(&work_matrix, n * n);

// Figure out what the optimal workspace size 1is.
float lwork;

int liwork;

magma_ssyevdx_gpu (
MagmaVec, // jobz [in]
MagmaRangeAll, // range [in]
MagmaLower, // uplo [in]
n, // n [in]
dev_matrix, // dA [in,out]
n, // ldda [in]
0, // vl [in]
0, // vu [in]
0, // il [in]
0, // iu [in]

104

&num_eigvals,
eigvals.data(),
work_matrix,

n,

&lwork,

);

//
//
//
//
//
//
//
//
//

A.2. MAGMA-based eigensolver

m [out]

w [out]

wA [in]

ldwa [in]
work [out]
lwork [in]
iwork [in]
liwork [out]
info [out]

// Initialize workspace with the optimal size.

floatx work;

magma_smalloc_cpu(&work, std::ceil(lwork));

int*x iwork;

magma_imalloc_cpu(&iwork, liwork);

// Execute the eigendecomposition.

magma_ssyevdx_gpu(
MagmaVec,
MagmaRangeAll,
MagmaLower,
n,
dev_matrix,
n,

&num_eigvals,
eigvals.data(),
work_matrix,
n,
work,
lwork,
iwork,
liwork,
&info
);

if (info > 0) {

std::cerr « magma_strerror(info) « " (" « info « ")" « "\n";

}

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

jobz [in]
range [in]
uplo [in]

n [in]

dA [in,out]
ldda [in]
vl [in]

vu [in]

il [in]

iu [in]

m [out]

w [out]

wA [in]
ldwa [in]
work [out]
lwork [in]
iwork [in]
liwork [out]
info [out]

std::vector<float> eigvecs(n * n);

magma_sgetmatrix(n, n, dev_matrix, n, eigvecs.data(), n, queue);

// Release host memory.
magma_free_cpu(work) ;
magma_free_cpu(iwork);

magma_free_cpu(work_matrix);

105

Appendix A. KECA on GPU

// Release device memory.
magma_Tfree(dev_matrix);

magma_queue_destroy(queue);
magma_finalize();

return std::make_tuple(eigvecs, eigvals);

106

Appendix B.

QR algorithm on GPU

Complete, experimental implementation of QR algorithm on GPU. Requires a C++

header-only library codenamed “Cudalicious”, which can be found at

https://github.com/thomasjo/cudalicious.

#include
#include
#include
#include
#include

#include
#include
#include

<cassert>
<cstdlib>
<iomanip>
<iostream>
<vector>

<cudalicious/blas.hpp>
<cudalicious/core.hpp>
<cudalicious/solver. hpp>

constexpr auto MAX_ITER = 50;

struct Eigensystem {
const std::vector<float> eigenvectors;
const std::vector<float> eigenvalues;

Eigensystem(const std::vector<float>& eigenvectors, const std::vector<float>& eigenvalues)
: eigenvectors(eigenvectors)
, eigenvalues(eigenvalues)

{}
b

template<typename T>

void print_matrix(const std::vector<T>& matrix, const int n)

{

for (auto i = 0; i < n; ++i) {
for (auto j = 0; j < n; ++j) {
const auto idx = j * n + i;

std::cout « std::setprecision(7) « std::setw(1l2) « matrix[idx];

}
std:

:cout « "\n";

107

Appendix B. QR algorithm on GPU

_device__
float get_reflector_coefficient(const float* source, const float*x tau, const int n, const int
— reflector_index, const int row, const int col)

{
if (row < reflector_index || col < reflector_index) return (row == col) ? 1.f : 0.f;
const auto row_coeff = (row == reflector_index) ? 1.f : source[reflector_index *x n + row];
const auto col_coeff = (col == reflector_index) ? 1.f : source[reflector_index *x n + col];
return ((row == col) ? 1.f : 0.f) - taul[reflector_index] * row_coeff * col_coeff;

}

—global__
void construct_g_matrix(float* g, const float* source, const floatx tau, const size_t n)
{

// Remember that *x* gives the row index, and ‘y" gives the column index.

const auto row = blockDim.x * blockIdx.x + threadIdx.x;

const auto col = blockDim.y * blockIdx.y + threadIdx.y;

const auto idx = col * n + row;

if (row >=n || col >= n) return;

for (auto k = OU; k < n; ++k) {
auto inner_product = 0.f;

for (auto i = 0U; i < n; ++i) {
const auto row_coefficient = q[i * n + row];
const auto col_coefficient = get_reflector_coefficient(source, tau, n, k, i, col);

inner_product += row_coefficient * col_coefficient;

}

__syncthreads();
q[idx] = inner_product;

}

Eigensystem compute_eigensystem(const std::vector<float>& matrix, const size_t n)
{

assert(matrix.size() == n * n); // Ensure matrix is square

if (n > 32U) {
std::cerr « "Maximum supported matrix size is 32x32!\n";
std::exit(1);

const dim3 threads_per_block(32, 32);

const dim3 block size(
std::ceil(n / threads_per_block.x) + (((n % threads_per_block.x) == 0 ? 0 : 1)),
std::ceil(n / threads_per_block.y) + (((n % threads_per_block.y) == 07?0 : 1))

108

);

// Create cuSOLVER and cuBLAS handles.
auto solver_handle = cuda::solver::initialize();
auto blas_handle = cuda::blas::initialize();

// Allocate device memory.

auto dev_matrix = cuda::copy_to_device(matrix);

auto dev_qr = cuda::allocate<float>(matrix.size());
cuda::copy_on_device(dev_qr, dev_matrix, matrix.size());

// Determine workspace size.
auto workspace_size = cuda::solver::geqrf_buffer_size(solver_handle, n, n, dev_matrix, n);

auto dev_tau = cuda::allocate<float>(n);
auto dev_workspace = cuda::allocate<float>(workspace_size);
auto dev_info = cuda::allocate<int>(1);

std::vector<float> identity(n * n, 0);
for (auto i = 0U; i < n; ++i) {
identity[i * n + i] = 1.f;

}

auto dev_q = cuda::copy_to_device(identity);
auto dev_eigvecs = cuda::copy_on_device(dev_q, matrix.size());

for (auto iter = 0; iter < MAX_ITER; ++iter) {
// Compute QR factorization.
cuda::solver::geqrf(solver_handle, n, n, dev_qr, n, dev_tau, dev_workspace,
— workspace_size, dev_info);

cuda::copy_to_device(dev_q, identity.data(), identity.size());
construct_g_matrix«<block_size, threads_per_block»>(dev_q, dev_qr, dev_tau, n);
cuda::device_sync();

constexpr auto alpha = 1.f;
constexpr auto beta = 0.f;

// Compute A_k = Q_K~T * A_(k-1) = Q_k -> A_k converges to eigenvalues of A_0.
cuda::blas::gemm(blas_handle, n, n, n, alpha, dev_q, n, dev_matrix, n, beta, dev_qgr, n,
— true);

cuda::blas::gemm(blas_handle, n, n, n, alpha, dev_qr, n, dev_q, n, beta, dev_matrix, n);

// Compute L_k = Q_k * Q_(k-1)..Q0_0 -> L_k converges to eigenvectors of A_0.
cuda::blas::gemm(blas_handle, n, n, n, alpha, dev_eigvecs, n, dev_q, n, beta, dev_qr, n);

cuda: :copy_on_device(dev_eigvecs, dev_qr, matrix.size());
cuda::copy_on_device(dev_qr, dev_matrix, matrix.size());

std::vector<float> eigvecs(n * n);
cuda::copy_to_host(eigvecs, dev_eigvecs);

109

Appendix B. QR algorithm on GPU

std::vector<float> eigvals(n * n);
cuda::copy_to_host(eigvals, dev_matrix);

cuda::free(dev_eigvecs);
cuda::free(dev_q);
cuda::free(dev_info);
cuda::free(dev_workspace);
cuda::free(dev_tau);
cuda::free(dev_qr);
cuda::free(dev_matrix);

cuda::blas::release(blas_handle);
cuda::solver::release(solver_handle);

auto trace = [](const std::vector<float>& matrix, const size_t n) {
std::vector<float> tr;
for (auto i = OU; i < n; ++i) { tr.emplace_back(matrix[i * n + i]); }

return tr;
+i
return Eigensystem(eigvecs, trace(eigvals, n));
}
int main()
{
const auto n = 4;
const std::vector<float> matrix {
5, -2, -1, o,
-2, 5, 0,1,
-1, o, 5, 2,
0, 1, 2,5,
}i
std::cout « "\nInput matrix:\n";
print_matrix(matrix, n);
const auto eigensystem = compute_eigensystem(matrix, n);
std::cout « "\nComputed eigenvectors:\n";
print_matrix(eigensystem.eigenvectors, n);
std::cout « "\nComputed eigenvalues:\n";
for (auto v : eigensystem.eigenvalues) std::cout « v « "\n";
}

110

Bibliography

[1]
2]

13

4]

[5]
(6]

7]

18]

19]

[10]

[11]

[12]

Robert Jenssen. “Kernel entropy component analysis.” In: Pattern Analysis and
Machine Intelligence, IEEE Transactions on 32.5 (2010), pp. 847-860.

Aravindh Krishnamoorthy. “Symmetric QR Algorithm with Permutations.” In:
arXiv preprint arXiw:1402.5086 (2014).

Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear
algebra for hybrid GPU accelerated manycore systems.” In: Parallel Computing
36.5 (2010), pp. 232-240.

Stanimire Tomov et al. “Dense linear algebra solvers for multicore with GPU
accelerators.” In: Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on. IEEE. 2010, pp. 1-8.

Jack Dongarra et al. “Accelerating numerical dense linear algebra calculations
with GPUs.” In: Numerical Computations with GPUs. Springer, 2014, pp. 3-28.

Rajib Nath, Stanimire Tomov, and Jack Dongarra. “An improved MAGMA
GEMM for Fermi graphics processing units.” In: International Journal of High
Performance Computing Applications 24.4 (2010), pp. 511-515.

Rajib Nath, Stanimire Tomov, and Jack Dongarra. “Accelerating GPU kernels
for dense linear algebra.” In: International Conference on High Performance
Computing for Computational Science. Springer. 2010, pp. 83-92.

Azzam Haidar et al. “A framework for batched and gpu-resident factorization
algorithms applied to block householder transformations.” In: International
Conference on High Performance Computing. Springer. 2015, pp. 31-47.

Ahmad Abdelfattah et al. “High-Performance Tensor Contractions for GPUs.”
In: Procedia Computer Science 80 (2016), pp. 108-118.

Yinan Li, Jack Dongarra, and Stanimire Tomov. “A note on auto-tuning GEMM
for GPUs.” In: International Conference on Computational Science. Springer.
2009, pp. 884-892.

Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. “ Autotuning GEMM
kernels for the Fermi GPU.” In: IEEFE Transactions on Parallel and Distributed
Systems 23.11 (2012), pp. 2045-2057.

Howard Anton and Chris Rorres. Elementary Linear Algebra : with Supplemental
Applications. Wiley, 2011. 1SBN: 978-0-470-56157-7.

111

Bibliography

[13] Leonhard Euler. “Du mouvement d’'un corps solide quelconque lorsqu’il tourne
autour d’'un axe mobile.” In: Histoire de I’Académie royale des sciences et des
belles lettres de Berlin. [Formerly Miscellanea Berolinensial. Avec les mémoires.
Akademie der Wissenschaften der DDR., 1767, pp. 176-227. URL:
https://books.google.no/books?id=XLQEAAAAQAA].

[14] David Hilbert. “Grundziige einer allgeminen Theorie der linaren
Integralrechnungen. (Erste Mitteilung).” In: (1904). URL:
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002499967.

[15] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal component analysis.”
In: Chemometrics and intelligent laboratory systems 2.1-3 (1987), pp. 37-52.

[16] Jianbo Shi and Jitendra Malik. “Normalized cuts and image segmentation.” In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 22.8 (2000),
pp. 888-905.

[17] Amy N Langville and Carl D Meyer. “A survey of eigenvector methods for web
information retrieval.” In: SIAM review 47.1 (2005), pp. 135-161.

[18] C. D. Meyer. Matriz analysis and applied linear algebra. Society for Industrial
and Applied Mathematics, 2000. I1SBN: 978-0-898714-54-8.

[19] Paolo Ruffini. Teoria generale delle equazioni: in cui si dimostra impossibile la
soluzione algebraica delle equazioni generali di grad superiore al quarto. Vol. 1.
Nella stamperia di S. Tommaso d’Aquino, 1799.

[20] Niels Henrik Abel. Mémoire sur les équations algébrique: ot on démontre
[tmpossiblité de la résolution de ’equation générale du cinquieme dégreé.
Librarian, Faculty of Science, University of Oslo, 1824.

[21] Niels Henrik Abel. “Démonstration de limpossibilité de la résolution algébrique

des équations générales qui passent le quatrieme degré.” In: Journal fiir die reine
und angewandte Mathematik 1 (1826), pp. 65-96.

[22] Alan M Turing. “Rounding-off errors in matrix processes.” In: The Quarterly
Journal of Mechanics and Applied Mathematics 1.1 (1948), pp. 287-308.

[23] R. M. Corless and D. J. Jeffrey. “The Turing Factorization of a Rectangular
Matrix.” In: SIGSAM Bull. 31.3 (Sept. 1997), pp. 20-30. 1SSN: 0163-5824. DOTI:
10.1145/271130.271135. URL: http://doi.acm.org/10.1145/271130.271135.

[24] David S. Watkins. Fundamentals of matriz computations. Wiley-Interscience,
2002. 1SBN: 0-471-21394-2.

[25] Denis Serre. Matrices theory and applications. Springer, 2002. ISBN:
0-387-95460-0.

[26] Lars Eldén. Matriz methods in data mining and pattern recognition. Society for
Industrial and Applied Mathematics, 2007. ISBN: 978-0-898716-26-9.

[27] Gene Golub. Matriz computations. Johns Hopkins University Press, 1996. ISBN:
0-8018-5414-8.

112

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

Bibliography

William Press. Numerical recipes in C : the art of scientific computing.
Cambridge University Press, 1992. 1SBN: 0-521-43108-5.

Nicholas J. Higham. “Cholesky factorization.” In: Wiley Interdisciplinary
Reviews: Computational Statistics 1.2 (Sept. 2009), pp. 251-254. 1SSN: 1939-0068.
DOI: 10.1002/wics.18. URL: http://dx.doi.org/10.1002/wics.18.

James W Daniel et al. “Reorthogonalization and stable algorithms for updating
the Gram-Schmidt QR factorization.” In: Mathematics of Computation 30.136
(1976), pp. 772-795.

Ake Bjorck. “Numerics of Gram-Schmidt orthogonalization.” In: Linear Algebra
and Its Applications 197 (1994), pp. 297-316.

Luc Giraud, Julien Langou, and Miroslav Rozloznik. “The loss of orthogonality
in the Gram-Schmidt orthogonalization process.” In: Computers & Mathematics
with Applications 50.7 (2005), pp. 1069-1075.

Lloyd Trefethen. Numerical linear algebra. Society for Industrial and Applied
Mathematics, 1997. 1SBN: 0-89871-361-7.

Tim Sauer. Numerical analysis. Boston: Pearson, 2012. 1SBN: 978-0321783677.

Leslie Hogben. Handbook of linear algebra. Chapman & Hall/CRC, 2007. 1SBN:
1-58488-510-6.

James Demmel. Applied numerical linear algebra. Society for Industrial and
Applied Mathematics, 1997. 1SBN: 0-89871-389-7.

RV Mises and Hilda Pollaczek-Geiringer. “Praktische Verfahren der
Gleichungsauflésung.” In: ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift fir Angewandte Mathematik und Mechanik 9.2 (1929),
pp. 152-164.

Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the
Web. Technical Report 1999-66. Stanford InfoLab, Nov. 1999. URL:
http://ilpubs.stanford.edu:8090/422/.

Sergios Theodoridis. Pattern Recognition. Academic Press, 2009. ISBN:
978-1-59749-272-0.

Thomas E Booth. “Power iteration method for the several largest eigenvalues and
eigenfunctions.” In: Nuclear science and engineering 154.1 (2006), pp. 48-62.

Toshihiro Yamamoto. “Convergence of the second eigenfunction in Monte Carlo
power iteration.” In: Annals of Nuclear Energy 36.1 (2009), pp. 7-14.

Filippo Maria Bianchi et al. “An agent-based algorithm exploiting multiple local
dissimilarities for clusters mining and knowledge discovery.” In: Soft Computing
(2015), pp. 1-23.

John GF Francis. “The QR transformation a unitary analogue to the LR
transformation (part 1).” In: The Computer Journal 4.3 (1961), pp. 265-271.

113

Bibliography

[44]

[45]

[46]
[47]
48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

114

John GF Francis. “The QR transformation (part 2).” In: The Computer Journal
4.4 (1962), pp. 332-345.

Vera N Kublanovskaya. “On some algorithms for the solution of the complete
eigenvalue problem.” In: USSR Computational Mathematics and Mathematical
Physics 1.3 (1962), pp. 637-657.

S. K. Godunov. Modern aspects of linear algebra. American Mathematical
Society, 1998. 1SBN: 0-8218-0888-5.

Granville Sewell. Computational methods of linear algebra. Wiley-Interscience,
2005. 1SBN: 0-471-73579-5.

Junjie Li, Sanjay Ranka, and Sartaj Sahni. “GPU matrix multiplication.” In:
Multicore Computing: Algorithms, Architectures, and Applications 345 (2013).

Michael Cogswell et al. “Reducing Overfitting in Deep Networks by Decorrelating
Representations.” In: arXiv preprint arXiv:1511.06068 (2015).

Karl Pearson. “On lines and planes of closest fit to systems of points in space.”
In: Philosophical Magazine Series 6 2.11 (1901), pp. 559-572. DOLI:
10.1080/14786440109462720.

Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python.” In: Journal
of Machine Learning Research 12.0ct (2011), pp. 2825-2830.

Naum Ilich Akhiezer and Izrail Markovich Glazman. Theory of linear operators
in Hilbert space. Courier Corporation, 2013.

James Mercer. “Functions of positive and negative type, and their connection
with the theory of integral equations.” In: Philosophical transactions of the royal
society of London. Series A, containing papers of a mathematical or physical
character 209 (1909), pp. 415-446.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. “Dimensionality
reduction for supervised learning with reproducing kernel Hilbert spaces.” In:
Journal of Machine Learning Research 5.Jan (2004), pp. 73-99.

Nachman Aronszajn. “Theory of reproducing kernels.” In: Transactions of the
American mathematical society 68.3 (1950), pp. 337-404.

Yoav Goldberg and Michael Elhadad. “splitSVM: fast, space-efficient,
non-heuristic, polynomial kernel computation for NLP applications.” In:
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers. Association for
Computational Linguistics. 2008, pp. 237-240.

Yin-Wen Chang et al. “Training and testing low-degree polynomial data
mappings via linear SVM.” In: Journal of Machine Learning Research 11.Apr
(2010), pp. 1471-1490.

Gert RG Lanckriet et al. “Learning the kernel matrix with semidefinite
programming.” In: Journal of Machine learning research 5.Jan (2004), pp. 27-72.

[59]

[60]

[61]

[62]
[63]

|64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

Bibliography

Bernhard Scholkopf, Alexander Smola, and Klaus-Robert Miiller. “Kernel
principal component analysis.” In: International Conference on Artificial Neural
Networks. Springer. 1997, pp. 583-588.

Luis Gémez-Chova, Robert Jenssen, and Gustavo Camps-Valls. “Kernel entropy
component analysis for remote sensing image clustering.” In: IEEE Geoscience
and Remote Sensing Letters 9.2 (2012), pp. 312-316.

Robert Jenssen and Ola Storas. “Kernel Entropy Component Analysis
Pre-images for Pattern Denoising.” In: Scandinavian Conference on Image
Analysis. Springer Berlin Heidelberg. 2009, pp. 626-635.

Gordon E Moore et al. “Progress in digital integrated electronics.” In: 1975.

Shekhar Borkar. “Design challenges of technology scaling.” In: IEEE micro 19.4
(1999), pp. 23-29.

Sharan Chetlur et al. “cuDNN: Efficient primitives for deep learning.” In: arXiv
preprint arXiw:1410.0759 (2014).

Stefan Hadjis et al. “Caffe con Troll: Shallow Ideas to Speed Up Deep Learning.”
In: Proceedings of the Fourth Workshop on Data analytics in the Cloud. ACM.
2015, p. 2.

Barry Wilkinson and Michael Allen. Parallel programming. Vol. 999. Prentice
hall New Jersey, 1999.

NVIDIA Corporation. CUDA C Programming Guide. 2016. URL:
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (visited on
11/11/2016).

Intel Corporation. Intel Xeon processor E5-2699 v/. Datasheet. 2016. URL:

http://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-
Cache-2_20-GHz (visited on 11/14/2016).

NVIDIA Corporation. NVIDIA Tesla P100. The most advanced datacenter
accelerator ever built. Whitepaper. 2016. URL:
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf (visited on 11/14/2016).

Alan Jay Smith. “Cache memories.” In: ACM Computing Surveys (CSUR) 14.3
(1982), pp. 473-530.

Saied Zangenehpour. Method of varying the amount of data prefetched to a cache
memory in dependence on the history of data requests. US Patent 5,146,578.
Sept. 1992.

Erik Lindholm et al. “NVIDIA Tesla: A unified graphics and computing
architecture.” In: IEEE micro 28.2 (2008), pp. 39-55.

Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. “Fermi GF100 GPU
architecture.” In: IEEE Micro 31.2 (2011), pp. 50-59.

115

Bibliography

[74]

[75)
[76)
[77)
78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]

[36]
[87]

116

Intel Corporation. PHY interface for the PCI Express, SATA, and USB 3.1
architectures. Datasheet. 2016. URL:
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/phy-interface-pci-express-sata-usb30-architectures-3.1.pdf (visited
on 11/16/2016).

Nicholas Wilt. The CUDA Handbook. A comprehensive guide to GPU
programming. Addison-Wesley, 2013. 1SBN: 978-0-321-80946-9.

Herb Sutter and Andrei Alexandrescu. C++ coding standards: 101 rules,
guidelines, and best practices. Pearson Education, 2004.

Scott Meyers. Effective C++: 55 specific ways to improve your programs and
designs. Pearson Education, 2005.

Bjarne Stroustrup. “Foundations of C++.” In: European Symposium on
Programming. Springer. 2012, pp. 1-25.

Jingyue Wu et al. “gpucc: an open-source GPGPU compiler.” In: Proceedings of
the 2016 International Symposium on Code Generation and Optimization. ACM.
2016, pp. 105-116.

Henry Wong et al. “Demystifying GPU microarchitecture through
microbenchmarking.” In: Performance Analysis of Systems € Software
(ISPASS), 2010 IEEE International Symposium on. IEEE. 2010, pp. 235-246.

John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel
programming standard for heterogeneous computing systems.” In: Computing in
science € engineering 12.1-3 (2010), pp. 66-73.

Ben Sander et al. HCC: A C++ Compiler For Heterogeneous Computing.
Tech. rep. Open Standards, 2015.

Advanced Micro Devices, Inc. AMD Launches ’Boltzmann Initiative’ to
Dramatically Reduce Barriers to GPU Computing on AMD FirePro Graphics.
URL: http://www.amd.com/en-us/press-releases/Pages/boltzmann-initiative-
2015n0v16.aspx (visited on 11,/30/2016).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: Nature
521.7553 (2015), pp. 436-444.

Jiirgen Schmidhuber. “Deep learning in neural networks: An overview.” In:
Neural Networks 61 (2015), pp. 85-117.

Edward Anderson et al. LAPACK Users’ guide. Vol. 9. Siam, 1999.

Shucai Xiao and Wu-chun Feng. “Inter-block GPU communication via fast
barrier synchronization.” In: Parallel € Distributed Processing (IPDPS), 2010
IEEFE International Symposium on. IEEE. 2010, pp. 1-12.

