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Abstract The shallow subsurface hydrography in the southern Norwegian Sea during the past 135,000
years was investigated using parallel measurements of Mg/Ca and 6'20 in shells of the planktic foraminiferal
species Neogloboquadrina pachyderma. Two cleaning methods were applied prior to Mg/Ca analysis, “Mg
cleaning” and “full cleaning” methods. Different results were obtained, which are most likely due to a more
efficient removal of Mn-contaminant coatings of the shells, when the “full cleaning” procedure was applied.
We further combined Mg/Ca and B/Ca from the “full cleaning” method with 6'0 values to constrain the
calcification temperature and seawater-8'20 (3'80y,,) in the past. During Heinrich Stadial (HS)1 (~18.5-15
ka) N. pachyderma constituted >80% of the planktic foraminiferal population, 5'20y,, decreased by ~1.5%,,
and shallow subsurface temperature increased by ~1.5-3°C, suggesting strong stratification in the upper
water column and a possible subsurface inflow of Atlantic water below a well-developed halocline during
the calcification seasons of N. pachyderma. Similar decreases in 580y, are also recorded for other Heinrich
stadials (HS2, 3, 4, 6, and 11). Our temperature estimates confirm previous observations of the delay of the
last interglacial “Eemian” warm peak in the eastern Nordic Seas compared to the North Atlantic, and a late
warming coinciding with the summer insolation minimum at 60°N. In addition, relatively high values of
5'80,, during the early Eemian suggest a shallow subsurface inflow of Atlantic water below a thin layer of
Arctic surface water.

1. Introduction

Northeastward flow of Atlantic surface water across the Greenland-Scotland ridge into the Nordic Seas and
Arctic Ocean releases heat to the atmosphere. The surface water is transformed to dense, cold deep water
that overflows the Greenland-Scotland Ridge to the North Atlantic [e.g., Hansen and @sterhus, 2000; Eldevik
et al., 2009]. It has been suggested that an increase in ocean stratification in the high-latitude North Atlantic
due to warming and addition of meltwater reduces the surface heat transport toward the Arctic and deep-
water formation, affecting regional climate and the large-scale atmospheric circulation [e.g., Drijfhout et al.,
2015; Rahmstorf et al., 2015]. Reconstruction of the history of Atlantic water inflow in connection with past
climate change could provide better understanding of how ocean circulation in this area and climate are
linked. Significant changes in the properties of Atlantic water inflow into the Nordic Seas during the past
150,000 years associated with past regional and global climate change were revealed based on planktic
foraminiferal '80 and faunal assemblages [e.g., Rasmussen et al., 1996; Fronval and Jansen, 1997; Bauch
et al,, 2001].

Foraminiferal §'80 values are a function of calcification temperature, seawater '20 (5'%0sy), and carbonate
chemistry [Emiliani, 1955; Shackleton, 1967; Spero et al., 1997]. 5'®0sy values at a specific location vary
through time due to changes in global ice volume, evaporation/precipitation, meltwater and river runoff,
and past changes in ocean circulation [Craig, 1961; Dansgaard, 1964; Shackleton, 1967; Waelbroeck et al.,
2011; Friedrich and Timmermann, 2012]. Differentiating between the various signals is a challenge, but
imperative for our understanding of the temporal variability in foraminiferal §'0. Minor/trace element to
calcium ratios can provide independent information about the calcification temperature [e.g., Nurnberg,
1995; Nirnberg et al., 1996], salinity-related effects [e.g., Honisch et al., 2011; Bahr et al., 2013], and carbonate
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5. North Atlantic Drift (NAD)
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Figure 1. Map showing the major surface and bottom water currents in the northern North Atlantic and the Nordic Seas [Hansen and
@sterhus, 2000; Mork and Blindheim, 2000; Orvik and Niiler, 2002; Jakobsen et al., 2003]. The location of investigated core JM11-FI-19PC is
also indicated (white star). White circles refer to sediment cores ENAM-33 (1217 m water depth) [Rasmussen et al., 2003a], LINK 16 (773 m
water depth) [Abbott et al., 2014], and RAPiID-10-1P (1237 m water depth) [Thornalley et al, 2010]. The map is modified after Ezat et al.
[2014].

chemistry [e.g., Yu et al,, 2007a]. In particular, Mg/Ca is widely used in parallel with '®0 measurements to
constrain calcification temperatures and 6'20sy [e.g., Elderfield and Ganssen, 2000; Thornalley et al.,, 2009]. In
this study, we use parallel minor/trace element and 6'%0 measurements in the planktic foraminiferal species
N. pachyderma in order to reconstruct variability of the Atlantic water flow into the Nordic Seas for the last
135 kyr. The study is based on sediment core JM-FI-19PC, collected northwest of the Faroe Islands (62°49'N,
03°52'W; 1179 m water depth) [Ezat et al,, 2014], where the largest Atlantic water inflow into the Nordic
Seas takes place today (Figure 1) [Hansen and @sterhus, 2000]. The investigated time interval comprises the
last 135 kyr, and includes the Holocene interglacial, the last glacial cycle, and the Eemian interglacial, which
represent different climate boundary conditions. During the Eemian (~135-115 ka), summer temperatures
in the northern hemisphere were higher than in the Holocene period 10-0 kyr [CAPE-Last Interglacial Project
Members, 2006]. Greenland ice cores have revealed rapid climatic changes from cold stadials to warm inter-
stadials during the last glacial and deglaciation (~110-10 ka), the so-called Dansgaard-Oeschger (DO)
events [Dansgaard et al., 1993]. In North Atlantic and Nordic Seas sediments, DO events are associated with
the deposition of Ice Rafted Debris (IRD). In the North Atlantic, 11 particularly prominent IRD layers rich in
detrital carbonate originating from the Hudson Strait were recorded in the past 150 kyr [Heinrich, 1988;
Hemming, 2004]. These events are called Heinrich events and are thought to correlate in time with the cold-
est periods of the longest lasting stadials in the ice cores [Heinrich, 1988; Bond et al., 1993; Broecker, 1994;
Rasmussen et al., 2003b; Hemming, 2004, Barker et al., 2011]. The entire stadial period during which a Hein-
rich event is recorded is defined as a Heinrich Stadial (HS) [cf. Barker et al., 2009].

Large depletions in planktic 8'80 measured in N. pachyderma (0.5-2.5%,) were recorded during the stadial
events in the Nordic Seas. Different interpretations have been proposed for these d'0 depletions including
increase in sea surface buoyancy [e.g., Rasmussen et al., 1996; Stanford et al., 2011], increased rate of sea ice
formation [Hillaire-Marcel and de Vernal, 2008], and/or increase in temperature [e.g., Petersen et al., 2013].
Previous studies have also recorded changes in planktic 3’0 during the Eemian in the North Atlantic and
Nordic Seas, but with much less amplitude and frequency [e.g., Fronval and Jansen, 1997; Rasmussen et al.,
2003a; Irvali et al,, 2012; Galaasen et al,, 2014]. Parallel minor/trace element (in particular Mg/Ca) and §'20
measurements in N. pachyderma can potentially decipher the causes of the §'0 variations and hence
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improve our understanding of past changes in the properties of the near-surface water and changes in
ocean circulation in the Nordic Seas on DO and glacial-interglacial time scales. So far, no records of com-
bined Mg/Ca and 620 exist for the SE Nordic Seas on these time scales.

Laboratory experiments have shown that temperature exerts a primary control on the incorporation of Mg
into planktic foraminiferal CaCOs, while other factors such as salinity and carbonate chemistry play a minor
role [e.g., Nuirnberg et al., 1996; Russell et al., 2004; Honisch et al., 2013; Spero et al., 2015]. However, the pri-
mary Mg/Ca signal can be significantly modified by partial dissolution [e.g., Dekens et al.,, 2002; Regenberg
et al, 2006], as well as contamination with organic material, adsorbed clays and postdepositional over-
growths [Boyle, 1981]. In order to remove different contaminants, three main procedures have been devel-
oped for preparing foraminiferal samples for minor/trace element analyses, the “Mg cleaning,” “Cd
cleaning,” and “full cleaning” methods [Boyle and Keigwin, 1985; Martin and Lea, 2002; Barker et al., 2003; for
review see Barker et al., 2005]. Compared to the “Mg cleaning,” the “Cd cleaning” method includes an addi-
tional reduction step with buffered solution of anhydrous hydrazine to remove Mn-Fe oxide coatings. The
“full cleaning” method includes another additional step to the “Cd cleaning” procedure, which requires
treatment of the foraminiferal samples with alkaline diethylene-triamine-pentaacetic acid (DTPA) to remove
barite. The reduction and DTPA steps are a standard procedure for Cd/Ca and Ba/Ca analyses, respectively
[Boyle and Keigwin, 1985; Lea and Boyle, 1991; Martin and Lea, 2002], and because all elements can be ana-
lyzed simultaneously, it is tempting to apply the same cleaning procedure and measure all elements togeth-
er. However, there is an ongoing debate whether the reduction step is necessary, if it is adequate or if it is
even compromising the Mg/Ca analyses [Pena et al., 2005; Martin and Lea, 2002; Rosenthal et al., 2004; Barker
et al., 2003; Yu et al., 2007b].

We applied two methods, the “Mg cleaning” [Barker et al., 2003] and the “full cleaning” [Martin and Lea,
2002], prior to the Mg/Ca analyses. We present first the differences in downcore N. pachydema Mg/Ca owing
to the use of the two different cleaning methods and, thereafter, we discuss the obtained results of varia-
tions in downcore Mg/Ca and 6'20 records in terms of paleoceanographic changes. We aim to constrain
the evolution in the shallow subsurface hydrography in the southern Norwegian Sea during Heinrich stadi-
als, the Last Glacial Maximum (LGM), and the last interglacial in connection with past regional climate
change.

2. Methods

2.1. Minor/Trace Element Analyses in N. pachyderma

Only pristine specimens of N. pachyderma with no visible signs of dissolution were selected from size frac-
tion 150-250 pum for minor/trace element analyses. For the first set of minor/trace element analyses, the
foraminiferal tests (50-100 specimens) were gently crushed and cleaned following the “Mg cleaning” meth-
od [Barker et al., 2003] with a slight modification: the removal of coarse-grained silicate was omitted and
instead the samples were centrifuged after dissolution (10 min, 6000 rpm) to separate any insoluble par-
ticles. The samples were analyzed using an ICP-OES (Agilent Technologies, 700 Series with autosampler
(ASX-520 Cetac) and micro-nebulizer) at the Department of Geosciences, University of Bremen. Instrumental
accuracy of the ICP-OES was monitored by analysis of an in-house standard solution with a Mg/Ca of 2.93
mmol/mol every five samples (long-term average of 2.917 mmol/mol, standard deviation (¢) = 0.04 mmol/
mol, and relative standard deviation (RSD) = 1.4%). The average relative precision of Mg/Ca for 16 replicate
samples that were cleaned and analyzed during different sessions is 9%. Seventeen samples (~6% of the
entire analyzed samples) with high Al/Ca, Fe/Ca, Mn/Ca (>average + 20), and two samples with exception-
ally high Mg/Ca values were not included in the interpretation of the record (Supporting Information Table
S1). Eight samples with high Mn/Ca (>average + 2¢) from the interval 930-965 cm downcore (of mid-
Eemian age) gave consistent Mg/Ca values with samples having relatively lower Mn/Ca from the same inter-
val. These samples were thus included in the discussion.

For the second set of minor/trace element analyses performed on N. pachyderma, 60-160 pristine speci-
mens were gently crushed, weighed, and cleaned following the “full cleaning” procedure of Martin and Lea
[2002] with some slight modifications after Pena et al. [2005]. These modifications include the number of
water rinses after the reduction and DTPA steps. The samples were also rinsed with NH,OH [Lea and Boyle,
1991] after the treatment with the DTPA solution, instead of using 0.01N NaOH [Martin and Lea, 2002]. The
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samples were then analyzed by iCAPQ Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at Lamont
Doherty Earth Observatory (LDEO) of Columbia University. Based on repeated measurements of in-house
standard solutions, the intrarun precision is <1.4% and 1.9% for Mg/Ca and B/Ca, respectively. The analyses
of five replicate samples, picked and cleaned separately, showed an average relative precision of 4.3 and
2.7% for Mg/Ca and B/Ca, respectively. All cleaning and dissolution steps for the second set of analyses
were done in boron-free filtered laminar flow benches and using boron-free Milli-Q water. Four samples
were omitted due to very high Al/Ca (>average + 20) (Supporting Information Table S1). To evaluate poten-
tial instrumental bias between our ICP-MS and ICP-OES analyses, a suite of standards (ECRM 752-1, BAM
RS3, and CMSI 1767) [Greaves et al., 2008] were measured by both laboratories. The interlaboratory accuracy
for Mg/Ca is 2.6, 0.2, and 1.4% for ECRM 752-1, BAM RS3, and CMSI 1767, respectively. For both sets of analy-
ses, blank samples were analyzed within every batch of samples in order to monitor potential contamina-
tion from reagents and vials.

Foraminiferal shell weights were determined on a Mettler XP6 microbalance before the analyses, and aver-
age shell weights were calculated using the number of tests in each sample. To calculate the weight loss
during the cleaning procedure, the samples were also weighed after the cleaning.

2.2. Stable Oxygen Isotope Analyses

The §'20 for the benthic foraminiferal species Melonis barleeanus for the upper 7 m and the planktic forami-
niferal species N. pachyderma for the upper 8 m of the 11 m long core JM11-FI-19PC were published in Ezat
et al. [2014] and Hoff et al. [2016], respectively. For the lower part of the core, ~20 and 50 specimens of M.
barleeanus (size fraction 150-315 pum) and N. pachyderma (size fraction 150-250 pm) were picked, respec-
tively, for stable isotope analyses. The oxygen isotope analyses for both N. pachyderma and M. barleeanus
were performed using a Finnigan MAT 251 mass spectrometer with an automated carbonate preparation
device at MARUM, University of Bremen. The values are reported relative to the Vienna Pee Dee Belemnite
(VPDB), calibrated by using National Bureau of Standards (NBS) reference materials 18, 19, and 20 and the
external standard error is 0.079,,.

2.3. Age Model and Stratigraphy

The age model for JM11-FI-19PC core is based on well-dated tephra layers, magnetic susceptibility [Ezat
et al, 2014], and planktic and benthic foraminiferal 6'20 values. Six tephra layers were counted and identi-
fied in the upper 7 m of JM11-FI-19PC [Ezat et al., 2014]. Five of these tephra layers (Saksunarvatn tephra,
Vedde ash, Faroe Marine Ash Zone (FMAZ) I, FMAZ Ill, and North Atlantic Ash Zone (NAAZ) Il) are well-
known tephra from the study area and have been synchronized to their counterparts in the Greenland ice
cores [Wastegdrd et al., 2006; Davies et al., 2008, 2010; Griggs et al., 2014]. In the lower part of the core, we
visually identified four tephra layers (5e-Low/BAS-IV, 5e Midt/RHY, 5C-Midt/BAS, and 5a-top/BAS-I tephra
layers) in the size fractions >100 and 63-100 um. These four tephra layers were identified by the major and
trace elemental composition of individual tephra shards in the nearby core LINK 16 [Abbott et al., 2014]. The
correlation between the magnetic susceptibility of core JM-FI-19PC and core LINK 16 with location of the
identified tephra layers confirms our visual identification (Supporting Information Figure S1).

Within the firm constraints of the identified tephra layers, the age model was subsequently refined by tying
the start of DO interstadials as seen in the 680 records from the Greenland ice cores with the increases in
magnetic susceptibility (Figure 2). The increase in magnetic susceptibility has been proposed to reflect
increase in the strength of deep currents transporting the magnetic particles from the source (the Icelandic
volcanic province) to the site of deposition [e.g., Rasmussen et al., 1996; Kissel et al., 1999]. In the original age
model [Ezat et al., 2014], the boundary between HS1 and interstadial 1 was chosen at 190 cm core depth
correlating with increase in magnetic susceptibility. This increase was very gradual from 198 to 190 cm core
depth (Figure 2), while an abrupt and large increase in benthic foraminiferal 5'20 (~19,) occurs at 197 cm
core depth (Figure 2). Despite the different interpretations of the increase in benthic foraminiferal §'30
[e.g., Rasmussen and Thomsen et al., 2004; Meland et al., 2008], there is a consensus that they mark the end
of HS1 and the onset of deep convection similar to today [e.g., Rasmussen and Thomsen, 2004; Meland et al.,
2008]. Thus, we adopted the 197 cm core depth as the start of interstadial 1. Eleven calibrated radiocarbon
dates measured in N. pachyderma [Ezat et al., 2014] strongly support our tuned age model for the past
50 kyr (Supporting Information Figure S2).
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Figure 2. Correlation of magnetic susceptibility as well as planktic and benthic 5'20 in JM-FI-19PC [Ezat et al., 2014; Hoff et al., 2016, this
study] and 580 values from Greenland Ice Core Project (NGRIP) on the Greenland Ice Core Chronology 2005 (GICCO5) [Seierstad et al.,
2014; Rasmussen et al., 2014, and references therein]. Solid black horizontal lines mark tephra layers identified in both marine and ice cores
[Davies et al., 2008, 2010]. Tephra layers not yet confirmed in the ice cores and their potential location in ice records are shown by dashed
black lines. Interstadial numbers (black) and Heinrich events (brown) are indicated.

The last interglacial “Eemian” (Marine Isotope Stage (MIS) 5e) can be recognized by a clearly developed gra-
dient in the benthic and planktic foraminiferal 5'80 values. This gradient is similar to the gradient of the
Holocene section (Figure 2). The lowermost part of JM11-FI-19PC with low planktic and benthic foraminifer-
al 90 values corresponds to HS11 in Termination Il. We used the sharp increase in the benthic §'20 values
at 1035 cm core depth as an indication for the beginning of MIS 5e (Figure 2) and adopted an average sedi-
mentation rate from the last deglaciation for HS11. The final age model is based on a radiocarbon date
from a core-top sample (at 15 cm), 7 tephra layers, 21 magnetic susceptibility tie points, and 2 benthic 5'20
tie points.

2.4. Planktic Foraminiferal Assemblages

Core depth 50-255 cm spans the LGM to the mid Holocene (21-6 ka). From this interval at least 300 planktic
foraminiferal specimens from the size fraction >100 um were counted and identified to species level at
5 ¢cm intervals (1 ¢cm thick samples). Kandiano and Bauch [2002] pointed out that in cold polar areas more
reliable temperature estimates can be obtained by using counts from planktic foraminiferal assemblages
with mesh sizes <125 pum. Larger mesh-sizes tend to lose important small-sized subpolar species Turborota-
lita quinqueloba and Globigerinita uvula.
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2.5. Estimation of N. pachyderma Calcification Temperatures

Neogloboquadrina pachyderma is the dominant planktic foraminiferal species in the polar and subpolar
areas [Bé and Tolderlund, 1971] and therefore most often used in high latitude paleoceanographic recon-
structions. However, identifying the mean calcification depth in the water column of N. pachyderma remains
a challenge. Several studies from the Nordic Seas show a wide, but region-specific range of calcification
depth of N. pachyderma. For example, Simstich et al. [2003] suggested a calcification depth for N. pachy-
derma between 70 and 250 m off Norway, between 70 and 130 m in the region of the East Greenland Cur-
rent, and between 20 and 50 m in the highly productive Arctic water domain of the central Nordic Seas. In
the central Irminger Sea, a recent study suggested a shallow (~50 m) calcification depth for N. pachyderma
based on the seasonal similarity in 6'80 recorded by N. pachyderma and local sea surface temperature
[Jonkers et al., 2010, 2013]. In general, the signal recorded by N. pachyderma therefore seems likely to reflect
a thick section of the upper water column, which makes N. pachyderma a suitable tracer of shallow subsur-
face water masses [Bauch et al.,, 1997], but not ideal for reconstructions of environmental conditions at the
sea surface.

Core-top and sediment trap studies show an exponential Mg/Ca sensitivity of ~9-10% per 1°C in several
planktic foraminiferal species based on calibration of the foraminiferal Mg/Ca to §'0yoam-derived tempera-
tures [Elderfield and Ganssen, 2000; Anand et al., 2003]. The absence of such a clear relationship between N.
pachyderma Mg/Ca and §'20-derived temperatures in core-top and sediment trap data [Meland et al., 2006;
Nyland et al., 2006; Jonkers et al., 2013] suggests that other factors affect the incorporation of Mg in shells of
the species like seawater carbonate chemistry and salinity, variable degrees of encrustation [Kozdon et al.,
2009], and/or undetermined species-specific mechanisms of bio-mineralization. Consequently, Mg/Ca mea-
sured in N. pachyderma should be treated carefully and may not directly be interpreted in terms of calcifica-
tion temperature [Hendry et al., 2009; Jonkers et al., 2013].

Culture studies show that Mg/Ca in planktic foraminifera decrease with increasing seawater pH and carbon-
ate ion concentration, but the sensitivity is species-specific. pH-sensitivity ranges from ~7 to 16% per 0.1
unit change in pH for Orbulina universa and Globigerina bulloides, respectively [e.g., Russell et al., 2004].
Importantly, it was noted that the effect of pH on foraminiferal Mg/Ca is insignificant above modern pH val-
ues [Russell et al., 2004]. However, based on sediment trap samples off the West Antarctic peninsula, Hendry
et al. [2009] found an increase in Mg/Ca in N. pachyderma by ~10% per 10 pmol kg™ increase in carbonate
ion concentration, in clear conflict with the culture experiments that were performed on other planktic spe-
cies. The carbonate ion concentration data in Hendry et al. [2009] are mainly derived from B/Ca measured in
N. pachyderma using a calibration based on measurements in Globorotalia inflata from Yu et al. [2007a].
Although B/Ca in planktic foraminifera is shown to covary with seawater carbonate chemistry [Yu et al.,
2007a; Allen et al., 2012], a quantitative assessment is complicated [Allen et al., 2012]. Because the study of
Hendry et al. [2009] was performed on the same foraminiferal species and under oceanographic conditions
likely not very different from the glacial and deglacial situation at our site, we attempted to correct for car-
bonate ion concentration influence on Mg/Ca assuming a 10% increase in Mg/Ca per 10 pmol kg~ increase
in carbonate ion concentration. For this, we used our B/Ca to calculate the carbonate ion concentration
using the calibration from Yu et al. [2007a] similar to Hendry et al. [2009]. Although a species-specific calibra-
tion for B/Ca in N. pachyderma is now available [Yu et al., 2013], we chose to use the Yu et al. [2007a] calibra-
tion to be consistent with Hendry et al. [2009].

A sensitivity of 4-8% in Mg/Ca per salinity unit was recorded in other planktic foraminiferal species (for
details see Honisch et al. [2013]), but no empirical attempts have been done to test the salinity influence on
Mg/Ca in shells of N. pachyderma. In addition, an independent proxy for seawater salinity is lacking. Thus,
we did not attempt to correct for a possible salinity effect on Mg/Ca.

We estimated the temperature and §'®0gy, based on both original Mg/Ca data and the carbonate ion
concentration-corrected Mg/Ca data as described above. The Mg/Ca were used to calculate the calcification
temperatures based on a Mg/Ca-temperature calibration: Mg/Ca = preexponential constant * exp (0.1T)
[Elderfield and Ganssen, 2000], where the preexponential constant is calibrated to our core-top samples
yielding a value of 0.4 and T is the temperature. We then calculated 6'®0s, by removing the temperature
effect from N. pachyderma 6'80 using the equation from Shackleton [1974]. We used the global eustatic sea
level record of Grant et al. [2012] to correct for the temporal changes in ice volume, assuming a 19, increase
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in 6'®0 due to 120 m sea level drop [Adkins et al., 2002]. To convert from the Pee Dee Belemnite (PDB) scale
for carbonate 4'20 to Standard Mean Ocean Water (SMOW) scale for water 8'20, 0.2 was added [Shackleton,
1974]. We calculated the uncertainty (26) in temperature and d'®0gyy reconstructions as the square root of
the sum of the squared analytical and calibration uncertainties. The analytical precision of Mg/Ca based on
replicate foraminiferal samples is ~0.03 mmol/mol (which translates to ~0.4°C), whereas the uncertainty
introduced by the Mg/Ca-temperature calibration equation is ~0.6°C [Elderfield and Ganssen, 2000]. Accord-
ingly, the combined error in temperature reconstructions is =0.7°C. Based on the combined effect of tem-
perature error on 6'30gy (Which translates to ~0.2%, 6'®0) and the analytical precision of foraminiferal
5'80 based on replicate analyses of NBS 19 (0.07%,), the combined error in our §'®0gyy, reconstructions is
+£0.22%,.

3. Results and Discussion

3.1. Downcore Mg/Ca From “Mg Cleaning” and “Full Cleaning” Methods

The Mg/Ca results from the “Mg cleaning” and “full cleaning” methods are compared in Figure 3, along with
Al/Ca, Fe/Ca, and Mn/Ca as monitors for possible contamination by clay minerals and/or Mn-oxyhydroxides/
carbonates [Boyle, 1981; Barker et al., 2003]. Holocene samples cleaned with either method gave indistin-
guishable Mg/Ca values, while significant and nonsystematic offsets are observed downcore (Figure 3E). In
general, the glacial and Eemian samples that were cleaned by the “full cleaning” method yielded lower Mg/
Ca by 10-50% than when the “Mg cleaning” was applied. This decrease in the Mg/Ca is consistent with a
decrease in Mn/Ca (Figure 3). Most Mg/Ca studies apply only the “Mg cleaning” method because the reduc-
tive step to remove metal coatings causes partial test dissolution and studies including the reduction step
yield Mg/Ca ratios 10-15% lower than the “Mg cleaning” method [Rosenthal et al., 2004; Barker et al., 2003;
Yu et al, 2007b]. However, it is still not clear if the systematic offset in Mg/Ca between the two cleaning
methods is due to efficient removal of contaminant phases or dissolution [Barker et al., 2005; Pena et al.,
2005].

If the decrease in our downcore Mg/Ca was caused by dissolution as a side effect from the extra cleaning
[e.g., Barker et al., 2003; Yu et al., 2007b], we may expect this decrease to predominate in samples where the
weight loss% during the cleaning process is higher. However, we observe the opposite; samples with largest
sample weight loss% during cleaning yield almost identical Mg/Ca values from both cleaning methods (e.g.,
Holocene and interstadial 8), while most of the significant differences in Mg/Ca values occur at intervals
with smallest sample weight loss% during the cleaning process (e.g., LGM and HS4) (Figure 3). To directly
assess the effect of additional steps in the “full cleaning” method relative to the “Mg cleaning” method,
weight loss% should be compared between the two methods (i.e., the weight loss due to the extra cleaning
steps). The difference in weight loss% between the “full cleaning” and “Mg cleaning” methods (A weight
loss%), when available, varies oppositely to A Mg/Ca (Figure 3F). Thus, it seems unlikely that the AMg/Ca is
caused by partial dissolution as a side effect from the extra cleaning, albeit that the weight loss may be part-
ly caused by fragmentation rather than laboratory dissolution during the cleaning.

In addition, specimens of pristine N. pachyderma were picked from 13 samples selected from different inter-
vals to be run again based on the “Mg cleaning” method. Regardless of their apparent noise in Fe/Ca and
Al/Ca, their Mg/Ca and Mn/Ca show the same trends as before with consistent values (Figure 4). When the
“full cleaning” method was applied to samples from the same depths, considerable decreases in Mg/Ca
only occurred in samples with high Mn/Ca from the “Mg cleaning” method (Figure 4). This indicates that
the Mg/Ca decrease, when the full cleaning method applied is likely due to a more efficient removal of Mn
contaminants. Figure 5 shows the relationships between AMg/Ca, AMn/Ca, and AFe/Ca for all samples that
have been cleaned by both methodologies, which confirm that most of the removed contaminants due to
the extra cleaning steps in the full cleaning method are Mn-oxides. However, the relation between the
AMg/Ca and AMn/Ca is not linear (Figure 5), which can be due to a variable amount of Mn-contaminant
coatings precipitated at different periods or changing composition of these coatings. It also seems that Mn-
coatings on Eemian samples contain much less Mg than coatings in glacial samples (Figure 5). Finally, the
“full cleaning” method might have removed contaminating phases other than Mn-contaminants that might
have been trapped by such coatings and were only exposed (and hence released), by the removal of the
Mn-oxide coatings [Barker et al., 2005]. Note that all our Mn/Ca values from the full cleaning method are
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Figure 3. Comparison of downcore minor/trace element results for planktic foraminiferal species Neogloboquadrina pachyderma from the “Mg cleaning” (red) and “full cleaning” (blue)
methods. (a) Oxygen isotopes measured in N. pachyderma. (b) Al/Ca in pmol/mol. (c) Fe/Ca in umol/mol. (d) Mn/Ca in pmol/mol. () Mg/Ca in mmol/mol. Red and blue error bars close to
the y-axis in Figure 3e represent the average relative precision of repeated foraminiferal samples for the “Mg cleaning” and “full cleaning” methods, respectively (see section 2). (f) Differ-
ence in Mg/Ca (AMg/Ca) between the two cleaning methods calculated by subtracting the Mg/Ca values from the “full cleaning” method from the Mg/Ca values from the “Mg cleaning”
method (g) shell weight of N. pachyderma in pug. (h) Black line-scatter plot refers to weight loss% from samples cleaned by the full cleaning method, while green circles refer to weight
loss% from the “full cleaning” minus the weight loss% from “Mg cleaning” methods (A weight loss%). Light blue bars refer to intervals with significant differences between the two clean-
ing methods and grey bars refer to intervals with almost no differences between the two cleaning methods. HS, Heinrich Stadial; LGM, Last Glacial Maximum; IS, Interstadial.
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A — 400 lower than 105 pmol/mol (Figure 3) indi-
cating a minimal effect, if any, of diage-
netic coatings on our results [Boyle, 1983;
Barker et al., 2005]. Overall, this indicates
that the “Mg cleaning” method was not
sufficient to remove the different contami-
nant phases. We, therefore, limit our later
discussion on the paleoceanography based
on N. pachyderma Mg/Ca to the minor/
trace element results from the “full clean-
ing” method although these results are of
much lower resolution than the results
from the “Mg cleaning” method.

3.2. Reconstruction of Conditions for
the Last Glacial and Deglaciation
We estimated the calcification temperature
and 6'80¢,y based on both original Mg/Ca
data and the carbonate ion concentration-
corrected Mg/Ca data using the B/Ca record
and following Hendry et al. [2009] as
described in section 2.5. During the late
LGM (21-19 ka), the N. pachyderma-based
temperature and §'®Ogyy are ~4.5°C and
~0.9%,, respectively. Using the corrected
Mg/Ca data, the values are ~2.5°C and
~0.49, (Figure 6). Previous studies have
shown conflicting temperature reconstruc-
tions for the LGM in the Nordic Seas.
Planktic foraminiferal assemblage studies
suggest the temperature during the LGM
I A N was ~4°C lower compared to modern val-
12345678 910111213 ues [e.g, Pflaumann et al, 2003], whereas
Sample Code alkenone data, dinocyst, and coccolith

assemblage studies reveal temperatures up

Figure 4. (a) Al/Ca, (b) Fe/Ca, (c) Mn/Ca, and (d) Mg/Ca for N. pachyderma to 15°C (i.e,, higher than modern tempera-

cleaned by the “Mg cleaning” method (two runs, black circles and squares) ,
and using the “full cleaning” method (one run, green circles) (see text for tures) [e'g" Rosell-Melé and Comes, 1999; de

explanation). Note the break in the y axis of the Fe/Ca plot. Vernal et al,, 2000; Lévesque, 1995]. It is still

not clear if this discrepancy in temperature

reconstructions reflects seasonal/depth gra-
dients in the upper water column or taphonomic bias in some of these signal-carriers (see for review de Vernal
et al. [2006]). Our temperature reconstructions suggest that the LGM temperatures at the calcification depth
(and season) of N. pachyderma are ~1.5 or 3.5°C lower than Holocene temperatures based on the original or cor-
rected Mg/Ca, respectively (Figure 7). We emphasize that the study of Hendry et al. [2009] is based on carbonate
ion concentration data that are mainly derived from B/Ca measured in N. pachyderma using a calibration for G.
inflata and not direct measurements. In addition, a quantification of the marine carbonate system using B/Ca in
planktic foraminifera is complicated and other factors like salinity may have a significant effect on B/Ca [Allen
and Honisch, 2012; Henehan et al., 2015]. Furthermore, the suggested sensitivity of Mg/Ca to carbonate ion con-
centration in Hendry et al. [2009] is contrary to results from laboratory studies performed on other planktic fora-
miniferal species [e.g., Russell et al, 2004]. Future laboratory studies investigating the nontemperature factors
that affect the Mg/Ca in N. pachyderma are therefore needed to better understand the glacial thermal structure
of the upper water column in the Nordic Seas. Note that the main difference in temperature, when correcting
the Mg/Ca for carbonate ion concentration following Hendry et al. [2009] is a decrease by ~2°C during the LGM,
whereas it yields insignificant effects elsewhere in our record (Figure 6).

Fe/Ca (pmol/mol)

Mg/Ca (mmol/mol)
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Figure 5. Relationship between the corresponding differences in Mg/Ca, Mn/Ca, and Fe/Ca for N. pachyderma from the “Mg cleaning” and “full cleaning” methods. AMg/Ca (AMn/Ca or
AFe/Ca) is calculated by subtracting the Mg/Ca (Mn/Ca or Fe/Ca) from the “full cleaning” method from the Mg/Ca (Mn/Ca or Fe/Ca) from the “Mg cleaning” method.

During HS1, the temperature increased to ~6.5°C and the '80s, decreased to —0.4%, (Figure 6). At the
onset of the Bolling-Allerad (BA) interstadial (~14.6 ka), 5'®0¢yy and temperature increased to 1%, and 7°C,
respectively (Figure 6). The decrease in the 6'%0syy values during HS1 precedes the increase in the calcifica-
tion temperature (Figure 7). Addition of low §'0 water from melt and meteoric water could have been
responsible for the decrease in §'®0gy through a direct recording of the signal [e.g., Bond et al., 1993;
Fronval et al., 1995; Rasmussen et al., 1996] or by transfer of the signal via brines deeper in the upper water
column as in the Arctic Ocean today [Hillaire-Marcel and de Vernal, 2008], where N. pachyderma may have
precipitated most of its calcite [e.g., Kozdon et al., 2009]. It is also notable that the increase in calcification
temperature is not associated with a decrease in the % N. pachyderma (which decreases in relative abun-
dance with decreasing influence of cold polar surface water). Thus, the increase in calcification temperature
with no concomitant change in the % N. pachyderma (~80%) (Figure 7) can be explained by fresh water-
induced stratification of the upper ocean and development of a halocline, at least during the calcification
season of N. pachyderma. The evolution in % N. pachyderma and calcification temperature trends across
HS1 from south of Iceland [Thornalley et al., 2010, 2011] are very similar to our site (Figure 7). This increase
in the shallow subsurface water temperature may have eventually destabilized the water column at the end
of HS1 and resulted in the erosion of the halocline and the resumption of the open ocean convection in the
Nordic Seas [e.g., Knorr and Lohman, 20071].

Our Mg/Ca record based on the “full cleaning” method is of too low resolution to resolve all of the DO
events. Yet our data show decreases in the §'0sy values from the average glacial §'%0sy (~1%,) to
~—0.49, during HS6 and to 0.59,, during HS2, HS3, and HS4 (Figure 6). The calcification temperature
increases during HS2, similar to HS1. The temperature evolution across HS6, HS4, and HS3 does not show a
clear evidence of temperature change (Figure 6). Studies based on benthic foraminiferal assemblages and
benthic geochemical signatures have suggested an increase in the temperature of the intermediate water
(800-2000 m water depth) in the SE Nordic Seas for almost all stadials [e.g., Rasmussen et al., 1996; Rasmus-
sen and Thomsen, 2004; Ezat et al., 2014]. At the shallow subsurface calcification depth of N. pachyderma a
temperature increase apparently only occurs during some stadial events and not all. Modeling studies sug-
gested that weakening in the Atlantic Meridional Overturning Circulation (AMOC) results in increased inflow
of subsurface warm Atlantic water into the northern North Atlantic [e.g., Knorr and Lohman, 2007]. A recent
study [Bohm et al., 2015] suggested that during the past 150 kyr, substantial suppression of the AMOC
occurred only during Heinrich stadials close to the glacial maxima (i.e,, HS1, HS2, and HS11). This agrees
with our findings that these Heinrich stadial events close to the glacial maxima (HS1, HS2, and HS11, see
the next section for HS11) are associated with significant thickening of the Atlantic water in the subsurface
Nordic Seas.

3.3. Reconstructions of Termination Il, Eemian, and Last Glacial Inception

During the latest part of Termination Il (=HS11), both N. pachyderma and the benthic foraminiferal records
show similar 6'0 values (=2.7%,) (Figure 8). At the beginning of the Eemian interglacial, the two records
diverge significantly from each other. The §'80 values of N. pachyderma increase slightly to 3%, while the
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Figure 6. Downcore reconstructions of temperature and seawater 4'20 at calcification depth and season of N. pachyderma. (a) 6'®Ocacite-
(b) Mg/Ca in mmol/mol. (c) B/Ca in pumol/mol. (d) Corrected Mg/Ca based on B/Ca (see section 2.5 for explanation). (e) Temperature based
on raw Mg/Ca data (black circles) and Mg/Ca values corrected for carbonate ion concentration Mg/Ca (red circles). Black and red lines rep-
resent 3-point moving averages based on raw Mg/Ca and corrected Mg/Ca, respectively. (f) Seawater §'°0, calculated using raw Mg/Ca-
based temperatures (black circles) and using corrected Mg/Ca-based temperatures (red circles). Solid lines represent 3-point moving aver-
ages. Arrows above the x axis refer to the location of the tephra layers (see Figure 2). HS, Heinrich Stadial.

benthic 420 values increase abruptly to 4%, (Figure 8). This is similar to previous studies from the southern
Norwegian Sea [Balbon, 2000; Rasmussen et al., 2003a] as well as in the central and northern parts of the
Norwegian Sea [Fronval et al, 1998]. At the same time the calcification temperature of N. pachyderma
decreased by ~1.5°C. The high deposition of IRD in the area [Rasmussen et al., 2003a] and the low §'®0gy
during late HS11 (Figure 8) indicate the presence of icebergs and melt water at the surface (see section 3.2
for discussing the low 8'80s,y recorded by N. pachyderma). Thus, the relatively high temperatures based on
Mg/Ca in N. pachyderma (~6.5°C) most likely indicate the presence of a strong halocline similar to HS1.
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Figure 7. Shallow subsurface hydrographic details of the last deglaciation from (a-c) south of Iceland [Thornalley et al., 2010, 2011] and
(d-g) southern Norwegian Sea [Ezat et al., 2014; Hoff et al., 2016, this study]. (a) 5'20 values measured on N. pachyderma. (b) Temperature
based on Mg/Ca measured on N. pachyderma. (c) % N. pachyderma. (d) 4'20 values measured on N. pachyderma (black) and Melonis
barleeanus (blue). (e) Temperature based on Mg/Ca measured on N. pachyderma. (f) Seawater 6'0 based on Mg/Ca and §'°0 values
measured on N. pachyderma. Solid and dashed lines in Figures 7e and 7f are 3-point moving averages based on raw and corrected Mg/Ca,
respectively. (g) Percentages of planktic foraminiferal species: % N. pachyderma in black, % Turborotalia quinqueloba in red, and % Globiger-
inita uvula in green. HS, Heinrich Stadial; BA, Belling-Allergd interstadials; YD, Younger Dryas. The original age model for sediment core
RAPID-10-1P in [Thornalley et al., 2010] is slightly modified by aligning it to JM-FI-19PC using the start of the deglacial decrease in 5'20 in

N. pachyderma as a tuning marker.
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Figure 8. Climate records for the last interglacial. (a) Sum-
mer solar insolation at 60°N [Berger, 1978]. (b) % N. pachy-

derma from sediment core ENAM-33 [Rasmussen et al.,
2003a]. (c) % N. pachyderma from sediment core LINK 16
[Abbott et al., 2014]. (d) Temperature based on Mg/Ca
measured on N. pachyderma. (e) Seawater 5'20 based on
Mg/Ca and 6'20 values measured on N. pachyderma. Sol-

id and dashed lines in Figures 8d and 8e are 3-point mov-

ing averages based on raw and corrected Mg/Ca
respectively. (f) Foraminiferal §'%0 values measured in
M. barleeanus (blue) and N. pachyderma (black). HS,
Heinrich Stadial.

The evolution in shallow subsurface temperature during
the Eemian based on our Mg/Ca measured in N. pachy-
derma is in good agreement with previous estimates
based on planktic foraminiferal assemblages and dinofla-
gellate cysts [Rasmussen et al., 2003a; Van Nieuwenhove
et al, 2011; Abbott et al., 2014] documenting a delay in
the Eemian peak warmth compared to the North Atlantic,
and a late Eemian warming in the southeastern Nordic
Seas [see also Capron et al, 2014]. The N. pachyderma-
based shallow subsurface temperature gradually
increased from 5°C during the early Eemian (130-126 ka)
reaching its maximum ~8°C during the late Eemian and
early part of the glacial inception (120-116 ka) (Figure 8),
which is ~2°C higher than during the Holocene (Figure 6).

Although the IRD content decreased significantly at the
onset of the Eemian (~130 ka), there is almost no change
in the % of N. pachyderma (>85%) from HS11 into
the early Eemian until ~126 ka indicating continued pres-
ence of polar/Arctic water at the surface [Fronval and Jan-
sen, 1997; Fronval et al, 1998; Rasmussen et al., 2003a].
The 6'®0gyy at the calcification depth and season of N.
pachyderma (=~0.69,) was ~0.25% higher during the
early Eemian (130-126 ka) than the average values for the
mid/late Eemian and the Holocene (Figure 8). Assuming
that the 0'®0sy composition of the freshwater sources
and their relative contribution in our area did not change
significantly through the Eemian and the Holocene, the
high 6'®0¢y suggests the presence of a high-salinity
water mass. This may indicate the presence of near-
surface Atlantic water below a thin layer of polar/Arctic
water, as the polar/Arctic water signature is not recorded
by the shallow subsurface-dwelling N. pachyderma. Such
shallow subsurface inflow of Atlantic water is necessary to
maintain deep outflow from this area into the North
Atlantic as previously suggested due to the dominance of
modern-like benthic foraminifera [Rasmussen et al., 1999;
Rasmussen et al., 2003a]. This suggests that despite the
relatively cold conditions (compared to average intergla-
cial temperatures) and southward advance of the Arctic
front during the early Eemian, the overturning circulation
in the Nordic Seas was active, although it was probably
weaker/shallower compared to modern.

The late Eemian warming in the eastern Nordic seas,
which extended to the time of summer insolation mini-
mum at 60°N (Figure 8) has been explained by weakening
of the subpolar gyre [e.g., Born et al., 2011]. Records show
cooling at that time in the western Iceland Sea, which
gives further evidence for the hypothesis of weakening of
the subpolar gyre [Van Nieuwenhove et al., 2013]. The
temperature gradually decreased after 115 ka to ~5°C
at the inception (at 111 ka) of the Weichselian glacial
(Figure 8). The increase in the N. pachyderma-based
5'804y during the glacial inception (Figure 8) may be due
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to an increase in the local salinity and/or in the source water salinity. This suggests persistent Atlantic water
inflow during the glacial inception, which as previously suggested may have played an important role in
the early growth of northern ice sheets through the amplification of sea to land moisture fluxes [e.g., Ruddi-
man et al., 1980; Risebrobakken et al., 2007].

4, Conclusions

We combined measurements of Mg/Ca and §'20 in shells of the planktic foraminiferal species N. pachy-
derma to reconstruct the shallow subsurface hydrography during the last interglacial-glacial cycle. First, we
reported the downcore Mg/Ca, Al/Ca, Mn/Ca, Fe/Ca results from two different cleaning methods (“Mg clean-
ing” and “full cleaning”), along with weight loss% during the cleaning. We showed that the “Mg cleaning”
method was not sufficiently effective in removing different contaminants. This may also apply to areas with
similar diagenetic history and thus we recommend, similar to previous studies [Barker et al., 2005], that a
screening downcore test for different cleaning protocols should be applied before deciding which cleaning
protocol to use.

Low seawater §'20, relatively high temperature and dominance of N. pachyderma (>80%) are recorded dur-
ing Heinrich Stadial (HS)1, which suggests a strong stratification in the upper water column and likely a shal-
low subsurface inflow of Atlantic water below a well-developed halocline. Similar hydrographic features
were also observed during HS11 in Termination Il. Our Mg/Ca record based on the full cleaning method is
discontinuous and in certain intervals of low resolution and was not capable of resolving all glacial millenni-
al scale climatic events. However, low §'80sy values were also recorded for HS2, HS3, HS4, and HS6.

The evolution in the Mg/Ca-based shallow subsurface temperatures during the Eemian generally agrees
with previous estimates based on planktic foraminiferal assemblages and dinoflagellate cysts documenting
the delay of the last interglacial “Eemian” warm peak in the eastern Nordic Seas relative to the North Atlan-
tic. However, our high values of 5'80sy, during the early Eemian may indicate a shallow subsurface inflow of
Atlantic water below a thin layer of polar/Arctic water.
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