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Abstract

The effect of surfaces and interfaces on the structure and properties of molecules is of

a great interest in a number of biological and technological applications. Nevertheless,

such an investigation is extremely challenging from an experimental point of view,

due to the bidimensionality of the environment. In recent years, we have developed

a framework to study molecules at surfaces and interfaces, by means of a continuum

approach. In the present study, we extend our model by showing the effect of interfacial

solvation on molecular properties and by refining the description of the transfer process,

making use of a proper Boltzmann averaging of the orientational degrees of freedom.

Our findings are in substantial agreement with previous simulations, for the energetics

of the transfer process, but yield a somehow different description of the molecular

electronic structure. Both the agreement on the energetics and the disagreement on

the properties are motivated in light of the role played by non-electrostatic effects in

the solvation process.
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Introduction

Dielectric Continuum (DC) methods are nowadays routinely implemented in most quantum

chemistry software packages. They are by far the simplest way to include solvent effects in a

quantum chemical calculation: solvent molecules are replaced altogether by a structureless

medium, surrounding the target molecule which is enclosed in a cavity. DC models can often

be used as a black-box, specifying only a handful of parameters, to define the cavity and the

physical properties of the medium.1,2

Despite such a simplicity, DC models have advanced significantly from the original

spherical-cavity models of Onsager and Kirkwood,3,4 and feature molecular-shaped cavities5

and the possibility to describe molecular properties to high order,2,6–10 they can employ sev-

eral non-equilibrium schemes to model the delay in the solvent response,8,11–13 and have been

extended to non-electrostatic interactions.14,15 The calculation of solvation energies within

a DC framework has become routine, and it yields reliable, quantitative information about

the solvation energetics.16,17

Such a success has motivated the extension of the original models in several directions, to

deal with an ever growing spectrum of physical phenomena. One such development regards

the possibility to describe heterogeneous environments where the properties of the solvent are

no longer constant in space: this is the natural way for a continuum method, which defines

the solvent by its macroscopic properties (permittivity, refractive index and density just to

mention the most important ones), to deal with surfaces and interfaces. The importance of

such environments is paramount. In technological applications, the miniaturization paradigm

clearly exemplified by nanotechnology, implies that a large part of the underlying molecular

processes happens in the presence of a surface, such as for example the energy transfer from a

dye to the semiconductor in a dye-sensitized solar cell.18 On the opposite side of the spectrum

are natural environments: the lipidic membranes of a cell19 for its biologic implications or

2



the surface of the sea20 for its environmental impact. The theoretical study of molecular

processes at surfaces and interfaces is therefore a very active field of research. However,

continuum methods have only sporadically been used in this context. Most often interfacial

phenomena are modeled either by fully atomistic simulations,21–23 if one is interested in the

behavior of single atoms and molecules, or by coarse-grained methods, to describe phenomena

at larger time and size scales.24–26 Common to both approaches is however the treatment

of the whole system at a uniform level (with or without atomistic detail), but even for

the atomistic simulations the investigation of molecular properties is precluded due to the

lack of a quantum description of the system. On the other hand, molecular properties

(dipoles, (hyper)polarizabilities, excitation energies) are the essential link between modeling

and the various spectroscopies which are employed to investigate surfaces and interfaces.27

Focused models are a good choice to fill this gap: they provide a quantum description of

the substrate in presence of the environmental effect, which is included either with atomistic

detail, such as in Quantum Mechanics/Molecular Mechanics (QM/MM) calculations,28–30 or

with an averaged reaction field, such as for continuum models.1,31 In 2000, we have presented

our first continuum model for surfaces and interfaces using Polarizable Continuum Model

(PCM) including all relevant solvation energy contributions,32 albeit most of them were

only included empirically (no quantum description). Later we have presented an improved

version of the quantum electrostatic model,33 and we have gradually included the other

components such as repulsion34 and dispersion35 in the quantum model. At present, all

relevant terms besides cavitation are defined at the Quantum Mechanics (QM) level, thus

their effect on the electronic density and in turn on molecular properties is included. Lately

also a QM/MM based approach has been employed by Martins-Costa and coworkers,36–39

where MD simulations are combined with a QM/MM treatment of the core to retain a

quantum picture of the solute.

The main challenge for continuum models, in this context, is the lack of specific solute-
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solvent interactions which are instead present in QM/MM calculations. The advantage is

however a significantly lower computational cost.

The main goal of this manuscript is to assess the validity of our current model, by applying

it to some test-system, and compare the obtained results to the corresponding QM/MM

simulations performed by Martins-Costa and coworkers. We will first outline our model,

with emphasis on the aspects which are related to the extension to interfaces. Then, we will

describe the computational protocol employed, followed by the presentation and discussion

of our results. Our main findings will then be summarized in the concluding remarks..

Theory

In this section we will present the theoretical foundation of our model. We start from the

definition of the solvation process as the transfer of an isolated molecule from the gas-phase

to the solution, and the required adaptations to describe interfacial environments.

At constant pressure and temperature, the correct thermodynamic quantity is the Gibbs’

free energy Gsol. which is the net work required to create a cavity within the solvent and

to bring the two non-interacting systems (solute and solvent) to the fully interacting state.

Following Tomasi et al. ,2 we divide such a work in four additive contributions: Gel, Gdis,Grep

and Gcav, which are the electrostatic, dispersion, repulsion and cavitation contributions to

free energy of solvation, respectively. We neglect in this work the vibrational contribution

to the free energy.

In our model Gel, Gdis,Grep are included in the quantum Hamiltonian, whereas Gcav is

only treated classically. While not included in our model, quantum approach to cavitation

has been recently presented by Andreussi et al. 40

In the following we will first consider our approach to deal with surfaces and interfaces.

We will then review each solvation energy contributions briefly, emphasizing aspects which
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are relevant in connection to the extension to surfaces and interfaces.

Interfaces

In continuum solvation methods, the solvent structure is largely discarded: the solvent

parametrization is reduced to a handful of parameters which are necessary to model the

relevant solute-solvent interactions. For uniform and homogeneous solvents these parame-

ters are scalars, such as the dielectric constant (electrostatics), the refractive index (disper-

sion), the density of valence electrons (repulsion), the surface tension (cavitation). In some

cases, such as liquid crystals, a tensorial permittivity is used to model the non-uniformity

of the electrostatic response along different spacial directions.41 In the presence of surfaces

and interfaces, the homogeneity is no longer valid, and it is necessary to introduce position-

dependent parameters. The simplest choice is the subdivision of the environment in different,

boundary-separated domains. Despite its formal simplicity, such a solution is technically

challenging: the parametrization of interfaces alongside the molecular cavity is difficult to

achieve, especially for infinite boundaries such as planar ones, and it leads to unphysical

artifacts like the singularity due to image charges, when the molecular cavity is brought very

close to the interface. A better alternative is achieved by allowing solvent descriptors to be

smooth, position dependent-functions: the topology of the environment is hidden in such

functions and unphysical singularities are avoided.

In our model, for each physical parameter ξ employed in the working equations, we have

made use of a simple parametrization, where for each point in space ξ is a weighed average

of the bulk values for the solvents on the two sides of the interface. For instance, for a planar

interface perpendicular to the z axis, a generic solvent property ξ(z) is parametrized as:

ξM = ξ1x(z) + ξ2(1− x(z)). (1)
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For a solvent-solvent interface the weights can be considered the molar fractions of the two

solvents, computed by molecular dynamic simulations.42–44 For solvent/vapor surfaces it is

instead more appropriate to consider a dimensionless density fraction: x(z) = ρ(z)/ρ0, where

ρ0 is the density in the bulk.

In practice, for planar surfaces (both solvent/solvent and solvent/vapor ones), x(z) is

chosen to have the following form:

x =
1

2
+

1

2
tanh

z − z0

W/6
, (2)

where z0 is the midpoint of the interface, and W is a width parameter. The constant factor

6 determines a dilation of the profile such that W corresponds roughly to a 3σ interval, if

the shape of the profile is interpreted as an integrated statistical distribution, and σ is its

standard deviation.

A question arising from the choice of profile is how to deal with quantities which are

related to each other. For instance, the refractive index η is connected to the optical per-

mittivity: ε∞ = η2. In principle, one of them could be derived from the other throughout

the interface. On the other hand, such a level of sophistication is unjustified and a more

pragmatic approach has been used. For each contribution to the solvation energy, we have

identified a phenomenological parameter which is varied through the interface according to

Eq. (1). In Table 1, we have summarized the parameters employed, their definition and we

have listed which energy contribution they are used for.

Electrostatics

The electrostatic term is certainly the most important among the solute-solvent interac-

tions: in the vast majority of implementations it is actually the only one considered. We

compute the electrostatic component ∆Gel by making use of the Integral Equation Formal-
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Table 1: Phenomenological parameters used in the different contributions to the solvation free
energy and their values for the solvents used in this study. For electrostatics, the dielectric

constant ε is employed; for dispersion the coefficient β = cf
η2S−1

η2s
· ΩS

ΩS+ωave
is employed,

containing both solvent-dependent parameters (a fitting constant cf , the refractive index
η and the ionization energy Ω) and an average excitation energy for the solute ωave; for
repulsion, the relevant quantity is the energy density of valence shell electrons of the solvent
ρ (in Hartree); for cavitation, the surface tension γ (in 10−3N ·m) is employed.

Component. Quantity Water CCl4 Vacuum

Electrostatics ε 78.39 2.228 1.0
Dispersion β (system dep.) (system dep.) 0.0
Repulsion ρ 9.37 · 104 5.11 · 105 0.0
Cavitation γ 71.81 26.15 0.0

ism (IEF):41,45 the problem is recast into a boundary-integral problem at the cavity surface,

Aσ = −g, (3)

where A is an integral operator, σ is the apparent surface charge on the cavity surface and

g is function supported on the cavity surface.

More in detail we have that:

A = (2π −De)Si + Se(2π +D∗i ) (4)

g = (2π −De)VM + Se

(
∂VM
∂n

)
(5)

where VM is the electrostatic potential generated by the solute charge distribution, and Da

and Sa (a = i, e, for inside and outside the cavity, respectively) are also integral operators

defined as

(Saσ)(x) =

∫
Γ

Ga(x, y)σ(y)dy, (6)

(Daσ)(x) =

∫
Γ

[εa(~∇yGa(x, y)) · ~n(y)]σ(y)dy, (7)

7



(D∗aσ)(x) =

∫
Γ

[εa(~∇yGa(x, y)) · ~n(x)]σ(y)dy, (8)

and Ga denotes a Green’s function. Γ is the cavity surface, εa is the medium permittivity

(equal to 1 for a = i), and ~n is the outward-pointing unit vector perpendicular the the

surface of the cavity. The main strength of the IEF-PCM is the possibility to deal with any

medium, as long as the Green’s function is either known in a closed form or available through

numerical integration. Standard solvents, nematic phases, ionic solutions45 and sharp planar

interfaces32 belong to the first group, whereas diffuse interfaces33 and spherical systems46

belong to the second.

As an example of the first class, we consider a uniform, homogeneous dielectric whose

Green’s function can be written as

Gi(x, y) =
1

ε|x− y|
. (9)

where ε is the permittivity of the medium. For the cavity interior vacuum is considered

(ε = 1).

On the other hand, for the diffuse interfaces,33 a closed-form expression cannot in general

be found, but it can be computed numerically as the solution of the following differential

equation where ε(x) becomes position-dependent.

~∇x ·
[
ε(x) · ~∇xG

E(x, y)
]

= −4πδ(x− y). (10)

In case of a planar diffuse interface the permittivity is dependent on z, allowing for a

simple numerical integration.33 The final expression consists of two terms, representing the

direct Coulomb interaction, mediated by an effective permittivity c(x, y) and by an image
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term Gimg which corresponds to the image-charge potential for a sharp planar interface:

Ge(x, y) =
1

c(x, y)|x− y|
+Gimg(x, y). (11)

Dispersion

In the theory of intermolecular interactions,47,48 dispersion arises from the interaction be-

tween transition charge densities of the two interacting subsystems. For a solute-solvent sys-

tem, one such subsystem is represented by the solute, whereas the other one is the solvent.

A strategy to extend dispersion to such systems has originally been devised by Amovilli,49

and then implemented by Amovilli and Mennucci15 and later modified by Weijo et al. 50 In

such a model, the free energy of solvation is computed through the following expression

Gdisp = − 1

8π

η2
S − 1

η2
S

∑
p

ΩS

ΩS + ωp

∫
Γ

dsVp(s)Ep(s), (12)

where the sum runs over the excited states of the solute. Vp and Ep are, respectively, the

electrostatic potential and electrostatic field connected to the transition charge density of

state p, ωp is the corresponding excitation energy and ΩS = Isηs is the product of solvent

first ionization potential Is and its refractive index ηS. Although Eq. 12 can be employed to

compute the dispersion energy, it is impractical to obtain the corresponding Fock operator.

Therefore, a simplified expression is employed, assuming an average excitation energy ωave

instead of ωp. Additionally, the factor 1
8π

is replaced by a solvent-dependent coefficient cf

which is fitted for each solvent:

Gdisp = −cf
η2
S − 1

η2
S

ΩS

ΩS + ωave

∫
Γ

ds
∑
p

Vp(s)Ep(s) = −β(ωave)

∫
Γ

ds
∑
p

Vp(s)Ep(s). (13)

The value of ωave is obtained by imposing that Eq. 12 and Eq. 13 yield the same disper-
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sion energy. The extension to the interfaces35 is simply obtained by collecting all solvent-

dependent parameters in a coefficient β:

β = cf
η2
S − 1

η2
S

ΩS

ΩS + ωave

(14)

which is then made position-dependent. The final expression for free energy of dispersion at

the diffuse interface is then as follows:

Gdisp = −
∫

Γ

β(ωave; s)Vp(s)Ep(s) ds, (15)

where the position dependence of β is given by Eq. (1).

Repulsion

The solute electronic density is not entirely confined within the cavity boundary. The outly-

ing charge has a repulsive interaction with the solvent charge density which arises from the

Pauli principle.47,48 The repulsion contribution to the solvation free energy15 can be written

as

Grep = α

∫
r 6∈C

drPA(r), (16)

where the integral is over the whole space except the cavity, PA(r) is the electronic density

(where A refers to the solute), and α is a constant factor, proportional to the density ρe of

valence shell electrons in the solvent:

α = 0.063ρe = 0.063ρB
nBval
MB

, (17)

which is in turn obtained from the solvent density ρB, the number of valence shell electrons

nBval, and the molecular weight of the solvent MB.
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For diffuse interfaces, it suffices to make the density of valence-shell electron position

dependent:

Grep = α′
∫
r 6∈C

ρe(r)PA(r) dr, (18)

where α′ = 0.063. In order to avoid a costly volume integral, we assume an exponential

decay of the electronic density outside the cavity. For a spherical cavity, the problem admits

a simple analytical integration (see Ref.34 for details), leading to a surface integral which

requires a weight function f(s; b) depending on an adjustable parameter ba, the solute elec-

tronic density at the cavity surface PA(s) and the density of valence shell electron of the

solvent at the surface ρe(s):

Grep = α′
∫
s∈Γ

ρe(s)f(s; b)PA(s) ds, (19)

The expression above is then used with an arbitrary cavity, simply by adjusting b such that

the outlying electronic charge nout is correctly reproduced:

nout =

∫
s∈Γ

f(s; b)PA(s) ds. (20)

Cavitation

Cavitation is the energy required to create a cavity inside the solvent. Therefore, it is only

indirectly dependent on the solute, through the cavity shape. Scaled-Particel Theory (SPT),

– a statistical thermodynamics formalism developed by Pierotti51 for spherical cavities and a

hard-sphere liquids – is employed here. This method has been adapted to molecular-shaped

cavities by adding the cavitation contributions from each sphere, and weighing each of them

aIn Ref.34 the symbol β is employed. Here, b is employed, to avoid confusion with the dispersion
parametrization.
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by their respective solvent-exposed fraction.

Gcav =
∑
n

ωnGcav(Rn), (21)

where Rn is the radius of the sphere n, and ωn is the weight. To extend model to surfaces

and interfaces, it is convenient to rewrite the expression in terms of each tessera

Gcav =
∑
t

at
4πR2

t

Gcav(Rt), (22)

where at is the area of the tesserae, and Rt is the radius of the sphere; the cavitation free

energy is then split in two terms, one from each solvent:

Gcav =
∑
t

xt
at

4πR2
t

G1
cavRt + (1− xt)

at
4πR2

t

G2
cavRt, (23)

where xt and (1 − xt) weigh the contributions of each solvent. For sharp planar interfaces

xt = 1 if the tessera t is inside the first solvent and zero otherwise. The drawback is that the

cavity generation must also split tesserae at the interface in two parts, each belonging to a

different solvent. For diffuse interfaces, it is instead only required that xt = x(st), where x(s)

is a smooth function of the position, defining the transition from one solvent to the other.

Additionally, to model surfactant behavior, we have introduced a surface term. When

the cavity is moving through the interface, it reduces the solvent surface thus lowering the

energy by35

Gsurf = −γsA(z = 0), (24)

where γs is the surface tension, and A(z = 0) is the cross section of the cavity in the plane
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of the interface. For a diffuse interface A is calculated as35

A =

∫
Γ

(
ρ(z)/ρ0 −

1

2

)
ẑ(s) · n̂(s)ds. (25)

Contributions to the Fock operator

All contributions to the Fock operator can be obtained as the first derivative with respect

to the density matrix elements of the corresponding free energy contribution. The extension

to surfaces and interfaces does not pose any problem, because the interface parametrization

is independent of the density matrix. All such expressions have been derived elsewhere and

we will here limit ourselves to summarizing them in a uniform notation.

Electrostatics contains both a monoelectronic and a bielectronic term. The corresponding

Fock operator elements can therefore be written as:

F el
µν =

∂G

∂Pµν
= (σN + σe) · Vµν (26)

where the monoelectronic term contains the Apparent Surface Charge (ASC) generated by

the nuclei (σN) and the bielectronic one contains the ASC from the electrons.

Repulsion is instead a monoelectronic term. We report here the expression derived in

Ref.34 which can be used in the presence of interfaces

F rep
µν =

∂Grep

∂Pµν
= α′

∫
Γ

ρel(s)f(s)δµν(s) ds, (27)

where δµν(s) is the representation of the delta-function operator such that TrPδ(s) = ρ(s).

Dispersion also contains a monoelectronic and a bielectronic contribution:

F dis
µν = −

∑
ξη

[µξ|νη]
(
S−1
ξη − Pξη

)
(28)
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where S and P are the overlap and density matrices, and

[µξ|νη] =

∫
Γ

β(s) [Vµξ(s)Eνη + VνηEµξ(s)] ds. (29)

Cavitation is the only term which do not contribute to the Fock matrix, because it is inde-

pendent of the electronic degrees of freedom.

Contributions to the linear response equations

Response properties, in a Time-Dependent Density Functional Theory (TDDFT) framework

are computed by solving a set of coupled linear equations:

G[2] =

A B

B∗ A∗

 ·
X
Y

 = ω

1 0

0 −1

 =

X
Y

 (30)

where the matrices A and B collect the second derivatives of the free energy functional

with respect to orbital rotations. It is beyond the scope of the present paper to expose the

complete derivation and the reader is refereed to the relevant literature on the subject.52,53

We limit ourselves to consider the terms which arise due to presence of the solvent.

Of the four contributions mentioned above, three of them depend on the electronic den-

sity: electrostatics, dispersion and repulsion. The former two contain mono- and bielectronic

terms (the bielectronic terms are products of monoelectronic ones). Cavitation is on the

other hand only dependent on the cavity shape and not directly on the density.

Any monoelectronic contribution to the solvation energy can be formally written as:

G1 =

∫
F1(r)ρ(r) dr (31)

where F1(r) is the corresponding energy functional. Conversely, any bielectronic contribution
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to the solvation energy can be written as:

G2 =

∫
ρ(r′)F2(r, r′)ρ(r) dr (32)

where F2(r) is the corresponding bielectronic energy functional. In particular the matrix A

and B are obtained as:

Aai,bj =
∂2G

∂κ∗ai∂κbj
=

∂G

∂ρ

∂2ρ

∂κ∗ai∂κbj
+
∂2G

∂ρ2

∂ρ

∂κ∗ai

∂ρ

∂κbj
(33)

Bai,bj =
∂2G

∂κ∗ai∂κ
∗
bj

=
∂G

∂ρ

∂2ρ

∂κ∗ai∂κ
∗
bj

+
∂2G

∂ρ2

∂ρ

∂κ∗ai

∂ρ

∂κ∗bj
(34)

In practice the first term of the expressions for A and B is already present in the Fock

operator and only the second term needs to be considered explicitly. Additionally, only the

two-electron terms contribute to ∂2G/∂ρ2. For the electrostatic part such a contribution can

be written as:

Ael2,ai,bj =

∫
Γ

σai(s)Vbj(s) ds, (35)

whereas for dispersion one gets

Adis2,ai,bj =

∫
Γ

β(s)Eai(s)Vbj(s) ds. (36)

The contributions to B are very similar and their derivation is not reported here.

Following Cupellini et al. 54 we have adjusted the contribution of dispersion to the re-

sponse equation by multiplying β(s) (see Eq. 14)) by a factor 1.51, to obtain better agreement

for the calculation of excitation energies.
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Computational protocol

For all calculations, including all geometry optimizations, we have employed the B3LYP

functional55,56 as implemented in the Gaussian0957 program. For all the systems, the aug-

cc-pVDZ58 basis set has been employed.

All geometries were optimized in water. No reoptimization during solvation profile gen-

eration was done. In all calculations the free energy has been obtained without inclusion of

thermal corrections (vibrational and rotational terms).

We have constructed molecular cavities using interlocking, atom-centered spheres and

the following set of radii: 1.6Å for nitrogen, 1.2Å for hydrogens capable of hydrogen bonding

(OH, NH2) 1.52Å for oxygen, and 1.8Å for carbon. For CH, CH2 and CH3 groups, a common

sphere centered on carbon has been employed with radii of 1.9Å, 2.0Å and 2.1Å respectively.

All radii are multiplied by the common scaling factor of 1.2. No additional spheres to account

for further solvent excluded volume have been used.

In the presence of an interface, the solvation free energy becomes dependent on the

position and orientation of the molecule with respect to the interface. In MD simulations

such an effect is reflected in the potential of mean force where orientations at lower energy will

naturally contribute more, according to the corresponding Boltzmann distribution. In our

case, where each calculation is performed at fixed position and orientation, we have performed

a Boltzmann averaging following the procedure described by Parisio and Ferrarini.59 In

particular, we are interested in the orientationally averaged value of a given quantity f ,

which can be expressed as:

〈f〉Ω (z) =

∫
f(z,Ω)e−U(z,Ω)/kbT dω

e−U(z,Ω)/kbT dω
(37)

where f(z,Ω) is the value of the quantity at a fixed distance z of the center of mass of the

molecule from the interface and a given molecular orientation Ω with respect to the interface,
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and U(z,Ω) is the corresponding solvation energy. If a Leopardi’s sampling 60 is employed

the orientational average can be expressed as:

〈f〉Ω (z) =

∑
i f(z,Ωi)e

−U(z,Ωi)/kbT∑
i e
−U(z,Ωi)/kbT

(38)

because each representative point has the same weight due to the chosen partitioning scheme.

Results discussion

In our study, we have considered the following substrates: formaldehyde, benzaldehyde and

o-cyanophenol at the water-vapor interface, valine and glycine (in neutral and zwitterionic

forms) at the water/CCl4 interface. They are among the systems which have recently been

investigated by Martins-Costa and coworkers,36–38,61 and have been chosen to compare results

across different theoretical models. See Ref.36,37 for aldehydes, Ref.61 for o-cyanophenol, and

38 for the aminoacids. For each compound we will illustrate our results, drawing a comparison

with the above mentioned studies.

Formaldehyde

In Fig. 1 we have reported several properties of formaldehyde crossing the water surface,

obtained with our model. The free energy of solvation, is shown in Fig. 1a. The bulk

solvation energy in water is -1.66 kcal/mol. Approaching the interface, the solvation energy

becomes larger (more negative), passing through a minimum at 0 Ångstrom, which is about

2 kcal/mol lower than the bulk value. Thereafter, the solvation energy increases towards

zero (gas phase).

As observed before32,35 the insurgence of the minimum is due to competing effects between

negative contributions to the solvation energy (electrostatics, dispersion, surface term) and
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positive ones (repulsion and cavitation), which arise at different positions and with different

slopes across the interface (Fig. 1b). In particular, going from vacuum to water, electrostatics

is already present at -5 Ångstrom, which is consistent with its long-range nature, whereas

the others arise slightly later. In summary, the electrostatic part of the free energy is the

main driving force for the solvation process, whereas the non-electrostatic contributions are

responsible for the interfacial behavior, generating the corresponding free energy minimum.

By comparing our results with the findings of Martins-Costa et al ,37 (see the insert in

Fig 1a), we see that the two profiles are very similar, both in terms of shape and magnitude of

the free energy profile. In order to confirm the similarity we have also computed the angular

distribution of formaldehyde in bulk solution and at the free energy minimum along z. Our

results are reported in Fig 1c (insert reproduced from Ref.37). The bulk results show that

the normal 1
2
sin(θ) distributions is recoveredb, whereas the interfacial distribution peaks at

roughly 80◦, showing a clear preference for the carbonyl group pointing towards the water

surface. The overall shape is also strikingly similar to Ref.37

In order to extend the comparison to molecular properties, the dipole, moment, the first

five excitation energies and their respective oscillator strengths have been computed through-

out the interface. Additionally, the same calculations for a purely electrostatic solvation, by

switching off the other energy contributions, have been performed.

In Table 2 we present a summary of our results, comparing our full model (all solvation

contributions) to the electrostatic one (dispersion, repulsion and cavitation switched off)

and to the results of Ref.37 The dipole moment shows similar trends in our calculations

with marginal differences when non-electrostatic effects are removed. The comparison with

QM/MM results shows also a similar trend, albeit the environmental effect seems enhanced

for QM/MM. It is interesting to note that the HOMO-LUMO gap shows different trends

bthe small discrepancies observed are due to numerical noise in the calculation of solvation free energy
with different orientation, because the cavity parametrization is orientation-dependent

18



with or without non-electrostatic solvation terms: in particular the QM/MM results seems

to be in closer agreement with our electrostatic model. This observation applies to excitation

energies as well.

Both the similarities and the differences between our model and the simulations in Ref.37

can be rationalized in light of the different interactions involved. Our model contains both

electrostatic and non-electrostatic contributions: the latter ban be switched on and off to

check their effects on energy and properties. The simulations in Ref.37 include electrostatic

and non-electrostatic terms in the Potential of Mean Force (PMF), but the QM/MM model

employed for molecular properties (dipole moments, HOMO-LUMO gap, excitation energies)

is purely electrostatic.

Solvation energies are in good agreement because both models contain electrostatic as

well as non-electrostatic interactions. When non-electrostatic interactions are switched off

in our model, the minimum at the interface disappears. The dipole moment is practically

insensitive to non-electrostatic terms (see Fig. 1d), and our model agrees therefore with

QM/MM, which is purely electrostatic. The HOMO-LUMO gap is instead very sensitive

to dispersion (see Fig. 1e): only by switching the non-electrostatic terms off we recover the

QM/MM results in this case. Similar considerations apply to excitation energies, albeit the

sensitivity to dispersion and repulsion is in this case dependent on the specific excitation

considered.

Benzaldehyde

The results for benzaldehyde crossing the water surface are reported in Fig. 2. The free

energy profile for benzaldehyde together with the sum of the non-electrostatic contributions

(Fig 2a), shows again the importance of the complete picture: the solvation free energy

has a minimum around z = 0 Å with a value of -7.35 kcal/mol. The bulk free energy of

solvation is found to be -3.8 kcal/mol, and the interfacial preference is due to the interplay
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Table 2: Selected molecular properties for formaldehyde at the water surface using full model
(’full’), only electrostatic model (’ele’), together with reference (’ref’).37 Dipole moments (µ,
Debyes), excitation wavelengths (λ nm), force constants (f · 103), orbital energies (a.u.) of
HOMO (εH) and LUMO (εL) orbitals.

BULK INTF. GAS
full ele ref full ele ref ref

µ 3.030 3.043 (3.406) 2.966 2.973 (3.170) 2.446 (2.390)
εH -0.2755 -0.2832 (-0.2877) -0.2803 -0.2843 (-0.2934) -0.2816 (-0.2806)
εL -0.0720 -0.0652 (-0.0626) -0.0698 -0.0666 (-0.0699) -0.0670 (-0.0642)
εL − εH 0.203 0.218 (0.225) 0.210 0.218 (0.223) 0.214 (0.217)
λ1 329.9 311.5 (297.7) 320.7 311.9 (300.8) 320.7 (312.9)
f1 0 0 (0) 0 0 (0) 0 (0)
λ2 187.0 184.6 (171.1) 186.1 184.8 (175.0) 192.0 (191.7)
f2 10.2 10.3 (6.8) 12.6 12.3 (13.4) 27.7 (27.8)
λ3 166.4 164.6 (154.7) 165.7 164.8 (157.9) 169.2 (170.0)
f3 52.6 56.3 (60.6) 49.3 52.0 (51.0) 43.9 (38.7)

of the electrostatic and non-electrostatic contributions, arising with different slopes and at

different distances from the interface.

The comparison with Ref,36 shows a semiquantitative agreement: the position of the

minimum is reproduced, and the trends from formaldehyde to benzaldehyde are similar

(deeper minimum). The main difference is the width of the interface (intended as the layer

where deviations from bulk behavior are observed) which is roughly twice as large when

simulations are employed.

When we consider properties, it is also clear that non-electrostatic effects can significantly

modify the picture in some cases. The dipole moment is enhanced by the electrostatic

interactions, and almost independent of the non-electrostatic terms. In Table 3 we show how

removing the non-electrostatic components has no practical effect on the dipole moment

both in bulk and at the interface. Compared to Ref.36 the agreement is good. The only

significant discrepancy is observed at the interface where our values are closer to the bulk

than the QM/MM simulations, which is a saturation effect similar to what we have observed

20



for formaldehyde.

Turning our attention to the HOMO-LUMO gap, the data from Table 3 show again a

significant difference between the full model and the electrostatic one. Following the profile

through the interface (see Fig. 2b), the correlation between the trend in the HOMO-LUMO

gap and the total solvation energy is clear, showing the importance of non-electrostatic

contributions. It is however difficult to draw a comparison with QM/MM calculations,36

because the data in bulk are here missing. Excitation energies show a mixed picture, where

the solvent shift is sometimes dominated by electrostatics (excitation 1, 3 and 5), and others

where dispersion effects are more important (excitation 2 and 4). To illustrate this point,

the solvatochromic shifts ∆λ(z) = λmax(z) − λmax,gas through the interface are reported in

Fig. 2c for the first five excitations. To compare our results to Ref.,36 we have plotted the

simulated UV-Vis spectrum in Fig. 2d and reported some selected values in Tab. 4. The

main peak (π → π?) shows a red-shift at the interface (13.7nm) and in bulk (22.6nm), in

agreement with Ref.36 Such an agreement is indeed a consequence of the electrostatic nature

of the solvent effect on the π → π? transition.

It is however not straightforward to compare the n → π? transition, in part because of

the concurrence of many effects, and in part because in Ref.36 only the graphical spectrum

with a wider shoulder is reported (it is not possible to conclude from the picture whether a

red- or a blue-shift is observed). We therefore limit ourselves to an analysis of the different

contributions which are present in our model. For the n → π? we observe a small red-shift

in bulk (3.7nm), whereas we see a blue-shift at the interface (-6.6nm). This is reflected in

the position of the right shoulder of the spectrum (shifted to the left at the interface and

to the right in bulk).c Without non-electrostatic terms, the n → π? transition becomes

significantly blue-shifted, whereas non-equilibrium effects are somehow limited. Also for the

cA widening similar to Ref.36 cannot be observed because we perform single point calculations and not
an averaging over Molecular Dynamics (MD) snapshots.
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π → π?transition we see similar trends: a limited effect due to non-equilibrium solvation

and an enhancement of the red-shift when non-electrostatic terms are included. As a last

remark we note that our model lacks hydrogen bonding, which is important for the n→ π?

transition.62

Table 3: Selected properties of benzaldehyde at the water surface, using the full model
(full), the electrostatic model (ele), together with reference values (ref) from Ref.36 Dipole
moments (µ, Debyes), orbital energies (a.u.) of HOMO (εH) and LUMO (εL) orbitals and
the HOMO-LUMO gap (εL − εH), a.u.

BULK INTF. GAS
full ele ref full ele ref ref

µ 4.792 4.799 4.710 4.720 (3.96) 3.544 (3.56)
εH -0.2665 -0.2724 -0.2706 -0.2733 (-0.2664) -0.2677 (-0.2732)
εL -0.0868 -0.0809 -0.0850 -0.0819 (-0.0836) -0.0801 (-0.0827)
εL − εH 0.180 0.192 0.186 0.191 (0.183) 0.188 (0.191)

Table 4: n → π? and π → π? excitation energies for benzaldehyde in bulk water, at the
water surface and in gas-phase. For each transition, both the absolute value and the solvent
shift with respect to gas-phase (∆λ) are reported. For bulk solvation, both equilibrium
and non-equilibrium calculations have been performed, either in combination with the non-
electrostatic terms (full) or without (ele). For the water surface and in gas-phase, we have
reported our results together with reference values from Ref.36 in parenthesis. All values are
in nm.

Excitation BULK INTF. GAS
non-eq. equil. non-eq.

full ele full ele full ref ref
n→ π? λ 347.3 327.5 342.7 328.3 337.0 343.6 (343)

∆λ 3.7 -16.1 -0.9 -15.3 -6.6
π → π? λ 289.7 275.6 284.9 277.8 280.6 (282) 267.1 (274)

∆λ 22.6 8.5 17.8 10.7 13.7 (8)

o-cyanophenol

The results for o-cyanophenol crossing the water surface are reported in Fig. 3. The solvation

energy is found to be around -4 kcal/mol, with a minimum at the interface of about -8
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kcal/mol. It is again the collective effect of all contributions to the solvation energy, (total

and non-electrostatic solvation are reported in Fig. 3a) which determines the surfactant

behavior: dispersion (-18 kcal/mol in bulk) and cavitation (17 kcal/mol) are the largest

contributions in absolute value, whereas repulsion is positive and small (5 kcal/mol in bulk);

electrostatics is slightly larger (-7 kcal/mol). The surface term, (-2 kcal/mol at the surface)

contributes to the surfactant behavior, although it is not the only factor (the minimum is

present also without the surface term). For this substrate it is more challenging to draw a

comparison on the energetics, given that Ref.61 only reports an orientational study in the

presence of a sharp dielectric surface.

The comparison on simple molecular properties is however illustrative. In Tab 5 we

report dipole moment µ, energies of HOMO and LUMO orbitals (εHOMO and εLUMO) for

o-cyanophenol, together with the literature values from Ref.61 The dipole moments are in

good agreement in bulk (4.79 vs, 4.58) and gas-phase (3.67 vs 3.58), whereas our interface

values are “saturated” (4.75 vs 3.84). This can be rationalized considering that in Ref.61

the interfacial values are only due to the image effect, and the molecule is not partially

immersed as in our case. The HOMO-LUMO gap gets instead narrower from gas (0.189eV)

to the interface (0.182eV) and bulk (0.176eV) when the full model is employed, whereas

no appreciable variation is observed in the electrostatic model (0.189/0.188/0.188) for the

electrostatic model, which agrees very well with Ref.61

Table 5: Properties for o-cyanophenol at the water surface using the full model (full), the
electrostatic model (ele), together with reference (ref).61 Dipole moments (µ) in Debyes, and
orbital energies in a.u.

BULK INTF. GAS
full ele ref full ele ref ref

µ 4.79 4.80 (4.58) 4.75 4.75 (3.84) 3.67 (3.58)
εH -0.2467 -0.2526 (-0.2570) -0.2496 -0.2526 (-0.2649) -0.2576 (-0.2610)
εL -0.0706 -0.650 (-0.0657) -0.0676 -0.0649 (-0.0733) -0.0683 (-0.0679)
εL − εH 0.176 0.188 (0.191) 0.182 0.188 (0.192) 0.189 (0.193)
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Aminoacids

In Fig. 4, we report free energy of solvation for glycine (left) and valine (right) in the N1

form (top) and in the zwitterionic (middle) as well as a comparison to Ref.38 (bottom). All

profiles are computed for the CCl4-water interface,

The results for both aminoacids are quite similar and will therefore be discussed in par-

allel. Both the neutral and the zwitterionic form are preferentially solvated in water (see

Fig. 4a-b for the neutral form and Fig. 4c d for the zwitterionic one). The free energy dif-

ferences are 3 kcal/mol and 4 kcal/mol, 22 kcal/mol and 27 kcal/mol glycine-N1, valine-N1,

glycine-ZW, and valine-ZW respectively. Moreover, for both molecules the zwitterionic form

is always lower than the corresponding neutral form. Both neutral forms display a clear

minimum (about 2 kcal/mol) at the interface, whereas for the zwitterionic form, where the

electrostatic solvation is dominating, such a minimum (1 kcal/mol) is present only for valine,

due to the larger side-chain in this case.

Compared to Ref,38 the qualitative agreement is good, because both forms display a

similar behavior; however our solvation energy values are smaller in magnitude. To better

facilitate the comparison we have translated our profiles to match the PMF plots, by setting

to zero the energies in water, as presented in Fig. 4e-f.

In Fig 5 we report the angular distribution for glycine and valine, both in N1 and ZW

forms, at CCl4-water interface and in bulk of CCl4. The reported angle is between the

interface normal and the axis bisecting the C −C −N angle where the first carbon belongs

to the carboxylic group. At 0◦ both polar groups point towards CCl4. As expected, in bulk

all profiles roughly reproduce normal distribution of 1
2

sin(θ). The interfacial distribution for

the N1 form of glycine shows a more anisotropic distribution with a certain preference for

the orientation towards water. In all other cases (ZW for glycine and both forms of valine)

there is a clear preference for the polar groups to be oriented towards the water phase, with

maxima at 130◦, 140◦ and 160◦, for glycine in the ZW form, and valine in the N1 form and
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the ZW forms, respectively. The comparison with Ref.38 is good for valine in the N1 form,

but only qualitatively similar for glycine (N1 form). Angular distributions are not reported

in Ref.38 for the zwitterionic forms.

Conclusions

In this study, we have applied the latest development of our continuum model extended to

describe solvation at surfaces and interfaces. In order to achieve a correct description of the

solvation process, we have included in the model all phenomenologically relevant contribu-

tions to solvation: electrostatics, dispersion, repulsion and cavitation. Their extension to

surfaces and interfaces has been presented in previous works and has been here summarized

in the theoretical section. Our primary concern in this work, was to assess the validity of

our model on a set of substrates. To this respect, we have selected systems that have been

investigated recently by Martins-Costa and coworkers36–38 with a combination of MD simu-

lations to obtain solvation energy profiles as the PMF and QM/MM calculations on selected

MD snapshots, to obtain molecular properties at the interface. Additionally we have also

compared our results for o-cyanophenol to the image-charge model presented in Ref.,61 which

is similar to our electrostatic model.

Our results agree well with MD simulations in describing the features of solvation en-

ergy profiles. Considering how different the two approaches are, we believe this agreement

is a good validation for both models. This conclusion confirms previous results from our

group,35 and underlines again the importance of non-electrostatic contributions to solvation,

when surfaces and interfaces are considered. MD simulations include such contributions by

means of a Lennard-Jones potential, whereas QM/MM models lack them in the effective

Hamiltonian operator, which is employed for property calculations.

When it comes to molecular properties, we have carefully analyzed the effect of the differ-
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ent contributions (dispersion and repulsion vs. electrostatics) on dipole moments, HOMO-

LUMO gaps, excitation energies. Our main conclusion is that repulsion and dispersion effects

are indeed important, especially for the HOMO-LUMO gap and for selected excitation en-

ergies. In this case, to obtain a good agreement with QM/MM simulations, it was necessary

to “turn off” non-electrostatic terms, demonstrating that the QM/MM picture is essentially

an electrostatic one. On the other hand, an obvious deficiency of our model is the lack of

specific interactions, such as hydrogen-bonding which can also have a significant effect at the

interface, especially for the n→ π? transition, such as the one investigated for benzaldehyde.

Both models provide useful insight, because they have complementary strengths and

weaknesses: continuum models will need a better description of specific effects, but this is a

challenging point for calculations at interfaces insofar as geometry optimizations are not yet

available at the interface; QM/MM simulations will require the inclusion of non-electrostatic

effects, which are not yet available at the quantum level.
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(a) Total solvation energy (full) and non-electrostatic terms
(dashed)
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(b) Separated contributions to ∆Gsol: electrostatics (full),
dispersion (dashed), repulsion (dotted), cavitation (dash-
dot), surface (dash-2 dots).
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(c) angular distribution of formaldehyde in bulk (full) and at
the water surface (dashed)
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(d) Dipole moment of formaldehyde across the water surface
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(e) HOMO-LUMO gap of formaldehyde across the water sur-
face
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(f) Solvatochromic shifts of the first five excitation energies
of formaldehyde across the water surface

Figure 1: Solvation process of formaldehyde at the water surface. The preferential solvation at the
water surface is due to the interplay of the different solvation energy contributions (see panels (a)
and (b)) and the angular distribution at the water surface shows a preferential orientation with the
carbonyl pointing towards the water surface as observed in Ref.37 (inset reprinted with permission
from Ref.,37 copyright 2012 American Chemical Society.). The dipole moment (c) is only sensitive
to the electrostatic environment whereas the HOMO-LUMO gap (e) and the solvatochromic shifts
(f) are significantly affected by dispersion and repulsion.
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(dashed)
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(c) Solvatochromic shifts of the first five excitation energies
of benzaldehyde across the water surface

(d) Simulated absorption spectrum of formaldehyde in gas
(full), at the water surface (dashed) and in bulk (dotted)

Figure 2: Solvation process of benzaldehyde at the water-vapor water surface. The preferential
solvation at the water surface (a) is accompained by strong non-electrostatic effects both on the
HOMO-LUMO gap and on the excitation energies. The simulated UV-Vis spectrum shows how the
absorption is affected by the the different environments: gas-phase (solid), water surface (dashed),
water bulk (dotted line) (insets in (a) and (d) are reproduced with permission from Ref.36 Copyright:
The Royal Society of Chemistry).
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(a) Total solvation energy (full) and non-electrostatic terms
(dashed) of o-cyanophenol across the water surface
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(b) Dipole moment and HOMO-LUMO gap of o-cyanophenol
across the water surface

Figure 3: Solvation process of o-cyanophenol at the water surface. The preferential solvation at
the water surface is due to the interplay of the different solvation energy contributions (a). The
variations in the dipole moment is again an electrostatic effect, whereas the the HOMO-LUMO
variations are caused by non-electrostatic effects (b).
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(a) Glycine: solvation energy profile of the N1 form across the
H2O-CCl4 interface
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(b) Valine: solvation energy profile of the N1 form across the
H2O-CCl4 interface
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(c) Glycine: solvation energy profile of the ZW form across the
H2O-CCl4 interface
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(d) Valine: solvation energy profile of the ZW form across the
H2O-CCl4 interface
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(e) Glycine: comparison with Ref.38
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(f) Valine: comparison with Ref.38

Figure 4: Free energy of solvation profiles for glycine (left side and valine (right side), both in
N1 and ZW forms. The top-row displays the results for the neutral form, the middle row for the
zwitterionic ones, and the bottom panels report a comparison with Ref.38 (inset reproduced with
permission, copyright American Chemical Society). For the sake of comparison the results in the
bottom panel are reported taking species solvated in water as the reference point. All values i
kcal/mol.
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(b) glycine ZW
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(c) valine N1
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Figure 5: Angular distribution for glycine (top) and valine (bottom), both in N1 (left) and ZW
(right) forms, at the CCl4-water interface and in bulk. The inset from Ref38 presents the angular
distributions for N1 forms (reprinted with permission, copyright 2013 American Chemical Society.)
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