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Abstract. Heat exchange between a conducting plate and the environ-
ment is described here by means of an unknown nonlinear function F of
the temperature u. In this paper we construct a method for recovering F
by means of polynomial expansion, perturbation theory and the toolbox of
thermal inverse problems. We test our method on two examples: In the first
one, we heat the plate (initially at 20 oC) from one side, read the tempera-
ture on the same side and identify the heat exchange law on the opposite side
(active thermography); in the second example we measure the temperature
of one side of the plate (initially at 1500 oC) and study the heat exchange
while cooling (passive thermography).
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1 Introduction

The present paper deals with heat exchange between a homogeneous con-
ducting plate Ω and the environment. It is known that there are cases in
which linear Newton’s law of cooling fails to describe the physics of the
problem [1],[13] and [21].

Moreover, classical nonlinear laws (Dulong-Petit, Newton-Stephan laws)
“can be applied with confidence over the range of conditions usually found in
laboratory calorimetric experiments” [19] but there are natural and industrial
circumstances in which the form of the nonlinearity is unknown and requires
a specific analysis (see for example [8], [11], [12], [18] and [20]).

We assume that the heat transfer is described here by an unknown nonlin-
ear function F of the temperature u. In this paper we construct a method for
recovering F by means of a polynomial expansion, perturbation theory and,
finally, the typical toolbox of thermal inverse problems including Tikhonov
regularization (see also [13], [5], [9] and [10]). Input data consists of a se-
quence of temperature maps taken on an accessible subset of the external
surface of Ω.

In section 2 we describe in detail the direct model and prove the stability
of the temperature with respect to the size of the nonlinearities that appear
in the boundary conditions.

The inverse problem and our method for identifying F are described in
section 3.

In section 4 we test the method with two different physical simulations.
In both cases only one face of the plate is accessible.

In the first one we simulate the heating of the accessible side of Ω by
means of a controlled flux generated by a lamp (active thermography) and
assume that the cooling law on the opposite inaccessible side is an unkown
nonlinear perturbation of Newton’s law. We identify the nonlinear term in
the cooling law from a sequence of temperature maps taken on the accessible
side. Temperature ranges from 20 oC to 45 oC.

The second example deals with cooling from high temperature (from
1500 oC to 500 oC) and is taken from [5]. The specimen is not heated (pas-
sive thermography). We show a regularized approximation of the unknown
function F whose quality is comparable to the reconstructions proposed in
[5] though our assumptions are less restrictive.

Finally, we adopt the following notation for function spaces:
C(Ā) is the set of real continuous functions defined on the closed set Ā
Ck(A) is the set of real continuous functions defined on the open set A

whose partial derivatives are continuous up to the order k = 1, 2.
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2 The Direct Model

We limit ourselves to the 2D problem in which Ω is an orthogonal section of
the thin plate. More precisely, let Ω be the open strip (−L,L)× (0, a) with
L >> a > 0. For each τ > 0, we define Dτ = Ω× (0, τ ] and Sτ = ∂Ω× (0, τ ].
Suppose that Ω represents a metallic specimen with uniform conductivity κ.

If u ∈ C(D̄τ ) ∩ C2(Dτ ) the maximum norm of u is defined as ‖u‖∞ ≡
maxD̄τ |u(x, z, t)|.

The temperature in Ω satisfies the heat equation

ut = α∆u in Dτ , (1)

with boundary conditions for x ∈ (−L,L), t ∈ (0, τ ]

uz(x, a, t) + γa(u(x, a, t)− Ua) + εf(u(x, a, t)) = 0 (2)

−uz(x, 0, t) + γ0(u(x, 0, t)− U0)− Φ(x, t)

κ
= 0 (3)

and initial data

u(x, z, 0) = Tin(x, z) for (x, z) ∈ Ω. (4)

On the vertical sides of Ω we assume the adiabatic conditions

−ux(−L, z) = ux(L, z) = 0.

A list of details about physical parameters and mathematical notation
follows:

α = κ
ρc is the diffusivity. The plate Ω is made of a metal of density ρ and

specific heat at constant pressure c;
κγa and κγ0 are the coefficients of surface heat transfer corresponding to

z = a and z = 0 respectively;
Ua and U0 are the temperatures of the surrounding media (assumed

constant) while the initial temperature Tin is a smooth function defined in
Ω;

γ(u(x, a, t)−Ua)+εf(u(x, a, t)) accounts for the nonlinear functional rela-
tion between the surface temperature and the rate of heat exchange through
the upper side of Sτ . The parameter ε > 0 is the scale factor of the non-
linearity. The function f belongs to C(J). The set J is called “the sector
between upper and lower solutions” and will be defined in the next section.

uε is the solution of the Initial Boundary Problem (1)-(4). This notation
points out the dependence of the solution on the scale factor ε. Hence, u0
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is the “background” temperature corresponding to the linear heat exchange
uz(x, a, t) + γa(u(x, a, t)− Ua) = 0 for x ∈ (−L,L), t ∈ (0, τ ].

Φ is a prescribed flux into the surface z = 0. It is generated by a con-
trolled heat source (a lamp, a battery of lamps, a laser). Usually it takes the
form Φ(x, t) = Φ0(x)F (t) where Φ0 > 0 and F (t) can be either a periodic
function (lock-in thermography) or a pulse (pulsed thermography) [13].

2.1 Pao’s results about the direct model

The theoretical background of the direct model consists of a set of results by
Pao [14] in which existence and uniqueness of solutions of parabolic equations
with nonlinear boundary conditions are proven under suitable hypotheses.
The main theoretical statement (Theorem 1.1 Chapt.4 [14]) suggests a strat-
egy for the numerical approximation of the solution as limit of a monotone
sequence of solutions of linear problems. Stability of the solution of the Di-
rect Model (1)-(4) with respect to ε is a corollary of theorem (Theorem 1.1
Chapt. 4 [14]).
To lighten the notation, in (1)-(4) we set Ua = U0 = 0 and γ = γ0. In the
introduction, the geometry of our thin plate was described by a rectangular
strip of thickness a > 0. In order to apply Pao’s theorem, here we assume
that Ω is the convex open set in R2

S− ∪R ∪ S+

where:
R = (−L,L)× (0, a)

with (a << L),

S− = ∪x∈(−L−a/2,−L)(
a

2
−
√

(a2/4− (x+ L)2)),
a

2
+
√

(a2/4− (x+ L)2))

S+ = ∪x∈(L,L+a/2)(
a

2
−
√

(a2/4− (x− L)2)),
a

2
+
√

(a2/4− (x− L)2)).

The domain Ω looks like a finite thin strip with smoothed corners. Its bound-
ary is a closed curve of class C1.

Furthermore, we write down our boundary conditions in the form

∂u

∂ν
(P, t) + γu = g(t, P (x, z), u)

where P (x, z) ∈ ∂Ω. The function g is continuous and it is piecewise defined
as

g(t, P, u) = −εf(P, u(x, a, t)) in {(x, a) with x ∈ (−L,L)}

4



and
g(t, P, u) =

Φ(x, t)

κ
in {(x, 0) with x ∈ (−L,L)}

with f(P, u) = Φ(x, t) = 0 for L > |x| ≥ 9
10L. In the rest of the boundary

we have g = 0.

To describe the essentials of this result, we must introduce the definition
of upper (lower) solution: A function ũ ∈ C(D̄τ )∩C2(Dτ ) is called an upper
solution of (1)-(4) if it satisfies the inequalities

ũt − α∆ũ ≥ 0 in Ω× (0,∞) (5)

ũν + γũ ≥ g on Sτ . (6)

and the initial condition

ũ(x, z, 0) ≥ Tin(x, z) ≡ 0 (7)

in Ω.
As for the lower solution û the definition is the same, only changing ≥

with ≤. The sector J =< û, ũ > is defined as

J = {v ∈ C(D̄T ) s.t. û ≤ v ≤ ũ}.

Assume that g ∈ C(Sτ × J) and that g is Lipschitz in J .

The existence of a unique solution u of (1)-(4) is proved by Pao in The-
orem 4.1.1 [14] under the assumption that there exist a lower and an upper
solution û and ũ of (1)-(4). The proof is based on the iterative construc-
tion of two sequences, {V̂ k} and {Ṽ k}, that converge monotonically to the
solution u. The decreasing sequence {Ṽ k} starts with the upper solution
ũ and approximates the solution u from behind while {V̂ k} starts with the
lower solution û and converges to u monotonically from below. Numerical
implementation of {V̂ k} and {Ṽ k} seems to be very expensive though each
Ṽ k is determined by solving a linear BVP whose boundary conditions in-
volve Ṽ k−1. Details about the definition of sequences {V̂ k} and {Ṽ k} are in
[14] section 4.1. This construction furnishes the main tool for providing the
following stability estimate for u.

Finally, we show that the sector J is not empty. Actually, consider the
linear function

ũ = C‖Φ‖∞ +Dε‖f‖∞ − ‖Φ‖∞z

with C ≥ 1
γ ( 1

κ + 1 + a) and D ≥ 1
γ . Straightforward calculations show that

ũ is an upper solution and û = −ũ is a lower solution of (1)-(4).
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2.2 Stability of the direct model with respect to ε

Theorem. Let uε ∈ C(D̄τ ) ∩ C2(Dτ ) be the solution of (1)-(4). We have

‖uε − u0‖∞ ≤ Cε (8)

Proof. We recall that {Ṽ k} converges monotonically to uε. It means that

‖u− Ṽ k‖∞ ≤ C1ε (9)

for k ≥ k1. The IBVP solved by Ṽ k is linear. If ũ0k is an upper solu-
tion of (1)-(4) when ε = 0, it is well known (stability of linear IBVP w.r.t.
parameters, see for example [17] pag. 507) that

‖Ṽ k − ũ0k‖∞ ≤ C2ε. (10)

On the other hand, we have

‖u0 − ũ0k‖∞ ≤ C3ε (11)

for k ≥ k2. Finally, (8) turns out to be true for C = C1 + C2 + C3 and
k ≥ max{k1, k2}.

3 The inverse problem

The Initial Boundary Value Problem (IBVP) (1)-(4) is the frame (Direct
Model) in which we define the following inverse problem:

IP Identify the nonlinear term εf from the knowledge of a finite sequence of
temperature measurements taken on a portion of the boundary of Ω.

A similar problem, posed in the stationary frame of Laplace’s equation,
has been studied in [6] and [7]. A stability estimates for the solution of IP
is given in [15].

3.1 Approximation of f̃ from perturbative analysis of the
direct model

The nonlinear term εf in (2) is unknown. We will use the equations (1)-(4)of
the direct model and the knowledge of thermal contrast for z = 0 to recover
εf .

First, we plug the formal expansion uε = u0 + εu1 +O(ε2) in the IBVP
(1)-(4) and transform it in a perturbative hierarchy of linear problems. We
consider only order zero and order one of the scheme.
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The term u0 satisfies the heat equation

ut = α∆u in Dτ (12)

with boundary-initial conditions

−uz(x, 0, t) =
Φ(x, t)

κ
for x ∈ (−L,L) t ∈ (0, τ) (13)

uz(x, a, t) + γ(u(x, a, t)− Ua) = 0 for x ∈ (−L,L) t ∈ (0, τ) (14)

u(x, z, 0) = Tin(x, z) for (x, z) ∈ Ω. (15)

The solution u0 is just the background temperature u0. Observe that (12)-
(15) is well posed and, in particular, once the physical parameters Tin, α,
γ, κ and Φ are known, u0 is uniquely determined. On the other hand, the
function W = εu1 fulfills the heat equation

Wt = α∆W in Dτ (16)

with linear boundary conditions

Wz(x, a, t) + γW (x, a, t) + f̃(u0) = 0 x ∈ (−L,L) t ∈ (0, τ) (17)

with f̃ = εf ,
Wz(x, 0, t) = 0 x ∈ (−L,L) t ∈ (0, τ) (18)

and initial conditions

W (x, z, 0) = 0 for (x, z) ∈ Ω. (19)

The thermal contrast (measured in real cases by means of an infrared
camera)

G(x, t) = uε(x, 0, t)− u0(x, 0, t) x ∈ (−L,L) t ∈ (0, τ) (20)

gives us the following noisy additional boundary condition that will be used
in section 3.2 to recover f̃ :

W (x, 0, t) ≈ G(x, t) (21)

3.2 The expansion of uε is not merely formal

Actually, we prove that ‖u−u
0−W‖
ε = O(ε). We set

v =
u− u0 −W

ε
.
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We have
vt = α∆v in Dτ (22)

with boundary and initial conditions

vz(x, a, t)+γv(x, a, t)−(f(u(x, a, t))−f(u0(x, a, t))) = 0 x ∈ (−L,L) t ∈ (0, τ)
(23)

vz(x, 0, t) = 0 x ∈ (−L,L) t ∈ (0, τ) (24)

and
v(x, z, 0) = 0 for (x, z) ∈ Ω. (25)

Since f ∈ C(J) is supposed Lipschitz in J , we have

‖f(u)− f(u0)‖ ≤ ‖f‖∞‖u− u0‖ ≤ C‖f‖∞ε.

It comes from classical estimates (see [17] page 507) that

‖v‖ ≤ Aε.

3.3 Discretization and approximation of f̃

Let {Ψk : J → R}∞k=0 be a sequence of linearly independent functions that
span C(J) so that f̃(v) =

∑
k βkΨk(v). Furthermore, let W (k) solve the

linear IBVP
Wt = α∆W in Dτ (26)

with boundary conditions
Wz(x, 0, t) = 0 (27)

Wz(x, a, t) + γW (x, a, t)−Ψk(u
0) = 0 (28)

and initial data
W (x, z, 0) = 0. (29)

It comes from linearity that the solution of (16)-(19) takes the form of

W (x, z, t;β) =
∑
k

βkW
(k)(u0(x, z, t)).

Since f̃ (or, equivalently, the vector β) is not known, we can try to approx-
imate it from the knowledge of the thermal contrast G(x, t) = uε(x, 0, t) −
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u0(x, 0, t). To do this, we set the following minimum problem in finite di-
mension

min
β=(β0,...,βN )

{‖W (x, 0, t;β)−G(x, t)‖22 + λB(β)}. (30)

Since theW (k)s are linearly independent, any finite Gram matrix H(N) =
(
∫

[−L,L]×[0,τ ]W
(j)W (k)dxdt)j,k=0,...,N is expected to be nonsingular, even if it

could be severely ill-conditioned. For this reason, regularization is required
to handle truncation errors and the effects of noise affecting our data.

As for the penalty B(β), it must be chosen using a priori information if
available. In fact, we assume that f̃ is smooth and increasing. This assump-
tion is supported by a number of known examples of nonlinear heat transfer
coefficients ([1], [5], [12], [4] and many others) and by private discussions.
The idea is that the higher the temperature, the greater the rate at which
heat passes through an interface. Moreover, sudden jumps related to the
temperature increase are not expected. A good choice of B could be the L2

norm of the first derivative of f̃ .

Hence, we assume that f̃(ξ) (ξ ∈ J) is a non decreasing function which
can be approximated by means of low order polynomials. At this stage, we
assume Ψk(ξ) = ξk so that we will work with the finite expansion

f̃ (N)(ξ) =

N∑
k=0

βkξ
k. (31)

In our tests, it will be N = 4. This value of N comes from a compromise
between the accuracy of the approximation and the stability of the solutions.
We write the L2 norm of f̃ ′(ξ) =

∑N
k=1 kβkξ

k−1 as the quadratic form in β

(B(N)β, β) =
N∑

k,j=1

kβkjβj

∫
[−L,L]×[0,τ ]

u0(x, 0, t)j+k−2dxdt.

Finally, the Euler equations of our minimum problem are

N∑
k=0

(∫
[−L,L]×[0,τ ]

W (j)W (k)dxdt + λkj

∫
[−L,L]×[0,τ ]

u0(x, 0, t)j+k−2dxdt

)
βk =∫

[−L,L]×[0,τ ]
W (j)Gdxdydt

(32)

for j = 0, ..., N .
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4 Numerical tests

We apply the perturbative scheme introduced in section 3.1 to the reconstruc-
tion of unknown nonlinear heat exchange laws in two different examples:

(1) a metallic plate is warmed up starting from 20 oC;
(2) a purely theoretical sample is allowed to cool starting from a temper-

ature of 1500 oC.

4.1 Active thermography

We suppose that the heat flux Φ is constant in x and that the unknown
nonlinear function is f̃ = ε · η · (u(a, t)− Ta)2 with ε = 0.001 and η = 100.
Hence, it is natural to reduce ourselves to a one-dimensional problem (see
also [3]) where z ∈ [0, a]. We provide heat to the boundary z = 0 through a
flux of density Φ(t) = Qe−

t
θ while non-linear heat exchange takes place on

the opposite boundary z = a.

The temperature of our one-dimensional sample is a function uε(z, t) that
solves the Initial Boundary Value Problem

ut = αuzz, (33)

uz(0, t) = γ0 · (u(0, t)− Ta)−
Q

κ
e−

t
θ , (34)

uz(a, t) = −γa · (u(a, t)− Ta)− ε · η · (u(a, t)− Ta)2 , (35)

u(z, 0) = Ta; (36)

where α = 6 · 10−5 sec/m2, Ta = 20 oC, γ = 10 m−1, Q
κ = 10000 oC/m,

θ = 1 sec.
We solve numerically equations (33), (34), (35) and (36) by means of a

finite difference scheme (for the explicit and imex numerical schemes adopted
here, see [2]). The trace uε(0, t) of the solution is assumed to play the role
of real temperature data. In experiments, these values are taken by means
of an infrared camera.

u0(x, t) is the background temperature corresponding to ε = 0 i.e. the
situation in which heat exchange through the boundary z = a follows New-
ton’s cooling law.

Consider the expansion uε = u0 + εu1 + O(ε2) . It is easy to check that
εu1(0, t) + O(ε2) is just the thermal contrast considered in the definition
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of the inverse problem IP. Since ε is actually not known, we set W = εu1
and η̃ = εη. We plug this expansion in the IBVP above and carry out a
perturbative analysis.

4.1.1 order zero

The function u0 fulfills
ut = αuzz. (37)

uz(0, t) = γ · (u(0, t)− Ta)−
Q

κ
e−t, (38)

uz(a, t) = −γ · (u(a, t)− Ta) . (39)

Because of the hierarchic structure of perturbations, u0 will enter as a
given quantity in the following IBVP corresponding to the order one.

4.1.2 order one

The scaled first order solution W solves

Wt = αWzz, (40)

Wz(0, t) = γW (0, t), (41)

Wz(a, t) = −γ ·W (a, t)− η̃
(
u0(a, t)− Ta

)2
, (42)

W (z, 0) = 0. (43)

It comes from the linearity of (40)-(43) thatW (z, t) =
∑N

k=0 β(k)W (k)(z, t)
where W (k) is the solution of

Wt = αWzz, (44)

Wz(0, t) = γ ·W (0, t), (45)

Wz(a, t) = −γ ·W (a, t)−
(
u0(a, t)− Ta

)k
, (46)

W (z, 0) = 0 (47)

for k = 0, .., N .

We recall that W (0, t) is the thermal contrast defined in (20). To make
contrast data more realistic, we add white gaussian noise gσ(t) of average
zero and standard deviation σ = 0.3 oC.

Since the matrix
∫ τ

0 W
(j)(t)W (k)(t)dt is ill-conditioned, to determine the

values of β(0), ..., β(4) we solve the linear system (32) for N = 4 with an
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optimal choice of the regularization parameter λ. Recall that the penalty
function B is the euclidean norm of the first derivative of the nonlinear term
f .

The parameter λ is determined by means of Hansen’s L-curve method
[9]. In figures 1, we summarize the essentials of the numerical example:

Figure 1a. We plot the graphs of U(t) = uε(0, t) + gσ(t) (that plays the
role of experimental temperature data at the boundary z = 0) and u0(0, t)
(the solution of order zero).

Figure 1b. We plot the curve (‖
∑
βk(λ)W (k)−U‖22, ‖B(λ)‖22) parametrized

by λ. The corner suggests a choice for the numerical value of λ.
Figure 1c. Finally, we compare the unknown η̃ with the polynomial

reconstructions with λ = 0 and λopt = 1.4 · 10−10.

4.2 Cooling

We simulate cooling of a one-dimensional specimen represented by the inter-
val (0, a) by means of the following IBVP (see [5]):

ut = 10−6uzz in Dτ (48)

where Dτ = (0, a)× (0, τ),
uz(0, t) = 0, (49)

uz(a, t) + F (u) = 0, (50)

u(z, 0) = 1500 oC. (51)

Let us assume
F (u) =

A

2000− u
(u− 500) , (52)

where A = 367500. We recall that there is not controlled heat flux here
(Φ = 0).

The function T (t) = u(a, t) simulates the collection of data by means of
the infrared camera. Simulated temperature for z = a become more realistic
by adding for all t ∈ (0, τ) a random variable g with uniform distribution on
the interval [−5 oC, 5 oC] (the same noise used in [5]).

In order to apply again the perturbative scheme of the previous example
we introduce a linear part γ0(u − q) so that f̃(u) = F (u) − γ0(u − q). A
natural choice for q is the surrounding temperature q = 500 oC. We leave
γ0 as a free parameter that will be identified in the next subsection.
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Figure 1: Recovering a small nonlinear term with active thermograpphy.
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4.2.1 Order zero. Choice of the linear part.

The order zero solution u0,γ0 (we are stressing the dependence on γ0) solves
the IBVP

ut = 10−6uzz (53)

uz(0, t) = 0, (54)

uz(a, t) + γ0(u(a, t)− 500) = 0. (55)

The parameter γ0 must be chosen to minimize the integral distance∫ 1500
1000 |u

0,γ0(a, t)− T (t)|2dt. The best value is γ0 ≈ 443 m−1.

4.2.2 order one

We compute a finite basis {W (k)} solving the IBVP

Wt = 10−6Wzz in Dτ (56)

Wz(0, t) = 0, (57)

Wz(a, t) + γ0W +
(
u0(a, t)− 500

)k
= 0. (58)

for k = 0, .., 4. Then, using eqs. (31) and (32), we estimate the vector
coefficient β to approximate the nonlinear part f̃(u) = F (u)− γ0(u− 500).

Remark. We observe numerically that the temperature approximation of
the first order u0(a, t)+W (a, t) is a very good approximation of the solution
of (48)-(51) (see Figure 2).

Since the matrix
∫ τ

0 W
(j)(t)W (k)(t)dt is severely ill-conditioned, the val-

ues of β(0), ..., β(0) are obtained solving the regularized linear system (32)for
N = 4). The regularization parameter λ is determined by means of Hansen’s
L-curve method [9].

In figures 3, we summarize the essentials of the numerical example:
Figure 3a. Here, we plot the functions u(a, t) + g(t) (that plays the role

of experimental temperaure data at the boundary z = 0) and u0(0, t) (the
solution of order zero).

Figure 3b. We plot of the curve

‖
∑

βk(λ)W (k) − U‖22, ‖B(λ)‖22

parametrized by λ. The corner suggests the choice for λ.
Figure 3c. We compare the unknown F (u) with the polynomial recon-

structions with λ = 0 and λopt = 3.3 · 10−16.
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Figure 2: Comparison between T (t) and its first order approximation u0(a, t)+W (a, t).

Finally, the regularized curve shown in Figure 3c is a monotone approx-
imation of F (u) obtained by smoothing the input data and regularizing the
solutions. In [5], the additional condition

F (T (0.005)) =
A

2000− u(0.005)
(u(0.005)− 500)

is used to obtain a monotone approximation of F . In our approximation, we
don’t use any assumption on the values of F .

5 Conclusions

We use active infrared thermography and perturbation theory in order to
recover an additive nonlinear term in Newton’s cooling law. Theoretical
background in nonlinear boundary value problems for parabolic equations
gives us a stability estimate for the direct model. As for the constructive
procedure, we remove non-linearity by means of perturbation theory and
produce a regularized polynomial approximation by means of least squares
minimization. At present, our algorithm are working with synthetic data.
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