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Summary 
 

Metallo-β-lactamases (MBLs) are able to hydrolyze most β-lactam substrates, including 

carbapenems, which for a long time was considered a ‘last resort’ treatment for infections 

caused by antibiotic resistance bacteria. MBLs found on mobile genetic elements allow for 

rapid spread between bacteria, and are causing a major public health problem. One approach 

to overcome the threat of MBLs is to design or discover new inhibitors for these enzymes to 

use in a combination therapy of β-lactam/β-lactamase-inhibitor in order to restore the effect 

of β-lactams. However, to date there are no effective clinical MBL inhibitors available, and the 

need is urgent.  

In paper I of this thesis, the importance of first and second sphere residues for VIM-7 were 

investigated for activity, stability and structure analysis. The mutation in first sphere residue 

D120A had a deleterious effect on the activity, stability, and the crystal structure revealed the 

loss of a zinc ion. The second sphere substitutions, F218Y and H224Y, showed an increase in 

activity and stability, and the crystal structures showed the establishment of new hydrogen 

bonds. 

In paper II, the substitutions of the second sphere residues to W228R/A/Y/S and Y233N/A/I/S 

in GIM-1, in general showed a reduced catalytic efficiency, with no effect on the enzyme 

stability. The crystal structures of the W228R/A/Y/S and Y233A mutants revealed that the 

conformation of the L1 loop was altered instead of the L3 loop, where the substitutions were 

made. 

In paper III, the search for MBL inhibitors among thiol-based compounds against VIM-2, GIM-

1 and NDM-1, revealed the most potent inhibitors to contain a thioacetate and a phosphonic 

acid. High-resolution crystal structures of three inhibitor-VIM-2 complexes found the 

mercapto group bridging the two zinc ions, the thioacetate binding one zinc and the phenyl 

ring in stacking interactions with VIM-2.  

In paper IV, enzyme kinetic measurements of TMB-1, TMB-2 and TMB-1 E119Q/S/A mutants 

revealed that TMB-2 and TMB-1 mutants had a reduced efficiency compared to TMB-1. The 

TMB-1 crystal structure was solved to 1.75 Å. Thiol-based inhibitors tested against TMB-1 

showed two potent inhibitors, 2a and 2b, with IC50 values in the nanomolar range. 
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In summary, through establishing the contribution from specific residues to substrate binding 

may give information on interactions that can be exploited in designing inhibitors able to 

combat the β-lactam resistance. Additionally, the study shows potent inhibitors for VIM-2, 

and variable results for GIM-1, TMB-1 and NDM-1 MBLs, which can be good starting points for 

more potent broad-spectrum MBL inhibitors. 
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1. Introduction 

1.1.  Antibiotics 

This thesis includes studies of metallo-β-lactamase (MBL) enzymes involved in antibiotic 

resistance, and the search for MBL inhibitors. Before introducing the β-lactamase enzymes, I 

will start with introducing antibiotics, antibiotic resistance and bacterial defense mechanisms. 

1.1.1. History of antibiotics 

The first antibiotic substance discovered was the β-lactam penicillin G (also known as 

benzylpenicillin) in 1928 by the Scottish biologist Alexander Fleming. For the achievement he 

was awarded the Nobel Prize in Physiology or Medicine, together with the Australian 

pharmacologist and pathologist Howard Florey and the British biochemist Ernst Boris Chain in 

1945 [1]. The discovery was accidental, and changed the course of medicine. Petri dishes with 

Staphylococci were left uncovered on Flemings laboratory bench, and were contaminated 

with mold spores containing Penicillium notatum [2]. Bacteria were not able to grow in the 

area around the Penicillium colonies. Fleming then isolated the active substance, naming it 

‘penicillin’ [2]. Florey and Chain were able to mass-produce penicillin for use during World 

War II [2]. After the war, penicillin was known as the “wonder drug” due to its effect on a wide 

variety of diseases, including infections caused by bacteria resistant to sulfonamides, which 

was the only other antibiotic therapy available at that time [3]. 

The discovery of antibiotics, also known as antimicrobial drugs, is considered as one of the 

most significant events for global health in modern times, and has had a massive impact on 

treatment of infectious diseases. Antibiotics target bacterial cells with limited toxicity to 

human cells [4]. Since the introduction of antibiotics on the market in the 1940s, antimicrobial 

agents have reduced illness and death from infectious diseases [5]. The antibiotics have, in 

addition allowed countless of medical procedures to be performed without the risk of getting 

infections. Many modern surgical procedures such as organ transplantations and cancer 

treatment would not be possible without antibiotics [6].  

The American biochemist and microbiologist Selman Waksman, was the discoverer of the 

antibiotic streptomycin. Waksman is known for his work on screening soils for investigating 

biologicals, and he was the first to propose the word «antibiotic» as a noun in 1941 [7]. The 
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term “antibiotic” was then used as a description for a compounds use, not type of class or its 

natural function. Herein, an antibiotic is defined as organic molecule that kills or inhibits 

bacteria by specific interactions with the bacterial targets, without any consideration of the 

source of the particular class or compound [8]. Today, however, the term has been expanded 

to include antifungal and bacteriostatic antibacterial agents that may also be derived from 

synthetic chemical approaches, not only from natural sources [9]. 

There are several classes of antibiotics available with different targets in the bacteria. These 

include: i) inhibition of cell wall synthesis (peptidoglycan biosynthesis), ii) inhibition of protein 

synthesis (translation), iii) DNA replication, iv) inhibition of RNA synthesis (transcription), v) 

folic acid synthesis (C1 metabolism), and vi) disruption of cell membrane [5, 6]. Antibiotics can 

arrest cell growth (bacteriostatic) or kill the cells (bactericidal) depending on their mode of 

action and biochemical characteristics [6].  

1.1.2. β-lactam antibiotics 

The β-lactams are the most used antibiotics and account for more than 60% of all prescribed 

antibiotics [10]. The β-lactam antibiotics have a common feature of the molecular structure, 

a four-atom ring known as the β-lactam ring. The β-lactams have a broad antibacterial activity 

spectrum, including important Gram-positive and Gram-negative pathogenic bacteria [11]. 

Hundreds of different β-lactams are made based on natural product scaffolds, and they are 

classified according to their chemical structure [9]. Clinically relevant β-lactams are divided 

into penicillins, cephalosporins, carbapenems and monobactams as discussed below [11]. 

a) Penicillins 

Penicillins have the β-lactam fused together with a five-membered ring containing a carboxyl 

group at the C-3 position [11]. Penicillin G and other natural penicillins are mainly active 

against Gram-positive bacteria, while extended-spectrum penicillins, such as ampicillin and 

piperacillin also offer modest Gram-negative coverage as well. In comparison with other 

antibiotics such as aminoglycosides and second- and third-generation cephalosporins, the 

toxicity associated with penicillin is low [12]. The two penicillins, mecillinam and temocillin, 

are some of the latest penicillins introduced on the market being approved in the late 70s and 

mid 80s [4]. Piperacillin (introduced in the early 80s), ampicillin, amoxicillin and ticarcillin are 

still useful against Gram-negative bacteria, however, must be used in combination with an 
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appropriate β-lactamase inhibitor [4]. The chemical structure of the penicillin backbone is 

given in Figure 1a. 

 

Figure 1: The chemical backbone structures of β-lactam antibiotics; a) penicillin, b) cephalosporin, c) 

carbapenem and d) monobactam, all with common β-lactam rings. The R groups differs in various 

antibiotics. The X in the monobactam chemical structure represents α-methyl. Figure adapted from 

[4]. 

b) Cephalosporins  

The first cephalosporin (Figure 1b) compound discovered was derived from the cultures of 

Cephalosporium acremonium in 1948 by the Italian scientist Giuseppe Brotzu who identified 

the cultures in sewer samples in Sardinia [13]. The cephalosporins are structurally related to 

the penicillins with a β-lactam ring fused to a dihydrothiazoline ring [12]. Chemical group 

substitutions give varying antimicrobial activities and pharmacological properties.  

After the first discovery of cephalosporin, there have been several groups of cephalosporins 

divided into five major groups or “generations” according to their antibacterial activity. First 

generation cephalosporins have good activity against gram-positive aerobic bacteria, such as 

methicillin-susceptible Staphylococci and Streptococci, and some Gram-negative bacteria, 

e.g.: Proteus mirabilis, Escherichia coli, and Klebsiella species. Second generation 
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cephalosporins, such as cefuroxime and cefoxitin, have a more extended spectrum of activity 

against Gram-negative bacteria, e.g.: Haemophilus influenzae, and some Neisseria, and some 

are active against Gram-negative anaerobes [14, 15]. Third-generation cephalosporins, like 

ceftazidime, show activity against many Gram-negative bacteria, and ceftazidime is unique 

among third-generation cephalosporins because of its activity against P. aeruginosa, 

Acinetobacter, Citrobacter, Enterobacter, and other Pseudomonas strains [12, 16]. Third-

generation cephalosporins are useful against meningitis caused by pneumococci, 

meningococci, H. influenzae, E. coli, Klebsiella, and penicillin-resistant Neisseria gonorrhoeae. 

The only currently available fourth-generation cephalosporin, cefepime, shows activity similar 

to ceftazidime against P. aeruginosa, and has better activity against Enterobacter and 

Citrobacter [17]. There are fifth-generation cephalosporin, ceftaroline and ceftobiprole, with 

activity against methicillin-resistant Staphylococcus aureus (MRSA) and many Gram-negative 

bacteria [4, 12]. The latest cephalosporin available on the market is the fifth generation 

ceftolozane, used in combination with tazobactam inhibitor against enteric bacteria and 

shows antipseudomonal activity [4].  

In general, each newer cephalosporin generation show a better activity against Gram-negative 

bacteria compared to the previous generation, but with a lower activity against Gram-positive 

bacteria, in most cases.  

c) Carbapenems 

The first carbapenem β-lactam antibiotic, thienamycin, was developed as a naturally derived 

product of Streptomyces cattleya in the mid-1970s [18]. As thienamycin is chemically unstable, 

it was later altered to the more stable imipenem. Meropenem, ertapenem and doripenem are 

all chemically more stable than imipenem. All four carbapenems are widely used [4]. The 

group of carbapenems have a broad-spectrum activity against most Gram-negative (including 

P. aeruginosa), Gram-positive bacteria and anaerobes, and are currently used as a ‘last resort’ 

treatment of infections caused by antibiotic-resistant bacteria [19]. Carbapenems have a β-

lactam ring fused to a penicillin-like five-membered ring containing a carbon at C-1 replacing 

the sulfur in penicillin with a double bond between C-2 and C-3 (Figure 1c) [11]. An important 

feature for carbapenems is their resistance to inactivation by most serine β-lactamases 

enzymes. Carbapenems can act as inhibitors by forming a long-lived acyl-enzyme intermediate 

through interaction with the active site serine in many serine β-lactamases [20, 21]. 
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Carbapenems have an affinity for penicillin binding proteins (PBPs), where the targets 

carboxypeptidases and transpeptidases are used by bacteria to build the cell walls in both 

Gram-positive and Gram-negative organisms [20]. Tebipenem is of the latest approved 

carbapenem, however, along with biapenem, are only available in Japan [4]. 

d) Monobactams 

In contrast to other β-lactams, the monobactams do not contain a fused ring system, but 

named due to its monocyclic β-lactam ring (Figure 1d). The β-lactam ring has a linked sulfonic 

acid group at the position analogous to the carboxylate group in penicillins and cephalosporins 

[11]. Monobactams are effective against aerobic Gram-negative bacteria (e.g., Neisseria and 

Pseudomonas) [4]. The only marketed monobactam is aztreonam [22]. The clinical use of 

aztreonam is limited due to the third-generation cephalosporins available which have a 

broader activity spectrum [22]. Aztreonam is structurally similar to penicillins, however, a 

cross-reactivity with immunoglobulin E (IgE, an antibody produced by the immune system) is 

absent; consequently aztreonam can be used in patients with IgE-mediated penicillin allergy 

[22]. Another monobactam is BAL30072, a monosulfactam with similar spectrum of activity as 

aztreonam, and is currently in phase I trials [4].  

1.1.3. Mechanism of action of β-lactam antibiotics 

The β-lactam antibiotics have a bactericidal effect since the β-lactam ring is a substrate for the 

transpeptidase enzymes involved in cell wall biosynthesis [11]. Transpeptidases, also known 

as penicillin-binding proteins (PBPs), are found in large numbers and usually several in each 

organism. The peptidoglycan layer is a major component of the bacterial cell wall, and the 

support for the cell wall is important for maintaining the bacterial morphology [23]. In a rigid 

cell wall, the osmotic stability is maintained due to the presence of N-acetylglucosamine (NAG) 

and N-acetylmuramic acid (NAMA) units. Transglycosidases are linking these glycosidic units. 

Each NAMA unit has a pentapeptide attached to it, and two D-Ala–D-Ala NAMA pentapeptides 

are cross-linked by PBPs [24, 25]. The PBPs contain a specific sequence SXXK motif with active-

site serine central to the catalytic mechanism. The active-site serine in PBPs forms a covalent 

acyl-enzyme complex with the stem peptide, and the last D-Ala amino acid is released from 

the ‘donor’ peptide (Figure 2). In transpeptidases, the D-Ala amino acid carbonyl, is in an ester 

linkage with the active site serine, and undergoes a nucleophilic “attack” by a second 

‘acceptor’ stem peptide (Figure 2). A peptide bridge is created and links the glycan strands. 
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The ‘donor’ stem peptides are eliminated from the peptidoglycan through hydrolyzing the 

acyl-enzyme intermediate [26]. 

The rigidity of the bacterial cell wall is due to this cross-linking of the adjoining glycan strands 

[27]. The D-Ala–D-Ala of the NAMA pentapeptide is sterically similar to the β-lactam ring, and 

the β-lactam can mimic the D-Ala-D-Ala in an elongated conformation and act as inhibitor. The 

PBP active site serine attacks the β-lactam ring carbonyl, instead of the D-Ala amino acid 

(Figure 2 (1.)), opens the β-lactam ring and makes a covalent acyl-enzyme complex. As a result, 

the PBPs have an acetylated active site serine causing the acyl-enzyme complex to hydrolyze 

slowly, and preventing further crosslinking reactions (Figure 2 (2.)) [26]. The biosynthesis of 

the cell wall slowly comes to a stop, causing autolysis. The specific details on bactericidal 

effects of penicillins are still being investigated [28]. 

 

Figure 2: The mechanism of β-lactam antibiotics on the peptidoglycan layer in the bacteria. 1. The β-

lactam antibiotic is attacked by the PBP preventing the PBP to bind to the D-Ala amino acid in the 

NAMA pentapeptides. 2. As a result, the crosslinking of the two glycan strands by PBP are prevented. 

The PBPs become acetylated and lose their ability to catalyze transpeptidation, ultimately causing the 

cells to autolyze. NAG: N-acetylglucosamine, NAMA: N-acetylmuramic acid, Ala: alanine, Glu: glutamic 

acid, Lys: lysine, Gly: glycine, mDAP: mesodiaminopimelic acid. Figure modified from [29].  
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1.2.  Antibiotic resistance 

Antibiotic resistance happens when the bacteria have the ability to resist the effect of an 

antibiotic [29]. Bacterial genes can change through random mutations resulting in resistance 

genes, and bacteria can acquire antibiotic resistance genes from other bacteria. The existence 

of antibacterial genes might be just as old as the bacteria, 3.5 billion years [30]. A study of 

microorganisms collected from a 4 million year old cave showed bacterial strains investigated 

possessing antibiotic resistance genes, with β-lactam-destroying activity [31]. Although 

antibiotic resistance dates back before modern antibiotics were introduced, the ongoing 

mass-production and use of antibiotics from the 1940s have given an exceptional selection 

pressure on bacteria. Fleming warned about the risk of antibiotic resistance in his Nobel Prize 

lecture already in 1945 [31]. The increase in antibiotic resistance genes in bacteria is due to 

anthropogenic activities, environmental pollution originating in human activities. Antibiotics 

are widely used in: (i) animals for growth promotion and disease-prevention; (ii) humans for 

therapeutic and disease-prevention; (iii) in aquaculture as therapeutics and disease-

prevention; (iv) in household pets as therapeutics and disease-prevention; (v) pest control and 

cloning for plants and agriculture; (vi) in cosmetics and household cleaning products as 

biocides; and (vii) molecular cloning, as selection markers in research and industry [8]. Each 

year millions of kilograms of antibiotics are used in treatment of people, animals and 

agriculture globally [32, 33]. The heavy use of β-lactam antibiotics have resulted in resistant 

organisms with multiple β-lactamases and other resistance mechanisms, commonly termed 

“superbugs” [8]. 

Antibiotic resistance can be natural or acquired. Bacteria evolve, and will naturally acquire 

resistance, either through random mutagenesis or from outer pressure. Intrinsic antibiotic 

resistance means that the bacterial species is resistant without any additional alteration of 

genes [34]. Due to the lack of peptidoglycans, Mycoplasma is always resistant to β-lactam 

antibiotics. Further, many enteric bacterial species like P. aeruginosa are intrinsically resistant 

to hydrophobic antibiotics like macrolides due to the difficulties of penetrating the outer 

membrane [35]. Acquired antibiotic resistance arise either from mutations (deletions, 

insertions, inversions or point mutations in relevant genes) or from horizontal gene transfer 

[34]. The spread of resistance amongst bacteria is possible through mobile genetic elements 

such as plasmids, naked DNA, bacteriophages or transposons (also known as transposable 
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elements) [5, 33]. Transposons can contain integrons, which are more complex transposons 

containing sites for integrating a variation of antibiotic resistance genes and other gene 

cassettes alongside each other for expression regulated by a single promoter [36]. Integrons 

have been located in both Gram-negative and Gram-positive bacteria. Plasmids and 

transposons containing resistance genes generally cause high level of resistance, but when 

these mobile genetic elements are not present, a step-wise process from low- to high-level 

resistance can occurs through mutations in the bacterial chromosomes [33, 37, 38]. The initial 

emergence of penicillin- and tetracycline-resistant N. gonorrhoeae were due to this process 

[5]. Resistance on the chromosome is spread through horizontal gene transfer, such as 

conjugation, transformation, and transduction. In addition to having a wide variety of ways to 

spread resistance, bacteria have evolved mechanisms against antibiotic drugs.  

1.3. Bacterial defense mechanisms 

The widespread use of antibiotics has caused the bacteria to evolve defense mechanisms to 

resist the lethal effects of antimicrobial agents. Bacteria are becoming more and more 

resistant, and the activity of important antibiotics is diminishing. This is a growing concern to 

clinicians today. Diseases and pathogenic bacteria once controlled by antibiotics are returning 

containing new resistance mechanisms towards available therapies [5]. One example is the 

re-emergence of tuberculosis, which is now often found to be multidrug resistant [39]. The 

therapeutic options for the multi-drug resistant pathogens are now so limited that clinicians 

have to take in use older, previously rejected drugs. The polypeptide antibiotic colistin is an 

example of such a drug previously not used due to significant toxicity and there were limited 

data on dosage or duration of the therapy [40]. Better living conditions in the western world 

result in an increase in population and a growing number of elderly patients. An increasing 

number of intensive care events, such as surgery and chemotherapy, is putting more 

immunocompromised individuals at risk of infections [40]. Bacteria have developed a number 

of different defense mechanisms to fight antibacterial agents. The most common modes of 

bacterial defense mechanisms are: a) replacement or modification of the drug target, b) 

reduced uptake of drugs, c) active drug efflux, and d) enzymatic drug inactivation (Figure 3, 

Table 1), including antibiotic classes, examples of antibiotics and bacterial targets [29]. 
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Table 1: Available antibiotics with some examples, their target in bacteria and the bacterial mode of 

resistance towards these antibiotics. The modes of resistance are ranged according to most common 

defense mechanism for each class of antibiotics, with reference to chapter in this thesis in parentheses 

and part describing by which process the antibiotics are inactivated. Modified from [6]. 

Antibiotic class Example(s) Target Mode of resistance (chapter) 

β-lactams Penicillins (ampicillin) 
Cephalosporins (cephamycin) 
Carbapenems (meropenem) 
Monobactams (aztreonam) 

Peptidoglycan 
biosynthesis 

Hydrolysis (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 
Reduced drug uptake (1.3.2.) 

Aminoglycosides Gentamicin 
Streptomycin 
Spectinomycin 

Translation Phosphorylation, acetylation or 
nucleotidylation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Glycopeptides Vancomycin 
Teicoplanin 

Peptidoglycan 
biosynthesis 

Reprogramming of peptidoglycan 
biosynthesis (1.3.1.) 

Tetracyclines Minocycline 
Tigecycline 

Translation Monooxygenation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Macrolides Erythromycin 
Azithromycin 

Translation Hydrolysis, glycosylation or 
phosphorylation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Lincosamides Clindamycin Translation Nucleotidylation (1.3.4.) 
Efflux (1.3.2.) 
Altered target (1.3.1.) 

Streptogramins Quinupristin 
Dalfopristin 
 

Translation C-O lyase (type B 
streptogramins), Acetylation 
(type A streptogramins) (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Oxazolidinones Linezolid Translation Efflux (1.3.3.) 
Altered target (1.3.1.) 

Phenicols Chloramphenicol Translation Acetylation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Quinolones Ciprofloxacin DNA replication Acetylation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 
Reduced drug uptake (1.3.2.) 

Pyrimidines Trimethoprim C1 metabolism Efflux (1.3.3.) 
Altered target (1.3.1.) 

Sulfonamides Sulfamethoxazole C1 metabolism Efflux (1.3.3.) 
Altered target (1.3.1.) 

Rifamycins Rifampin Transcription ADP-ribosylation (1.3.4.) 
Efflux (1.3.3.) 
Altered target (1.3.1.) 

Lipopeptides Daptomycin Cell membrane Altered target (1.3.1.) 
Cationic peptides Colistin Cell membrane Altered target (1.3.1.) 

Efflux (1.3.3.) 
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1.3.1. Replacement or Modification of the Drug Target 

A bacterial target can be replaced or structurally modified making the drug unable to bind and 

stop the activity of the bacterial cell (Figure 3). Modification of target can be associated with 

resistance to nearly any antibacterial agent, as shown in Table 1. From a clinical perspective, 

however, this mechanism is important for resistance to β-lactams, glycopeptides, macrolides, 

lincosamides, and streptogramines in Gram-positive bacteria and for resistance to quinolones 

in both Gram-positive and Gram-negative bacteria (Table 1) [29]. Changes in the active site of 

PBPs can reduce the affinity for β-lactam antibiotics, and MRSA is a clinical challenge due to 

an alteration of PBP2a. The PBP2a has a broad spectrum of resistance to methicillin and all 

other β-lactam antibiotics used clinically [41]. 

1.3.2. Reduced Drug Uptake 

Hydrophobic drugs enters bacterial cells through the phospholipid layer, while hydrophilic 

drugs enters through porins, in Gram-negative bacteria. Some bacterial species, such as P. 

aeruginosa, has an outer membrane which is less permeable than other species 

(approximately 10% of that of E. coli) [42], causing the bacteria to be less susceptible to 

antimicrobial agents. Resistance to various antibacterial drugs can be acquired through 

mutations causing loss, reduced size, or decreased expression of outer membrane proteins 

(OMPs) in bacteria (Figure 3). In Gram-negative bacteria, such as P. aeruginosa and 

Enterobacteriaceae, reduced uptake is a clinical important mechanism of resistance to β-

lactams and fluoroquinolones. PBPs are linked to the inner cell membrane and active in the 

periplasmic space, hence the β-lactams can access the proteins by either diffusion through or 

directly through porin channels in the outer membrane of the Gram-negative bacterial cell 

wall [27]. Insertion sequences and point mutations in porin-encoding genes can result in 

proteins with lower activity, and therefore lower permeability to β-lactam antibiotics and 

higher level of resistance [43]. This mechanism often gives low-level resistance, meaning that 

the disruption of porin proteins alone is alone not always enough to cause clinical resistance. 

In association with other mechanisms of resistance, like enzymatic drug inactivation through 

the expression of β-lactamase enzymes, porin mutations contribute to the resistant 

phenotype of multi-resistant clinical strains [29, 43].  
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Figure 3: Bacterial defense mechanisms in Gram-negative bacteria. 1.3.1. Drug target modification or 

replacement is when the antibiotic drug cannot bind to the target to stop the cellular processes. 1.3.2. 

Reduced antibiotic drug uptake can be through mutation resulting in loss, reduced size, or decreased 

expression of outer membrane porins (OMPs). 1.3.3. Active antibiotic efflux limits the intracellular 

accumulation of toxic antibiotics. 1.3.4. Enzymatic drug inactivation is the most common defense 

mechanism, where production of enzymes able to modify or inactivate the antibiotics, such as β-

lactamases. 1.3.5. Antibiotics can be trapped and not be able to act on the bacteria. Figure based on 

Figure 3 in chapter 1 of [29].  

1.3.3. Active Drug Efflux Pumps 

Efflux pumps are transmembrane proteins in bacteria capable of exporting metabolites and 

foreign toxic compounds, including drugs, from the periplasm in cells to the external 

environment [44, 45]. Drugs are pumped out of the cytoplasm, reducing the effective drug 

concentration in that compartment, thus preventing or limiting the access of the drug to its 

target, causing drug resistance (Figure 3) [29]. The efflux pumps can be part of an intrinsic or 

acquired resistance phenotype. An upregulation of efflux pumps can increase the carbapenem 

resistance given by a catalytically poor β-lactamase, like shown in OXA-23-producing strains 

[46]. From all bacterial genes, ~5-10% have been estimated to be involved in transport and 

many of these encode efflux pump proteins. Several different efflux pumps are found in all 

studied bacterial genomes, indicating their ancestral origin. Therefore, transmembrane 
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proteins that efflux multiple substrates, have most likely not evolved due to the stresses of 

the antibiotic era [44, 47]. 

1.3.4. Enzymatic Drug Inactivation 

Some Gram-negative and Gram-positive bacteria are able to express enzymes that modify or 

hydrolyze the active core of the drug, causing the drug to be unable to bind to its target and 

lose its antimicrobial activity (Figure 3). The enzymes modify either by addition of a chemical 

group, such as phosphorylation, acetylation, glycosylation or nucleotidylation by 

aminoglycosides, or by cleavage of the molecule, such as the hydrolysis of β-lactam antibiotics 

by β-lactamases (Table 1). Generally, drug-inactivating enzymes are associated with mobile 

genetic elements, e.g. as plasmids. The aminoglycoside-modifying enzymes and the β-

lactamases are the most widespread and clinically important enzymes [29]. The focus in this 

thesis is the metallo-β-lactamases, a class of enzymes inactivating through hydrolysis the β-

lactam antibiotics, one of the most commonly used antibiotic drugs. These enzymes will be 

described later in the introduction. 

1.3.5. Other Bacterial Defense Mechanisms 

Other bacterial defense mechanisms include target protection, where the antibiotic target is 

protected through mutations that reduces the affinity of the antibiotics, or through synthesis 

of protective molecules covering the target. Drug trapping or titration is another defense 

mechanism, where the bacteria increases its production of the drug target or other molecules 

with drug affinity, resulting in a reduced concentration of free drug at the target site (titration) 

[29].  

1.4. β-lactamases 

The main mechanism of resistance towards β-lactam antibiotics in Gram-negative bacteria is 

the expression of hydrolytic enzymes, β-lactamases, which hydrolyze the β-lactam ring 

resulting in an inactive drug. The first β-lactamase were reported by Abraham and Chain in 

1940 [48], the year before penicillin was put into clinical use [49]. The β-lactamases 

presumably evolved to degrade naturally occurring β-lactams. Some β-lactamases are 

believed to have evolved from enzymes (PBPs) involved in cell wall biosynthesis, due to their 

structural resemblance [23, 50]. Both β-lactamases and PBPs are located in the periplasmic 

space in Gram-negative bacteria. The PBPs are present on the outer surface of the cytoplasmic 
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membrane while the β-lactamases are either bound or excreted to the cytoplasmic membrane 

in Gram-positive bacteria (lacking the outer membrane) [51]. The growing number of β-

lactams antibiotics and their massive therapeutic use have contributed to the spread and 

acquirement of a wide number of β-lactamase genes in pathogenic bacteria [52].  

1.4.1. Classification of β-lactamases  

Over 1300 unique, naturally occurring β-lactamases are known, and these enzymes have 

historically been classified according to a several schemes [53]. Today, β-lactamases are 

mainly divided according to two major classification schemes: (1) the Ambler classes A to D, 

based on amino acid sequence homology and conserved motifs, and (2) the Bush-Jacoby-

Medeiros functional groups 1 to 3, based on substrate and inhibitor profile [53-55], shown in 

Table 2. 

Most β-lactamases belong to the serine-β-lactamase (SBL) group, due to an active site serine 

residue essential for their activity. Ambler classes A, C and D are SBLs according to amino acid 

sequence alignments and conserved motifs. All three classes have an active site motif of Ser-

X-X-Lys, however, the serine may be given different residue numbers [56-58]. In addition, the 

three classes have two other conserved sequences, the (Ser/Tyr)-X-Asn motif and the Lys-

(Thr/Ser)-Gly motif [53]. Ambler class B are the metallo-β-lactamases (MBLs), containing zinc 

atom(s) in the active site important for their catalytic activity. Metal ion chelators inhibit the 

MBL enzymes. The MBLs have further been divided into three subgroups due to a wide 

structural diversity. Structural and functional characteristics of the enzymes were used to 

divide the MBLs into subgroups B1, B2 and B3. However, after this classification, the 

structurally dissimilar New Delhi metallo-β-lactamase (NDM-1) was discovered, possessing 

only 32.4% sequence identity to already established MBLs, resulted in a second B1 subgroup, 

B1b [59]. Structurally, the subgroups B1 and B3 contain two zinc ions in the active site involved 

in β-lactam hydrolysis, while subgroup B2 only need one zinc ion in the active site to effectively 

hydrolyze β-lactam antibiotics [53].  

The Bush-Jacoby-Medeiros classification uses functional properties which takes into account 

substrate and inhibitor profiles [54]. The classification is based on hydrolytic activity against 

key β-lactam substrates and β-lactamase inhibitors. Inhibitors being the metal chelator 

ethylenediaminetetraacetic acid (EDTA) to identify MBLs and clavulanic acid to identify group 
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2 SBLs, while group 1 cephalosporinsases would not respond to clavulanic acid [53]. The 

Ambler class A β-lactamases are categorized into functional group 2 (except for group 2d), 

class B β-lactamases belong to functional group 3, class C cephalosporinases are in functional 

group 1, and class D β-lactamases in functional group 2d. There are several subgroups 

according to their substrate profile, as shown in Table 2.  

Table 2: β-lactamase classification schemes according to Ambler classes and the Bush-Jacoby-

Medeiros functional groups. The different groups given whether they have penicillinase, 

cephalosporinase, Extended-Spectrum β-Lactamase (ESBL), carbapenemase, and monobactamase 

activities with examples of enzymes. The + sign is for activity, the – sign for no activity, while ± means 

variable within the group. Activity data inconsistent with published substrate profiles are in red. Table 

modified from [53]. 

Ambler 
class 

Functional 
group 

Penicillinase 
activity1 

Cephalo-
sporinase 
activity2 

ESBL 
activity3 

Carba-
penemase 
activity 

Mono-
bactam 
activity 

Examples 
of 
enzymes 

A 2a + - - - - PC1 
 

 2b + + - - - TEM-1, 
SHV-1 

 2be + + + - + CTX-M-14 
 

 2br + + - - - TEM-30, 
SHV-10 

 2ber + + + - ± TEM-50 
 

 2c + - - - - PSE-4 
 

 2ce + - -4 - - RTG-4 
 

 2e + + + - ± SFO-1,  
L2 

 2f + + + + + KPC-2, 
SME-1 

B 3a5 + + + + - VIM, NDM, 
GIM, L1 

 3b + - - + - CphA 
 

C 1 - + - - - AmpC 
 

 1e - + + - - CMY-37 
 

D 2d + - - - - OXA-1, 
OXA-10 

 2de + + ± - - OXA-11, 
OXA-15 

 2df + - + -6 - OXA-23, 
OXA-48 

1 + means reported kcat > 5 s-1, while – means reported kcat < 5 s-1. 2 hydrolysis of cephaloridine or cephalothin. 3 
Hydrolysis of cefepime, ceftazidime, or cefotaxime. 4 The kcat values are generally ≤ 1 s-1, however resistance to 
cefepime and cefpirome has been reported. 5 Subclasses B1 and B3 are included. 6 The kcat values are generally ≤ 
1 s-1, however resistance to carbapenem is seen. 
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These groups contain enzymes with hydrolytic activity against extended-spectrum (“e”) 

cephalosporins similar to class A Extended-Spectrum β-Lactamases (ESBLs). However, 

according to structural features, they belonged to class C (subgroup 1e, the extended-

spectrum AmpC), class A (subgroup 2ce), and class D (subgroup 2de) [53]. The subgroups 

containing “r” have shown resistance to clavulanic acid, sulbactam and tazobactam inhibitors. 

The new class D β-lactamase subgroup 2df with carbapenem-hydrolysing ability was 

introduced to differentiate from the class A serine carbapenemases subgroup 2f, shown in 

Table 2. 

1.5. Metallo-β-lactamases 

Metallo-β-lactamases (MBLs) hydrolyze an extended spectrum of substrates, including 

penicillins, cephalosporins and carbapenems. The substrate specificity of MBLs may extend 

from a narrow range, like the Carbapenem-hydrolyzing metallo-β-lactamase (CphA) enzyme 

from Aeromonas hydrophila, to an extended range, as seen for Verona integron-encoded 

Metallo-β-lactamase (VIM) variants, which are able to hydrolyze almost all β-lactam classes 

[60, 61]. In addition to their potent carbapenemase activity, MBLs are resistant to clinically 

available β-lactamase inhibitors such as clavulanic acid, sulbactam, tazobactam and avibactam 

[11, 62]. The hydrolytic profile of MBLs do not include the monobactam aztreonam [63], 

however, the sensitivity of the bacteria towards this group of antibiotics is usually weakened 

due to the co-expression of serine-β-lactamases [51]. The naming of MBLs is not conserved, 

some are named according to the bacterial species they was discovered in, e.g. β-lactamase II 

(BcII) from Bacillus cereus, while some are named according to the geographic location they 

were first found, such as German imipenemase (GIM) and New Delhi Metallo-β-lactamase 

(NDM).  

The first MBL was discovered in the 1960s as a chromosomal enzyme of a non-pathogenic B. 

cereus bacteria, identified to be zinc dependent and inhibited by the metal chelating agent 

EDTA [64]. In general, the first MBLs described were encoded by chromosomally located genes 

in non-pathogenic bacteria, and thus were not considered a serious problem for antibiotic 

therapy [11]. In the 1980s, chromosomally encoded MBLs were found in several pathogenic 

bacteria such as Stenotrophomonas maltophilia [65], Bacteroides fragilis [66], various 

Chryseobacterium [67-69] and Aeromonas strains [70, 71]. However, in Japan in 1991 the first 

acquired MBL, an Imipenemase-1 (IMP-1) was discovered in Serratia marcescens [72]. 
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Subsequently, additional MBL genes were found on mobile genetic elements in a variety of 

Gram-negative pathogenic bacteria including Enterobacteriaceae species, P. aeruginosa and 

Acinetobacter species [60, 73]. The mobile genetic elements containing carbapenemase genes 

often carry other genes coding for resistance enzymes towards other classes of antibiotics, 

such as quinolones and aminoglycosides, resulting in multi-drug resistant bacterial strains 

[59]. Examples are MBL enzymes such as VIM-2 and IMP-1, found to be encoded as gene 

cassettes together with other resistance genes in integrons [74, 75]. Integrons are frequently 

linked with transposons and that can move antibiotic resistance genes within plasmids or on 

to the bacterial chromosome, hence facilitating movement of resistance genes between 

plasmids and between bacterial species [61, 76]. Outbreaks of Gram-negative pathogens 

producing VIM-2, IMP-1 or NDM-1 are observed all over the world. Their ability to hydrolyze 

carbapenems and their resistance to available inhibitors, are causing clinical difficulty in 

treatment of infections of bacteria carrying MBLs.  

MBL enzymes are synthesized with a native leader sequence in the bacterial cytoplasm, 

translocated through the cytoplasmic membrane where the leader sequence is cleaved off 

leaving the resulting protein folded in the periplasm [77]. In the periplasm, the metal 

availability can be critical at the time of refolding, in order to get the optimal activity in vivo 

[78]. MBL enzymes have a characteristic αβ/βα sandwich fold with the active site between the 

two αβ-domains. The scaffold is supporting up to six active site residues, which coordinates 

either one or two zinc ions important for the MBLs catalytic activity [11]. The metal binding 

motif consists of H/N116-X-H118-X-D120-H/R121, and the zinc biding residues H196, C/S221, 

and H263, according to the standard BBL numbering scheme [79]. The MBL proteins belong 

to an ancestral superfamily of metallohydrolases, which include more than 30 000 genes 

coding for enzymes hydrolyzing thiol esters, sulfuric ester bonds, phosphodiesters, and 

enzymes which are oxidoreductases [80]. MBLs do not have a bridging aspartate residue as 

most non-β-lactamase hydrolases, but a hydroxide ion is bridging the two zinc ions [11, 62]. 

The MBL fold is universal in all living organisms and not exclusive to bacteria [10]. The αβ/βα 

MBL core fold is widely distributed and supports a range of catalytic activities, including redox 

reactions [80], nonetheless the enzymes within the MBL fold with β-lactamase activity are 

restricted to bacteria [10]. 
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1.5.1. Sub-classification of MBLs 

Metallo-β-lactamases belongs to the class B of Ambler structural classification scheme of β-

lactamases, and are a divergent group. The MBL sequence identity between the subclasses 

can be as low as 10%. MBLs have been further divided into three structural subclasses based 

on sequence alignment guided by distinctive structural characteristics within the active sites 

of each subclass B1, B2 and B3 enzymes [79]. The available X-ray structures facilitated the sub-

classification of class B MBLs, by using corresponding secondary structure elements, even due 

to the low sequence similarity of these enzymes [79]. A selection of crystal structures is given 

in Table 3. The first solved three-dimensional structure of a MBL was the mono-zinc form of 

the B1 enzyme BcII [81]. Since then, several subclass B1 structures have been solved, such as 

CcrA [82], the di-zinc form of BcII [83], IMP-1 [84], BlaB [85], VIM-2 [86], VIM-7 [87], SPM-1 

[88], NDM-1 [89], GIM-1 [90], subclass B2 enzyme CphA [91], and subclass B3 MBLs, L1 [92], 

FEZ-1 [93], AIM-1 [94], BJP-1 [95], in addition to other variants of MBLs, have been solved 

(some shown in Table 3). 

After the discovery of the first MBL, a wide variety of MBLs have emerged, some chromosome-

borne and some found on mobile genetic elements, as shown for selected MBLs in Table 3. 

According to the Lahey -lactamase database http://www.lahey.org/studies/ there are 

reported 53 IMP-variants and 46 VIM-variants, for example. However, the website has not 

been updated since July 2015. Another database for β-lactamases is the National Center for 

Biotechnology Information, which reports 58 IMP and 51 VIM variants; however, this page 

does not seem actively maintained. A BLAST (Basic Local Alignment Search Tool) search as per 

17.11.16 showed 64 IMP and 51 VIM variants. The different variants of a MBL family, such as 

the VIMs, are numbered according to their discovery, and have nothing to do with the 

sequence similarity. E.g. the difference between VIM-1 and VIM-2 is 17 residues, while the 

VIM-1 and VIM-4 differs with one single residue [96].  

 

 

 

 

http://www.lahey.org/studies/


18 
 

Table 3: Metallo-β-lactamase subclasses. The year of discovery or reported of the MBL enzymes are 

listed with organisms they are found in, whether they are chromosome-borne or on mobile genetic 

elements, one PDB-ID if crystal structure is available. Not all the variants of MBLs are included in the 

table, which is modified from [11, 62, 97]. 

Sub-
class 

Enzyme Year Organism(s)a Location PDB-ID 

B1a BcII 1966 B. cereus Chromosome 1BMC 
 IMP-1 1988 S. marcescens,  

P. aeruginosa 
Plasmid or 
chromosome 

1DD6 

 CcrA 1990 B. fragilis Chromosome 1ZNB 
 VIM-1 1997 P. aeruginosa, 

A. baumanii 
Plasmid or 
chromosome 

- 

 BlaB 1998 Elizabethkingia 
meningoseptica 

Chromosome 1M2X 

 IND-1 1999 Chryseobacterium 
indologenes 

Plasmid - 

 VIM-2 2000 P. aeruginosa, A. 
baumanii 

Plasmid or 
chromosome 

4NQ2 

 IMP-2 2000 A. baumanii,  
S. marcescens 

Plasmid 4UBQ 

 SPM-1 2001 P. aeruginosa Chromosome 4BP0 
 VIM-7 2001 P. aeruginosa, A. 

baumanii 
Plasmid 4D1T 

 GIM-1 2002 P. aeruginosa Plasmid 2YNT 
 SIM-1 2003 A. baumanii Chromosome - 
 DIM-1 2007 P. stutzeri Plasmid 4WD6 
 TMB-1 2011 Achromobacter 

xylobacter 
Plasmid or 
chromosome 

Paper 
IV 

B1b NDM-1 2006 K. pneumonia,  
E. coli 

Plasmid or 
chromosome 

3S0Z 

B2 CphA 1991 Aeromonas veronii Chromosome 1X8G 
 ImiS  1999 A. veronii  NR - 
 Sfh-1 2004 Serratia fonticola Chromosome 3SD9 

B3 L1 1991 Stenotrophomonas 
maltophilia 

Plasmid 1SML 

 GOB-1 2000 E. meningoseptica  Chromosome - 
 FEZ-1 2000 Legionella gormannii  Chromosome 1K07 
 THIN-B 2001 Janthinobacterium 

lividium 
Chromosome - 

 Mbl1b 2001 C. crescentus Chromosome - 
 CAU-1 2002 Caulobacter vibrioides Chromosome - 
 BJP-1 2006 Bradyrhizobium 

japonicum 
Chromosome 3LVZ 

 AIM-1 2012 P. aeruginosa Chromosome 4AWY 
a The organism listed are the original species where the genes were identified.  

1.5.1.1. B1 (a and b) MBLs 

Subclass B1 is binuclear Zn(II) monomeric enzymes with a broad substrate spectrum, including 

all β-lactams except monobactams [84, 98, 99]. Enzymes in subclass B1 have sequence identity 

higher than 23% [62]. Subclass B1 MBLs include the chromosomally encoded enzymes like B. 

cereus BcII [100], E. meningoseptica (formerly known as Flavobacterium meningosepticum, 
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and Chryseobacterium meningosepticum) BlaB (β-lactamase B) [67], and B. fragilis CcrA [101]. 

Almost all clinically relevant MBLs are found in the B1 group. These includes enzymes like NDM 

[59], VIM [75], IMP [102], GIM [103], TMB [104], and SPM-1 (São Paulo MBL) [105]. The NDM-

1 MBL is structurally dissimilar to other B1 class MBLs, and has an amino acid sequence 

identity of 32.4 % with VIM-2. Hence, a second B1 subclass (B1b) was suggested [59]. The 

phylogenetic tree in Figure 4 shows the similarity of some acquired B1 MBLs. [59] 

 

Figure 4: Phylogenetic tree based on the amino acid sequence of some acquired B1 MBLs, selected 

based on enzymes in our studies and frequently reported enzymes. The tree is drawn to scale, with 

branch lengths in the same units as those of the evolutionary distances used to deduce the 

phylogenetic tree. The alignment and the phylogenetic tree were made using MEGA7 software (Kumar, 

2016, MEGA7: Molecular Evolutionary Genetic Analysis version 7). The GenBank accession numbers 

used are: IMP-1, S71932; IMP-2, AJ243491; IMP-8, AF322577; VIM-1, Y18050; VIM-2, AF191564; VIM-

7, CAO91763; GIM-1, AJ620678; SPM-1, AJ492820; SIM-1, AY887066; TMB-1, FR771847; DIM, 

GU323019; NDM-1, FN396876.  

 

1.5.1.2. B2 MBLs 

Subclass B2 is a mononuclear Zn(II) monomeric enzyme group effectively hydrolyzing 

carbapenems [106], while showing weak activity, if any, towards penicillins and 

cephalosporins. A second zinc ion in the active site of subclass B2 MBLs has a noncompetitive 

inhibiting effect on the B2 enzymes [106]. Phylogenetically the B2 subclass is closer to B1 than 

B3 enzymes [107], and the B2 MBLs share 11% sequence identity to B1 subclass enzymes [62]. 

B2 enzymes are found entirely as chromosomally located in Gram-negative bacteria [107]. 

Enzymes of the B2 subclass MBLs include A. hydrophilia CphA [108], Serratia fonticola Sfh-I 

[109], and A. veronii ImiS (Imipenemase from A. veronii bv. Sobria) [71].  
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1.5.1.3. B3 MBLs 

Like B1 enzymes, the subclass B3 are binuclear Zn(II) enzymes and have a broad substrate 

preference including penicillins, cephalosporins and carbapenems. However in phylogenetic 

analysis the B3 class is the most distant subclass, with low sequence identity and enzymes 

containing only nine common residues with the other MBL groups [10]. The B3 genes are 

mostly chromosomally located in Gram-negative bacteria [107]. Subclass B3 genes include 

chromosome-borne MBLs E. meningoseptica GOB [110] and Legionella (Fluoribacter) gormanii 

FEZ-1 [111]. The L1 MBL was reported as being on plasmids in Stenotrophomonas maltophilia 

[112] and Adelaide Imipenemase (AIM-1) was recently reported encoded in a mobile genetic 

element [113]. The majority of the B3 enzymes are monomeric, like the B1 and B2 enzymes, 

with exception of the tetrameric L1 enzyme [92]. 

1.5.2. Structural diversity of MBLs 

Several crystal structures of MBLs are available, and despite their low sequence identity, all 

subclasses share the same characteristic αβ/βα fold, composed of two β-sheets with five or 

more surrounding α-helices exposed to the solvent, shown for some examples in Figure 5. The 

active site is located at the edge of the ββ sandwich, in all reported structures. 

B1 MBL enzymes have in the N-terminal domain incorporated a loop, called L1 loop in this 

thesis. The L1 loop includes residues 60-66 (standard BBL numbering), which together with 

some preceding and continuing residues can interact with β-lactam substrates or MBL 

inhibitors, and it contains many hydrophobic side-chains (Figure 5A, E). In the native form of 

the enzyme, the L1 loop is very flexible. As the substrate or inhibitor molecule enters the active 

site, the loop can bind to trap the molecule in the active site. In addition, the loop is involved 

in crystal packing, which gives it different conformations [94]. In the IMP-1 enzyme, the loop 

is moved due to the interaction of e.g. the W64 residue with a hydrophobic substrate side-

chain [114]. Binding of inhibitors in the active site stabilizes the L1 loop [84], and the active 

site can be transformed to a tunnel-shaped cavity. By deleting the L1 loop (residues 61-66) in 

IMP-1 the enzymatic activity was seriously reduced due to a weaker binding of substrate to 

the enzyme, except with imipenem as substrate [114]. The only carbapenem substrate tested 

in the study was Imipenem, and the kinetic parameters were barely affected by the missing 

L1 loop. One explanation might be that imipenem is a less bulky substrate compared to both 

penicillins and cephalosporins, which usually include bulky aromatic ring structures. An 
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exception in the B1 subclass is the SPM-1 enzyme that contains an insertion region of 24 amino 

acids in an extended α3-α4 region instead of the mobile L1 loop (Figure 5C). When considering 

the SPM-1 sequence identity compared to other MBLs, it shows closest relations to IMP-1 

(35.5%) and the B2 enzymes ImiS (32.2%) and CphA (32.1%). As a result, structurally the 

subclass B1a SPM-1 enzyme is a hybrid between subclasses B1 and B2. 

The L1 loop is not present in B2 and B3 subclasses. Instead, subclass B2 CphA enzyme has an 

extended α3 helix, including residues R140-L161, located close to the active site groove. At 

approximately W150 residue there is a turn in the helix that lets the α3 to follow the protein 

surface curvature and contributes to a hydrophobic face, aiding in binding of carbapenem [91]. 

Hence, the active site of CphA is very well defined and explaining the very narrow spectrum 

activity of the enzyme. The extended α3 helix is observed in B2 CphA enzyme crystal structure, 

as shown in Figure 5G. 

Subclass B3 enzymes possess a mobile loop including residues 151-166, between α3 and β7, 

able to close the active site [92, 93], presented in Figure 5I for the L1 B3 enzyme. L1 MBL 

crystal structure found this loop extended over the active site, and modelling studies 

suggested that residues in the loop are involved in contacts with large, hydrophobic 

substituents on penicillin, cephalosporin and carbapenem β-lactams [92]. Modelling and 

mutational studies of several residues within this loop, found them to be important in enzyme 

activity [92, 115, 116]. The L1 monomer contains one disulfide bridge, which is similar to the 

one found in the FEZ-1 structure [92, 93], whereas AIM-1 carries three disulfide bonds [94]. 

The subclass B1 and B2 enzymes do not have intramolecular disulfide bridges. 

The five different MBL enzymes presenting in Figure 5 reveals that there are large structural 

differences within the different subgroups, e.g. as seen for the B1a/b enzymes VIM-2, SPM-1 

and NDM-1 loops. All MBLs have mobile loops essential for substrate and inhibitor binding, 

represented in in the Figure 5. 
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Figure 5 (previous page): Global fold and active site representation of MBLs from all subclasses. The 

overall fold is preserved in all subclasses. Active site loops important for the catalytic activity are 

represented in blue. A and B) B1a subclass VIM-2 enzyme (PDB-ID: 4NQ2; green), C and D) B1a SPM-1 

enzyme (PDB-ID: 4BP0; yellow), E and F) B1b NDM-1 enzyme (PDB-ID: 3S0Z; dark green), G and H) B2 

CphA enzyme (PDB-ID: 1X8G; orange), and I and J) the B3 L1 subclass enzyme (PDB-ID: 2FM6; mint). 

The overall fold given to the left and the active site with interactions to the right for all five MBLs. The 

gray spheres show zinc ions and the red spheres show hydroxyl ions/water molecules. The figure was 

generated using PyMOL [117].  

1.5.3. Active site and zinc coordination in MBL subclasses 

The MBL active site is located at the edge of a wide shallow groove between two β-sheets and 

has potentially two zinc ion binding sites, as presented in left panels of Figure 5. For the two 

metal sites (Zn1/Zn2), the zinc ligands are not the same and not fully conserved between the 

different MBL subclasses. The conserved residues in all MBL classes are H118, D120 and H196. 

The variation in amino acids in the MBL subclasses involved in zinc ligands are given in Table 

4 together reported with substrate preferences.  

The metal binding motif H116-X-H118-X-D120 is conserved in all B1 enzymes. Herein the Zn1 

binding site, also known as the 3H site, includes H116, H118 and H196 residues mostly in a 

tetrahedral coordination sphere including an OH- ion. The Zn2 binding site, known as DCH site, 

includes D120, C221, and H263 in a trigonal-pyramidal coordination sphere including one 

water molecule and the same OH- ion (Table 4, Figure 5B, D, F). One OH- ion bridges between 

the two zinc ions Zn1 and Zn2, which act as ligand. Mutational studies of the zinc binding 

residues in B1 enzymes show that these residues are important for the full catalytic activity 

[118]. Most B1 enzymes needs two zinc ions in the active site for optimal activity, however, 

exceptions such as of the B1 enzymes BcII and BlaB have shown to be active in a mono-Zn(II) 

form [119], and the mono-zinc SPM-1 showed a reduced catalytic efficiency [88]. The sole 

metal ion in the mononuclear enzymes BcII, VIM-2 and SPM-1, are found in the 3H site [81, 

86, 88].  

The active site residues of B2 enzymes involved in zinc binding are D120, C221 and H263 hence 

the same as in the B1 enzymes (Table 4). The conserved H116 in B1 and B3 MBLs is in B2 

enzymes replaced by an N116 (Figure 5H), however, is not likely the reason for the narrow 

substrate spectrum of B2 MBLs. A CphA N116H mutant showed to remain a low activity 

towards penicillins and cephalosporins [120]. Spectroscopic studies of a Co(II)-substituted ImiS 

enzyme indicated that the second metal binding site in B2 enzymes was not the traditional 3H 
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site in B1 enzymes [121]. The H118 plays a role in the catalytic mechanism (Figure 6b) [91, 

122], which could explain inhibition when binding of a second zinc ion, as the residue H118 is 

prevented from performing this role (deprotonating the water molecule (W1) for nucleophilic 

attack on the β-lactam substrate) when immobilized as ligand of this second zinc ion in the 

binuclear form of the enzyme [62].  

The B3 active site resembles the B1 active site, however, the B1 residue C221 is replaced by 

H121 in B3 enzymes (Table 4), and they have a square pyramidal coordination sphere of Zn2 

due to a third water molecule functioning as a fifth ligand [95], as seen in the L1 crystal 

structure in Figure 5J. The active sites are not very conserved in B3 enzymes due to the 

replacement of H116 residue with a Q116 in GOB enzymes [62]. Most B3 enzymes require two 

zinc ions in the active site for activity. Despite this, the characterization of GOB-18 revealed 

that both the mono- and the di-Zn(II) forms were active against penicillins, cephalosporins and 

carbapenems [69, 123]. The zinc ion in GOB-18 was bound in the Zn2 site, shown in Table 4, 

and a solvent molecule [69]. The GOB-18 differs from GOB-1 with only three residues located 

far from the active site [123]. The B3 enzyme L1 has shown to be nearly fully active in a mono-

Zn(II) form [119, 124], and the binding of the second zinc ion tunes the substrate specificity of 

the enzyme. 

Table 4: Metallo-β-lactamase subclasses with zinc ligands, active site residues and substrate 

preference. Modified from [53]. 

Sub-
class 

Example of 
enzyme 

No. of Zn(II) in 
active site 

Zn1 site Zn2 site Substrate 
preference 

B1a VIMs, IMPs, GIM-1, 
TMB-1, CcrA, BcII, 
SPM-1 

2 H116 D120 All β-lactams 
except 
monobactams 

  H118 C221 
  H196 H263 
B1b NDM-1 2 H116 D120 All β-lactams 

except 
monobactams 

   H118 C221 
   H196 H263 
B2 Sfh-1, CphA, ImiS 1 (H118) D120 Carbapenems 
  (H196) C221  
   H263  
B3 L1, AIM-1, FEZ-1, 

GOB-1, BJP-1 
2 H/Q116 D120 All β-lactams 

except 
monobactams 

  H118 H121 
  H196 H263 
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1.5.4. Catalytic mechanisms of MBL 

The MBLs are dependent on zinc ions in the catalytic mechanism. Mechanistic studies of MBLs 

and MBL crystal structures containing β-lactam substrates in the active site, provide important 

information for identifying key residues for substrate binding and understanding the catalytic 

mechanism details. In general, β-lactam hydrolysis occurs in two steps: first, a nucleophilic 

attack on the carbonyl carbon (C7/C8), causing the C-N amide bond to cleave, and second, the 

protonation of the bridging nitrogen [125]. Crystallographic structures of MBL enzymes 

complexed with hydrolyzed substrate in the active site have shown that Zn2 are interacting 

with the carboxylate moiety present in all β-lactams, on the C3 atom in penicillins and 

carbapenems and on the C4 in cephalopsorins (Figure 1) [91, 116, 126]. In addition, the β-

lactam carboxylate interacts with positively charged residues at position 224 or 228 in most 

B1 and B2 enzymes and residues S221 and S223 in B3 MBLs, which are highly but not strictly 

conserved residues [91, 116, 126]. VIM-2 and VIM-7 B1 enzymes have a tyrosine and a 

histidine at position 224, respectively, which indicate that surrounding residues may 

contribute in the binding of the β-lactams.  

1.5.4.1. Reaction mechanisms of dinuclear MBLs 

The dinuclear subclass B1 and B3 enzymes uses the two zinc ions, bridged by a hydroxide ion, 

to coordinate the β-lactam by the C3/C4 carboxylate and carbonyl group. After substrate 

binding, Zn1 and other enzyme residues polarize the β-lactam carbonyl, making it disposed 

for attack by the nucleophilic hydroxide ion [125, 127]. The deprotonated D120 residue orients 

the hydroxide, and the nucleophilic attack by the hydroxide is forming a tetrahedral species, 

which rapidly collapses into an enzyme bound intermediate (EI1/EI2) where the β-lactam 

nitrogen is anionic [128]. In the last step, protonation of the nitrogen forms the product (P1/P). 

However, the identity of the proton donor is unclear, but the most accepted suggestion is a 

water molecule (W2) bound to Zn2 in the resting state enzyme [129], which replaces the 

vacant position left by the nucleophilic hydroxide ion by shifting/moving towards the Zn1 ion. 

This bridging water molecule between Zn1 and Zn2 in the enzyme-intermediate (EI1/EI2) 

complex assists protonation of the nitrogen and restores the nucleophilic hydroxide in the 

enzyme-product (P1+E) complex (Figure 6A). The bridging water can be oriented by residue 

D120 to donate a proton to the intermediate. 
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Figure 6 (previous page): Catalytic mechanisms of MBLs on carbapenems. A) The reaction mechanism 

of di-Zn(II) B1 and B3 enzymes hydrolyzing a carbapenem substrate. The anionic intermediates (EI1/EI2) 

are characterized experimentally [130]. The Zn2 ion is stabilizing the intermediates. The X represents 

interacting residues 224/228 (mostly K/R) in B1 enzymes and residue S221 and S223 in B3 enzymes. 

The W1 and W2 are a hydroxide ion and a water molecule, respectively. B) The reaction mechanism of 

mono-Zn(II) B2 enzymes hydrolyzing carbapenem. W1 and W2 are water molecules based on Sfh-I 

crystal structures [131] and CphA structures in complex with biapenem and in free form [91]. The D120 

residue can orient the bridging water to provide a proton to the intermediate. E, enzyme; S, substrate, 

I, intermediate, and P, product. Figure modified from [129].  

Mechanistic and crystallographic studies of different MBLs have shown that there are 

differences in the catalytic mechanisms between different β-lactam antibiotics. The 

accumulation of anionic intermediate(s) stabilized by the Zn2 ion is dependent on the 

combination of enzyme and substrate [129]. Reaction intermediates have been studied by 

replacing the native Zn(II) ion with Co(II), giving slightly less active enzymes than the Zn(II) 

variants. Co(II)-substitution studies on B1 MBLs such as BcII [132], NDM-1 [133], VIM-2 [134], 

and L1 [135] have provided insight into reaction mechanisms. 

Mechanistic studies of penicillin G hydrolysis using Co(II)-substituted BcII enzyme showed the 

presence of two different enzyme-substrate (ES) complexes [136, 137], giving the first 

evidence that the active-site metal ions change coordination geometry during the turnover. 

However, reaction intermediates were not shown in penicillin hydrolysis by the same BcII 

enzyme. The ES1 complex with Zn2 bound to one of the oxygens, while in ES2 the Zn2 is bound 

to both oxygens of the β-lactam carboxyl group (not in Figure 6)[129]. The structures and 

interactions of the two different ES complexes were based on the crystal structure of the 

enzyme-product (EP) complexes of penicillins and NDM-1 [99, 126], and the spectroscopic 

data of BcII enzyme [138]. 

Studies on hydrolysis of the cephalosporin-like reporter substrate nitrocefin show that 

reaction intermediates accumulates [128, 133, 139, 140]. The enzyme-bound intermediate is 

anionic with a negatively charged nitrogen atom after cleavage of the β-lactam amide bond 

and metal-bound [135]. The active mono-Zn(II) B3 GOB enzyme has the zinc ion bound in the 

Zn2 site (Table 4), and showed an accumulation of the intermediate [141]. The importance of 

the Zn2 ion in the catalysis was demonstrated in NDM-1 where the effect on the rate of 

intermediate formation was significantly reduced for a Cd(II) substitution. This implies that a 

Zn2 ion plays a major role in electrophilic activation of substrate and stabilization of the 

intermediate [133]. The mono-Zn(II) forms of B1 and B3 enzymes with the zinc bound to the 
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Zn1 site are not able to stabilize the anionic intermediate, shown in studies of the a mono-Zn1 

form of L1 (B3 enzyme) [142] and the B1a Bla2 enzyme [143]. The dynamic loops around the 

active site are also affecting the accumulation of intermediates. As described above, the loop 

L1 (residues 60-66) in B1 enzymes is a mobile loop affecting the catalysis as it closes over the 

active site when substrates or inhibitors are binding [144]. Taken together, the presence of a 

zinc ion at the Zn2 site, the residues in mobile loops, the subtle changes between different 

MBL enzymes are contributing to stabilize the anionic intermediate.  

Imipenem hydrolysis of di-Zn(II) BcII revealed a reaction intermediate, while the di-Co(II) BcII 

enzyme resulted in accumulation of two reaction intermediates, EI1 and EI2 (Figure 6A) in a 

branched mechanism [130]. The nucleophilic attack of the hydroxide ion results in an open-

ring -lactam structure with a negative charge involving the N4 and C3 atoms of the substrate. 

A direct interaction with Zn2 is stabilizing the anionic intermediate, EI1. Next, either the EI1 N4 

can be protonated forming tautomer P2, which rapidly will be tautomerized to P1 in an 

aqueous environment, resulting in a mixture of the α and β diastereomers, or the EI1 can 

remain in the enzyme pocket, with the negative charge on the C3 atom, giving EI2. The metal-

bound water can protonate the EI2, resulting in an EI3 or EP adduct as shown in Figure 6A 

[129]. The formation of a stable anionic intermediate was supported by studies of meropenem 

hydrolysis in NDM-1 [145] and SPM-1 [146] B1 enzymes.  

1.5.4.2. Reaction mechanisms of mononuclear MBLs 

Subclass B2 enzymes show a different reaction mechanism compared to dinuclear B1 and B3 

enzymes, as proposed through mechanistic studies of the monozinc enzyme ImiS [122], and 

crystal structures of Sfh-I [131] and CphA [91]. Pre-steady state measurements of Sfh-I 

hydrolyzing imipenem revealed the presence of temporary intermediates during the catalytic 

cycle [129]. Regardless of the differences between B2 enzymes, carbapenem hydrolysis occurs 

through a reaction intermediate involved in changes in the metal site geometry, Zn2 site, in 

these enzymes. The Sfh-I crystal structure showed that a water molecule (W2) completed the 

Zn2 coordination sphere [131], similar to the position of the amide nitrogen of biapenem 

bound in the CphA crystal structure [91]. The distance between the Zn2 and the water (W1), 

being 2.24 Å, thus consistent with a water molecule rather than a hydroxide ion. A second 

water molecule (W2) occupies the Zn1 site, and is involved in a network of hydrogen bonds, 
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showing a strong interaction with residue H118 suggesting that this histidine residue activates 

the W2 [91].  

The conserved positively charged residue in position 224, found in all B2 enzymes, assists the 

substrate binding to the C3 carboxylate group guided by the Zn2 ion. W1 is expected to 

perform the nucleophile attacking the β-lactam, causing electronic rearrangement which 

opens the β-lactam ring forming an anionic intermediate (EI in Figure 6B) [131], an analogue 

to the proposed mechanism for dinuclear MBLs (Figure 6A).  

Overall, the main difference between the mechanism of dinuclear B1 and B3 MBLs and the 

mononuclear B2 enzymes are that B2 MBLs do not involving the Zn2 ion in the activation of 

the water nucleophile. On the other hand, despite the difference in metal site content and 

active site topologies, the role of Zn2 in binding of substrates and the stabilizing of the anionic 

intermediate in B2 enzymes resembles the role Zn2 in the B1 and B3 enzymes [129].  

1.5.5. Studies of B1 MBL residues 

MBLs of B1 subclass contain a conserved active site with six residues binding the zinc ions, 

known as first sphere residues, as shown in Figure 5 and Table 4. The next layer of residues 

outside the active site is generally termed second sphere residues. B1 MBLs that are having 

the same scaffold and metal binding site, show diverse substrate specificities, indicating that 

the substrate profile are shaped by mutations in loops around the active site or in the second 

sphere residues [96]. Many site directed mutagenesis and crystallographic studies of MBLs 

have focused on the analysis of active site residues and the role of surrounding loops and the 

importance of their residues in binding of substrates or inhibitors [114, 147, 148]. Still, the 

detailed mechanism for why different B1 enzymes demonstrate very different substrate 

profiles is unknown [148].  

1.5.5.1. Zinc-binding residue analysis 

For the first sphere zinc binding residues, the histidines are highly conserved. Substitution of 

zinc binding residues, such as replacing each of the histidine residues individually in Zn1 site, 

H116, H118 and H196, with a serine amino acid in BcII resulted in lower catalytic activity, but 

the zinc affinity was, however, unaffected [118]. The enzyme kinetics showed as expected, a 

poorer binding for the serine mutant, due to a higher flexibility of the substrate in the active 

site due to the absence of a histidine residue. H116 substitution to asparagine or alanine 
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studied in CcrA showed that the alanine mutant had lower activity towards cephalosporins 

while the asparagine showed reduced kcat for benzylpenicillin and imipenem, but could bind 

both zinc ions [149]. Alanine mutants of histidine residues (H116, H118, H196, H263) in IMP-

1 gave the same effect on the activity, and the zinc content indicated the presence of one zinc 

(not two) in the active site [150]. Substitutions of H263 to a serine residue in the Zn2 site of 

BcII and IMP-1 were more deleterious to the activity than substitutions of histidines from the 

Zn1 site [118, 150]. Thus, these data point to Zn2 being more important for catalysis than Zn1.  

The active site residue C221 substituted to alanine or serine amino acids in several enzymes 

show to drastic decrease in the hydrolytic rate in conditions with low zinc concentration [118, 

149, 150]. BcII and IMP-1 mutants showed increase in rate of hydrolysis as excess zinc was 

added, while this was not studied for the CcrA mutant. Saturation mutagenesis of C221 in IMP-

1 indicated that most substitutions destabilized the enzyme, while the mutants C221D and 

C221G expressed well and showed catalytic activity against β-lactams [151]. Molecular 

modelling indicate steric constraints on position 221, and the C221 mutants may alter the 

positioning of Zn2, showed in the reduced catalytic efficiency of the mutants compared to the 

wild-type [151]. Hence, the Cys residue is suggested to play a crucial role in maintaining the 

stability and the catalytic activity of the mononuclear enzyme and not for the dinuclear 

enzymes [118].  

The residue D120 is binding the Zn2 ion in the active site. In addition, it is involved in the 

catalytic mechanism in all MBLs through hydrogen binding to the bridging hydroxide 

nucleophile between Zn1 and Zn2. The importance of the active site residue D120 was 

demonstrated in the IMP-1 enzyme [147]. Substitution of the D120 residue in B1 enzymes 

have resulted in a significant reduced catalytic activity, such as the D120N in BcII where the 

activity was reduced by more than a 100 fold [118]. The second zinc ion was still able to bind 

in BcII mutant. The D120 residue is directly involved in binding of penicillin and cephalosporin 

substrates in NDM-1 [99, 152] and inhibitor binding in VIM-2 [153, 154]. 

1.5.5.2. Second sphere residue analysis 

Second sphere residues are surrounding the active site. Although not directly involved in 

binding of the zinc ions, these residues are involved in a network of hydrogen bonds below 

the active site, which can contribute to the geometry of the zinc ions [88]. The loops defining 
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the active site are shown in VIM-2 including loops L1 and L3 containing second sphere 

residues, in Figure 7.  

 

Figure 7: VIM-2 L1 and L3 loops and active site. A) The VIM-2 crystallographic structure (PDB-ID: 4NQ2) 

with loops L1 and L3 highlighted in blue and pink, respectively. The zinc-binding residues are shown. 

B) The zinc binding residues and location of the studied second sphere residues are shown. For glycine 

residues at position 63 and 262 main chain atoms are depicted. The active site zincs are given in grey 

and bridging hydroxide ion in red.  

The L1 loop  

Most B1 MBLs have L1 loop consisting of residues 60 to 66, shown to be involved in substrate 

binding especially when including some extended residues. The exception is the SPM-1 

enzyme as previously described. The L1 loop show greater flexibility compared to the rest of 

the molecule, as shown by NMR characterization of BcII [155], and many crystal structures 

have an undefined L1 loop region due to the lack of well-ordered electron density depending 

on the crystal packing and symmetry interactions [156]. Mutational studies in IMP-1 have 

shown that the G65 residue is essential for catalytic activity [147]. The G65 and G63 are 

located in the L1 loop, contributing to the β-hairpin turn at the end of the loop. The glycine 

residues are suggested to be important for the structure and function of the IMP-1 enzyme, 

as changes may prevent antibiotic hydrolysis due to destabilization of the β-hairpin, thus, 

destabilization of the whole protein [147]. Crystal structures of NDM-1 with hydrolyzed 

benzylpenicillin, methicillin, oxacillin [99], and cephalosporins [152] in the active site shows 

that L1 loop residue G63 are involved in the substrate binding. These two glycine residues in 

the L1 loop are not conserved in all B1 MBLs, as some MBLs only have one glycine residue, e.g. 
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VIM-2 and VIM-7 [87]. However, not all residues in the L1 loop are significantly affecting the 

hydrolysis or binding of substrates [157]. The role of loop L1 studied in BcII showed that the 

removal of the loop had a significant effect on hydrolysis of penicillins and cephalosporins, 

while the imipenem hydrolysis was not altered significantly [114]. IMP-1 crystal structures 

with inhibitor bound to the active site show that residue W64 side-chain are interacting edge-

to-face with the aromatic group of the inhibitor [84, 158]. Other loop residues can contribute 

with e.g. hydrophobic interactions with inhibitors bound to the active site, as shown in crystal 

structures of VIM-2 to a triazolylthioacetamide inhibitor or fragments with residues F61 and 

Y67 [154, 159]. Hence, several L1 loop residues are important for both substrate and inhibitor 

binding in studied MBL enzymes. 

The L3 loop 

The residues in the MBL loop L3 (residues 223-240) have been shown to be involved in binding 

of substrates or inhibitors. Crystal structures revealed that residues K224 and N233 are 

involved in binding of β-lactam substrates or inhibitors in NDM-1 [99, 126, 152] and inhibitors 

in IMP-1 enzymes [84, 158, 160-162]. Based on mutagenesis experiments K224 is thought to 

have a critical role for the enzyme function [163, 164]. IMP-1 K224 mutants showed significant 

reduced catalytic efficiency towards benzylpenicillin, cefoxitin, cefuroxime, cephalothin and 

imipenem [164]. Many B1 MBLs have a K224 residue, which guides substrate binding by 

interaction with the conserved carboxylate group on C3/C4 of the antibiotics, together with 

the Zn2 site interaction [84, 125]. However, VIM enzymes do not display a lysine residue at 

position 224. The nearby R228 residue found in most VIM enzymes, are thought to replace to 

role of K224 of guiding the substrates carboxylate group [86, 87, 153]. The L224 is important 

for substrate binding, as shown in VIM-26, a H224L mutation compared to VIM-1 [165]. Due 

to the L224 and S228 residues, the VIM-26 R2 drug binding site is more open than in VIM-2 

and VIM-7 and naturally charged [165]. The study of VIM-13 mutations of the single mutants 

L224H and R228S and a double mutant L224H/R228S in comparison with VIM-1 (H224, S228), 

revealed lower minimum inhibitory concentration (MIC) values for VIM-13 and the single 

mutants with cephalosporins, concluding that the effects of the two positions are related 

[166]. 

Residue R228 is also a part of the L3 loop (Figure 7) and is involved in binding of inhibitor or 

inhibitor fragment in VIM-2, as revealed by different crystal structures of VIM-2-inhibitor 
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complexes [159, 161, 167]. The substitution in VIM-2 of arginine 228 to leucine (i.e. resembling 

VIM-24) was suggested to relieve steric clashes and enhance resistance to cephalosporins 

[168]. This and other studies, support that an arginine at position 228 in VIM enzymes would 

form a more open active site and more easily hydrolyze ceftazidime and cefepime substrates, 

however the hydrolysis of imipenem was unaffected by this modification as seen in MIC results 

of VIM-2 and VIM-23 [169].  

The L3 loop residue N233 is involved in inhibitor binding in VIM-2 [154, 159, 161, 167] and BcII 

enzymes [161], as also found for NDM-1 and IMP. The majority of MBLs (~67%) contain an 

asparagine at the 233 position [170]. Substitution to each of the 19 possible amino acids in 

IMP-1 showed that the kinetic parameters of the enzyme were significantly altered, although 

the mutants could still hydrolyze a broad range of substrates [170]. An IMP-1 N233A mutant 

hydrolyzed ampicillin, nitrocefin, cefotaxime and cephaloridine more effectively compared to 

IMP-1 wild-type [163]. Alanine and aspartic acid mutants at position 233 in IMP-1 revealed 

that hydrolysis of benzylpenicillin and cephalothin was not affected, while the catalytic 

efficiency of cefuroxime, cefoxitin and imipenem were reduced [164]. The asparagine at 

position 233 is suggested to be crucial for imipenem resistance, and since the majority of MBLs 

have an asparagine at this position, the residue seems to have been selected by natural 

evolution in MBLs [96]. 

Other second sphere residues  

Residue 119 is located in the conserved H116XH118XD120 motif of three zinc binding 

residues, the Q119 residue in NDM-1 is involved in binding of penicillin and cephalosporin β-

lactams [99, 126, 152], and S119 in IMP1 is binding to a 3-aminophtalic acid inhibitor [160]. 

Substitutions of residue 119 studied in NDM-1 show a reduced MIC for all substrates tested. 

The Q119D mutant resulted in the most reduced MIC compared to the wild-type and other 

Q119 mutants, and the zinc content was reduced by 70% compared to the wild-type NDM-1 

[171]. Hence, residue 119 may be important in maintaining the orientation of its neighboring 

zinc binding residues H118 and D120. 

Remote mutations of residues 121, 218 and 262 were investigated in IMP-1 and IMP-6 (a 

G262S mutation of IMP-1), and the results could be explained by dividing the -lactams in two 

types according to the molecular structures. Type I substrates contain R2 electron donor group 
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(nitrocefin, cefotaxime, and cephalothin), while type II substrates contain axial methyl groups 

(ampicillin and benzylpenicillin) or positively charged R2 side-chains (ceftazidime and 

imipenem). Type I substrates were hydrolyzed equally well by IMP-1, IMP-1 G262A and IMP-

6 (S262), and more effectively by other mutants, whereas all mutants revealed less efficient 

hydrolysis of type II substrates. The G262A and F218Y mutants showed good folding 

properties, high MIC values, and broad substrate spectra [172]. Although residue 218 is 

conserved in IMP-1 through IMP-12 [173], substitutions were tolerable and did not affect the 

catalytic efficiency significantly.  

Overall, substitutions of residues in the Zn2 site seems to have a significant impact of the 

catalytic activity of all MBL enzymes and binding of the zinc ion, while residues at Zn1 site 

shows reduced catalytic efficiency and zinc affinity not significantly altered. Mutations of 

second sphere residues and loop residues contributes in tuning the substrate specificity of the 

MBL enzymes. However, the importance of the different residues seems to be dependent on 

the complete enzyme sequence in whether they are essential for some substrates and not for 

others. The information of the MBL structures and the residues important for substrate 

specificity can provide knowledge of inhibitor binding in MBLs. Through this, certain MBL 

residues can be targeted for creating specific MBL inhibitors in the fight against these multi-

resistant bacteria. 

1.6.  Using inhibitors as a strategy to overcome antibiotic 

resistance 

The development of β-lactamase inhibitors for combination therapies with β-lactam 

antibiotics has been a successful approach to restore the β-lactam activity against pathogens 

producing β-lactamases [174]. Especially important are agents with activity against Gram-

negative bacteria, as resistance among these organisms is an urgent clinical problem [175]. As 

mentioned earlier, some penicillins and cephalosporins are useful only on combination 

therapies with β-lactamase inhibitors. Combination therapy β-lactams/β-lactamase inhibitors 

have proven effective, such as the ceftolozan/tazobactam and ceftazidime/avibactam 

combinations [174]. However, these combination therapy are efficient towards SBLs and 

ineffective against MBLs. A wide variety of compounds with MBL inhibitory potential have 
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been reported (Table 5), and inhibitors have been identified from either natural product 

sources or from chemical synthesis. 

Table 5: Selected MBL inhibitors studies. The type of inhibitor, name of representative compounds or 

derivatives, MBL enzyme used experimentally, and reference to studies given in the table. Table 

modified from [60] and extended.  

Inhibitor type Compound Enzyme tested Ref 

Thiol  Mercaptoacetic acid 
2-mercaptopropionic acid 

IMP-1 [176, 177] 

2’-mercaptoethyl derivative BcII [178] 
Mercaptophosphonates VIM-4. CphA, FEZ-1 [179] 
Mercaptocarboxylates IMP-1, VIM-2 [84, 153] 
Thiobenzoate derivative IMP-1, CcrA [180] 
2-para-Thiomandeli acid BcII [181] 
Captopril and derivatives BcII, CphA, VIM-2, IMP-1, 

NDM-1 
[161, 182, 
183] 

Bisthiazolidines NDM-1, IMP-1, BcII, L1, Sfh-I [162, 184] 
Thioesters Morpholinoethanesulfonic acid CcrA [185] 

SB214751/4752/3079/6271/6968 BcII, CfiA, L1, CphA [186] 
Triazoles Arylsulfonyl-NH-1,2,3-triazole,  

Triazoleylthioacetamide 
VIM-2 
 

[154, 187] 

Tricyclic natural 
products 

SB238569 BcII, IMP-1, CcrA [188] 

Trifluoromethyl alcohols 
and ketones 

D-alanine derivatives BcII, L1 [189] 

Sulfonic acid derivatives N-arylsulfonyl hydrazones IMP-1 [190] 
Succinic acid  derivatives 2,3-(S,S)-disubstituted succinic 

acid 
IMP-1 [158] 

Biphenyl tetrazole Biphenylmethyl derivatives IMP-1, CcrA [191, 192] 
Cysteinyl peptide D-Phenylalanine derivative BcII [193] 
1-β-Methyl carbapenem J-110, 441 IMP-1, CcrA, L1, BcII [194] 
Penicillin derivatives Penicillinate sulfone L1, BcII [195] 
Thioxocephalosporin Thioacid BcII [196] 
Pthalic acid Pthalic acid derivatives IMP-1 [197] 
Phenazines SB212021, SB212305 L1, CfiA, BcII [198] 
Pyridine carboxylates Dithioacid CcrA, L1 [199] 
Benzohydroxamic acid 2,5-substituted benzophenone 

hydroxamic acid 
FEZ-1, IMP-1, BcII, CphA, L1 [200] 

Peptides Peptide derivatives L1 [201] 
Pyrroles Pyrrole derivatives IMP-1 [202] 
Metal chelators NOTA and DOTA 

Aspergillomarasmine A 
ME1071 

NDM-1, NDM-4, VIM-1, IMP-
1, IMP-8, VIM-2, IMP-7 

[203] [204] 
[205] 

 

Inhibitors involved in metal chelation have shown to be effective MBL inhibitors, however, a 

common side-effect is potent inhibition of mammalian zinc-containing enzymes such as 

angiotensin-converting enzymes, mammalian carboxypeptidases, or alcohol dehydrogenase 

[62, 206]. Compounds containing thiol groups are among the most tested inhibitors due to the 

promising results [207, 208]. Thiol-based mercaptocarboxylic acids are evaluated successfully 
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against several MBLs [27, 161, 167], and are an interesting starting point for further inhibitor 

optimization. Another challenge is to find broad spectrum inhibitors against several clinically 

relevant MBLs. This due to bacteria with already acquired β-lactamase resistance genes; more 

easily acquire additional resistance genes, forming genetic resistance islands [209]. In this 

case, an inhibitor targeting one MBL enzyme could be effectiveless due to the presence of 

other MBLs. However, the currently reported MBLs inhibitors are effectively inhibiting one or 

two enzymes and show less activity against others. Examples of experimentally promising 

inhibitors with good in vitro results are given in Table 5. In our research, we have searched for 

inhibitors through both synthetically made thiol-based compounds and from natural sources. 

The hits might lead to an efficient compound to block the β-lactamase activity. 

1.6.1. Synthetically made thiol-based inhibitors 

Large fragment-based screening using IMP-1 revealed hits containing thiol groups [210]. Thiol 

compounds are promising candidates as MBL inhibitors with the potential to coordinate the 

zinc ions in the MBL active site, due to the thiophilic nature of zinc, and thereby preventing β-

lactam hydrolysis. A number of crystal structures of thiol-containing inhibitors in complex with 

B1 enzymes are reported [84, 161, 162, 208], and show that the sulfur atom of the thiol group 

replaces the catalytically important bridging hydroxide ion [10, 84, 162]. Through this 

coordination of active site zinc ions the thiol-containing compounds inactivate a variety of 

MBLs (Table 3) see e.g. [127, 179, 181, 211]. Structural analysis of inhibitors containing thiol 

groups complexed with MBLs suggested that the thiol group chelates the zinc ions of the B1 

enzyme L1 and the B2 enzyme CphA [208]. Captopril is a thiol-containing small molecule 

targeting the zinc ion-utilizing human angiotensin-converting enzyme, used to control high 

blood pressure. Captopril has shown to inhibit a variety of MBLs [161], and used for 

comparison of potency of new inhibitors [159]. Thiol-containing inhibitors studied in MBLs 

such as NDM-1, VIM-2 and IMP-1 shows effective inhibition [161, 162, 212], thus optimization 

of thiol containing inhibitors may provide inhibitors able to inhibit a broader spectrum of 

MBLs. 

1.6.2. Marine bioprospecting searching for new inhibitor scaffolds 

Nature has been the source of many of the most effective medicines, such as the discovery of 

penicillin, and has been the starting point of further developed medicinal products [213]. 

Approximately two thirds of all commercial available pharmaceuticals originate from natural 



37 
 

products [214]. The oceans cover more than 70% of the Earth’s surface, however, the marine 

organisms have not been adequately explored. Marine bioprospecting is defined as the search 

for bioactive molecules from marine sources containing new, unique properties [215]. The 

Barents Sea is part of the Arctic Ocean, and located of the northern coasts of Norway and 

Russia. The Barents Sea has a highly shifting environment due cold water from the Arctic and 

warmer temperate water from the Gulf Stream. This sea is the home to an enormous 

biodiversity, with marine microorganisms well adapted to extreme conditions. The organisms 

in the arctic environment are low-temperature extremophiles [216]. These extremophiles 

have evolved the ability to adapt to low temperatures in order to survive the cold environment 

that organisms further south do not have to face [217]. The marine microorganisms may have 

developed specific defense mechanisms crucial in order to survive, e.g. such as producing 

proteins providing protection against microbial intruders [218, 219]. These marine organisms 

may have evolved the expression of molecules used to combat threatening organisms, which 

humans may be able to utilize. Isolating of active compounds from marine extracts can provide 

a starting point of new active inhibitors to β-lactamases, as tested in a small-scale pilot project 

in this thesis. Through several purification steps of the marine extract, one single compound 

may inhibit MBL activity, aiming at identification of a chemical scaffold, which can be further 

optimized and synthesized to achieve a potent broad-spectrum MBL inhibitor. 
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2. Background and aim of the study 

 

The project was funded by the Research Council of Norway, through the FriMedBio 2011 grant 

number 213808. The purpose was to study and gain insight into enzymes involved in antibiotic 

resistance and metallo-β-lactamases (MBLs) in particular. One way to restore the function of 

the β-lactam antibiotics is to find MBL inhibitors, and the need to find such a compound is 

urgent. New synthetically designed inhibitors were tested in this study.  

This study had two different aims. The first objective was to investigate the importance of 

different residues located in or close to the active site of selected MBLs using enzyme kinetics 

studies, thermostability measurements, cellular assay, modelling studies, in silico calculations 

or crystallography. The focus was on following objectives: 

 Investigate the effect of mutations at H224, F218 and D120 in the divergent VIM-7 MBL 

through enzymatic characterization, and determination of the three dimensional 

structures. 

 Study the importance of residues W228 and Y233 in GIM-1 MBL, by creating eight 

mutants, through biochemical and structural characterization.  

 Determine the three-dimensional structure of TMB-1 MBL, study effects in TMB-2, 

with a S228P mutation compared to TMB-1, and the role of residue E119 through 

mutations using enzyme kinetic studies. 

The second objective was to search for MBL inhibitors in synthetically made compounds. The 

goal was to find inhibitors targeting a wide spectrum of MBLs. 

 Investigate the inhibitory effect of thiol-based compounds against the MBLs, VIM-2, 

NDM-1, GIM-1 and TMB-1 using enzyme inhibition assay, SPR, whole cell assays and 

MIC. 

 Solve three-dimensional structures of VIM-2 bound to inhibitors. 
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3. Summary of papers 
 

3.1. Paper I 

 

His224 Alters the R2 Drug Binding Site and Phe218 Influences the Catalytic Efficiency of the 

Metallo-β-lactamase VIM-7  

Hanna-Kirsti S. Leiros, Susann Skagseth, Kine Susann Waade Edvardsen, Marit Sjo Lorentzen, 

Gro Elin Kjæreng Bjerga, Ingar Leiros, Ørjan Samuelsen (2014) Antimicrobial Agents and 

Chemotherapy. 58(8): p. 4826-4836  

Metallo-β-lactamases (MBLs) are threatening the function of our most used antibiotics, the β-

lactams, including carbapenems, one of the last line drugs used for treatment of bacterial 

infections. One way of understanding bacterial resistance mechanisms to β-lactams is through 

enzyme characterization and mutational studies of MBLs involved in resistance. Verona 

integron-encoded MBLs-7 (VIM-7) is the most divergent variant within the important VIM 

group of MBLs. In this paper, three different site-directed mutations of VIM-7 were made, 

D120A, F218Y and H224Y, in order to investigate the residues’ effect on the activity and 

stability of VIM-7. The D120A mutant showed no enzymatic activity, was less thermostable 

than VIM-7 and the crystal structure revealed only one zinc ion in the active site. The F218Y 

mutant showed an increase in catalytic efficiency compared to VIM-7, a slightly higher 

thermostability, and the crystal structure revealed establishment of a hydrogen-bonding 

cluster. The H224Y mutant resulted in an increased enzymatic activity, a significant higher 

thermostability compared to VIM-7. This was due to two additional hydrogen bonds in the 

active site of the VIM-7 H224Y crystal structure. The H224Y mutant in particular resulted in 

increased activity towards cephalosporins with a positively charged R2 group, due to 

substitution of the positively charged histidine to the hydrophobic tyrosine. The modelling of 

ceftazidime substrate in the VIM-7, VIM-7 F218Y and H224Y structures suggests that the 

conformation of side-chain residues 224 and R228 in the L3 loop and the Y67 in the L1 loop 

influence the possible conformations for the substrate binding.  
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3.2. Paper II 

 

Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-lactamase GIM-

1 

Susann Skagseth, Trine Josefine Carlsen, Gro Elin Kjæreng Bjerga, James Spencer, Ørjan 

Samuelsen, Hanna-Kirsti S. Leiros (2016), Antimicrobial Agents Chemotherapy. 60(2): p. 990-

1002. 

Establishing the contribution from certain residues to substrate binding might give 

information on interactions that can be exploited in ligand design. Herein, the German 

Imipenemase-1 (GIM-1) MBL is unique since it includes the two aromatic side-chains W228 

and Y233 in the active site making it narrower and more hydrophobic compared to other 

metallo-β-lactamases (MBLs). To investigate the role of these residues eight GIM-1 mutants, 

W228R/AY/S and Y233N/A/I/S, were made. The results presented in this paper show that the 

W228 and Y233 residues are important for the GIM-1 activity, and mutation at these positions 

influence the β-lactam substrate specificity. Mutation at position 228 could enhance activity 

against type 1 substrates, containing electron-donating C-3/C-4 R2 groups, while mutations at 

233 position favored hydrolysis of type 2 substrates, containing axial methyl groups or 

positively charged R2 groups. The β-lactam enzyme kinetics of GIM-1 Y233N showed a 

deleterious effect. The in silico model of GIM-1 Y233N with hydrolyzed ampicillin in the active 

site showed an additional hydrogen bond between N233 and the C-7 carboxylate group of the 

ampicillin, however, the calculated binding affinities revealed a stronger binding of Y233 to 

ampicillin. The three-dimensional structures of GIM-1 W228R (1.98 Å), W228A (1.70 Å), 

W228Y (1.90 Å), W228S (1.81 Å), and Y233A (1.46 Å) were solved by crystallography. These 

GIM-1 mutant structures revealed that the conformation of L1 loop is altered instead of the 

L3 loop, where the mutations are located.  
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3.3. Paper III 

 

Metallo--lactamase Inhibitors by Bioisosteric Replacement: Preparation, Activity and 

Binding  

Susann Skagseth, Sundus Akhter, Marianne H. Paulsen, Zeeshan Muhammad, Ørjan 

Samuelsen, Hanna-Kirsti S. Leiros, Annette Bayer. Submitted to European Journal of Medicinal 

Chemistry. 

Metallo-β-lactamases (MBLs) are representing an increasing clinical threat with their ability to 

hydrolyze an entire class of antibiotics, causing them to become inactive. One way to combat 

this antibiotic resistance is to find MBL inhibitors, which could restore the activity of the β-

lactam antibiotics. Bacteria easily acquire MBL resistance genes, thus there is a need for 

inhibitors for a broad variety of MBLs. Fragment library screening and other studies have 

shown that compound containing thiol groups have an inhibiting effect on MBLs. In this paper, 

modified mercaptocarboxylic acids were prepared replacing the carboxylate group to the 

bioisosteric groups such as phosphonate esters, phosphonic acids and NH-tetrazoles. The 

inhibition potential was measured against the worldwide spread VIM-2 and NDM-1 MBLs, and 

the more geographically restricted GIM-1. The new MBL inhibitors showed half maximal 

inhibitory concentration (IC50) values, in the low micro- and high nanomolar range for the 

three MBLs studies. A cell-based assay with β-lactamases-negative E. coli SNO3 cells inducing 

expression of one of the MBLs found the best inhibitors to be the 3 and 10 series. Three crystal 

structures of VIM-2 in complex with inhibitor 2b, 10b or 10c were resolved, and showed VIM-

2 residues F61, Y67, R228 and H263 contributing in stacking with the inhibitor phenyl ring, and 

residue N223 forming polar interaction to the P=O group of inhibitor 2b and sulphur atom of 

inhibitor 10b. Synergistic effects were not observed in bacterial strains of P. aeruginosa or K. 

pneumoniae, but reduced MIC for inhibitors 3b, 10b and 10c was observed in a clinical isolate 

of E. coli. The results reveal that thiol-based inhibitors show promising inhibition of VIM-2 

MBL. However, with GIM-1 or NDM-1 the inhibition potential is less encouraging.  
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3.4. Paper IV 

 

Structural insight into TMB-1 and the role of residue 119 or 228 in substrate and inhibitor 

activity 

Susann Skagseth, Tony Christopeit, Sundus Akhter, Annette Bayer, Ørjan Samuelsen, Hanna-

Kirsti S. Leiros. Submitted to Antimicrobial Agents and Chemotherapy. 

Carbapenemases effectively break down carbapenem antibiotics, our most effective β-lactam 

antibiotics in fighting against bacterial infections. Mutational studies of MBLs can give insight 

into residues important for the enzyme activities, and possibly which residues to target in the 

inhibitor designing. Compounds containing thiol groups have been shown to have an inhibiting 

effect on MBLs. In this study, synthetically made genes of TMB-1 and TMB-2 (one S228P 

mutation away from TMB-1), and TMB-1 mutants E119Q/S/A were studied. In general, 

substitutions of residue 228 and 119 reduced the catalytic efficiency compared to TMB-1. 

Substitutions at position 119 showed the most reduced activity, especially towards penicillins. 

Thermostability measurements of TMB-1 revealed that a high salt concentration buffer (1 M 

NaCl) had stabilizing effect. The three-dimensional structure of TMB-1 solved to 1.75 Å 

resolution, and showed the αββα-fold characteristic for MBLs. Thiol-based inhibitors from 

Paper III were investigated for effectiveness through enzymatic assays showing two promising 

inhibitors, 2a and 2b, with IC50 values of 0.6 µM, compared to the captopril with an IC50 of 47 

µM. The inhibitor binding to TMB-1 using SPR biacore method revealed that the new 

synthesized inhibitor 2a were binding 10 times better than captopril, hence more potent. The 

inhibitor 2b modelled into TMB-1 showed that residue W64 and H263 may contribute in π 

stacking, and residue R224 in cation-π interaction with the inhibitor phenyl ring. Hydrophobic 

interactions from residues V61, V67, W87, E119 and Y233 may be made to the inhibitor ethyl 

groups on the phosphonate group in the R1 binding site.  
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4. Results and discussion 
 

MBLs ability to hydrolyze all β-lactam substrates, except monobactams, limits treatment 

options against infections caused by bacteria harboring MBLs. Many B1 MBL resistance genes 

are found on mobile genetic elements, facilitating the spread between bacteria of the same 

and between species [60]. A strategy to restore the activity of the β-lactams, is utilizing them 

in combination with β-lactamase inhibitors to prevent hydrolysis of the β-lactam molecule 

[174]. To date, however, no MBL inhibitors are clinically available, thus there is an urgent need 

to find effective inhibitors [206]. To design inhibitors with activity against a variety of MBLs, a 

better understanding of MBL residues contributing in substrate or inhibitor binding is 

essential. In this thesis, the effect of substitution of residues in the first (zinc binding) and 

second shell interaction sphere of MBLs were investigated through various studies including 

enzyme kinetics, determination of MICs, thermostability measurements, modelling, in silico 

analysis, and crystal structure determination of enzymes, mutants and enzyme inhibitor 

complexes. In addition, we have in a collaboration searched for potential inhibitors among 

synthetic thiol-based compounds and in marine extracts originating from organisms in the 

extreme conditions in the Barents Sea. The different MBL enzymes and mutants studied in this 

thesis are given in Table 6 showing our studies of enzyme kinetics, crystal structures and 

inhibitor binding. The overall aim of these studies were to discover new potent broad-

spectrum MBL inhibitors. 
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Table 6: A short summary of the enzymes, mutants, enzyme kinetics, crystal structure(s) inhibitor 

studies performed in the thesis. Residues at position 119,218, 224 and 223 are given. x means an 

investigation has been done, and – indicated the same amino acid as given above.  

 Enzyme Mutant Enzyme 
kinetics 

Crystal 
structure(s) 

Inhibitor 
assays 

Residue at position: 
 

      119 218 224 228 233 

Paper I VIM-7  x x  D F H R N 
  F218Y x x  - Y - - - 
  H224Y x x  - F Y - - 
Paper II GIM-1  x   E F R W Y 
  W228R x x  - - - R - 
  W228A x x  - - - Y - 
  W228Y x x  - - - Y - 
  W228S x x  - - - S - 
  Y233N x   - - - W N 
  Y233A x   - - - - A 
  Y233I x x  - - - - I 
  Y233S x   - - - - S 
Paper III VIM-2   3 x x D Y Y R N 
 GIM-1    x E F R W Y 
 NDM-1    x Q F K A N 
Paper IV TMB-1  x x x E Y R S Y 
 TMB-2  x   - - - P Y 
 TMB-1 E119Q x   Q - - S - 
  E119S x   S - - - - 
  E119A x   A - - - - 

 

4.1. Impact of residue substitutions in VIM-7, GIM-1 and TMB-1 

In this thesis, the reported distribution of the MBL genes from VIM-7 (paper I), GIM-1 (paper 

II) or TMB-1 (paper IV) are all geographically restricted. In VIM-7, the first sphere zinc-binding 

residue D120A, and of the second sphere residues H224Y and F218Y were investigated. In 

GIM-1, the impact of mutations of residues in the narrow active site, W228R/A/Y/S and 

Y223N/A/I/S, were evaluated. Characterization of TMB-1 was performed and compared to 

TMB-2 (a S228P mutant of TMB-1), and three mutants of the second sphere residue 

E119Q/S/A. This to study the effect on the catalytic efficiency when introducing a rigid proline 

residue at 228 and the substitution of residue E119 in TMB-1. The residues studied through 

substitution have shown to be involved in substrate or inhibitor binding according to MBL 

crystal structures, and the catalytic efficiency of the substitutions was studied against a variety 

of β-lactams. The MBL mutants with single point mutations may be variants that can evolve 

naturally, where the mutants showing higher catalytic activity are worrisome.  

4.1.1. Impact of zinc-binding residue D120A substitution in VIM-7 

In paper I, the impact of residue D120 in VIM-7 by mutation to an alanine, showed that the 

substitution gave an inactive mono zinc enzyme with no activity against nitrocefin nor 
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ertapenem. This is in agreement with previous reports [118, 147, 220] and the reaction 

mechanism of MBLs, where the deprotonated D120 residue binds the Zn2 ion and orienting 

the bridging hydroxide ion, which makes the nucleophilic attack on the β-lactam forming an 

enzyme bound intermediate (Figure 6a). The 1.9 Å crystal structure of VIM-7 D120A (paper I, 

Figure 2) revealed that the Zn2 ion was lost. Thermostability measurements showed that the 

mutant protein was folded, but less thermostable compared to VIM-7. In the structure, a 

water molecule was found in the Zn2 site interacting with the other DCH site residues, C221 

and H263. This water molecule is inadequate to act as nucleophile for catalysis, and together 

with the loss of Zn1, could explain why the enzyme was inactive.  

4.1.2. Substitution of second sphere residues F218Y and H224Y in VIM-7 

increases catalytic efficiency and stability 

VIM-7 is the most divergent variant within the VIM class with 77% and 74% sequence identity 

to VIM-4 and VIM-2, respectively. VIM-7 showed a reduced catalytic activity towards 

cephalosporins containing a bulky, positively charged R2 side group, compared to VIM-2 [221]. 

VIM-2 entails Y218 and Y224 both involved in two different hydrogen binding clusters, while 

VIM-7 contains phenylalanine and histidine residues in these positions. In paper I, the single 

point mutations at F218 and H224 to tyrosine in VIM-7 revealed enhanced stability, Tm= 

+1.8C and +7.6C, respectively, and an increased catalytic activity compared to VIM-7.  

Residue 218  

In particular, the VIM-7 F218Y mutant showed increased efficiency towards penicillins, the 

four cephalosporins tested and the carbapenem imipenem, compared to VIM-7. In the 1.7 Å 

VIM-7 F218Y crystal structure, three additional hydrogen bonds from F218Y to N70, D84, and 

R121 were observed (paper I, Figure 2). This hydrogen bond network, also present in VIM-2 

[88, 221], was attributed to the enhanced stability since it makes the structure more rigid by 

linking together different secondary structure elements. Hydrogen bonds provide 

intramolecular interactions important for protein folding, and contribute to rigidity, which is 

favorably for protein stability [222, 223]. The increased catalytic activity is in agreement with 

the studies of the IMP-1 F218Y mutant, which showed an increased hydrolysis rate for 

substrates containing neutral or charged R2 groups [172, 224].  
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Residue 224  

Another second sphere mutant, H224Y, is located in the L3 loop and found in the R2 substrate 

binding site (paper I). The catalytic activity of VIM-7 H224Y was increased for all β-lactams 

tested, except for ertapenem and meropenem. VIM-7 H224Y compared to VIM-7 hydrolyzed 

imipenem, cefepime and ceftazidime, with positively charged R2 groups, significantly more 

efficiently. The increased efficiency is likely due to removal of the positively charged histidine 

residue to the aromatic polar tyrosine, thus reducing repulsion from two positive charges. The 

VIM-7 H224Y crystal structure showed two additional hydrogen bonds, to A231 and a water-

intermediated hydrogen bond to H196, which also explain the increased catalytic activity and 

stability (paper I, Figure 2). In addition, the VIM-7 H224Y R2 binding site is open and U-shaped 

while in VIM-7, R228 occupy the same binding site.  

Both introductions of a VIM-2 amino acid in VIM-7 increased the catalytic efficiency and 

stability due to additional hydrogen bonds. A VIM-7 double mutant (F218Y/H224Y) would 

probably form an even more rigid and efficient enzyme due to addition of two hydrogen bond 

networks, as in VIM-2 which is more catalytically efficient against cephalosporins with bulky, 

positively charged R2 groups than VIM-7 [87]. Overall, the 218 residue in VIM-7, located below 

the active site, have been shown to be important for the catalytic activity, as in IMP enzymes 

[224], and residue 224 in L3 loop is important for the stability and activity of MBLs, generally. 

Modelling of ceftazidime containing a positively charged R2 group  

In order to investigate substrate binding in the VIM-7 F218Y and VIM-7 H224Y mutants, 

modelling studies of ceftazidime containing a bulky, positively charged R2 group were 

performed. Ceftazidime in the VIM-7 mutants showed that the substrate conformation did 

not fit into either mutant structures (paper I, Figure 1). The alternative conformation of 

ceftazidime in both mutants is likely due to R228, as the residue is overlapping the ceftazidime 

conformation in VIM-7. Another R228 conformation in the mutants would likely give 

modelling results with ceftazidime as shown for VIM-7 and IMP-30 [225], where the cyclic R2 

group is adjacent to residue 224 and buried below residue 228. It was suggested that a 

stacking with Y67 residue in the VIM-7 mutant L1 loop to the positively charged R2 ring of 

ceftazidime is more likely to happen for the substrate in this conformation. 
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Residue 224 versus 228 

According to several NDM-1 and IMP-1 crystal structures [84, 99, 126, 152, 161, 162], the 

positively charged lysine at residue 224 is involved in substrate and inhibitor binding. The VIM-

2 Y224 residue is not involved in inhibitor binding, however VIM-2-inhibitor complex crystal 

structures shows that the positively charged R228 is involved instead [159, 161, 167]. The 

R228 in VIM-2 is suggested to replace the K224, in other B1 enzymes, in interaction with the 

carboxylate on C3 or C4 of the substrate (Figure 6) [86]. The residue composition of the L3 

loop influences the activity, as shown in the comparative study between VIM-1 containing 

H224 and S228 and VIM-13 with L224 and R228 [166]. The interplay between a positively 

charged residue at the 224 or 228 position in the L3 loop seems to be important for the activity 

of MBLs, and the effects of the two positions are related.  

4.1.3. Residues 228 (GIM-1 and TMB-1) and 223 (GIM-1) confers substrate 

specificity 

Residue 228 

The residues W228 and Y233 form a narrower and more hydrophobic active site in GIM-1 

compared to other MBLs [90], and substitution of these residues were investigated (paper II). 

The kinetic activity of the GIM-1 W228R/A/Y/S mutants showed a slight reduction against the 

penicillin substrates tested (paper II, Table 2). The W228A and W228I mutants showed an 

increase in activity against type 1 substrates (cefoxitin and meropenem), which have electron 

donors at the R2 position, compared to the wild-type. The two mutants had little change in 

the hydrolysis rate of type II substrates (ceftazidime and imipenem), which contains a 

positively charged R2 group. The role of residue 228 is studied in several VIM MBLs, where 

most VIM MBLs contain an arginine, however, VIM-1 and VIM-23 contains a serine [169, 226], 

and VIM-24 and VIM-26 a leucine [165, 168]. In general, the kinetic parameters showed that 

the efficiencies were reduced for VIM-1, VIM-23, VIM-24 and VIM-26; however, they also 

showed increased efficiency towards some substrates. Our GIM-1 results are in agreement 

with the studies of the residue 228 in VIM-type MBLs showing that the residue is defining the 

substrate specificity. 
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Residue 233 

The enzyme kinetics of GIM-1 Y233N/A/I/S mutants revealed more deleterious effects, with 

the exception of the Y233A mutant (paper II, Table 2). The increase in penicillin hydrolysis is 

reported for IMP-1, where the N233A mutant showed an increase in ampicillin hydrolysis, in 

addition to hydrolysis of nitrocefin, cefotaxime and cephaloridine substrates [163]. In GIM-1, 

substitution at position 233 showed a higher level of reduced activity towards type I substrates 

than type II substrates, except for the Y233N mutant, which showed reduced activity for all 

tested substrates. The effect on the different substrates were most prominent for the Y233I 

mutant showing up to 50 times reduced catalytic efficiency against type I substrates, and 5 

times reduction against type II substrates, compared to the wild-type. The significant 

reduction in activity for GIM-1 Y233N is interesting, since ~67% of all MBLs have an asparagine 

in this position [170]. N233 is suggested to be crucial for imipenem resistance [96], however, 

this was found not to be the case for GIM-1 (paper II). The substitutions of N233 residue in 

IMP-1 showed that a wide variety of amino acids were tolerable at this position and the effect 

was substrate dependent [170], in agreement with our results. Taken together, the effects of 

the mutations were mainly due to changes in KM, indicating that the mutations at position 228 

and 233 are affecting the association steps rather than the catalytic steps in the reaction. 

Thermostability measurements of GIM-1 and mutants revealed no significant change; hence, 

the protein stability of the mutants cannot explain the difference observed in the catalytic 

properties. In general, the GIM-1 wild-type shows the highest catalytic efficiency compared to 

the mutants, showing the importance of these residues in GIM-1, distinguishing this and 

similar MBLs, such as DIM-1 [227], from other class B1 enzymes. Steady state kinetics of 

mutations of either W228 or Y233 show that both residues are important but have a 

nonessential role for the enzymatic activity of GIM-1 by contributing to substrate specificity.  

Proline at residue 228 

TMB-2, discovered shortly after TMB-1, differs with only a single point mutation: a proline at 

the 228 position. TMB-1 (paper IV) share 51 % sequence identity with GIM-1, and contains a 

tyrosine at the 233 position, while the 228 position holds a serine amino acid. The kinetics 

characterization of TMB-2, with the rigid proline residue, revealed a slightly reduced catalytic 

efficiency and significantly reduced for ampicillin compared to TMB-1. Substitution of R228 to 

all possible amino acids studied in VIM-2 showed that proline at this position was tolerable, 
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and the MIC values revealed a reduction for all antibiotics tested [168]. The reduced efficiency 

with a proline at position 228 in VIM-2 is consistent with our TMB-2 results.  

Residue 119 

Residue 119 is located in the conserved H116XH118XD120 motif with three zinc-binding 

residues, and in crystal structure complexes found involved in substrate binding in NDM-1 [99, 

126, 152] or inhibitor binding in IMP-1 [160]. The effect of substitution of residue 119 is to our 

knowledge only studied in NDM-1 [171], therefore, mutations in TMB-1 were made. The 

enzyme kinetics of TMB-1 E119Q/S/A revealed a reduced catalytic efficiency compared to 

TMB-1, with the highest reduction against penicillin substrates (paper IV, Table 3). This is 

supported by studies showing that Q119 in NDM-1 is involved in binding of penicillin 

substrates [99, 126]. The TMB-1 mutants show through reduced efficiency, that residue 119 

are involved in the hydrolysis of penicillin substrates, either through direct binding or by 

maintaining the orientation of its neighboring, zinc binding residues, H118 and D120. Other 

surrounding residues might contribute in binding of substrates in TMB-1, such as the positively 

charged residue R224 and the residue Y233, shown to be important for the GIM-1 activity. 

Overall, residue 119 contribute to tuning the substrate specificity of TMB-1. 

Summary of residue substitutions 

Despite the large differences between MBL enzymes, some seems to have evolved giving 

many similar enzyme to inhibitor/substrate interactions. When a residue involved in substrate 

or inhibitor binding is missing or replaced, surrounding residues may contribute to form 

alternative interaction. This was found in GIM-1, TMB-1, IMP-1, NDM-1, VIM-7 and VIM-2, 

where a positively charged residue at either the 224 or 228 position contribute in substrate 

binding in (paper I) [84, 86, 87, 90, 99, 153], and with an aromatic tryptophan at either 228 as 

for GIM-1 (paper II) or 64 position as in TMB-1 (paper IV). Information about the influence 

and importance of residues on enzymatic activity, inhibitor binding, and the interplay between 

residues, such as 224 and 228, are useful when trying to find inhibitors for a wide variety of 

MBLs. Knowledge of the contribution from residues and residue determinants in the MBLs can 

aid the design of specific inhibitors. In order to block the enzymes hydrolytic function, 

inhibitors containing specific side groups can target important enzyme residues since the 

structure activity relation (SAR) is explored. 
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4.2. Crystal structures of two different VIM-7 gene constructs 

show no structural difference 

Obtaining high amounts of concentrated pure enzymes required for enzyme characterization 

and crystallization could be challenging. Consequently, in order to obtain high amounts of 

purified enzyme it is convenient to use affinity tags. However, one concern is whether lack of 

residues or additional residues from different gene construct design are influencing the 

recombinant enzyme structure and function. In our VIM-7 study we used two different gene 

constructs due to the low production yields after enzyme purification from the periplasm 

(paper I). One gene construct encoded the recombinant native VIM-7 with the leader 

sequence resulting in residues A16-E300 and this was purified from the periplasm. The other 

gene construct encoded a recombinant VIM-7 with a Hexa His tag, TEV cleavage site and a 

residue A25-E300 called tVIM-7. The catalytic efficiency of the two constructs revealed that 

the recombinant version of the native VIM-7 was higher compared to tVIM-7, due to both 

improved binding and higher turnover. The tVIM-7 crystal structure showed a RMSD for CA 

atoms of 0.15-0.50 Å, compared to four native VIM-7 (PDB-ID: 2Y8A, 2Y8B, and 2Y87). The 

differences were due to conformational changes in the L3 loop (residues 223 to 240), which 

also are reported for native VIM-7 structures [87]. The zinc-binding residues and second 

sphere residues interacting with the active site were similar in all structures from both enzyme 

constructs. Hence, the difference in catalytic efficiency could not be explained based on the 

structures.  

4.2.1. D120A, F218Y and H224Y mutations do not significantly alter the VIM-

7 structure  

The crystal structures of the tVIM-7-D120A, VIM-7-F218Y and tVIM-7-H224Y mutants (paper 

I) were similar to the tVIM-7 structure, showing a RMSD of 0.63 Å, 0.50 Å, and 0.23 Å, 

respectively, for CA atoms. The major differences were observed in the flexible L1 loop, for all 

three mutants. The VIM-7-D120A mutant structure contained a single zinc ion in the active 

site, with a water molecule occupying the Zn2 site.  
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4.2.2. Crystal structures of GIM-1 mutants show some changed active site 

architectures 

Crystal structures of GIM-1 W228R/A/Y/S and Y223A (paper II, Figure 5) compared to GIM-1 

(PDB-ID: 2YNT) showed low RMSD values, and the mutant structures matched to each other 

with a RMSD of 0.28 to 0.76 Å, for CA atoms. The differences were mainly found in the L1 loop, 

known to be flexible [90]. The low RMSD indicate that the five introduced mutations in GIM-

1 did not cause any profound structural changes compared to the wild-type GIM-1. All W228 

mutant structures had oxidized C221 residues, in which cysteine becomes a cysteine sulfonic 

residue, despite the use of the reducing agent β-mercaptoethanol in the crystallization. A 

consequence of this oxidation might be a lower affinity for Zn2, as observed in the crystal 

structures showing 0 to 0.15 Zn2 per GIM-1 molecule, except Y233A, which has a fully 

occupied Zn2 site. However, in the structure of W228A and W228R, some electron density 

were observed in the Zn2 position, and modelled as a low occupancy zinc. The oxidized active-

site C221 has in previous studies shown to cause reduced occupancy or even loss of one zinc 

ion in other MBL crystal structures [86-88]. This could be due to C221 involved in coordination 

of Zn2 ion.  However, the oxidation of the C221 is suggested to take place in the crystallization 

process, as indicated in a VIM-2 study [86] or by radiation damage also shown for another 

VIM-2 study [154]. Hence, the oxidized C221 would not be present in the enzymatic 

characterization. If the C221 residue were oxidized during enzymatic measurements, it would 

play a role in down regulating the catalytic efficiency. In the GIM-1 W228S structure, residue 

D68 in the L1 loop was repositioned and made ion pair with H263 in the Zn2 site. In this 

structure, the Zn2 ion was lost, but whether this was only due to the W228S mutation is not 

clear. Other studies have showed that mutation in second sphere residues cause disruption of 

hydrogen bond network adjacent to the zinc ions, thus affect the enzyme activity significantly 

[148, 228]. The GIM-1 Y233A mutant structure showed a reduced C221 residue and two zinc 

ions with full occupancy (paper II, Figure 5). Compared to the W228 mutant structures, the 

Y233A structure differs less compared to the wild-type structure. In addition, the zinc-zinc 

distance in the Y233A mutant was increased due to two hydrogen bonds between the D64 

and G264, which were not present in the wild-type GIM-1 structure. Both mutation at residue 

W228 and Y233 show some effect on the GIM-1 active site architecture and catalytic 

properties.  
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4.2.3. In silico modelling of hydrolyzed ampicillin binding in GIM-1 and GIM-

1 Y233N 

The better understand the deleterious effect of the GIM-1 Y233N mutant, in silico modelling 

of the GIM-1 wild-type and mutant with hydrolyzed ampicillin in the active sites was 

investigated (paper II, Figure 6). GIM-1 Y233N was modelled with a hydrogen bond from the 

N233 side-chain to the hydrolyzed ampicillin, not present in the ampicillin GIM-1 wild-type 

model. The ampicillin GIM-1 model revealed an anion π interaction from the carboxylate of 

the hydrolyzed ampicillin to the aromatic ring of residue Y233. Despite the hydrogen bond in 

the Y233N mutant, the calculation of the estimated relative binding affinities of hydrolyzed 

ampicillin showed stronger binding to GIM-1 wild-type. The results of the calculation is in 

correlation with the enzyme kinetics of ampicillin hydrolysis, giving a higher binding affinity 

for ampicillin to the wild-type GIM-1 enzyme. The N233 residue was described as critical for 

the IMP enzyme [96], although this is not the case for other MBLs [163, 164, 229]. The in silico 

modelling and calculation of GIM-1 and GIM-1 Y233N mutant with hydrolyzed ampicillin gave 

new insight into the positive contribution of the Y233 contribution for substrate binding in 

GIM-1. 

4.2.4. TMB-1 reveals high salt stability and W64 closes the R2 site in the 

structure 

TMB-1/-2 and mutants were all stabilized in buffers with high salt concentration (paper IV). 

TMB-1 was discovered in environmental isolates of Achromobacter xylosoxidans and clinical 

isolates of Acinetobacter spp. However, the organisms where the TMB genes were discovered 

are not halophilic (organisms that thrive in high salt concentration) and do not explain the 

high salt preference. The 1.75 Å TMB-1 crystal structure (paper IV), contains two catalytic zinc 

ions coordinated by the conserved residues in the B1 subclass: H116, H118, and H196 in the 

Zn1 site, and D120, C221, and H263 in the Zn2 site. A third zinc ion, Zn3, was observed bound 

to H285 on the enzyme surface. Two Cl ions were identified; one Cl1 between residues R224 

and W64 in the R2 site, and the other Cl2 on the enzyme surface. The active site of TMB-1 is 

defined by residues V61, W64, V67, R224, S228 and Y233, resulting in a very hydrophobic 

binding site. The TMB-1 W64 residue in the L1 loop is likely to be involved in inhibitor binding, 

as seen in IMP-1 inhibitor complex crystal structures [84, 158]. W64 is in a very closed 

conformation in TMB-1 chain A structure and a slightly more open R2 site for chain B. TMB-1 
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contains a positively charged R224 residue in the R2 site, which may contribute in binding of 

β-lactam substrates (paper IV, Figure 6), as shown with the positively charged K224 residue in 

NDM-1 [99, 126, 152]. The S228 are contributing to a more open active site for substrates to 

bind more easily, as shown in VIM-26 [165]. Another important residue is the Y233 residue, 

which may affect the catalytic activity, as shown in GIM-1, through aromatic stacking. In 

general, new X-ray crystal structures provide valuable information of the MBL residue 

arrangements, and together with activity measurements, increase the understanding of the 

differences in catalytic efficiencies and SAR for MBLs. 

Overall, none of the new mutant crystal structures of VIM-7 (paper I) or GIM-1 (paper II) 

showed to alter the structure significantly. Some changes were observed in the L1 and L3 

loops, however, these differences could be due to the flexible nature of the loops. The new 

TMB-1 crystal structure (paper IV) was solved at high resolution describing the binding site 

accurately, and showed a closed R2 binding site due to the closed W64 conformation.  

4.3. Inhibitor studies with VIM-2, NDM-1, GIM-1, and TMB-1 

In order to identify inhibitors that preferably act on a wide variety of MBL enzymes, the 

inhibitors were tested against two wide-spread and clinically challenging MBLs (VIM-2 and 

NDM-1 paper III) and the two more geographically restricted MBLs, GIM-1 (paper III) and 

TMB-1 (paper IV). The half maximal inhibitory concentration (IC50) tested on purified enzymes 

and whole cell assay experiments were performed for each inhibitor. The following 

synthetically-made thiol-based inhibitors were tested: mercaptophosphonate esters 2a-c, 

mercaptophosphonic acids 3a-c and mercapto-NH-tetrazol 4, in addition to synthesis 

intermediates 7, 10a-c, 15a, 15b and 16. The inhibitors are in a racemic mixture, containing 

50/50% of both enantiomers. A previously reported VIM-2 inhibitor, compound 1c, was 

included in the studies for benchmarking. Crystal structures obtained of VIM-2 in complex with 

inhibitor 2b, 10a and 10b gave insight into the coordinating properties of the phosphonic acid 

group compared to the thiol in the enzyme.  

4.3.1. Inhibitors preferably targets VIM-2 

Our results included the previously reported compound 1c [212] found an IC50 value in the 

same order as previously reported, validating our assay. In general, all inhibitors showed lower 

IC50 values towards VIM-2 compared to GIM-1 and NDM-1, with the exception of inhibitor 2a, 
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which had a significantly better IC50 for GIM-1 compared to VIM-2 (paper III. Table 2). The 

substitution of carboxylic acid on previously reported compound 1c with a NH-tetrazole (4) 

inhibitor showed a reduced inhibitory effect, while the phosphonate esters and phosphonic 

acid groups gave a similar (2, 10) or improved (3) activity. By comparing the inhibitors 

containing alcohols (7, 9) with corresponding thiols and thioacetates (2, 3, 10), shows that the 

sulfur atom of the inhibitor β-carbon is important for the inhibitory activity. Comparison of 

the mercapto and thioacetate substituted phosphonate esters and phosphonic acids 2, 3, 8 

and 10, the activity seems to depend on a subtle combination of the sulfur atom and a 

carboxylic acid bioisoster. The inhibitors showing the highest inhibitory effect on enzyme 

activity were the mercapto substituted phosphonate ester 3, while the thioacetate 

substituted phosphonate ester 8 showed the lowest inhibitory effect of all four inhibitor 

series. This effect was not observed in phosphonic acids 2 and 10, as thiol 2 and thioacetate 

10 showed the same level of inhibition. This may indicate that the interaction of phosphonic 

acid with the enzyme is more important for the activity than the interaction with the thiol. 

This is in line with a study on mercaptophosphonic acids in the class B2 CphA MBL crystal 

structure showing that oxygen of the phosphonic acid is binding to the zinc ion, and not the 

sulfur atom of the thiol [179]. Overall, according to the IC50 values, the most efficient inhibitors 

contained a mercapto group and a phosphonate ester (inhibitor 3a-c) or acid (inhibitor 2a and 

2b), with two or three methyl groups connecting the phenyl group.  

In order to investigate the inhibitory activity towards MBLs expressed in E. coli, the inhibitors 

were tested against the β-lactamase-negative E. coli SNO3 cells transformed with pET26b(+) 

containing the genes blaVIM-2, blaGIM-1 or blaNDM-1 were tested. The calculated percent 

inhibition revealed high percent inhibition (>70%) for several compounds. This shows that the 

inhibitors are able to diffuse across the outer bacterial cell membrane of E. coli. The highest 

percent inhibition was observed for the inhibitors 3a-c and 10a-c with E. coli harboring VIM-

2, which was in agreement with the low IC50 values. For E. coli containing GIM-1 or NDM-1, 

the percent inhibition was not as pronounced, although the IC50 values were low. Inhibitors 

2a and 2b showed high IC50 values but lower percent inhibition with VIM-2 compared to 

inhibitors 3a-c and 10a-c. The most promising inhibitors were tested in a synergy assay with 

E. coli bacterial strain containing VIM-1 and meropenem, showing a reduced MIC for inhibitors 

3b, 10b and 10c. VIM-2 share 91% sequence identity with VIM-1, hence, it is likely that the 
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same effect would be observed with E. coli harboring VIM-2. In general, the percent inhibition 

was highest in E. coli with VIM-2 compared to GIM-1 and NDM-1, and reduced MIC for some 

inhibitors in E. coli synergy assays with VIM-1. Consequently, the selection of synthetic 

inhibitors seems to be better at inhibiting VIM-2, thus, not suited as broad-spectrum 

inhibitors, and here the 3 and 10 series are most promising.   

4.3.2. VIM-2 inhibitor complex structures 

The crystal structures of VIM-2 complexed with inhibitors shows that only one of the two 

enantiomers fit into in the observed electron density in the active site. The VIM-2 structure 

with inhibitors 2b, 10b or 10c all showed the (R)-form in the active site, in agreement with the 

reported VIM-2 complexed with the (S)-form of compound 1c [153], showing the stereoisomer 

with corresponding sterically arrangement of substituents (paper III, Figure 2). This might 

indicate that the (R)-enantiomer of the three inhibitors is the more efficient than the (S)-

enantiomer. By separating the two enantiomers, lower IC50 values are likely to be obtained. 

Studies of pure stereoisomers of the mercaptocarboxylic acids captopril and bisthiazolidine 

showed a difference in 10-100 times in IC50 values between different stereoisomers [161, 184].  

In the VIM-2 inhibitor 2b complex, the sulfur atom in the thiol is bridging the zinc ions and 

replacing the hydroxide ion normally found in the VIM-2 structure. This has been observed in 

a number of other B1 MBL complexed with thiol inhibitors [84, 153, 161, 162, 208]. The 

inhibitor 2b forms hydrogen bonds from the inhibitor P=O to the N233 residue, while the 

phenyl ring is in a T-shaped π-π stacking interaction with Y67, cation-π interaction with the 

positively charged R228, and a T-shaped stacking with H263. The phosphonate esters ethyl 

groups of the 2b inhibitor make hydrophobic interactions with F61, Y67, W87 and D119 

residues of VIM-2. The corresponding phosphonic acids 3 without the two ethyl groups, 

showed weaker IC50 values with VIM-2 compared to the phosphonate esters, indicating that 

the phosphonic acids are not involved in the corresponding favorable interactions.  

Both crystal structures of VIM-2 complexed with inhibitor 10b and 10c show that the 

thioacetate sulfur atom is binding to the zinc differently than the typical thiol complexes, as 

seen in VIM-2 inhibitor 2b structure (paper III, Figure 3). The thioacetate is interacting with 

the zinc and to the R228 through a water molecule in both, and in 10b a sulfur is interacting 

with N233. The phosphonic acid is adjacent to W87 and interacting with the N233. The phenyl 
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ring is parallel to Y67, with the R228 stacking at the opposite side, and the H263 in a T-shaped 

orientation, which is also observed in the complex structure of VIM-2 and compound 1c [153]. 

In addition to these interactions, the G232 are stacking opposite side to Y67 in our structure. 

Despite the inhibitor 10c being longer than inhibitor 10b, the phenyl ring is binding in 

approximately the same place, due to a twisting of the inhibitor carbon chain. Residue F61 

differs between the 2b and 10b/c complexes, showing a closed conformation over the 

inhibitors 10b/c interacting with the phosphonic acid group, while F61 in 2b shows a more 

open conformation interacting with the ethyl groups (paper III, Figure 4).  

4.3.3. Inhibitor studies in TMB-1 show results similar to GIM-1 

To investigate the second sphere residues interacting with the inhibitors in GIM-1 and NDM-

1, the inhibitors from the VIM-2 crystal structures were modelled into the structures (paper 

III, Figure 4). The modelling of inhibitor 2b, 10b and 10c in GIM-1 shows that W228 and Y64 

makes the R2 site smaller and more hydrophobic. The low difference in IC50 values between 

the shortest and longest inhibitors indicate that all compounds within the series may have the 

same favorable T-shaped stacking from W228 and cation-π interaction from R224 to the 

inhibitor phenyl groups. The NDM-1 inhibitor 2b, 10b, and 10c modelling shows that the N233 

residue can bind the inhibitors through the P=O group, as shown in VIM-2. However, the 

hydrophobic stabilization of the phenyl ring in the inhibitors are limited due to the A228 and 

K224 residues in the R2 site. The K224 in NDM-1 is shorter than the R228 in VIM-2 and R224 

in GIM-1. Compared to VIM-2 and GIM-1, the NDM-1 binding site is more hydrophobic and 

different with few conserved second sphere residues, making the design of a broad-spectrum 

MBL inhibitor challenging. 

The dose-respond IC50 values of GIM-1 and TMB-1 for the nine common inhibitor tested (series 

2a-b, 3, 10 and captopril) are within the same range, which is not surprising as they share 51% 

sequence identity. The active site of GIM-1 (PDB-ID: 2YNW) and TMB-1 (Figure 5d, paper IV) 

show that the residue 228 is different, a tryptophan in GIM-1 and a serine in TMB-1. The crystal 

structure of VIM-2 in complex with inhibitor 2b show that the positively charged residue R228 

are involved in cation-π interaction with the phenyl ring of inhibitor 2b (paper III). The 

tryptophan in GIM-1 may contribute in a π-π interaction with the inhibitor phenyl ring, while 

S228 in TMB-1 may not. However, TMB-1 has a W64 on the flexible L1 loop, as shown in 

modelling in paper IV, which can contribute in a π-π stacking edge-to-face interaction with the 
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phenyl ring, as observed in crystal structure of IMP-1-mercarboxylate inhibitor complex 

showing W64 in edge-to-face interaction with the inhibitor thiopene ring [84]. The interaction 

with the phenyl ring in TMB-1 may also include residues H263 and R224. The modelling in 

TMB-1 shows that the residues W87, W64 and E119 might make hydrophobic interactions to 

the ethyl groups on the inhibitor 2b.  

In general, the inhibitors showed the lowest IC50 values for VIM-2, then GIM-1 and TMB-1, 

while the lowest activity was observed with NDM-1. Inhibitors targeting a broad number of 

MBLs was not found, however, the thioacetate phosphonic acid 10b did target both the 

clinically challenging VIM-2 and NDM-1 enzymes, and may be a template for further inhibitor 

optimization. 

4.3.4. Binding studies of captopril, 2a and 2b inhibitors to TMB-1 using 

Surface Plasmon Resonance (SPR) 

To investigate the binding of inhibitors in TMB-1 the binding affinity, KD, of inhibitors with the 

lowest IC50 values, inhibitors 2a and 2b, were investigated using SPR (paper IV, Figure 4). 

Captopril was added to the assay as it is a well-characterized MBL inhibitor, which has been 

tested against a variety of MBLs [161]. Captopril and meropenem were used to verify the 

activity of immobilized TMB-1. Both inhibitors 2a and 2b showed binding to TMB-1, however, 

only the inhibitor 2a data fit the 1:1 interaction model, and had sufficient data to determine a 

KD. The inhibitor 2a revealed a 10 times better binding affinity compared to captopril. The 

sensorgrams presented show some background noise (paper IV, Figure 4), and through 

further optimization of the assay, it is likely that also inhibitor 2b would give data to fit the 1:1 

interaction model, providing a KD value. Overall, the SPR measurement revealed inhibitor 2a 

to be a more potent inhibitor than captopril. 

4.3.5. In vitro experiments versus cell-based experiments 

Synergistic effects of meropenem and inhibitors in cell-based experiments with clinical 

bacterial strains containing VIM-1, VIM-2 or NDM-1 were only observed in E. coli harboring 

VIM-1 (paper III). Herein, VIM-1 and VIM-2 have 91% sequence identity. These results is 

different compared to the dose-response IC50 assay with purified enzyme. The inconsistency 

between results of an assay with purified enzyme and cell-based assays was also observed in 

MIC determination of GIM-1 and the different mutants (paper II). This could be due to a 
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different environment in the bacterial periplasm, where the MBLs break down β-lactams, 

compared to the controlled environment in the kinetic assays. This emphasizes the 

importance of cell-based experiments in evaluation of inhibitors and also against a variety of 

bacterial strains.  

4.3.6. MBL inhibitors from the Barents Sea 

Natural sources have given many marketed drugs, and through marine bioprospecting, 

searching in the Barents Sea where the biodiversity is enormous and adapted the extreme 

conditions, one may find new alternative antibiotics or inhibitors of resistance mechanisms. 

Marine microorganisms may have evolved the ability to produce compounds for protection 

against intruders, which we may utilize. Marine extracts were collected from the bottom of 

the Barents Sea. The extracts had previously been through a process of first round of testing 

with VIM-2 MBL to look for inhibitory effect. Extracts showing inhibitory effects were purified 

further using Flash chromatography method. The marine extracts in the second round of 

testing against purified VIM-2 enzyme showed inhibition, however, the extracts were not 

investigated further. The extracts were too complex to identify single compounds, as they 

contained a mixture of compounds. Further investigation or purification and testing against a 

variety of MBLs could have provided a starting point for optimization of MBL inhibitors, either 

through an identified scaffold or through a full functional inhibitor compound.  

Structure activity relationship (SAR) and impact on inhibition properties 

Through knowledge of the contribution of residues and SAR for the enzymatic activity and 

their involvement in substrate and inhibitor binding in the MBLs, specific inhibitors containing 

side groups which can target specific MBL residues and block their hydrolytic function can be 

designed. The identification of broad-spectrum MBL inhibitors remains unresolved. In this 

thesis, however, new and potent inhibitors against VIM-2 have been identified by bioisosteric 

replacement. Their inhibitory effect in the low micro- or nanomolar range and the presented 

information on the inhibitor binding to VIM-2 using crystallography contribute to future work 

on discovery of even more potent MBL inhibitors. 
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5. Concluding remarks 
 

In this thesis, the substitution of a zinc-binding residue resulted in loss of one active site zinc 

and the ability for the enzyme to hydrolyze β-lactam antibiotics. Substitutions of second 

sphere residues contributed in tuning the substrate specificity of the MBL enzymes. Certain 

second sphere substitutions introduced more hydrogen bonds, which increased the catalytic 

activity and the temperature stability of the mutants. Other substitutions revealed a reduction 

in catalytic efficiency, showing that the residues are important, however, not essential for the 

enzyme activity.  

The introduction of single point mutation did not affect the overall fold of the enzyme 

structures, as identified using crystallography. Slight changes in the active site were observed 

in the mutant structures due to the second sphere substitutions, and these may affect the 

distances between the zinc ions and, in some cases, the loss of a catalytically important zinc 

ion. The effect from mutations in the second sphere showed that interactions from metal 

binding residues are more important for the catalytic activity that the second sphere residues. 

The new TMB-1 crystal structure revealed a very closed enzyme conformation with the 

characteristic B1 MBL features; the αβ/βα fold, two zinc ions in the active site and flexible L1 

and L3 loops adjoining the active site.  

The different environment affects the enzyme activity, as demonstrated by the inhibitor 

testing against purified enzyme, through to cellular assay. The inhibition effects were not as 

profound in the cell bacterial assays as with purified enzyme, e.g. the necessity for inhibitors 

to cross the outer cell wall to enter the periplasmic space for enzyme binding. 

The thiol-based synthesized inhibitors studied in this thesis revealed potent inhibitors with 

inhibitory effects in the low micro- and nanomolar range. These inhibitors are good starting 

points for further inhibitors optimization, preferably broad spectrum inhibitors.  
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6. Future Perspectives 
 

MBL inhibitors can prevent the hydrolysis of β-lactam antibiotics, and when used in 

combination therapy is a promising strategy in combating β-lactam antibiotic resistance. 

Currently no clinically MBL inhibitor is available, thus the need for finding novel inhibitors for 

this class of enzymes is urgent. The search for inhibitors presented in this thesis can be further 

explored by investigating the inhibitory effect of the enantiomers individually and on a 

broader selection of MBLs. Toxicity tests of the thiol-based inhibitors and exploration of more 

bacterial strains to verify the ability to pass the outer cell membrane which is needed for an 

inhibitor, can be performed.  

Another approach is to search for MBL inhibitors in natural sources, for example, to further 

explore extracts and organisms from the Barents Sea for MBL inhibitory effects. The biologic 

diversity in the sea remains roughly unexplored and the search for inhibitors in the extreme 

marine environment could provide information on possible broad-spectrum MBL inhibitors. 

Future hits with increased inhibition potential could arise after extract purification, leading up 

to a single active compound, or give an indication of possible scaffolds that could target a wide 

variety of MBLs.  
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