Studia Scientiarum Mathematicarum Hungarica
DOI: 10.1556/012.2016.1342

A NOTE ON THE MAXIMAL OPERATORS OF
VILENKIN-NORLUND MEANS WITH NON-INCREASING
COEFFICIENTS*

N. MEMIC!, L. E. PERSSON?? and G. TEPHNADZE>*

I Department of Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, Sarajevo,
Bosnia and Herzegovina
e-mail: nacima.o@gmail.com

2 Department of Engineering Sciences and Mathematics, Lulea University of Technology,
SE-971 87 Lulea, Sweden
e-mail: larserik@ltu.se

3 Narvik University College, P.O. Box 385, N-8505, Narvik, Norway

4 Department of Mathematics, Faculty of Exact and Natural Sciences,
Iv. Javakhishvili Thilisi State University, Chavchavadze str. 1, Thilisi 0128, Georgia
e-mail: giorgitephnadze@gmail.com

Communicated by A. Krod

(Received March 16, 2015; accepted June 19, 2015)
Abstract

In [14] we investigated some Vilenkin—Nérlund means with non-increasing coefficients.
In particular, it was proved that under some special conditions the maximal operators of
such summabily methods are bounded from the Hardy space Hj/(14q) to the space weak-
Lij(14a), (0 <a =1). In this paper we construct a martingale in the space Hi,(14q),
which satisfies the conditions considered in [14], and so that the maximal operators of these
Vilenkin—No6rlund means with non-increasing coefficients are not bounded from the Hardy
space H/(11q) to the space Li/(14q). In particular, this shows that the conditions under
which the result in [14] is proved are in a sense sharp. Moreover, as further applications,
some well-known and new results are pointed out.

1. Introduction and statement of the main result

Denote by N the set of the positive integers, N := N, U {0}. Let m :=
(mo, ma,...) be a sequence of the positive integers not less than 2. Denote
by Zm, :={0,1,...,my — 1} the additive group of integers modulo my.

Define the group G, as the complete direct product of the groups Z,,,,
with the product of the discrete topologies of Zy, ;.
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The direct product p of the measures p; ({j}) := 1/my, (j € Zp,) is the
Haar measure on G,, with u(G,,) = 1.

In this paper we discuss bounded Vilenkin groups, i.e. the case when
sup,, My < 0.

The elements of G, are represented by sequences x := (zg,21,...,%j,...)
(:L‘j € ij).

It is easy to give a base for the neighborhoods of G,;,:

In(z) == G, ILn(x):={y€Gm|yo==x0,- yYn-1=Tp-1},

where x € G, n € N. Denote I, := I,,(0) for n € Ny, and I, := G\ I,.
If we define the so-called generalized number system based on m in the
following way:
My =1, Mk+1 = mp M, (k S N),
then every n € N can be uniquely expressed as n = Z;’;O n;M;, where

nj € Zm; (j € Ny) and only a finite number of n;‘s differ from zero.

Next, we introduce on G,, an orthonormal system which is called the
Vilenkin system. At first, we define the complex-valued function rj(x) :
G — C, the generalized Rademacher functions, by

re(z) == exp (2mizy/my), (i? = -1, € G, k € N).

Now, define the Vilenkin system ¢ := (¢, : n € N) on G, as:
Ya(z) = [[ri* (@), (neN).
k=0

Specifically, we call this system the Walsh—Paley system when m = 2.

The Vilenkin system is orthonormal and complete in Lo(Gp,) (see [17]).

The norm (or quasi-norm) of the space L,(Gy,) and weak-Ly(Gp)
(0 < p < 00) are respectively defined by

11 = [ 181 W W, o= 500 W (F > 2) < o0,
>
Gm

If fe Li(G,,) we can respectively define the Fourier coefficients, the
partial sums of the Fourier series, the Dirichlet kernels with respect to the
Vilenkin system in the usual manner:

ﬂm:/wm%mEm
Gm
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Suf = Zf( YW, Da .—Zwk, (n € Ny)
k=0
Recall that
" D (3] M,, if z € I,,
€T =
Mo 0, i x¢ 1,

The o-algebra generated by the intervals {In(a:) t T E Gm} will be de-
noted by F,, (n € N). Denote by f = (f(”), n e N) a martingale with respect

to Fp, (n € N). (for details see e.g. [18]).
The maximal function of a martingale f is defined by

£ =sup|f™|.

neN

For 0 < p < oo the Hardy martingale spaces Hy,(G)y,) consist of all mar-
tingales for which

11|z, = 1F7[l,, < oo

If f = (f™,n € N) is a martingale, then the VilenkinFourier coefficients
must be defined in a slightly different manner:

= lim /f o d.

A bounded measurable function a is a p-atom (p > 0), if there exists an
interval I, such that

[adn =0, Jallo <D, supp(a) < 1.
I

We also need the following auxiliary result (see [19]):

LEMMA 1. A martingale f = (f(”), n e N) is in Hy (0<p=1) if
and only if there exists a sequence (ag, k € N) of p-atoms and a sequence
(1, k € N) of real numbers, such that, for every n € N,

(2) ZNkSMnak = ™, Z |k |” < o0
k=0 k=0
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Moreover, || f|| g, - inf ( Yoo \uk]p)l/p, where the infimum is taken over
all decompositions of f of the form (2).

Let {gr : k = 0} be a sequence of nonnegative numbers. The n-th Nor-
lund mean for a Fourier series of f is defined by

(3) tnf = anZkzlqn_kSkf’

where Q,, := Zz;l Q-
We always assume that gg > 0 and lim,,_,oc @, = 0. In this case it is
well-known that the summability method generated by {qx : k = 0} is regu-
lar if and only if
. qn—1
lim

n—oo @y,

=0.

Concerning this fact and related basic results, we refer to [6].
The (C, a)-means (Cesaro means) of the Vilenkin—Fourier series are de-
fined by

n

« 1 a—1
NS = Az Dy AnkSi T

where
(a+1)...(a+n)
n!

A =0, A% = L at—1,-2,...

When a = 1 the Cesaro means coincide with the Fejér means

1 n
onf = Ezkzlskf.

For the martingale f we consider the following maximal operators:

t'f = supltuf], o f:=suplonfl, o®*f:=sup|alf|.
neN neN neN

In the one-dimensional case the result with respect to the a.e. conver-
gence of Fejér is due to P4l and Simon [11] (c.f. also [2]) for bounded Vilenkin
series. Weisz [20] proved that the maximal operator of the Fejér means o*
is bounded from the Hardy space Hj /5 to the space weak-L,/,. Simon [12]
gave a counterexample, which shows that boundedness does not hold for
0 < p<1/2. A counterexample for p = 1/2 was given in [16].

In [4] Goginava investigated the behaviour of Cesdro means of Walsh—
Fourier series in detail. The a.e. convergence of Cesaro means of f € L1 was
proved in [5]. Furthermore, Simon and Weisz [13] showed that the maximal
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operator 0®* (0 < a < 1) of the (C, ) means is bounded from the Hardy
space Hi/(14q) to the space weak-Li/(14q). Moreover, Goginava [3] gave
a counterexample, which shows that boundedness does not hold for 0 < p <
1/(1+ «).

Moéricz and Siddiqi [7] investigated the approximation properties of some
special Norlund means of Walsh-Fourier series of L, functions in norm. In
the two-dimensional case approximation properties of Norlund was consid-
ered by Nagy (see [8]-[10]). In [1] and [15] it was proved strong convergence
theorems for Norlund means of Vilenkin—Fourier series with monotone coef-
ficients. Moreover, there was also shown boundedness of weighted maximal
operators of such Noérlund means on martingale Hardy spaces. Recently,
in [14] it was proved that the following is true:

THEOREM A. a) Let 0 < a < 1. Then the mazimal operator t* of
summability method (3) with non-increasing sequence {qx : k = 0}, satis-
fying the conditions

HQQO |Q’n - Qn+1|
4 =0(1 —— =0(1
(4) 0. 0(1), — O(1), as n— oo,

is bounded from the Hardy space Hy/11q) to the space weak-Ly/(q4q)-

b) Let 0 < a £ 1,0 p< 1/(14+«) and {qr : k = 0} be a non-increasing
sequence, satisfying the condition

(5) o 2 (>0

Then there exists a martingale f € Hp, such that

sup thwaeak—Lp = Q.
neN

c) Let {qr : k = 0} be a non-increasing sequence, satisfying the condition

«
(6) m 2% — s, (0<a<1).

n—oo (Qp
Then there exists an martingale f € Hy/(14q), such that

ilelg thf”weak—Ll/u.»,.a) =

In this paper we complement this result by proving sharpness of both
conditions of (4). Our main result reads:



6 N. MEMIC, L. E. PERSSON and G. TEPHNADZE

THEOREM 1. Let 0 < a =1 and {gx: k =0} be a non-increasing se-
quence, satisfying the conditions

foe. |Qn - Qn-i-l’ >
(7) nlggo a2 =6 (¢>0),
and
nqo
(8) 720, (¢>0, neN).
n

Then there exists a martingale f € Hy/11q), such that
sup |[tnf = 00.
neNH nflly e

The proof can be found in the Section 2 and some applications and final
remark in the Section 3.

2. Proof of Theorem 1

PRrROOF. Under the condition (7), there exists an increasing sequence
{ng : k € N} of positive integers such that

3
MQTLk-‘rl

—— T > >0, keN.
QMan+1

9)

Let {ay : k € N} € {n} : k € N} be an increasing sequence of positive
integers such that:

(10) Z 1/ai/(1+a) < 00,
k=0
k—1 1+a 1+a
M M+
(11) A o Gk
71=0 O‘n (657
and

1+a a+1
(12 SOML_ Mieus

Ap—1 893
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where A = sup,, m,, and [« /2] denotes the integer part of ay /2.
We note that such increasing sequence {«ay : k € N} which satisfies con-
ditions (10)—(12) can be constructed.

Let the martingale f := (™ : n € N) be defined by

{k: ap<n}
where
A a
(14) )\k = a7k and Hak = N\ (DMO%‘H - DMak) .
Since
Or, if ap < A,
S Ok =
MaZh {o, it > A,

supp(0x) = Ia,, / Ordp =0, |[|0k]. < Ma™ = (suppby)'**,

I,

if we apply Lemma 1 and (10) we can conclude that f € Hy/(14q)-
Moreover, it is easy to see that

[e3

M
e, if jE€{ My, ., Mayt1— 1}, k=0,1,2...,

67

0, if j¢&J{May,. .., Maps1—1}.
k=1

(15)  f() =

Let s=0,...,k— 1. We can write that

EMoy +M, ]
Mo, Moy +M;
S gSif+—— > ¢St
QMakJrMS = QM% gt
=1+1I.

Let M, < j < My, 41, where s =0,...,k — 1. Moreover,

Dj — D, | £2j = AM,,, (s€N)
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so that, according to (1) and (15), we have that

(16) |55 f]
Ma,_1+1-1 Jj—1
=1 D fee+ D> f)
v=0 v=Maq

IA
M
£

&

o
+Aij (Dj = D) |
s—1 a
=) a“"(DManH—DM%)’
n=0 "
a
+ Y (D, - D)

s—1 Ma-‘r]. )\Ma+1

)\ E Qn Qg
Qs

/\Mngl /\Mngl INM L
S + S

A —1

A

A

Qs Qs T Qg1

Let My, ;41 +1=j < M,,, where s =1,..., k. Analogously to (16) we

find that
Mo, +1-1 s—1 May41-1
5,0 :‘ fow| -5 5 e,
v=0 = v= M‘ln
s—1 « 2)\Ma+1
Qap Qg —1
= D, — Dag,, )| S 52t
=0 1 S ) Q-1
Hence
Ma,
17 InNs——— q;|S; f
(17) 1] = Qv v Z 5155 f
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Mo
< 2AM31:F—11 1 i
= q;j
-1 QMoy+Ms =
2AMGH
T ap

Let x € Is/Is4;1. Since

(18) Dj—i—Mn = DM" + anDj = DMn + TnDj, when j < M,,

if we now apply Abel transformation, (15) and inequalities of (8) and

(9) we get that

May,+M,

> @, +a,-5(Dj — D)
J=Ma, +1

1| g

QMay+M, | Ok

1] =

1 Mo M
aak z;qu i(Djsm,, — D)
=

QM M, |

M,

1 e, M2, 3
qm,—jD;j

7j=1

QM M, ay

M,

Mg, .
qMs—35]
1

QMo +M,

j=

M,

Z (arto—j — arty—j—1) 5°

J=1

C

893

v

M,

Z ‘QMS—j - qu—j—ﬂ

J=[M; /2]

cM?
893

1\

[Ms /2]

cM?
s Z 9 — qj+1]
Qe =0

1\

[Ms/2]

CM52 ca—2
DO

Jj=0

v
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Mg MZ  eMgt!

Qg &7

Let [ax/2] < s £ ag. Therefore, it yields that

1/(1+
(19) / ltata, 0, 1) YO dpu()
+1
> |11| - |I] = eMgre AMMEC, o eMT
o oo a1 Qg

By combining (17) and (19) we get that

/ i /05 g
Cim

(&2

Z / }tMak+MSf‘ 1/(14a) d/J,
s:[ak/2]+1fs/fs+1

v

o M, w2
Zc Z 1/(1+o¢) Zc Z 1/(1+a)
Mo
s=[oy, /2] s s=[on /2] ¢

COlL

> > _ —r

= 1/(1+a Z 1= 1/(14«)
s=[ay/2] ay

1
caz/( to) oo, as k— oo.

1\

The proof is complete.

3. Applications and final remark

REMARK 1. We note that under the both conditions of (7) in Theorem 1
the conditions (4) in Theorem A can still be fulfilled. So our main result
shows that under the both conditions of (7) in part a) of Theorem A are in
a sence sharp and the point p = 1/(1 + «) is the smallest number for which
we have boundedness from the Hardy Space Hi/(14q) to the space weak-

Li/(14a)-
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Our main result Theorem 1 immediately implies the following results of
Goginava [3] and Tephnadze [16]:

COROLLARY 1 (Goginava). The mazimal operator of the (C,a)-means
o®* is not bounded from the Hardy space Hy;11q) to the space Lij14q),
where 0 < a < 1.

COROLLARY 2 (Tephnadze). The maximal operator of the Fejér means
o is not bounded from the Hardy space Hysy to the space Ly/s.

Let 6% denote the Norlund mean, where {go = 0, qx = k%~ : k > 1}, that
is
n

1

~1
0 f = azkzl(n — k)L, f.
n
It is easy to see that
20 P S (U
no—2 ne=2 \ n n+1
< 1 n< n® 1 n®
“ne2\n n+l) no2np(n+1)
1 2
S e = O(1), as n— co.
Since

we obtain that

(21) ano =0(1), as n— oo.

By combining inequalities (20) and (21) we get the following new result:

COROLLARY 3. The maximal operator of the 05 -means

0" = sup [0, f|
neN

is not bounded from the martingale Hardy space Hi;11q) to the Lebesgue
space Ly /(14q), where 0 < a = 1.
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