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Abstract

Synergistic theoretical and experimental approaches to challenging
chemical problems have become more and more widespread, due
to the availability of efficient and accurate ab initio quantum chemi-
cal models. Limitations to such an approach do, however, still exist.
The vast majority of chemical phenomena happens in complex en-
vironments, where the molecule of interest can interact with a large
number of other moieties, solvent molecules or residues in a protein.
These systems represent an ongoing challenge to our modelling capa-
bilities, especially when high accuracy is required for the prediction
of exotic and novel molecular properties. How to achieve the insight
needed to understand and predict the physics and chemistry of such
complex systems is still an open question.

I will present our efforts in answering this question based on the de-
velopment of the polarizable continuum model for solvation. While
the solute is described by a quantum mechanical method, the sur-
rounding environment is replaced by a structureless continuum di-
electric. The mutual polarization of the solute-environment system is
described by classical electrostatics. Despite its inherent simplifica-
tions, the model contains the basic mathematical features of more re-
fined explicit quantum/classical polarizable models. Leveraging this
fundamental similarity, we show how the inclusion of environment
effects for relativistic and nonrelativistic quantum mechanical Hamil-
tonians, arbitrary order response properties and high-level electron
correlation methods can be transparently derived and implemented.

The computer implementation of the polarizable continuum model
is central to the work presented in this dissertation. The quantum
chemistry software ecosystem suffers from a growing complexity.
Modular programming offers an extensible, flexible and sustainable
paradigm to implement new features with reduced effort. PCMSolver,
our open-source application programming interface, can provide con-
tinuum solvation functionality to any quantum chemistry software:

i

http://pcmsolver.readthedocs.io


continuum solvation goes viral. Our strategy affords simpler pro-
gramming workflows, more thorough testing and lower overall code
complexity. As examples of the flexibility of our implementation
approach, we present results for the continuum modelling of non
homogeneous environments and how wavelet-based numerical meth-
ods greatly outperform the accuracy of traditional methods usually
employed in continuum solvation models.

Tromsø, October 5, 2016

Roberto Di Remigio
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Notations, Conventions and Units

A number of notations and typographic conventions has been adopted
in order to maintain consistency throughout. We summarize them
here. Hartree atomic units are used throughout:6,7

me = e = ℏ = 4𝜋𝜀0 = 1

the unit of length is the Bohr a0, while that of energy is the Hartree
Eh. The speed of light is then:

𝑐 = 137.035 999 074 a0 Eh ℏ−1

Complex conjugation will always be shown using a dagger (†) instead
of a star (∗).

This document makes use of hyperlinks within and without to ease
reading and navigation. A numbered citation style was chosen. Cita-
tions are color-coded in green, appear (most often) as superscripts
and are hyperlinked to the bibliography. Acronyms are color-coded in
gray and hyperlinked to the list of acronyms. Finally, URLs and place-
holders for URLs are color-coded in orange. They are hyperlinked to
the respective online resource.

Basic Notation

𝑢𝐸 Restriction (trace) of the function 𝑢 to the set 𝐸

Span{𝒗1, … , 𝒗𝑛} Vector space spanned by the vectors 𝒗1, … , 𝒗𝑛

𝛿𝑖𝑗 Kronecker symbol: 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise

(𝑢, 𝑣)𝑋 Scalar product of 𝑢 and 𝑣 in the Hilbert space 𝑋

‖𝑢‖𝑋 Norm of 𝑢 in the normed space 𝑋

𝑂(𝑁) A quantity of order 𝑁 or higher
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Vectors and Matrices

𝒗, 𝒒 Vectors

𝑲, 𝑭 Matrices

ℝ𝑚,𝑛 Vector space of real-valued 𝑚 × 𝑛 matrices

Tr𝑨 Trace of 𝑨. For 𝑨 ∈ ℝ𝑛,𝑛, Tr𝑨 = ∑𝑛
𝑖=1 𝐴𝑖𝑖

Tr
= The expression following is to be interpreted as a trace. ℰ

Tr
=

𝒉𝑫 = Tr𝒉𝑫
{Tr}𝑇= The expression following is to be interpreted as a trace fol-

lowed by time-averaging over a period 𝑇. ℰ
{Tr}𝑇= 𝒉𝑫 =

1
𝑇 ∫ 𝑇

0 d𝑡Tr𝒉𝑫

0𝑁, 𝐼𝑁 The zero and the identity in an 𝑁-dimensional vector space

Operators

̂𝒜 , ̂𝒟 Integral operators

𝐻,Φ First or second quantized 𝑁-electron operators

Molecular Quantum Mechanics

𝑟, 𝑠, 𝑡 General molecular orbital indices

𝑖, 𝑗, 𝑘 Occupied molecular orbital indices

𝑎, 𝑏, 𝑐 Virtual molecular orbital indices

𝜅, 𝜆, 𝜇 One-electron basis functions indices
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Introduction

[...] og fordi jeg alltid har hatt en
dragning mot det skjulte og
hemmelige.

— Karl Ove Knausgård, Om
Høsten

what are the electrons really doing in molecules?

This question was posed by R. S. Mulliken over a half-century ago* *Mulliken chose it as the title for
his Gilbert N. Lewis award accep-
tance speech in 1960.

and can be considered the fundamental research question behind the
development of quantum chemistry. The purpose of quantum chem-
istry is to provide models based on first principles that can help un-
derstand and predict macroscopic, observable chemical phenomena,
such as reaction mechanisms and spectroscopic experiments.8 As
stated by Dirac in his Quantum Mechanics of Many-Electron Systems
paper:9,10

The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechan-
ics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too
much computation.

Following Dirac’s dictum, in quantum chemistry we apply physical
models based on quantum many-body methods to molecular systems,
employ their mathematical realizations and devise computable ap-
proximations. The central idea is, in fact, to be able to obtain an
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Figure A Pictorial depiction of the concept of model chemistries as the three dimen-
sions of quantum chemistry.12,13 Reproduced from ref. 14 with permission from the
PCCP Owner Societies.

algorithmic implementation of the methods that can be applied to
interesting chemical systems: model building and software imple-
mentations are two closely intertwined aspects in the practice of
quantum chemistry.11

It is easy to manipulate chemicals in a virtual labora-
tory. Nowadays quantum chemical methods often complement tradi-
tional experimental approaches. They have become invaluable tools
in the modern development of chemistry,15–17 as witnessed by the
Nobel prizes awarded in 199818 and 2013.19 The concept of model
chemistries is at the heart of these successes. Introduced by Pople,
theoretical model chemistries are specific combinations of approxi-
mations in the basis set and molecular electronic structure method-
ology.12 Model chemistries are systematically improvable so that it
is possible to achieve the heaven of chemical accuracy* by relaxing*A theoretical result is said to be

chemically accurate if it is within
1 kcal mol−1 of the correspond-
ing experimental measurement.

approximations in the model, albeit at an increased computational
cost. Figure A presents the usual depiction of this concept as a set
of orthogonal axes, where chemical accuracy can be achieved by

xvi



moving away from the origin. Relativity can be considered as the
third axis of quantum chemistry: accuracy can be improved on the
Hamiltonian, method and basis axes.13

The description of the ideas and methods at the basis of quantum
chemistry will be the subject of Chapter 1. I will put emphasis on
the methods that have been relevant in the work presented in this
dissertation.

the problem of solvation

Chemistry can be largely considered a wet science: almost
always chemical phenomena happen in a liquid environment.20 We
hereby define a “solution”, or more generally an “environment”, as
a system where the number of solvent molecules exceeds by far the
number of solute molecules.21,22 It is then clear that theoretical and
computational approaches to such a problem will necessarily suffer
from a dimensionality disease. The number of degrees of freedom
to be taken into account is, in principle, so large, that even the most
powerful computers would have a hard time computing the desired
observables. Moreover, on an interpretive level, it would not even be
desirable to have such a detailed insight. As is well known from sta-
tistical mechanics, microscopic detail cannot account for the macro-
scopic behaviour.23,24 To tame this complexity and cure the disease,
one must devise models that simplify the physical picture, while of-
fering tools for understanding reality and predicting new and exciting
phenomena and properties.8,11,25 One of the earlier attempts at tack-
ling the problem of solvation is due to Onsager. His was a rather
crude model, but one that has had a lasting impact and informs much
of the developments that will be presented in this dissertation.26

Before introducing our model of choice, let us consider how an
environment might affect molecular observables of interest. Environ-
ment effects are usually classified as:

direct. These effects stem straightforwardly from the modification
underwent by the solute electronic density when interacting with
the environment.

xvii



indirect. It is common for solutes to exhibit different minimum-
energy conformations in different environments. These effects are
commonly labelled as indirect.

local field. Light-matter interactions are also affected by the en-
vironment. Local modifications of externally applied fields subtly
influence molecular responses.27,28

dynamic. The presence of the environment radically influences ex-
cited states, since relaxation processes in the medium become im-
portant.29,30

specific. This catch-all category includes all effects stemming from
the peculiar solute-solvent pair interactions that cannot be fully
described under any of the previous labels. In general, modelling
such effects demands an atomistic level of detail.

Faced with the problem of describing such a diverse array of ef-
fects, two main models have emerged in the past decades, each with
its strengths and weaknesses. Both can be classified as multiscale (or
focused) models19 and hinge on the same idea: treat different parts
of the system with different methods and couple these methods by
bridging “scales” at the boundary. Figure B schematically portrays
the transition from a full QM model of the relevant system to its
multiscale representations.

While both models treat the molecular degrees of freedom at the
quantum mechanical level, their approach to the microscopic descrip-
tion of the degrees of freedom of the environment differs:

• Discrete (or explicit) models explicitly treat those degrees of
freedom. This is either achieved by a cheaper quantum me-
chanical method31 or by molecular mechanics (MM).32 In the
latter approach, commonly dubbed QM/MM, the MM region
can either be polarizable33–35 or non polarizable. While the for-
mer method allows for mutual polarization between the QM
and MM subsystems, the latter treats the MM region as fixed.

• Continuum (or implicit) models completely remove the de-
grees of freedom of the environment from the model, replac-
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QM

MM
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Figure B Pictorial depiction of the transition from quantum mechanical to mul-
tiscale models for the aqueous solvation of para-nitroaniline. Leftmost panel: a
fully quantum mechanical cluster model. Upper central panel: a quantum/classical
discrete (explicit) model. Lower central panel: a quantum/classical continuum (im-
plicit) model. Rightmost panel: a quantum/classical mixed explicit/implicit model.
Picture reproduced courtesy of Dr. Stefano Caprasecca (MoLEcoLab, Università
di Pisa).

ing them with a structureless continuum. Its effect is described,
classically, via its bulk properties.26,36

QM/MM models can capture, albeit approximately, the effect of
the atomistic nature of the environment on the active part of the
system. However, they demand statistical averaging of environment
configurations to yield results of any significance. Moreover, a rather
large cutoff radius for the MM region is usually required to converge
long-range electrostatic interactions.37 Continuum models avoid both
problems at once. Statistical averaging is built into the model via their
parametrization by means of the environment’s bulk properties, such
as the permittivity. In addition, long-range electrostatics is treated
exactly. Unfortunately, atomistic detail is lost and it is then impossi-
ble to recover a satisfactory description of specific effects. To partly
alleviate these sources of error, the QM/MM and QM/Continuum
methods can and have been successfully combined to yield the three-
layer QM/MM/Continuum method.35,37–39

Notice that we have deliberately ruled out so-called cluster mod-
els from the above discussion. These approaches replace the actual
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physical setting with a suitable truncation of the whole solute+sol-
vent system, the model system and treat it within a chosen quantum
mechanical level of theory. Cluster models can be used to benchmark
more approximate multiscale models, but their description is outside
the scope of this dissertation.

Chapter 2 will present an overview of the polarizable continuum
model (PCM) for solvation. I will present a nontechnical discussion
of the mathematical details of the model and an outline of current
methodologies for the solution of the associated governing equations.
Borrowing from the work of Lipparini et al.,40,41 I will introduce a
unifying theoretical formalism for QM/Continuum, QM/MM and
QM/MM/Continuum models that will be extensively used through-
out.

a road to reality or molecular response properties

The experimentalists’ view of molecular systems is built mainly
around the use of spectroscopic techniques that explore the inter-
action of light and matter. When a system is exposed to an external
perturbing electromagnetic field, it will respond with a detectable
change in its properties.42,43 Characterizing, explaining and predict-
ing a large number of measurable properties requires a synergistic ex-
perimental and theoretical approach. Response theory is the missing
link between theory and these vast classes of experiments, making
quantum chemistry a full-fledged virtual laboratory. Response the-
ory allows the description and computation of perturbation-induced
changes in observable molecular properties. Electric and magnetic
properties, excitation energies and transition moments can easily be
calculated in the framework of response theory. Response functions
are the central concept in response theory. These are built solely
by means of unperturbed molecular states and energies: no explicit
modelling of excited states is needed.

Response theory will be the subject of Chapter 3, where the basic
ideas in the computation of response functions will be presented. We
will discuss the formulation of the linear response function for quan-
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tum/classical polarizable Hamiltonians and show how the variational
framework is a powerful theoretical tool.

accurate methods for accurate properties

The concepts of systematic improvability and theoretical
model chemistries are the foundations for the successful practice
of quantum chemistry. A balanced description of electron correla-
tion is often necessary to achieve results that are accurate enough for
meaningful comparisons with experiments.15–17 The cost-effective
treatment of electron correlation is a challenging problem and a
very active line of research in the field. Density-functional theory
approaches are cheap and widespread, but their general accuracy is
hard to assess. Many-body perturbation theory and coupled cluster
approaches are more robust in this respect, albeit at an increased
computational cost.

In this dissertation, we are interested in the inclusion of environ-
ment effects in ab initio models of interesting chemical systems. As
already noted, this is a difficult problem, the more so when including
electron correlation is necessary to obtain better accuracy. We will
describe our approach to this problem in Chapter 4. Treating solva-
tion and electron correlation has been a recurring subject of research
in the literature since the inception of continuum models. Once again,
we will leverage the variational formulation of classical polarizable
models presented in Chapter 2.
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1
A Tour of Molecular Electronic Structure
Theory

— electrons deify one razorblade into
a mountainrange; [...]

— E. E. Cummings

This Chapter presents a brief overview of molecular electronic
structure theory with particular emphasis on the methods used in
this dissertation. Section 1.1 is a general introduction to the meth-
ods of molecular quantum mechanics, relativistic or nonrelativistic.
I will provide a brief introduction to the language of second quan-
tization, used throughout the thesis. Section 1.2 presents the mean-
field approximation to the molecular electronic structure problem,
the workhorse of quantum chemistry. Sections 1.3–1.5 are concerned
with the coupled cluster (CC) and many-body perturbation theory
(MBPT) methods for the inclusion of electron correlation.

1.1 molecular quantum mechanics

Quantum mechanics is the theory describing the motion
and interactions of microscopic particles. In quantum theory
every observable of the system is represented mathematically by an
operator 𝑂 in the appropriate Hilbert space of wave functions. A
wave function 𝜓 is the mathematical object describing the state of
the system. In the usual Copenhagen interpretation of quantum me-

1



2 a tour of molecular electronic structure theory

chanics, the modulus square of the wave function |𝜓|2 provides the
key to predicting experimentally measurable quantities.44 The wave
function 𝜓 is the solution to the Schrödinger equation:

𝐻𝜓 = 𝐸𝜓 (1.1)

where 𝐻 is the Hamiltonian operator and 𝐸 is the energy of the
system. The Schrödinger equation is an eigenvalue equation for the
Hamiltonian operator and 𝜓 is thus an eigenfunction.45

Molecular quantum mechanics is concerned with the mi-
croscopic motion of nuclei and electrons in molecules and is
thus an intrinsically many-body theory. The problem is clearly very
complicated to solve, as the number of interactions to be considered
is large. Since the nuclei are much heavier than the electrons, the
Born–Oppenheimer (BO) or clamped-nuclei approximation is typi-
cally assumed. The nuclei are fixed in a specific configuration (called
a molecular geometry) and treated as static electric sources.46 This
separation of motions results in an electron-only Hamiltonian and
an electronic wave function that depends parametrically on the nu-
clear positions. The eigenvalue of this Hamiltonian, also dependent
on the nuclear positions, is the potential energy surface (PES) of the
system, that is the potential function in which the nuclei move.47,48

In first quantization, the general expression for the clamped-nuclei,
𝑁-electron, molecular electronic Hamiltonian is:

𝐻 =
𝑁

∑
𝑖=1

ℎ(𝒓𝑖) + 1
2

𝑁

∑
𝑖≠𝑗

𝑔(𝒓𝑖, 𝒓𝑗) + 𝑉NN. (1.2)

The last term is the nuclear repulsion energy:

𝑉NN = 1
2

𝑁nuclei

∑
𝐴≠𝐵

𝑍𝐴𝑍𝐵
|𝑹𝐴 − 𝑹𝐵|

, (1.3)

a constant shift of the energy scale in the BO approximation. As
noted by Saue, the same general expression for the clamped-nuclei
Hamiltonian Eq. (1.2) is valid in the nonrelativistic and relativistic
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no-pair regimes.13,49 In the nonrelativistic domain one defines the
one- and two-electron operators as:44,47,48

ℎ(𝒓𝑖) = −1
2

∇2
𝑖 + 𝑉Ne(𝒓𝑖) = −1

2
∇2

𝑖 −
𝑁nuclei

∑
𝐴=1

𝑍𝐴
|𝑹𝐴 − 𝒓𝑖|

𝑔(𝒓𝑖, 𝒓𝑗) = 1
|𝒓𝑖 − 𝒓𝑗|

,

(1.4a)

(1.4b)

while in the relativistic regime with the Dirac–Coulomb (DC) ap-
proximation they become:44,50,51

ℎ(𝒓𝑖) = (𝜷 − 𝐼4)me𝑐2 + 𝑐(𝜶𝑖 ⋅ 𝒑𝑖) + 𝑉Ne(𝒓𝑖)𝐼4

𝑔(𝒓𝑖, 𝒓𝑗) =
𝐼4 ⋅ 𝐼4

|𝒓𝑖 − 𝒓𝑗|

(1.5a)

(1.5b)

The Dirac matrices, expressed in terms of the vector 𝝈 collecting the
three Pauli spin matrices, were introduced:

𝜶𝑖 =
(

02 𝝈𝑖

𝝈𝑖 02)
, 𝜷 =

(
𝐼2 02

02 −𝐼2)
, (1.6)

and the operators are implicitly assumed to embed the proper no-
pair, positive-energy manifold projectors.49 Since these are fermionic
Hamiltonians, the spin-statistics theorem dictates the corresponding
eigenfunctions to be antisymmetric. Using the expansion theorem,52

we seek the wave function for the 𝑁-electron system as a linear com-
bination of 𝑁-electron Slater determinants.

In the language of second quantization, we assume that
a complete and orthonormal set of one-particle states is available.* *Neither completeness nor

orthonormality of the one-
particle set are necessary
assumptions. Relaxing both
assumptions would however
make the formalism slightly
more involved.

These are usually called molecular orbitals (MOs). In general, we
would like to embed as many of the symmetries of the system into
the one-particle basis. This is accomplished by requiring the one-
particle space to be the common eigenbasis for a complete set of
suitable, commuting one-particle operators.52 Any 𝑁-particle state
can be constructed by distributing particles into one-particle states
and accordingly labelling them by the number of particles per one-



4 a tour of molecular electronic structure theory

particle state present. This is the so-called occupation number (ON)
vector representation:

|𝒏⟩ = |𝑛1, 𝑛2, …⟩ , (1.7)

and the span of all ON vectors is called the Fock space 𝐹 𝑁, a space
isomorphic to the Hilbert space 𝐻𝑁 of 𝑁-particle wave functions.
To preserve consistency, the vacuum state with no particles:

|vac⟩ = |0, 0, …⟩ (1.8)

is included in the construction of Fock space. Any 𝑁-particle state
can be generated by application of creation operators 𝑎†

𝑖 . Creation
operators increase the occupation number in the one-particle state 𝑖
by 1, up to a phase. Conversely, annihilation operators 𝑎𝑖, defined as
the Hermitian conjugates of the creation operators, decrease occupa-
tion in state 𝑖 by 1, again up to a phase. Clearly, annihilation of any
one-particle state in the vacuum yields 0. Pauli’s exclusion principle
is enforced by the canonical anticommutation relations:

𝑎†
𝑟 𝑎†

𝑠 + 𝑎†
𝑠𝑎†

𝑟 = 0
𝑎𝑟𝑎𝑠 + 𝑎𝑠𝑎𝑟 = 0

𝑎†
𝑟 𝑎𝑠 + 𝑎𝑠𝑎†

𝑟 = 𝛿𝑟𝑠,

(1.9a)
(1.9b)

(1.9c)

showing how the construction of the Fock space representation em-
beds antisymmetry at the operator level and not in the ON vectors.
Finally, the second-quantized molecular electronic Hamiltonian in
the Born–Oppenheimer approximation is:53,54

𝐻 = ∑
𝑟𝑠

ℎ𝑟𝑠𝑎†
𝑟 𝑎𝑠 + 1

2 ∑
𝑟𝑠𝑡𝑢

𝑔𝑟𝑠𝑡𝑢𝑎†
𝑟 𝑎†

𝑡 𝑎𝑢𝑎𝑠 + 𝑉NN (1.10)

where the matrix elements are given as integrals over the chosen
one-particle basis:

ℎ𝑟𝑠 = ∫ d𝒓𝜙†
𝑟 (𝒓)ℎ(𝒓)𝜙𝑠(𝒓)

𝑔𝑟𝑠𝑡𝑢 = ∫ d𝒓 ∫ d𝒓′𝛺𝑟𝑠(𝒓)𝑔(𝒓, 𝒓′)𝛺𝑡𝑢(𝒓′)

𝛺𝑟𝑠(𝒓) = 𝜙†
𝑟 (𝒓)𝜙𝑠(𝒓).

(1.11a)

(1.11b)

(1.11c)
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The second-quantized Hamiltonian Eq. (1.10) is thus a projected op-
erator, exact only within the subspace determined by the chosen one-
particle set.52,53

In second quantization, the exact molecular electronic wave func-
tion can be written as a linear combination of ON vectors:

|𝜓⟩ = ∑
𝒌

𝐶𝒌 |𝒌⟩ , (1.12)

also known as the full configuration interaction (FCI) expansion.
Among the many properties the exact wave function enjoys, the vari-
ational property and size-extensivity are the ones that are almost
always embedded into approximate wave function ansätze.53 Accord-
ing to the former, the energy is stable with respect to orthogonal
variations of the wave function. In practice this guarantees that mini-
mization with respect to the parameters of a well-crafted ansatz will
converge from above to the exact energy.47,48,53 A wave function
ansatz enjoying the latter property guarantees that the energy of a
system made of noninteracting subsystems is equal to the sum of the
energies of the isolated subsystems.53,55

Coefficients in the FCI expansion in Eq. (1.12) corresponding to
the molecular ground state can be determined by seeking the lowest
eigenvalue of the matrix representation of the Hamiltonian in the
space of ON vectors. The FCI method is exact, within the chosen
one-particle set, but scales exponentially with the number of elec-
trons in the system and thus has very limited practical applications.
Approximations can be tailored by appropriate truncations of the
𝑁-electron space. In single-reference methods, one first determines
an approximation to the solution by means of a single ON vector.
This ON vector is treated as the physical vacuum: vectors in Fock
space can be classified according to how different their occupation
is from the reference, i.e. by excitation level.53,54 A truncated ex-
pansion can then be constructed by including only those ON vectors
that differ from the reference up to a certain number of excitations.
Further details on how these expansions are actually tailored and al-
gorithmically implemented can be found elsewhere.53 In the rest of
this Chapter we will describe how a single ON vector approximation
can be constructed, how we can improve on it by means of coupled
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cluster and many-body perturbation theory and how the properties
of the exact wave function are embedded into these ansätze.

1.2 mean-field theory

The idea behind mean-field theory is simple: seek the best
description of the many-electron wave function using just one Slater
determinant. How does one direct this search towards the “best”? We
will use the variational principle and optimize the degrees of free-
dom in our single-determinantal trial wave function accordingly. It is
evident that there is no variational freedom in the 𝑁-electron space.
All variational degrees of freedom reside in the one-electron space,
i.e. in the space of MOs {𝜙𝑟}, used to build the determinant |0⟩.
The one-electron MOs are thus optimized considering each single
electron in the mean field generated by the motion of all other elec-
trons, hence the name of the method. Clearly this neglects parts of the
electron– electron interaction energy: electron correlation. Accord-
ing to Löwdin, this can be defined as the energy difference between
the exact nonrelativistic and the complete-basis set mean-field re-
sults for the system under consideration.56 However, in most cases,
it provides a suitable starting approximation for more sophisticated
many-body treatments that recover larger portions of the correlation
energy.

Starting from an initial guess for the one-particle states, we itera-
tively refine them by applying suitable rotations. The iterations are
carried out until a suitable convergence criterion has been met, i.
e. the orbitals are self-consistent. The unitary rotation operator can
be expressed as the exponential of a one-electron, anti-Hermitian
operator:

𝑈 = e−𝜅, 𝜅 = ∑
𝑟𝑠

[𝜅𝑟𝑠𝑎†
𝑟 𝑎𝑠 − 𝜅∗

𝑟𝑠𝑎†
𝑠𝑎𝑟], 𝜅† = −𝜅. (1.13)

The energy of the system is now a function of the rotation param-
eters 𝜅𝑟𝑠, 𝜅∗

𝑟𝑠 and setting its gradient 𝑬[1] to zero will identify its
stationary points. The gradient of the electronic energy can be identi-
fied by comparing the Taylor and Baker–Campbell–Hausdorff (BCH)
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commutator expansions of the Hamiltonian expectation value. For a
closed-shell this yields Brillouin’s theorem:

𝐸[1]
𝑎𝑖 = −𝑓𝑎𝑖 = ℎ𝑎𝑖 + ∑

𝑗
[𝑔𝑎𝑖𝑗𝑗 − 𝑔𝑎𝑗𝑗𝑖] = 0, (1.14)

where 𝑓𝑎𝑖 are elements of the Fock matrix 𝑭. The two-electron terms
appearing in the Fock matrix are called the Coulomb and exchange
integrals, respectively. The stationarity condition implies that the
Fock matrix is block-diagonal in the basis of the optimal MOs. In the
canonical representation one seeks the set of orbitals that make the
Fock matrix diagonal. Hence the optimization problem is equivalent
to diagonalization of an effective one-electron operator:

𝑭 𝝓 = 𝝓𝝐 (1.15)

where the eigenvalues of the Fock matrix are called orbital energies.

A different approach is taken in density-functional theory
(DFT), where the electron density is the central quantity in the theory,
instead of the wave function. The Hohenberg–Kohn theorems57,58

and their relativistic counterparts59,60 establish the energy as a func-
tional of the density. The Kohn–Sham (KS) approach to DFT takes
us a step further by assuming the density of the system to be equal
to that of a fictitious, noninteracting system once again described by
a single Slater determinant.61 We rewrite the energy as a sum of five
terms:

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉ext[𝜌] + 𝐽[𝜌] + 𝐸xc[𝜌] + 𝑉NN (1.16)

the first four of which are functionals of the density. The first term
𝑇𝑠[𝜌] is the kinetic energy of the fictitious noninteracting system.
The second and third terms in Eq. (1.16) represent, respectively, the
classical interaction of the electrons with the external potential (in-
cluding the nuclear attraction potential) and the classical Coulomb
interaction of the density with itself:

𝑉ext[𝜌] = ∫ d𝒓𝑉ext(𝒓)𝜌(𝒓)

𝐽 [𝜌] = 1
2 ∫ d𝒓 ∫ d𝒓′𝜌(𝒓)𝑔(𝒓, 𝒓′)𝜌(𝒓′)

(1.17a)

(1.17b)
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The fourth term in Eq. (1.16) is the exchange-correlation (XC) func-
tional. This term accounts for the nonclassical part of the two-electron
interaction: electron exchange and electron correlation. Moreover, it
also corrects for the self-interaction present in 𝐽[𝜌] and the error
introduced in the evaluation of the kinetic energy. The exact form
of this functional is not known and a number of parametrized ap-
proximations exist.62 In the local density approximation (LDA), the
functional is expressed in terms of an energy density, 𝑒xc, which is a
local function of the density:

𝐸LDA
xc [𝜌] = ∫ d𝒓𝑒xc(𝜌(𝒓)). (1.18)

In the generalized gradient approximation (GGA), the energy density
is a local function of both the density and the norm of its gradient:

𝐸GGA
xc [𝜌] = ∫ d𝒓𝑒xc(𝜌(𝒓), 𝜁(𝒓)), 𝜁(𝒓) = 𝛁𝜌 ⋅ 𝛁𝜌. (1.19)

Finally, in hybrid functionals, some proportion of the HF exchange
is included:

𝐸hybrid
xc [𝜌] = 𝐸GGA

xc [𝜌] + 𝛾𝐸HF
x [𝜌] (1.20)

The KS-DFT state is optimized by the same iterative process de-
scribed above. Repeated diagonalizations of the KS matrix are car-
ried out until self-consistency is reached. The KS matrix:

𝑓𝑟𝑠 = ℎ𝑟𝑠 + ∑
𝑗

[𝑔𝑟𝑠𝑗𝑗 − 𝛾𝑔𝑟𝑗𝑗𝑠] + 𝑓xc;𝑟𝑠. (1.21)

contains an XC one-electron contribution due to the in addition to the
other terms contained in the Fock matrix. The functional derivative
of the XC functional enters in the definition of this additional term:

𝑓xc;𝑟𝑠 = ∫ d𝒓𝛺𝑟𝑠(𝒓)𝑣xc(𝒓), 𝑣xc(𝒓) =
𝛿𝐸xc[𝜌(𝒓)]

𝛿𝜌(𝒓)
. (1.22)

Notice moreover the exact exchange admixing factor 𝛾 in the two-
electron part of the KS matrix.
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How are MOs constructed? The usual approach is to expand them
in a basis of one-particle, atom-centered basis functions of known
functional form:

𝜙𝑟(𝒓) =
𝑁basis

∑
𝛼=1

𝐶𝛼𝑟𝜒𝛼(𝒓) (1.23)

and optimize the expansion coefficients in the SCF procedure. Choos-
ing the one-particle MO space is then equivalent to choosing the
one-particle atomic orbital (AO) space. The functional form of the
AO basis is chosen to strike a balance between a physically accurate
description of the short-range Coulomb interaction and algorithmic
robustness and efficiency.53 The usual choice, also adopted in this
dissertation, is to use bases of Gaussian functions.63,64

1.3 the coupled cluster ansatz

In the coupled cluster method we construct our correlated wave func-
tion as an exponential mapping on top of a single reference func-
tion:53,54,65,66

|CC⟩ = e𝑇 |HF⟩ . (1.24)

Out of convenience we assume, here and in the following, that the
reference function is a closed-shell HF wave function. The cluster
operator appearing in the exponential is given as:

𝑇 =
ℳ

∑
𝑢=1

𝑇𝑢 =
ℳ

∑
𝑢=1

∑
𝜇𝑢

𝑡𝜇𝑢
𝜏𝜇𝑢

(1.25)

that is, as a truncated sum of excitation operators, 𝜏𝜇𝑢
, times the

corresponding cluster amplitudes, 𝑡𝜇𝑢
. Here 𝜇𝑢 is the 𝜇-th excitation

at the 𝑢-th excitation level and ℳ is the truncation level. One of the
main strengths of the CC model is its size-extensivity which stems
directly from the exponential nature of the wave operator.53,54

The CC method is not a variational but a projective method. Cho-
sen the truncation level ℳ, one projects the nonrelativistic Schrödinger
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equation for this ansatz on the excitation manifold which comprises
the reference function and all possible excited determinants, up to
the chosen truncation order:

⟨HF|e−𝑇𝐻e𝑇|HF⟩ = 𝐸CC

⟨exc|e−𝑇𝐻e𝑇|HF⟩ = 0
(1.26a)

(1.26b)

where ⟨exc| means any of the excited determinants in Fock space
compatible with the excitation level truncation. Notice that we have
also performed a similarity transformation of the Hamiltonian op-
erator. This leads to the linked form of the CC equations, which
is manifestly size-extensive term-by-term. Use of similarity trans-
formed operators is ubiquitous when dealing with CC theory and we
introduce the following notation for it:

𝑂 = e−𝑇𝑂e𝑇 (1.27)

The cluster operator is not Hermitian. Hence, the similarity transfor-
mation will not, in general, preserve any of the symmetries, such as
hermiticity, that the bare operators might have possessed. Similarity-
transformed operators can be expanded in a BCH commutator series:

𝑂 = 𝑂 + 𝑂̃ = 𝑂 + [𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ] + … (1.28)

It can be shown that the BCH expansion of the similarity-transformed
Hamiltonian exactly truncates after the four-fold nested commutator,
greatly simplifying algebraic derivations and manipulations.53

Introducing the Møller–Plesset (MP) partitioning of the Hamilto-
nian leads to further insight:

𝐻 = 𝐹 + 𝛷 = ∑
𝑟

𝜖𝑟𝑎
†
𝑟 𝑎𝑟 + (𝑔 − 𝑉HF), (1.29)

where 𝐹 if the Fock matrix and 𝛷 is the fluctuation potential, ex-
pressed as the difference between the full two-electron interaction
and its Hartree–Fock (HF) mean-field approximation:

𝑉HF = ∑
𝑖

[𝑔𝑟𝑠𝑖𝑖 − 𝑔𝑟𝑖𝑖𝑠]𝑎†
𝑟 𝑎𝑠. (1.30)
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Given our initial assumption on the reference function, the Fock op-
erator is diagonal and expressed in terms of spin-orbital energies and
number operators. Its similarity transformation truncates after the
second term and has a relatively compact form:

𝐹 = 𝐹 +
ℳ

∑
𝑢=1

∑
𝜇𝑢

𝜖𝜇𝑢
𝑡𝜇𝑢

𝜏𝜇𝑢
(1.31)

where 𝜖𝜇𝑢
is the difference in orbital energies between the occupied

and virtual spin-orbitals of excitation 𝑢. For the fluctuation potential
the similarity transformation truncates after the fifth term, including
up to four-fold nested commutators.

We have already remarked that the CC method is not vari-
ational. It is however possible to introduce a fully variational La-
grangian that leads to the same amplitudes equations.67–72 Let us
call ℰ(𝜼) the definition of the energy for the given quantum chemi-
cal method. The amplitudes 𝜼 are determined by a set of stationarity
conditions 𝜴(𝜼) = 0. Direct minimization of ℰ(𝜼) is thus a con-
strained optimization. Introducing a set of Lagrange multipliers ̄𝜼
lets us recast the problem as an unconstrained minimization of the
Lagrangian:

ℒ(𝜼, ̄𝜼) = ℰ(𝜼) + ( ̄𝜼, 𝜴(𝜼))𝑊 , (1.32)

where (⋅, ⋅)𝑊 denotes the scalar product in the vector space 𝑊. The
governing equations are then obtained by differentiation with respect
to both sets of parameters:

𝜕ℒ(𝜼, ̄𝜼)
𝜕 ̄𝜼

= 𝜴(𝜼) = 0

𝜕ℒ(𝜼, ̄𝜼)
𝜕𝜼

=
𝜕ℰ(𝜼)

𝜕𝜼
+ ( ̄𝜼,

𝜕𝜴(𝜼)
𝜕𝜼 )𝑊

= 0

(1.33a)

(1.33b)
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The CC Lagrangian can thus be expressed as:

ℒ(𝑡, ̄𝑡)ℳ = ⟨HF|𝐻|HF⟩ +
ℳ

∑
𝑢=1

∑
𝜇𝑢

̄𝑡𝜇𝑢
⟨𝜇𝑢|𝐻|HF⟩

= 𝐸0 +
ℳ

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢
+ ⟨HF|𝛷|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|𝛷|HF⟩

(1.34)

where 𝐸0 = ∑𝑖 𝜖𝑖 is the sum of the one-electron orbital energies and
the shorthand notation for the Lagrangian multiplier state (left CC
state) was introduced:

⟨ ̄𝑡𝑢| = ∑
𝜇𝑢

̄𝑡𝜇𝑢
⟨𝜇𝑢| . (1.35)

Differentiation of the Lagrangian with respect to the multipliers cor-
rectly yields the amplitudes equations, while differentiation with
respect to the amplitudes leads to the governing equations for the
multipliers:

𝛺𝜇𝑞
(𝑡, ̄𝑡) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩ = 0

𝛺̄𝜇𝑞
(𝑡, ̄𝑡) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩ = 0

(1.36a)

(1.36b)

While the multipliers are not needed for the evaluation of the CC
energy, their calculation is mandatory when expectation values and
molecular properties in general are sought. The CC expectation val-
ues are formed using the left and right CC states and we introduce
the following notation:

𝑂(𝑡, ̄𝑡)ℳ = ⟨HF|𝑂|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|𝑂|HF⟩ (1.37)

Explicit expressions for truncated CC models can be found in Ap-
pendix A.2
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1.4 many-body perturbation theory

Perturbation theory offers an alternative method to re-
cover the correlation energy missing in the mean-field approx-
imation.44 The single determinant optimized in the mean-field ap-
proximation is used as zeroth-order wave function and the pertur-
bation series is developed considering the fluctuation potential in
the Møller–Plesset partitioning of the Hamiltonian as the perturba-
tion.48,53 Notice that the partitioning of the Hamiltonian is not unique
and other choices are available.54

As shown by Koch et al., the MBPT series can be derived from
a CC ansatz for the wave function. This ensures term-by-term size-
extensivity of the energy at all orders.53 The governing equations
(1.36a)–(1.36b) are expanded in terms of the fluctuation potential.
Energy corrections are identified from the corresponding order ex-
pansion of the CC Lagrangian and retaining only terms complying
to the 2𝑛 + 1 and 2𝑛 + 2 rules, vide infra.69,70,74 A superscript index
in square brackets - [𝑖] - will denote an 𝑖-th order contribution.

It is clear from the stationarity conditions that 𝑡[0]
𝜇𝑢 = 0, ∀𝑢 and

̄𝑡[0]
𝜇𝑢 = 0, ∀𝑢. Thus cluster operators can be of order 1 and higher. We

introduce the following notation for the 𝑖-th order cluster operators
and multipliers states:

𝑇 [𝑖]
𝑢 = ∑

𝜇𝑢

𝑡[𝑖]
𝜇𝑢𝜏𝜇𝑢

, ⟨ ̄𝑡[𝑖]
𝑢 | = ∑

𝜇𝑢

̄𝑡[𝑖]
𝜇𝑢 ⟨𝜇𝑢| (1.38)

To first order, one has:

𝜖𝜇2
𝑡[1]
𝜇2 = − ⟨𝜇2|𝛷|HF⟩ = − ⟨HF|[𝛷, 𝜏𝜇2

]|HF⟩ = 𝜖𝜇2
̄𝑡[1]
𝜇2 (1.39)

which shows that singles and triples amplitudes are of second and
higher order. For the former this is a consequence of Brillouin’s con-
dition, valid for the reference closed-shell determinant. For second
order singles, doubles and triples one obtains:

𝜖𝜇𝑞
𝑡[2]
𝜇𝑞 = − ⟨𝜇𝑞|[𝛷, 𝑇 [1]

2 ]|HF⟩

= − ⟨ ̄𝑡[1]
2 |[𝛷, 𝜏𝜇𝑞

]|HF⟩ = 𝜖𝜇𝑞
̄𝑡[2]
𝜇𝑞

(1.40)
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According to the 2𝑛 + 1 and 2𝑛 + 2 rules, energy corrections up to
fifth order can be obtained from amplitudes and multipliers up to
second order:

𝐸[1] = ⟨HF|𝛷|HF⟩

𝐸[2] = ⟨HF|[𝛷, 𝑇 [1]
2 ]|HF⟩

𝐸[3] = ⟨ ̄𝑡[1]
2 |[𝛷, 𝑇 [1]

2 ]|HF⟩

𝐸[4] = ⟨ ̄𝑡[1]
2 |[𝛷, 𝑇 [2]]|HF⟩ + ⟨ ̄𝑡[1]

2 |1
2

[[𝛷, 𝑇 [1]
2 ], 𝑇 [1]

2 ]|HF⟩

𝐸[5] = ⟨HF|1
2

[[𝛷, 𝑇 [2]], 𝑇 [2]]|HF⟩ + ⟨ ̄𝑡[1]
2 |[[𝛷, 𝑇 [2]], 𝑇 [1]

2 ]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |[𝛷, 𝑇 [2]]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |1

2
[[𝛷, 𝑇 [1]

2 ], 𝑇 [1]
2 ]|HF⟩

(1.41a)

(1.41b)

(1.41c)

(1.41d)

(1.41e)

Since the triples first appear to second order, the coupled cluster
with single and double substitutions (CCSD) energy is correct to
third order in the fluctuation potential. The triples contributions to
the fourth and fifth order corrections to the energy are given as:

𝐸[4]
𝑇 = ⟨ ̄𝑡[1]

2 |[𝛷, 𝑇 [2]
3 ]|HF⟩

𝐸[5]
𝑇 = ⟨ ̄𝑡[2]

1 |[𝛷, 𝑇 [2]
3 ]|HF⟩ + ⟨ ̄𝑡[2]

2 |[𝛷, 𝑇 [2]
3 ]|HF⟩

+ ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

2 ]|HF⟩ + ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

3 ]|HF⟩

+ 1
2

⟨ ̄𝑡[2]
3 |[[𝛷, 𝑇 [1]

2 ], 𝑇 [1]
2 ]|HF⟩ .

(1.42a)

(1.42b)

These expressions form the basis for the development of reduced-
scaling CC schemes were the double and triple excitations are treated
approximately. These are the subject of the next Section.

1.5 approximate coupled cluster methods

The CCSD scheme, which scales as 𝑁6, is really successful in re-
covering a large portion of the correlation energy, but as hinted at



1.5 approximate coupled cluster methods 15

in the previous Section, is only correct to third order in perturba-
tion theory. Triple excitations are needed to get higher accuracy, but
the full coupled cluster with single, double and triple substitutions
(CCSDT) model, with its steep 𝑁8 scaling, is unfeasible for all but
the smallest systems. One way around this problem is to exploit the
perturbation theory expression for the fourth and fifth order energy
corrections of Eqs. (1.42a)–(1.42b) to guide the construction of ap-
proximate schemes for the inclusion of higher excitations. These
schemes can either be iterative or noniterative.

In the iterative schemes, one approximates the amplitude
equations for the higher excitation to be correct up to a given order
in perturbation theory. For the development of iterative schemes, we
assume that 𝑇1 = 𝑂(0) and use 𝑇1-transformed operators:

𝑂̌ = e−𝑇1𝑂e𝑇1. (1.43)

Since 𝑇1 is a one-electron operator, the 𝑇1-transformation does not af-
fect the particle rank of the electronic Hamiltonian,53,75 see Appendix
A for details. The assumption that 𝑇1 is of zeroth order is contrary to
the usual MP approach but highlights the role of the singles ampli-
tudes as orbital optimization parameters. In the approximate coupled
cluster singles and doubles (CC2) method, the amplitudes equations
are:53,76

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌|HF⟩ = 0

(1.44a)

(1.44b)

and are obtained from the CCSD equations by retaining only first or-
der terms in the doubles equations. The approximate doubles cluster
operator was introduced:

𝑄2 = − ∑
𝜇2

𝜖−1
𝜇2

⟨𝜇2|𝛷̌|HF⟩ 𝜏𝜇2
(1.45)
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and we shall refer to it as quasi-𝑇2. The CC2 Lagrangian is con-
structed based on the approximate equations obtained for the singles
and doubles:53,76

ℒ(𝑡, ̄𝑡)CC2 = 𝐸0 +
2

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢

+ ⟨HF|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩
+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩ + ⟨ ̄𝑡2|𝛷̌|HF⟩

(1.46)

The CC2 method brings the scaling of the CCSD method down to
𝑁5 in the iterative step. From the approximate CC2 Lagrangian we
can derive the multipliers equations:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑄2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩ = 0

(1.47a)

(1.47b)

Formally, CC2 expectation values can be computed using the expres-
sion for the CCSD (see Appendix A.2) and the approximate ampli-
tudes and multipliers:

𝑂(𝑡, ̄𝑡)CC2 = ⟨HF|𝑂̌|HF⟩ + ⟨ ̄𝑡1|𝑂̌|HF⟩
+ ⟨ ̄𝑡1|[𝑂̌, 𝑄2]|HF⟩ + ⟨ ̄𝑡2|[𝑂̌, 𝑄2]|HF⟩
= 𝑂(𝑡, ̄𝑡)CCS + ⟨ ̄𝑡1|[𝑂̌, 𝑄2]|HF⟩
+ ⟨ ̄𝑡2|[𝑂̌, 𝑄2]|HF⟩

(1.48)

The approximate coupled cluster singles, doubles and triples (CC3)
model is constructed analogously. Starting from the CCSDT ampli-
tudes equations in the 𝑇1-transformed representation, we retain only
second order terms in the triples equation:53,73,77,78

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑄3]|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨𝜇2|1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑄3]|HF⟩ = 0

𝜖𝜇3
𝑡𝜇3

+ ⟨𝜇3|[𝛷̌, 𝑇2]|HF⟩ = 0

(1.49a)

(1.49b)

(1.49c)
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In complete analogy with CC2, the quasi-𝑇3 operator was introduced:

𝑄3 = − ∑
𝜇3

𝜖−1
𝜇3

⟨𝜇3|[𝛷̌, 𝑇2]|HF⟩ 𝜏𝜇3
. (1.50)

The CC3 Lagrangian is constructed based on the approximate ampli-
tude equations (1.49):53,73,77,78

ℒ(𝑡, ̄𝑡)CC3 = 𝐸0 +
3

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢
+ ⟨HF|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑄3]|HF⟩
+ ⟨ ̄𝑡2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝑇2]|HF⟩

(1.51)

The CC3 method brings the scaling of the CCSDT method down
to 𝑁7 in the iterative step. We can now derive the CC3 multipliers
equations:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2] + [[𝛷̌, 𝜏𝜇1
], 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇2
]|HF⟩ = 0

𝜖𝜇3
̄𝑡𝜇3

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇3
]|HF⟩ + ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇3

]|HF⟩ = 0

(1.52a)

(1.52b)

(1.52c)
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CC3 expectation values can be computed as follows:

𝑂(𝑡, ̄𝑡)CC3 = 𝑂(𝑡, ̄𝑡)CCS + ⟨ ̄𝑡1|[𝑂̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|[𝑂̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|[𝑂̌, 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[𝑂̌, 𝑄3] + 1
2

[[𝑂̌, 𝑇2], 𝑇2]|HF⟩

= 𝑂(𝑡, ̄𝑡)CCSD + ⟨ ̄𝑡2|[𝑂̌, 𝑄3]|HF⟩
+ ⟨ ̄𝑡3|[𝑂̌, 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|1
2

[[𝑂̌, 𝑇2], 𝑇2]|HF⟩

(1.53)

Finally, one can construct noniterative methods, where
the expensive 𝑁7 step for the inclusion of connected triples is calcu-
lated as a one-off correction on top of the converged CCSD energy.
The expression for the correction is based on the fourth and fifth or-
der triples energy corrections Eqs. (1.42a)–(1.42b), but is computed
using the converged CCSD singles and doubles amplitudes,79–87 here
and in the following denoted by a ∗ superscript. Since the left and
right CC states differ, symmetric and asymmetric variants of the
noniterative corrections exist.

The 𝛬CCSD[T]88 and CCSD[T]79 methods only include the fourth
order correction Eq. (1.42a). The former uses both the left and right
state, while the latter uses only the right state and can be obtained
from the former by replacing the multipliers with the amplitudes:73,88

𝐸𝛬[T] = ∗𝐸[4]
𝛬[T] = ⟨ ̄𝑡∗

2|[𝛷, 𝑇 ∗
3 ]|HF⟩

𝐸[T] = ∗𝐸[4]
[T] = ⟨𝑡∗

2|[𝛷, 𝑇 ∗
3 ]|HF⟩ .

(1.54a)

(1.54b)
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The 𝛬CCSD(T)83–85 and CCSD(T)80 methods also include the first
of the fifth order triples corrections in Eq. (1.42b):

𝐸𝛬(T) = ∗𝐸[4]
𝛬[T] + ∗𝐸[5]

𝛬(T) = ⟨ ̄𝑡∗
1|[𝛷, 𝑇 ∗

3 ]|HF⟩

+ ⟨ ̄𝑡∗
2|[𝛷, 𝑇 ∗

3 ]|HF⟩

𝐸(T) = ∗𝐸[4]
[T] + ∗𝐸[5]

(T) = ⟨𝑡∗
1|[𝛷, 𝑇 ∗

3 ]|HF⟩

+ ⟨𝑡∗
2|[𝛷, 𝑇 ∗

3 ]|HF⟩

(1.55a)

(1.55b)

(1.55c)

(1.55d)

once again, the symmetric method can be obtained from the asym-
metric variant by replacing multipliers with amplitudes in the left
state.

Results from noniterative methods can be rationalized within the
framework of MBPT.73,88–91 From Eqs. (1.39)–(1.40), one can derive
which MBPT terms are included in the corrections:

∗𝐸[4]
𝛬[T] = ⟨ ̄𝑡[1]

2 |[𝛷, 𝑇 [2]
3 ]|HF⟩ + ⟨ ̄𝑡[2]

2 |[𝛷, 𝑇 [2]
3 ]|HF⟩

+ ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

2 ]|HF⟩ + 𝑂(6)
(1.56)

and similarly for ∗𝐸[4]
[T]. The MBPT terms included in ∗𝐸[5]

𝛬(T) can be
seen to be:

∗𝐸[5]
𝛬(T) = ⟨ ̄𝑡[2]

1 |[𝛷, 𝑇 [2]
3 ]|HF⟩ + 𝑂(6) (1.57)

and similarly for ∗𝐸[5]
(T).





2
Continuum Solvation Models

L’acqua è la forza che ti tempra,
nell’acqua ti ritrovi e ti rinnovi:

— Eugenio Montale, Falsetto

Developments of the polarizable continuum model (PCM), a con-
tinuum solvation model, are at the heart of this dissertation. This
Chapter is a brief exposition of the major points of the PCM we have
worked upon in the thesis. Continuum models have a venerable his-
tory in quantum chemistry: Onsager’s model26 appeared in 1936 and
the first form of the PCM entered the stage in 1981.36 Section 2.1 will
offer a heuristic “derivation” of continuum models. While it cannot
be thought as formally rigorous, it highlights the major physical in-
sights that have informed the creation of continuum models. Section
2.2 will present the formulation of the model. Section 2.3 will be de-
voted to the numerical strategies used in solving the PCM equation.
I will show how a variational approach can facilitate the formulation
of quantum/classical polarizable Hamiltonians in Section 2.4. Ap-
pendix A contains much of the mathematical details omitted from
the exposition in this Chapter.

Still nowadays much research activity is expended on the PCM.92–94

I will point out throughout the Chapter to developments outside our
group that are particularly interesting.

21
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2.1 continuum solvation models: why and how

The basic idea of implicit models is to replace the envi-
ronment with a structureless continuum. The continuum will
interact classically with the explicit part of the multiscale model, an
interaction mediated by some macroscopic property of the bulk mate-
rial the continuum represents. Thus, continuum models bypass both
problems plaguing explicit models we mentioned in the Introduction,
namely:

1. the statistical averaging of environment configurations, and

2. the MM region electrostatics cutoff radius choice.

Following Tomasi, we introduce the complete system Hamiltonian
in the BO approximation:21,22

𝐻(𝒓S, 𝒓E) = 𝐻S(𝒓S) + 𝐻E(𝒓E) + 𝐻SE(𝒓S, 𝒓E) (2.1)

The Hamiltonian features solute terms, marked by the S subscript,
environment terms, marked by the E subscript, and interaction terms.
The coordinates (𝒓S, 𝒓E) refer to both nuclei and electrons. The inter-
action term is given by the usual Coulomb electrostatic Hamiltonian.

One can replace the pure environment and interaction terms with
their classical counterparts and obtain the quantum/classical, possi-
bly polarizable, Hamiltonian for an explicit QM/MM model. This
brings about the first important point: the need for statistical averag-
ing. Whenever a large number of degrees of freedom is involved, one
can access macroscopic observables of the system by the appropriate
averaging of the microscopically detailed motion over phase space
trajectories or on the appropriate statistical ensemble.23 The need for
ensemble averages leads us to the following observations:

1. the need for macroscopic parameters, absent from the micro-
scopic Hamiltonian Eq. (2.1), in carrying out statistical simu-
lations.

2. Chosen a thermodynamic ensemble, the basic energetic quan-
tity is accordingly determined. For example, the Gibbs free
energy 𝐺 is intrinsically related to the (𝑁𝑝𝑇 ) ensemble.
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3. Even atomistic simulations will lead to results that are essen-
tially averages. The discrete picture of the system has been
replaced by some continuous distribution function.

These observations strongly suggest that one can perform the av-
eraging step before embarking into the solution of the quantum me-
chanical problem and replace the full Hamiltonian with an effective
Hamiltonian in which the environment degrees of freedom are prop-
erly averaged.95,96 The solute-environment interaction term would
then be replaced by a term only depending on the solute degrees
of freedom, represented by the averaged, continuous response func-
tions of the solvent. This is the physical setting of the PCM and is
schematically depicted in Figure 2.1.

Figure 2.1 The physical setting of the PCM. The molecular solute, represented by
its, possibly quantum mechanical, charge density 𝜌i is enclosed in a cavity 𝛺i.
The boundary of the cavity 𝛤 ≡ 𝜕𝛺i is a continuously differentiable 2-manifold.
We assume the material properties of the cavity to be those of vacuum, hence
characterized by the Green’s function 𝐺i(𝒓, 𝒓′) = 1

|𝒓−𝒓′|
. The cavity is carved

out of an infinite, structureless, continuum characterized by its Green’s function
𝐺e(𝒓, 𝒓′) and fully covering the external subdomain 𝛺e.

The solute molecule is enclosed in a cavity inside the structureless
continuum representing the solvent and the basic energetic quantity
is a free energy:97–99

𝐺 = 𝐺cav + 𝐺el + 𝐺dis + 𝐺rep + 𝐺Mm(𝑇 ). (2.2)
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The decomposition of the solute free energy takes into account the
different physical origins of the different solute-solvent interactions.
𝐺cav is the cavity formation free energy, a constant as long as the
solute geometry does not change.97,100 The second term 𝐺el is the
most important one in the framework of continuum models. It ac-
counts for the mutual electrostatic polarization of solute and solvent,
see Section 2.2. The third and fourth terms account for dispersion
(𝐺dis) and repulsion (𝐺rep) interactions, respectively.101,102 Finally,
𝐺Mm(𝑇 ) accounts for the collective molecular motions of the solute-
solvent system. It explicitly depends on the temperature 𝑇 and can be
calculated from the solution partition function, see ref. 98 for further
details.

In this dissertation, we focused exclusively on the purely electro-
static component of the interaction energy, completely neglecting the
other terms. While a balanced description of solvation chemistry cer-
tainly demands a proper treatment of all solute-solvent interactions,
especially when non homogeneous environments are studied,103,104 it
is also true that the electrostatic component is the most numerically
relevant, especially when considering energy differences between
different electronic states.

2.2 continuum electrostatics as a boundary integral
problem

The molecular solute, represented by its charge density 𝜌i is enclosed
in a cavity 𝛺i. The boundary of the cavity 𝛤 ≡ 𝜕𝛺i is a 2-manifold
and is assumed to be continuously differentiable. The cavity is carved
out of an infinite, structureless, continuum characterized by the bulk
properties of the solvent. The continuum fully spans the external sub-
domain 𝛺e, see Fig. 2.1. The source charge density is not assumed to
be continuous: both classical point multipoles and quantum mechan-
ical charge densities can be treated within the model. However, we
assume that its support is entirely within the cavity, Supp(𝜌i) ⊆ 𝛺i.
This assumption is, of course, false for quantum mechanical charge
densities. It can however be proven that the errors induced by this
charge penetration are not severe.105–107
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Formulated as such, the PCM is a well-known problem in classical
electrostatics: find the electrostatic potential in space generated by a
charge distribution confined in a cavity in a polarizable continuous
medium.108,109 In the mathematical literature on partial differential
equations (PDEs), it is usually referred to as a transmission prob-
lem.110,111

Given the partition of Euclidean space ℝ3 outlined above, we want
to find the solution 𝑢(𝒓) to the following set:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝐿i𝑢 = ∇2𝑢 = −4𝜋𝜌i in 𝛺i

𝐿e𝑢 = 0 in 𝛺e

[𝑢] = 𝑢e − 𝑢i = 0 on 𝛤
[𝜕𝐿𝑢] = 𝜕𝐿e

𝑢 − 𝜕𝐿i
𝑢 = 0 on 𝛤

|𝑢(𝒓)| ≤ 𝐶‖𝒓‖−1 for ‖𝒓‖ → ∞

(2.3a)
(2.3b)
(2.3c)
(2.3d)

(2.3e)

Eqs. (2.3c) and (2.3d) are the jump conditions, expressed in terms of
trace operators for the solution 𝑢 and its conormal derivative. For no-
tational simplicity, we will use the symbols 𝜕𝐿e

and 𝜕𝐿i
for the latter

and only give it in explicit form when needed. Further mathematical
details and technical results on the definition of function traces and
their use in setting up the proper normal and conormal derivatives
can be found in the excellent book by Sauter et al.111 The fundamental
solutions, or Green’s functions, for the elliptic differential operators
𝐿i and 𝐿e will be denoted by 𝐺i(𝒓, 𝒓′) and 𝐺e(𝒓, 𝒓′), respectively.
As such the problem is formulated in the so-called strong form: the
sought-after solution 𝑢 has to be at least two times continuously dif-
ferentiable. Moreover, the solution is a function supported over ℝ3

which poses challenges to the numerical solution of the problem. We
will take a different approach and reformulate it in terms of boundary
integral operators, i.e. transform the PDEs into a boundary integral
equation (BIE).

The first step is to introduce the relevant boundary in-
tegral operators for the above mentioned transmission problem.
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They are three of the four components of the Calderón projector. For
any function 𝑣 in the suitable function space and for 𝒔, 𝒔′ ∈ 𝛤:

( ̂𝒮⋆𝑣)(𝒔) = ∫
𝛤

d𝒔′𝐺⋆(𝒔, 𝒔′)𝑣(𝒔′)

( ̂𝒟⋆𝑣)(𝒔) = ∫
𝛤

d𝒔′𝜕𝐿⋆,𝒔𝐺⋆(𝒔, 𝒔′)𝑣(𝒔′)

( ̂𝒟 †
⋆𝑣)(𝒔) = ∫

𝛤

d𝒔′𝜕𝐿⋆,𝒔′𝐺⋆(𝒔, 𝒔′)𝑣(𝒔′)

(2.4a)

(2.4b)

(2.4c)

where ⋆ is a placeholder for the i or e subscript. Our next step is to
rewrite the 𝑢 as the sum of two contributions:

𝑢(𝒓) = 𝜑(𝒓) + 𝜉(𝒓) = ∫
𝛺i

d𝒓′ 𝜌i(𝒓′)
|𝒓 − 𝒓′|

+ 𝜉(𝒓) (2.5)

the former is the electrostatic potential of 𝜌i in vacuo (Newton poten-
tial), while the latter is the reaction potential. The reaction potential
describes the polarization in the medium and it admits an integral
representation as a single-layer potential:

𝜉i = ̂𝒮i𝜎, (2.6)

where 𝜎 is the apparent surface charge (ASC), the key quantity in the
PCM. As shown by Cancès et al., the ASC can be computed as the
unique solution to the following integral equation:

[ ̂𝒮e(2𝜋 + ̂𝒟 †
i ) + (2𝜋 − ̂𝒟e) ̂𝒮i]𝜎 =

− [(2𝜋 − ̂𝒟e) − ̂𝒮e ̂𝒮 −1
i (2𝜋 − ̂𝒟i)]𝜑

(2.7)

commonly called the integral equation formalism (IEF) equation.
The Green’s functions for the elliptic differential operators assume a
central role in the boundary integral formulation and make the IEF
equation valid for a wide range of external environments: homoge-
neous isotropic, ionic and anisotropic liquids,112 and systems with
interfaces.113–116
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In the special and very common case of homogeneous and isotropic
environments, i.e. regular dielectric materials characterized by a
scalar permittivity 𝜀, the Green’s functions are:

𝐺e(𝒓, 𝒓′) = 1
𝜀|𝒓 − 𝒓′|

= 1
𝜀

𝐺i(𝒓, 𝒓′), 𝐺i(𝒓, 𝒓′) = 1
|𝒓 − 𝒓′|

(2.8)

yielding the isotropic IEF equation:

̂ℛ𝜀 ̂𝒮 𝜎 = − ̂ℛ∞𝜑 (2.9)

where the auxiliary operators:

̂ℛ𝜀 = [2𝜋 (
𝜀 + 1
𝜀 − 1) − ̂𝒟] , ̂ℛ∞ = lim

𝜀→∞
̂ℛ𝜀 = 2𝜋 − ̂𝒟 (2.10)

have been introduced. By letting 𝜀 → ∞, one recovers the limit-
ing case where conductor boundary conditions are imposed. This
leads to the well-known conductor-like screening model (COSMO)
equation:117,118

̂𝒮 𝜎 = −𝑓(𝜀)𝜑 (2.11)

where the factor 𝑓(𝜀) = 𝜀−1
𝜀+𝑥 , 0 ≤ 𝑥 ≤ 1 has been introduced

to account for the error introduced by modelling the dielectric as a
perfect conductor.

2.3 numerical approaches to boundary integral equa-
tions

The solution of the IEF-PCM boundary integral equation
can only be achieved analytically for simple cavity geometries, such
as single spheres and ellipsoids. When more general molecular cav-
ities are employed one has to resort to a numerical technique: the
boundary element method (BEM). This is implemented in four steps:

1. define the molecular cavity,

2. mesh the molecular surface,
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(a) van der Waals surface (vdWS) (b) solvent-accessible surface (SAS)

(c) solvent-excluded surface (SES)

Figure 2.2 Molecular surfaces from interlocking sets of atom-centered spheres.
Reproduced from ref. 121.

3. discretize the integral equation, and

4. solve the linear systems by a suitable numerical technique.

Many different approaches to these four steps have been presented,
both in the field of the BEM and in the context of the PCM.

The molecular cavity is usually defined as a set of atom-centered
interlocking spheres. The radii are chosen from a suitable set, usually
van der Waals radii.119,120

If one imagines to model a solvent molecule as a rigid sphere,
three types of molecular surfaces can be defined:

1. the union of the interlocking spheres surfaces is the van der
Waals surface (vdWS), Figure 2.2a

2. the locus of points defined by the center of the solvent spheri-
cal probe while rolling over the vdWS is the solvent-accessible
surface (SAS), Figure 2.2b
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3. the locus of points defined by the contact point of the solvent
spherical probe while rolling over the vdWS is the solvent-
excluded surface (SES), Figure 2.2c.

Alternative definitions based on the isodensity surface of the molec-
ular solute have also been put forth.122

Steps 2 and 3 are closely intertwined, in the technical BEM lit-
erature they go under the name of finite element discretization. Let
us define a mesh of the domain 𝛤 as an indexed collection of inter-
vals with non-zero measure {𝐼𝑖}

𝑁mesh
𝑖=1 , where 𝑁mesh is the size of

the mesh. Then, in a rather informal sense, a finite element is the
mathematical entity formed by the vector space of functions that are
piecewise regular on any given interval in the mesh.123 Basically,
given an element in the mesh, we “attach” a basis set of piecewise
polynomials of a prescribed degree and use this basis to provide
a representation of quantities defined on 𝛤 within each mesh inter-
val. Mesh generation for the molecular surfaces mentioned above is
usually achieved by modified triangulation procedures. In this disser-
tation we used the GePol algorithm124–129 and the mesh generators
of Harbrecht and Randrianarivony especially tailored for the wavelet
BEM.121,130

The finite element discretization is usually carried out either by
the collocation or by the Galerkin approach.110,123* This step trans- *Indeed, it is possible to show that

discretization by collocation cor-
responds to a Galerkin method
with a very specific (and asym-
metric) choice of trial and test
spaces.

forms the original integral equation into a system of linear equations
whose dimension relates to the underlying mesh size. For general
integral equations and finite element discretizations, the stiffness ma-
trix obtained is dense and proper linear algebra techniques need to
be employed in order to avoid a detrimental impact on computational
performance. In addition, finite element discretization might destroy
intrinsic symmetries of the original integral operators. These can
be recovered by appropriate a posteriori symmetrization procedures
introducing, however, a degree of arbitrariness in the BEM proce-
dure.131

In the GePol procedure, the molecular surface is meshed
by means of 𝑁ts spherical polygons 𝛱𝑖 whose centroids define the
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collocation points. One-point quadrature rules are then applied at the
centroid to obtain the matrix equation:

𝑹−1𝑻 𝒒 = 𝒗. (2.12)

𝒒 and 𝒗 are vectors of dimension 𝑁ts collecting the values of the
ASC and molecular electrostatic potential (MEP) at the collocation
points. 𝑹−1𝑻 is the stiffness matrix. The matrices representing the
boundary integral operators are:

𝑻 = (2𝜋𝑰 − 𝑫e𝑨) 𝑺i + 𝑺e (2𝜋𝑰 + 𝑨𝑫†
i )

𝑹 = (2𝜋𝑰 − 𝑫e𝑨) − 𝑺e𝑺−1
i (2𝜋𝑰 − 𝑫i𝑨)

(2.13)

(2.14)

𝑰 is the 𝑁ts-dimensional identity matrix while the other matrices are
defined as:

𝐴𝑖𝑗 = 𝑎𝑖𝛿𝑖𝑗, 𝑎𝑖 = area(𝛱𝑖)

𝑆𝑖𝑗,i = 𝑘
√

4𝜋
𝑎𝑖

𝛿𝑖𝑗 + 1
|𝒔𝑖 − 𝒔𝑗|

(1 − 𝛿𝑖𝑗)

𝐷𝑖𝑖,i = −𝑘
√

𝜋
𝑎𝑖

1
𝑅𝑖

𝛿𝑖𝑗 +
(𝒔𝑖 − 𝒔𝑗) ⋅ 𝒏𝑗

|𝒔𝑖 − 𝒔𝑗|3 (1 − 𝛿𝑖𝑗)

(2.15a)

(2.15b)

(2.15c)

in terms of the centroids 𝒔𝑖, 𝒔𝑗, the finite elements areas and their
curvatures 𝑅𝑖. The factor 𝑘 = 1.07 is introduced to achieve a better
precision in the integration of the diagonal elements.99 Expressions
for 𝑺e, 𝑫e and 𝑫†

e depend on the specific outer environment and can
be found in the literature.99,113–116

The wavelet Galerkin BEM preserves the fundamental sym-
metries of the boundary integral operators and achieves sparsity in
the stiffness matrix. This sparsity was leveraged in this dissertation
to implement efficient algorithms with linear space and time com-
plexity. The approach is thus superior to the traditional collocation
method.

Given a hierarchical sequence of trial spaces {𝑉𝑙}𝐽
𝑙=1, one can

decompose the 𝑙-th element in the hierarchy into the direct sum
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Figure 2.3 Sparsity pattern achieved by the wavelet Galerkin BEM when solving
the Laplace equation on 6 patches. Reproduced from ref. 135.

𝑉𝑙 = 𝑉𝑙−1 ⊕ 𝑊𝑙. 𝑊𝑙 is called the wavelet space and is the, not
necessarily orthogonal, complement to 𝑉𝑙−1. Recursively applying
this splitting to the trial spaces hierarchy generates the wavelet de-
composition, where all complementary spaces are spanned by the
wavelet basis. The fundamental insight in the wavelet BEM is to use
the wavelet basis for the discretization step and employ the compres-
sion technique described by Dahmen et al. to build up the sparse sys-
tem matrix.132–134 Matrix compression is carried out in two rounds,
a priori and a posteriori, resulting in a finger-like sparsity pattern
for the stiffness matrix, Figure 2.3. The number of relevant matrix
entries scales linearly with 𝑁𝐽 the number of degrees of freedom for
a refinement of the geometry up to level 𝐽.

Continuity of meshes with respect to molecular distortions is
a central issue for stable implementations of molecular gradients and
recurs frequently in the literature. Numerous schemes have been pro-
posed to solve or alleviate this issue. We here mention the TsLess136

and DefPol137,138 approaches of Pomelli et al. and the FIXPVA mod-
ification139 to the GePol algorithm put forth by Su et al. Scalmani
et al. have recently proposed the continuous surface charge (CSC)
scheme which uses a smooth vdWS and 3D spherical Gaussian ba-
sis functions.140,141 Gaussian blurring was also advocated by Lange
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et al. in their switching/Gaussian (SWIG) method.142,143 Both CSC
and SWIG achieve continuous PESs and smooth molecular gradients.
However, their convergence to the exact solution of the underlying
integral equation has yet to be proved.123 Cancès et al. took a com-
pletely different approach to the problem by employing a domain de-
composition method, guaranteed to converge to the exact solution.145

Moreover, for COSMO, the formulation is embarrassingly parallel
and has been implemented in a linearly scaling fashion.144,146–148

Very recently the method has also been extended to general dielec-
tric environments.149

In the following, the PCM equations will be written in the “com-
plete basis” meaning that we will be working with the exact integral
equation and not with its discretized counterpart. As a consequence,
the apparent surface charge 𝜎 and the electrostatic potential 𝜑 will
have a continuous dependence on a cavity surface “index” 𝒔. A prod-
uct involving any of these quantities will have to be interpreted as
the surface integral, i.e. the scalar product in the suitable, infinite-
dimensional vector space on the cavity boundary 𝛤. The following
shorthand notations will be adopted:

𝜎 ̂𝒴𝜎 = ∫
𝛤

d𝒔𝜎(𝒔) ̂𝒴𝜎(𝒔) = (𝜎, ̂𝒴𝜎)𝛤

𝜎𝜑 = ∫
𝛤

d𝒔𝜎(𝒔)𝜑(𝒔) = (𝜎, 𝜑)𝛤

(2.16)

2.4 variational formulation of classical polarizable
models

The attentive reader will have noticed that, despite the focus of this
thesis on continuum models for the quantum mechanical modelling
of solvation, no mention has been made so far in this Chapter of any
quantum aspect. The strategy usually adopted is to tailor a specific
Hamiltonian, which includes classical contributions from the contin-
uum and use it in the development of the quantum chemical model.
Since the MEP is a linear functional of the solute charge density, the
ASC itself incurs in a dependency on the solute charge density. Prop-
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erly accounting for the mutual solute-solvent polarization induces
a nonlinearity in an otherwise linear problem. Manipulating such a
nonlinear Schrödinger equation is theoretically cumbersome,150,151

but has been successfully done in the past.99

In this dissertation, we advocate a different theoreti-
cal approach: the variational formulation of classical polarizable
models. In such a framework the ASC becomes an additional, inde-
pendent, variationally optimizable degree of freedom. This makes
the coupling to, e.g., extended Lagrangian dynamics trivial.152 It is
well known that electrodynamics can be derived as the minimization
of an action functional.108 The principle of least action is however
formulated in terms of fields and not more easily manageable quan-
tities, such as the MEP or the ASC. A true energy functional has to
fulfill the following properties:153

1. physical extremal points,

2. equilibrium values that are true energies, and

3. convexity (positive-definiteness)

Allen et al. and Attard pioneering attempts resulted in functionals of
scalar densities violating Property 2 and could not thus be used in
extended Lagrangian dynamics.154–156

In a seminal paper, Lipparini et al. showed how the PCM can be
recast in a variational fashion yielding a true energy functional of
the ASC:40,94,157

𝑈PCM = 1
2

𝜎 ̂𝒴𝜎 + 𝜑𝜎, ̂𝒴 = ̂ℛ−1
∞

̂ℛ𝜀 ̂𝒮 . (2.17)

yielding Eq. (2.9) upon minimization:

𝜕𝑈PCM
𝜕𝜎

= ̂𝒴𝜎 + 𝜑 = 0. (2.18)

It is interesting to note how this functional follows quite immediately
from the integral equation formulation and standard results in the
theory of boundary integral equations.158
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Explicit classical polarizable models can also be recast in a varia-
tional fashion allowing for their treatment on par with implicit clas-
sical polarizable models. The functional looks as follows:

𝑈MM = 1
2

𝜅 ̂𝒲 𝜅 + 𝜅𝜁, (2.19)

here 𝜅 is the variational degree of freedom representing the polariza-
tion of the explicit environment. 𝜁 is the inducing field, vide infra.
The reader is referred to the works of Lipparini et al. for a derivation
of this functional.35,41,159 We have made no specific reference to the
particular explicit model used. The variational framework is flexible
enough to encompass either the MMpol,33 the polarizable embedding
(PE),34,160 or the fluctuating charges (FQ) models.35,161–163

Coupling the implicit and explicit polarizable models is straight-
forward in the variational framework:35,37–39

𝑈pol = 1
2

𝜎 ̂𝒴𝜎 + 𝜎𝜑 + 1
2

𝜅 ̂𝒲 𝜅 + 𝜅𝜁 + 𝜎 ̂𝒳𝜅. (2.20)

An additional term, as first derived by Steindal et al.,37 was added to
account for the mutual polarization between the implicit and explicit
layers:

𝜎 ̂𝒳𝜅 = 𝜅 ̂𝒳 †𝜎. (2.21)

̂𝒳 is the implicit/explicit interaction kernel, whose form depends on
the specific explicit model chosen.

The global minimum of the convex functional is found by dif-
ferentiating with respect to the variational degrees of freedom:

(
̂𝒴 ̂𝒳

̂𝒳 † ̂𝒲) (
𝜎
𝜅)

= −
(

𝜑
𝜁)

. (2.22)

While 𝜑 is quite clearly the MEP, 𝜁 can either be the molecular elec-
tric field (MMpol and PE models) or again the MEP (FQ model).
In any case, both will be determined by the quantum mechanical
molecular charge density and can thus be formulated as expectation
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values of one-electron operators. Eventually, this achieves the cou-
pling between the classical – 𝜎 and 𝜅 – and the quantum mechanical
variational degrees of freedom.

The functionals in Eqs. (2.17), (2.19) and (2.20) all have a clear
physical meaning. They describe charge distributions interacting (un-
favorably) with themselves and (favorably) with their respective in-
ducing external fields and constitutes the polarization energy of the
medium. The topic of variational formulations is particularly impor-
tant in the field of MD simulations.153,164–166 Our focus is however on
the quantum mechanical calculations of molecular properties and the
variational formulation is advantageous since it dispenses us from ma-
nipulating cumbersome nonlinear coupling terms in the Hamiltonian.
Moreover, the stationarity condition Eq. 2.22 entails the existence of
a classical Hellmann–Feynman theorem:

d𝑈pol

d𝐹
=

𝜕𝑈pol

𝜕𝐹
+

𝜕𝑈pol

𝜕𝜎
𝜕𝜎
𝜕𝐹

+
𝜕𝑈pol

𝜕𝜅
𝜕𝜅
𝜕𝐹

=
𝜕𝑈pol

𝜕𝐹
, (2.23)

which is paramount in the formulation of molecular properties, see
Chapter 3. The variational formulation also lends itself to an imple-
mentation as a simultaneous optimization of the electronic structure
and polarization degrees of freedom.157

Finally, let us re-express the equations above in a supermatrix
formalism:

𝑈pol = 1
2

𝑡p𝕍 p + 𝑡ps (2.24)

where:

p =
(

𝜎
𝜅)

, s =
(

𝜑
𝜁)

, 𝕍 =
(

̂𝒴 ̂𝒳
̂𝒳 † ̂𝒲)

(2.25)

and the 𝑡p symbol denotes the transposed supervector p. The scalar
products are understood to be in the relevant function spaces. The
supermatrix formalism will be adopted throughout the thesis.

How are quantum/classical polarizable Hamiltonians
implemented in this framework? As shown in Chapter 1 for the
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CC method, one can formulate methods in quantum chemistry as the
unconstrained minimization of a Lagrangian. Due to the variational
property of the classical polarizable functional one can devise an
effective quantum/classical polarizable Lagrangian:94

ℒeff(𝜼, ̄𝜼, p) = ℒ(𝜼, ̄𝜼) + 1
2

𝑡p𝕍 p + 𝑡ps(𝜼, ̄𝜼) (2.26)

and derive the governing equations in the usual manner:

𝜕ℒeff(𝜼, ̄𝜼, p)
𝜕 ̄𝜼

= 𝜴(𝜼) + 𝑡p
𝜕s(𝜼, ̄𝜼)

𝜕 ̄𝜼
= 0

𝜕ℒeff(𝜼, ̄𝜼, p)
𝜕𝜼

=
𝜕ℰ(𝜼)

𝜕𝜼
+ ( ̄𝜼,

𝜕𝜴(𝜼)
𝜕𝜼 )𝑊

+ 𝑡p
𝜕s(𝜼, ̄𝜼)

𝜕𝜼
= 0

𝜕ℒeff(𝜼, ̄𝜼, p)
𝜕p

= 𝕍 p + s(𝜼, ̄𝜼) = 0

(2.27a)

(2.27b)

(2.27c)

The quantum mechanical and the classical model are thus fully cou-
pled, due to the dependence of the source term s on the amplitudes
and multipliers.

As an example, let us consider the single-reference HF and KS-DFT
methods introduced in Section 1.2. First of all, we need the appropri-
ate SCF energy functional in vacuo. The AO basis set expansion of
the MOs lets us define the one-electron AO density matrix as:

𝐷𝜇𝜈 =
𝑁𝑂

∑
𝑖=1

𝐶𝜇𝑖𝐶
†
𝜈𝑖 (2.28)

where 𝐶𝛼𝑟 are the MO expansion coefficients and 𝑁𝑂 is the total
number of occupied orbitals. The SCF energy functional in vacuo
can now be expressed as:

ℰ(𝑪)
Tr
= 𝒉𝑫 + 1

2
𝑮𝛾(𝑫)𝑫 + 𝐸xc[𝜌(𝒓)] + 𝑉NN, (2.29)

and has to be optimized under the MO orthonormality constraint,
easily introduced by means of Lagrangian multipliers:

ℒ(𝑪, 𝝐) = ℰ(𝑪) − ∑
𝑖𝑗

𝜖𝑗𝑖(⟨𝜙𝑖|𝜙𝑗⟩ − 𝛿𝑖𝑗) (2.30)
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The various contributions are expressed in terms of AO basis integral
and density matrices:

ℎ𝜇𝜈 = = ∫ d𝒓𝜒†
𝜇(𝒓)ℎ(𝒓)𝜒𝜈(𝒓)

𝐺𝛾
𝜇𝜈 = ∑

𝜅𝜆
𝐷𝜅𝜆(𝑔𝜇𝜈𝜅𝜆 − 𝛾𝑔𝜇𝜆𝜅𝜈)

𝑔𝜇𝜈𝜅𝜆 = ∫ d𝒓 ∫ d𝒓′𝛺𝜇𝜈(𝒓)𝑔(𝒓, 𝒓′)𝛺𝜅𝜆(𝒓′)

𝐸xc[𝜌(𝒓)] = ∫ d𝒓𝑣xc(𝒓) (Tr𝜴(𝒓)𝑫)

𝛺𝜇𝜈(𝒓) = 𝜒†
𝜇(𝒓)𝜒𝜈(𝒓).

(2.31a)

(2.31b)

(2.31c)

(2.31d)

(2.31e)

The quantum/classical polarizable SCF functional is obtained by
adding the polarization functional to Eq. (2.29):

ℒeff(𝑪, 𝝐, s) = ℒ(𝑪, 𝝐) + 1
2

𝑡p𝕍 p + 𝑡p(Tr𝐬𝑫). (2.32)

Differentiation with respect to the variational degrees of freedom
yields the KS and polarization equations:

𝑭 𝑪 = 𝑺𝑪𝝐
𝕍 p + Tr𝐬𝑫 = 0

(2.33a)
(2.33b)

The KS matrix now includes environment contributions:

𝑓𝜇𝜈 = ℎ𝜇𝜈 + 𝐺𝛾
𝜇𝜈(𝑫) + 𝑓xc;𝜇𝜈 + 𝑡ps𝜇𝜈. (2.34)

With respect to the coupling described in abstract terms above, the
SCF case is formally simpler. In fact, whereas in the general case the
source term depends on both primal (amplitudes) and dual (multipli-
ers) variational degrees of freedom, here only the dependence on the
primal parameters (MO coefficients) needs to be considered.157





3
Response Theory and Molecular
Properties

White light goin’ messin’ up my brain
White light it’s gonna drive me insane

— The Velvet Underground
What’s the frequency, Kenneth?
I never understood the frequency

— R.E.M.

Response theory provides an ab initio framework for the formula-
tion and computation of molecular properties and thus a connection
between ab initio and experimental methods based on spectroscopy.
The response treatment of molecular properties has its roots in time-
dependent perturbation theory44 and has been continually developed
in quantum chemistry for the past 30 years.14,74,167–171

Section 3.1 will give a brief introduction to response theory for
isolated molecules. The concepts of quasienergy,169 variational per-
turbation theory74 and pole-and-residue analysis of response func-
tions167 will be introduced. The exposition closely follows that given
by Saue in ref. 172. I will explicitly derive the SCF response func-
tion for a quantum/classical polarizable Hamiltonian in Section 3.2.
The derivation will employ the density matrix-based, AO formalism
introduced by Thorvaldsen et al. in ref. 173.

39
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3.1 response theory in a nutshell

Let us consider the experimentally relevant situation where
a molecular system is subject to an external source of electromag-
netic radiation, Figure 3.1. Here and in the following, ”external” will
be used to mean an electromagnetic field which is ”weak” when com-
pared to the electron–electron and electron–nuclei interactions in the
molecule.

ω

α

E
B

Figure 3.1 When a molecular system is subject to an external electromagnetic ra-
diation of frequency 𝜔, a macroscopic, experimentally measurable response can
be detected. Intensity and position of the signal can be related to the microscopic
detail of the molecular system, as described by quantum mechanics. The picture
depicts an optical rotation experiment where the linear polarization of the incident
electromagnetic field is rotated by an angle 𝛼 upon traversing a chiral material.
Reproduced, with modifications, from Wikipedia.

The system can then be described by means of a combined matter–
field Hamiltonian:

𝐻 = 𝐻matter + 𝐻f ield + 𝐻int, (3.1)

where the three terms describe the molecular sample, the electromag-
netic field and their interaction, respectively. Since our focus is on
the molecular system, one can neglect the quantized description of
the field and treat the interaction term in a semiclassical fashion.174

https://commons.wikimedia.org/wiki/File:Optical-rotation.svg
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The time-dependent Schrödinger equation is now the appropriate
equation of motion:

𝐻𝜓(𝑡) = i
𝜕𝜓(𝑡)

𝜕𝑡
, (3.2)

where the time-dependent, semiclassical matter–field Hamiltonian
is used:

𝐻 = 𝐻0 + 𝑉 (𝑡). (3.3)

The perturbation is a one-electron operator. We will further assume
that it is periodic in time 𝑉 (𝑡) = 𝑉 (𝑡 + 𝑇 ) and admits a discrete
Fourier decomposition:

𝑉 (𝑡) =
𝑁

∑
𝑘=−𝑁

e−i𝜔𝑘𝑡𝑉 (𝜔𝑘) =
𝑁

∑
𝑘=−𝑁

e−i𝜔𝑘𝑡
∑
𝑋

𝜖𝑋(𝜔𝑘)𝑉𝑋

= ∑
𝑥

e−i𝜔𝑥𝑡𝜖𝑥𝑉𝑋,
(3.4)

where all the frequencies are integer multiples, 𝜔𝑘 = 𝑛𝑘𝜔, of a
fundamental frequency 𝜔 = 2𝜋

𝑇 .167 Frequencies and amplitudes in
the Fourier decomposition obey the following relations:

𝜔−𝑘 = 𝜔𝑘, 𝜖𝑥 = 𝜖∗
𝑋(𝜔𝑘) = 𝜖𝑋(𝜔−𝑘) = 𝜖∗

−𝑥, (3.5)

since the 𝑉 (𝑡) is required to be Hermitian. For notational conve-
nience, the perturbation operator (𝑋) and frequency (𝑘) indices have
been collapsed into the common index 𝑥.

Under the assumption that the external field is weak
with respect to the molecular field, time-dependent perturbation the-
ory is an appropriate tool to approximately solve Eq. (3.2).* The *Real-time methods, where the

time-dependent Schrödinger
equation is integrated directly
in a set time interval, offer
an alternative approach to
perturbation theory.44,175,176

response theory route to molecular properties introduces a phase-
separated ansatz for the time-dependent wave function:

𝜓(𝑡) = e−i𝐹 (𝑡)𝜓̄(𝑡), (3.6)



42 response theory and molecular properties

where the time-derivative of the phase factor defines the time-dependent
quasienergy:

𝑄(𝑡) = ̇𝐹 (𝑡) = ⟨𝜓̄(𝑡) | 𝐻0 + 𝑉 (𝑡) − i 𝜕
𝜕𝑡 | 𝜓̄(𝑡)⟩ . (3.7)

The time-dependent quasienergy is variational, but the correspond-
ing time-dependent Hellmann–Feynman theorem cannot straightfor-
wardly be applied to the calculation of molecular properties.169,171

Fortunately, we can exploit the periodicity of the perturbation opera-
tor to introduce the time-averaged quasienergy:

{𝑄(𝑡)}𝑇 = 1
𝑇

𝑇

∫
0

d𝑡𝑄(𝑡) = 𝑄0 + ∑
𝑥

𝜖𝑥𝐸𝑥 (3.8)

where:

𝑄0 = {⟨𝜓̄(𝑡) | 𝐻0 | 𝜓̄(𝑡)⟩}𝑇 − {⟨𝜓̄(𝑡) | i 𝜕
𝜕𝑡 | 𝜓̄(𝑡)⟩}𝑇

= 𝐸0(0) − 𝑆
𝐸𝑥 = {⟨𝜓̄(𝑡) | 𝑉𝑋 | 𝜓̄(𝑡)⟩ exp(−i𝜔𝑘𝑡)}𝑇

(3.9a)
(3.9b)

Differentiating the time-averaged quasienergy yields the time-averaged
Hellmann–Feynman theorem:

d {𝑄(𝑡)}𝑇
d𝜖𝑋(𝜔𝑘)

= {⟨𝜓̄(𝑡) |
𝜕𝐻
𝜕𝜖𝑥 | 𝜓̄(𝑡)⟩}𝑇

= 𝐸𝑥, (3.10)

which can be used to connect response functions to molecular prop-
erties. Letting |0⟩ represent the unperturbed reference state, we can
develop the Kubo expansion at zero perturbation strength of the ex-
pectation value of the observable 𝐻𝑋:177

⟨𝜓̄(𝑡)|𝑉𝑋|𝜓̄(𝑡)⟩ ≃ ⟨0 | 𝑉𝑋 | 0⟩

+
𝑁

∑
𝑘=−𝑁

⟨⟨𝑉𝑋; 𝑉 (𝜔𝑘)⟩⟩𝜔𝑘
e−i𝜔𝑘𝑡

+ 1
2

𝑁

∑
𝑘,𝑙=−𝑁

⟨⟨𝑉𝑋; 𝑉 (𝜔𝑘), 𝑉 (𝜔𝑙)⟩⟩𝜔𝑘,𝜔𝑙
e−i(𝜔𝑘+𝜔𝑙)𝑡

(3.11)
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response functions may be identified as the Fourier coefficients in the
expansion. These are none other but higher order derivatives of the
time-averaged quasienergy, as a comparison with the same expansion
for the right-hand side of Eq. (3.10) will confirm:

d {𝑄(𝑡)}𝑇
d𝜖𝑥

≃ ⟨0 | 𝑉𝑋 | 0⟩ 𝛿𝜔𝑥

+ ∑
𝑦

⟨⟨𝑉𝑋; 𝑉𝑌⟩⟩𝜔𝑦
𝜖𝑦𝛿𝜔𝑥+𝜔𝑦

+ 1
2 ∑

𝑦,𝑧
⟨⟨𝑉𝑋; 𝑉𝑌, 𝑉𝑍⟩⟩𝜔𝑦,𝜔𝑧

𝜖𝑦𝜖𝑧𝛿𝜔𝑥+𝜔𝑦+𝜔𝑧
.

(3.12)

First and higher order molecular properties can now be identified
from the response functions appearing as Fourier coefficients in
the Kubo expansion by taking the appropriate perturbation-strength
derivatives at zero field strength:

d𝑛 {𝑄(𝑡)}𝑇
d𝜖𝑥1

d𝜖𝑥2
⋯ d𝜖𝑥𝑛 |

𝝐=0

=

⟨⟨𝑉𝑋1
; 𝑉𝑋2

, … , 𝑉𝑋𝑛
⟩⟩𝜔𝑥2,…,𝜔𝑥𝑛

𝛿𝜔𝑥1+⋯+𝜔𝑥𝑛
,

(3.13)

the 𝛿𝜔𝑥1+⋯+𝜔𝑥𝑛
notation is used to enforce the sum rule on the prob-

ing and response frequencies involved in the expansion:
𝑛

∑
𝑖=1

𝜔𝑥𝑖
= 0 (3.14)

Response functions quantify how, to a certain order in the perturbing
field tuples, the expectation value of a given observable is modi-
fied. The semicolon appearing in the response functions separates
the operator 𝑉𝑋, whose response is measured, from the external per-
turbations 𝑉𝑌, 𝑉𝑍, … causing it. From the perturbation expansion
Eq. (3.12), it is clear that permutation symmetry exists between the
external perturbations provided that the corresponding frequencies
are permuted concomitantly.

Having introduced response functions as a useful tool to
quantify the effect of external perturbations on molecular proper-
ties, it is now time to consider how to compute them. In this Section,



44 response theory and molecular properties

we are concerned with exact wave functions that can be variation-
ally parametrized by a set of parameters 𝜼: |0⟩ = |0(𝜼)⟩. We recall
that the Lagrangian method outlined in Section 1.3 can be employed
also in this case.169–171 The optimal parameter set is determined upon
minimization of the time-averaged quasienergy:

d {𝑄(𝑡)}𝑇
d𝜼

= 0. (3.15)

In variational perturbation theory,74,172 we assume the variational
parameters to be functions of the perturbation strength parameters:
𝜼 = 𝜼(𝝐). Furthermore, we require the stationarity condition to hold
at all perturbation strengths, with 𝜂(0) = 0, for convenience.

The perturbation-strength total derivative at zero perturbation strength
of the time-averaged quasi energy is:

[

𝑛

∏
𝑖=1

d
d𝜖𝑥𝑖 ]

{𝑄(𝑡)}𝑇 = 𝑄[𝑛]
𝑥1…𝑥𝑛

= 𝑄[𝑛]
0;𝑥1…𝑥𝑛

+
𝑛

∑
𝑗=1

𝐸[𝑛−1]
𝑥𝑗;𝑥1…𝑥𝑗−1𝑥𝑗+1…𝑥𝑛

=
[

𝑛

∏
𝑖=1

d
d𝜖𝑥𝑖 ]

𝑄0 +
𝑛

∑
𝑗=1 [

𝑛−1

∏
𝑖≠𝑗

d
d𝜖𝑥𝑖 ]

𝐸𝑥𝑗

(3.16)

Notice that this is just an alternative and more verbose notation for
Eq. (3.13), which allows to express response functions in terms of
wave function perturbed parameters. Application of the chain rule to
the total derivatives in fact yields:

𝑄[1]
𝑎 = ∑

𝜎
[𝑄[1]

0;𝜎𝜂[1]
𝜎;𝑎 + 𝐸𝑎] 𝛿𝜔𝑎

𝑄[2]
𝑎𝑏 = ∑

𝜎𝜏
[𝜂[1]

𝜎;𝑎𝑄[2]
0;𝜎𝜏𝜂[1]

𝜏;𝑏 + 𝑄[1]
0;𝜎𝜂[2]

𝜎;𝑎

+ 𝐸[1]
𝑎;𝜎𝜂[1]

𝜎;𝑏 + 𝐸[1]
𝑏;𝜎𝜂[1]

𝜎;𝑎]𝛿𝜔𝑎+𝜔𝑏

(3.17a)

(3.17b)
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where the following tensors were introduced:

𝑄[𝑛]
0;𝜎1⋯𝜎𝑛

=
𝜕𝑛𝑄0

𝜕𝜂𝜎1
⋯ 𝜕𝜂𝜎𝑛

𝐸[𝑛]
𝑥;𝜎1⋯𝜎𝑛

=
𝜕𝑛𝐸𝑥

𝜕𝜂𝜎1
⋯ 𝜕𝜂𝜎𝑛

𝜂[𝑛]
𝜎;𝑥1…𝑥𝑛

=
𝜕𝑛𝜂𝜎

𝜕𝜖𝑥1
⋯ 𝜕𝜖𝑥𝑛

(3.18a)

(3.18b)

(3.18c)

The response equations, determining the tensor of perturbed wave
function parameters 𝜼[𝑛], are obtained by differentiating the time-
averaged quasienergy variational condition Eq. (3.15) with respect to
the perturbation parameters:74,167,169

𝑅[𝑛]
𝜎;𝑥1⋯𝑥𝑛

=
[

𝑛

∏
𝑖=1

d
d𝜖𝑥𝑖 ]

d {𝑄(𝑡)}𝑇
d𝜂𝜎 |𝝐=0

= 0, (3.19)

followed by evaluation at zero perturbation strength. The first order
response of the wave function 𝜼[1], needed for the determination
of second order properties 𝑄[2]

𝑎𝑏 , can be computed by solving the
corresponding response equation:

𝑅[0]
𝜎 = 𝑄[1]

0;𝜎 = 0

𝑅[1]
𝜎;𝑎 = ∑

𝜏
𝑄[2]

0;𝜎𝜏𝜂[1]
𝜏;𝑎 + 𝐸[1]

𝑎;𝜎 = 0.

(3.20a)

(3.20b)

The time-averaged quasienergy formalism allows to formulate re-
sponse properties to static and dynamic fields on an equal footing as
perturbation-strength derivatives. Moreover, variational perturbation
theory achieves a transparent derivation of the necessary response
equations.74

Let us consider in more detail the form of the linear
response function Eq. (3.17b). The formal solution to the response
equation Eq. (3.20b) can be obtained by inverting the Hessian, 𝑸[2]

0 .
Eq. (3.17b) can then be rewritten as:

⟨⟨𝑉𝐴; 𝑉𝐵⟩⟩𝜔𝑏
= − ∑

𝜎𝜏
𝐸[1]

𝑎;𝜎 [𝑸[2]
0 ]

−1

𝜎𝜏
𝐸[1]

𝑏;𝜏 . (3.21)
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Expansion into the exact eigenbasis of 𝐻0 yields the sum-over-states
(SOS) expression for the linear response function:

⟨⟨𝑉𝐴; 𝑉𝐵⟩⟩𝜔𝑏
= − ∑

𝑛>0
[

⟨0|𝑉𝐴|𝑛⟩ ⟨𝑛|𝑉𝐵|0⟩
𝜔𝑛0 − 𝜔𝑏

+
⟨0|𝑉𝐵|𝑛⟩ ⟨𝑛|𝑉𝐴|0⟩

𝜔𝑛0 − 𝜔𝑎
]𝛿𝜔𝑎+𝜔𝑏

.
(3.22)

The excitation energies of the system appear in the denominators
𝜔𝑛0 = 𝐸𝑛 − 𝐸0 and can thus be identified as the poles of the re-
sponse function. Moreover, the residues at the poles are the transition
moments determining the intensity of the spectroscopic transitions:

lim
𝜔𝑏→𝜔𝑛0

⟨⟨𝑉𝐴; 𝑉𝐵⟩⟩𝜔𝑏
= ⟨0|𝑉𝐴|𝑛⟩ ⟨𝑛|𝑉𝐵|0⟩ . (3.23)

A similar analysis holds also for higher order response functions. The
pole structure of the higher order quantities also conveys information
about the excited states via single and double residues.167,169,170

The derivation above holds for an exact state, a situation that is
never realized in common practice. However, response theory is also
applicable to approximate states. As noted by Norman, a response
theory treatment of molecular properties can be summarized into the
following four steps:14

1. Single out a quantity of interest that can be connected to molec-
ular properties. In our case, the time-averaged quasienergy;

2. Introduce a suitable parametrization of the time-dependent,
phase-separated wave function;

3. Devise the appropriate equation of motion, based on the time-
dependent Schrödinger equation, for the time-dependent wave
function parameters;

4. Identify response functions and response equations.

Thus, one can formulate and compute molecular properties based on
the approximate state ansätze of quantum chemistry. An interesting
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formulation of SCF response theory is the open-ended AO density
matrix-based approach presented by Thorvaldsen et al.173 By for-
mulating the perturbation-strength derivative of the time-averaged
quasienergy Lagrangian in terms of the AO density matrix, the au-
thors were able to formulate arbitrary order response functions in the
AO basis. The density matrix is the variational degree of freedom
and the response equations can be obtained by differentiation of the
time-dependent SCF (TDSCF) equation. The approach lends itself to
an efficient AO-based implementation,178,179 can fully leverage differ-
ent response parameters elimination schemes173,180 and is amenable
to an open-ended, recursive implementation.181–183 We will base our
derivation of SCF response theory for quantum/classical polarizable
Hamiltonians of this framework.

3.2 scf response theory for quantum/classical polar-
izable hamiltonians

The development of response theory for quantum/classical polariz-
able Hamiltonians has moved almost at the same pace as the models
themselves. An ample literature exists in the context of the PCM,184–190

polarizable MM models,34,191–193 and general QM/MM/Continuum
models.37–39

Solvent relaxation is an important point when formulat-
ing response properties. Solvation dynamics occurs on timescales
and through relaxation modes that are typical of the solvent molec-
ular structure and of the peculiar solute-solvent interactions. This is
clearly difficult to model with continuum models, since the entire fre-
quency spectrum of the permittivity 𝜀(𝜔) would be required.194–198

However, if one considers the initial steps of an electronic excita-
tion process, a Franck–Condon-like response of the solvent can be
assumed. Nuclear motions of the solute and solvent molecules alike
will not be able to follow the fast rearrangement of the electronic
density, therefore the corresponding part of the response will remain
frozen in the state immediately preceding the change. Such an as-
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sumption, albeit approximate, leads to the following partition of the
polarization vector:

𝑷 ≃ 𝑷fast + 𝑷slow. (3.24)

This is equivalent to considering only the asymptotic limits of the
solvent dielectric spectrum, i.e. the static 𝜀s and optical dielectric
constants 𝜀∞.29,30,199,200

The variational setting introduced in Section 2.4, offers a se-
ries of advantages also in the formulation of response theory. As
already noted, a classical counterpart to the Hellmann–Feynman the-
orem holds:

d𝑈pol

d𝐹
=

𝜕𝑈pol

𝜕𝐹
+

𝜕𝑈pol

𝜕s
𝜕s
𝜕𝐹

=
𝜕𝑈pol

𝜕𝐹
, (2.23 from Chapter 2)

which forms the basis for our formal development in Paper V.201

There we show how the variational polarization functional can suc-
cessfully achieve a transparent derivation of arbitrary order response
functions, when the fixed-cavity approximation for the PCM is as-
sumed. Here we report a summary of our findings in Paper V em-
ploying the supermatrix form of the classical functional as given in
Eq. (2.24). In the notation of Thorvaldsen et al., we introduce the
generalized free energy:

̃𝒢 = ̃ℰ + 1
2

𝑡p̃𝕍p̃ + 𝑡p̃Tr( ̃𝐬𝑫̃)
Tr
= [𝒉̃ + ̃𝑽 𝑡 + 1

2
𝑮̃𝛾(𝑫̃) − i

2
̃𝑻 ] 𝑫̃ + ̃𝐸xc[ ̃𝜌(𝑫̃)] + ℎnuc

+ 1
2

𝑡p̃𝕍p̃ + 𝑡p̃ ̃𝐬𝑫̃,

(3.25)

whose perturbation-strength derivatives at zero perturbation strength
will yield the desired response functions.
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To keep track of the number of chain rule applications, we will
denote higher-order derivatives of the KS generalized free energy
with the composite 𝑚𝑛, 𝑎𝑏𝑐 … superscript:

𝒢 𝑚𝑛,𝑎𝑏𝑐 = 𝜕𝑚+𝑛+3𝒢
𝜕(𝑫𝑇)𝑚𝜕p𝑛𝜕𝜖𝑎𝜕𝜖𝑏𝜕𝜖𝑐

= ℰ𝑚,𝑎𝑏𝑐 +
𝜕𝑚+𝑛+3𝑈pol

𝜕(𝑫𝑇)𝑚𝜕p𝑛𝜕𝜖𝑎𝜕𝜖𝑏𝜕𝜖𝑐
.

(3.26)

In this notation, the 𝑎𝑏𝑐 … indices denote the perturbations with
respect to which differentiation occurs. The index 𝑚 denotes the order
of differentiation with respect to the density matrix. 𝑛 denotes the
order of differentiation with respect to the polarization. The classical
interaction kernel 𝕍 might, in the most general scenario, depend on
the molecular geometry. In Paper V and in the following we ignore
this possibility and work under the simplifying assumption that 𝕍 is
independent of the nuclear positions. This goes under the name of
fixed-cavity approximation in the context of the PCM.184 Under this
simplifying assumption, the perturbation-strength derivative of the
classical functional will only include terms stemming from the linear
interaction term:

d
d𝜖𝑎

{𝑈pol}𝑇
{Tr}𝑇= 𝑡p̃ ̃𝐬𝑎𝑫̃, (3.27)

where the second term only involves derivatives of the source in-
tegrals. Moreover, in the general expression for the perturbation-
strength derivative of the polarization functional in Eq. (3.26), the 𝑚
and 𝑛 indices can only assume the values 0 or 1. In fact, the density
matrix dependence is at most linear in the polarization functional,
while the classical Hellmann–Feynman theorem ensures that the po-
larization appears at most linearly in ̃𝒢 00,𝑎:

̃𝒢 00,𝑎(𝑫̃, 𝜎̃, 𝑡) = ̃ℰ0,𝑎 + 𝑡p̃Tr( ̃𝐬𝑎𝑫̃)
Tr
= (𝒉̃𝑎 + ̃𝑽 𝑡,𝑎 + 1

2
𝑮̃𝛾,𝑎(𝑫̃) + ̃𝑭 𝛺𝑎

xc − i
2

̃𝑻 𝑎)𝑫̃

+ ℎ𝑎
nuc + 𝑡p̃ ̃𝐬𝑎𝑫̃.

(3.28)
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The integral derivative matrices involved in the previous expression
were introduced in ref. 173. Further perturbation-strength differen-
tiations and evaluation at zero perturbation strength will yield the
desired response functions:

𝐿𝑎 {Tr}𝑇= 𝒢 00,𝑎 − 𝑺𝑎𝑾

𝐿𝑎𝑏 {Tr}𝑇= 𝒢 00,𝑎𝑏 + 𝒢 10,𝑎𝑫𝑏 + 𝒢 01,𝑎p𝑏

− 𝑺𝑎𝑏𝑾 − 𝑺𝑎𝑾 𝑏

𝐿𝑎𝑏𝑐 {Tr}𝑇= 𝒢 00,𝑎𝑏𝑐 + 𝒢 10,𝑎𝑐𝑫𝑏 + 𝒢 10,𝑎𝑏𝑫𝑐 + 𝒢 20,𝑎𝑫𝑏𝑫𝑐

+ 𝒢 10,𝑎𝑫𝑏𝑐 + 𝒢 11,𝑎𝑫𝑏p𝑐

+ 𝒢 01,𝑎𝑐p𝑏 + 𝒢 01,𝑎𝑏p𝑐 + 𝒢 01,𝑎p𝑏𝑐 + 𝒢 11,𝑎p𝑏𝑫𝑐

− 𝑺𝑎𝑏𝑐𝑾 − 𝑺𝑎𝑏𝑾 𝑐 − 𝑺𝑎𝑐𝑾 𝑏 − 𝑺𝑎𝑾 𝑏𝑐

(3.29a)

(3.29b)

(3.29c)

and similarly for higher orders.
The governing equations for the perturbed polarization densities

are obtained in complete analogy with the handling of pertubed den-
sity matrices described in ref. 173. Denoting by the superscript 𝑏𝑁 a
tuple of simultaneous perturbations, the polarization can be decom-
posed into frequency components p𝑏𝑁

𝜔 . Similarly to the treatment of
the perturbed density matrices, we introduce a partition of the fre-
quency components of the polarization into homogeneous (H) and
particular (P) terms:

p𝑏𝑁
𝜔 = p𝑏𝑁

P + p𝑏𝑁
H , (3.30)

and we thus get the following system of equations:

⎧⎪
⎨
⎪⎩

𝕍 p𝑏𝑁
H + Tr𝐬𝑫𝑏𝑁

H = 0

𝕍 p𝑏𝑁
P + Tr𝐬𝑫𝑏𝑁

P = 𝕊(𝑛−1)
𝜔 .

(3.31a)

(3.31b)

𝕊(𝑛−1)
𝜔 contains all terms that depend on lower order density matrices

and differentiated source integrals. The term 𝕊(𝑛−1)
𝜔 always contains

at least a first derivative of the source integrals and is thus zero if the
basis set is independent of the perturbation tuple under consideration.
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Consequently, the particular term of the polarization is nonzero if
and only if the basis set depends on the external perturbation.

Response equations can be obtained by differentiating the TDSCF
equation with respect to the perturbation tuple 𝑏𝑁:173,181

[𝑬[2] − 𝜔𝑏𝑁
𝑺[2]] 𝑿𝑏𝑁 = 𝑴𝑏𝑁

RHS, (3.32)

where the generalized Hessian 𝑬[2] and metric 𝑺[2] matrices were
introduced and are defined by the transformations of the response
parameters 𝑿𝑏𝑁 they induce:178,179

𝑬[2]𝑿𝑏𝑁 = 𝑮KS([𝑿𝑏𝑁, 𝑫]𝑺)𝑫𝑺 − 𝑺𝑫𝑮KS([𝑿𝑏𝑁, 𝑫]𝑺)
+ 𝑭 [𝑿𝑏𝑁, 𝑫]𝑺𝑺 − 𝑺[𝑿𝑏𝑁, 𝑫]𝑺𝑭

+ 𝜎𝑏𝑁
H 𝝋𝑫𝑺 − 𝑺𝑫𝝋𝜎𝑏𝑁

H

𝑺 [2]𝑿𝑏𝑁 = 𝑺[𝑿𝑏𝑁, 𝑫]𝑺𝑺.

(3.33a)

(3.33b)

The generalized Hessian matrix 𝑬[2] includes two types of classical
terms: implicit and explicit. Implicit terms are those included in the
zeroth-order Fock matrix, 𝑭. The last two terms in Eq. 3.33a are ex-
plicit terms, as they explicitly involve the 𝑁-th order homogeneous
polarization variational density. The nonequilibrium response frame-
work needed in continuum models when dealing with frequency-
dependent properties,99,187 will affect the explicit terms in Eq. (3.33a).
These are evaluated by making use of the optical permittivity 𝜀∞ in
the polarization equations (3.31a) and (3.31b). The right-hand side
in the response equation only includes terms that depend on partic-
ular contributions up to the desired order or lower-order perturbed
variational densities:181

𝑴𝑏𝑁
RHS = [(𝓕̃ − i

2
̃𝑺 d
d𝑡 ) 𝑫̃ ̃𝑺]

⊖,𝑏𝑁

P
, (3.34)

where 𝓕 is the generalized KS matrix, see ref. 173 for details.
A direct solution of the response equation (3.32) by inversion is

not feasible due to the size of the [𝑬[2] − 𝜔𝑏𝑁
𝑺[2]] matrix. Subspace

iteration methods are usually employed and the solution is achieved
iteratively by enlarging a projection subspace of trial vectors.202–205
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These methods can be implemented efficiently and in matrix-free
form since the linear transformations 𝑬[2]𝑿𝑏𝑁 and 𝑺[2]𝑿𝑏𝑁 have
known forms only involving integral and (perturbed) density ma-
trices. Moreover, Jacobi precondinioting of the iterations is usually
sufficiently robust and efficient, due to the diagonal dominance of
the generalized Hessian.



4
Electron Correlation and Solvation

Potius sero quam numquam
— Titus Livius, Ab Urbe Condita

I will present results on the formulation of quantum/classical po-
larizable models when the quantum part of the system includes a
many-body description of electron correlation either by a MBPT,
CC or hybrid approach. The contents of this Chapter are the result
of an ongoing collaboration with prof. T. Daniel Crawford (Virginia
Tech) and Dr. Andrew C. Simmonett (NIH).

I will leverage the variational formulation of quantum/classical
polarizable Hamiltonians described in Section 2.4. This is an element
of novelty with respect to the existing literature. I will show how a
fully variational framework enables transparent derivations of MBPT
and CC theory, encompassing previous work206–223 and solving some
inconsistencies in the formulation of MBPT noted by Ángyán.224,225

Sections 4.1 and 4.2 will introduce the effective CC Lagrangian
and the relevant notation for the source terms in the classical energy
functional, respectively. In Section 4.3 I will derive the governing
equation for the effective Lagrangian, showing how previous work on
continuum206,207,209 and explicit models220,222 can easily be derived
in the variational framework.

The second part of this Chapter will be devoted to the derivation of
MBPT for quantum/classical polarizable Hamiltonians. I will exploit
the CC ansatz for the wave function and formulate MBPT in terms of

53
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the effective CC Lagrangian, an approach guaranteeing term-by-term
size-extensivity.

Iterative and noniterative approximations to the CCSD and CCSDT
models will be the subject of Section 4.5 where the equations gov-
erning the CC2 and CC3 models will be derived. Eventually, I will
describe schemes for the noniterative inclusion of the effect of con-
nected triples excitations on top of the CCSD wave function. The
symmetric and asymmetric (T) corrections will be derived.

Notation

For ease of reference, I will repeat some of the notational conventions
introduced in Chapter 1 here. The cluster operator at truncation level
ℳ is:

𝑇 =
ℳ

∑
𝑢=1

𝑇𝑢 =
ℳ

∑
𝑢=1

∑
𝜇𝑢

𝑡𝜇𝑢
𝜏𝜇𝑢

, (1.24 from Chapter 1)

where 𝑡𝜇𝑢
and 𝜏𝜇𝑢

are the cluster amplitudes and cluster operators for
the 𝜇𝑢-th excited determinant at the 𝑢-th excitation level, respectively.
The similarity transformed counterpart of the operator 𝑂 is denoted
by 𝑂:

𝑂 = e−𝑇𝑂e𝑇. (1.27 from Chapter 1)

We recall that hermiticity of 𝑂 is not preserved by the similarity trans-
formation. Manipulation of similarity transformed operators involves
the use of their Baker–Campbell–Hausdorff expansions:

𝑂 = 𝑂 + 𝑂̃

= 𝑂 + [𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ] + …
(1.28 from Chapter 1)

since we are concerned with one- and two-electron operators only,
such expansions will truncate after the third and fifth terms, respec-
tively.53 The similarity transformation by means of the singles cluster
operator only, i.e. the 𝑇1-transformation, will be denoted by a ”check”
on top of the operator:

𝑂̌ = e−𝑇1𝑂e𝑇1. (1.43 from Chapter 1)
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The 𝑇1-transformation preserves the particle rank of the operator 𝑂,
see Appendix A for details. Finally, the 𝑢-th excited component of
the coupled cluster left state will be denoted as:

⟨ ̄𝑡𝑢| = ∑
𝜇𝑢

̄𝑡𝜇𝑢
⟨𝜇𝑢| , (1.35 from Chapter 1)

where ̄𝑡𝜇𝑢
are Lagrange multipliers.

4.1 effective coupled cluster lagrangian

Our purpose in this Section is to derive an effective CC Lagrangian
that takes into account the coupling of the correlated electronic state
with the classical polarizable environment. This can be readily ob-
tained94 by coupling the usual Lagrangian in Eq. (1.34) with the
classical polarization functional in Eq. (2.20). Care must however be
taken in the definition of the classical variational degrees of freedom
as to not erroneously include contributions from the reference state
in the subsequent correlated treatment.

Once again, let us assume that the reference state is a closed-shell
HF determinant. Further, we assume that the reference determinant
was optimized in the presence of the classical polarizable environ-
ment. Then the polarization degree of freedom corresponding to the
environment satisfies:

𝕍 pHF + sHF = 0 (4.1)

and corresponds to the reference reaction field. In the subsequent
correlated treatment one can separate the reaction field into reference
and correlated components:

ptot = pHF + p (4.2)

and similarly for the source term:

s(𝑡, ̄𝑡)ℳ = sHF + sN(𝑡, ̄𝑡)ℳ

= ⟨HF|s|HF⟩ + ⟨HF| ̃s|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|s|HF⟩ .
(4.3)
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The BCH expansions of the source term has been rewritten as:

s = s + ̃s = s + [s, 𝑇 ] + 1
2

[[s, 𝑇 ], 𝑇 ], (4.4)

taking advantage of the fact that s is a nondiagonal, one-electron oper-
ators and hence its commutator expansion truncates at the third term.
Moreover, normal-ordering of the operators has been introduced.54,65

This is equivalent to applying a shift to the correlation part of the
source term one-electron operators to remove the reference source
terms:

sN(𝑡, ̄𝑡)ℳ = ⟨HF| ̃s|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|s|HF⟩

= ⟨HF|s − sHF|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|s − sHF|HF⟩ .

(4.5)

Eventually, the polarization functional can be rewritten as:

𝑈pol = 1
2

(𝑡pHF + 𝑡p)𝕍 (pHF + p)

+ (𝑡pHF + 𝑡p)(sHF + sN(𝑡, ̄𝑡)ℳ)

= 1
2

𝑡pHF𝕍 pHF + 𝑡pHFsHF + 1
2

𝑡pHF𝕍 p + 1
2

𝑡p𝕍 pHF

+ 𝑡pHFsN(𝑡, ̄𝑡)ℳ + 𝑡psHF + 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)ℳ

= 𝑈 ref
pol + 1

2
𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)ℳ + 𝑡pHFsN(𝑡, ̄𝑡)ℳ.

(4.6)

The reference polarization energy 𝑈 ref
pol still appears among the terms

in the functional but will obviously not enter in the optimization of
the CC wave function. One can then write the effective Lagrangian
as:

ℒeff(𝑡, ̄𝑡, p)ℳ = ⟨HF|𝐻0|HF⟩ +
ℳ

∑
𝑢=1

⟨𝑡𝑢|𝐻0|HF⟩

+ 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)ℳ

+ 𝑡pHFsN(𝑡, ̄𝑡)ℳ + 𝑈 ref
pol

(4.7)
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In accordance with previous work,207,209 the Hamiltonian 𝐻0 is aug-
mented with the 𝑡pHFsN(𝑡, ̄𝑡) term to yield the perturbation-to-the-
energy (PTE) Hamiltonian – 𝐻 – and eventually the perturbation-to-
the-energy-and-the-density (PTED) Lagrangian:210–214,225

ℒeff(𝑡, ̄𝑡, p)ℳ = PTEℒeff(𝑡, ̄𝑡)ℳ + 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)ℳ, (4.8)

where the PTE Lagrangian has been introduced:

PTEℒeff(𝑡, ̄𝑡)ℳ = ⟨HF|𝐻|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|𝐻|HF⟩ + 𝑈 ref
pol. (4.9)

As noted by Cammi for the implicit PCM model, the PTE Hamilto-
nian is computed in MP-partitioned form by employing the “solvated”
orbitals and Fock matrix:

𝐻 = 𝐹 + 𝛷. (4.10)

𝐹 is a diagonal one-electron operator and 𝛷 is the fluctuation poten-
tial. The simple nature of the Fock operator lets us re-express the
PTE Lagrangian as follows:

PTEℒeff(𝑡, ̄𝑡)ℳ = 𝐺0 +
ℳ

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢
+ ⟨HF|𝛷|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|𝛷|HF⟩

(4.11)

where 𝐺0 = 𝐸0 + 𝑈 ref
pol is the reference free energy.

4.2 source terms in the classical energy functional

Let us take a closer look at the source term in the classical energy
functional. It is important to single out which terms contribute in the
various expectation values where the similarity-transformed sources
Eq. (4.4) are involved. This analysis is carried out in detail in Ap-
pendix A.2 and we report here the final results for the coupled cluster
with single substitutions (CCS), CCSD and CCSDT models.
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For the CCS model (ℳ = 1) one has:

sN(𝑡, ̄𝑡)CCS = ⟨HF|[s, 𝑇1]|HF⟩ + ⟨ ̄𝑡1| ̌s|HF⟩
= ⟨HF|[s, 𝑇1]|HF⟩ + ⟨ ̄𝑡1|s|HF⟩

+ ⟨ ̄𝑡1|[s, 𝑇1]|HF⟩ + 1
2

⟨ ̄𝑡1|[[s, 𝑇1], 𝑇1]|HF⟩
(4.12)

while for the CCSD model (ℳ = 2):

sN(𝑡, ̄𝑡)CCSD = sN(𝑡, ̄𝑡)CCS + ⟨ ̄𝑡1|[s, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|[s, 𝑇2]|HF⟩ + ⟨ ̄𝑡2|[[s, 𝑇1], 𝑇2]|HF⟩

(4.13)

Eventually, within the CCSDT model (ℳ = 3) four more terms are
added:

sN(𝑡, ̄𝑡)CCSDT = sN(𝑡, ̄𝑡)CCSD + ⟨ ̄𝑡2|[s, 𝑇3]|HF⟩
+ ⟨ ̄𝑡3|[s, 𝑇3]|HF⟩

+ 1
2

⟨ ̄𝑡3|[[s, 𝑇2], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[[s, 𝑇1], 𝑇3]|HF⟩

(4.14)

4.3 governing equations and their approximations

Differentiation of the effective Lagrangian in Eq. (4.8)
with respect to the variational parameters 𝑡𝜇𝑖

, ̄𝑡𝜇𝑖
and p yields the

PTED-CC equations:

𝛺𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩ + 𝑡p ⟨𝜇𝑞|s|HF⟩ = 0

𝛺̄𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩

+ 𝑡p ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[s, 𝜏𝜇𝑞
]|HF⟩

+ 𝑡p
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[[s, 𝑇 ], 𝜏𝜇𝑞
]|HF⟩ = 0

𝛺p(𝑡, ̄𝑡, p) = 𝕍 p + sN(𝑡, ̄𝑡)ℳ = 0

(4.15a)

(4.15b)

(4.15c)
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A coupling of the amplitudes and multipliers equations is introduced
by the presence of the sN(𝑡, ̄𝑡)ℳ expectation value in the polariza-
tion equation. This requires a proper macroiteration/microiteration
self-consistency scheme for its implementation.207,208 As a conse-
quence, a single-point PTED-CC will suffer from a 2× prefactor in
its computational cost with respect to an in vacuo CC calculation.

It is thus convenient to devise approximations that are able
to simplify the Lagrangian and the governing equations by break-
ing or weakening the coupling. While Eq. (4.15c) is directly cou-
pled to the multipliers equation, since the source terms directly de-
pends on amplitudes and multipliers, it is only indirectly coupled to
the amplitudes equation, where only the polarization enters. More-
over, the leading terms in the correlated source operator expectation
value prominently involve the singles cluster operator and the sin-
gles multiplier state. Three approximations have currently been pro-
posed: perturbation-to-the-energy with singles substitutions (PTES),
perturbation-to-the-energy with approximate singles substitutions
(PTE(S)) and perturbation-to-the-energy (PTE).

PTES Scheme

The first approximate scheme* truncates the source term to its CCS *Thanks to prof. Marco Caricato
(University of Kansas) for clari-
fying some details of his original
derivation of the PTES scheme.

expectation value, yielding the effective Lagrangian:209,226

PTESℒeff(𝑡, ̄𝑡, p)ℳ = PTEℒeff(𝑡, ̄𝑡)ℳ

+ 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)CCS
(4.16)
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and the corresponding governing equations:

𝛺𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩

+ 𝑡p ⟨𝜇𝑞| ̌s|HF⟩ 𝛿𝜇𝑞𝜇1
= 0

𝛺̄𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩

+ 𝑡p ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p ⟨ ̄𝑡1|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p ⟨ ̄𝑡1|[[s, 𝑇1], 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

= 0

𝛺p(𝑡, ̄𝑡, p) = 𝕍 p + sN(𝑡, ̄𝑡)CCS = 0

(4.17a)

(4.17b)

(4.17c)

These equations are, however, still coupled due to the presence of the
multipliers in the CCS source term in the polarization equation. To
break the coupling, we split the system of equations (4.17) into two
systems of equations, one for the amplitudes:

PTES𝛺𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩

+ 𝑡p ⟨𝜇𝑞| ̌s|HF⟩ 𝛿𝜇𝑞𝜇1
= 0

PTES𝛺p(𝑡, p) = 𝕍 p + ⟨HF| ̌sN|HF⟩ = 0

(4.18a)

(4.18b)

where we further approximate the source term sN(𝑡, ̄𝑡)CCS with its
multiplier-independent part:

sN(𝑡, ̄𝑡)CCS ≃ ⟨HF|[s, 𝑇1]|HF⟩ = ⟨HF| ̌sN|HF⟩ , (4.19)

and one for the multipliers:

PTES𝛺̄𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩

+ 𝑡p ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p ⟨ ̄𝑡1|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p ⟨ ̄𝑡1|[[s, 𝑇1], 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

= 0
PTES𝛺p(𝑡, ̄𝑡, p) = 𝕍 p + sN(𝑡, ̄𝑡)CCS = 0

(4.20a)

(4.20b)

where no truncation for the source term is introduced.
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Both the amplitudes and multipliers equations are formally
identical to the PTED equations (4.15) but are coupled to approxi-
mate polarization equations. For the amplitudes equation (4.18a), one
computes the polarization from a modified CCS expectation value of
the source term. This adds a negligible 𝑂(𝑁5) term to the iterative
solution of the equations. The amplitudes equations are instead cou-
pled to the polarization obtained using the full CCS expectation value
of the source term. This adds another 𝑂(𝑁5) step to the iterative pro-
cedure, which is, overall, negligible. Let us notice that this scheme is
not consistent with electrostatics, as the amplitudes and multipliers
are optimized in the presence of two different polarizations.

PTE(S) Scheme

The PTES approximation can be brought one step further, by trun-
cating the CCS expectation value to its multiplier-independent term
already in the effective Lagrangian. The coupling between the am-
plitudes and multipliers is broken, while still improving upon the
reference reaction field with correlated contributions.209 The effec-
tive Lagrangian would then read as:

PTE(S)ℒeff(𝑡, ̄𝑡, p)ℳ = PTEℒeff(𝑡, ̄𝑡)ℳ

+ 1
2

𝑡p𝕍 p + 𝑡p ⟨HF| ̌sN|HF⟩
(4.21)

which uncouples all equations:

PTE(S)𝛺𝜇𝑞
(𝑡, ̄𝑡) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩ = 0

PTE(S)𝛺̄𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩

+ 𝑡p ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

= 0
PTE(S)𝛺p(𝑡, ̄𝑡, p) = 𝕍 p + ⟨HF| ̌sN|HF⟩ = 0

(4.22a)

(4.22b)

(4.22c)

The amplitude equations are formally equivalent to those derived in
the PTE scheme, vide infra. The equations for the multipliers are also
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formally equivalent to the PTE equations, apart from the equation
determining the singles multipliers which features an additional term
involving the polarization: 𝑡p ⟨HF|[s, 𝜏𝜇𝑞

]|HF⟩ 𝛿𝜇𝑞𝜇1
. This term is

not, however, coupled to the other equations given that p is fixed
once the singles amplitudes have been determined.

Practical implementation of the PTE(S) scheme will solve the PTE-
like amplitude equation, form the source term ⟨HF| ̌sN|HF⟩, solve for
the polarization degrees of freedom and calculate the polarization
energy as a correction to the CC energy. Only when a first-order
molecular property, such as the molecular gradient, is needed, will
the multipliers equations need to be solved. In other words, only the
𝑇1-dependent part of the CC density is used to define the classical
sources.

PTE Scheme

Complete neglect of the polarization functional leads to the most
drastic approximation to the full quantum/classical polarizable effec-
tive Lagrangian, the PTE scheme. This is equivalent to differentiating
the polarization-independent PTE effective Lagrangian:

PTE𝛺𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

𝑡𝜇𝑞
+ ⟨𝜇𝑞|𝛷|HF⟩ = 0

PTE𝛺̄𝜇𝑞
(𝑡, ̄𝑡, p) = 𝜖𝜇𝑞

̄𝑡𝜇𝑞
+ ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝛷, 𝜏𝜇𝑞
]|HF⟩ = 0

(4.23a)

(4.23b)

The PTE scheme naturally preserves the scaling of the underlying
CC method, since no coupling between the CC amplitudes and mul-
tipliers equations is introduced. The scheme only requires access to
a reference state optimized in the presence of the classical medium
and is thus readily implemented. The PTE model offers an efficient
approximation to the full PTED model with a computational cost
comparable to that of in vacuo CC theory.210,227,228

However, the polarization included in the correlation treatment is
the same as for the reference determinant, an approximation which
appears questionable from the point of view of classical electrostatics.
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There is, in fact, no relaxation of the reference reaction field due to
the correlated description of the electronic density.

4.4 mbpt for quantum/classical polarizable hamil-
tonians

We will now develop a perturbative many-body expansion of the ef-
fective PTED-CC Lagrangian. The use of a CC ansatz for the wave
function ensures term-by-term size-extensivity of the energy at all
orders.53 The fluctuation potential 𝛷 is assumed as the perturbation,
hence it will be considered of order 1: 𝛷 = 𝑂(1). We still assume a
closed-shell HF reference function and perturbation orders will be
counted accordingly. A superscript index in square brackets - [𝑖] -
will denote an 𝑖-th order contribution. We further assume that real
wave functions are used.

The structure of the stationarity conditions, Eqs. (4.15a) and (4.15b),
already shows that 𝑡[0]

𝜇𝑢 = 0, ∀𝑢 and ̄𝑡[0]
𝜇𝑢 = 0, ∀𝑢. Thus cluster opera-

tors can be of order 1 and higher. We introduce the following notation
for the 𝑖-th order cluster operators and multipliers states:

𝑇 [𝑖]
𝑢 = ∑

𝜇𝑢

𝑡[𝑖]
𝜇𝑢𝜏𝜇𝑢

, ⟨ ̄𝑡[𝑖]
𝑢 | = ∑

𝜇𝑢

̄𝑡[𝑖]
𝜇𝑢 ⟨𝜇𝑢| (4.24)

The PTED-CC equations are expanded in orders of the perturba-
tion and terms are collected order by order. The use of an effective,
variational Lagrangian implies the validity of the 2𝑛 + 1 rule for the
amplitudes 𝑡𝜇𝑢

and polarization p and of the 2𝑛 + 2 rule for the multi-
pliers ̄𝑡𝜇𝑢

. We can thus derive energy corrections up to fifth order by
means of the amplitudes and polarization up to and including second
order terms and the multipliers up to and including second order.

The polarization equation couples to the multipliers and ampli-
tudes equations via the source term. Its perturbative expansion will
be given as:

sN(𝑡, ̄𝑡)ℳ = s[0]
N + s[1]

N + s[2]
N + … (4.25)

and correspondingly for the polarization:

𝕍 p[𝑖] + s[𝑖]
N = 0 (4.26)
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The source operator s will be considered as zeroth-order in the per-
turbation. The order of the contributions to sN(𝑡, ̄𝑡)ℳ will be solely
determined by the amplitudes and multipliers. From the structure of
(4.15c), it is already clear that sN(𝑡, ̄𝑡)ℳ is at least first order in the
fluctuation potential:

sN(𝑡, ̄𝑡)ℳ = s[1]
N + s[2]

N + … (4.27)

which also implies:

𝕍 p[0] + s[0]
N = 0 ⇒ p[0] = 0 (4.28)

4.4.1 First order equations

amplitudes

𝛺[1]
𝜇𝑞 = 𝜖𝜇𝑞

𝑡[1]
𝜇𝑞 + ⟨𝜇𝑞|𝛷|HF⟩ + 𝑡p[1] ⟨𝜇𝑞|s|HF⟩ 𝛿𝜇𝑞𝜇1

= 0 (4.29)

Explicitly considering the singles, doubles and triples excitation man-
ifolds:

𝛺[1]
𝜇1 = 𝜖𝜇1

𝑡[1]
𝜇1 + 𝑡p[1] ⟨𝜇1|s|HF⟩ = 0

𝛺[1]
𝜇2 = 𝜖𝜇2

𝑡[1]
𝜇2 + ⟨𝜇2|𝛷|HF⟩ = 0

𝛺[1]
𝜇3 = 𝜖𝜇3

𝑡[1]
𝜇3 = 0

(4.30a)

(4.30b)

(4.30c)

Having chosen a closed-shell HF as reference, the term ⟨𝜇1|𝛷|HF⟩
is zero in the first-order singles equation. However, due to the quan-
tum/classical coupling, there will still be nonzero first-order singles
amplitudes.

multipliers

𝛺̄[1]
𝜇𝑞 = 𝜖𝜇𝑞

̄𝑡[1]
𝜇𝑞 + ⟨HF|[𝛷, 𝜏𝜇𝑞

]|HF⟩

+ 𝑡p[1] ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

= 0

and expanding the commutators:

𝛺̄[1]
𝜇𝑞 = 𝜖𝜇𝑞

̄𝑡[1]
𝜇𝑞 + ⟨HF|𝛷|𝜇𝑞⟩ + 𝑡p[1] ⟨HF|s|𝜇𝑞⟩ 𝛿𝜇𝑞𝜇1

= 0 (4.31)



4.4 mbpt for quantum/classical polarizable hamiltonians 65

This clearly shows that Eq. (4.29) and Eq. (4.31) are complex con-
jugates. Under the assumption of real wave functions we can also
conclude that:

𝑡[1]
𝜇𝑢 = ̄𝑡[1]

𝜇𝑢 , ∀𝑢 (4.32)

Thus, as for the amplitudes, despite the closed-shell HF reference,
the singles multipliers will already appear in first order, due to the
quantum/classical coupling. Moreover, as is the case in vacuo, there
are neither triples amplitudes nor multipliers to first order: 𝑡[1]

𝜇3 =
̄𝑡[1]
𝜇3 = 0.

polarization

𝕍 p[1] + ⟨HF|[s, 𝑇 [1]
1 ]|HF⟩ + ⟨ ̄𝑡[1]

1 |s|HF⟩ = 0 (4.33)

Under the assumption of real wave functions, the equivalence of first
order amplitudes and multipliers yields:

⟨HF|[s, 𝑇 [1]
1 ]|HF⟩ = ⟨ ̄𝑡[1]

1 |s|HF⟩ (4.34)

so that the first order polarization equation becomes:

𝕍 p[1] + 2 ⟨HF|[s, 𝑇 [1]
1 ]|HF⟩ = 0 (4.35)

4.4.2 Second order equations

amplitudes

𝛺[2]
𝜇𝑞 = 𝜖𝜇𝑞

𝑡[2]
𝜇𝑞 + ⟨𝜇𝑞|[𝛷, 𝑇 [1]]|HF⟩

+ 𝑡p[2] ⟨𝜇𝑞|s|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p[1] ⟨𝜇𝑞|[s, 𝑇 [1]]|HF⟩ = 0

(4.36)

As already noted elsewhere,53,73 the second term in Eq. (4.36) can
involve no higher than triple excitations. Moreover, the triples first
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appear to second order and are not directly affected by the quan-
tum/classical coupling, as can be seen by explicitly considering the
singles, doubles and triples excitation manifolds:

𝛺[2]
𝜇1 = 𝜖𝜇1

𝑡[2]
𝜇1 + ⟨𝜇1|[𝛷, 𝑇 [1]]|HF⟩ + 𝑡p[2] ⟨𝜇1|s|HF⟩

+ 𝑡p[1] ⟨𝜇1|[s, 𝑇 [1]]|HF⟩ = 0

𝛺[2]
𝜇2 = 𝜖𝜇2

𝑡[2]
𝜇2 + ⟨𝜇2|[𝛷, 𝑇 [1]]|HF⟩

+ 𝑡p[1] ⟨𝜇2|[s, 𝑇 [1]
2 ]|HF⟩ = 0

𝛺[2]
𝜇3 = 𝜖𝜇3

𝑡[2]
𝜇3 + ⟨𝜇3|[𝛷, 𝑇 [1]

2 ]|HF⟩ = 0

(4.37a)

(4.37b)

(4.37c)

multipliers

𝛺̄[2]
𝜇𝑞 = 𝜖𝜇𝑞

̄𝑡[2]
𝜇𝑞 + ⟨HF|[[𝛷, 𝑇 [1]], 𝜏𝜇𝑞

]|HF⟩ +
ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝜏𝜇𝑞

]|HF⟩

+ 𝑡p[2] ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

+ 𝑡p[1]
ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[s, 𝜏𝜇𝑞

]|HF⟩ = 0

Since first-order singles amplitudes are now nonzero, the double
commutator term will contribute to the singles multipliers equation.
This is markedly in contrast with the derivation in vacuo, see Section
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1.4.53,73 For the singles, doubles and triples manifolds the multipliers
equations to second order are given as:

𝛺̄[2]
𝜇1 = 𝜖𝜇1

̄𝑡[2]
𝜇1 + ⟨HF|[[𝛷, 𝑇 [1]

1 ], 𝜏𝜇1
]|HF⟩ +

ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝜏𝜇1

]|HF⟩

+ 𝑡p[2] ⟨HF|[s, 𝜏𝜇1
]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
1 |[s, 𝜏𝜇1

]|HF⟩ = 0

𝛺̄[2]
𝜇2 = 𝜖𝜇2

̄𝑡[2]
𝜇2 +

ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝜏𝜇2

]|HF⟩

+ 𝑡p[1]
ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[s, 𝜏𝜇2

]|HF⟩ = 0

𝛺̄[2]
𝜇3 = 𝜖𝜇3

̄𝑡[2]
𝜇3 +

ℳ

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝜏𝜇3

]|HF⟩ = 0

(4.38a)

(4.38b)

(4.38c)

Koch et al. showed that, assuming real wave functions, the in vacuo
second order amplitudes and multipliers equations are the complex
conjugates of each other for the singles, doubles and triples mani-
folds.53,54,73 This symmetry is a consequence of choosing a closed-
shell HF determinant as reference function54 and is broken by the
quantum/classical coupling. As an example, consider the triples mul-
tipliers equation. In vacuo one has:

𝜖𝜇3
𝑡[2]
𝜇3 = − ⟨𝜇𝑖|[𝛷, 𝑇 [1]

2 ]|HF⟩

= − ⟨ ̄𝑡[1]
2 |[𝛷, 𝜏𝜇3

]|HF⟩ = 𝜖𝜇3
̄𝑡[2]
𝜇3 ,

(1.40 from Chapter 1)

whereas now the first-order singles multiplier state also contributes
to the second-order triples multipliers.

polarization

𝕍 p[2] + ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩ + ⟨ ̄𝑡[2]

1 |s|HF⟩

+ ⟨ ̄𝑡[1]
1 |[s, 𝑇 [1]]|HF⟩ + ⟨ ̄𝑡[1]

2 |[s, 𝑇 [1]
2 ]|HF⟩ = 0

(4.39)

There are no explicit contributions from the triples and thus the
CCSD polarization is correct through fourth order in the fluctuation
potential.
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4.4.3 Free energies up to fifth order

From the expansion of the effective Lagrangian we can obtain free
energy corrections up to the desired order. Given the variational na-
ture of the Lagrangian, only terms fulfilling the 2𝑛 + 1 and 2𝑛 + 2
rules will appear in the free energy corrections. To zeroth-order all
variational parameters are zero. To first order we thus have:

𝐺[1] = ⟨HF|𝛷|HF⟩ . (4.40)

The reference energy can thus be recovered as usual:

𝐺HF = 𝐺[0] + 𝐺[1], (4.41)

where 𝐺[0] includes the quantum/classical coupling.
We introduce the following notation:

s[𝑚]
N (𝑡[𝑝], ̄𝑡[𝑞]), (4.42)

for a source term of 𝑚-th order formed by amplitudes up to and
including 𝑝-th order and by multipliers up to and including 𝑞-th order.
Red boxes will appear around quantum/classical coupling terms that
involve the triples manifold.

The second order energy correction will be formed in-
cluding first order amplitudes and polarization, while using zeroth
order multipliers:

𝐺[2] = ⟨HF|[𝛷, 𝑇 [1]]|HF⟩

+ 1
2

𝑡p[1]𝕍 p[1] + 𝑡p[1]s[1]
N (𝑡[1], ̄𝑡[0])

= 𝐸[2] + 1
2

𝑡p[1]𝕍 p[1] + 𝑡p[1] ⟨HF|[s, 𝑇 [1]
1 ]|HF⟩

= 𝐸[2]

(4.43)

The polarization terms were eliminated by virtue of Eq. (4.35). Thus,
at least formally, 𝐺[2] has the same expression as in vacuo and is con-
sistent with both electrostatics and perturbation theory. We remark
that this would not be the case if one had based the development of
MBPT on the use of a nonlinear Hamiltonian.224
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The third order energy correction will be formed includ-
ing first order amplitudes, multipliers and polarization:

𝐺[3] =
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝑇 [1]]|HF⟩ + 𝑡p[1]s[2]

N (𝑡[1], ̄𝑡[1])

= 𝐸[3] + 𝑡p[1] ⟨ ̄𝑡[1]
1 |[s, 𝑇 [1]]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [1]

2 ]|HF⟩

(4.44)

The fourth order energy corrections will be formed in-
cluding second order amplitudes and polarization, while using first
order multipliers:

𝐺[4] =
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝑇 [2]]|HF⟩

+
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |1

2
[[𝛷, 𝑇 [1]], 𝑇 [1]]|HF⟩ + 1

2
𝑡p[2]𝕍 p[2]

+ 𝑡p[2]s[2]
N (𝑡[2], ̄𝑡[1]) + 𝑡p[1]s[3]

N (𝑡[2], ̄𝑡[1])

(4.45)

The first two terms are recognized to be equal to 𝐸[4], so that:

𝐺[4] = 𝐸[4] + 1
2

𝑡p[2]𝕍 p[2] + 𝑡p[2] ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩

+ 𝑡p[2] ⟨ ̄𝑡[1]
1 |[s, 𝑇 [1]]|HF⟩ + 𝑡p[2] ⟨ ̄𝑡[1]

2 |[s, 𝑇 [1]
2 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
1 |[s, 𝑇 [2]

1 + 𝑇 [2]
2 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

2 + 𝑇 [2]
3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
1 |1

2
[[s, 𝑇 [1]

1 ], 𝑇 [1]
1 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[[s, 𝑇 [1]

1 ], 𝑇 [1]
2 ]|HF⟩

(4.46)
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Employing Eq. (4.39), the terms involving the second order polariza-
tion can be simplified further:

𝐺[4] = 𝐸[4] + 1
2

𝑡p[2] ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩

+ 1
2

𝑡p[2]
(⟨ ̄𝑡[1]

1 |[s, 𝑇 [1]]|HF⟩ + ⟨ ̄𝑡[1]
2 |[s, 𝑇 [1]

2 ]|HF⟩)

+ 1
2

𝑡p[2]
(⟨ ̄𝑡[1]

1 |[s, 𝑇 [1]]|HF⟩ + ⟨ ̄𝑡[1]
2 |[s, 𝑇 [1]

2 ]|HF⟩)

+ 𝑡p[1] ⟨ ̄𝑡[1]
1 |[s, 𝑇 [2]

1 + 𝑇 [2]
2 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

2 + 𝑇 [2]
3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
1 |1

2
[[s, 𝑇 [1]

1 ], 𝑇 [1]
1 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[[s, 𝑇 [1]

1 ], 𝑇 [1]
2 ]|HF⟩

(4.47)

Notice that the term 1
2

𝑡p[2] ⟨ ̄𝑡[2]
1 |s|HF⟩ has not been included, since

it would violate the 2𝑛 + 2 rule for the multipliers. Moreover, there
is only one term that involves both the triples amplitudes and the
polarization.

Eventually, the fifth order energy correction is formed
including second order amplitudes, multipliers and polarization:

𝐺[5] = ⟨HF|1
2

[[𝛷, 𝑇 [2]], 𝑇 [2]]|HF⟩

+
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[[𝛷, 𝑇 [2]], 𝑇 [1]]|HF⟩

+
3

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |[𝛷, 𝑇 [2]]|HF⟩

+
3

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |1

2
[[𝛷, 𝑇 [1]], 𝑇 [1]]|HF⟩

+ 𝑡p[2]s[3]
N (𝑡[2], ̄𝑡[2]) + 𝑡p[1]s[4]

N (𝑡[2], ̄𝑡[2])

(4.48)
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This can be rewritten in terms of 𝐸[5] and a number of polarization
terms:

𝐺[5] = 𝐸[5] + 𝑡p[2]
(

2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[s, 𝑇 [2]]|HF⟩

+
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |1

2
[[s, 𝑇 [1]], 𝑇 [1]]|HF⟩

+
3

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |[s, 𝑇 [1]]|HF⟩ )

+ 𝑡p[1]
(

3

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 [s, 𝑇 [2]]|HF⟩

+
3

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢

1
2

[[s, 𝑇 [1]], 𝑇 [1]]|HF⟩

+
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[[s, 𝑇 [1]], 𝑇 [2]]|HF⟩ )

(4.49)
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Finally, consideration of the excitation ranks involved in the quan-
tum/classical coupling terms yields

𝐺[5] = 𝐸[5] + 𝑡p[2]
( ⟨ ̄𝑡[1]

1 |[s, 𝑇 [2]
1 + 𝑇 [2]

2 ]|HF⟩

+ ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

2 + 𝑇 [2]
3 ]|HF⟩

+ ⟨ ̄𝑡[2]
1 |[s, 𝑇 [1]]|HF⟩ + ⟨ ̄𝑡[1]

1 |1
2

[[s, 𝑇 [1]
1 ], 𝑇 [1]

1 ]|HF⟩

+ ⟨ ̄𝑡[1]
2 |[[s, 𝑇 [1]

1 ], 𝑇 [1]
2 ]|HF⟩

+ 𝑡p[1]
( ⟨ ̄𝑡[2]

1 |[s, 𝑇 [2]
1 + 𝑇 [2]

2 ]|HF⟩

+ ⟨ ̄𝑡[2]
2 |[s, 𝑇 [2]

2 + 𝑇 [2]
3 ]|HF⟩ + ⟨ ̄𝑡[2]

3 |[s, 𝑇 [2]
3 ]|HF⟩

+ ⟨ ̄𝑡[2]
1 |1

2
[[s, 𝑇 [1]

1 ], 𝑇 [1]
1 ]|HF⟩

+ ⟨ ̄𝑡[2]
2 |[[s, 𝑇 [1]

1 ], 𝑇 [1]
2 ]|HF⟩

+ ⟨ ̄𝑡[2]
3 |1

2
[[s, 𝑇 [1]

2 ], 𝑇 [1]
2 ]|HF⟩

+ ⟨ ̄𝑡[1]
1 |[[s, 𝑇 [1]

1 ], 𝑇 [2]
1 ]|HF⟩

+ ⟨ ̄𝑡[1]
2 |[[s, 𝑇 [1]

1 ], 𝑇 [2]
2 ]|HF⟩

+ ⟨ ̄𝑡[1]
2 |[[s, 𝑇 [1]

2 ], 𝑇 [2]
1 ]|HF⟩ )

(4.50)

Similarly to the exposition in Chapter 1, these expressions will form
the basis for the development of approximations beyond CCSD in-
cluding connected triples.

The PTED-CCSD scheme for the quantum/classical coupling only
includes singles and doubles in its excitation manifold and is thus
correct up to third order in perturbation theory. Already in fourth
order connected triples make their appearance and any model going
beyond third order must then take their effect into account. The fourth
and fifth order contributions to the energy due to connected triples
given in Eqs. (1.42a) and (1.42b) will be augmented by additional
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terms due to the nonzero first order singles and the quantum/classical
polarizable coupling. To fourth order these are:

𝐺[4]
𝑇 = ⟨ ̄𝑡[1]

1 |[𝛷, 𝑇 [2]
3 ]|HF⟩ + ⟨ ̄𝑡[1]

2 |[𝛷, 𝑇 [2]
3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

3 ]|HF⟩ ,
(4.51)

while the fifth order contributions are:

𝐺[5]
𝑇 = ⟨ ̄𝑡[1]

2 |[[𝛷, 𝑇 [2]
3 ], 𝑇 [1]

1 ]|HF⟩ + ⟨ ̄𝑡[2]
1 |[𝛷, 𝑇 [2]

3 ]|HF⟩

+ ⟨ ̄𝑡[2]
2 |[𝛷, 𝑇 [2]

3 ]|HF⟩

+ ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

2 ]|HF⟩ + ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

3 ]|HF⟩

+ 1
2

⟨ ̄𝑡[2]
3 |[[𝛷, 𝑇 [1]

2 ], 𝑇 [1]
2 ]|HF⟩

+ ⟨ ̄𝑡[2]
3 |[[𝛷, 𝑇 [1]

1 ], 𝑇 [1]
2 ]|HF⟩

+ 𝑡p[2] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

3 ]|HF⟩ + 𝑡p[1] ⟨ ̄𝑡[2]
2 |[s, 𝑇 [2]

3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[2]
3 |[s, 𝑇 [2]

3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[2]
3 |1

2
[[s, 𝑇 [1]

2 ], 𝑇 [1]
2 ]|HF⟩

(4.52)

We have highlighted the vacuum-like terms that appear due to the
nonzero first order singles amplitudes and multipliers in yellow.

4.4.4 Approximations to PTED

Perturbative expansions can also be developed starting from the ap-
proximations to PTED presented in Section 4.3. For the PTE scheme,
the only change with respect to the in vacuo theory as presented in
Section 1.4 is the use of the solvated Fock matrix.210,224,225

In the PTE(S) scheme, the amplitudes equations are uncou-
pled from the multipliers and polarization equations. MBPT for this
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approximate model can be developed similarly to that in the PTE
scheme. The first and second order parameters are determined by:

𝜖𝜇2
𝑡[1]
𝜇2 = − ⟨𝜇2|𝛷|HF⟩ = − ⟨HF|[𝛷, 𝜏𝜇2

]|HF⟩ = 𝜖𝜇2
̄𝑡[1]
𝜇2

𝜖𝜇𝑞
𝑡[2]
𝜇𝑞 = − ⟨𝜇𝑞|[𝛷, 𝑇 [1]

2 ]|HF⟩

𝜖𝜇𝑞
̄𝑡[2]
𝜇𝑞 = − ⟨ ̄𝑡[1]

2 |[𝛷, 𝜏𝜇𝑞
]|HF⟩

− 𝑡p[2] ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

= 0

𝕍 p[2] + ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩ = 0

(4.53a)

(4.53b)

(4.53c)

(4.53d)

(4.53e)

Notice that the first order singles amplitudes and multipliers are now
zero, as is the first order polarization. The second order singles mul-
tipliers are coupled to the second order polarization. Notice however
that p[2] only depends on 𝑇 [2]

1 and can thus be computed on-the-fly,
without iterating between Eqs. (4.53d) and (4.53e) Starting from Eqs.
(1.41a)–(1.41e), the free energy corrections in the PTE(S) scheme are:

𝐺[1] = 𝐸[1]

𝐺[2] = 𝐸[2]

𝐺[3] = 𝐸[3]

𝐺[4] = 𝐸[4] + 1
2

𝑡p[2] ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩

𝐺[5] = 𝐸[5]

(4.54a)

(4.54b)

(4.54c)

(4.54d)

(4.54e)

In the PTES scheme, two different polarizations are introduced
to achieve an approximate decoupling of the governing equations.
MBPT can be developed by considering the Lagrangian (4.16) to
form the energy corrections, Eq. (4.18) for the order analysis of the
amplitudes, Eq. (4.20) for the order analysis of the multipliers. The
order analysis of the polarization will be developed based on Eq.
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(4.20b), i.e. the polarization coupled to the multipliers. To first order:

𝜖𝜇2
𝑡[1]
𝜇2 = − ⟨𝜇2|𝛷|HF⟩ = − ⟨HF|[𝛷, 𝜏𝜇2

]|HF⟩ = 𝜖𝜇2
̄𝑡[1]
𝜇2

𝜖𝜇1
̄𝑡[1]
𝜇1 = −𝑡p[1] ⟨HF|[s, 𝜏𝜇𝑞

]|HF⟩ 𝛿𝜇𝑞𝜇1

𝕍 p[1] + ⟨ ̄𝑡[1]
1 |s|HF⟩ = 0

(4.55a)

(4.55b)

(4.55c)

while to second order:

𝜖𝜇𝑞
𝑡[2]
𝜇𝑞 = − ⟨𝜇𝑞|[𝛷, 𝑇 [1]

2 ]|HF⟩

𝜖𝜇𝑞
̄𝑡[2]
𝜇𝑞 = − ⟨ ̄𝑡[1]

2 |[𝛷, 𝜏𝜇𝑞
]|HF⟩

− 𝑡p[2] ⟨HF|[s, 𝜏𝜇𝑞
]|HF⟩ 𝛿𝜇𝑞𝜇1

− 𝑡p[1] ⟨ ̄𝑡[1]
1 |[s, 𝜏𝜇𝑞

]|HF⟩ = 0

𝕍 p[2] + ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩ + ⟨ ̄𝑡[2]

1 |s|HF⟩ = 0

(4.56a)

(4.56b)

(4.56c)

(4.56d)

We can now develop the free energy corrections in the PTES scheme
based on Eqs. (1.41a)–(1.41e)

𝐺[1] = 𝐸[1]

𝐺[2] = 𝐸[2]

𝐺[3] = 𝐸[3]

𝐺[4] = 𝐸[4] + 1
2

𝑡p[2] ⟨HF|[s, 𝑇 [2]
1 ]|HF⟩

𝐺[5] = 𝐸[5] + 𝑡p[2] ⟨ ̄𝑡[1]
1 |[s, 𝑇 [2]

1 ]|HF⟩

(4.57a)

(4.57b)

(4.57c)

(4.57d)

(4.57e)

4.5 approximate coupled cluster methods with quan-
tum/classical polarizable hamiltonians

In complete analogy to the discussion in Section 1.5, we can derive
iterative and noniterative schemes for the approximate inclusion of
higher order excitations in the CC hierarchy. Starting from the CC2
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Lagrangian, Eq. (1.46), we can write down the corresponding PTED
effective Lagrangian:222,223

ℒeff(𝑡, ̄𝑡, p)CC2 = 𝐸0 +
2

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢

+ ⟨HF|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩
+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩ + ⟨ ̄𝑡2|𝛷̌|HF⟩

+ 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)CC2

(4.58)

where the source term is formed according to Eq. (1.48) The ampli-
tudes equations now become:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩

+ 𝑡p ⟨𝜇1| ̌s + [ ̌s, 𝑄2]|HF⟩ = 0
𝜖𝜇2

𝑡𝜇2
+ ⟨𝜇2|𝛷̌|HF⟩ + 𝑡p ⟨𝜇2|[ ̌s, 𝑄2]|HF⟩ = 0

(4.59a)

(4.59b)

(4.59c)

while for the multipliers one has:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑄2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
]|HF⟩ + 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1

]|HF⟩

+ 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇1
]|HF⟩

+ 𝑡p ⟨ ̄𝑡2|[[ ̌s, 𝜏𝜇1
], 𝑄2]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇2
]|HF⟩ + 𝑡p ⟨ ̄𝑡2|[ ̌s, 𝜏𝜇2

]|HF⟩ = 0

(4.60a)

(4.60b)

Finally, the polarization is obtained by solving:

𝕍 p + sN(𝑡, ̄𝑡)CC2 = 0 (4.61)
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The PTED-CC3 model is obtained similarly. The source term is
formed according to Eq. (1.53). Thus, adding the polarization func-
tional to the Lagrangian (1.51), we obtain the effective Lagrangian:

ℒeff(𝑡, ̄𝑡, p)CC3 = 𝐸0 +
3

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢

+ ⟨HF|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑄3]|HF⟩
+ ⟨ ̄𝑡2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝑇2]|HF⟩

+ 1
2

𝑡p𝕍 p + 𝑡psN(𝑡, ̄𝑡)CC3

(4.62)

The polarization equation is straightforwardly:

𝕍 p + sN(𝑡, ̄𝑡)CC3 = 0 (4.63)

The amplitudes are determined by:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑄3]|HF⟩

+ 𝑡p ⟨𝜇1| ̌s + [ ̌s, 𝑇2]|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌ + [𝛷̌, 𝑇2] + 1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑄3]|HF⟩

+ 𝑡p ⟨𝜇2|[ ̌s, 𝑇2] + [ ̌s, 𝑄3]|HF⟩ = 0
𝜖𝜇3

𝑡𝜇3
+ ⟨𝜇3|[𝛷̌, 𝑇2]|HF⟩

+ 𝑡p ⟨𝜇3|[ ̌s, 𝑄3] + 1
2

[[ ̌s, 𝑇2], 𝑇2]|HF⟩ = 0

(4.64a)

(4.64b)

(4.64c)

(4.64d)
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and finally the multipliers obey:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2] + [[𝛷̌, 𝜏𝜇1
], 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩ + 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1

]|HF⟩

+ 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇1
]|HF⟩ + 𝑡p ⟨ ̄𝑡2|[[ ̌s, 𝜏𝜇1

], 𝑄2]|HF⟩

+ 𝑡p ⟨ ̄𝑡3|[[ ̌s, 𝜏𝜇1
], 𝑄3]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩ + ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇2
]|HF⟩

+ 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇2
]|HF⟩ + 𝑡p ⟨ ̄𝑡2|[ ̌s, 𝜏𝜇2

]|HF⟩

+ 𝑡p ⟨ ̄𝑡3|[[ ̌s, 𝜏𝜇2
], 𝑇2]|HF⟩ = 0

𝜖𝜇3
̄𝑡𝜇3

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇3
]|HF⟩ + ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇3

]|HF⟩

+ 𝑡p ⟨ ̄𝑡2|[ ̌s, 𝜏𝜇3
]|HF⟩ + 𝑡p ⟨ ̄𝑡3|[ ̌s, 𝜏𝜇3

]|HF⟩ = 0

(4.65a)

(4.65b)

(4.65c)

We can construct the noniterative 𝛬CCSD(T)83–85 and CCSD(T)80

methods as shown in Chapter 1. We propose to include all the fourth
order terms in Eq. (4.51) and the following two terms from the fifth
order connected triples corrections in Eq. (4.52):

⟨ ̄𝑡[2]
1 |[𝛷, 𝑇 [2]

3 ]|HF⟩ , 𝑡p[1] ⟨ ̄𝑡[2]
2 |[s, 𝑇 [2]

3 ]|HF⟩ (4.66)

Inserting the converged CCSD parameters, denoted with a ∗ super-
script, yields the following expressions:

𝐺𝛬(T) =
2

∑
𝑢=1

⟨ ̄𝑡∗
𝑢|[𝛷, 𝑇 ∗

3 ]|HF⟩ + 𝑡p∗ ⟨ ̄𝑡∗
2|[s, 𝑇 ∗

3 ]|HF⟩

𝐺(T) =
2

∑
𝑢=1

⟨𝑡∗
𝑢|[𝛷, 𝑇 ∗

3 ]|HF⟩ + 𝑡p∗ ⟨𝑡∗
2|[s, 𝑇 ∗

3 ]|HF⟩

(4.67a)

(4.67b)

We recall that both the left and right state are used in the 𝛬CCSD(T)
method, while CCSD(T) uses the right state only, replacing the mul-
tipliers with the amplitudes. Further insight into the proposed cor-
rection can be gained by inserting the MBPT expansion of the con-
verged CCSD parameters.73,88–91 First of all, we notice that 𝑇 ∗

3 =
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𝑇 [2]
3 + ̃𝑇3 + 𝑂(3) contains higher than second order contributions. In

particular, ̃𝑇3 is a third order contributions to the connected triples
arising from second order connected doubles:

𝜖𝜇3
𝑡∗
𝜇3

= − ⟨𝜇3|[𝛷, 𝑇 [1]
2 ]|HF⟩

− ⟨𝜇3|[𝛷, 𝑇 [2]
2 ]|HF⟩ + 𝑂(3)

(4.68)

such that the third order ̃𝑇3 can re rewritten as:

̃𝑇3 = ∑
𝜇3

(−𝜖−1
𝜇3

⟨𝜇3|[𝛷, 𝑇 [2]
2 ]|HF⟩) 𝜏𝜇3

(4.69)

The converged PTED-CCSD parameters are correct up to second
order in the fluctuation potential:

𝑡∗
𝜇𝑖

= 𝑡[1]
𝜇𝑖 + 𝑡[2]

𝜇𝑖 + 𝑂(3)

̄𝑡∗
𝜇𝑖

= ̄𝑡[1]
𝜇𝑖 + ̄𝑡[2]

𝜇𝑖 + 𝑂(3)

p∗ = p[1] + p[2] + 𝑂(3)

(4.70a)

(4.70b)

(4.70c)

Using the equations above one can expand the energy correction as
follows:

𝐺𝛬(T) =
2

∑
𝑢=1

⟨ ̄𝑡[1]
𝑢 |[𝛷, 𝑇 [2]

3 ]|HF⟩ + ⟨ ̄𝑡[2]
3 |[𝛷, 𝑇 [2]

2 ]|HF⟩

+
2

∑
𝑢=1

⟨ ̄𝑡[2]
𝑢 |[𝛷, 𝑇 [2]

3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, 𝑇 [2]

3 ]|HF⟩ + 𝑡p[1] ⟨ ̄𝑡[2]
2 |[s, 𝑇 [2]

3 ]|HF⟩

+ 𝑡p[1] ⟨ ̄𝑡[1]
2 |[s, ̃𝑇3]|HF⟩ + 𝑡p[2] ⟨ ̄𝑡[1]

2 |[s, 𝑇 [2]
3 ]|HF⟩

+ 𝑂(6)

(4.71)

4.6 approximate coupled cluster methods and approx-
imate quantum/classical coupling schemes

The iterative CC2 and CC3 and the noniterative 𝛬CCSD(T) and
CCSD(T) methods can be formulated, mutatis mutandis, also within
the approximate quantum/classical coupling schemes mentioned pre-
viously.209,223,226
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Let us first consider the noniterative models for the inclu-
sion of connected triples. The PTE scheme is particularly sim-
ple: the equations are unchanged with respect to vacuum theory, the
only change being in the definition of the MOs and the Fock ma-
trix.207,227,228 Comparing the fourth and fifth order MBPT energy
corrections in the PTE(S), Eqs. (4.54a)–(4.54e), and PTES, Eqs.
(4.57a)–(4.57e), schemes to those obtained for the PTED scheme,
Eqs. (4.40)–(4.50), we can see that there are no contributions from
the triples to the quantum/classical terms involving the polarization.
Thus, also for PTE(S) and PTES the asymmetric and symmetric
triples corrections are formally identical to the vacuum expression
given in equations (1.55) The converged CCSD parameters are opti-
mized in the presence of an approximate polarization and are used
to form the triples free energy corrections. Thus, despite the absence
of explicit polarization terms in the PTE(S) and PTES triples free
energy corrections, the effect of the polarization on the approximate
triples amplitudes is implicitly included.

The theory and implementation for iterative CC methods
with quantum/classical polarizable Hamiltonians has already been
presented in the context of the multipolar continuum and polariz-
able embedding models.222,223,229,230 Once again, the PTE scheme
can be trivially derived from the PTED effective Lagrangians (4.58)
and (4.62) by neglecting the polarization components. In the PTE(S)
scheme, we replace the expectation value of the source with its CCS
counterpart and further neglect the multiplier-dependent part, Eq.
(4.19). For CC2, the amplitudes equations are the same as in vacuo,
Eqs. (1.44) The multipliers are instead determined by:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑄2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
]|HF⟩ + 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1

]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩ = 0

(4.72a)

(4.72b)
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The CC3 amplitudes are once again the same as in vacuo, Eqs. (1.49)
The multipliers equations are:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2] + [[𝛷̌, 𝜏𝜇1
], 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1
]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇2
]|HF⟩ = 0

𝜖𝜇3
̄𝑡𝜇3

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇3
]|HF⟩ + ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇3

]|HF⟩ = 0

(4.73a)

(4.73b)

(4.73c)

In both coupled cluster models, the polarization is still determined
by Eq. (4.22c) and only the singles multipliers equation is modified.

In the PTES scheme, we replace the expectation value of the source
with its CCS counterpart. The singles amplitudes equation thus con-
tains a quantum/classical coupling term. However, to avoid the cou-
pling with the multipliers equations, an additional approximation is
introduced in the polarization equation, where the source term is
truncated to its multiplier-independent part. As already noted, this
leads to the use of two different polarization equations when solving
for the amplitudes and the multipliers. Within the CC2 model we
have the following amplitudes equations:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑄2]|HF⟩ + 𝑡p ⟨𝜇1| ̌s|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌|HF⟩ = 0

𝕍 p + ⟨HF| ̌sN|HF⟩ = 0

(4.74a)

(4.74b)

(4.74c)

For the CC2 multipliers one has:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑄2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
]|HF⟩

+ 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1
]|HF⟩ + 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇1

]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩ = 0

𝕍 p + sN(𝑡, ̄𝑡)CCS = 0

(4.75a)

(4.75b)

(4.75c)
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We note that the PTES approximation is crucial in the implementa-
tion of PE-CC2 presented by Schwabe et al. in ref. 223 The resolu-
tion of the identity can in fact still be applied when assuming the
PTES approximation. Moreover, the simplified PE-CC (sPECC) La-
grangian of Krause et al. is essentially the PTE(S) approximation for
PE-CC.226

Finally, for the CC3 model the amplitudes are determined by:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑄3]|HF⟩

+ 𝑡p ⟨𝜇1| ̌s|HF⟩ = 0
𝜖𝜇2

𝑡𝜇2
+ ⟨𝜇2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨𝜇2| + 1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑄3]|HF⟩ = 0

𝜖𝜇3
𝑡𝜇3

+ ⟨𝜇3|[𝛷̌, 𝑇2]|HF⟩ = 0

𝕍 p + ⟨HF| ̌sN|HF⟩ = 0

(4.76a)

(4.76b)

(4.76c)

(4.76d)

and the multipliers by:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2] + [[𝛷̌, 𝜏𝜇1
], 𝑄3]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩ + 𝑡p ⟨HF|[ ̌sN, 𝜏𝜇1

]|HF⟩

+ 𝑡p ⟨ ̄𝑡1|[ ̌s, 𝜏𝜇1
]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇2
]|HF⟩ = 0

𝜖𝜇3
̄𝑡𝜇3

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇3
]|HF⟩ + ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇3

]|HF⟩ = 0

𝕍 p + sN(𝑡, ̄𝑡)CCS = 0

(4.77a)

(4.77b)

(4.77c)

(4.77d)
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Summary of Contributions

½ research and ½ Tέχνη
½ observation, ½ Tέχνη
½ training, ½ Tέχνη

— Ezra Pound, Canto LXXXV

This final Chapter provides a brief overview of the motivations,
results and conclusions of the papers this dissertation is based on.
All publications included in this dissertation have involved some
programming effort. In Section 5.1 I will describe the principles we
have striven to follow in developing our PCM software library and
its management philosophy. I will also give some details on the in-
terfaces we have developed to different quantum chemistry codes. A
shorter version of the material in Section 5.1 has been published in
the proceedings of the Producing High Performance and Sustain-
able Software for Molecular Simulation workshop held at the 2015
Supercomputing Conference.231 Sections 5.2–5.6 contain very short
summaries of the papers and a list of my contributions. My coauthors
have all read and approved the description of contributions.

5.1 software

The growing complexity of quantum chemical program pack-
ages requires that an appropriate strategy be devised to implement
new features. Scalability is of paramount importance, but it has be-
come clear that maintainability and extensibility of the code play an

83
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equally important role in managing software complexity232–237 and
ensuring scientific reproducibility.238–243

The idea of a modular programming paradigm can be traced
back to the dawn of computer science. Dijkstra successfully used
it in the development of the THE operating system in 1968,244 while
Parnas advocated it as a best practice already in 1972.245 Modularity
is nothing more than a divide et impera strategy applied to program-
ming and it has been recognized as beneficial in many other scientific
computing contexts. New features are isolated into libraries that can
be accessed by host programs through a well-defined application
programming interface (API).

In this paradigm, computational tasks are implemented into sepa-
rate, independent and interchangeable modules. Modules are to be
thought as computational black boxes developed, tested, packaged
and distributed independently of the particular host program in which
they will be used. A well-defined API clearly delimits the boundaries
of the functionality offered, effectively enforcing a programming
style and standardisation of the functionality, eventually.246

Recently, a debate over open-source licensing247 and open data
practices has sparked in the quantum chemistry community.248–250

Open-source licensing enables an open code review process that is,
in our opinion, essential in guaranteeing scientific reproducibility.248

The points raised against wholesale adoption of open-source licens-
ing models,249 especially the concerns about code quality and main-
tenance, do partially resonate with us. However, we still think that
a modular approach to programming can only have significant im-
pact, in terms of improved reproducibility and overall code quality,
when an open-source licensing model is adopted. Open-source devel-
opment can fully leverage the benefits of widespread, cloud-based,
free, code development services, such as hosted distributed version
control systems (DVCSs),* continuous integration,† code coverage*

https://github.com/

https://gitlab.com/

†
https://travis-ci.org/

https://www.appveyor.com/

https://magnum-ci.com

analysis,‡ static and dynamic code analyses,§ nightly regression test-

‡
https://coveralls.io/

§
https://scan.coverity.

com/

ing, public issue tracking, code review and so forth: adoption of a
modern code development workflow is easily within reach.

It is, of course, true that the above mentioned services are not exclu-
sive prerogatives of open-source projects. However, an open review

https://github.com/
https://gitlab.com/
https://travis-ci.org/
https://www.appveyor.com/
https://magnum-ci.com
https://coveralls.io/
https://scan.coverity.com/
https://scan.coverity.com/
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process of scientific software can often help to establish reproducibil-
ity, extensibility and sustainability of the software ecosystem. Open-
source software, modular development of new functionalities and
full-fledged exploitation of DVCSs ensure a much larger scientific
impact. Third-parties can easily contribute to the project: by improv-
ing the documentation, by reporting bugs or by actively extending
the codebase with new functionality.

The PCM is an ideal candidate for the creation of a solva-
tion API. Consider for example the schematic representation of a
PCM-SCF algorithm given in Figure 5.1. The input to and from the
PCM library is limited and well-defined, as are the components that
host quantum chemistry codes need to implement. This provides a
natural API design: the API functions can be compared vis-à-vis
with the working equations derived for the different quantum chemi-
cal methods.

The PCMSolver library has been developed to fulfill these re-
quirements and offer the community an easy-to-use implementation
of the PCM.251 PCMSolver is written in C++ with Fortran, C and
Python components. Architectural and conceptual organization of
the code is provided by the C++ layer. To ensure the largest possible
impact, the code is C++03 ISO standard compliant, with external
dependencies kept to a minimum. Tuples, container algorithms and
functional programming tools are not part of the standard we chose
to comply to. Parts of the Boost C++ libraries are used to allevi-
ate these shortcomings.252 Linear algebra operations are managed
through the Eigen C++ template library.253 The Python layer provides
input reading and parsing facilities, as implemented by the GetKw
library.254 Cavity construction and discretization is handled either
by the Fortan or by the C layer, depending on which computational
backend is needed. Evaluation of the Green’s functions, needed to set
up the representation of the boundary integral operators, leverages
automatic differentiation (AD). We use the Taylor library, a template
C++ implementation of AD.255,256 The adoption of git* as DVCS, *

https://git-scm.com/

CMake† for cross-platform builds and automatic documentation de- †
https://cmake.org/

ployment on ReadTheDocs‡ simplify extensibility of the module and ‡
https://readthedocs.org/

promote third-party contributions to the code base. Continuous inte-

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://www.boost.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/juselius/libgetkw
https://github.com/uekstrom/libtaylor
https://git-scm.com/
https://cmake.org/
https://readthedocs.org/
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Molecular electrostatic potential:
𝜑(𝒔)

Apparent surface charge:
̂ℛ𝜀 ̂𝒮 𝜎(𝒔) = − ̂ℛ∞𝜑(𝒔)

Polarization energy:
𝑈PCM = 1

2 (𝜎(𝒔), 𝜑(𝒔))𝛤

Fock matrix:
𝑓𝜅𝜆 = 𝑓 vac

𝜅𝜆 + (𝜎(𝒔), 𝜑𝜅𝜆(𝒔))𝛤

SCF
converged?

Finalize SCF

yes

no

Cavity
Geometry, 𝑫

BE solver

Figure 5.1 Schematic view of a PCM-SCF algorithm. Computations/data in blue
are implemented by the PCM API. Computations/data in green are implemented
by the host quantum chemistry code.

gration and nightly testing offer an invaluable level of confidence in
the code.

Judicious usage of the C++ object-oriented paradigm is the key to
this wide spectrum of functionalities. The library is in itself made
of modules, communicating by means of composition at the out-
ermost level of design. This is an indispensable feature to achieve
frictionless language mixing. Library internal classes balance the
dynamic polymorphism offered by inheritance and the static poly-
morphism offered by template programming.257–259 Preeminent use
of composition over inheritance keeps the coupling between different
submodules as low as possible.260
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The library is released under the terms of the version 3 GNU Lesser
General Public License (LGPL), a standard open-source license.261

We strongly believe that open-source software is the key to a larger
impact for scientific software and a standard license means lower
thresholds to adoption and third-party contributions.261 The library
serves as our development platform for the PCM. The interfaces to
different quantum chemistry codes allow us to explore new method-
ologies, significantly cutting down development times. Use of our
API significantly limits coding effort on the side of the host: contin-
uum solvation at the SCF level of theory can be implemented in the
host program almost out-of-the-box.

The library was designed to allow host-API communication through
pure functions, i.e. free from side-effects. Such an implementation
hinges on the theoretical realization that the PCM layer is indepen-
dent of the AO or MO spaces defined in the quantum chemical layer.
Passing and modifying large data structures, such as the Fock and
density matrices, can be completely avoided. As schematically de-
picted in Figure 5.1, computation of the ASC only depends on the
electrostatic potential sampled at the cavity boundary:

𝜑(𝒔) = ∑
𝐴

𝑍𝐴
|𝑹𝐴 − 𝒔|

+ ∑
𝜅𝜆

𝐷𝜆𝜅 [∫ d𝒓
−𝛺𝜅𝜆(𝒓)
|𝒓 − 𝒔| ] , (5.1)

which is the contraction of charge attraction integrals with a, possi-
bly perturbed, density matrix, a task handled by the host program.
Formation of the solvent contribution to the Fock matrix requires the
computation of the scalar product (𝜎(𝒔), 𝜑𝜅𝜆(𝒔))𝛤 between the ASC
and the charge attraction integral matrix, again a task easily accom-
plished by the host program. As shown in Figure 5.2, data transfer
between PCMSolver and the host is limited to the communication of
𝜑(𝒔) and 𝜎(𝒔) and can be implemented without storing any quantity
to disk, avoiding possibly costly I/O operations.

The API is implemented in ISO C99 as a context-aware set of
functions.262* Upon initialization of the library, a context object con- *

https://github.com/bast/

context-api-exampletaining the state of the PCM API is constructed and an opaque handle
to it (a pointer in C++ parlance) is returned to the host program. Fur-
ther transactions between PCMSolver and the host program proceed

http://pcmsolver.readthedocs.io
https://github.com/bast/context-api-example
https://github.com/bast/context-api-example
http://pcmsolver.readthedocs.io


88 summary of contributions

PCM code

̂ℛ𝜀 ̂𝒮 𝜎(𝒔) = − ̂ℛ∞𝜑(𝒔)
input.pcm

Module-side
interface

Input parsing

QM code

𝐻𝜓 = 𝐸𝜓
input.qm

Program-side
interface

Input parsing

𝜑(𝒔)

𝜎(𝒔)

Figure 5.2 Schematic view of the relationship between a host quantum chemistry
program and the PCMSolver library.

through manipulations of the context object. A context-aware API
offers a simple strategy for parallelization. The host program could
spawn contexts on a per-process basis, limiting ownership and access
to a context just to its parent process. Race conditions are trivially
avoided in such a scenario.

PCMSolver introduces the concept of surface functions: labelled
instances of any quantity defined on the cavity surface. Bookkeeping
of a possibly arbitrary number of such quantities is managed through
a map storing labels and pointers to the contents of the functions.
Listings 5.1 and 5.2 show how calls to PCMSolver API functions
might look like in an actual C or Fortran host program, respectively.

Listing 5.1 Relevant calls to PCMSolver in a C host program. Ellipses in
the functions’ argument list stand for omitted parameters. For the full,
functional example visit http://pcmsolver.readthedocs.io/en/v1.1.6/
users/C-example.html

// Include API functions and data structures definitions

#include "pcmsolver.h"

#include "PCMInput.h"

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io/en/v1.1.6/users/C-example.html
http://pcmsolver.readthedocs.io/en/v1.1.6/users/C-example.html
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// Initialize API context

pcmsolver_context_t * pcm_context = pcmsolver_new(...);

// Register surface function from host program to API context

pcmsolver_set_surface_function(pcm_context, ...);

// Compute the ASC from a MEP surface function

pcmsolver_compute_asc(pcm_context, ...);

// Retrieve surface function to host from API context

pcmsolver_get_surface_function(pcm_context, ...);

// Compute polarization energy from surface functions

double energy = pcmsolver_compute_polarization_energy(pcm_context, ...);

// Clean up API context

pcmsolver_delete(pcm_context);

Listing 5.2 Relevant calls to PCMSolver in a Fortran host program. Notice the
use of the standard Fortan ISO C bindings. Ellipses in the functions’ argument
list stand for omitted parameters. For the full, functional example visit http://
pcmsolver.readthedocs.io/en/v1.1.6/users/fortran-example.html

! Use standard ISO C bindings

use, intrinsic :: iso_c_binding

! Use API functions and data structures

use pcmsolver

! Declare handle to API context as C pointer

type(c_ptr) :: pcm_context

! Declare polarization energy as a C-interoperable real number

real(c_double) :: energy

! Initialize API context

pcm_context = pcmsolver_new(...)

! Register surface function from host program to API context

call pcmsolver_set_surface_function(pcm_context, ...)

! Compute the ASC from a MEP surface function

call pcmsolver_compute_asc(pcm_context, ...)

! Retrieve surface function to host from API context

call pcmsolver_get_surface_function(pcm_context, ...)

! Compute polarization energy from surface functions

energy = pcmsolver_compute_polarization_energy(pcm_context, ...)

! Clean up API context

call pcmsolver_delete(pcm_context)

PCMSolver currently offers an implementation of the traditional
collocation solvers for isotropic media,99 together with some unique
functionalities: the wavelet Galerkin solvers on smooth molecular sur-
faces,135,263 the Green’s functions for spherical diffuse interfaces116

and the delayed solvers for real-time time-dependent SCF simula-
tions.198

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io/en/v1.1.6/users/fortran-example.html
http://pcmsolver.readthedocs.io/en/v1.1.6/users/fortran-example.html
http://pcmsolver.readthedocs.io
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Programming effort in this dissertation has not only been
directed at the creation of the PCMSolver library, but also at in-
terfacing it with a number of quantum chemistry codes. The first
interface was implemented and released within the DIRAC code and
is described in Paper I.264,265. Interfaces to the LSDalton266,267 and
Dalton266,267 codes have followed, as described in Paper II and Pa-
per V, respectively.135,201 Details about the interface to ReSpect268

can be found in Paper IV.269 Coupling with Psi4270 has allowed us
to implement the PCM-CC developments described in this disserta-
tion. Finally, development of an interface with the KOALA code is
underway.271,272

5.2 continuum solvation in the relativistic regime

Four-Component Relativistic Calculations in Solution with the Polar-
izable Continuum Model of Solvation: Theory, Implementation, and
Application to the Group 16 Dihydrides H2X (X = O, S, Se, Te, Po)
R. Di Remigio, R. Bast, L. Frediani, and T. Saue
J. Phys. Chem. A, 2015, 119, 5061–5077
DOI: 10.1063/1.4943782

Systems containing heavy elements are notoriously challenging
for quantum chemistry. One has to properly include the effect of
special relativity in the quantum chemical description in order to
achieve at least qualitative agreement with experiment. Additional
complications arise if one needs to also include environment effects.
Continuum models arguably represent a cost-effective strategy to
achieve a first approximation of these effects. In Paper I we presented
the first derivation and implementation of the PCM coupled to a
SCF description of the solute in the fully relativistic, four-component
regime. Our preliminary calculations on the group 16 dihydrides
H2X (X = O, S, Se, Te, Po) have shown that the method predicts a
noticeable interplay of relativistic and solvent effects when heavier
elements are involved. The main point of Paper I was, however, the
adoption of a fully modular programming strategy. We showed that it

http://pcmsolver.readthedocs.io
http://www.diracprogram.org
http://www.daltonprogram.org
http://www.daltonprogram.org
http://respect.readthedocs.io/
http://www.psicode.org
10.1063/1.4943782
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is entirely possible to adopt the same PCM code and implementation
“checkpoints” across altogether different problem domains, Fig. 5.1.

As a by-product of the four-component implementation, we were
able to obtain and visualize MEP maps from four-component SCF
wave functions. These add yet another interpretive tool to the toolbox
available in the four-component relativistic regime. The interface
to DIRAC was first released in the 2014 version, providing PCM
capabilities to the software package.

I contributed the theoretical derivation of the quantum/classical
polarizable terms in a four-component SCF framework, for energies
and linear response properties. I devised the coupling of the four-
component program DIRAC with PCMSolver by providing the im-
plementation and testing of:

1. MEP integrals for four-component wave functions,

2. the additional Fock matrix contributions, and

3. the additional terms in the response equations.

I performed all the calculations and large part of the data analysis for
the results reported in the paper. Finally, I wrote the first draft of the
paper and coordinated editing of all subsequent versions.

5.3 the wavelet galerkin boundary element method
for pcm

Wavelet Formulation of the Polarizable Continuum Model. II. Use of
Piecewise Bilinear Boundary Elements
M. Bugeanu, R. Di Remigio, K. Mozgawa, S. S. Reine, H. Har-
brecht, and L. Frediani
Phys. Chem. Chem. Phys., 2015, 17, 31566–31581
DOI: 10.1039/C5CP03410H

Continuum solvation models are inherently parametrized. Apart
from solvent permittivities, the atomic radii and molecular surface
definition play a crucial role in determining the performance of the

http://www.diracprogram.org
http://www.diracprogram.org
http://pcmsolver.readthedocs.io
10.1039/C5CP03410H
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models. However, the numerical accuracy of the BEM procedure
used to numerically solve the underlying BIE is a not-so-often stud-
ied aspect of these models. Traditionally, collocation methods have
been used, but these require parametrization of some of the necessary
surface integrals. Galerkin methods do not suffer from such a limita-
tion and additionally preserve symmetry of the underlying boundary
integral operators. The use of biorthogonal wavelet bases as finite
elements achieves sparsity in the BEM procedure, due to the intrin-
sical hierarchy and the existence of a priori and a posteriori matrix
compression estimates. Thus, wavelet Galerkin BEM represents a
valid alternative to traditional collocation methods, both to achieve
a better computational scaling and to provide accurate, benchmark
results.132–134

Already Weijo et al. had shown that using piecewise constant
(PWC) wavelet bases can lead to superior accuracy and convergence
in the calculation of quantum mechanical molecular solvation ener-
gies. In this work we showed that even faster convergence can be
achieved when piecewise linear (PWL) wavelet bases are used in-
stead. Moreover, the same holds for the calculation of static electric
properties. Notably, the traditional collocation solver cannot guar-
antee the same accuracy, even for very large finite element bases.
This suggests that, in some cases, BEM collocation methodologies
might slow down or even prevent the convergence of the quantum
mechanical response equations solvers.

For Paper II, I provided template interface and test sets for the
cavity generator121,130 and wavelet Galerkin BEM solver133,134 with
PCMSolver. These were used to interface with the new C++ im-
plementation of the wavelet Galerkin solvers of Monica Bugeanu. I
implemented the interface between the LSDalton quantum chem-
istry software package and the PCMSolver software library. The
interface allows to run HF and KS-DFT single-point and linear re-
sponse calculations. Together with coauthor Krzysztof Mozgawa, I
performed the benchmark quantum chemical calculations presented
in the paper. Finally, I coordinated the editing of all manuscript drafts.
In particular, I wrote the first draft of Sections 2.1 and 2.3. The first
draft of Sections 3 and 4 was co-written with the first author, Monica

http://pcmsolver.readthedocs.io
http://www.daltonprogram.org
http://pcmsolver.readthedocs.io
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Bugeanu. I performed most of the data analysis and produced tables
and graphs.

Finally, the interface to LSDalton was later released in the 2016
version, providing PCM capabilities to the software package.

5.4 non homogeneous environments

A Polarizable Continuum Model for Molecules at Spherical Diffuse
Interfaces
R. Di Remigio, K. Mozgawa, H. Cao, V. Weijo, and L. Frediani
J. Chem. Phys., 2016, 144, 124103
DOI: 10.1063/1.4943782

Continuum solvation models offer a simple route to the treatment
of non homogeneous environments. The general integral equation
formulation is in fact transparent with respect to the definition of
the Green’s function for the space portion exterior to the cavity. As
outlined in Chapter 2, the boundary integral operators in the IEF
equation:

[ ̂𝒮e(2𝜋 + ̂𝒟 †
i ) + (2𝜋 − ̂𝒟e) ̂𝒮i]𝜎 =

− [(2𝜋 − ̂𝒟e) − ̂𝒮e ̂𝒮 −1
i (2𝜋 − ̂𝒟i)]𝜑,

(2.7 from Chapter 2)

can be set up once the Green’s functions 𝐺i(𝒓, 𝒓′) and 𝐺e(𝒓, 𝒓′) are
known.112 Frediani et al. showed that a numerical representation of
the Green’s function is sufficient to obtain the boundary integral
operators in the PCM integral equation. The authors introduced a
numerical integration procedure to calculate the Green’s function
for an environment characterized by spatially varying, yet cilindri-
cally symmetric, permittivity functions: a model for planar diffuse
interfaces.

In this work, a similar procedure was introduced to tackle diffuse
interfaces in spherical symmetry. In contrast to previously existing

http://www.daltonprogram.org
10.1063/1.4943782
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work, our implementation offers a more robust treatment of thin in-
terfaces, with a rather generic functional form for the permittivity
profile. We thoroughly analyzed the necessity for the a posteriori
removal of the Coulomb singularity from the computed Green’s func-
tion and its efficient implementation. Interface width and curvature
influence the transfer of ions and molecules across spherically sym-
metric interfaces and peculiar properties may arise. In this work,
we analyzed both effects on the water-vapor and oil-water transfer
of Li+, Br– , acetone, para-nitroaniline and the L0 dye. Nonelectro-
static interactions were not included in our implementation, although
they have been proved to be crucial for non homogeneous environ-
ments.103 Nevertheless our implementation represents a first signifi-
cant step in the continuum treatment of such nontrivial environments.

I contributed the theoretical work for Paper III, based on ear-
lier drafts from coauthors Ville Weijo and Hui Cao. In particular, I
derived the separation of the Coulomb singularity in its final form.**Equation (40) for 𝐺img(𝒓, 𝒓′) in

the final published version of the
paper contains a misprint. The
parentheses should not appear.

Moreover, I contributed the implementation and testing of the Green’s
function code. The interface to the LSDalton program package, de-
veloped within Paper II, was also used for this paper. I wrote the
first draft of the paper and coordinated all subsequent editing stages.

5.5 relativistic calculation of epr and pnmr param-
eters in solution

Four-Component Relativistic Density Functional Theory with the Po-
larizable Continuum Model: Application to EPR Parameters and
Paramagnetic NMR Shifts
R. Di Remigio, M. Repisky, S. Komorovsky, P. Hrobarik, L. Fre-
diani, and K. Ruud
Accepted for publication in Mol. Phys.
DOI: 10.1080/00268976.2016.1239846

Paper IV is a step further in our exploration of the interplay be-
tween relativistic and solvent effects initiated with Paper I. Whereas
Paper I presented the essential framework for the coupling of four-
component SCF wave functions with a classical polarizable contin-

http://www.daltonprogram.org
10.1080/00268976.2016.1239846
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uum, in this paper we explored the calculation of first-order magnetic
properties: electron paramagnetic resonance (EPR) and paramag-
netic nuclear magnetic resonance (pNMR) parameters.273–276 The
two works are thus complementary since they explore two different
classes of properties and present implementations in two algorithmi-
cally different relativistic quantum chemistry codes. In the relativis-
tic framework, spin-orbit interactions are included from the outset in
the variational optimization of the wave function. Hence, EPR and
pNMR parameters are formulated as expectation values, by virtue of
the Hellmann–Feynman theorem.44,53 Moreover, the ReSpect code
can exploit the Kramers unrestricted formalism, allowing for spin
polarization and thus granting facile access to the computation of
spin-dependent properties.50 The same modular programming strat-
egy was adopted in crafting an interface between the relativistic four-
component code ReSpect268 and PCMSolver.

My contributions to this paper include prototyping the interface
between the PCMSolver library and the ReSpect quantum chem-
istry code. The interface is maintained in collaboration with coau-
thor Michal Repisky, who also refined the implementation to achieve
better computational performance. I tested the interface against one-
component and four-component results obtained with the LSDalton
and DIRAC codes, respectively. I helped coauthors Michal Repisky,
Stanislav Komorovsky and Peter Hrobarik with setting up the PCM
calculations described in the paper. Finally, I provided the first draft
for Section 2 of the paper and took part in all editing stages. The
interface to ReSpect will be released in the next public version of
the software package, providing PCM and COSMO capabilities.

http://respect.readthedocs.io/
http://respect.readthedocs.io/
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://respect.readthedocs.io/
http://www.daltonprogram.org
http://www.diracprogram.org
http://respect.readthedocs.io/
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5.6 open-ended self-consistent field response theory
in solution

Open-Ended Formulation of Self-Consistent Field Response Theory
with the Polarizable Continuum Model for Solvation
R. Di Remigio, M. T. P. Beerepoot, Y. Cornaton, M. Ringholm, A.
H. S. Steindal, K. Ruud, and L. Frediani
Submitted to Phys. Chem. Chem. Phys.

In recent years, the availability of strong lasers has allowed to de-
sign and carry out experiments where the high-order response of
molecular materials can be routinely probed. The more intense the
light source, the more complicated the interpretation of the measured
signal. Our group has recently developed an open-ended methodol-
ogy for the computation of SCF response functions173,181 and their
single residues.182 These developments offer a route towards a syn-
ergistic experimental and theoretical approach to high-order absorp-
tion spectroscopies. Paper V grafts a classical polarizable contin-
uum approach to solvation on top of the open-ended methodology
of Thorvaldsen et al. Still nowadays, continuum models represent
a cost-effective methodology for the approximate inclusion of sol-
vent effects, albeit their known limitations with respect to specific
solute-solvent interactions.

I developed the theoretical framework for the open-ended SCF for-
mulation of molecular response properties when a quantum/classical
polarizable continuum Hamiltonian is used.40,173 I provided its imple-
mentation within the Dalton code, by interfacing the PCMSolver li-
brary and the open-ended SCF response code of Ringholm et al.181,182

I performed extensive testing of the code by comparing with previ-
ously published implementations of the PCM-SCF response func-
tions within Dalton.188–190 Together with coauthors Maarten T. P.
Beerepoot and Yann Cornaton, I carried out the multiphoton absorp-
tion calculations presented in the paper. I contributed to data collec-
tion and data analysis. I drafted the initial versions of Sections 2 and
3 of the manuscript and coordinated all editing stages with coauthor
Maarten T. P. Beerepoot.

http://www.daltonprogram.org
http://pcmsolver.readthedocs.io
http://www.daltonprogram.org


A
Some Mathematical Results

For brevity’s sake, some results and derivations have been omitted
from the main body of the thesis. I collect the ones I judge most
relevant in this Appendix. Section A.1 presents the 𝑇1-transformed
form of the CCS, CCSD and CCSDT Lagrangians, the corresponding
amplitudes and multipliers equations and the one-electron operators
expectation values.

Basic results in the fields of functional analysis and boundary inte-
gral equations that were omitted from Chapter 2 are presented here.
No proofs or examples are given, the interested reader is referred to
the monographs by Ern et al.,123 Hsiao et al.158 and Sauter et al.111

a.1 the 𝑇1 -transformation

Carrying out a similarity transformation of an operator 𝑂 by means
of the 𝑇1 cluster operator will preserve the particle rank of 𝑂, since
𝑇1 is a one-electron operator.75 Starting from the arbitrary order La-
grangian (1.34), we want to derive their 𝑇1-transformed expressions.

For the CCS model, this is straightforward. The Lagrangian
is:

ℒ(𝑡, ̄𝑡)CCS = 𝐸0 + ̄𝑡𝜇1
𝜖𝜇1

𝑡𝜇1
+ ⟨HF|𝛷̌|HF⟩ + ⟨ ̄𝑡1|𝛷̌|HF⟩ (A.1)
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the governing equations:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌|HF⟩ = 0

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

]|HF⟩ = 0

(A.2a)

(A.2b)

When including higher order excitations we will seek simplifi-
cations in the commutator expansions by employing the following
result:53

Lemma 1 (Excitation ranks manifold). The 𝑘-fold nested com-
mutator of a particle rank 𝑚𝑂 operator 𝑂 with cluster operators 𝑇𝑛𝑖
of rank 𝑛𝑖 acting on the reference determinant:

[[[𝑂, 𝑇𝑛1
], …], 𝑇𝑛𝑘

] |HF⟩ (A.3)

generates a linear combination of determinants with excitation ranks
𝑣 in the range:

𝑘

∑
𝑖=1

𝑛𝑖 − 𝑚𝑂 ≤ 𝑣 ≤
𝑘

∑
𝑖=1

𝑛𝑖 + 𝑚𝑂 − 𝑘 (A.4)

Corollary (Excited states overlaps). The overlap of a deter-
minant 𝜇𝑛 with excitation rank 𝑛 onto the linear combination of deter-
minants generated by the 𝑘-fold nested commutator of an operator 𝑂
with particle rank 𝑚𝑂 with cluster operators 𝑇𝑛𝑖

of rank 𝑛𝑖 is nonzero
if and only if the sum of cluster operator ranks satisfies:

𝑛 − 𝑚𝑂 + 𝑘 ≤
𝑘

∑
𝑖=1

𝑛𝑖 ≤ 𝑛 + 𝑚𝑂 (A.5)

In compact form:

⟨𝜇𝑛|[[[𝑂, 𝑇𝑛1
], …], 𝑇𝑛𝑘

]|HF⟩ ≠ 0 ⟺

𝑛 − 𝑚𝑂 + 𝑘 ≤
𝑘

∑
𝑖=1

𝑛𝑖 ≤ 𝑛 + 𝑚𝑂
(A.6)
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The CCSD Lagrangian is then:

ℒ(𝑡, ̄𝑡)CCSD = 𝐸0 +
2

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢

+ ⟨HF|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|1
2

[[𝛷̌, 𝑇2], 𝑇2]|HF⟩

(A.7)

with the governing equations:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌ + [𝛷̌, 𝑇2] + 1
2

[[𝛷̌, 𝑇2], 𝑇2]|HF⟩ = 0

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩ = 0

(A.8a)

(A.8b)

(A.8c)

(A.8d)

Equations (A.8b), (A.8c) and (A.8d) can be compared with the cor-
responding CC2 equations (1.44b), (1.47a) and (1.47b), respectively,
to highlight which terms were neglected in constructing the iterative
method for the approximate inclusion of double excitations.
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The CCSDT Lagrangian is built in the same exact manner:

ℒ(𝑡, ̄𝑡)CCSDT = 𝐸0 +
3

∑
𝑢=1

̄𝑡𝜇𝑢
𝜖𝜇𝑢

𝑡𝜇𝑢

+ ⟨HF|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑇3]|HF⟩
+ ⟨ ̄𝑡2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑇3]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝑇2] + 1
2

[[𝛷̌, 𝑇2], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝑇3] + [[𝛷̌, 𝑇2], 𝑇3]|HF⟩

(A.9)

Notice that the reference expectation value of the similarity trans-
formed fluctuation potential 𝛷 is unchanged with respect to the ex-
pression in the CCSD Lagrangian. This is a consequence of the well-
known fact that the CC energy can be expressed purely in terms of
𝑇1 and 𝑇2:

𝐸CC = ⟨HF|𝐻|HF⟩ = ⟨HF|𝐻(1 + 𝑇1 + 𝑇2 + 𝑇 2
1 )|HF⟩ (A.10)

The CCSDT amplitude equations are:

𝜖𝜇1
𝑡𝜇1

+ ⟨𝜇1|𝛷̌ + [𝛷̌, 𝑇2] + [𝛷̌, 𝑇3]|HF⟩ = 0

𝜖𝜇2
𝑡𝜇2

+ ⟨𝜇2|𝛷̌ + [𝛷̌, 𝑇2]|HF⟩

+ ⟨𝜇2|1
2

[[𝛷̌, 𝑇2], 𝑇2] + [𝛷̌, 𝑇3]|HF⟩ = 0

𝜖𝜇3
𝑡𝜇3

+ ⟨𝜇3|[𝛷̌, 𝑇2] + 1
2

[[𝛷̌, 𝑇2], 𝑇2]|HF⟩

+ ⟨𝜇3|[𝛷̌, 𝑇3] + [[𝛷̌, 𝑇2], 𝑇3]|HF⟩ = 0

(A.11a)

(A.11b)

(A.11c)
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while the multipliers are determined by solving the following:

𝜖𝜇1
̄𝑡𝜇1

+ ⟨HF|[𝛷̌, 𝜏𝜇1
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇1

] + [[𝛷̌, 𝜏𝜇1
], 𝑇2]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇1
] + [[𝛷̌, 𝜏𝜇1

], 𝑇2] + [[𝛷̌, 𝜏𝜇1
], 𝑇3]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇2] + 1

2
[[[𝛷̌, 𝜏𝜇1

], 𝑇2], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇1
], 𝑇3]|HF⟩ = 0

𝜖𝜇2
̄𝑡𝜇2

+ ⟨HF|[𝛷̌, 𝜏𝜇2
]|HF⟩ + ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇2

]|HF⟩

+ ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇2
] + [[𝛷̌, 𝜏𝜇2

], 𝑇2]|HF⟩

+ ⟨ ̄𝑡3|[[𝛷̌, 𝜏𝜇2
], 𝑇3]|HF⟩ = 0

𝜖𝜇3
̄𝑡𝜇3

+ ⟨ ̄𝑡1|[𝛷̌, 𝜏𝜇3
]|HF⟩ + ⟨ ̄𝑡2|[𝛷̌, 𝜏𝜇3

]|HF⟩

+ ⟨ ̄𝑡3|[𝛷̌, 𝜏𝜇3
] + [[𝛷̌, 𝜏𝜇3

], 𝑇2]|HF⟩ = 0

(A.12a)

(A.12b)

(A.12c)

A comparison of equations (A.11c), (A.12a), (A.12b) and (A.12c) with
equations (1.49c), (1.52a), (1.52b) and (1.52c), respectively, serves
to highlight which terms were neglected in constructing the CC3
method.

a.2 coupled cluster expectation values

A similar analysis in terms of 𝑇1-transformed operators can be given
for the expectation value of one-electron operators, Eq. (1.37). First of
all, by virtue of the cluster commutation condition,53 the commutator
expansion of the similarity transformation of a general one-electron
operator truncates after the twofold nested commutator:

𝑂 = 𝑂 + [𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ] (A.13)

where 𝑇 is the complete cluster operator. However, due to Lemma 1,
some of the cluster operators will not contribute to the expectation
value.
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For a general truncation level ℳ one has:

𝑂(𝑡, ̄𝑡) = ⟨HF|𝑂 + [𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ]|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|𝑂 + [𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ]|HF⟩ ,
(A.14)

and by virtue of Lemma 1 and its Corollary:

𝑂(𝑡, ̄𝑡) = ⟨HF|𝑂 + [𝑂, 𝑇1]|HF⟩ + ⟨ ̄𝑡1|𝑂|HF⟩

+
ℳ

∑
𝑢=1

⟨ ̄𝑡𝑢|[𝑂, 𝑇 ] + 1
2

[[𝑂, 𝑇 ], 𝑇 ]|HF⟩
(A.15)

Note that the singles amplitudes assume a unique role in the CC
expectation value. In the following, we give explicit expressions for
the CCS, CCSD and CCSDT models. These results are at the basis of
our developments in Chapter 4. We will refer to the 𝑇1-transformed
expressions as dressed, in contrast to the bare expressions, where the
operator 𝑂 appears untransformed.

For the CCS model, the expectation value of a one-electron
operator is simply:

𝑂(𝑡, ̄𝑡)CCS = ⟨HF|𝑂̌|HF⟩ + ⟨ ̄𝑡1|𝑂̌|HF⟩
= ⟨HF|𝑂 + [𝑂, 𝑇1]|HF⟩

+ ⟨ ̄𝑡1|𝑂 + [𝑂, 𝑇1] + 1
2

[[𝑂, 𝑇1], 𝑇1]|HF⟩
(A.16)

Adding double excitations to the manifold yields:

𝑂(𝑡, ̄𝑡)CCSD = 𝑂(𝑡, ̄𝑡)CCS + ⟨ ̄𝑡1|[𝑂̌, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|[𝑂̌, 𝑇2]|HF⟩
= 𝑂(𝑡, ̄𝑡)CCS + ⟨ ̄𝑡1|[𝑂, 𝑇2]|HF⟩
+ ⟨ ̄𝑡2|[𝑂, 𝑇2] + [[𝑂, 𝑇1], 𝑇2]|HF⟩ ,

(A.17)
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where a number of terms was dropped thanks to Lemma 1 and its
Corollary. Eventually, including triples one obtains:

𝑂(𝑡, ̄𝑡)CCSDT = 𝑂(𝑡, ̄𝑡)CCSD + ⟨ ̄𝑡2|[𝑂̌, 𝑇3]|HF⟩

+ ⟨ ̄𝑡3|[𝑂̌, 𝑇3] + 1
2

[[𝑂̌, 𝑇2], 𝑇2]|HF⟩

= 𝑂(𝑡, ̄𝑡)CCSD + ⟨ ̄𝑡2|[𝑂, 𝑇3]|HF⟩
+ ⟨ ̄𝑡3|[𝑂, 𝑇3] + [[𝑂, 𝑇1], 𝑇3]|HF⟩

+ ⟨ ̄𝑡3|1
2

[[𝑂, 𝑇2], 𝑇2]|HF⟩

(A.18)

where Lemma 1 and its corollary were again extensively employed.
The use of normal-ordered operators is common in coupled cluster

theory. Both for the dressed and bare representations, the expecta-
tion values of such operators can be formed by simply replacing the
operator with its normal-ordered counterpart, 𝑂̌N or 𝑂, respectively.
This achieves elimination of the reference expectation value from the
first term in equation (A.16).

a.3 selected results in functional analysis

Definition 1 (Continuity). A bilinear form on a normed vector
space 𝑉 is bounded, or continuous, if there is a constant 𝐶 such that
∀𝑢, 𝑣 ∈ 𝑉:

𝑎(𝑢, 𝑣) ≤ 𝐶‖𝑢‖‖𝑣‖

Definition 2 (Coercivity). A bilinear form on a normed vector
space 𝑉 is coercive, or elliptic, if there is a constant 𝛼 > 0 such that
∀𝑢 ∈ 𝑉:

𝑎(𝑢, 𝑢) ≥ 𝛼‖𝑢‖2

Coercivity implies that no eigenvalue of the linear operator asso-
ciated to the bilinear form can be zero, hence its invertibility.123
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Definition 3 (Sobolev spaces). Let 𝑠 and 𝑝 be two integers with
𝑠 ≥ 0 and 1 ≤ 𝑝 ≤ +∞. The so-called Sobolev space 𝑊 𝑠,𝑝(𝛺) is
defined as

𝑊 𝑠,𝑝(𝛺) = {𝑢 ∈ 𝒟 ′(𝛺)|𝜕𝛼𝑢 ∈ 𝐿𝑝(𝛺), |𝛼| ≤ 𝑠} (A.19)

where 𝒟 ′(𝛺) is the space of Schwartz distributions and the deriva-
tives 𝜕𝛼𝑢 are understood in a distributional sense.

Lemma 2 (Hilbert Sobolev spaces). Let 𝑠 ≥ 0. The space 𝐻𝑠(𝛺) =
𝑊 𝑠,2(𝛺) is a Hilbert space when equipped with the scalar product

(𝑢, 𝑣)𝑠,𝛺 = ∑
|𝛼|≤𝑠

∫
𝛺

𝜕𝛼𝑢𝜕𝛼𝑣. (A.20)

The associated norm is denoted by ‖ ⋅ ‖𝑠,𝛺.

Definition 4 (Fractional Sobolev spaces). For 0 < 𝑠 < 1 and
1 ≤ 𝑝 < +∞, the so-called Sobolev space with fractional exponent
is defined as

𝑊 𝑠,𝑝(𝛺) =
⎧⎪
⎨
⎪⎩

𝑢 ∈ 𝐿𝑝(𝛺)|
𝑢(𝒓) − 𝑢(𝒓′)

‖𝒓 − 𝒓′‖𝑠+ 𝑑
𝑝

∈ 𝐿𝑝(𝛺 × 𝛺)
⎫⎪
⎬
⎪⎭

. (A.21)

Furthermore, when 𝑠 > 1 is not integer, letting 𝜎 = 𝑠 − [𝑠], where
[𝑠] is the integer part of 𝑠, 𝑊 𝑠,𝑝(𝛺) is defined as

𝑊 𝑠,𝑝(𝛺) = {𝑢 ∈ 𝑊 [𝑠],𝑝(𝛺)|𝜕𝛼𝑢 ∈ 𝑊 𝜎,𝑝(𝛺) ∀𝛼, |𝛼| = [𝑠]} .

When 𝑝 = 2, we denote 𝐻𝑠(𝛺) = 𝑊 𝑠,2(𝛺).

Definition 5 (Abstract weak problem). An abstract weak prob-
lem is posed as follows:

{
Seek 𝑢 ∈ 𝑊 such that:
∀𝑣 ∈ 𝑉 𝑎(𝑢, 𝑣) = 𝑏(𝑣)

(A.22)

where:
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• 𝑊 and 𝑉 are normed vector spaces. 𝑊 is the solution space,
𝑉 the test space.

• 𝑎 is a continuous bilinear form on 𝑊 × 𝑉.

• 𝑏 is a continous linear form on 𝑉.

Definition 6 (Well-posedness). The abstract weak problem in
Definition 5 is well-posed if it admits one and only one solution and
the solution is bounded by the a priori estimate:

∃𝑐 > 0, ∀𝑓 ∈ 𝑉 ′, ‖𝑢‖𝑊 ≤ 𝑐‖𝑓‖𝑉 ′ (A.23)

where 𝑉 ′ is the dual space of 𝑉.

Definition 7 (Transmission problem). We assume Euclidean
space ℝ3 to be partitioned into two subdomains 𝛺i and 𝛺e sharing a
boundary 𝛤. We further assume that 𝛺i is a closed domain, entirely
contained inside 𝛺e. The transmission problem is posed as follows:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝐿i𝑢 = 𝑓i in 𝛺i

𝐿e𝑢 = 𝑓e in 𝛺e

[𝑢] = 𝑢e − 𝑢i = 𝑔D on 𝛤
[𝜕𝐿𝑢] = 𝜕𝐿e

𝑢 − 𝜕𝐿i
𝑢 = 𝑔N on 𝛤

|𝑢(𝒓)| ≤ 𝐶‖𝒓‖−1 for ‖𝒓‖ → ∞

(A.24a)
(A.24b)
(A.24c)
(A.24d)

(A.24e)

where the differential operators are assumed elliptic and the jump
conditions are given in terms of Dirichlet 𝑔D and Neumann 𝑔N data.
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a.4 derivation of the ief equation

I will show a detailed derivation of the IEF equation for the PCM
transmission problem Eq. (2.3):

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝐿i𝑢 = ∇2𝑢 = −4𝜋𝜌i in 𝛺i

𝐿e𝑢 = 0 in 𝛺e

[𝑢] = 𝑢e − 𝑢i = 0 on 𝛤
[𝜕𝐿𝑢] = 𝜕𝐿e

𝑢 − 𝜕𝐿i
𝑢 = 0 on 𝛤

|𝑢(𝒓)| ≤ 𝐶‖𝒓‖−1 for ‖𝒓‖ → ∞

(A.25a)
(A.25b)
(A.25c)
(A.25d)

(A.25e)

We first state two important results in the theory of boundary inte-
gral equations.

Lemma 3 (Properties of the boundary integral operators).
The integral operators introduced in Eqs. (2.4a)–(2.4c) enjoy the
following properties111,158:

1. on 𝐿2(𝛤 ), ̂𝒮⋆ is self-adjoint, ̂𝒟 †
⋆ is the adjoint operator of

̂𝒟⋆.

2. The commutation relations hold:

̂𝒟⋆ ̂𝒮⋆ = ̂𝒮⋆
̂𝒟 †
⋆, ̂𝒮⋆

̂𝒟⋆ = ̂𝒟 †
⋆

̂𝒮⋆ (A.26)

3. The boundary integral operators are continuous mappings
between Sobolev spaces of fractional order:

̂𝒮⋆ ∶ 𝐻− 1
2 (𝛤 ) → 𝐻

1
2 (𝛤 )

̂𝒟⋆ ∶ 𝐻
1
2 (𝛤 ) → 𝐻

1
2 (𝛤 )

̂𝒟 †
⋆ ∶ 𝐻− 1

2 (𝛤 ) → 𝐻− 1
2 (𝛤 )

(A.27a)

(A.27b)

(A.27c)

4. The operator ̂𝒮⋆ is coervice and admits a continuous inverse
in the aforementioned Sobolev spaces.

5. The operators 𝜆− ̂𝒟⋆ and 𝜆− ̂𝒟 †
⋆ with 𝜆 ∈ (−2𝜋, +∞) admit

a continuous inverse in the aforementioned Sobolev spaces.
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Lemma 4 (Integral Representation). For the transmission prob-
lem A.24 there holds:

1. ∀𝒓 ∈ 𝛺i

𝑢 = ̂𝒮i(𝜕𝐿i
𝑢) − ̂𝒟i(𝑢i) + ∫

𝛺i

d𝒓′𝐺i(𝒓, 𝒓′)𝑓i (A.28)

2. ∀𝒓 ∈ 𝛺e

𝑢 = − ̂𝒮e(𝜕𝐿e
𝑢) + ̂𝒟e(𝑢e) + ∫

𝛺e

d𝒓′𝐺e(𝒓, 𝒓′)𝑓e (A.29)

3. ∀𝒓 ∈ 𝛤

1
2

𝑢i = ̂𝒮i(𝜕𝐿i
𝑢) − ̂𝒟i(𝑢i) + ∫

𝛺i

d𝒓′𝐺i(𝒓, 𝒓′)𝑓i (A.30)

4. ∀𝒓 ∈ 𝛤

1
2

𝑢e = − ̂𝒮e(𝜕𝐿e
𝑢) + ̂𝒟e(𝑢e) + ∫

𝛺e

d𝒓′𝐺e(𝒓, 𝒓′)𝑓e (A.31)

We introduce the following auxiliary potential:

ℎ(𝒓) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∫
ℝ3

d𝒓′𝐺i(𝒓, 𝒓′)𝜌i(𝒓′) 𝒓 ∈ 𝛺i

∫
ℝ3

d𝒓′𝐺e(𝒓, 𝒓′)𝜌i(𝒓′) 𝒓 ∈ 𝛺e

(A.32a)

(A.32b)

for which we have:

{
∇2ℎ = 𝜌i in 𝛺i

𝐿eℎ = 0 in 𝛺e

(A.33a)
(A.33b)



108 some mathematical results

We then define the reaction potential as:

𝜉 = 𝑢 − ℎ (A.34)

such that:

⎧⎪
⎪
⎨
⎪
⎪⎩

∇2𝜉 = 0 in 𝛺i

𝐿e𝜉 = 0 in 𝛺e

−[𝜉] = [ℎ] on 𝛤
−[𝜕𝐿𝜉] = [𝜕𝐿ℎ] on 𝛤

(A.35a)
(A.35b)
(A.35c)
(A.35d)

inside the cavity, the reaction potential can be represented by a single
layer potential:

𝜉i = ̂𝒮i𝜎 (A.36)

where the function 𝜎 is the, yet unknown, apparent surface charge.
To derive an equation for 𝜎, we set up a system of equations con-

taining the jump conditions and the integral representations of the
reaction and auxiliary potentials:

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

̂𝒮i(𝜕𝐿i
𝜉) − ̂𝒟i(𝜉i) = 1

2
𝜉i

̂𝒮e(𝜕𝐿e
𝜉) − ̂𝒟e(𝜉e) = −1

2
𝜉e

̂𝒮e(𝜕𝐿e
ℎ) − ̂𝒟e(ℎe) = −1

2
ℎe

𝜉i − 𝜉e = ℎe − ℎi

𝜕𝐿i
𝜉 − 𝜕𝐿e

𝜉 = 𝜕𝐿e
ℎ − 𝜕𝐿i

ℎ

(A.37a)

(A.37b)

(A.37c)

(A.37d)
(A.37e)

The final ingredient is the Dirichlet-to-Neumann (DtN) map, which
can be derived by employing Eq. (A.30) to the Newton potential:

𝜙(𝒓) = ( ̂𝒩 𝜌i)(𝒓) = ∫
ℝ3

d𝒓′𝐺i(𝒓, 𝒓′)𝜌i(𝒓′) = ℎ(𝒓)|𝛺i
(A.38)

which is equal, in 𝛺i, to the auxiliary potential ℎ(𝒓). The DtN map
is thus given as:

(
1
2

− ̂𝒟i) 𝜙i + ̂𝒮i(𝜕𝐿i
𝜙) = 0 (A.39)
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With this last ingredient at hand, algebraic manipulations lead to the
IEF equation:

[ ̂𝒮e(2𝜋 + ̂𝒟 †
i ) + (2𝜋 − ̂𝒟e) ̂𝒮i]𝜎 =

− [(2𝜋 − ̂𝒟e) − ̂𝒮e ̂𝒮 −1
i (2𝜋 − ̂𝒟i)]𝜑,

(2.7 from Chapter 2)

a.5 weak formulation of partial differential equa-
tions

The transmission problem can be reformulated in a variational fash-
ion. Such a formulation allows for a larger vector space, with weaker
regularity conditions, to be explored as solution space for the prob-
lem. We will follow the exposition of Ern et al. quite closely in in-
troducing the weak formulation of PDE. For simplicity, we assume
Dirichlet boundary conditions for a conductor, i.e. the basic assump-
tion behind COSMO. The strong formulation of the electrostatic
problem then reads:

∇2𝜑 = −4𝜋𝜌, 𝜑 ∈ 𝒞 2
0 (𝛺i), (A.40)

where 𝒞 2
0 (𝛺i) is the vector space of twice continuously differentiable

functions in 𝛺i with null trace on 𝛤. We can relax this regularity
requirement on 𝛹 by introducing the Hilbert Sobolev space of test
functions 𝐻1

0 (𝛺i):

𝐻1
0 (𝛺i) = {𝑓 ∶ 𝛺i → ℝ|𝑓, ∇𝑓 ∈ 𝐿2(𝛺i), 𝑓𝛤 = 0}. (A.41)

Projecting the differential problem onto this space and using the
𝜂∇2𝛾 = ∇ ⋅ (𝜂∇𝛾) − ∇𝜂 ⋅ ∇𝛾 identity one obtains the weak formu-
lation of the differential problem:

{
Seek 𝛹 ∈ 𝐻1

0 (𝛺i) such that:

(∇𝜁, ∇𝛹) = −4𝜋(𝜁, 𝜌) ∀𝜁 ∈ 𝐻1
0 (𝛺i)

(A.42)
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The form (∇⋅, ∇⋅) is bilinear and continuous in 𝐻1
0 (𝛺i) × 𝐻1

0 (𝛺i),
while −4𝜋(⋅, 𝜌) is linear and continuous in 𝐻1

0 (𝛺i). We rewrite Eq.
(A.42) in the abstract form:

{
Seek 𝑢 ∈ 𝑉 such that:
∀𝑣 ∈ 𝑉 𝑎(𝑢, 𝑣) = 𝑏(𝑣)

(A.22)

and state the following fundamental results:

Lemma 5 (Lax–Milgram). If the bilinear form 𝑎 is continous and
coercive in 𝑉, then, for any continuous linear form 𝑏, Problem (A.22)
is well-posed.

Corollary (Variational property). If the bilinear form is sym-
metric and positive the unique solution to Problem (A.22) is the
unique minimum on 𝑉 of the functional:

ℱ (𝑢) = 1
2

𝑎(𝑢, 𝑢) − 𝑏(𝑢)

It is important to note how BIEs can also be reformulated in a
variational framework, as shown in ref. 158
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