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A���	
��. In this thesis we study the correspondence between cate-
gorical notions and bialgebra notions, and make a kind of dictionary
and grammar book for translation between these notions. We will show
how to obtain an antipode, and how to define braidings and quantiza-
tions. The construction is done in two ways. First we use the properties
of a bialgebra to define a monoidal structure on (co)modules over this
bialgebra. Then we go from a (strict) monoidal category and use a cer-
tain monoidal functor from this category to reconstruct bialgebra and
(co)module structures. We will show that these constructions in a sense
are inverse to each other. In some cases the correspondence is 1-1, and
in the final Part we conjecture when this is the case for the category
of comodules that are finitely generated and projective over the base
ring k. We also briefly discuss how to transfer the results to non-strict
categories.
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Introduction

The purpose of this thesis is to examine the correspondence between cat-
egorical notions and bialgebra notions. There is a close connection between
constructions in monoidal categories and constructions on (co)modules over
bialgebras, and the categorical language can be a useful tool in studying
these. We will examine this correspondence closely, and show that in some
special cases there is a 1-1 correspondence between the structures. Most of
the results have been known in various versions for some years and used in
a variety of mathematical literature. The main idea in this thesis is to bring
together these results to make a kind of dictionary and grammar book for
translation of notions and methods from the bialgebra language to the cate-
gorical language and back. We will examine the following correspondences:

• Amonoidal structure on the category ofH-(co)modules over a (co)algebra
corresponds to a bialgebra structure on H.

• Rigidity of a category corresponds to the existence of an antipode
for H.

• Braidings and quantizations in the category are determined by (co)braiders
and (co)quantizers as elements in H ⊗H (or in (H ⊗H)∗).

The first Part deals with bi- and Hopf algebras. Throughout the thesis
the basis for the constructions is the category Modk of modules over a
base ring k. We define (co)algebra structures, (co)modules over these, and
we define bialgebras. We then state some important Lemmas concerning
duality of (co)modules. It turns out that most constructions on modules
can be achieved by dualizing the corresponding structures on comodules.
Vice versa, if we make some restrictions on Modk we can go from modules
to comodules. We will also see that when Modk is the category of finitely
generated projective modules, the dual of a bialgebra is still a bialgebra. The
Part closes with the definition of an antipode and shows that for modules
the dual of a Hopf algebra is also a Hopf algebra.

Remark 0.1. For the rest of the paper we will use the shorthand notation
f.g. projective for "finitely generated and projective"

In Part II we describe monoidal categories and define various structures
in them; braidings, quantizations and rigidity. When H is a bialgebra, the
bialgebra structure can be used to define a monoidal structure on the cat-
egories ModH and ModH , the categories of comodules, resp. modules over
H. We can then describe braidings and quantizations in these categories.
We show that ModH is a braided category if and only if the underlying
bialgebra is cobraided. The braiding is given by a cobraiding element

r ∈ Hom (H ⊗H, k) .
Likewise, a quantization is determined by a coquantizer

q ∈ Hom (H ⊗H, k) .
If H is a Hopf algebra, we can use the antipode to show that ModH is a
rigid category. These concepts have mostly been described for categories
of H-modules, but we have done a full description of these structures for
comodules, as well. This is useful for showing duality between ModH and
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ModH , and is necessary for the reconstructions in Part III. The construction
of similar structures for ModH follows thereafter. The last section of the
Part describes how the constructions in ModH and ModH in a sense are
dual to each other. This duality is then used for the inverse constructions
in Part III.
While we used the bialgebra and (co)module structures to establish struc-

tures of monoidal categories in Part II, in Part III we will go the opposite
way. It turns out that given a monoidal category and a forgetting monoidal
functor to an underlying category, it is possible to derive structures of bi-
and Hopf algebras, (co)modules, braidings and quantizations. These recon-
structions are usually done for a monoidal category C and a functor

G : C −→ vec,
the category of finite dimensional vector spaces. The reconstructions will
be generalized in this thesis to the category of finitely generated projective
modules whenever possible. The reconstruction process mainly follows ideas
from [LR97], [Ulb90], [Sch92] and [Par96]. The idea is to construct a coend
for the functor G. We can then construct a coalgebra structure on

H = coend (G∗ ⊗G) ,
and we can give G (X) a H-comodule structure. The monoidal structure
of C can then be used to define a bialgebra structure on H, thus defining a
monoidal category ModH . We then get a functor

F : C −→ModH

such that G factorizes through F. It was our intention to find reasonable
restrictions on C, G and k to show that we could get an equivalence between
C and the category ModH of H-comodules, but this appeared to be too
timeconsuming and too complicated for this thesis. A reasonable conjecture
on such an equivalence is formulated in Section 11. However, the proof is
only sketched, not completed. That is why the statement is not called a
Theorem, and is placed in Part “Further perspectives”. We will also shortly
refer to results from [SR72] and [Sch92] concerning equivalence.
If C is rigid, we can construct an antipode for H, thereby making it a

Hopf algebra. If we take C to be the category of comodules we constructed
in Part II, we can show that the two methods of construction in II and III
in a sense are inverse to each other.
We can also dualize this process to reconstruct a category of modules over

an algebra. We use a functor F : C −→Modk and construct
E = end (Hom (F, F )) .

It can then be showed that
E∗ ≈ H = coend (G∗ ⊗G) ,

and the duality results from previous Parts are then used to reconstruct
the bi- (and Hopf) algebra and module structure. Likewise we show how to
construct braidings and quantizations.
It was the aim of this thesis to examine the same processes for non-strict

categories, but this appeared to be too large for a cand. sci. thesis. This
work is therefore only partially done for some concepts. In Section 9 we have



HOPF ALGEBRAS AND MONOIDAL CATEGORIES 5

presented the ideas and some partial results. When we have a multiplication
that is not associative, it is not possible to get a bialgebra structure on
H. But we can still make a "quasi" - associativity, just like braidings give
quasisymmetries. To do this we use the structures of coquasibialgebras.
Remark 0.2. The notion quasibialgebras has been widely used. Our no-
tion coquasibialgebras seems to be relatively new. The difference between
the two notions is that quasibialgebras are associative, but not coassociative,
while coquasibialgebras are coassociative, but not associative.
We can then use these structures to define braidings and quantizations in

ModH . We also sketch how to reconstruct a coquasibialgebra structure and
how to reconstruct braidings and quantizations in ModH . Finally we make
a conjecture on equivalence between C and ModH in the case where Modk
is the category of f.g. projective k-modules.
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Part I. Hopf algebras
1. B�
����	
�

In the following let k be a commutative ring with unit. Throughout the
paper, the symbol ⊗ will denote tensoring over k:

⊗ := ⊗k.

Definition 1.1. A k-algebra (H,µ, η) is a k-module H together with k-
module homomorphisms

µ : H ⊗H −→ H,
called multiplication, and

η : k −→ H,

called unit, such that the two following diagrams commute:

A⊗A⊗A
idA ⊗ µ� A⊗A

A⊗A

µ⊗ idA

�
µ

� A

µ

�
(1.1)

k ⊗A
η ⊗ 1� A⊗A �1⊗ η A⊗ k

�����
≈

� ���
��

�
≈

A

µ

�

The first diagram shows accociativity of µ, while the second shows that η is a
two-sided unit for µ. The commutativity of the above diagrams is equivalent
to the following equations

µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ)(1.2)
µ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ η) .

A k-module homomorphism

f : A −→ B

where A and B are algebras is an algebra homomorphism provided the
following diagrams commute

(1.3)

A⊗A
f ⊗ f� B ⊗B k

���
��

�
η

�����
η

�
A

µA
�

f
� B

µB
�

A
f

� B

.
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An algebra is commutative if µ ◦ τ = µ, where τ is the twist
τ (a⊗ b) = b⊗ a.

Dually,

Definition 1.2. a k-coalgebra C is a k-module together with a k-module
homomorphism

∆ : C −→ C ⊗C
called diagonal or comultiplication, and a k-module homomorphism

ε : C −→ k
called counit, such that the following diagrams commute:

C
∆ � C ⊗C

C ⊗C

∆

�
∆⊗ 1

� C ⊗C ⊗C

1⊗∆

�
(1.4)

k ⊗C �ε⊗ 1 C ⊗C 1⊗ ε � C
������
≈

��
��

�
≈

	

C

∆




This can be expressed through the following equations:
(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆(1.5)
(ε⊗ idC) ◦∆ = (idC ⊗ ε) ◦∆.

The first equation shows that ∆ is coassociative .
A k-module homomorphism

g : C −→ D
where C and D are coalgebras is a coalgebra homomorphism provided
the following diagram commutes:

C
g � D C

g � D
�����
ε

� ���
��

�
ε

C ⊗C

∆C

� g ⊗ g� D ⊗D

∆D

�
k

A coalgebra is said to be cocommutative if τ ◦∆ = ∆.

Definition 1.3. A bialgebra is an algebra that is also a coalgebra, and
where ∆ and ε are algebra morphism. The latter is equivalent to requiring
that µ and η are coalgebra morphisms.
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1.1. Comodules.
Definition 1.4. A (right) comodule V over a k-coalgebra C is a k-module
together with a k-module homomorphism

δV : V −→ V ⊗C
such that

(δV ⊗ 1) ◦ δV = (1⊗∆) ◦ δV(1.6)
(1⊗ ε) ◦ δV = idV .

A C-comodule morphism is a morphism f : V −→W such that
δW ◦ f = (f ⊗ 1) ◦ δV .

1.2. Modules. Throughout the paper, “A-module” will mean “leftA-module”.
Definition 1.5. A module M over a k-algebra A is a k-module together
with a k-module homomorphism

ρM : A⊗M −→M
such that

ρ ◦ (1⊗ ρ) = ρ ◦ (µ⊗ 1)(1.7)
ρ ◦ (η ⊗ 1) = idM .

An A-module morphism
is a map g :M −→ N obeying

ρ ◦ (1⊗ g) = g ◦ ρ
1.3. Duality. We can relate algebras and coalgebras by duality. We define
the dual module to a k-module M to be the module

M∗ = Homk (M,k) .
First we state some useful Lemmas.
Given two modules A,B we have a natural homomorphism

A∗ ⊗B ϕ−→ Hom (A,B) ,
(ϕ (f ⊗ b)) (a) 	−→ f (a) b

Lemma 1.6. The natural homomorphism
ϕ : A∗ ⊗B −→ Hom (A,B)

is an isomorphism when A is a finitely generated projective k-module.
Proof. First suppose thatA is free with basis e1, . . . , en. Then f ∈ Hom (A,B)
is uniquely determined by its values on the elements of the basis. This means
that any f is uniquely determined by a set of elements b1, . . . , bn ∈ B. Let
e1, . . . , en be the dual basis in A∗. Then any element in A∗ ⊗B is uniquely
represented by

∑
ei ⊗ bi. But ϕ

(∑
ei ⊗ bi

)
takes ei to bi, so the map is

an isomorphism. Now let A be f.g. projective. There is a free module
F ≈ A⊕ A′, where both A and A′ are f.g. projective, and F ∗ ≈ A∗ ⊕ A′∗.
This gives an isomorphism

F ∗ ⊗B ≈
(
A∗ ⊕A′∗

)
⊗B ≈ A∗ ⊗B ⊕A′∗ ⊗B

≈ Hom (A,B)⊕Hom
(
A′, B

)
,
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hence the isomorphism
A∗ ⊗B ≈ Hom (A,B)

�
Lemma 1.7. Let k be a commutative ring. Then for any k-modules A, B
and C we have a natural isomorphism

π : Homk (A⊗B,C) −→ Homk (B,Hom (A,C))
given by

((πf) b) a = f (a⊗ b)
where f ∈ Homk (A⊗B,C), a ∈ A and b ∈ B.

Proof. First,
(πf)h : B −→ C

is a k-module homomorphism by the properties of the tensor product. Since
f is a k-module homomorphism,

πf : B −→ Hom (A,C)
is also. Now let

g ∈ B −→ Hom (A,C)
We define

ω : Homk (B,Hom (A,C)) −→ Homk (A⊗B,C)
by the k-module homomorphism

ω (g) (a⊗ b) = (g (b)) (a)
This gives an inverse for π, so we have the desired isomorphism, which is
natural in all three arguments. �
Let the map

(1.8) M∗ ⊗N∗ −→ (N ⊗M)∗

be defined by
(f ⊗ g) (m⊗ n) 	→ g (n) f (m) .

This is a natural homomorphism: it is the composition
M∗ ⊗N∗ ϕ−→ Hom (M,N∗) = Hom (M,Hom (N,k)) ≈ Hom (N ⊗M,k)
where the last isomorphism is given by Lemma 1.7.

Corollary 1.8. Let A,B be k-modules. The map λ :M∗⊗N∗ −→ (N ⊗M)∗
is an isomorphism if M,N are finitely generated and projective.

Proof. First note that Lemma 1.6 can be stated as

N ⊗M∗ φ
≈ Homk (M,N) ,

φ (n⊗ f) (m) = f (m)n
Then λ is the composition
M∗⊗N∗ ϕ−→ Hom (N,M∗) = Hom (N,Hom (M,k)) ≈ Hom (N ⊗M,k) = (N ⊗M)∗ .
By Lemma 1.6 this is an isomorphism when M and N are f.g. projective as
k-modules. �
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Remark 1.9. For the rest of this document λ will refer to this isomorphism.

For the next Proposition we need the following definition:

Definition 1.10. Let A be an algebra and C a coalgebra. The convolution
f + g of f, g : C −→ A is defined by the following diagram:

C
f + g � A

C ⊗C

∆

� f ⊗ g� A⊗A

µ




Proposition 1.11. Let C be a coalgebra. Then C∗ is an algebra.

Proof. Let f, g ∈ Hom (C, k). Using Sweedler notation (see e.g. [Kas95, III,
1.6]) we can write the diagonal as

∆ (x) =
∑

x(0) ⊗ x(1).

We can define a multiplication µ on C∗ by

µ (f ⊗ g) (x) =
∑

f
(
x(0)

)
g
(
x(1)

)
= (f + g) (x) ,

f, g ∈ C∗, x ∈ C
Associativity follows from the associativity of ∆ and in k.
Define η by

η (1) = idC∗ .
Then

µ ◦ (η ⊗ idC∗) (x) = µ
(∑

η
(
x(0)

)
⊗ x(1)

)

= x = µ ◦ (idC∗ ⊗ η) (x)

= µ
(∑

x(0) ⊗ η
(
x(1)

))

This shows that µ is associative and that η (1) is a left and right unit for µ,
so (C∗, µ, η) is an algebra. �
Lemma 1.12. Given two k-modules M,V we have an isomorphism

π : Hom (M,V ) ≈ Hom (V ∗,M∗) .

Proof. By applying Lemma 1.6 and its "twisted" version we get the follow-
ing:

Hom (M,V ) ≈ V ⊗M∗ ≈ Hom (V ∗,M∗) .
�

Now let f : M −→ V be a k-module homomorphism. We define the
transpose f∗ : V ∗ −→M∗ to be the image of f under the above map, that
is,

f∗ = π (f) .

Proposition 1.13. Let A be an algebra that is finitely generated and pro-
jective as a k-module. Then A∗ is a coalgebra.
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Proof. From corollary 1.8 we see that
λ : A∗ ⊗A∗ −→ (A⊗A)∗ .

is an isomorphism. We then define diagonal
∆′ = τλ−1 ◦ µ∗

and counit
ε′ = η∗.

The transposition transforms the diagrams 1.1 into the proper diagrams for
a coalgebra definition. �
Proposition 1.14. If H is a bialgebra and a finitely generated projective
k-module, then H∗ is a bialgebra.

Proof. From the previous Propositions H∗ has an algebra and a coalgebra
structure. The coalgebra structure was given by transposing the algebra
structure of H, with coalgebra structure

∆′ : = τλ−1 ◦ µ∗,
ε′ : = η∗

When H is finitely generated and projective the algebra structure from the
proof of Proposition 1.11 can be rephrased as

µ′ : = ∆∗ ◦ τλ,
η′ : = ε∗

We need to show that ∆′ and ε′ are algebra homomorphisms, so 1.3 we need
the following diagrams to commute:

H∗ ⊗H∗ ∆′ ⊗∆′� (H∗ ⊗H∗)⊗ (H∗ ⊗H∗) k
id� k ⊗ k

H∗

µ′H∗

�
∆′

� H∗ ⊗H∗

µ′H∗⊗A

�
H∗

η′ ⊗ η′

�
∆′
� H∗ ⊗H∗

η′

�

H∗ ⊗H∗ ε′ ⊗ ε′� k ⊗ k k

���
��

�
η′

�����
id

�
H∗

µ′H∗

�
ε′

� k

µ′k
�

H∗
ε′

� k

Transposition of these diagrams amounts to requiring that µ and η are coal-
gebra morphisms. But this we know from the fact that H is a bialgebra, so
H∗ is a bialgebra. �
Proposition 1.15. Let (H,∆, ε, µ, η) be a bialgebra which is finitely gen-
erated and projective as a k-module. Then for any right H-comodule M ,
M∗ is a left H∗-module. Conversely, if V is a left H-module, V ∗ is a right
H∗-comodule.
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Proof. From the previous Proposition we know that (H∗,∆′, ε′, µ′, η′) is a
bialgebra when we define ∆′, ε′, µ′, η′ as in the previous proof. First let

V δM−→ V ⊗H
be the H-comodule structure on V ∗. Define

ρ′ : H∗ ⊗ V ∗ λ−→ (V ⊗H)∗ δ∗M−→ V ∗.
We want ρ′ to satisfy the following equations:

ρ′ ◦
(
1⊗ ρ′

)
= ρ′ ◦

(
µ′ ⊗ 1

)
,

ρ′ ◦ (η ⊗ 1) = id
Transposing the equations 1.6 will give the desired result. We show the first
equation:

ρ′ ◦
(
1⊗ ρ′

)
= (δ∗ ◦ λ) ◦ (1⊗ (δ∗ ◦ λ))
= (δ∗ ◦ λ) ◦ ((∆∗ ◦ τ ◦ λ)⊗ 1)
= (δ∗ ◦ λ) ◦

(
µ′ ⊗ 1

)

= ρ′ ◦
(
µ′ ⊗ 1

)
.

The second equation follows:
ρ′ ◦

(
η′ ⊗ 1

)
= (δ∗ ◦ λ) ◦ (ε∗ ⊗ 1)
= δ∗ ◦ λ ◦ (ε∗ ⊗ 1)
= id.

To go the other way, let
H ⊗ V ρV−→ V

be the H-module structure on V . Define

δ′ : V ∗
ρ∗V−→ (H ⊗ V )∗ λ−1−→ V ∗ ⊗H∗

Then δ′ gives a H∗-comodule on V ∗. The proof is similar to the opposite
case. �

2. A�������
Let H be a bialgebra. We define an antipode as an endomorphism

s : H −→ H
satisfying

µ ◦ (s⊗ idH) ◦∆ = η ◦ ε = µ ◦ (idH ⊗ s) ◦∆,
or in other words,

s + idH = idH + s = η ◦ ε.
Definition 2.1. A Hopf algebra is a bialgebra H with an antipode s, that
is, an endomorphism

s : H −→ H
satisfying
(2.1) s + idH = idH + s = η ◦ ε.
Proposition 2.2. If H is a Hopf algebra (H,µ, η,∆, ε, s), then H∗ is a
Hopf algebra with antipode s∗, the transpose of s.
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Proof. From 1.14 we know that H∗ is a bialgebra, so we only need to find
an antipode for H∗. The equations 2.1 can be described by requiring com-
mutativity of

(2.2)

H ∆� H ⊗H H ∆� H ⊗H

H ⊗H

idH ⊗ s

�
H ⊗H

s⊗ idH

�

k

ε

�
η

� H

µ

�
k

ε

�
η

� H

µ

�

Transposition of these diagrams shows that s∗ is an antipode for H∗. We
show this explicitly for the first diagram. Transposing gives

H∗ η∗ � k ε∗ � H∗

(H ⊗H)∗

µ∗

�
(H ⊗H)∗

∆∗



H∗ ⊗H∗

λ−1

� id⊗ s∗ � H∗ ⊗H∗

λ



using
(idH ⊗ s)∗ = λ ◦ (idH∗ ⊗ s∗) ◦ λ−1.

By the definitions of the bialgebra structure on H∗ from the proof of Propo-
sition 1.14 the diagram transforms to

H∗ ε′ � k
η′ � H∗

H∗ ⊗H∗

∆′

� id⊗ s∗ � H∗ ⊗H∗

µ′



The commutativity of the diagram gives
id⊗ s∗ = η′ ◦ ε′.

Switching id⊗ s with s⊗ id and applying the same procedure gives
s∗ ⊗ id = η′ ◦ ε′,

so s∗ is an antipode for H∗. �
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Part II. Monoidal categories
3. G���	
� ������
� �
����	���

Definition 3.1. A monoidal category is a category C with a bifunctor
� : C × C −→ C and a unit object e together with natural isomorphisms

α = αX,Y,Z : X� (Y�Z) −→ (X�Y )�Z,
called the associativity constraint, and

ηr : X�e −→ X and ηl : e�X −→ X,

called unity constraints, such that the following coherence conditions (see
[ML98, ch. VII]) holds:

• pentagon axiom

X�(Y�(Z�T )) αX,Y,Z�T� (X�Y )�(Z�T ) αX�Y,Z,T� ((X�Y )�Z)�T

X�((Y�Z)�T )

idXαY,Z,T

�
αX,Y �Z,T

� (X�(Y�Z))�T

αX,Y,Z�idT



• unity axiom

(X�e)�Y αX,e,Y � X�(e�Y )
�����

ηr�idY � ���
��

�

idX�ηl
X�Y

A monoidal category is strict when the associativity and unity con-
straints are identity morphisms.

Definition 3.2. A monoidal functor (F, ξ2, ξ0) consists of
• a functor

F : C −→ C′

between monoidal categories
• a natural morphism

ξ2 (X,Y ) : F (X)�F (Y ) −→ F (X�Y )
for X,Y ∈ C′

• a natural morphism

ξ0 : e′ −→ F (e)
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for e, e′ the units in C and C′respectively. Together these must make
all the following diagrams commute

F (X)�(F (Y )�F (Z)) α′� (F (X)�F (Y ))�F (Z)

F (X)�(F (Y �̃Z)

1⊗ ξ2
�

F (X�̃Y )�F (Z)

ξ2 ⊗ 1

�

F (X�̃(Y �̃Z)

ξ2
�

F (α)
� F ((X�̃Y )�̃Z)

ξ2
�

(3.1)

F (X)�e′ (ηr)′� F (X) e′�F (X) (ηl)′� F (X)

F (X)�F (E)

1�ξ0
�

F2
� F (X�̃e)

F (ηr)



F (e)�F (X)

ξ0�1
�

F2
� F (e�̃X)

F (ηl)



(3.2)

where �̃ and � are in C and C′ respectively. The functor is said to
be strong when ξ0 and ξ2 are isomorphisms, and strict when they
are the identity.

Remark 3.3. For the rest of the text we will write ⊗ for the functor � when
there is no risk of confusion. We will also occasionally call it the product.
We will also assume that categories and functors are strict when nothing
else is said.
Definition 3.4. An object X∗ in a monoidal category K is called a left
dual if there are K-morphisms

X∗ ⊗X ev−→ I,
I db−→ X ⊗X∗

such that
(3.3) X ≈ I ⊗X db⊗1−→ X ⊗X∗ ⊗X 1⊗ev−→ X ⊗ I ≈ X
and
(3.4) X∗ ≈ X∗ ⊗ I 1⊗db−→ X∗ ⊗X ⊗X∗ ev⊗1−→ I ⊗X∗ ≈ X∗

are the identity maps. Likewise we can define a right dual to be an object
X∗ with K-morphisms

X ⊗X∗ ve−→ I,
I bd−→ X∗ ⊗X

such that
X∗ ≈ I ⊗X∗ bd⊗1−→ X∗ ⊗X ⊗X∗ 1⊗ve−→ X∗ ⊗ I ≈ X∗
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and

X ≈ X ⊗ I 1⊗bd−→ X ⊗X∗ ⊗X ve⊗1−→ I ⊗X ≈ X.

If every X ∈ K has a left (right) dual, the category is left (right) rigid.
A category where all elements have both left and right duals, is called rigid.

When a category is (left) rigid, we can give an alternative description of
the transpose of a morphism f : X −→ Y : it is the unique morphism f∗
making the following diagram commutative:

Y ∗ ⊗X f∗ ⊗ idX� X∗ ⊗X

Y ∗ ⊗ Y

idY ∗ ⊗ f

�
evY

� k

evX
�

We can also equally define f∗ by the following:

f∗ : Y ∗ 1⊗dbX−→ Y ∗ ⊗X ⊗X∗ 1⊗f⊗1−→ Y ∗ ⊗ Y ⊗X∗ evY ⊗1−→ X∗.

Definition 3.5. A braiding in a monoidal k-linear category is a natural
k-bilinear isomorphism σX,Y : X⊗Y −→ Y ⊗X that satisfies commutativity
of the hexagon diagrams:

X ⊗ (Y ⊗ Z)

���
��

�
idX ⊗ σY,Z

�����
αX,Y,Z

�
X ⊗ (Z ⊗ Y ) (X ⊗ Y )⊗ Z

(X ⊗ Z)⊗ Y

αX,Z,Y

�
Z ⊗ (X ⊗ Y )

σX⊗Y,Z

�

�����
σX,Z ⊗ idY � ���

��
�

αZ,X,Y

(Z ⊗X)⊗ Y
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(X ⊗ Y )⊗ Z

���
��

�
σX,Y ⊗ idZ

�����

α−1X,Y,Z

�
(Y ⊗X)⊗ Z X ⊗ (Y ⊗Z)

Y ⊗ (X ⊗ Z)

α−1Y,X,Z
�

(Y ⊗ Z)⊗X

σX,Y⊗Z

�

�����
idY ⊗ σX,Z � ���

��
�

α−1Y,Z,X
Y ⊗ (Z ⊗X)

and of the diagrams

1⊗X
σ � X ⊗ 1

�����ηl � ���
��

�
ηr

X

X ⊗ 1
σ � 1⊗X

�����
ηr

� ���
��

�

ηl

X
In the case of strict monoidal categories the hexagon diagrams take the fol-
lowing form:

(3.5)

X ⊗ Y ⊗Z
σX⊗Y,Z � Z ⊗X ⊗ Y

�����
idX ⊗ σY,Z � ��

��
�

σX,Z ⊗ idY

	

X ⊗ Z ⊗ Y

X ⊗ Y ⊗Z
σX,Y⊗Z � Y ⊗ Z ⊗X

�����
σX,Y ⊗ idZ � ��

��
�

idY ⊗ σX,Z

	

Y ⊗X ⊗ Z
or, equivalently,

(3.6) (σX,Z ⊗ idY ) (idX ⊗ σY,Z) = (σX⊗Y,Z)

and

(3.7) (idY ⊗ σX,Z) (σX,Y ⊗ idZ) = (σX,Y⊗Z) .
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A monoidal functor (F, ξ2, ξ0) is said to be braided if the following diagram
commutes naturally

F (X)⊗ F (Y )
ξ2� F (X ⊗ Y )

F (Y )⊗ F (X)

σF (X),F (Y )
�

ξ2
� F (Y ⊗X)

F (σX,Y )

�

Definition 3.6. A quantization (due to V. Lychagin, see e.g. [LP99]) in
a monoidal category C is a natural isomorphism

Q = QX,Y : X ⊗ Y −→ X ⊗ Y,
such that the coherence conditions
(3.8)

X ⊗ (Y ⊗X)
αX,Y,Z� (X ⊗ Y )⊗ Z

QX,Y ⊗ idZ� (X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

idX ⊗QY,Z

�
QX,Y⊗Z

� X ⊗ (Y ⊗ Z)
αX,Y,Z � (X ⊗ Y )⊗ Z

QX⊗Y,Z

�

and

(3.9)

X ⊗ k
QX,k� X ⊗ k

�����
ιrX �

X

ιrX
�

k ⊗X
Qk,X� k ⊗X

�����ιlX �
X

ιlX
�

holds for all X,Y ∈ C. For strict monoidal categories the diagram 3.8 reduces
to

(3.10)

X ⊗ Y ⊗ Z
QX,Y ⊗ idZ� X ⊗ Y ⊗ Z

X ⊗ Y ⊗ Z

idX ⊗QY,Z

�
QX,Y⊗Z

� X ⊗ Y ⊗ Z

QX⊗Y,Z

�
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A quantization of a functor G : A −→ B is a natural isomorphism
Q : G (X) ⊗̂G (Y ) −→ G (X ⊗ Y ) ,

where ⊗ and ⊗̂ are the products in A and B, respectively, together with the
coherence conditions

G(X)⊗̂(G(Y )⊗̂G(Z))
βG(X),G(Y ),G(Z)� (G(X)⊗̂G(Y ))⊗̂G(Z)

G(X)⊗̂G(Y ⊗ Z)

idX⊗̂QY,Z
�

G(X ⊗ Y )⊗̂G(Z)

QX,Y ⊗̂idZ
�

G(X ⊗ (Y ⊗ Z))

QX,Y⊗Z

� G(αX,Y,Z) � G((X ⊗ Y )⊗ Z)

QX⊗Y,Z

�

and

(3.11)

G(X)⊗̂G(k)
QX,k� G(X ⊗ k)

�����
ιrB �

G(X)

G(ιrA)

�

G(k)⊗̂G(X)
Qk,X� G(k ⊗X)

�����ιlB �
G(X)

G(ιlA)

�

4. M�����
� ��	����	� �� ��� �
����	� �� H-���������
First, note that the category Modk of modules over k is a monoidal cat-

egory with the usual tensor product.

4.1. Comodules over a bialgebra. Let H be a bialgebra. The category
ModH of H-comodules can be given a monoidal structure if we define the
product

⊗ :ModH ×ModH −→ModH

to be the ordinary tensor product ⊗k. The pentagon and unity axioms
are satisfied through the properties of the tensor product. We give a H-
comodule structure of the tensor product by

δV⊗W : V ⊗W δV⊗δW−→ V ⊗H⊗W⊗H 1⊗τ⊗1−→ V ⊗W⊗H⊗H 1⊗1⊗µ−→ V ⊗W⊗H,
where

τ : V ⊗W −→ V ⊗W
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is the twist.

Remark 4.1. By abuse of notation we will write δV⊗δW for the composition
(1⊗ τ ⊗ 1) ◦ (δV ⊗ δW )

whenever there are no possibility for confusion. We will also write
∑
v(1)⊗

v(2) = δV (v) whenever the context make the notation clear.

We must check that the conditions 1.6 holds:
((δV⊗W ⊗ 1) ◦ δV⊗W ) (v ⊗w)

= (δV⊗W ⊗ 1)
∑

v(0) ⊗w(0) ⊗ µ
(
v(1) ⊗w(1)

)

=
∑

v(0) ⊗w(0) ⊗ µ
(
v(1) ⊗w(1)

)
⊗ µ

(
v(2) ⊗w(2)

)

= (1⊗∆)
∑

v(0) ⊗w(0) ⊗ µ
(
v(1) ⊗w(1)

)

= (1⊗∆) ◦ δV⊗W
and

((1⊗ ε) ◦ δV⊗W ) (v ⊗w)
= (1⊗ ε)

∑(
v(0) ⊗w(0)

)
⊗ µ

(
v(1) ⊗w(1)

)

=
∑(

v(0) ⊗w(0)
)

= v ⊗w.

4.2. Comodules over a Hopf algebra. Rigidity. Now let H be a Hopf
algebra with the antipode s and let ModH be the category of H-comodules.
As we have seen, ModH has the structure of a monoidal category. Let

M∗ be the dual module Homk (M,k). To define a H-comodule morphism
ev :M∗ ⊗M −→ k

we need to have a H-comodule structure on M∗. First, to do calculations
about rigidity, we use the following Lemma:

Lemma 4.2. A k-module M is f.g. projective if and only if there are ele-
ments m1, . . . ,mn ∈M and m1, . . . ,mn ∈M∗ such that

∀x ∈M, x =
∑

mi (x)mi.

We then call
{
mi,mi

}
a dual basis for M .

Proof. The following proof is adopted from [DI71, Lemma 1.3]. We assume
thatM is finitely generated and projective. Therefore there exists a f.g. free
module F and homomorphisms

π : F −→M,
ρ : M −→ F,

such that
π ◦ ρ = IdM .

As F is free, F ≈ kI for some finite set I. Thinking of kI as a set of functions
from I to k, define

ϕi : kI −→ k
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by

∀f ∈ kI ,
ϕi (f) = f (ei)

Then we have ∑
ϕi (f) ej = f

Define
mi = ϕi ◦ ρ,
mi = π

(
ei
)
.

We get the following.
∑

mi (x)mi =
∑

(ϕi ◦ ρ) (x)π
(
ei
)

=
∑

ϕi (ρ (x))π
(
ei
)

= π
∑

ϕi (ρ (x)) ei

= π (ρ (x))
= x

Conversely, assume
{
mi,mi

}
forms a dual basis for M in the sense defined

above. Define
π : F −→M,

πi (f) =
∑

f (ei)mi
and

ρ : M −→ F,
ρ (x)

(
ei
)
= mi (x) .

Then
π (ρ (x)) =

∑
mi (x)mi,

= x
Thus

π ◦ ρ = idM
and thereforeM is isomorphic to a direct summand of F and thus projective.

�
Remark 4.3. In the rest of this paper we will use the term dual basis just
defined whenever there is no risk for confusion.

Lemma 4.4. Let H be a Hopf algebra with antipode s. Then Homk (M,k)
becomes an H-comodule by

δ (f) (m) =
∑

f
(
m(0)

)
⊗ s

(
m(1)

)

Proof. We must show that

(δ ⊗ 1) ◦ δ = (1⊗∆) ◦ δ.
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Using the definition we get

((δ ⊗ 1) ◦ δ) (m)
= (δ ⊗ 1)

∑
f
(
m(0)

)
⊗ s

(
m(1)

)

=
∑

f
(
m(0)

)
⊗ s

(
m(1)

)
⊗ s

(
m(2)

)

= (1⊗∆)
∑

f
(
m(0)

)
⊗ s

(
m(1)

)

= (1⊗∆) ◦ δ

�
Theorem 4.5. Let H be a Hopf algebra with antipode s. Then ModH is
left rigid.

Proof. Define ev to be the evaluation

ev : M∗ ⊗M −→ k,
ev (f ⊗m) : = f (m)

where f ∈ Homk (M,k) and m ∈ M . We want ev to be a H-comodule
homomorphism, that is, the following diagram has to commute:

X∗ ⊗X
δX∗⊗X� X∗ ⊗X ⊗H

k

ev

�
δ

� k ⊗H

ev ⊗ 1

�

Going right, down gives the following:

(ev ⊗ 1) ◦ (δM∗⊗M) (f ⊗m)
= (ev ⊗ 1)

∑
f ⊗m(0) ⊗ s

(
m(1)

)
m(2)

=
∑

f
(
m(0)

)
⊗ s

(
m(1)

)
m(2)

= f (m)⊗ 1

while going down, right gives

δk ◦ ev (f ⊗m) = δk
∑

f (m)

=
∑

f
(
m(0)

)
⊗ 1

= f (m)⊗ 1

Since we assume thatM is finitely generated and projective, we have a dual
basis

{
mi,mi

}
, mi ∈M and mi ∈M∗ such that x =

∑
mi (x)mi. Define

db : k −→M ⊗M∗,
db (1) =

∑
mi ⊗mi.
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We then get the following equations:

δM⊗M∗ ◦ db (1k) = δM⊗M∗
∑

mi ⊗mi

=
∑

mi(0) ⊗mi ⊗mi(1)s
(
mi(2)

)

=
∑

mi ⊗mi ⊗ 1H
= (db⊗ 1) δ (1k) ,

so db is also a H-comodule morphism.
The equations 3.3 and 3.4 follows from the definition of ev and db: First,

3.3 gives

(1⊗ ev) ◦ (db⊗ 1) (m)

= (1⊗ ev)
(∑

mi ⊗mi ⊗m
)

=
∑

mimi (m) = m

3.4 follows:

(ev ⊗ 1) ◦ (1⊗ db) (f (m))

= (ev ⊗ 1)
(∑

f ⊗mi ⊗mi
)
(m)

=
∑

f (mi)mi (m)
= f (m)

�
4.3. Braidings and quantizations.

Definition 4.6. A cobraided bialgebra is a bialgebra (H,µ, η,∆, ε, r)
where r ∈ Homk (H ⊗H,k), called the cobraiding element or cobraider,
satisfies the following properties:

(1) r is + -invertible (with inverse
_
r)(4.1)

(2) µ ◦ τ = r + µ +
_
r

(3) r ◦ (µ⊗ 1) = r13 + r12

(4) r ◦ (1⊗ µ) = r13 + r23

where

r12 = (r ⊗ ε) , r23 = (ε⊗ r) , r13 = (ε⊗ r) (τH,H ⊗ idH)

A Hopf algebra is cobraided if the underlying bialgebra is.

A braiding in ModH is uniquely determined by H being a cobraided
bialgebra.

Theorem 4.7. The category ModH is braided if H is a cobraided bialgebra.
The braiding is given by

σX,Y (x⊗ y) =
∑(

y(0) ⊗ x(0)
)
r
(
x(1) ⊗ y(1)

)
.



HOPF ALGEBRAS AND MONOIDAL CATEGORIES 25

Proof. The definition comes from theH-comodule structure via the following
composition:

X ⊗ Y δX⊗δY−→ X ⊗ Y ⊗H ⊗H τ⊗1⊗1−→ Y ⊗X ⊗H ⊗H 1⊗1⊗r−→ Y ⊗X

(and thus can be seen as a generalization of the ordinary twist). First we
must check that σX,Y is a H-comodule homomorphism. This means that
the following equation must hold:

δY⊗X ◦ σX,Y = (σX,Y ⊗ 1) ◦ δX⊗Y .

The left hand side is

δY⊗X ◦ σX,Y (x⊗ y)

= δY⊗X
(∑(

y(0) ⊗ x(0)
)
· r
(
x(1) ⊗ y(1)

))

=
∑(

y(0) ⊗ x(0)
)
⊗ µ

(
y(1) ⊗ x(1)

)
· r
(
x(2) ⊗ y(2)

)

which is the same as (τ ⊗ (µτ + r)) δ (x⊗ y)

(σX,Y ⊗ 1) ◦ δX⊗Y (x⊗ y)

= (σX,Y ⊗ 1)
(∑

x(0) ⊗ y(0) ⊗ µ
(
x(1) ⊗ y(1)

))

=
∑(

y(0) ⊗ x(0)
)
· r
(
x(1) ⊗ y(1)

)
⊗ µ

(
x(2) ⊗ y(2)

)

and this is the same as (τ ⊗ (r + µ)) δ (x⊗ y). By 4.1, eq. (2) these two
actions are the same, so σX,Y is a H-comodule homomorphism. To see that
σX,Y actually gives a braiding, we check that the triangles 3.5 commutes.
We check the first: The top arrow gives

(σX⊗Y,Z) (x⊗ y ⊗ z)

=
∑

z(0) ⊗
(
x(0) ⊗ y(0)

)
· r
(
z(1) ⊗ (x⊗ y)(1)

)

=
∑

z(0) ⊗ x(0) ⊗ y(0) · r
(
z(1) ⊗ µ

(
x(1) ⊗ y(1)

))

by the H-comodule structure on X ⊗ Y,

while the bottom arrows gives

(σX,Z ⊗ idY ) (idX ⊗ σY,Z) (x⊗ y ⊗ z)

= (σX,Z ⊗ idY )
(∑

x⊗ z(0) ⊗ y(0) · r
(
z(1) ⊗ y(1)

))

=
∑

z(0) ⊗ x(0) ⊗ y(0) · r
(
z(1) ⊗ x(1)

)
· r
(
z(1) ⊗ y(2)

)

But

r
(
z(1) ⊗ x(1)

)
r
(
z(1) ⊗ y(2)

)
= r13+r23 (x⊗ y ⊗ z) = r

(
z(1) ⊗ µ

(
x(1) ⊗ y(1)

))
,

so we have the desired equality. The commutativity of the second triangle
follows similarly. �
We can also show the converse (see Theorem 4.9 below). We need first

the following Lemma:
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Lemma 4.8. For any x′ ∈ X∗ there exists a unique H-comodule homomor-
phism

ψx′ : X −→ H

such that the following diagram is commutative:

X
ψx′ � H

�����
x′

�
k

ε

�

Proof. Take the dual of the above diagram:

X∗ �(ψx′)∗ H∗

������
k

(ε)∗



.

One gets an H∗-module homomorphism

(ψx′)∗ : H∗ −→ X∗

such that
(ψx′)∗ (ε∗) = x′ ⇐⇒ ε ◦ ψx′ = x′.

Such a homomorphism (ψx′)∗ exists and is unique because ε∗ is the unit of
an algebra H∗. Actually,

(ψx′)∗ (h′) = h′ · x′

where h′ ∈ H∗ and · is the multiplication. Finally,

ψx′ = ((ψx′)∗)
∗ ,

and we are done. �
Theorem 4.9. Let

σ :ModH ×ModH −→ModH

be a braiding, and let
r = (ε⊗ ε) ◦ σH⊗H .

Then for any X,Y ∈ Ob
(
ModH

)
the homomorphism σX,Y is equal to the

composition

X ⊗ Y δX⊗δY−→ X ⊗ Y ⊗H ⊗H τ⊗1⊗1−→ Y ⊗X ⊗H ⊗H id⊗r−→ Y ⊗X.
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Proof. Let x′ ∈ X∗, y′ ∈ Y ∗. The following diagram is commutative:

X∗ ⊗ Y ∗
(σX,Y )∗� Y ∗ ⊗X∗

H∗ ⊗H∗

(ψy′ ⊗ ψx′)∗



(σH,H)∗
� H∗ ⊗H∗

(ψx′ ⊗ ψy′)∗



It follows that
(σX,Y )∗

(
x′ ⊗ y′

)
=

(σX,Y )∗
(
(ε ◦ ψx′)⊗

(
ε ◦ ψy′

))
=

(σX,Y )∗ ◦
(
ψy′ ⊗ ψx′

)∗ (ε∗ ⊗ ε∗) =
(
ψx′ ⊗ ψy′

)∗ ◦ (σH,H)∗ (ε∗ ⊗ ε∗) =
(
ψx′ ⊗ ψy′

)∗ (r) =
((
ψy′
)∗ ⊗ (ψx′)∗

)
(r · (ε∗ ⊗ ε∗)) = r ·

(
y′ ⊗ x′

)
.

Let
x =

(
x′
)∗ ,

y =
(
y′
)∗ ,

and take now the dual of the above equality:
σX,Y (x⊗ y) = σX,Y

((
x′
)∗ ⊗

(
y′
)∗)

= (Id⊗ r) ◦ (τ ⊗ 1⊗ 1) ◦ (δX ⊗ δY ) (x⊗ y) ,
and we are done. �
A quantization in ModH is a H-comodule morphism such that the con-

dition 3.8 and 3.9 hold.

Theorem 4.10. A quantization
Q = QX,Y : X ⊗ Y −→ X ⊗ Y

can be defined by an element q ∈ Homk (H ⊗H, k) , called a coquantizer,
satisfying the following properties:

(1) µ + q = q + µ(4.2)
(2) (q ◦ (1⊗m)) + (ε⊗ q) = (q ◦ (m⊗ 1)) + (q ⊗ ε)(4.3)
(3) q ◦ (η ⊗ 1) = ε⊗ ε = q ◦ (1⊗ η) .

The quantization is then given by

QX,Y (x⊗ y) =
∑(

x(0) ⊗ y(0)
)
· q
(
x(1) ⊗ y(1)

)

Proof. We define a morphism Q by the composition

X ⊗ Y δx⊗Y−→ X ⊗ Y ⊗H ⊗H 1⊗1⊗q−→ X ⊗ Y,
and we want q to be a quantization. We must prove that Q is a H-comodule
morphism and that it satisfies the conditions for a quantization. The proof
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that QX,Y is a H-comodule morphism follows in the same way as in the
proof of Theorem 4.7. We need the following diagram to commute:

X ⊗ Y δX⊗Y� X ⊗ Y ⊗H

X ⊗ Y

QX,Y

� δX⊗Y� X ⊗ Y ⊗H

QX,Y ⊗ 1

�

Going right-down gives
(QX,Y ⊗ 1) ◦ δX⊗Y (x⊗ y)

= (QX,Y ⊗ 1)
(∑

x(0) ⊗ y(0) ⊗ µ
(
x(1) ⊗ y(1)

))

=
∑(

x(0) ⊗ y(0)
)
· q
(
x(2) ⊗ y(2)

)
⊗ µ

(
x(1) ⊗ y(1)

)

which is (1⊗ (q + µ)) ◦ δ (x⊗ y). Going down-right gives
δY⊗X ◦QX,Y (x⊗ y)

= δY⊗X
(∑(

x(0) ⊗ y(0)
)
· q
(
x(1) ⊗ y(1)

))

=
∑(

x(0) ⊗ y(0)
)
⊗ µ

(
x(2) ⊗ y(2)

)
· q
(
x(1) ⊗ y(1)

)

which is (1⊗ (µ + q)) ◦ δ (x⊗ y). We can now show that the definition of
QX,Y actually gives a quantization. First we see that equation (2) gives
commutativity of the coherence diagram. The down-bottom part of the
coherence diagram is the morphism

QX,Y⊗Z ◦ (1⊗QY,Z)

= QX,Y⊗Z
(
x⊗

∑(
y(0) ⊗ z(0)

)
· q
(
y(1) ⊗ z(1)

))

=
∑

x(0) ⊗ y(0) ⊗ z(0) · q
(
x(1) ⊗ (y ⊗ z)1

)
q
(
y(1) ⊗ z(1)

)

=
∑

x(0) ⊗ y(0) ⊗ z(0) · q
(
x(1) ⊗ µ

(
y(1) ⊗ z(1)

))
q
(
y(1) ⊗ z(1)

)

=
∑

x(0) ⊗ y(0) ⊗ z(0) · ((q ◦ (1⊗m)) + (ε⊗ q))
(
x(1) ⊗ y(1) ⊗ z(1)

)

while the top-down is described on elements by
QX⊗Y,Z ◦ (QX,Y ⊗ idZ) (x⊗ y ⊗ z)

= QX⊗Y,Z
(∑

x(0) ⊗ y(0) ⊗ z(0) · q
(
x(1) ⊗ y(1)

))

=
∑

x(0) ⊗ y(0) ⊗ z(0) · q
(
µ
(
x(1) ⊗ y(1)

)
⊗ z(1)

)
q
(
x(1) ⊗ y(1)

)

=
∑

x(0) ⊗ y(0) ⊗ z(0) · ((q ◦ (m⊗ 1)) + (q ⊗ ε))

From this we see that the condition
(q ◦ (1⊗m)) + (ε⊗ q) = (q ◦ (m⊗ 1)) + (q ⊗ ε)

is the same as requiring diagram 3.10 to commute. To show that the third
condition of 4.2 is satisfied, we first note the following: As

ε⊗ ε = q ◦ (1⊗ η) ,
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the morphism
(1⊗ 1⊗ (q ◦ (1⊗ η))) ◦ (δX ⊗ δk)

is the identity. Then the following diagram commutes:

X ⊗ k δ� X ⊗ k ⊗H ⊗ k 1⊗ 1⊗ 1⊗ η� X ⊗ k ⊗H ⊗H

X

ιr

��
ιr

X ⊗ k

1⊗ 1⊗ q

�

But
[(1⊗ 1⊗ (q ◦ (1⊗ η))) ◦ (δX ⊗ δk)] (x⊗ k) = QX,k

so we see that
ir ◦QX,k = ir.

In a similar manner the equality

q ◦ (η ⊗ 1) = ε⊗ ε

gives the equality
ιl ◦QX,k = il.

The converse implication follows the same procedure as in the proof of The-
orem 4.9. �

5. M�����
� ��	����	� �� ��� �
����	� �� H ′-�������
5.1. Monoidality and rigidity. Let H ′ be a bialgebra. The category
ModH′ of H ′-modules can be given a structure of a monoidal category by
defining

⊗ :ModH′ ×ModH′ −→ModH′

to be ⊗k, the ordinary tensor product over k. As in the case of ModH , the
pentagon and unity axioms are fulfilled through the properties of ⊗k.We can
define the H ′-module structure on the tensor product by

H ′⊗M ⊗N ∆⊗1⊗1−→ H ′⊗H ′⊗M ⊗N 1⊗τ⊗1−→ H ′⊗M ⊗H ′⊗N
ρ′M⊗ρ′N−→ M ⊗N

Lemma 5.1. If H ′ has an antipode s′ then M∗ has a H ′-module structure
by

h · f (v) = f
(
s′ (h) · v

)

Proof. See, e.g., [Kas95, III, (5.6)]. �
Theorem 5.2. If H ′ is a Hopf algebra with antipode s′, then ModH ′ is left
rigid.

Proof. Define

ev : M∗ ⊗M −→ k,
ev (f ⊗m) = f (m) .
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Using the H ′-module structure on M∗we just defined, we can show that ev
is a H ′-module morphism.

(
ev ◦ ρ′M∗⊗M

)
(h⊗ f ⊗m) = ev

(∑
h1 · f ⊗ h2 ·m

)

= ev
(∑

f
(
s′ (h1)

)
⊗ h2 ·m

)

=
∑

h2
(
f
(
s′ (h1)m

))

= h · f (m)
= ρ′k (h⊗ f (m))
= ρ′k (1⊗ ev) (h⊗ f ⊗m)

Now define

db : k −→M ⊗M∗,
db (1) =

∑
mi ⊗mi

Then

(db ◦ ρk) (h⊗ 1) = db (h)
=

∑
h1mi ⊗ h2mi

= h
∑

mi ⊗mi

= ρM⊗M∗

(
h⊗

∑
mi ⊗mi

)

=
(
ρM⊗M∗ ◦ (1⊗ db)

)
(h⊗ 1) ,

so db and ev are H ′-module morphisms. The validity of 3.3 and 3.4 follows
as in the proof of 4.5. �
Remark 5.3. We will also show the opposite implication in a more general
setting in Part III.

5.2. Braidings and quantizations. The Definitions and constructions of
braidings in ModH′ follow similar to the comodule case.

Definition 5.4. A braided bialgebra is a bialgebra (H ′, µ, η,∆, ε, R) where
R ∈ H ′ ⊗H ′ , called the braiding element or braider, satisfies the fol-
lowing properties:

(1) R is invertible (with inverse
_
R)

(2) τ∆ = R̄ ·∆ ·R
(3) (1′ ⊗∆) r = R12 ·R13
(4) (∆⊗ 1) r = R23 ·R13

where

R12 = (R⊗ 1) , R23 = (1⊗R) , R13 = (idH′ ⊗ τ) (R⊗ 1)

A Hopf algebra is braided if the underlying bialgebra is.
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Theorem 5.5. The category ModH′ is braided if and only if H ′ is a braided
bialgebra. The braiding is given by

σX,Y (x⊗ y) = R · (y ⊗ x)
=

∑
R1y ⊗R2x

where
R =

∑
R1 ⊗R2

Proof. The definition comes from the H ′-module structure via the following
composition:

X ⊗ Y R⊗1⊗1−→ H ′ ⊗H ′ ⊗X ⊗ Y 1⊗1⊗τ−→ H ′ ⊗H ′ ⊗ Y ⊗X
ρ′Y⊗X−→ Y ⊗X

(and thus can be seen as a generalization of the ordinary twist). Assume
H ′ is a braided bialgebra. First we must check that σX,Y is a H-comodule
homomorphism. This means that the following equation must hold:

ρY⊗X ◦ σX,Y = (σX,Y ⊗ 1) ◦ ρX⊗Y .

From the definition of the H-module structure of the tensor product we get
the following:

(
σX,Y ◦ ρX⊗Y

)
(h⊗ x⊗ y)

= σX,Y (∆ (h) · (x⊗ y))
= σX,Y

∑
h(1)x⊗ h(2)y

=
∑

R1h(2)y ⊗R2h(1)x
= (R · τ∆ (h)) · (x⊗ y)

The left hand side gives
(
ρY⊗X ◦ (1⊗ σX,Y )

)
(h⊗ x⊗ y)

= ρY⊗X
(
h⊗

(∑
R1y ⊗R2x

))

= ∆ (h)
(∑

R1y ⊗R2x
)

= ∆ (h) ·R · (x⊗ y)

Now R ·τ∆ (h) = ∆ (h)·R by assumption, so σX,Y is a H-module morphism.
To see that σX,Y actually gives a braiding, we check that the triangles 3.5
commutes. We check the second: The top arrow gives

(σX⊗Y,Z) (x⊗ y ⊗ z)
=

∑
R1z ⊗R2 (x⊗ y)

=
∑

R1z ⊗
∑

R2′y ⊗R2′′x

=
∑

R1z ⊗∆
(
R2
)
(y ⊗ x)

= (1⊗∆) ·R · (z ⊗ y ⊗ x)
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while the bottom arrows gives
((σX,Z ⊗ idY ) ◦ (idX ⊗ σY,Z)) (x⊗ y ⊗ z)

= (σX,Z ⊗ idY )
(
x⊗

∑
R1z ⊗R2y

)

=
∑

R1R1z ⊗R2x⊗R2y
= R12 ·R13 (z ⊗ y ⊗ x)

But
(1⊗∆) ·R = R12 ·R13

by assumption, so the braiding triangle commutes. Commutativity of the
other triangle follows by the same procedure.
For the other way round, suppose that we have a braiding σ. We can

identify elements x ∈ X with morphisms
φx : H −→ X,

φx (h) = x · h
The following diagram commutes by the naturality of a braiding:

X ⊗ Y
σX,Y� Y ⊗X

H ⊗H

ϕx ⊗ ϕy




σH,H� H ⊗H

ϕy ⊗ ϕx




If we define
R := σH′⊗H ′ (1⊗ 1)

we see that
σX,Y (x⊗ y) = R · (y ⊗ x)

As we have seen above, commutativity of the diagrams 3.5 shows conditions
(3) and (4) . Likewise, condition (2) is satisfied by σ being a H ′-module
homomorphism.
Defining

R̄ := (σH′⊗H′)−1 (1⊗ 1)
gives an inverse. �
Theorem 5.6. A quantization in ModH′

Q = QX,Y : X ⊗ Y −→ X ⊗ Y
is determined by an element q ∈ H ′⊗H ′ called quantizer, that satisfies the
following properties:

(1) q ·∆ = ∆ · q(5.1)
(2) (∆⊗ idH′) (q) · (q ⊗ 1) = (idH′ ⊗∆) (q) · (1⊗ q)(5.2)
(3) (ε⊗ idH′) (q) = (idH′ ⊗ ε) (q) = 1.

The quantization is given by

QX,Y (x⊗ y) = q · (x⊗ y) =
∑

q(1)x⊗ q(2)y



HOPF ALGEBRAS AND MONOIDAL CATEGORIES 33

where
q =

∑
q(1) ⊗ q(2)

Proof. Observe that H′ ⊗H ′ ≈ Hom (k,H ′ ⊗H ′), so we can define a mor-
phism Q by the composition

X ⊗ Y q⊗1⊗1−→ H ′ ⊗H ′ ⊗X ⊗ Y ρX⊗ρY−→ X ⊗ Y
For Q to be a quantization we must show that Q is a H-module morphism
and that it satisfies the conditions for a quantization. For Q to be a H-
module morphism we must show that

QX,Y ◦ ρX⊗Y = ρY⊗X ◦ (1⊗QX,Y ) .
(
QX,Y ◦ ρX⊗Y

)
(h⊗ x⊗ y)

= QX,Y (∆ (h) · (x⊗ y))
= QX,Y

∑
h(1)x⊗ h(2)y

=
∑

q(1)h(1)x⊗ q(1)h(2)y
= (q ·∆ (h)) · (x⊗ y)

The left hand side gives
(
ρY⊗X ◦ (1⊗QX,Y )

)
(h⊗ x⊗ y)

= ρY⊗X
(
h⊗

(∑
q(1)x⊗ q(2)y

))

= ∆ (h)
(∑

q(1)x⊗ q(1)y
)

= ∆ (h) · q · (x⊗ y)
We see that the condition q · ∆ (h) = ∆ (h) · q makes QX,Y a H-module
morphism. We can now show whenQX,Y actually gives a quantization. First
we see that equation (2) gives commutativity of the coherence diagram. The
down-bottom part of the coherence diagram is the morphism

QX,Y⊗Z ◦ (1⊗QY,Z)

= QX,Y⊗Z
(
x⊗

∑
q(1)y ⊗ q(2)z

)

=
∑

q(1)x⊗ q(2)
∑

q(1)y ⊗ q(2)z

=
∑

q(1)x⊗
∑(

q′(2)
)
q(1)y ⊗

(
q′(2)
)
q(2)z

= (idH′ ⊗∆) (q) · (1⊗ q) · (x⊗ y ⊗ z)
while the top-down is described on elements by

(QX⊗Y,Z ◦ (QX,Y ⊗ 1)) (x⊗ y ⊗ z)

= QX⊗Y,Z
((∑

q(1)x⊗ q(2)y
)
⊗ z
)

=
∑(

q′(1)
)
q(1)x⊗

(
q′′(1)
)
q(2)y ⊗ q(2)z

= (∆⊗ idH) (q) · (q ⊗ 1) · (x⊗ y ⊗ z) ,
so for the diagram to commute we need

(idH′ ⊗∆) (q) · (1⊗ q) = (∆⊗ idH) (q) · (q ⊗ 1) .
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Property (3) in the Theorem are the same same as requiring the diagrams
3.9 to commute, so if all three conditions are fulfilled, Q is a quantization.
It is left to show that any quantization is on the form

QX,Y (x⊗ y) =
∑

q(1)x⊗ q(2)y.

Let us identify elements x ∈ X with morphisms
ϕx : H −→ X,

ϕx (h) = hx
The following diagram commutes by the naturality of a quantization:

X ⊗ Y
QX,Y� X ⊗ Y

H ⊗H

ϕx ⊗ ϕy




QH,H� H ⊗H

ϕx ⊗ ϕy




If we define
q := QH′⊗H′ (1⊗ 1)

we see that
QX,Y (x⊗ y) = q · (x⊗ y) =

∑
q(1)x⊗ q(2)y

�
6. D�
����

Let H be a bialgebra that is finitely generated and projective as a k-
module. In this case it is possible to obtain all the above structures inModH′

by dualizing the constructions for ModH . Recall the following results from
earlier Sections:

• the dual module M∗ = Hom (M,k) is a left dual in the category
ModH and ModH′ . (see Section 4.2).

• If H is a Hopf algebra then H∗ is a Hopf algebra (see Proposition
2.2)

• If V is a right H-comodule, then V ∗ is a left H∗-module. Vice
versa, if M is a left H-module, thenM∗ is a right H∗-comodule (see
Proposition 1.15)

6.1. Rigidity.

Theorem 6.1. Let H be left rigid. Then ModH∗ is right rigid.

Proof. Let V be a H-comodule. Then V ∗ is a H∗-module. The transpose
of the map

ev : V ∗ ⊗ V −→ k
is the map

k −→ (V ∗ ⊗ V )∗

defined by
ev∗ (1) =

(∑
mi ⊗mi

)∗
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and for V f.g. projective we have isomorphisms

(V ∗ ⊗ V )∗ λ−1≈ V ∗ ⊗ V ∗∗ ≈ V ∗ ⊗ V.
Define

bd′ = λ−1 ◦ ev∗.
Then db′ is a H∗-module morphism since ev is a H-comodule morphism.
We can similarly define ve′ = λ−1 ◦ db∗and show that ev′ is a H∗-module
morphism. Then the following holds by transposing 3.3

X∗ ≈ I ⊗X∗ bd⊗1−→ X∗ ⊗X ⊗X∗ 1⊗ve−→ X∗ ⊗ I ≈ X∗.
Similarly for the other equation defining right rigidity. �
Remark 6.2. By defining db′ = τλ−1ev∗ and similarly for ev′ we can for-
mulate an alternative Theorem stating that ModH∗ is left rigid.

6.2. Braidings.

Theorem 6.3. If H is a cobraided bialgebra with cobraiding element r, then
H∗ is a braided bialgebra with braiding element R = τλ−1 ◦ r∗.

Proof. Recall that a cobraided bialgebra is determined by an element
r ∈ Hom (H ⊗H, k) = (H ⊗H)∗

satisfying the set of equations 4.1. Define
R = τλ−1 ◦ r∗.

We will show that R satisfies the equations determining a braided bialgebra.
The second equation in 4.1 gives

R ·
(
τ ◦∆′

)
=

(
τλ−1 ◦ r∗

)
·
(
τ ◦
(
τλ−1 ◦ µ∗

))

= τλ−1 (r∗ · τµ∗)
= ((τµ + r)λτ)∗

= ((r + µ)λτ)∗

= τλ−1 (µ∗ · r∗)
=

(
τλ−1 ◦ µ∗

)
·
(
τλ−1 ◦ r∗

)

= ∆′ ·R
The third equation gives

(
∆′ ⊗ 1

)
◦R =

((
τλ−1 ◦ µ∗

)
⊗ 1
)
◦
(
τλ−1 ◦ r∗

)

=
(
τλ−1µ∗ ⊗ 1

)
◦ τλ−1r∗

= (rλτ ◦ (1⊗ µλτ))∗

=
(
(rλτ)13 + (rλτ)12

)∗

=
(
(rλτ)12

)∗
·
(
(rλτ)13

)∗

= (rλτ ⊗ ε)∗ · ((ε⊗ rλτ) ◦ (τ ⊗ 1))∗(
1⊗ τλ−1r∗

)
·
(
(1⊗ τ) ◦

(
τλ−1r∗ ⊗ 1

))

= R23 ·R13
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The rest follows similarly. Together this shows that R makes H∗ a braided
bialgebra and thus determines a braiding in ModH∗ . �
6.3. Quantizations. Let q′ = τλ−1 ◦ q∗. We will show that q′ determines
a quantization in ModH′ . First

q′ ·∆′ = τλ−1 ◦ q∗ · τλ−1 ◦ µ∗

= τλ−1 (q∗ · µ∗)
= ((µ + q)λτ)∗

= ((q + µ)λτ)∗

= τλ−1 (µ∗ · q∗)
= ∆′ · q′

The other equations determining a quantizer follows similarly. This proves
the following
Theorem 6.4. Let H be a bialgebra that is f.g. projective as a k-module.
Let q be a coquantizer in ModH . Then ModH∗ is quantized with quantizer
q′ = τλ−1 ◦ q∗.
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Part III. The inverse problem
7. M�����
� �
����	��� 
	� �������� �
����	���

We have seen how we can give a structure of monoidal category to co-
modules and modules over a Hopf algebra H. It is also possible to go the
other way round. Given a suitable monoidal category and a forgetting func-
tor to the category Modk, we can show that this category is equivalent to
a category of (co-)modules over a bialgebra. The construction of braidings,
quantizations and antipode can also be derived from the structure of the
monoidal category.
In the following let k be a commutative ring and Modk be the category

of f.g. projective k-modules.
Let C be a small monoidal category and let

G : C −→Modk
be a monoidal functor preserving sums. Let

G∗ ⊗G : Cop × C −→Modk
be the functor

(G∗ ⊗G) (X) := G(X)∗ ⊗G(X)
and let

H = Coend(G∗ ⊗G)
It means that we have morphisms

fX : G(X)∗ ⊗G(X) −→ H

such that the diagram

(7.1)

G(Y )∗ ⊗G(X) Id ⊗G(a)� G(Y )∗ ⊗G(Y )

G(X)∗ ⊗G(X)

G(a)∗ ⊗ Id

�
fX

� H

fY

�

commutes for each
a : X −→ Y

in C, and such that H is universal object for this property. The diagram is
a component of a dinatural transformation, called a wedge, and we use the
notation G∗ ⊗ G ··−→ H. We want to show that a wedge G∗ ⊗G ··−→ V is
equivalent to a natural transformation G −→ G⊗ V.

Lemma 7.1. Given U , V , and W ∈Modk, there is a natural isomorphism

Homk (U∗ ⊗ V,W ) ≈ Homk (V,U ⊗W )

Proof. By Lemma 1.6 we have the isomorphism

Homk (V, U∗ ⊗W ) ≈ Homk (V,Homk (U,W ))
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But we also have a natural isomorphism ξ : U −→ U∗∗given by (ξu) (h) =
h (u). Substituting U with U∗ in the above isomorphism, we get the natural
isomorphism

f : U ⊗W → Homk (U∗,W ) ,
given by

f (u⊗w)h := h (u)w.
This gives a natural isomorphism

Homk (V, U ⊗W ) ≈ Homk (V,Homk (U∗,W )) .
By Lemma 1.7 we have the isomorphism

Homk (U∗ ⊗ V,W ) ≈ Homk (V,Homk(U∗,W ))
Combining these two isomorphisms we get the desired isomorphism �
Proposition 7.2. A natural transformation

G −→ G⊗ V
is equivalent to a wedge G∗ ⊗G ··−→ V

Proof. Set
U = V = G(X),W = H

in the above Lemma. To the homomorphisms
Hom (G(X)∗ ⊗G(X), H) � fX : G(X)∗ ⊗G(X) −→ H

it then correspond homomorphisms
Hom (G(X), G(X)⊗H) � gX : G(X) −→ G(X)⊗H

We will show that these homomorphisms form a natural transformation of
functors G −→ G⊗H. A wedge can be described as follows: for α : X −→ Y
in C we have a diagram

(7.2)

Hom(G(Y )∗ ⊗G(Y ),H)
�����

t2

�
Hom(G(Y )∗ ⊗G(X),H)

��
��

�
t1

	

Hom(G(X)∗ ⊗G(X), H)
and morphisms

fX ∈ Hom (G (X)∗ ⊗G (X) ,H) ,
fY ∈ Hom (G (Y )∗ ⊗G (Y ) ,H)

such that t2 (fY ) = t1 (fX), where
t2 (fY ) = fY ◦ (1⊗G (α)) ,
t1 (fX) = fX ◦ (G (α)∗ ⊗ 1) .
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By the above Lemma this transforms to the diagram
Hom(G(Y ),G(Y )⊗H)

�����
s2

�
Hom(G(X),G(Y )⊗H)

��
��

�
s1

	

Hom(G(X),G(X)⊗H)
where

s1 (gX) = (G (α)⊗ 1) ◦ gX ,
s2 (gY ) = gY ◦G (α)

The gX , gY corresponding to the fX , fY in the first diagram are exactly those
that fulfils s1 (gX) = s2 (gY ). This means that the following diagram has to
commute for all α:

G(X) gX� G(X)⊗H

G(Y )

G(α)

� gY� G(Y )⊗H

G(α)⊗ 1

�
,

which is exactly the condition that the g− form a natural transformation
G −→ G⊗ V . Thus we have established a 1-1 correspondence between the
f− in the coend diagram and the g− in Nat (G,G⊗ V ). �
Remark 7.3. The family of f_’s above form an end for the functor

Hom (G (−)∗ ⊗G (−) , H) .
By the above isomorphism this transforms to an end of

Hom (G (−) , G (−)⊗H) ,
which is exactly Nat (G,G⊗H).

Remark 7.4. In general, for a functor G : C −→ A where A is rigid (see
definition 3.4), the correspondence above can be given by the following: A
natural transformation g : G −→ G⊗M defines a wedge with components

G (X)∗ ⊗G (X) 1⊗gX−→ G (X)∗ ⊗G (X)⊗M ev⊗1−→ M,
while a wedge defines a natural transformation with components

G (X) db⊗1−→ G (X)⊗G (X)∗ ⊗G (X) 1⊗fX−→ G (X)⊗M
Corollary 7.5. H represents the functor V −→ Nat (G,G⊗ V ) , in other
words, there is a natural isomorphism

Homk (H,V )
ϕV−→ Nat (G,G⊗ V ) .
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Proof. By the universality of H there is a unique f : H −→ V for any wedge
G∗⊗G ··−→ V . As the wedges are in 1−1 correspondence wit natural trans-
formations G −→ G ⊗ V , we have the desired isomorphism. By Yoneda’s
Lemma the isomorphism is determined by ϕH (1H). The isomorphism is
then given by f 	→ (1⊗ f) ◦ ϕH (1H) as in the following diagram:

H G
ϕH(1H)� G⊗H

− >
�����ϕH(f) �

V

f

�
G⊗ V

G⊗ f

�

The components of a natural transformation

φ : G −→ G⊗M

can then be written as follows: let α ∈ C,

α : X −→ Y.

Then φ can be expressed by the following composition:

G (X) ϕH(1H)−→ G (X)⊗H G(α)⊗f−→ G (Y )⊗M,

where
f = ϕ−1M (φ) .

�
7.1. Coalgebra and H-comodule structure. From corollary 7.5 we have
an isomorphism Homk (H,H)

ϕH−→Mor (G,G⊗H) This gives a morphism

G ϕH(1)−→ G⊗H ϕH(1)⊗1−→ G⊗H ⊗H.

Define

∆ = ϕ−1H⊗H ((ϕH (1H)⊗ 1) ◦ ϕH (1H)) : H −→ H ⊗H

We also have an isomorphism

Homk (H, k)
ϕk−→Mor (G,G⊗ k) ,

and the isomorphismG (X) ≈ G (X)⊗k gives an e ∈Mor (G,G⊗ k) .Define

ε = ϕ−1k (e) : H −→ k

We will show that ∆ and ε gives a coalgebra structure for H over k.
1: ∆ is coassociative, that is (∆⊗ 1) ◦ ∆ = (1⊗∆) ◦ ∆ : First, the

definition of ∆ can be written as

ϕH⊗H (∆) = (ϕH (1H)⊗ 1) ◦ ϕH (1H)
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The diagram

G
ϕH(1H) � G⊗H

G⊗H

ϕH(1H)

� ϕH(1H)⊗ 1� G⊗H ⊗H

1⊗∆

�
��������

ϕH⊗H(∆)⊗ 1
�

G⊗H ⊗H ⊗H

1⊗∆⊗ 1

�

commutes: The upper rectangle commutes by the above definition of ∆ ,
while the triangle commutes by the same definition, tensored with H on the
right. From this diagram, and by repeated using the definition of ∆ and
the definition of the isomorphism ϕH given in the above proof, we get the
following:

ϕH⊗H⊗H ((∆⊗ 1) ◦∆)
=

(
ϕH⊗H (∆)⊗ 1

)
◦ ϕH (1H)

(from the diagram)
= (((ϕH (1H)⊗ 1) ◦ ϕH (1H))⊗ 1) ◦ ϕH (1H)

(by the definition of ∆)
= (ϕH (1H)⊗ 1⊗ 1) ◦ (ϕH (1H)⊗ 1) ◦ ϕH (1H)

by rearranging
= (ϕH (1H)⊗ 1⊗ 1) ◦ (1⊗∆) ◦ ϕH (1H)

(by the definition of ∆)
= (1⊗ 1⊗∆) ◦ (ϕH (1H)⊗ 1) ◦ ϕH (1H)

by rearranging
= (1⊗ 1⊗∆) ◦ (1⊗∆) ◦ ϕH (1H)

(by the definition of ∆)
= (1⊗ ((1⊗∆) ◦∆)) ◦ ϕH (1H)
= ϕH⊗H⊗H ((1⊗∆) ◦∆)

by corollary 7.5,

so comultiplication is coassociative.
2. ε is a unit: We must show that (ε⊗ 1) ◦∆ = 1H = (1⊗ ε) ◦∆. First

we show the equality (ε⊗ 1) ◦ ∆ = 1H . The following diagram commutes



42 TØRRIS KOLØEN BAKKE

by the isomorphism described in Lemma 7.5 :

G
ϕH(1H) � G⊗H

�����
ϕk(ε)⊗ 1

�
G⊗H

ϕH(1H)

� 1⊗∆� G⊗H ⊗H

ϕH(1H)⊗ 1

�
1⊗ ε⊗ 1

� G⊗ k ⊗H

The "bottom" part is the morphism ϕk⊗H ((ε⊗ 1) ◦∆) , so we have
ϕk⊗H ((ε⊗ 1) ◦∆) = (ϕk (ε)⊗ 1) ◦ ϕH (1H)

= ϕk⊗H (1H)
By some small changes we get the following diagram

G ϕH(1H) � G⊗H
�����

ϕH(1)⊗ ε

�
G⊗H

ϕH(1H)

� 1⊗∆� G⊗H ⊗H

ϕH(1H)⊗ 1

�
1⊗ 1⊗ ε

� G⊗H ⊗ k

.

The right triangle is still commutative, so we have
ϕH⊗k ((1⊗ ε)∆) = (ϕH (1H)⊗ ε)ϕH (1H)

= ϕH⊗k (1H)
1. and 2. together makes (H,∆, ε) a coalgebra over k .
We can also define a H-comodule structure on G (X) by the map

δX = ϕH (1H) : G (X) −→ G (X)⊗H
To see that this actually defines a comodule structure we must show that
the diagram

G(X) δ � G(X)⊗H

G(X)⊗H

δ

�
1⊗∆

� G(X)⊗H ⊗H

δ ⊗ 1

�

commutes. But (1⊗∆) ◦ δ = ϕH⊗H (∆), so for the above diagram to com-
mute we must require that ϕH⊗H (∆) = (ϕH (1H)⊗ 1) ◦ ϕH (1H). This is
the definition of ∆, so we have a H-comodule structure on G (X) by δ.
We have then proved the following:

Proposition 7.6. Let
ϕH : Homk (H,H) −→ Nat (G,G⊗H)

and
ϕk : Hom (H,k) −→ Nat (G,G⊗ k) .



HOPF ALGEBRAS AND MONOIDAL CATEGORIES 43

Define
∆ = ϕ−1H⊗H ((ϕH (1H)⊗ 1) ◦ ϕH (1H)) : H −→ H ⊗H

and
ε = ϕ−1k (e) : H −→ k.

Then (H,∆, ε) is a coalgebra over k.
Furthermore, let

δ = ϕH (1H) : G (X) −→ G (X)⊗H.
Then δ defines a H-comodule structure on all G (X), X ∈ Ob (C).
7.2. Relations between C and ModH . Let UH : ModH −→ Modk be
the forgetting functor. The comodule structure in 7.1 gives a functor F :
C −→ ModH such that G = UHF . It would be interesting to know when
this functor is actually an equivalence. We need some definitions:
Definition 7.7. A functor S : A −→ B between two categories A and B is
an equivalence if there exist a functor T : B −→ A such that

ST ≈ IA : A −→ A and
TS ≈ IB : B −→ B.

A and B are then called equivalent.
A functor S : A −→ B is said to be full when to every pair a, a′ in A and

to every arrow g : S (a) −→ S (a′) in B there is an arrow f : a −→ a′ in A
such that g = S (f). A functor S : A −→ B is faithful if when to every pair
a, a′ in A and to every pair of parallel arrows f, f ′ : a −→ a′ the equality
S (f) = S (f ′) implies that f = f ′. Finally, a functor S : A −→ B is said
to be essentially surjective if every b ∈ B is isomorphic to S (a) for some
a ∈ A.
Theorem 7.8. For a functor S : A −→ B to be an equivalence it is necessary
and sufficient that S is full, faithful and essentially surjective.
Proof. See [ML98, Thm 1, p.93] �
This problem has been thoroughly studied by Saavedra Rivano in [SR72],

where he gives a complete characterization of monoidal categories which
are equivalent to categories of comodules over a bialgebra. The reasonings
and proofs are too complicated to include in this thesis, so we only refer to
some of the results that are close to our case. If Modk is the category of
f.g. k-modules, the equivalence is proven under the assumptions that k is
Noetherian, C is abelian and that G is faithful and exact. If in addition the
ring k is a local ring of dimension ≤ 1 we get the following result:
Theorem 7.9. Let C be a k-linear abelian category and G : C −→ Modk
a faithful and exact functor. Then there exist a flat k-coalgebra H and an
equivalence

F : C −→ModH

such that G = UF , where U is the forgetting functor, if and only if the
following is satisfied:
Let C0 be the subcategory of C consisting of all X such that G (X) is a f.g.

projective k-module. Then every object in C is a quotient of an object in C0.
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Proof. See [SR72], thm.2.6.1. �
In the case where G is a functor to vec, the category of finite dimensional

vector spaces, Peter Schauenburg has proved the following in [Sch92]

Theorem 7.10. Assume that k is a field. Let C be a k-linear abelian cate-
gory and let

G : C −→ vec
be a k-linear, exact and faithful functor. Let

H = coend (G∗ ⊗G)
and let

U :ModH −→ vec
be the forgetting functor. Then there exist a monoidal equivalence

F : C −→ModH ,
such that G = UF .

Proof. See [Sch92, Theorem 2.2.8]. �
It was our intention to find under which conditions we could get this

equivalence when G is a monoidal functor from C into the category of f.g.
projective modules over a ring k, but due to lack of time this has not been
accomplished. However, a reasonable Conjecture has been formulated (Con-
jecture 11.9), and a plan how to prove it is proposed. Some steps are fulfilled
completely, others are made only partially, and it is reasonable to expect that
the Conjecture will have been finally proved.

7.3. H is a bialgebra.

Lemma 7.11. The map

Homk (H ⊗H,V )
ΦV−→ Nat (G⊗G,G⊗G⊗ V )

given by
(Φ (α) (x⊗ y) =

∑
x(0) ⊗ y(0) ⊗ α

(
x(1) ⊗ y(1)

)

for α : H ⊗H −→ V, x ∈ G (X) and y ∈ G (Y ) is an isomorphism.
Proof. Let a morphism G (X)⊗G (Y ) −→ G (X)⊗G (Y )⊗V be defined by
the following composition:

G (X)⊗G (Y ) δX⊗δY−→ G (X)⊗H ⊗G (Y )⊗H 1⊗τ⊗1−→
−→ G (X)⊗G (Y )⊗H ⊗H 1⊗1⊗α−→ G (X)⊗G (Y )⊗ V

where α ∈ Homk (H ⊗H,V ). The naturality of ΦV makes this a natural
transformation G⊗G −→ G⊗G⊗V that is uniquely defined by α. On the
other hand, H⊗H is coend (G⊗G) = coend (G)⊗coend (G), so we have a 1-
1 correspondence between Homk (H ⊗H,V ) and Nat (G⊗G,G⊗G⊗ V ),
where the universal morphism can be written as

D = (1⊗ τ ⊗ 1) ◦ (δ ⊗ δ)
The isomorphism is given by a mapping

Homk (H ⊗H,V )
ΦV−→ Nat (G⊗G,G⊗G⊗ V )
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making the following diagram commutative

G(X)⊗G(Y ) D� G(X)⊗G(Y )⊗H ⊗H
��������
ΦV (α)

�
G(X)⊗G(Y )⊗ V

1⊗ 1⊗ α

�

Let D be described on elements by

D (x⊗ y) =
∑(

x(0) ⊗ y(0)
)
⊗
(
x(1) ⊗ y(1)

)
.

We see that

(ΦV (α)) (x⊗ y) =
∑(

x(0) ⊗ y(0)
)
⊗ α

∑(
x(1) ⊗ y(1)

)

gives the desired isomorphism. �
We now want to give a bialgebra structure on H.

Proposition 7.12. Let

δ′X⊗Y : G (X)⊗G (Y ) ≈ G (X ⊗ Y )
δX⊗Y−→ G (X ⊗ Y )⊗H ≈ G (X)⊗G (Y )⊗H

and
µ = Φ−1H

(
δ′
)
: H ⊗H −→ H.

Let
η : k ≈ G (e) δ−→ G (e)⊗H ≈ H.

Then (H,µ, η,∆, ε) is a bialgebra over k.

Proof. If (H,µ, η) is an algebra, it is enough to show that µ and η are
k-coalgebra morphisms. Let α ∈ Homk (H ⊗H,H ⊗H) be the homomor-
phism

H ⊗H ∆−→ H ⊗H ⊗H ⊗H µ⊗µ−→ H ⊗H

and β ∈ Homk (H ⊗H,H ⊗H) be

H ⊗H µ−→ H ∆−→ H ⊗H.

α is mapped to the commutative diagram

G⊗G δ ⊗ δ � G⊗G⊗H ⊗H

G⊗G⊗H ⊗H

Φ(α)

� �
1⊗ 1⊗ µ⊗ µ

G⊗G⊗H ⊗H ⊗H ⊗H

1⊗ 1⊗∆

�
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If we denote µ (a⊗ b) by ab the previous diagram can be described on ele-
ments by

x⊗ y δ ⊗ δ � x1 ⊗ y1 ⊗ x2 ⊗ y2

x1 ⊗ y1 ⊗ (x2y2)1 ⊗ (x2y2)2
� �

1⊗ 1⊗ µ⊗ µ
x1 ⊗ y1 ⊗ (x2 ⊗ y2)1 ⊗ (x2 ⊗ y2)2

1⊗ 1⊗∆

�

(omitting the summation signs). In the same manner we can describe β on
elements by the following diagram:

x⊗ y
δ ⊗ δ� x1 ⊗ y1 ⊗ x2 ⊗ y2

x1 ⊗ y1 ⊗ (x2y2)1 ⊗ (x2y2)2
� �

1⊗ 1⊗∆
x1 ⊗ y1 ⊗ x2y2

1⊗ 1⊗ µ

�

We then see that

ΦH⊗H ((µ⊗ µ) ◦∆) = ΦH⊗H (∆µ) .

Since Φ is an isomorphism, we have

(µ⊗ µ) ◦∆ = ∆ ◦ µ.

We also must show that εµ = ε⊗ ε. The following diagram commutes:

G⊗G
δ ⊗ δ� G⊗G⊗H ⊗H

(G⊗G)

ξ

�
δ
� (G⊗G)⊗H

ξ ⊗ 1⊗ µ

�

�����Φ(ε) �
(G⊗G)⊗ k

1⊗ ε

�

The bottom triangle commutes by the definition of ε, while the upper
quadrate commutes by the definition of µ. The left hand side is the mor-
phism ΦH⊗H (ε⊗ ε), while the right side is ΦH⊗H (εµ).
To show that η is a k-coalgebra morphism we must show that

(η ⊗ η) ◦∆ = ∆ ◦ η

We can associate η with 1H , and by the definition of ∆ we have that
∆ (1H) = (1⊗ 1), which was to be proved.
It is left to show that (H,µ, η) actually is an algebra.
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For the associativity, note that the following diagram commutes:

(G(X)⊗G(Y ))⊗G(Z) δ3� G(X)⊗G(Y )⊗G(Z)⊗ (H ⊗H)⊗H

G(X ⊗ Y )⊗G(Z)

ξ ⊗ 1

� δ ⊗ δ � G(X ⊗ Y )⊗G(Z)⊗H ⊗H

ξ ⊗ 1⊗ µ⊗ 1

�

G((X ⊗ Y )⊗Z)

ξ

�
δ

� G((X ⊗ Y )⊗ Z)⊗H

ξ ⊗ µ

�

by the definition of µ and the monoidality of G. This diagram describes the
morphism

G (X)⊗G (Y )⊗G (Z) −→ G ((X ⊗ Y )⊗ Z)⊗H

which by the definition of µ corresponds to the morphism µ◦ (µ⊗1). In the
same way µ ◦ (1⊗ µ) corresponds to

G (X)⊗G (Y )⊗G (Z) −→ G (X ⊗ (Y ⊗ Z))⊗H.

But by the monoidality of G,

G (X ⊗ (Y ⊗ Z)) ≈ G (X)⊗ (G (Y )⊗G (Z)) ≈
(G (X)⊗G (Y ))⊗G (Z) ≈ G ((X ⊗ Y )⊗Z) ,

so µ ◦ (µ⊗ 1) ≈ µ ◦ (1⊗ µ). �
7.4. Correspondence of the direct and inverse constructions ofModH.
While we in Part II used the bialgebra structure on a coalgebra H to give a
monoidal structure on ModH , we have in this Part used monoidality of the
category C and the forgetting functor G to construct a comodule category
ModH′ , the right comodules over the coalgebra

H ′ = coend (G∗ ⊗G) .

We will show that the two constructions in a sense are inverse to each other.
First we see that F preserves the tensor structure, that is, F is a monoidal
functor. To show this we must show that ξ0 and ξ2 are H-comodule iso-
morphisms, and that the diagrams 3.1 and 3.2 are commutative diagrams of
H-comodule morphisms. Now by construction ModH consists of k-modules
G (X) endowed with an H-comodule structure, so it is enough to validate
the diagrams and morphisms for elements G (X). That ξ0 and ξ2 are H-
comodule isomorphisms follows immediately from the monoidality of G. We
show this for ξ2: We know that

G (X)⊗G (Y ) ≈ G (X ⊗ Y )

as k-modules. But H is a bialgebra, so we have a H-comodule structure on
G (X) ⊗G (Y ). This gives commutativity of the following diagram, which
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shows that ξ2 is a H-comodule isomorphism:

G(X)⊗G(Y )
δG(X) ⊗ δG(Y )� G(X)⊗G(Y )⊗H

G(X ⊗ Y )

ξ2
�

δG(X⊗Y )
� G(X ⊗ Y )⊗H

ξ2 ⊗ 1

�

The discussion of the associativity of µ in the proof of Proposition 7.12
shows that the commutativity of 3.1 is taken care of by the associativity
of µ. The commutativity of 3.2 again follows from the monoidality of G.
It then follows that F is a monoidal functor, so ModH is constructed by
carrying the monoidal structure of C over to ModH . We have showed:

Proposition 7.13. Let C be a monoidal category and G : C −→ Modk a
monoidal functor. Let

H = coend (G∗ ⊗G)
Let

F : C −→ModH

be a functor such that G = UF where
U :ModH −→Modk

is the forgetting functor. Then F is monoidal.

The monoidal structure on ModH is described in the same way as in the
direct case: the multiplication in Part III is defined as the inverse under Φ
of the homomorphism

δ′X⊗Y : G (X)⊗G (Y ) ≈ G (X ⊗ Y ) δX⊗Y−→ G (X ⊗ Y )⊗H ≈
≈ G (X)⊗G (Y )⊗H,

δ′ ∈ Nat (G⊗G,G⊗G⊗H)
But from the proof of Lemma 7.11 we see that then µ is defined by the
composition

G (X)⊗G (Y ) δX⊗δY−→ G (X)⊗G (Y )⊗H ⊗H 1⊗1⊗µ−→ G (X)⊗G (Y )⊗H,
and this is exactly the same way we defined the monoidal structure ofModH
in Part II.
Now let us go the opposite way: Let H be a bialgebra and let C =

ModH . Let G : ModH −→ Modk be the forgetting functor and let H ′ =
coend (G∗ ⊗G).

Lemma 7.14. Let H be a coalgebra that is finitely generated and projective
as a k-module. Let V be a H-comodule. Then we have an isomorphism

ψ : Homk (H,V ) ≈ Nat (G,G⊗ V )
given by

ψ (f) = (1⊗ f) ◦ δ
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Proof. We define an inverse mapping as follows: Let

φ ∈ Nat (G,G⊗ V )

and let ψ̄ (φ) (h) = (ε⊗ 1)φH (h). Then

ψ̄ ◦ (ψ (f)) (h) = (ε⊗ 1) ◦ ψ (f) (h)
= [(ε⊗ 1) ◦ (1⊗ f) ◦ δ] (h)
= f (h)

For the other way
(
ψ ◦ ψ̄ (φ)

)
M =

(
1⊗ ψ̄ (φ)

)
◦ δM

= (1⊗ ε⊗ 1) ◦
(
φM⊗H

)
◦ δM

= (1⊗ ε⊗ 1) ◦ (1⊗ φH) ◦ δM
= (1⊗ ε⊗ 1) ◦ (δM ⊗ 1) ◦ φM
= φM

The third equality follows from the fact that H itself is a f.g. projective
module and also a H-comodule, so we can write φM⊗H = 1⊗φH by letting
H carry the comodule structure of M ⊗H. �
Proposition 7.15. Let G :ModH −→Modk be the forgetting functor and
let H ′ = coend (G). Then H ′ ≈ H .

Proof. The Lemma shows that

Homk (H,V ) ≈ Nat (G,G⊗ V ) .

But corollary 7.5 shows that

Homk
(
H ′, V

)
≈ Nat (G,G⊗ V )

We then have a morphism
f : H ′ −→ H

that give the same module structure: δ′can be uniquely written as

X δ′−→ X ⊗H ′ Id⊗f−→ X ⊗H

and vice versa. Then it is enough to show that f is a morphism of bialgebras.
This means that we have to show that f is both an algebra and a coalgebra
morphism. That f is an algebra morphism follows from the fact that the
definition of multiplication is essentially the same in ModH′ and ModH .
So we only have to show that f is a coalgebra morphism, that is, we must
show that

∆ ◦ f = (f ⊗ f) ◦∆′

and
ε ◦ f = ε

Before we go on, note that the correspondence of the comodule structure
gives

ϕH (f) = (1⊗ idH) ◦ δ
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From the definition of ∆′ in ModH′ we get the following:
ϕH⊗H

(
(f ⊗ f) ◦∆′

)
= (ϕH′ (f)⊗ idH) ◦ ϕH′ (f)
= ((1⊗ idH) ◦ δ ⊗ idH) ◦ (1⊗ idH) ◦ δ
= (1⊗ idH ⊗ idH) ◦ (δ ⊗ idH) ◦ δ
= (1⊗ idH ⊗ idH) ◦ (1⊗∆) ◦ δ
= (1⊗∆) ◦ δ

On the other hand,
ϕH⊗H (∆ ◦ f) = (1⊗∆) ◦ ϕH (f)

= (1⊗∆) ◦ (1⊗ idH) ◦ δ
= (1⊗∆) ◦ δ

so
∆ ◦ f = (f ⊗ f) ◦∆′.

We also have
ϕH (ε ◦ f) = (1⊗ 1) ◦ ϕH (f)

= (1⊗ 1) ◦ δ
= ϕH (ε) .

�
This gives the following Theorem:

Theorem 7.16. Let G :ModH −→Modk be the forgetting functor and let
H ′ = coend (G∗ ⊗G). Let ModH′ be the category of H ′-comodules we have
constructed in this Part. Then the functor

I :
(
ModH′ ,⊗′

)
−→

(
ModH ,⊗

)

gives an isomorphism of monoidal categories.
To sum up: If we take a coalgebra with a bialgebra structure and give it a

structure of monoidal category as in Part II, applying the reconstruction of
this Part gives us the same coalgebra (up to isomorphism). Conversely, given
a monoidal category and a forgetting functor, we can construct a coalgebra
H = coend (G∗ ⊗G) and give it a bialgebra structure such that ModH has
the structure of a monoidal category.

7.5. Rigidity and antipode. Assume that C is rigid. Recall that Modk is
left rigid: we can use V ∗ = Homk (V, k). ev is the evaluation

ev (f, v) = f (v) .
and db is defined by

db (1k) =
∑

i
vi ⊗ vi.

where
{
vi, vi

}
is the dual basis of V , in the sense of Lemma 4.2. This shows

that any G (X) has a dual in Modk in the sense defined above.
In the category of f.g. projective modules over a commutative ring k, we

have natural isomorphisms (see Lemma 1.6)
G (X)∗ ⊗ V → Homk (G (X) , V ) .
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Then there is a natural isomorphism
Homk (G (X)∗ , G (X)∗ ⊗ V ) ≈ Homk (G (X)∗ , Homk (G (X) , V ))

We also have an isomorphism
ϕ : Homk (G (X)∗ ,Homk (G (X) , V )) ≈ Homk (G (X)∗ ⊗G (X) , V )

given by ((ϕf)a) (b) = f (a⊗ b). From Lemma 7.1 we know that the latter
is isomorphic to Homk (G (X) ,G (X)⊗ V ). This gives an isomorphism
(7.3) Homk (G (X) ,G (X)⊗ V ) � Homk (G (X)∗ ,G (X)∗ ⊗ V ) .
From the monoidality of G it follows that G(X∗) also is a dual for G (X).
Since two duals are isomorphic, we have G (X)∗ ≈ G (X∗). Then the iso-
morphism 7.3 induces the H-comodule structure on G (X)∗, making ModH
a left rigid category.
Let v ∈ Hom (G,G⊗ V ). Then we have a morphism

G (X)∗ ≈ G (X∗) v−→ G (X∗)⊗ V ≈ G (X)∗ ⊗ V.
This morphism has a preimage ṽ under (7.3). We then have a map

Nat (G,G⊗ V ) −→ Nat (G,G⊗ V ) , v 	→ ṽ.
This corresponds to a map s : H −→ H making the following diagram
commute:

(7.4)

G(X∗) v� G(X∗)⊗H

G(X)∗

iso

�
ṽ
� G(X)∗ ⊗H

iso⊗ s

�

We want to show that s is an antipode. This means that s has to obey the
equation

µ ◦ (s⊗ 1) ◦∆ = η ◦ ε = µ ◦ (1⊗ s) ◦∆.
It is enough to show that

ϕH (µ ◦ (s⊗ 1) ◦∆) = ϕH (η ◦ ε) = ϕH (µ ◦ (1⊗ s) ◦∆)
I show the left equality first. We want the following diagram to commute:

G(X)⊗H 1⊗∆� G(X)⊗H ⊗H

G(X)⊗H ⊗H

1⊗ s⊗ 1

�

G(X)⊗ k

1⊗ ε

�
1⊗ η

� G(X)⊗H

1⊗ µ

�
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or, by elements,

x(0) ⊗ s
(
x(1)

)
x(2) = x⊗ 1.

From the property of dual elements we have a morphism

G (X∗ ⊗X) G(ẽv)−→ G (I)

where ẽv is the map ev from Definition 3.4 applied to C. Then we get the
following commutative diagram:

G(X∗ ⊗X)
δ � G(X∗ ⊗X)⊗H

G(I) = k

G(ẽv)

�
η
� (G(I)⊗H) = (k ⊗H) = H

G(ẽv)⊗ 1

�

From the algebra structure of H we then have a commutative diagram

(7.5)

G(X∗)⊗G(X) δX∗ ⊗ δX � G(X∗)⊗G(X)⊗H ⊗H

k

e

�
v

η � H � ev ⊗ 1
G(X∗)⊗G(X)⊗H

1⊗ µ

�

By the definition of s the following diagram commutes:

(7.6)

G(X)∗ ⊗G(X)
δ∗ ⊗ δ � G(X)∗ ⊗H ⊗G(X)⊗H

G(X)∗ ⊗G⊗H

1⊗ δ

�

G(X)∗ ⊗G(X)⊗H ⊗H

1⊗ 1⊗∆

� 1⊗ 1⊗ s⊗ 1� G(X)∗ ⊗G(X)⊗H ⊗H

1⊗ τ ⊗ 1

�

We are now ready to show the equation

µ ◦ (s⊗ 1) ◦∆ = η ◦ ε.
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The following diagram commutes (writing G as shorthand for G (X)):

G
db⊗ 1 � G⊗G∗ ⊗G

1⊗ δ∗ ⊗ δ � G⊗G∗ ⊗H ⊗G⊗H

G⊗G∗ ⊗G

db⊗ 1

�

G⊗G∗ ⊗G⊗H

1⊗ 1⊗ δ

� 1⊗ 1⊗ 1⊗∆� G⊗G∗ ⊗G⊗H ⊗H
1⊗ 1⊗ 1⊗ s⊗ 1� G⊗G∗ ⊗G⊗H ⊗H

1⊗ 1⊗ τ ⊗ 1

�

G⊗ k

1⊗ ev ⊗ ε

� 1⊗ η � G⊗H � 1⊗ ev ⊗ 1
G⊗G∗ ⊗G⊗H

1⊗ 1⊗ 1⊗ µ

�

The upper rectangle is 7.6 tensored with G (X) on the left and with the
arrow

G = k ⊗G db⊗1−→ G⊗G∗ ⊗G
inserted in the upper left corner, while the outer rectangle commutes by 7.5
treated the same way. The diagram describes morphisms

G −→ G⊗H,
so there are corresponding morphims in Hom (H,H). Before we explore the
diagram, we note the following equality:

(1⊗ 1⊗ δ) ◦ (db⊗ 1) = (db⊗ 1⊗ 1) ◦ δ
Now we get the following morphism going "down, down and right":

(1⊗ η) ◦ (1⊗ ev ⊗ ε) ◦ (db⊗ 1⊗ 1) ◦ δ.
Since

(1⊗ ev) ◦ (db⊗ 1) = 1
we have the morphism

(1⊗ (η ◦ ε)) ◦ δ = ϕH (η ◦ ε) .
Going "down, right, right, down" gives the morphism

(1⊗ ev ⊗ 1) ◦ (1⊗ 1⊗ 1⊗ µ) ◦
(
1⊗3 ⊗ s⊗ 1

)
◦
((
1⊗3

)
⊗∆

)
◦ (db⊗ 1⊗ 1) ◦ δ

= [(1⊗ ev) ◦ (db⊗ 1)⊗ (µ ◦ (s⊗ 1) ◦∆)] ◦ δ (by rearranging)
= (1⊗ (µ ◦ (s⊗ 1) ◦∆)) ◦ δ = ϕH (µ ◦ (s⊗ 1) ◦∆)

so we see that
µ ◦ (s⊗ 1) ◦∆ = η ◦ ε.

The right equality can be established by replacing ev and η in diagram with
db and ε. We conclude:

Theorem 7.17. Let C be a monoidal category and G : C −→ Modk the
forgetting functor. Let H = coend (G∗ ⊗G). If C is rigid, then H has an
antipode.
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Corollary 7.18. Let H be a bialgebra and let ModH be the category of H-
comodules that are f.g. projective as k-modules. Then H is a Hopf algebra
if and only if ModH is rigid.

Proof. This follows from the above Theorem and Proposition 5.2. �
7.6. Braidings in ModH. Suppose C is braided with braiding

σ′ : X ⊗ Y σ′−→ Y ⊗X.

Define

σ : G (X)⊗G (Y ) ≈ G (X ⊗ Y ) G(σ
′)−→ G (Y ⊗X) ≈ G (Y )⊗G (X) .

Then σ defines a natural isomorphism, and by Lemma 7.11 corresponds to
an element r ∈ Homk (H ⊗H,k). We get

σ (x⊗ y) =
∑

y(0) ⊗ x(0) · r
(
x(1) ⊗ y(1)

)
.

As G is a monoidal functor, it preserves the commutativity of diagrams
defining a braiding. It then follows from the proof of Theorem 4.7 that r
has to satisfy the conditions 4.1.

Theorem 7.19. Suppose C is a braided category with braiding σ̃. Define
σ ∈ Nat (G⊗G,G⊗G) by

σX,Y : G (X)⊗G (Y ) ≈ G (X ⊗ Y )
G(σ̃X,Y )−→ G (Y ⊗X)⊗k ≈ G (Y )⊗G (X)⊗k.

Then σ is a braiding in ModH given by

σX,Y (x⊗ y) =
∑

y(0) ⊗ x(0) · r
(
x(1) ⊗ y(1)

)
.

where
r ∈ Hom (H ⊗H, k)

is the cobraider

Proof. We have seen that the braiding in C defines an element

r ∈ Hom (H ⊗H, k)

that makes H into a cobraided bialgebra. By Theorem 4.7 ModH then is
braided. �
7.7. Quantizations inModH. Suppose C is quantized. By the monoidality
of G then ModH is also quantized. Recall from 4.10 that a quantization
in ModH is uniquely determined by a coquantizer q ∈ Homk (H ⊗H,k).
We can give a different proof here by using the universality of H. As a
quantization is natural, Q can be viewed as a natural transformation

Q : G⊗G −→ G⊗G.

Then Q corresponds to an element q ∈ Homk (H ⊗H, k) described by the
following composition:

G (X)⊗G (Y ) −→ G (X)⊗G (Y )⊗H ⊗H 1⊗1⊗q−→ G (X)⊗G (Y )
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We can describe the isomorphism Q : G (X) ⊗G (Y ) by the following dia-
gram:

G(X)⊗G(Y ) D� G(X)⊗G(Y )⊗H ⊗H 1⊗ 1⊗ q� G(X)⊗G(Y )


















Q

� G(X ⊗ Y )

ξ2
�

If we assume that C is strict, the coherence diagram reduces to:

(7.7)

G(X)⊗G(Y )⊗G(Z)
QX,Y ⊗ idZ� G(X ⊗ Y )⊗G(Z)

G(X)⊗G(Y ⊗ Z)

idX ⊗QY,Z
�

QX,Y⊗Z
� G(X ⊗ Y ⊗ Z)

QX⊗Y,Z
�

By following the same procedure as in Theorem 4.10 we see that q satisfies
the conditions for being a coquantizer.

8. M�����
� �
����	��� 
	� ������ �
����	���
It is also possible to dualize the construction of Section 7. As above, let

C be a small monoidal category and let
G : C −→Modk

be a monoidal functor preserving sums where k is a commutative ring. Let
F : Cop × C −→Modk

be the functor
F (X) := Hom (G (X) ,G (X))

and let
E = End (Hom (G,G))

(see [ML98, IX.5]). We need additional assumptions in order to prove the
existence of the End, but for now we assume that End exists. It means that
we have morphisms

fX : E −→ Hom (G (X) , G (X))
such that the diagram

(8.1)

H
fY � Hom(G(Y ),G(Y ))

Hom(G(X), G(X)

fX
�

id⊗G(α)
� Hom(G(X), G(Y )

G(α)∗ ⊗ id

�

commutes for each
a : X −→ Y
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in C, and such that H is universal object for this property.

Proposition 8.1. If F is a bifunctor from C to Modk then

End (F ∗) ≈ coend (F )∗

Proof. First we construct the following wedge:

F (X,Y ) F (α, 1)� F (Y, Y )

F (X,X)

F (1,α∗)

�
fX

� k

fY
�

Commutativity of this wedge can be reformulated as follows: Let X,Y ∈ C
and let α : X −→ Y . We want to find the family of all

fZ ∈ Homk (F (Z,Z) , k)

such that the following diagram commutes:
(8.2)
Homk (F (X,X) , k)

h1−→ Homk (F (Y,X) , k)
h2←− Homk (F (Y, Y ) , k)

where

h1 (fX) = fX ◦ F (α, 1)
h2 (fY ) = fY ◦ F (1,αop)

Now let H be coend (F ). Then the coend-diagram shows that these f_
factorizes uniquely through a morphism e : H −→ k . This then makes
Homk (H,k) an end for 8.2. Since a coend is a colimit and an End is a
limit, the general isomorphism

Hom (�jaj, x) ≈ Πj (Hom (aj,x))

gives the isomorphisms

Hom (coend (F ) , k) ≈ End (Hom (F, k)) ,

or
coend (F )∗ ≈ End (F ∗)

in our case. �
Now by Lemma 7.1

Homk (F (X) , F (X)) = Homk (F (X)∗ ⊗ F (X) , k) = (F (X)∗ ⊗ F (X))∗ .

Setting coend (G∗ ⊗G) = H as in Section 7 , we see that E ≈ H∗. H is a
bialgebra, so E is a bialgebra by 1.14 . As we have seen in Section 6, the
constructions of module structures, antipode, braiders and quantizers can
be done by dualizing the constructions in the comodule situation. We will
show some of this explicitly:
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8.1. Module structure.
Proposition 8.2. E represents the functor

V −→ Nat (V ⊗G,G) ,
in other words there is a natural isomorphism

φ : Homk (V,E) −→ Nat (V ⊗G,G) .

Proof. We know that inModk every k-moduleM has a left dualM∗. There
is also an isomorphism M∗∗ ≈ M . From Proposition 7.5 we have a 1 − 1
correspondence

ϕ : Homk (H,V ∗) ≈ Nat (G,G⊗ V ∗) .
Looking at the component ϕX∗ , we have natural isomorphisms

Homk (G (X∗) ,G (X∗)⊗ V ∗) ≈ Homk (G (X)∗ ,G (X)∗ ⊗ V ∗)
≈ Homk (G (X)∗ ⊗G (X) , V ∗)
≈ Hom (V,Hom (G (X) , G (X)))
≈ Hom (V ⊗G (X) ,G (X))

As all these isomorphisms are natural we get
Homk (H,V ∗) ≈ Nat (V ⊗G,G) .

But by Lemma 1.12 there are isomorphisms
Homk (H,V ∗) ≈ Homk (V,H∗) ≈ Hom (V,E)

and thereby the isomorphism
φ : Homk (V,E) −→ Nat (V ⊗G,G) .

As in Proposition 7.5 the isomorphism is determined by φE (1E), and given
by

φ (f) = φE (1E) ◦ (f ⊗ 1) .
The components of Nat (G⊗ V,G) gives the following : for any α : X −→ Y
in C, a morphism

ω : V ⊗G (X) −→ G (Y )
is the composition

V ⊗G (X) f⊗G(α)−→ E ⊗G (Y ) φE(1E)−→ G (Y )
�

Proposition 8.3. Define
ρ := φE (1E)

where φ is the isomorphism from the above Proposition. Then ρ gives a
E-module structure on G (X)
Proof. Let

ρ ∈ Nat (V ⊗G,G)
be defined by

ρ := φ (1E) .
Recall the following isomorphism from Lemma 1.12.

Nat (G∗, G∗ ⊗ V ∗) ≈ Nat (V ⊗G,G) .
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The H∗-comodule structure in ModH∗ was given by

δ := ϕH∗ (1H∗) .

But then ρ = δ∗ ◦ λ, and we know from Proposition 1.15 that this gives a
E-module structure on G (X). �
8.2. Correspondence of the direct and inverse constructions ofModE.
This follows dually to Section 7.4. As in the comodule case,

F : C −→ModE
is monoidal by G being so. Dualizing the results from 7.4 gives the following:

Lemma 8.4. Let E be an algebra that is finitely generated and projective
as a k-module. Then we have an isomorphism

ψ : Homk (V,E) ≈ Nat (V ⊗E,E)

given by
ψ (g) = ρ ◦ (g ⊗ 1)

Proof. We know that E ≈ H∗, so E∗ ≈ H∗∗ ≈ H. We also know that V ∗ is
a E∗-comodule. Lemma 7.14 combined with the isomorphism 7.3 then gives
the following isomorphism:

Homk (H,V ∗) ≈ Nat (G∗, G∗ ⊗ V ∗) .

By Lemma 1.12 we then get the isomorphism

Homk (V,H∗) ≈ Nat ((G∗ ⊗ V ∗)∗ ,G) ≈ Nat (V ⊗G,G) .

Finally we note that

((1⊗ f) ◦ δ)∗ =
(
λ−1 ◦ δ∗

)
◦ (f∗ ⊗ 1) = ρ ◦ (f∗ ⊗ 1) ,

so we see that the isomorphism can be given by

ψ (g) = ρ ◦ (g ⊗ 1) .

�
Proposition 8.5. Let E be a bialgebra and let G :ModE −→Modk be the
forgetting functor. Let E′ = End (Homk (G,G)). Then E′ ≈ E.

Proof. This also follows dually to Proposition 7.15. Corollary 8.2 and the
previous Lemma give correspondence between the module structures: ρ can
be written as

ρ : E ⊗ V φ⊗1−→ E′ ⊗ V ρ′−→ V
where

φ ∈ Homk
(
E,E′

)
.

In the same manner ρ′can be factorized through ρ. That φ is a bialgebra
morphism follows directly from dualizing the proof of Proposition 7.15. �
We get the following Theorem:
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Theorem 8.6. Let E be a bialgebra that is f.g. projective as a k-module.
Let G :ModE −→Modk be the forgetting functor. Let

E′ = end (Homk (G,G))

and let ModE′ be the category of left E′-modules constructed in this Section.
Then the functor

I :
(
ModE.,⊗′

)
−→ (ModE ,⊗) ,

I (V ) = V

is an isomorphism of monoidal categories.

8.3. Braidings and quantizations. Braidings and quantizations inModE
can be reconstructed from the corresponding structures in C, just like in the
dual case. The monoidality of F takes the diagrams defining braidings and
quantizations over to the appropriate diagrams in ModE . A braiding σ′ in
C carries over to a natural transformation

G (X ⊗ Y ) −→ G (Y ⊗X) ,

and by the bialgebra structure of E this corresponds to a morphism

R ∈ Homk (k,H ⊗H)

which essentially is the same as an element of H ⊗H. It can then be shown
that R has to satisfy the conditions to make E a braided bialgebra.
The same reasoning follows for quantizations.

8.4. Rigidity and antipode. We know that if C is left rigid, we can con-
struct an antipode for the bialgebra H = coend (G∗ ⊗G). As E = H∗, the
constructions in Section 7.5 can be dualized to show that right rigidity of
C makes it possible to construct an antipode for E. First we note that we
have an isomorphism

Hom (V ⊗G (X) ,G (X)) ≈ Hom (V ⊗G (X)∗ ,G (X)∗)

by dualizing 7.3. This gives rise to a map

Nat (V ⊗G,G) −→ Nat (V ⊗G∗,G∗)

corresponding to a k-morphism

s ∈ Homk (E,E) ,

just as in the dual situation. Now suppose C is right rigid. The following
diagram commutes by the naturality of ρ:

E ⊗G(X∗ ⊗X) ρ� G(X∗ ⊗X)

E ⊗G(e)

1⊗G(ve)

�
ρ

� E

G(ve)

�
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By using the coalgebra structure of E we get the following commutative
diagram:

(8.3)

E ⊗G(X)⊗G(X)∗
∆⊗ 1⊗ 1 � E ⊗E ⊗G(X)⊗G(X)∗

E

1⊗ ve

�
ε

� k �
ve

G(X)⊗G(X)∗

ρ⊗ ρ∗

�

The definition of s gives commutativity of the following diagram:

(8.4)

E ⊗E ⊗G(X)⊗G(X)∗
ρ⊗ ρ∗ � G(X)⊗G(X)∗

E ⊗E ⊗G(X)⊗G(X)∗

1⊗ s⊗ 1⊗ 1

�
m⊗ 1⊗ 1

� E ⊗G(X)⊗G(X)∗

ρ⊗ 1



Proceeding in the same manner as in 7.5 we glue together the two previous
diagrams tensoring on the right with G and adding an upper left corner

H ⊗G 1⊗1⊗bd−→ H ⊗G⊗G∗ ⊗G

to get the following commutative diagram:

E ⊗G 1⊗ 1⊗ bd� E ⊗G⊗G∗ ⊗G 1⊗ ve⊗ 1 � E ⊗G

E ⊗G⊗G∗ ⊗G

1⊗ 1⊗ bd

�
G

ε⊗ 1

�

E ⊗E ⊗G⊗G∗ ⊗G

∆⊗ 1⊗ 1⊗ 1

� ρ⊗ ρ∗ ⊗ 1 � G⊗G∗ ⊗G

ve⊗ 1



E ⊗E ⊗G⊗G∗ ⊗G

1⊗ s⊗ 1⊗ 1⊗ 1

�
µ⊗ 1⊗ 1⊗ 1

� E ⊗G⊗G∗ ⊗G

ρ⊗ 1⊗ 1⊗ 1



The upper rectangle commutes by 8.3, the lower by 8.4. Following the
diagram round along the outer edges, we get the morphisms

(ve⊗ 1) ◦ ρ ◦ (µ⊗ 1⊗ 1⊗ 1) ◦ (1⊗ s⊗ 1⊗ 1⊗ 1) ◦
(∆⊗ 1⊗ 1⊗ 1) ◦ (1⊗ 1⊗ bd)

= ρ ◦ ((µ ◦ (1⊗ s) ◦∆)⊗ (ve⊗ 1) ◦ (1⊗ bd))
= ρ ◦ ((µ ◦ (1⊗ s) ◦∆)⊗ 1)
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and
(ε⊗ 1) ◦ (1⊗ ve⊗ 1) ◦ (1⊗ 1⊗ bd)

= (ε⊗ 1) ◦ (1⊗ 1)
= ρ ◦ (η ⊗ 1) ◦ (ε⊗ 1)
= ρ ◦ (η ◦ ε⊗ 1) .

From this we see that
(µ ◦ (1⊗ s) ◦∆) = η ◦ ε.

Using the same reasoning based on bd instead of ve gives the second equality
defining an antipode.
Remark 8.7. The remark after Proposition 6.1 indicates that left rigidity
of C also makes it possible to construct an antipode.
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Part IV. Further perspectives
The program (to make a complete “Dictionary and Grammar Book” that

translates monoidal notions to bialgebra notions and back) that was planned
in the beginning of my work on this Thesis, appeared to be too large for
a cand. sci. thesis. There are many steps in that program that have not
been completed, or have been done only partially. In this Part we are briefly
discussing these “missing pages of the Dictionary”.

9. N��-��	��� ������
� �
����	���: ���
	�� ����
����
����	
�
Until now, the paper has dealt with strict monoidal categories, avoid-

ing discussions about associativity. We have seen that defining a bialgebra
structure on ModH makes it a strict monoidal category, where we used the
multiplication to give a H-comodule structure on the tensor product. To
have a non-strict monoidal category it is not necessary to have strict asso-
ciativity of the multiplication, so we will try to find an "almost" - bialgebra
structure that makes ModH a non-strict monoidal category. To do this try
to find ways of "controlling" the non-associativity of the multiplication, such
that we still can give ModH a structure of a non-strict monoidal category.
We make some definitions:
Definition 9.1. A quasialgebra (A, µ, η, a) is a k-module A together with
morphisms

µ : A⊗A −→ A,
called quasimultiplication

η : k −→ A,
called unit, and an associator

a ∈ Hom (A⊗A⊗A, k)
These morphisms has to obey the following relations:

a + (µ ◦ (µ⊗ idA)) = (µ ◦ (idA ⊗ µ)) + a
µ ◦ (η ⊗ idA) = µ ◦ (idA ⊗ η) .

Remark 9.2. I have not found any general definition of the term quasi-
algebra, so this is an adaption to our case. Shan Majid has an almost similar
definition in [AM99].
When we put this structure on a coalgebra, we get a coquasibialgebra.

Definition 9.3. A coquasibialgebra (H,µ, η, a) consists of a coalgebra H,
coalgebra morphisms

µ : H ⊗H −→ H,
η : k −→ H

and a +-invertible
a : H ⊗H ⊗H −→ k

such that the following equations are fulfilled:
(9.1) µ ◦ (η ⊗ id) = id = µ ◦ (id⊗ η)

(9.2) a + µ ◦ (id⊗ µ) = µ ◦ (µ⊗ id) + a
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(9.3) a123 + a ◦ (id⊗ µ⊗ id) + a234 = a ◦ (µ⊗ id⊗ id) + a ◦ (id⊗ µ⊗ id)
where

a123 = (a⊗ ε)
and

a234 = (ε⊗ a) .

The motivation for this definition is that it can be used to give a (non-
strict) monoidal structure on ModH . The definition of a monoidal category
3.1 state that we need to find an associativity and a unity constraint satis-
fying the pentagon and unity axioms. For unity we can use η just as in the
strict case, as the unity constraint does not depend on µ being associative.
So we need to find an associativity constraint. Define

α (x⊗ (y ⊗ z)) =
∑(

x(0) ⊗ y(0)
)
⊗ z(0) · a

(
x(1) ⊗ y(1) ⊗ z(1)

)
.

Before we go on, note that the morphism a + µ ◦ (id⊗ µ) can be viewed as
applying first µ ◦ (id⊗ µ) , then a to δ (x⊗ (y ⊗ z)). We get the following
sequence:

(X ⊗ Y )⊗ Z δ−→ (X ⊗ Y )⊗ Z ⊗H ⊗H ⊗H 1⊗3⊗µ◦(id⊗µ)−→ (X ⊗ Y )⊗ Z ⊗H
δ⊗1−→ (X ⊗ Y )⊗ Z ⊗H ⊗H ⊗H ⊗H α⊗1−→ X ⊗ (Y ⊗ Z)⊗H.

Recall how we used the multiplication in to define a H-comodule structure
on the tensor product: It was defined by the composition

δV⊗W : V ⊗W δV⊗δW−→ V ⊗H⊗W⊗H 1⊗τ⊗1−→ V ⊗W⊗H⊗H 1⊗1⊗µ−→ V ⊗W⊗H.
Then the previous morphism is essentially the morphism

(X ⊗ Y )⊗ Z
δ(X⊗Y )⊗Z◦(α⊗1)−→ X ⊗ (Y ⊗ Z)⊗H.

In the same manner µ ◦ (µ⊗ id) + a gives the morphism

(X ⊗ Y )⊗ Z
α◦δX⊗(Y⊗Z)−→ X ⊗ (Y ⊗ Z)⊗H.

The condition 9.2 therefore shows that α is a H-module morphism. Now for
the pentagon axiom: For readability we restate the pentagon diagram with
the product ⊗:

X ⊗ (Y ⊗ (Z ⊗ T ))
αX,Y,Z⊗T� (X ⊗ Y )⊗ (Z ⊗ T )

αX⊗Y,Z,T� ((X ⊗ Y )⊗ Z)⊗ T

X ⊗ ((Y ⊗ Z)⊗ T )

idX ⊗ αY,Z,T
�

αX,Y⊗Z,T
� (X ⊗ (Y ⊗ Z))⊗ T

αX,Y,Z ⊗ idT



By the definition of the associativity the first arrow down can be written as

x⊗(y ⊗ (z ⊗ t)) −→
∑

x(0)⊗
((
y(0) ⊗ z(0)

)
⊗ t(0)

)
·ε
(
x(1)

)
a
(
y(0) ⊗ z(0) ⊗ t(0)

)
,

or in other words, by the action of a234 on x ⊗ (y ⊗ (z ⊗ t)). The bottom
arrow is the morphism

X ⊗ ((Y ⊗ Z)⊗ T ) −→ (X ⊗ (Y ⊗ Z))⊗ T,
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which induces the action of a (id⊗ µ⊗ id). Following the same procedure
for the whole diagram, we see that to have commutativity we need that

a123 + a ◦ (id⊗ µ⊗ id) + a234 = a ◦ (µ⊗ id⊗ id) + a ◦ (id⊗ id⊗ µ) .

But this is the condition 9.3 for a coquasibialgebra. We have then proved:

Theorem 9.4. Let H be a coquasibialgebra. Then ModH is a non-strict
monoidal category.

We can then apply the same procedures to describe braidings and quan-
tizations.

9.1. Braidings in ModH. As for the strict case, we define a natural mor-
phism

σX,Y : X ⊗ Y −→ Y ⊗X,
σX,Y (x⊗ y) =

∑
y(0) ⊗ x(0) · r

(
x(1) ⊗ y(1)

)

where r ∈ HomH (H ⊗H, k) .We need to put some conditions on r to make
this a braiding: First, to be an isomorphism we need r to be +-invertible.
We want σ to be a H-module morphism, so as in the strict case, we need r
to fulfill the condition

µτ = r + µ +
_
r.

If we go through the hexagon diagrams the same way as we did for the pen-
tagon diagram in the previous Section, we find that the following conditions
have to be satisfied:

r (id⊗ µ) = a231 + r13 + ā213 + r12 + a
r (µ⊗ id) = ā321 + r13 + a132 + r23 + ā

This leads to the following definition:

Definition 9.5. A cobraided coquasibialgebra is a coquasibialgebra (H,µ, η, a, r)
that satisfies the following properties:

r is + -invertible
µτ = r + µ +

_
r

r (id⊗ µ) = a231 + r13 + ā213 + r12 + a
r (µ⊗ id) = ā321 + r13 + a132 + r23 + ā

The above discussion shows the following Theorem

Theorem 9.6. Let (H,µ, η, a, r) be a cobraided coquasibialgebra. Then

σX,Y : X ⊗ Y −→ Y ⊗X,
σX,Y (x⊗ y) =

∑
y(0) ⊗ x(0) · r

(
x(1) ⊗ y(1)

)

is a braiding in ModH .
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9.2. Quantizations in ModH. Let us define a morphism

Q (x⊗ y) =
∑

x(0) ⊗ y(0) · q
(
x(1) ⊗ y(1)

)
,

q ∈ Homk (H ⊗H,k)
We want to see under which conditions on q this can define a quantization
on ModH . First we need Q to be an H-comodule morphism. But this is
similar to the strict case, so at least we need q to satisfy

q + µ = µ + q.
We then examine the coherence diagram 3.8 using the above definition of
the associator. We then get the following equations:

[αX,Y,Z ◦ (QX,Y⊗Z) ◦ (idX ⊗QY,Z)] (x⊗ (y ⊗ z))

= αX,Y,Z ◦ (QX,Y⊗Z)
(
x⊗

∑
y(0) ⊗ z(0) · q

(
y(1) ⊗ z(1)

))

= αX,Y,Z
(∑

x(0) ⊗
(
y(0) ⊗ z(0)

)
· q
(
x(1) ⊗ (y ⊗ z)(1)

)
· q
(
y(1) ⊗ z(1)

))

=
∑(

x(0) ⊗ y(0)
)
⊗z(0)·a

(
x(1) ⊗ y(1) ⊗ z(1)

)
·q
(
x(1) ⊗ (y ⊗ z)(1)

)
·q
(
y(1) ⊗ z(1)

)

=
∑(

x(0) ⊗ y(0)
)
⊗z(0)·a

(
x(1) ⊗ y(1) ⊗ z(1)

)
·q
(
x(1) ⊗ µ

(
y(1) ⊗ z(1)

))
·q
(
y(1) ⊗ z(1)

)

=
∑(

x(0) ⊗ y(0)
)
⊗ z(0) · a +

(
q ◦ (1⊗ µ) + (ε⊗ q)

(
x(1) ⊗ y(1) ⊗ z(1)

))
.

Following the other direction in the same manner gives the equality
QX⊗Y,Z ◦ (QX,Y ⊗ idZ) ◦ αX,Y,Z (x⊗ (y ⊗ z))

=
∑(

x(0) ⊗ y(0)
)
⊗ z(0) ·

(
q ◦ (µ⊗ 1) + (q ⊗ ε) + a

(
x(1) ⊗ y(1) ⊗ z(1)

))
,

so we see that we must require that
a + q ◦ (1⊗ µ) + (ε⊗ q) = q ◦ (µ⊗ 1) + (q ⊗ ε) + a

10. T�� ��!�	�� �����	������
The following is an informal outline of what can be done, and thus lacks

some mathematical formalities.
Now assume that we have a not necessarily strict monoidal category C

and a functor G : C −→ Modk as earlier. If G is a monoidal functor we
can construct H = coend (G∗ ⊗G) and get a coalgebra structure on H, just
as in the strict case. We also have an associator by taking G (α) to be the
associator in ModH . We then get a coquasibialgebra structure on ModH
as described above, and ModH is a monoidal category. If C is braided, we
can construct a braiding on ModH by the same procedure as in Part III,
now by taking the associativity constraint into consideration. We then find
a cobraider making H into a cobraided coquasibialgebra, thus defining a
braiding on ModH . All these constructions rely on an associativity con-
straint α which essentially arised from G fulfilling diagram 3.1. This gives
rise to the following question: what happens if the functor does not satisfy
this diagram, but all the other conditions for a monoidal functor? It turns
out that we can still construct a coquasibialgebra structure on H based on
the associativity constraint in C.
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Remark 10.1. We will call this functor a neutral tensor functor to dis-
tinguish it from an ordinary monoidal functor.

10.1. Associativity. Let us define µ and η the same way as in the monoidal
case in Part II. The equation 9.1 follows immediately. Let β be the asso-
ciativity constraint in C. We want to find an associativity α on G such that
the diagram

G(X)⊗ (G(Y )⊗G(Z))
α� (G(X)⊗G(Y ))⊗G(Z)

G(X ⊗ (Y ⊗ Z)

ξ2(1⊗ ξ2)

�
G(β)

� G((X ⊗ Y )⊗ Z)

ξ2(ξ2 ⊗ 1)

�

commutes naturally. Let us therefore define a natural morphism α by

αX,Y,Z : G (X)⊗ (G (Y )⊗G (Z)) ξ2◦(1⊗ξ2)−→ G (X ⊗ (Y ⊗ Z))
G(β)−→ G ((X ⊗ Y )⊗ Z)

(1⊗ξ−12 )◦ξ−12−→ (G (X)⊗G (Y ))⊗G (Z) .

This is an endomorphism onG. Then α ∈ Nat ((G⊗G)⊗G,G⊗ (G⊗G)⊗ k)
and thus corresponds to a morphism

a ∈ Homk (H ⊗H ⊗H,k)

We can therefore write

α (x⊗ (y ⊗ x)) =
∑

((x0 ⊗ y0)⊗ z0) · a (x1 ⊗ y1 ⊗ z1) .

By the definition we gave of µ in Part III we have the following diagram for
G (X ⊗ (Y ⊗ Z))

G(X)⊗ (G(Y )⊗G(Z)) � G(X)⊗ (G(Y )⊗G(Z))⊗H ⊗H ⊗H

G(X ⊗ (Y ⊗ Z))

ξ2(1⊗ ξ2)

�
δ

� G(X ⊗ (Y ⊗ Z))⊗H

ξ2(1⊗ ξ2)⊗ µ(1⊗ µ)

�

We also have a similar diagram for G ((X ⊗ Y )⊗ Z). In the strict case these
diagrams were linked by the associativity in ModH to make multiplication
associative. In this Part we can use the morphism a to link these diagrams
together. We have seen that for this diagram to commute, a has to satisfy

a + µ (1⊗ µ) = µ (µ⊗ 1) + a.
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The pentagon diagram for the associativity in C maps to the following dia-
gram:

G(A⊗ (B ⊗ (C ⊗D)))
G(β)� G((A⊗B)⊗ (C ⊗D))

G(A⊗ ((B ⊗C)⊗D))

G(1⊗ β)

�

G((A⊗ (B ⊗C))⊗D)

G(β)

�
G(β ⊗ 1)

� G((A⊗B)⊗C)⊗D)

G(β)

�

By the definition of α this transforms to a similar pentagon diagram for α.
Chasing the diagram for α gives

a123 + a ◦ (id⊗ µ⊗ id) + a234 = a ◦ (µ⊗ id⊗ id) + a ◦ (id⊗ µ⊗ id)
just as we have seen earlier in this Part.
We have then proved

Theorem 10.2. If C is a monoidal category and G : C −→ A is a neutral
tensor functor, then H := coend (G) is a coquasibialgebra .

From this we get the following corollary:

Corollary 10.3. ModH is a monoidal category

Proof. µ gives a H-comodule structure on the tensor product just as in Part
III, and we have associativity by

α (x⊗ (y ⊗ z)) = (x0 ⊗ y0)⊗ z0 · a (x1 ⊗ y1 ⊗ z1)
�

10.2. Braidings and quantizations. By using the associator we defined
in the previous Section, I assume that we can reconstruct braidings and
quantizations in ModH in a similar manner as in the strict case. An outline
of the process is as follows: The functor G takes the appropriate diagrams
defining braidings and quantizations in C to diagrams in ModH . To make
this diagrams commutative in ModH we define cobraiders and coquantizers
as above, and chasing the diagrams will define the requirements of r and q
as described earlier in this Part.

11. W��� �� F 
� ����!
�����?
Under an assumption that there exists the coend

Coend(G∗ ⊗G) =: H
we have established a bialgebra structure on H. We have also proved that
the forgetting functor

G : C −→Modk
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factors through the category ModH :

G : C F−→ModH U−→Modk
where U is the forgetting functor. We remind that Modk is the category
of f.g. projective k-modules, ModH is the category of those H-comodules
that are f.g. projective as k-modules. Below we formulate a reasonable
conjecture stating necessary and sufficient conditions (on C and G) for F to
be an equivalence. We do not call that statement a Theorem because it is
proved only partially.
Let us first examine the forgetting functor

U :ModH −→Modk.
This functor is evidently faithful. Given X ∈ Ob(Modk), let

W (X) := X ⊗H
with the following H-comodule structure:

δ : X ⊗H 1⊗∆−→ X ⊗H ⊗H.

Proposition 11.1. The functor W is right adjoint to the forgetting functor
U .

Proof. Given
X ∈ Ob(ModH)

and
Y ∈ Ob(Modk).

Let
f : X −→W (Y ) = Y ⊗H.

Denote by ϕ(f) the following composition

ϕ(f) : U(X) = X f−→ Y ⊗H 1⊗ε−→ Y.
Let further

g : U(X) = X −→ Y.
Define

ψ(g) : X δ−→ X ⊗H g⊗1−→ Y ⊗H =W (Y ).
The pair (ϕ,ψ) defines the desired adjointness isomorphisms

HomH (X,W (Y ))
ϕ�
ψ
Homk (U(X), Y ) .

�
Corollary 11.2. The functor

(U(_))∗ :ModH −→Modk
is representable.

Proof.
(U(X))∗ = Homk (U(X), k) ≈ HomH (X,V (k)) = HomH (X,H) ,

so (U(_))∗ is representable by H ∈ModH . �
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We are going to prove a kind of left exactness of the functor U . However,
one should not expect that U is left exact in the usual sense. The thing is
that neither ModH , nor Modk is abelian. One cannot guarantee that the
kernel

ker(f) −→ X −→ Y
is projective. We can neither claim that ker(f) is finitely generated, since
we do not require k to be Noetherian. However, a kind of exactness can be
stated.

Definition 11.3. A functor
G : C −→Modk

is called weak left exact if the following is satisfied:
given

f : X −→ Y
in C, let ker(G(f)) be f.g. projective. Then ker(f) exists, and the natural
homomorphism

G (ker(f)) −→ ker(G(f))
is an isomorphism.

Remark 11.4. Below we sometimes will consider difference kernels ker(f, g).
It will not imply any difficulties because

ker(f, g) ≈ ker(f − g).

Proposition 11.5. The forgetting functor
U :ModH −→Modk

is weak left exact.

Proof. Consider
f : X −→ Y

in ModH , and let
K = ker(U(f))

be f.g. projective. H is f.g. projective, and therefore flat, over k. It follows
that the sequence

0 −→ K ⊗H −→ X ⊗H −→ Y ⊗H
is exact, and therefore the H-comodule structure

δX : X −→ X ⊗H
uniquely extends to a H-comodule structure

δK : K −→ K ⊗H
on K. Let us denote the resulting comodule by K′. It is easy to prove that

K ′ = ker (f : X −→ Y )
and that

U(K ′) = K ≈ K = ker(G(f)).
�
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Finally, both the categoryModH and Modk are closed under idempo-
tents:

Definition 11.6. A category A is said to have splitting idempotents, or to
be closed under idempotents if the following is satisfied: Let

f : X −→ X
be an idempotent in A, i.e. f ◦ f = f . Then there exist a P and morphisms

g : X −→ P
h : P −→ X

such that
g ◦ h = f
h ◦ g = 1P

We will also need the following standard Lemma on adjoint functors:

Lemma 11.7. Let
(U : C −→ D,W : D −→ C)

be a pair of adjoint k-linear functors between k-linear categories C and D,
and let

sX : X −→WU(X),X ∈ Ob(C),
tY : UW (Y ) −→ Y, Y ∈ Ob(D),

be the adjunctions. Then the sequence

0 −→ X sX−→WU(X)
WUs⇒
sWU

WUWU(X)

becomes split exact after applying the functor U .

Corollary 11.8. Let
X ∈ Ob

(
ModH

)
.

Then the following sequence

0 −→ X δ−→ X ⊗H
δ⊗1⇒
1⊗∆

X ⊗H ⊗H

is exact in ModH , and split exact in Modk.

We have now established enough properties of the forgetting functor U in
order to formulate our Conjecture.

Conjecture 11.9. Let
G : C −→Modk,
G = UF,
F : C −→ModH ,

as above. Then F is an equivalence if and only if the following are satisfied:
• G is faithful;
• G is weak left exact;
• (G(_))∗ is representable;
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• C is closed under idempotents.

Remark 11.10. The two last conditions can be replaced by one condition:
G admits a right adjoint.

Below a sketch of the proof is given:

Proof. Step 1. The conditions are necessary. Assume F is an equivalence.
Since the forgetting functor U satisfies the four conditions above, the same
does the functor G.
Step 2. Assume that G satisfies all the four conditions. Since both

G = UF and U are faithful, the functor F is faithful as well.
Step 3. Let H represent the functor (G(_))∗, i.e. for all X ∈ Ob (C),
HomC (X,H) ≈ (G(X))∗ = Homk (G(X), k) ≈ Homk (UF (X), k)

≈ HomH (F (X),W (k)) ≈ HomH (F (X),H) .
Set X = H in the above sequence of isomorphisms. Then there is a H-
comodule morphism

i ∈ HomH (F (H) , H)
which is the image of

idH ∈ HomC (H,H) .
One can prove that

i : F (H) ≈ H
as H-comodules.
Step 4. Let us construct a right adjoint R to the functor G. Put

R(k) : =H,
R(kn) : =Hn.

Since H represents (G(_))∗, one has
HomC (X,Hn) ≈ Homk (G(X), kn) .

Therefore, both R and the adjunctions are constructed for free modules.
Since both Modk and C are closed under idempotents, the functor R and
the adjunctions can be easily extended to the whole category Modk.
Step 5. There exists a natural isomorphism

FR(Y ) ≈W (Y ) = Y ⊗H,Y ∈ Ob (Modk) ,
which commutes with the adjunctions. The latter means the following. If we
denote the adjunctions for (G,R) by (s, t) and the adjunctions for (U,W )
by (s, t), then, for X ∈ Ob(C), the composition

sF (X) : F (X) −→WUF (X) =WG(X) ≈ FRG(X)

equals F (sX), and, for Y ∈ Ob (Modk), the composition

GR(Y ) = UFR(Y ) ≈ UW (Y ) tY−→ Y
equals tY .
Step 6. Let

X ∈ Ob
(
ModH

)
.
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The sequence

0 −→ X δ−→ X ⊗H
δ⊗1⇒
1⊗∆

X ⊗H ⊗H

is exact both in ModH and in Modk. Under the adjunction between U and
W , the morphisms δ, δ ⊗ 1 and 1⊗∆ correspond respectively to

Id : X −→ X,
α : X ⊗H −→ X ⊗H,
Id : X ⊗H −→ X ⊗H,

where
α (x⊗ h) = δ(x) · ε(h).

Let us construct a pair of morphisms

R(X)
f⇒
g
R (X ⊗H)

in C, such that f and g correspond respectively to

α, Id : GR(X) = X ⊗H −→ X ⊗H.

Since G is weak left exact, there exists

K = ker(f, g)

in C, and
F (K) ≈ X

in ModH . Therefore the functor F is essentially surjective.
Step 7. Let

X,Y ∈ Ob(C).
Lemma 11.7 and weak left exactness of G describes Y as

Y = ker (RG(Y )⇒ RGRG(Y )) .

It follows that

F (Y ) = ker (WUF (Y )⇒WUWUF (Y )) .

Now

HomC (X,Y ) = ker (HomC (X,RG(Y ))⇒ HomC (X,RGRG(Y )))
≈ ker (Homk (G(X),G(Y ))⇒ Homk (G(X),GRG(Y )))
= ker (Homk (UF (X), UF (Y ))⇒ Homk (UF (X), UFRUF (Y )))
≈ ker

(
HomH (F (X),WUF (Y ))⇒ HomH (F (X),WUFRUF (Y ))

)

≈ ker
(
HomH (F (X),WUF (Y ))⇒ HomH (F (X),WUWUF (Y ))

)

≈ HomH (F (X), F (Y )) ,

therefore F is full.
Step 8. We have proved that F is full, faithful and essentially surjective.

It follows from Theorem 7.8 that F is an equivalence. �
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