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Arctic Terns Sterna paradisaea have a record-long migration from their breeding grounds in the Arctic to 

wintering areas in the Antarctic and back. They had nevertheless a remarkably constant return date to North 

Norway over a 35-y period (1981-2015), arriving in Troms within a 13-d time window in mid- to late May. Since 

1993, arrival dates have advanced by ca. 4 d. No relationships were found between arrival dates and large-scale 

weather proxies such as the North Atlantic Oscillation or sea temperatures, but when approaching Troms, 

headwinds tended to delay arrivals whereas tailwinds advanced them. 

 

------------------------------------------ 

 

There has been much focus on phenological changes in ecosystems in these times of climate 

change, and a general trend towards earlier spring passages of birds through study sites or 

earlier arrivals at breeding grounds in temperate areas has been evident (e.g. Jonzén et al 

2006, Both et al 2010). North Norway is no exception, where the majority of 42 migrant bird 

species advanced their arrival dates at a mean of 0.41 d y-1 between 1980 and 2010 with 

most of the advance occurring after the mid-1990s (Barrett 2011). This study also 

corroborated earlier evidence that long-distance migrants advanced spring migration in 

response to climate change less than short-distance migrants (e.g. Lehikoinen et al 2004, 

Hubálek & Capek 2008). This is possibly because the latter are “better informed” about 

conditions at their target both before starting and en route and can respond accordingly 

(Rubolini et al 2010). Nearly all birds migrating to North Norway do so over land or along the 

coast and can thus assess conditions on the way, as shown by the partial response by many 
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species to changing spring temperatures and date of snow melt along the migration route 

(Barrett 2011).  

 Long-distance migrants and especially species migrating over large bodies of water 

cannot, however, access cues about conditions at their destination, and decisions 

concerning when and how fast to move and how long to spend at stopovers must be based 

on other factors such as weather conditions and food availability at sea (Gordo 2007). In 

North Norway, one such species is the Arctic Tern Sterna paradisaea whose migration is 

record-long (Fijn et al 2013, solely over the oceans and, like birds migrating to e.g. Iceland or 

Greenland, might respond to large-scale external cues to ensure landfall at the optimal time 

(Gunnarsson & Tómasson 2011). One widely-used and useful exploratory variable in this 

context is the North Atlantic Oscillation (NAO) Index (e.g. Vähätalo et al 2004). The NAO 

index provides a large spatially-scaled proxy of weather conditions in the North Atlantic 

including changes in the surface westerly winds across the North Atlantic into Europe. 

Positive values are associated with more and stronger storms moving on a northerly track 

and warm and wet conditions in western Europe whereas negative values correspond to 

suppressed westerlies and cold winters and springs in Northern Europe (Hurrell 1995).  

Arctic Terns are light in weight with long, slender wings adapted for energy-saving flight at 

low speeds, although air speeds during migration of 9-12 m s-1 (ca. 30-40 km h-1) have been 

documented (Alerstam 1985, Wakeling & Hodgson 1992). Because wind speed and flight 

direction in relation to wind may explain 60% of the variation in ground speed among 

seabirds with flapping flight (Spear & Ainley 1997a), Arctic Terns are very receptive to wind 

speed and direction at low spatial and temporal scales. As such, wind conditions can be 

expected to delay or accelerate their passage on a day-to-day basis. 

 The Arctic Tern breeds around the North Pole in temperate and arctic zones and has 

one of the longest migrations known. During the non-breeding season, birds move often in 

small flocks of up to 25-30 birds (Gudmundsson et al 1992) over distances up to 90 000 km 

to the Southern Ocean and Antarctica and back via well-defined staging areas at e.g. the 

Newfoundland Basin (for Greenland, Iceland and Dutch birds), the Benguela Current off 

Namibia and the subtropical Indian ocean (Dutch birds) (Egevang et al 2010, Fijn et al 2013). 

The global population is estimated to be somewhere between 1-3 million pairs with ca. 0.5-2 

million pairs in Europe and the North Atlantic (Mitchell et al 2004). In Norway, the 

population is estimated as around 40 000 pairs, including 5-10 000 pairs along the Barents 
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Sea mainland coast and 5-6 000 pairs on Svalbard (Fauchald et al 2015, Shimmings & Øien 

2015). 

 Despite its extraordinary migration, very little data concerning the phenology of 

movements to and from the breeding grounds were found in the literature, e.g. through a 

search in ISI Web of Knowledge. Recent tracking data have, however, revealed a remarkably 

rapid return from the wintering areas, with departure dates from the Antarctic at the end of 

March to mid-April and arrival at the breeding colony a little more than one month later 

(Egevang et al 2010, Fijn et al 2013). This is corroborated by observational data of Arctic 

Terns moving northwards across the UK during the last half of April and early May or arriving 

at Danish colonies in March-May (Kramer 1995, Møller et al 2006, Vinicombe 2014). The first 

arrivals on the South Norwegian coast are at the end of April/early May, and in the north of 

the country in mid-May (Barrett 2002, Bakken et al 2003). A recent analysis showed no 

apparent temporal long-term change in arrival dates (Barrett 2011), but with five more years 

of data this study explores further the arrival of Arctic Terns to North Norway in relation to 

large-scale and local weather parameters. 

 

 

MATERIAL AND METHODS 

 

This analysis is based on about 530 observation dates of the first individuals of Arctic Terns 

seen between 1981 and 2015 by bird watchers and members of the public in the coastal 

county of Troms (ca. 68º - 70º N, 16º - 22ºE) that were reported either directly to me or, since 

2009, published online at www.artsobservasjoner.no. The municipality covers ca. 26 000 km2 

and consists of large islands, long fjords and sounds and a mountainous terrain. 

To exclude extreme outlying early arrivals of “rogue” individuals (Sparks et al 2001) and 

unless otherwise stated, all statistics were based on the second observation date of the 

Arctic Tern in Tromsø in years when there was a minimum of 10 observations in the 

database. The apparent dates of the main wave of first arrivals into Troms, defined as the 

days on which hundreds of birds were reported – either large flocks at few sites or small 

flocks at many sites, were used as a second measure of arrival phenology. 

 As a proxy of large-scale weather conditions prior to and during the migration 

northwards, principal-component-based indices of the NAO were downloaded from 

http://www.artsobservasjoner.no/
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www.climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-

pc-based. Smaller-scale indices were downloaded from the Norwegian Meteorological 

Institute at www.eklima.no. Wind direction was proxied for each year using the mean 

frequency distribution of wind in the SW (representing tailwinds) and NE quarters 

(representing headwinds) (compass bearings 165-254º and 345-74º respectively) that were 

recorded four times a day at six-hour intervals at Andenes (69º 19’N, 16º 07’E) during the 10 

d prior to arrival date (either 2nd observation date or date of main arrival. Crosswinds were 

winds coming out of the two remaining quarters. Andenes was chosen as it is the 

meteorological station closest (ca 30 km) to the southwest coast of the county of Troms. 

Monthly means of sea surface temperatures in May off Andenes and at the spring migration 

staging area in the mid-North Atlantic (at 50 ⁰N, 41 ⁰W, Fijn et al 2013) were downloaded 

from 

www.iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv

2/.  

 Regression analyses were carried out using Minitab 15 statistical software and 

segmented piecewise regression analyses were applied using the interactive method 

downloaded from the Excel Resources web page at 

www.processtrends.com/downloads.htm (D. Kelly O'Day). 

 

 

RESULTS 

 

Between 1981 and 2015, the first Arctic Terns were observed in Troms between 11 and 21 

May (Fig 1, Supplementary data - Table 1). Using dates of the second observation, a simple 

linear regression analysis implied that there was no trend towards earlier arrivals with time 

between 1981 and 2015 (2nd obs. = 76.8 – 0.03 Year, r2 = 0.02, P = 0.48). A closer visual 

inspection of the plot suggested, however, that the relationship might be non-linear with an 

initial period of no apparent trend followed by an advancement of arrival dates (Fig 1). An 

interactive segmented piecewise regression analysis confirmed this with no trend during the 

first decade but after 1993, 2nd arrival dates advanced at a rate of 0.16 d y-1 (2nd obs. = 347.3 

– 0.16 Year, r2 = 0.29, P = 0.014). Similarly, there was no trend in the main arrival dates until 

https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
http://www.eklima.no/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/
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2001, after which they advanced at a rate of 0.23 d y-1 (main wave = 486 – 0.23 Year, r2 = 

0.39, P = 0.012) (Fig. 1). 

 There were no significant relationships between 2nd arrival dates or the main wave 

and any of the three NAO indices for May, March-May or Dec-March (Table 1). At the 

smaller scale, the mean frequency of tail- and headwinds during the 10 d prior to the terns’ 

arrival in Troms varied considerably from year to year (Fig 2). For example, in 1987 and 2008, 

only 11% of the winds recorded at Andenes were tailwinds (i.e. in the SW quarter) whereas 

in 2010, 50% were tailwinds during the 10 d before the 2nd observation. Similarly, in 2000 

and 2010, only 6-9 % were headwinds respectively (i.e. in the NE quarter) whereas in 1987, 

64% were headwinds. There were no long-term trends in the frequencies of head- or 

tailwinds. There were close correlations between dates of arrival and the difference in the 

proportions of head- and tailwinds each year, with arrivals being later when there were 

more NE winds and earlier when there were more SW winds (Fig 3). Alternatively, head- and 

tailwinds were each significantly associated with arrival date, with terns being delayed 

during years with headwinds and arriving earlier in years with tailwinds (Figs 4-5). The mean 

speeds of head- and tailwinds were 4.9 (SE=0.2) and 5.1 (SE=0.2) m s-1 respectively. There 

were no correlations between arrival dates and frequencies of crosswinds (2nd arrival, y = 

17.2 – 0.61, r2 = 0.00, P = 0.853; main wave, y = 19.4 + 1.24, r2 = 0.01, P = 0.644) . Despite 

considerable variation in the sea surface temperatures at the stopover site in the mid-North 

Atlantic in April and off Andenes in May (Fig 6), there were no significant relationships 

between arrival dates and these parameters (Tab. 2). 

 

 

DISCUSSION 

 

Since this study began in the 1980s, the spring arrival of Arctic Terns in Troms has been very 

consistent with first observations varying between 11 and 20 May. Among 42 migrant 

species (Table I in Barrett 2011) arriving in Troms, 2nd observation dates varied by as much as 

60 d with a mean of 31 (SE = 1.8) for all species. While some species underwent a large 

change in migration phenology, Red Knot Calidris canutus, Ruff Philomachus pugnax and 

Arctic Tern underwent relatively little change, varying by 8, 11 and 13 d respectively (unpubl. 

data, Supplementary data - Table 1). This is remarkable considering the distances travelled 
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by Arctic Terns but consistent with other short time windows recorded for the species during 

spring migration. Examples are contracted departure dates from the wintering region and 

crossing of the Equator (12-19 April and 25 April-7 May resp. for 10 geolocator-marked 

Greenland birds, Egevang et al 2010), transit dates across southern England (between 27 

April and 7 May in 1980-1991, Kramer 1995 or last 20 d in April in 1978-2013, Vinicombe 

2014) and arrival dates at Iceland (variation = 15 d, 29 April-14 May between 1988 and 2009, 

Fig 4 in Gunnarsson & Tómasson 2011). 

 Whereas an earlier analysis from Troms based on data from 1980-2010 and a similar 

one from Iceland in the same time period (1988-2009) found no evidence of changes in 

arrival dates of Arctic Terns at their breeding grounds (Barrett 2011, Gunnarsson & 

Tómasson 2011), an additional five years of data revealed an advance in arrivals of 

Norwegian birds after the mid-1990s (this study). Although there was no direct relationship 

between arrival dates and sea surface temperature at Andenes, 1996-2005 was a period of a 

rapid increase in temperature (from 5.2-7.0 ⁰C, Fig. 6) and of a rapid increase in heat content 

of the Norwegian Sea (Mork 2015). Such large amplitudes in ocean climate changes, 

irrespective of direction, are known to have negative effects on seabirds, presumably 

through the disruption of the food webs (Irons et al 2008 and refs. therein). Whether the 

terns are responding in the same manner to such an oceanic climate shift by returning 

earlier is unknown. 

 The northward migration of Arctic Terns is very rapid at speeds of > 500 km d-1 and at 

least Dutch birds stop over for a few days at a mid-North Atlantic staging area ca 1000 km 

NNW of the Azores in mid-April (Fijn et al 2013). This staging area is ca 2 000 km SSW of 

southern Norway, a distance that could be covered in 4-5 days when flying at a speed of 500 

km d-1. Arrivals of Arctic Terns in the south of Norway at the end of April (Bakken et al 2003) 

and 10-20 d later ca 1 000 km further north (this study) suggest that Norwegian terns, if they 

also stop over in the same staging area and if they maintain the same flight speed, leave this 

area a week or two later than e.g. the Dutch birds. This would imply either a later departure 

from the Antarctic or a longer stop over. It is, for example, possible that departure time is 

delayed for these high-latitude breeding birds in relation to the Dutch birds, as found in Bar-

tailed Godwits Limosa lapponica baueri migrating from New Zealand to Alaska whose 

departure time was strongly correlated with breeding latitudes (Conklin et al. 2010). An 

alternative is that Norwegian birds migrate more slowly than Dutch birds. There was no 
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evidence that oceanographic conditions in the area had any effect on the migration 

schedule. 

 The lack of relationship between the large-scale weather proxy NAO and arrival dates 

corroborates an earlier study that included the Arctic Tern in Iceland, where an analysis of 

arrival dates of 17 species crossing the Atlantic from Europe showed that species wintering 

closest to Iceland responded to favourable winds and warmer springs on the island by 

departing earlier from the European mainland. Those wintering south of northern France, 

including the Arctic Tern, showed no such response presumably because they were less able 

to assess conditions in their target area (Gunnarsson & Tómasson 2011). As such, departure 

dates and at least early scheduling of migratory movements of Arctic Terns that winter in the 

far south can be expected to be unaffected by weather system fluctuations in the North 

Atlantic. A similar reasoning was proposed by Hubálek & Capek (2008) who suggested that 

different mechanisms govern the scheduling of migration of short- and long-distance 

migrants in Central Europe. 

 Whereas the initial timing of the Arctic Tern migration northwards may be largely 

controlled by endogenous circannual and circadian rhythms that are strong in long-distance 

migrants (Gwinner 1996, Wormworth & Şekercioğlu 2011), arrival dates in North Norway 

respond to local wind conditions. While crosswinds had no effect, head- and tailwinds 

resulted in delays and advances respectively with an overall difference in arrival dates of 3-4 

days (Fig 5). This is despite the fact that terns fly mostly across the wind (Spear & Ainley 

1997a) and thus an expectation that higher frequencies of crosswinds would result in an 

advance of arrival dates. Although terns increase airspeed when flying into the wind 

(Gudmundsson et al 1992), with increases up to 100 % faster than when flying downwind 

(e.g. 14.2 vs 6.6 m s-1 respec. [Spear & Ainley 1997b] or 12.2 vs 8.9 m s-1 respec. [Wakeling & 

Hodgson 1992]), groundspeeds are the opposite and correspondingly faster when flying 

downwind (12.1 vs 7.3 m s-1 respec. [Spear & Ainley 1997b]). With mean headwinds 

equalling those of tailwinds (ca. 5 m s-1) at Andenes, arrivals can thus be expected to be 

earlier when tailwinds are more frequent in the 10 d prior to arrival. As such, any increase in 

SW winds as a result of climate change can be expected to result in an advance in spring 

arrival dates of the Arctic Tern in North Norway. 

 



8 
 

ACKNOWLEDGEMENTS  

This study was funded by Tromsø University Museum. Thanks also to members of the local 

branch of the Norwegian Ornithological Society and members of the public who reported 

arrival dates to me or to www.artsobservasjoner.no. Without them this study would have 

been impossible. 

 

REFERENCES 

Alerstam, T. (1985) Strategies of migratory flight, illustrated by arctic and common terns, 

Sterna paradisaea and Sterna hirundo. Contributions in Marine Science 27, 580-603. 

Bakken, V., Runde, O. & Tjørve, E. (2003) Norsk Ringmerkingsatlas. Vol. 1. Stavanger 

Museum, Stavanger, Norway. 

Barrett, R.T. (2002) The phenology of spring bird migration to North Norway. Bird Study 49, 

270-277. 

Barrett, R.T. (2011) Recent response to climate change among migrant birds in northern 

Norway. Ringing and Migration 26, 83-93. 

Both, C., Van Turnhout, C.A.M., Bijlsma, R.G., Siepel, H., Van Strien, A.J. & Foppen, R.B.P. 

(2010) Avian population consequences of climate change are most severe for long-distance 

migrants in seasonal habitats. Proceedings of the Royal Society, Series B 227, 1259-1266. 

Conklin, J.R., Battley, P.F., Potter, M.A. & Fox, J.W. (2010). Breeding latitude drives 

individual schedules in a trans-hemispheric migrant bird. Nature Communications 1:67, 

DOI:10.1038/ncomms1072. 

Egevang, C., Stenhouse, I.J., Phillips, R.A., Petersen, A., Fox, J.W. & Silk, J.R.D. (2010) 

Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration. Proceedings of 

the National Academy of Science, USA 107, 2078-2081. 

Fauchald, P. Anker-Nilssen, T., Barrett, R.T., Bustnes, J.O., Bårdsen, B.-J., Christensen-

Dalsgaard, S., Descamps, S., Engen, S., Erikstad, K.E., Hanssen, S.A., Lorentsen, S.-H., Moe, 

B., Reiertsen, T.K., Strøm, H. & Systad, G.H. (2015) The status and trends of seabirds 

http://www.artsobservasjoner.no/


9 
 

breeding in Norway and Svalbard. NINA Report 1151, Norwegian Institute of Nature 

Research, Trondheim, Norway. 

Fijn, R.C., Hiemstra, D., Phillips, R.A. & van der Winden, J. (2013) Arctic Terns Sterna 

paradisaea from the Netherlands migrate record distances across three oceans to Wilkes 

Land, East Antarctica. Ardea 101, 3-12. 

Gordo, O. (2007) Why are bird migration dates shifting? A review of weather and climate 

effects on avian migratory phenology. Climate Research 35, 37-58. 

Gudmundsson, G.A., Alerstam, T. & Larsson, B. (1992) Radar observations of northbound 

migration of the Arctic Tern, Sterna paradisaea, at the Antarctic Peninsula. Antarctic Science 

4, 163-170. 

Gunnarsson, T.G. & Tómasson, G. (2011) Flexibility in spring arrival of migratory birds at 

northern latitudes under rapid temperature changes. Bird Study 58, 1-12. 

Gwinner, E. (1996) Circadian and circannual programmes in avian migration. Journal of 

Experimental Biology 199, 39-48. 

Hubálek, Z. & Capek, M. (2008) Migration distance and the effect of North Atlantic 

Oscillation on the spring arrival of birds in Central Europe. Folia Zoologica 57, 212-220. 

Hurrell, J.W. (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures 

and precipitation. Science 269, 676-679. 

Irons, D.B., Anker-Nilssen, T., Gaston, A.J., Byrd, G.V., Gilchrist, G., Hario, M., Hjernquist, 

M., Krasnov, J.V., Mosbech, A., Olsen, B., Petersen, A., Reid, J.B., Robertson, G.J., Strøm, H. 

and Wohl, K. (2008) Fluctuations in circumpolar seabird populations linked to climate 

oscillations. Global Change Biology 14, 1455-1463. 

Jonzén, N., Lindén A., Ergon, T., Knudsen, E., Vik, J.O., Rubolini, D., Piacentini, D., Brinch, 

C., Spina, F., Karlsson, L., Stervander, M., Andersson, A., Waldenström, J., Lehikoinen, A., 

Edvardsen, E., Solvang, R. & Stenseth, N.C. (2006) Rapid advance of spring arrival dates in 

long-distance migratory birds. Science 312, 1959-1961. 

Kramer, D. (1995) Inland spring passage of Arctic Terns in southern Britain. British Birds 88, 

211-217. 



10 
 

Lehikoinen, E., Sparks, T.H. & Zalakevicius, M. (2004) Arrival and departure dates. Advances 

in Ecological Research 35, 1-31. 

Mitchell, P.I., Newton, S.F., Ratcliffe, N. & Dunn, T.E. (2004) Seabird Populations of Britain 

and Ireland. Results of the Seabird 2000 Census (1998-2002). T. & A.D. Poyser, London, UK. 

Mork, K.A. (2015) Norskehavet, 91-92 in: Havforskningsrapporten 2015 Pp. 91-92 in 

Bakketeig, I.E., Gjøsæter, H., Hauge, M., Sunnset, B.H. & Toft, K.Ø. (eds.). Fisken og havet, 

særnummer 1-2015. Havforskningsinstituttet, Bergen, Norway. 

Møller, A.P., Flensted-Jensen, E. & Mardal, W. (2006) Dispersal and climate change: a case 

study of the Arctic Tern Sterna paradisaea. Global Change Biology 12, 2005-2013. 

Rubolini, D., Sainio, N. & Møller, A.P. (2010) Migratory behaviour constrains the 

phenological response of birds to climate change. Climate Research 42, 45-55. 

Shimmings, P. & Øien, I. J. (2015) Bestandsestimater for norske hekkefugler. Norsk 
Ornitologisk Forening‐rapport 2015‐2, Trondheim, Norway. 
 
Spear, L.B. & Ainley, D.G. (1997a) Flight speed of seabirds in relation to wind direction and 

wing morphology. Ibis 139, 221-233. 

Spear, L.B. & Ainley, D.G. (1997b) Flight speed of seabirds in relation to wind speed and 

direction. Ibis 139, 234-251. 

Vähätalo, A.V., Rainio, K., Lehikoinen, A. & Lehikoinen, E. (2004) Spring arrival of birds 

depends on the North Atlantic Oscillation. Journal of Avian Biology 35,210-216. 

Vinicombe, K. (2014) The migration of common and Arctic Terns in southern England. British 

Birds 107, 195-206. 

Wakeling, J.M. & Hodgson, J. (1992) Optimisation of the flight speed of the little, common 

and sandwich tern. Journal of Experimental Biology 169, 261-266. 

Wormworth, J. & Şekercioğlu, Ç. (2011) Winged Sentinels. Birds and Climate Change. 

Cambridge University Press, Cambridge, UK. 

  



11 
 

Table 1. The results of regressions of arrival dates of the second individuals and the main waves of 

migrating Arctic Terns to Troms on three concurrent North Atlantic Oscillation (NAO) indices. 

 NAO index Slope r2 P 

2nd arrival May -0.95 0.13 0.074 

 March-May -0.50 0.09 0.134 

 Dec-March -0.04 0.03 0.399 

Main wave May -0.71 0.07 0.210 

 March-May -0.10 0.00 0.767 

 Dec-March -0.22 0.07 0.198 
 

 

Table 2. The results of regressions of arrival dates of the second individuals and the main waves of 

migrating Arctic Terns to Troms on mean sea surface temperatures (SST) off Andenes in May 

and at the stopover site in the mid North Atlantic in April. 

 

 SST Slope r2 P 

2nd arrival Andenes -0.25 0.01 0.738 

 Mid N. Atlantic 0.38 0.05 0.261 

Main wave Andenes -0.37 0.01 0.620 

 Mid N. Atlantic -0.29 0.03 0.401 
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Figure 1. Dates of 1st and 2nd observations and the main wave of arrivals of Arctic Terns 

during the spring migration in Troms, N. Norway between 1981 and 2015. Significant 

advances in arrival dates are shown by trend lines – see Results.  
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Figure 2. Mean annual frequencies of head- and tailwinds experienced by Arctic Terns during 

10 d prior to their arrival during spring migration in Troms, N. Norway. 
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Figure 3.  Arrival dates (2nd observation and main wave) of Arctic Terns in Troms, North 

Norway during the spring migration in relation to the difference in frequencies of head- and 

tailwinds at the southern border of the county during the 10 d prior to arrival. 
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Figure 4. Dates of the 2nd observation of Arctic Terns in Troms, North Norway during the 

spring migration in relation to the frequencies of head- and tailwinds at the southern border 

of the county during the 10 d prior to arrival.  
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Figure 5. Dates of the main wave of arrival of Arctic Terns in Troms, North Norway during the 

spring migration in relation to the frequencies of head- and tailwinds at the southern border 

of the county during the 10 d prior to arrival. 
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Figure 6. Mean sea surface temperatures in the mid-North Atlantic (50 ⁰N, 41 ⁰W) in April 

and off Andenes, N. Norway in May and 1982-2015. 
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Supplementary data - Table 1. Dates (d after 1 May) on which the first (1st) and second (2nd) 

observations of Arctic Terns were reported in Troms, North Norway and the estimated dates 

of the main wave of first arrivals (Main) in 1981-2015. N = no. of observations in database. 

 

 

 

 

 1st 2nd Main N 

1981 19 21 21 5 

1982 13 22 23 8 

1983 15 24 24 4 

1984 13 15 16 9 

1985 17 18 23 13 

1986 14 16 22 10 

1987 18 19 21 12 

1988 12 13 15 12 

1989 12 16 18 13 

1990 15 16 20 11 

1991 12 17 19 7 

1992 15 16 16 9 

1993 19 20 22 11 

1994 22 22 23 3 

1995 19 22 23 9 

1996 12 17 22 10 

1997 11 17 19 13 

1998 18 19 20 9 

1999 19 19 20 13 

2000 13 15 17 15 

2001 13 17 20  15 

2002 16 19 23 20 

2003 17 18 20 14 

2004 16 18 20 16 

2005 17 18 23 28 

2006 20 20 20 20 

2007 17 17 20 21 

2008 18 19 22 21 

2009 17 18 20 22 

2010 14 16 19 30 

2011 14 15 20 29 

2012 15 16 17 22 

2013 15 16 19 24 

2014 11 16 18 27 

2015 11 12 19 22 


