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A Bayesian perspective on delusions: suggestions for modifying two reasoning tasks  

Abstract 
Background and Objectives. There are a range of mechanistic explanations on the formation 
and maintenance of delusions. Within the Bayesian brain hypothesis, particularly within the 
framework of predictive coding models, delusions are seen as an aberrant inference process 
characterized by either a failure in sensory attenuation or an aberrant weighting of prior 
experience. Testing of these Bayesian decision theories requires measuring of both the 
patients' confidence in their beliefs and the confidence they assign new, incoming 
information. In the Bayesian framework we apply here, the former is referred to as the prior 
while the latter is usually called the data or likelihood.  

Methods and results. This narrative review will commence by giving an introduction to the 
basic concept underlying the Bayesian decision theory approach to delusion. A consequence 
of crucial importance of this sketch is that it provides a measure for the persistence of a belief. 
Experimental tasks measuring these parameters are presented. Further, a modification of two 
standard reasoning tasks, the beads task and the evidence integration task, is proposed that 
permits testing the parameters from Bayesian decision theory.  

Limitations. Patients differ from controls by the distress the delusions causes to them. The 
Bayesian Decision theory framework has no explicit parameter for distress.  

Conclusions. A more detailed reporting of differences between patients with delusions is 
warranted.  

Introduction 
Already in the 19th century, Hermann von Helmholtz described perception as an unconscious 
inference based on previous knowledge and incoming sensory data (1924). Seeing is believing 
and all seeing is influenced by what one expects to see. Indeed, one can “want to see” which 
means that the belief is weighted stronger than the actual information received from sensation: 
The perceived sensory input can be discounted to fulfil one’s prediction. The influence of 
what one wants to see is most obvious in the somewhat different case of viewing ambiguous 
figures, such as the Necker cube, or the duck rabbit. Even when people entirely fail to notice 
that there is more than one possible interpretation of sensory data, they can deliberately switch 
to the alternative interpretation once told what it is. In less ambiguous situations, where one 
interpretation of the evidence is more strongly favoured, it takes more to go against the 
evidence. More of what, though? A stronger expectation that one interpretation is true 
(Schwartenbeck et al., 2015) or a problem with the inference process (Hemsley and Garety, 
1986)? In principle, both options could cause aberrant perception and beliefs. Given that 
beliefs at one level are evaluated at a higher level, it is not easy to disentangle the two 
possibilities. What looks like aberrant inferences might be caused by too strong or too weak 
higher order beliefs (Mathys et al., 2011). Indeed, with respect to explaining delusions an 
aberrant (over- or under-) weighing of belief has been postulated to be an underlying 
mechanism (Corlett, Frith, and Fletcher, 2009, Adams et al., 2013, Friston et al,. 2015; Teufel 
et al., 2015). These Bayesian decision theory accounts are hierarchical. Simply said, there is a 
Bayesian integration at the perceptual level, as well as there is a controlling or plausibility 
check at a higher cognitive level (Coltheart 2007). In the Bayesian decision theory 
terminology: there is an uncertainty about the precision of a belief. This uncertainty about the 
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precision of a belief is a measure of how certain the predictions from this belief are. For 
example, someone picking mushrooms needs to do more than decide whether the mushroom 
seen now is a better match to the memory of an edible or the memory of a poisonous 
mushroom. It is also necessary to know how variable the appearance of both species of 
mushroom is, and how precisely one remembers. And although there is an objective precision 
that might be measured by experiment, the mushroom picker must make a subjective estimate 
regarding the precision, and may be uncertain regarding that precision. 

Further, at any time, there is not just one belief. As in hypothesis testing there are alternative 
options to believe in, each with its “strength”. A person’s model of the world contains many 
beliefs. The aim is to reduce uncertainties, find the appropriate model and hence make better 
predictions (Friston, 2005). Accordingly, there is ongoing learning. And how fast one learns 
depends on many factors. The difference in learning rate (attention, interests) leads to 
differences in the kind of beliefs (belief formation) one has as well as differences in the 
persistence of well-functioning beliefs (conviction stage). One may cling to some believes 
more than to others as some beliefs apply across various environments (are universal) whereas 
other beliefs are part of unstable environments (e.g. friendships). These two basic stages of 
belief formation and belief conviction also apply to delusion (see also Moritz et al., this 
issue).  

In the next part, this article will illustrate belief formation and maintenance on a fictional 
example. This example shows that it is not the inference process itself that is aberrant. Rather, 
it appears to be a weak reflective, metacognitive assessment of the reliability of a belief that 
prevents the calibration of false beliefs and belief flexibility (Buck et al., 2012; Coltheart, 
2007; Moritz and Woodward, 2006). That is, patients with delusions show epistemic 
irrationality, but intact instrumental rationality, i.e. they act according to their beliefs (Barch 
et al., 2013). Thereafter, I will describe modifications to two classical paradigms: the beads 
task and the evidence integration task. Knowing which parameter is impacted by delusions 
may provide individually tailored metacognitive therapy but also provide objective measures 
of treatment outcomes. It will allow measuring when all parameters are “normal”.  

Delusions as aberrant statistical inference 
An advance from a descriptive towards a mechanistic understanding of delusions is crucial to 
advance understanding and treatment of this condition. The "Bayesian brain" framework 
provides such a mechanistic approach. In this view, all information processing in the brain is 
seen as an integration of previous knowledge with incoming new information. Continuously, 
knowledge/belief, is accumulated over various timescales: Prior experience and beliefs can be 
evolutionarily acquired (e.g. light comes from above), learned within the lifetime of an 
individual (e.g., chocolate is tasty) or fluctuate quickly on the order of seconds (e.g., the bird 
changed flight direction). Stereotypes or religions are examples of strongly learned beliefs: 
They can be held with great precision and be strongly robust against conflicting information. 
Mathematically, beliefs can conveniently be modelled as probability distributions over the 
space of possible events, allowing the study of the rather abstract concept of a "belief" in 
concrete terms. When representing beliefs as probability distributions the most likely value is 
its expectation1. Information about uncertainty of this parameter is contained in a dispersion 
parameter indexing the width of the distribution, its variance (the inverse of the variance is 
                                                           
1 In the special case of a normal distribution the expectation is the mode, median and mean. 
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called precision). The stronger a belief, the more precise or narrow its corresponding 
distribution. A critical assumption of (Bayesian) reasoning is that beliefs are updated after 
perceiving new data. Further, probability distributions over the likelihood of different beliefs 
can be specified (beliefs about beliefs), expressing how reliable or appropriate one belief is 
compared to another. It follows that each belief also has a precision, and also a reliability in 
the precision of the belief. That is, the reliability is here how certain the agent is regarding the 
distribution of the belief, its shape, mean and variance. This reliability is a measure of how 
resistant a belief is to change. Reliabilities are thought to be set by sufficient experience, i.e. 
optimal agents become correctly calibrated (Huys et al., 2015, Pfuhl et al., 2011). 

Data, in the form of novel observations, impact the internal representation of the world (the 
"model") by changing the associated probability distribution of the parameters by way of their 
"likelihood" (the probability of the data given the model). Depending on the (perceived) 
precision of this data as well as the current estimate of reliability, the internal update of a 
belief will be strong (in case of highly trustworthy or precise data) or weak. Any deviation 
between a predicted outcome based on one’s belief, i.e. how children will react to a cyclist, 
and data, i.e. how did the children react, is the prediction error. Any prediction error leads to a 
re-evaluation of the reliability and precision of the belief.  
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Figure 1 Schematic illustrating the precision of a belief and the reliability of the precision of a belief based on 
the running example (see text for details). The graphs show normal probability distributions that represent prior 
beliefs. A) Shown is the distribution of Julie’s running times (blue) and her belief in the distribution of the 
running times of elderly women (red). These distributions have an expectation (41 min and 47 min, 
respectively), and a precision (inverse of variance) associated with it. The more precise the smaller the width of 
the distribution. B) Here, the reliability of the belief is the spread in the possible precisions of a belief (there can 
be also uncertainty around the mean, not illustrated). The larger the uncertainty about the range of possible 
running times the lower the reliability. Experience increases the reliability (better estimation) but not the 
precision. C) However, in this example training may increase precision or the stability of one’s performance that 
might be extrapolated to the belief about running times of elderly women. D) Because there is real variation in 
the world, increased experience cannot just shrink the variance of estimated running times to 0. What experience 
can do is allow a more precise estimate of the variance of running times. Here illustrated as a very precise and 
very reliable estimate. This leads to nearly no overlap between Julie’s expected running times and those of 
elderly women (arrow). E) A too precise belief results in large prediction errors, or discrepancies between 
predicted outcome and perceived outcome. Alternative beliefs result in lower discrepancies. F) Subsequent 
updating may strengthen the alternative belief. Horizontal axis: running times for 10 km in min. 

How are delusions explained in terms of Bayesian inference?  
The discussion of Bayesian inference so far has centered on inference processes as assumed in 
healthy individuals. In the following scenario, I will illustrate how such Bayesian reasoning 
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can go wrong and result in delusional beliefs. Consider the following belief Julie may hold 
about herself: Julie believes that all elderly women are slower runners than she is. From some 
local races her running time for 10 km is in the range of 39 to 43 min (Fig 1A). Now she takes 
part at a race with international starters. Obviously, there is some uncertainty associated with 
predicting her own speed, and perhaps some former Olympic athletes’ performance declines 
less quickly with age than she thinks. Since it is an international race, she might be faster than 
usual (finding a pacemaker) or slower than usual (hindrance from other runners). This would 
be accommodated in the reliabilities (Fig 1B).  

Even if Julie expects her mean running times in international races will be the same as in local 
races, and if she believes that the variance of running times will remain unchanged, in her first 
international race she may be less certain that these beliefs accurately reflect reality. She 
would consider her beliefs less reliable. The same applies to her beliefs regarding the running 
times of elderly women. For example, the variance in the running times of elderly women in 
international races might be greater if the age range is greater and if the performance of 
former Olympic athletes has declined less than Julie believes. Or the variance might be less if 
the organisers demand a minimum level of performance.  

Assume that Julie finishes her run within 41 minutes, but she is beaten by an elderly woman, 
which contradicts at least one of her beliefs. Her own running time is as expected, so she has 
no reason to modify that belief. How she reconciles the new experience with her belief 
regarding the running times of elderly women depends both on the precision and on the 
reliability of this belief. If the new experience is only a moderate outlier, i.e. Julie believes 
that elderly women’s running times in international races vary widely (low precision), Julie 
may recalibrate the variance of elderly women’s expected running times (and also the mean, 
for simplicity not drawn here). If the new experience is an extreme outlier, meaning that Julie 
believes the expected variance in elderly women’s running times is low, that she knows those 
times with high precision, she may still decide to recalibrate the variance and mean of those 
running time if a second condition holds: that Julie thinks her belief regarding elderly 
women’s running times in international races is unreliable, that a wide range of variances and 
means are possible, due to her acknowledged ignorance of the factors mentioned above.  

However, if the experience of being beaten by an elderly woman is an extreme outlier, and 
Julie believes that her belief regarding the possibly variance and mean of elderly women’s 
running times is reliable, that she knows that variance and mean, then recalibrating that 
variance and mean is less reasonable than adopting an alternative belief that represents a 
different causal relationship. She may interpret some remark about doping to mean that 
doping occurred in this race, and an obvious candidate would be the elderly woman who did 
so unexpectedly well by beating Julie. In future races Julie may perceive some of the women 
that have beaten her as elderly and doped. Since her initial belief of running times for elderly 
women was very precise and reliable, this (perception of her) new experience further 
strengthens the belief in doping. For some period, Julie may hold both beliefs (Moritz et al., 
2016b; Risen, 2016), being able to beat all elderly women who don’t cheat and elderly women 
who do dope beating her. However, repeating the experience of being beaten by elderly 
women may convince Julie that doping is common. That is, the doping belief explains the 
data better than the elderly women running not faster than 44 min belief (Fig 1D). That is, an 
elderly women running 41 min is better predicted by the doping belief than the previous 
belief. Subsequently, the reliability (not necessarily the precision!) of the doping belief 
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increases. This belief of elderly women running between 38 to 52 min fast, may cause fewer 
prediction errors and hence is reinforced with every new experience. Any contrary evidence 
(friends telling about negative doping tests) might be explained away by “raising the stakes”, 
for example that the doping was organized by the state. Such an exaggeration may lead to a 
conspiracist belief that goes beyond a race. The belief in the state-supported doping may go 
up the hierarchy and affect related beliefs, such as how trustworthy other claims of state 
institutions are (Lewandowsky, Oberauer & Gignac, 2013). 

This example illustrates that the same information is treated differently, depending on the 
prior belief. It also highlights the importance of knowing the reliability and precision of a 
belief. Only if those are known can we infer how current situational information is being 
processed. In a selection stage, one may go through a stage of indifference or “hopping back 
and forth” between two alternative explanations. A process familiar to scientists when 
deciding which model explains a phenomenon. Subsequently, the model or belief resulting in 
the lower prediction error will be promoted and its reliability can increase. Indeed, there are 
two components here, one is the uncertainty about a belief (hierarchical Bayes), the other is 
the selection of a belief (model selection). Said differently, we can distinguish between which 
model and how well a model predicts data. “Which model” might be related to belief 
formation, whereas “how well” to belief conviction. If one does not have an alternative 
model, the existing model may describe the world (e.g. ether theory of radio waves). 

Predictive coding theories of delusion do not see the problem in the prediction of the sensory 
input per se. The fault appears to be an imbalance between ascribed prior beliefs and 
incoming evidence (Adams et al., 2015, Friston, 2005). As a consequence, given that beliefs 
are learned and influence perception, one has to measure not only the belief per se but also the 
reliability (conviction/inflexibility to tolerate alternatives) of a belief and its precision (how 
narrowly defined is the belief, what counts as outlier for this belief). In other words, the 
precision of a belief causes prediction errors, the reliability determines how one acts on the 
prediction error. Here we can also see the interaction of precision and reliability. If the 
precision is low, prediction errors will be small and nearly every observation can be 
accommodated by the imprecise belief. There is no urge to update the precision or reliability 
of this belief. If the precision is high, rare events cause large prediction errors. If the belief has 
a low reliability its precision2 may be recalibrated. Alternatively, if the belief has a high 
reliability, the rare event may be “explained away” by assigning it to an alternative belief. The 
original belief is protected against modification by interpreting the outlier as a consequence of 
a different cause. In this framework, delusions may be characterized as occurring as a 
consequence of an overly flexible or liberal acceptance of alternative beliefs which acquire a 
high reliability and become resistant to further changes. Note, that the reliability is a judgment 
about the belief. This process leads to epistemic irrationality in that the reliability of the belief 
is not verified against other beliefs. 

Assessing reliability and precision of prior beliefs 
The model above illustrates that one needs to assess both the precision of a belief as well as 
its reliability. Direct experimental tests that measure both the precision and the reliability are 
rare. Recently, experiments have been designed to measure some of these parameters. 
Schmack et al. (2013) exposed subjects to an environment of ambiguous objects, where one 

                                                           
2 and the mean 
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particular type of object was more common than another type. A learning phase established an 
expectation or prior belief about the relative availability of the two types of objects (rotating 
either left or right). They found that for delusion-prone subjects, this induced prior was more 
stable when the environment has changed to an equal distribution of the relative frequency of 
the two objects. To some extent, this paradigm therefore measured the “belief in a belief”.  

Teufel et al. (2015) presented complex images to their subjects. In a later stage, fragments of 
these images were shown and had to be recognized by the subjects. Delusion-prone subjects 
were better in recognizing previously seen fragments compared to less delusion-prone 
subjects. These data were interpreted as supporting the hypothesis that a more precise, and 
therefore more persistent, prior was associated with delusions. In both studies, the response 
was binary, either left/right (Schmack et al., 2013) or yes/no (Teufel et al., 2015). Therefore, 
the precision could not directly be measured. To improve on this situation, Pfuhl et al. (2015) 
developed a task that measured the precision of a subjects' memory representations and their 
confidence about this precision. Subjects saw a squiggly shape and after a brief delay had to 
indicate which shape they saw. Next, they could set a confidence wedge that should include 
the shape they just saw. Immediate feedback was provided. The study found that patients with 
schizophrenia had a less precise visual memory (accuracy in degrees to identify the correct 
shape) and they too often set a too small confidence interval relative to their precision. That 
is, the perceived precision was smaller than the actual precision in patients. It follows, that 
this aberrant precision may be a failure or miscalibration of metacognition or the reflective 
mind (Fleming, Dolan and Frith, 2012).  

As informative as these experiments are for the active inference account, they do not assess 
cognitive biases in reasoning. Accordingly, extrapolating from these perceptual tasks to 
delusional reasoning is risky. Delusions are complex (Brett-Jones, Garety and Hemsley, 1987) 
and there are multiple ways in which the parameters of Bayesian inference might be 
pathologically affected (Adams et al., 2015).  

Delusional reasoning 
A characteristic feature of delusion is resistance to updating one’s belief in light of 
contradicting or disconfirming evidence (DSM-V, 2013). It is in this vein that two reasoning 
tasks have been developed to assess a belief’s resistance to be updated: The evidence 
integration task (Woodward et al., 2006, 2007) and the beads task, a probabilistic inference 
task introduced by Huq et al. (1988). These tasks assess probabilities, which can be 
interpreted as posterior beliefs because they are measures of beliefs after new information or 
evidence was provided. 

Evidence integration task 
The evidence integration task has been developed by Woodward, Moritz and colleagues 
(2006, 2007). The logic is as follows: First, an ambiguous scenario is presented followed by 
four possible interpretations, or causes. These four causes are, in the statistical sense, possible 
models of the world. One model is deemed as absurd by common standards, three 
explanations are likely whereof two are “lures” and one is the – by common standards – most 
appropriate or true explanation. The participant’s task is to rate the plausibility for each of the 
explanations after having read the scenario. It is important to stress that the first plausibility 
rating is already a conditional probability. That is, the rating is a posterior belief. After the 
first plausibility rating, the ambiguous scenario is made progressively less ambiguous by 
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presenting another piece of information S2, and a third final piece of information S3 that 
resolves all ambiguity. In the example from Woodward et al. (2007) the first evidence is: 
“Jenny can’t fall asleep”; the second is “Jenny can’t wait until it is finally morning”. And the 
third is “Jenny wonders how many presents she will find under the tree”. The four possible 
causes are: ‘‘Jenny is nervous about her exam the next day’’ (neutral lure); ‘‘Jenny is worried 
about her ill mother’’ (emotional lure); ‘‘Jenny is excited about Christmas morning’’ (true); 
and ‘‘Jenny loves her bed’’ (absurd) would be updated based on all evidence. The ambiguity 
initially favors the lure interpretations. The absurd interpretation should receive no high 
plausibility rating throughout. The plausibility of the true interpretation should increase with 
evidence. Three biases have been classified (Table 1, McLean et al., 2016). Subjects who do 
not downgrade the lure interpretation when the ambiguity is resolved commit a “bias against 
disconfirmatory evidence” (BADE). Subjects who do not increase their subjective probability 
of the true interpretation with more incoming information commit a “bias against 
confirmatory evidence” (BACE). Finally, subjects that rate the absurd interpretation as too 
plausible are thought to show a “liberal acceptance” (LA) of false beliefs. A crucial extension 
of this approach would be the assessment of the subjects' probability in the possible causes 
before any data / information is presented, even if asking for this rating without a scenario 
seems odd to subjects. This would measure a subjects' prior belief about those causes more 
directly (Fig 2). If the prior belief in the absurd interpretation is very high (e.g. “Jenny loves 
her bed” rated as very plausible / above 25%), then it is possible (and rational) to remain at a 
high probability for the absurd belief after having seen the evidence (Fig 2B). Mathematically, 
Bayes theorem states that the probability of the absurd interpretation after having read the 
scenario is proportional to the product of the probability of the scenario under the absurd 
interpretation and the probability of the absurd interpretation, 𝑝𝑝(𝐴𝐴|𝑆𝑆1) ∝ 𝑝𝑝(𝑆𝑆1|𝐴𝐴) ∗ 𝑝𝑝(𝐴𝐴). 
Here, S1 is the first piece of evidence from the scenario, and A is the absurd interpretation 
(state of the world if the absurd interpretation is true). When measuring p(A) beforehand, and 
p(A|S1) – which is the plausibility rating – we can infer p(S1|A), the likelihood/data or a 
subject’s belief in this scenario occurring under this cause. This would allow measuring 
directly how much weight the data receives. It might be that patients with delusions do appear 
to weight the data not much due to a too strong prior belief – a finding contrary to some 
proposed accounts of delusion (Speechley et al., 2010, Adams et al., 2013). 

A second, highly informative extension of this task would be the introduction of a meta-
plausibility rating. This would assess how confident a subject was in the plausibility rating 
they just gave. One would not only assess the plausibility but also the belief in the 
plausibility. A related but not similar measurement is the variance of the plausibility ratings 
per cause in the 10 scenarios. If patients vary a lot with how plausible they think the absurd 
cause is, then they are in a stage of low reliability (liberal acceptance) for alternative beliefs. 

Table 1: Evidence integration task and classification of possible outcomes, the two lure 
interpretations are collapsed 

plausibility rating 
information 1; 
p(S1|I) 

information 2; 
p(S1,S2|I) 

information 3; 
p(S1,S2,S3|I) BADE/BACE/LA 

Lure interpretation; 
p(I=L) 

medium-high medium low no BADE 

medium  medium medium 

yes, BADE, no 
down-regulation of 
lure 
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True interpretation; 
p(I=T) 

low-medium medium-high high no BACE 

medium  medium medium 
yes, BACE, no up-
regulation of true 

absurd interpretation; 
p(I=A) 

low   low  low no LA 

medium medium medium 
yes, LA, plausibility 
of absurd too high 

 

 
Figure 2. Evidence integration task: this schematic illustrates the importance to first assess the prior beliefs for 
the provided interpretations in the evidence integration task. Any piece of evidence will update the beliefs 
according to Bayes theorem. Even if the data is not very likely under the absurd cause, a high initial probability 
of of the absurd interpretation being true yields a non-negligible plausibility rating.  

In summary, measuring a subject’s prior belief for each of the four possible interpretations 
could confirm that the integration process is intact but that the initial strength of the beliefs is 
aberrant. By assessing how sure they are about their plausibility rating, the reliability can be 
measured.  

The beads task: a probabilistic inference task 
A second task that is usually used for assessing cognitive biases in delusions is the beads task. 
The standard version consists of two jars with different proportions of colored beads. One of 
the jars contains more white beads, whereas the other jar contains more black beads. The 
ratios vary between and within studies but are usually symmetrical. For example, jar 1 may 
contain a ratio of 85:15 of white:black, whereas jar 2 has exactly the opposite ratio, i.e. 15:85 
of white:black. Beads are drawn one at a time and replaced such that there are always 100 
beads in the jar. Therefore, the subject knows the probability with which a bead will be drawn 
from jar 1 or 2, i.e., p(black/white bead | jar i) and they have to estimate which of the two jars 
is more likely to be the source of the drawn beads. Studies vary in whether a maximum of 10 
or 20 beads can be drawn and beads might be disguised as fish or sheep to provide a more 
intuitive appeal (Moritz et al., 2016a, Speechley et al., 2010). There are two versions of the 
task: In the draws-to-decision (DtD) version of the task, subjects are required to indicate when 
they are sure they know from which jar the bead has been drawn (Huq et al., 1988). 
Alternatively, subjects are instructed to indicate the probability of the bead being drawn from 
jar 1 or jar 2 – the decision threshold (DT) or graded estimate version (Moritz and Woodward 
2004). In the DtD version, deciding after fewer than two beads is classified as “jumping to 
conclusion” and a data gathering bias is diagnosed (Huq et al., 1988, Garety and Freeman, 
1999). Indeed, there is consistent evidence that persons with delusions decide on a source jar 
after having seen fewer beads than do non-deluded persons (McLean et al. 2016, Ross et al. 
2015, Dudley et al., 2016). In the graded estimate version, Moritz et al. (2016a) found that 
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patients assessed the probability similarly to controls but a more lenient threshold was applied 
to decide from which jar the bead was drawn, e.g. 82% compared to 93%. Speechley et al. 
(2010) also asked subjects for the probability of the evidence under two possible hypotheses: 
a lake with predominantly black fish (80:20 ratio) and a lake with equal black and white fish 
(50:50). They did not ask for draws to decision. Patients with delusions gave the most extreme 
probability estimates for the hypothesis favoring the data but there was no difference in 
estimating conflicting data.  

An advantage of the beads task relative to the evidence integration task is that the prior beliefs 
have a normative value. Before any bead has been drawn the a priori estimate of a white bead 
being drawn should rationally be 50%. Fear and Healy (1997) found no difference in correctly 
stating this probability among patients and controls. In easy versions of this task (85:15 ratio) 
persons with delusions do not differ from the Bayesian norm (Dudley et al., 1997). In the 
60:40 versions of the task persons with delusions do request too little information. Although, 
they need more draws to decision the closer the ratio is to 50:50 (e.g. Garety et al., 2015). 

Additionally, to elucidate whether subjects base their decision solely on one piece of 
information, i.e., they have decreased motivation to gather more evidence, one can use two 
jars with three bead colors (Fig 3). The ratio could, for example, be set to 70:20:10 and 
10:20:70 with the colors white:black:red. There are two interesting conditions: First, if one 
presents a white bead the posterior probability is 87.5% instead of 70% in a 70:30 
symmetrical jar setup. More interesting is how subjects respond, in the case in which one 
would draw first a black bead. Since black beads occur with 20% in both jars, the posterior 
probability for the bead originating from jar 1 is 50%. This should prevent deciding based on 
“the correct jar is the jar that has most beads of the drawn bead color”. Further, if the ratio in 
the second jar is 20:10:70 then the posterior probability for jar 1 after having seen one black 
bead is 67%. Various ratios can be employed to measure the decision threshold. This three-
bead color task (and two jars) also minimized miscomprehension of jars (Balzan et al., 2012) 
changing when the color changes. Appendix A provides the calculations.  

 

Figure 3. Modified beads task with three colors in the ratio 70:20:10 and 10:20:70 for white, black and red beads 

Finally, the beads task is also an ideal tool to measure BADE. Using the graded estimate 
version of the task, a sequence favouring first jar 1 can be presented. At a point in the 
sequence, unbeknownst to the subject, the beads will be drawn from jar 2. The participant will 
be told that the jar can change and their task is to indicate when a change in jar is suspected. It 
is not about preventing miscomprehension (Balzan et al., 2012) but would measure whether 
subjects integrate previous data or treat all beads sequentially (Moutoussis et al., 2011). Two 
studies have employed similar designs. Langdon, Ward and Coltheart (2010) did change the 
jar and measured the probability but did not ask when the subject was sure that a change in jar 
occurred nor did they inform subjects about this possibility. Pfuhl et al. (2015) did inform 
their subjects that a change can occur and measured the probabilities but did not ask for when 
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a change occurs. In effect, they measured the response to a change but not whether a subject 
was aware of a change. In a self-monitoring task, Knoblich et al. (2004) found a reduced 
ability to detect a mismatch but not to act on it in patients with delusions. By asking for 
probability judgements as well as when they think a change in jar has occurred, one might 
also be able to dissociate acting from perceiving. The change detection version can also be 
varied by providing different probabilities of changes and asking for how certain they are that 
they have detected the change. This comes closer to measuring simultaneously a belief and 
the belief in a belief. 

These modifications may help to find out what the beads task actually measures. Three 
explanations have been put forward: The data gathering bias might be due to ignoring 
possible future outcomes (Moutoussis et al., 2011), hypersalience of evidence (Speechley et 
al., 2010), or a liberal acceptance criterion (Moritz and Woodward, 2004).  

Conclusion 
The Bayesian brain account is a general framework to explain perception and cognition. 
Variants of it have been applied to psychopathology, especially psychosis and autism (Adams 
et al., 2013, 2015, Pellicano and Burr, 2012, van de Cruys et al., 2014). The non-technical 
account presented here is based on a crucial distinction of how narrowly defined a belief is 
(its precision) and the reliability or confidence in this being a belief about the true state of the 
world. This dissociation is important to identify whether patients with delusions have a too 
precise belief, a too reliable belief or both, and what happens at which stage. This distinction 
is also important to develop tasks measuring the parameters of the account more directly. 
Nevertheless, the mechanistic account cannot explain why some abnormal beliefs are causing 
distress for some but not for other people. Indeed, delusion-prone subjects do not show a 
similarly strong bias to draw premature conclusions (data gathering bias) than do patients with 
delusions (McLean et al., 2016, Ross et al., 2015). And believers in the “New religious 
movement” show a similarly strong bias (Lim et al., 2012). Thus, the Bayesian decision 
theory is a promising tool but it needs to be extended to incorporate a distress factor. So far, a 
mechanistic model including an affective component is lacking. Finally, more emphasize 
should be given to identify differences within delusional patients. This may identify protective 
as well as risk factors of relapse. 
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Appendix 
A) Jar 1 contains white:black in a ratio of  80:20, jar 2 contains white:black in ratio 60:40 

Bead sequence: w w w b w b w w w w (favouring 80:20) 
P(jar 1) = P(jar 2) = 50%; P(white| jar 1) = 80%, P(white| jar 2) = 60% 
After first bead drawn (white bead): 
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P(jar 1| white) = P(white| jar 1)*P(jar 1) / [P(white| jar 1)*P(jar 1) + P(white| jar 2)*P(jar 2) 
P(jar 1|white) = .8*.5 / [.8*.5 + .6*5] = .4/.7 = .57 or 57%; This is the new prior for P(jar 1), noted as 
P1(jar1) and 1-P1 is new prior for P(jar2), i.e. P1(jar2) 

P(jar 1| white, white) = P(white| jar 1)*P1(jar 1) / [P(white| jar 1)*P1(jar 1) + P(white| jar 2)*P1(jar 2) 
P(jar 1|white, white) = .8 * .57 / [.8*.57 + .6*(1-.57)] = .64 or 64%; and so on 

Table 1 provides the 10 posterior probabilities 

Bead White White White Black White Black White White White white 
Jar 1 .57 .64 .70 .54 .61 .44 .51 .58 .65 .71 
Jar 2 .43 .36 .30 .46 .49 .56 .49 .42 .35 .29 

 

B) Jar 1 contains white:black:red in ratio of 70:20:10 and jar 2 contains white:black:red in ratio 
10:20:70 

Bead sequence 1: w b w r w w b w w w 
P(jar 1) = P(jar 2) = 50%; P(white| jar 1) = 70%, P(white| jar 2) = 10%, P(black| jar 1) = P(black| jar 2) 
= 20%, P(red|jar 1) = 10%, P(red|jar2) = 70% 
After first bead drawn (white bead) 
P(jar 1| white) = P(white| jar 1)*P(jar 1) / [P(white| jar 1)*P(jar 1) + P(white| jar 2)*P(jar 2) 
P(jar 1|white) = .7*.5 / [.7*.5 + .1*5] = .35/.4 = .875 or 87.5%. This is the new prior for P(jar 1), noted 
as P1(jar1) and 1-P1 is new prior for P(jar2), i.e. P1(jar2) 
P(jar 1| white, black) = P(black| jar 1)*P1(jar 1) / [P(black| jar 1)*P1(jar 1) + P(black| jar 2)*P1(jar 2) 
P(jar 1| white, black) = .2*.875 / [.2*.875 + .2*(1-.875)] = .875 (black is uninformative as it occurs 
equally in both jars) 

Bead sequence 2: b w w w r w b w w w 
After first bead drawn (black bead) 
P(jar 1| black) = P(black| jar 1)*P(jar 1) / [P(black| jar 1)*P(jar 1) + P(black| jar 2)*P(jar 2) 
P(jar 1|black) = .2*.5 / [.2*.5 + .2*5] = .1/.2 = .5 or 50%, again black is uninformative, hence the 
second draw is the first informative one: 
P(jar 1| black, white) = P(white| jar 1)*P(jar 1) / [P(white| jar 1)*P(jar 1) + P(white| jar 2)*P(jar 2) 
P(jar 1|black, white) = .7*.5 / [.7*.5 + .1*5] = .35/.4 = .875 or 87.5% 

Table 2 proves the 10 posterior probabilities for sequence 1 and 2 

Seq 1 White Black White Red white white Black White White white 
Jar 1 .875 .875 .98 .875 .98 .997 .997 .999 .999 .999 
Jar 2 .125 .125 .02 .125 .02 .003 .003 0 0 0 
Seq 2 Black White White White Red White Black White  White white 
Jar 1 .5 .875 .98 .997 .98 .997 .997 .999 .999 .999 
Jar 2 .5 .125 .02 .003 .02 .003 .003 0 0 0 
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