
CA N D .  SC I E N T .  TH E S I S  I N  PH Y S I C S

A Comparative Study of Algorithms for 
Blind Source Separation in the Instantaneous 

Linear Mixture Model

Kevin Thon

June 2007

FACULTY OF SCIENCE

Department of Physics and Technology

University of Tromsø





i

Abstract

This thesis discusses some of the many techniques for performing blind source
separation. Its focus is on the theoretical concepts that allow for the prob-
lem to be solved. It starts with presenting the EM algorithm, which is the
method underpinning many of the algorithms that are presented later in the
thesis. Some of the established methods are presented, and we proceed to de-
volop source separation algorithms based upon modelling the sources as scale
mixtures of Gaussians. Such models are particularly well suited at modelling
the super-Gaussian probability densities that characterise many real world
signals, speech being perhaps the most commom.

When evaluating the performance of the algorithms in this thesis, our
focus is mainly on the quality of separation, and discussions on computational
efficiency are mostly superficial.

We find that in particular one of the algorithms we have constructed
shows promise. Its performance is on par with existing methods, and further
examination of its properties might be in order.
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Chapter 1

Introduction

1.1 Introduction

The object of study in this thesis will be the blind source separation (BSS)
problem, where one seeks to recover some original sources from the available
observations. The blindness refers to the fact that neither the sources nor
the mixing is known. Specifically, we will concern ourselves with the basic
linear mixture model, where L unknown and statistically independent source
signals have been mixed by a unknown L′ × L matrix A to yield the L′

observations x, possibly corrupted by additive noise.

x = As + ν (1.1)

A wide range of problems can be formulated in such a manner. Typical
examples include mixtures of simultaneous speech signals that have been
recorded by several microphones, interfering radio signals arriving at a mobile
phone, and even brain waves recorded by multiple sensors. For real world
problems, the model in equation (1.1) will often be inadequate in its basic
form. The observations will typically be corrupted by propagation delays and
reverberations, and the usual way to deal with this is through a convolutive
model, defining the model as in equation (1.1), but with each element of
A representing a filter instead of a scalar. However, as shown in [16], it
is possible to perform an embedding of the observations, and reformulate
the problem within the confines of the basic linear model. The embedding
consists of replacing the observation vector x(t) = [x1(t), . . . , xL′(t)]T by a
vector x̃(t) consisting of a desired number M of time delayed versions of
every observervation, i.e.

x̃(t) = [x1(t), x1(t− 1), . . . , x1(t−M + 1), x2(t), x2(t− 1), . . . , x2(t−M + 1),

. . . , xL′(t), xL′(t− 1), . . . , xL′(t−M + 1)]T (1.2)

1



2 CHAPTER 1. INTRODUCTION

Defining s̃ similarly, a convolutive model can be written as

x̃ = Ãs̃ + ν ′ (1.3)

where the elements of the matrix Ã are the coefficients of the filters (or some
approximation of them) that describe the system, in some suitable order.

Although our focus in this thesis will be on BSS, it deserves mention that
the techniques under study are equally applicable within the framework of
analysis of multivariate data, where one seeks to decompose the data into in-
dependent components or factors, not necessarily representing actual physical
sources. As such, the techniques can can be seen as an extension of principal
component analysis and factor analysis [21].

Despite its deceptively simple problem statement, it was not until the mid
1990s that a satisfactory solution to the BSS problem was found [6][7]. Since
then a myriad of different solutions have been proposed, some general and
some highly specialised. A major part of the work on this thesis, has been
the study and implementation of some of the existing techniques. The in-
sights gained from these studies, has been applied to constructing a source
separation algorithm where the sources are modelled as scale mixtures of
Gaussians [2]. Scale mixtures of Gaussians are well suited at modelling the
super-Gaussian probability densities that characterise many real world sig-
nals, speech being perhaps the most popular example. The construction of
this algorithm is the main contribution of the thesis.

The performance of our algorithm will be compared to a selection of
existing techinques.

1.2 Structure of thesis

Part I of this thesis is concerned with the theory underlying the BSS problem.
It starts off with a chapter which is meant as an exposition of the Expectation
Maximisation (EM) algorithm. This is included since the EM algorithm
will be used for deriving the learning rules of the algorithms in chapters
4 through 6. Next, chapter 3 concerns Independent Component Analysis
(ICA), perhaps the most popular class of BSS algorithms. There does not
presently appear to be a consensus as to the presise definition of ICA, and in
many texts ICA and BSS are used interchangeably. In this thesis ICA will
simply refer to noiseless BSS.

Chapter 4 is devoted to Independent Factor Analysis, where the indepen-
dent sources are modelled as mixtures of Gaussians (MOGs). The original
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contribution of this thesis is presented in chapter 4, where we model the
sources as 1-dimensional scale mixture of Gaussians and derive a source sep-
aration algorithm for such a case.

The theory part of the thesis is concluded with a chapter about Denoising
Source Separation (DSS), a general framework for source separation built
around denoising principles.

In part II of the thesis, the algorithms that have been presented/developed
in part I, are tested on real audio signals that have been mixed artificially
and then corrupted by noise. This will include a discussion around the per-
formance of the algorithms.
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Chapter 2

The Expectation-Maximisation
Algorithm

2.1 Introduction

An expectation-maximisation (EM) algorithm is an algorithm for finding
maximum likelihood estimates of incomplete data, originally proposed by
Dempster et. al. [8]. Typically, EM is used when finding the maximum like-
lihood estimator of parameter vector θ based on only the observed data Y
is difficult. In many applications it is possible to augment the the observed
data Y with additional data Z such that the augmented likelihood L(θ|Y, Z)
is easier to maximize. EM proceeds by performing an expectation (E) step,
which computes an expectation of the augmented likelihood by including
the latent variables Z as if they were observed, and a maximisation (M)
step, which computes the maximum likelihood estimates of the parameters
by maximizing the expected likelihood found on the E step. The parameters
found on the M step are then used to begin another E step, and the process is
repeated until convergence. In this presentation of the algorithm, I will start
by presenting a proof of Jensen’s inequality (to be defined), since this inequal-
ity is used both in proving that the EM algorithm increases the likelihood,
and later in chapter 4 to show that the complete data likelihood is bounded
from below by a chosen error function. I will then proceed to develop the
EM algorithm, before briefly discussing its convergence properties.

2.2 Jensen’s Inequality

Before stating and proving Jensen’s Inequality, it is necessary to define what
is meant by a convex and concave function. Specifically we will need to

7



8 CHAPTER 2. THE EXPECTATION-MAXIMISATION ALGORITHM

demonstrate that the natural logarithm is a concave function, so I will print
without proof a theorem to aid us in this task. (The proof is straightforward,
and of no particular interest to us.)

Definition 1 Let f be a real valued function defined on an interval I =
[a, b].f is said to be convex on I if ∀x1, x2 ∈ I, λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

f is said to be strictly convex if the inequality is strict.

Definition 2 f is concave (strictly concave) if −f is convex (strictly con-
vex).

Theorem 1 If f(x) is twice differentiable on [a, b] and f ′′(x) ≥ 0 on [a, b]
then f(x) is convex on [a, b].

With these definitions, and the above theorem in place, it is easy to prove
that the natural logarithm is a concave function:

Proposition 1 -log (x) is strictly convex and log (x) strictly concave on (0,
∞)

Proof : With f(x) = -log (x), we have f ′′(x) = 1
x2 > 0 for x ∈ (0,∞).

By theorem (1), -log (x) is strictly convex on (0,∞). Also, by definition (2)
log (x) is strictly concave on (0,∞).

�

Jensen’s inequality expands the notion of convexity to n points.

Theorem 2 (Jensen’s inequality) Let f be a convex function defined on
an interval I. If x1, x2, . . . , xn ∈ I and λ1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1,

then

f (
∑n

i=1 λixi) ≤
∑n

i=1 λif(xi)

Proof : For n = 1, λ would have to equal 1, and the result follows. For
n = 2 the result follows from the definition of convexity. To demonstrate
that the theorem is valid for all natural numbers, we apply an induction
argument. Assume that the theorem is true for some n. We then need to
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prove that it is true for n + 1. At least one of the λi is strictly positive, say
λn+1. Then,

f

(
n+1∑
i=1

λixi

)
= f

(
λn+1xn+1 +

n∑
i=1

λixi

)

= f

(
λn+1xn+1 + (1− λn+1)

1

1− λn+1

n∑
i=1

λixi

)

≤ λn+1f(xn+1) + (1− λn+1)f

(
1

1− λn+1

n∑
i=1

λixi

)

= λn+1f(xn+1) + (1− λn+1)f

(
n∑

i=1

λi

1− λn+1

xi

)

≤ λn+1f(xn+1) + (1− λn+1)
n∑

i=1

λi

1− λn+1

f(xi)

= λn+1f(xn+1) +
n∑

i=1

λif(xi)

=
n+1∑
i=1

λif(xi)

where the first inequality follows from the definition of convexity, and the
second from the induction hypothesis, which can be used since

∑n
i=1

λi

1−λn+1
=

1.

�

Corollary: Let X be an integrable real-valued random variable and ϕ a
measurable convex function. Then:

ϕ (E [X]) ≤ E [ϕ(X)]

The proof of the corollary follows immediately for the discrete case. Simply
let λi = P (Xi) and sum over all the entire sample space of X and the result
follows. The proof for continuous X is slightly more elaborate and will be
omitted.

2.3 Developing the EM Algorithm

As stated in the introduction to this chapter, the goal of the EM algorithm
is to find maximum likelihood estimates of θ from incomplete data Y . That
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is, we wish to find θ such that the likelihood P (Y |θ) is a maximum. Y is
here a random vector, whose distribution is parameterized by θ. It is often
convenient to work with the log likelihood function which is given by

L(θ) = log P (Y |θ)

Since the natural logarithm is a strictly increasing function, the value of θ
that maximizes L(θ) also maximizes P (Y |θ).
The EM Algorithm is an iterative procedure for maximizing L(θ). Hence,
we are interested in at each iteration finding an improved estimate of θ given
the current estimate θn calculated in the previous iteration. That is, we wish
to find an updated estimate θ such that,

L(θ) > L(θn)

Stated in a slightly different way, we wish to find a positive difference

L(θ)− L(θn) = log P (Y |θ)− log P (Y |θn) (2.1)

We seek in the EM algorithm a method for including unobserved or missing
variables Z. Noting that the total probability P (Y |θ) can be written

P (Y |θ) =
∑

Z

P (Y, Z|θ) =
∑

Z

P (Y |Z, θ)P (Z|θ)

we can rewrite equation (2.1) as

L(θ)− L(θn) = log

(∑
Z

P (Y |Z, θ)P (Z|θ)

)
− log P (Y |θn)

= log

(∑
Z

P (Y |Z, θ)P (Z|θ) · P (Z|Y, θn)

P (Z|Y, θn)

)
− log P (Y |θn)

= log

(∑
Z

P (Z|Y, θn)
P (Y |Z, θ)P (Z|θ)

P (Z|Y, θn)

)
− log P (Y |θn)

≥
∑

Z

P (Z|Y, θn) log

(
P (Y |Z, θ)P (Z|θ)

P (Z|Y, θn)

)
− log P (Y |θn)

=
∑

Z

P (Z|Y, θn) log

(
P (Y |Z, θ)P (Z|θ)

P (Z|Y, θn)P (Y |θn)

)
=
∑

Z

P (Z|Y, θn) log

(
P (Y, Z|θ)
P (Y, Z|θn)

)
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, ∆(θ|θn) (2.2)

where we have used Jensen’s inequality when moving the logarithm into the
sum. This is valid because, being a probability measure, P (Z|Y, θn) ≥ 0 and∑

Z P (Z|Y, θn) = 1. Also, log P (Y |θn) =
∑

Z P (Z|Y, θn) log P (Y |θn), so we
are justified in moving the term into the summation.
We now define the quantity

l(θ|θn) , L(θn) + ∆(θ|θn) (2.3)

so, from equation (2.2)
L(θ) ≥ l(θ|θn) (2.4)

Consequently, l(θ|θn) is bounded from above by the likelihood function L(θ).
Furthermore we have from equation (2.2) that

l(θn|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑

Z

P (Z|Y, θn) log

(
P (Y, Z|θn)

P (Y, Z|θn)

)
= L(θn) +

∑
Z

P (Z|Y, θn) log 1

= L(θn) (2.5)

Our overall objective is still to find the values of θ that maximize L(θ).
We have now found a function l(θ|θn) which is bounded above by L(θ), and
which is equal to L(θ) at the current estimate θn. Consequently, any θ that
increases l(θ|θn) will necessarily increase L(θ). The EM algorithm proceeds
by choosing the θ that maximizes l(θ|θn) as the updated estimate θn+1. This
is illustrated for a scalar θ in figure (2.1). Note that while the curve for
L(θ) will be the same for every iteration of the algorithm, there will be a
new realization of l for each new iteration. Considering the next iteration
in figure (2.1), the curve for l(θ|θn+1) will be such that l(θ|θn+1) is equal
to L(θn+1). From the reasoning above, each iteration of the EM algorithm
will consist of updating our estimate for θ based on the current estimate θn,
yielding:

θn+1 = arg max
θ
{l(θ|θn)}

= arg max
θ

{∑
Z

P (Z|Y, θn) log

(
P (Y, Z|θ)
P (Y, Z|θn)

)}
Dropping the terms that are constant w. r. t. θ:

= arg max
θ

{∑
Z

P (Z|Y, θn) log (P (Y, Z|θ))

}
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θn

L( θ)

θn

θn

θn θn

L( θ)

θ|θn)l(

θ|θn)l(

L( ) = l(

l(

L( )

| )

| )

θ
θn+1

θn+1

θn+1

Figure 2.1: Illustration of a single iteration of the EM algorithm

= arg max
θ

{
EZ|Y,θn [log P (Y, Z|θ)]

}
(2.6)

We have arrived at an algorithm that has traded the direct maximisation of
L(θ) for the maximisation of l(θ|θn). The usefulness of such an approach lies
in the fact that l(θ|θn) takes into account the missing or unobserved data or
variables Z. In problems where we also wish to estimate these variables, the
EM algorithm thus provides a framework for doing so. Furthermore, there
are situations where their introduction greatly simplifies the maximisation
of L(θ). There may for example be situations where the direct maximisation
of L(θ) is not feasible, whereas l(θ|θn) can be made an analytically tractable
function with an appropriate choice of Z.

The EM algorithm is summed up in the following section. The algorithm
is just as applicable for the case of continuous random variables. To stress
this, I will therefore use the continuous form.

2.4 Specification of the EM procedure

Let θ denote the quantity we wish to estimate, and let Y and Z be the
observed and unobserved data, respectively. Then, given the current estimate
θn of θ, define the function

l(θ, θn) = EZ|Y,θn [log L(θ|Y, Z)] = EZ|Y,θn [log P (Y, Z|θ)] (2.7)

The algorithm then takes the form:
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1. The E-Step: Calculation of l(θ|θn)
2. The M-Step: Maximisation of l(θ|θn) with respect to θ

Implicit within the E-step is the estimation of the augmented data with
respect to the current model estimate and the observed data Y . This esti-
mation simply involves taking expectations with respect to the current model
(conditional on the observed data).

In the preceding section I gave a slightly intuitive argument that EM
always increases the likelihood L(θ|Y ). A more formal proof can be given by
utilizing the following inequality which holds for all densities f and g by a
reformulation of Jensen’s inequality:

Eg

[
log

f(Y )

g(Y )

]
6 0 (2.8)

Letting f be P (Z|θn+1, Y ) and g be P (Z|θn, Y ), we get the following relation∫
Z

log

(
P (Z|θn+1, Y )

P (Z|θn, Y )

)
P (Z|θn, Y ) dZ 6 0 (2.9)

The M-step of the EM algorithm consists of maximizing l(θ, θn) with re-
gard to θ. The value of θ which maximizes l(θ, θn) is denoted θn+1). Hence
l(θn+1, θn) > l(θn, θn), so∫

Z

log(L(θn+1|Y, Z)P (Z|θn, Y ) dZ >
∫

Z

log(L(θn|Y, Z)P (Z|θn, Y ) dZ

⇓∫
Z

log

(
P (Y, Z|θn+1)

P (Y, Z|θn)

)
P (Z|θn, Y ) dZ > 0 (2.10)

Subtracting (2.9) from (2.10), we find∫
Z

log

(
P (Y, Z|θn+1)

P (Y, Z|θn)

P (Z|θn, Y )

P (Z|θn+1, Y )

)
P (Z|θn, Y ) dZ > 0

⇓∫
Z

log

(
P (Z|θn+1, Y )P (Y |θn+1)

P (Z|θn+1, Y )

P (Z|θn, Y )

P (Z|θn, Y )P (Y |θn)

)
P (Z|θn, Y ) dZ > 0

⇓∫
Z

log

(
P (Y |θn+1

P (Y |θn)

)
P (Z|θn, Y ) dZ > 0



14 CHAPTER 2. THE EXPECTATION-MAXIMISATION ALGORITHM

L( θ)

θ|θn)l(

θn θn+1

L( θ)
θ|θn)l(

θn θn θnL( ) = l( )|

L( )θn+1 θnl( | )θn+1

θ

=

l(θ|θn+1)

Figure 2.2: Illustration of a case where the EM algorithm converges to a
saddle point of L(θ)

Since the terms within the logarithm do not depend on Z, the above equation
reduces to

log P (Y |θn+1) > log P (Y |θn) (2.11)

which shows that the likelihood is nondecreasing for each step in the EM
algorithm. When the algorithm reaches a fixed point for some θn, the value
θn maximizes l(θ|θn). Since l and L are equal at θn if l and L are differentiable
at θn, then θn must be a stationary point of L. However, the stationary point
need not be a local maximum. It is possible for the algorithm to converge
to a local minimum or a saddle point in unusual cases. This situation is
illustrated in figure (2.2) for a scalar θ. It is only for a unimodal L(θ) that
convergence is guaranteed.

2.5 The Generalized EM Algorithm

The Generalized EM Algorithm (GEM) is a variant of the EM Algorithm
where, instead of choosing the value of θ that maximizes l(θ|θn) as the up-
dated value θn+1, one is content with choosing θn+1 such that l(θn+1|θn) ≥
l(θn|θn). This approach can be useful when maximisation is difficult. In some
cases the GEM algorithms may even converge faster than the standard EM
formulation.



Chapter 3

Independent Component
Analysis

3.1 Introduction

Independent Component Analysis (ICA) is, as its name implies, a tech-
nique for finding underlying components or factors from multivariate sta-
tistical data. There are a multitude of different techniques that are proud
to march under the banner of ICA, and what is common for all of them is
that they search for components that are both statistically independent and
non-Gaussian.

What became known as ICA was first introduced in the early 1980s by
J. Hérault, C. Jutten and B. Ans [15] [19], but it was not until the mid
1990s that the technique received widespread attention, especially after A.
J. Bell and T. J. Sejnowski published their work on an infomax approach to
the problem [6]. Since then a wide range of different approaches have been
proposed, and connections have been established between the statistical op-
timization criteria guiding the different techniques. An important advance
was made by S. Amari [1] (and independently by J. Cardoso [7] from a differ-
ent starting point), when he showed that in the space of nonsingular square
matrices the natural gradient gave the direction of steepest descent of a cho-
sen error function. The development of a fixed-point algorithm, FastICA, by
A. Hyvärinen and J. Karhunen [17] has since contributed to the use of ICA
to large-scale problems due to its computational efficiency.

ICA has found use in a wide variety of applications. It is well suited as
a tool for feature extraction, and it is well established as a technique within

15
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the brain imaging community. Also within the field of telecommunications
ICA has proven itself useful.

In this by no means exhaustive presentation of ICA, I will focus on some
of the main results and will to a large extent follow the lead given in the
excellent textbook by A. Hyvärinen et. al. [16]

3.2 The Basic Model

ICA in its simplest form, is a instantaneous linear mixing model, where we
assume that N statistically independent signals si have been mixed by the
N ×N mixing matrix A to form the N mixtures xi:

x = As (3.1)

Here x(t) = [x1, . . . , xN ]T and s = [s1, . . . , sN ]T . Both xi and si will be un-
derstood as random variables, making x and s multivariate random variables.
Now, denoting the columns of A by ai we may write:

x =
N∑

i=1

aisi (3.2)

In addition to the independence of the signals si we need to impose the
restriction that at most one of the independent signals has a Gaussian distri-
bution. For the purpose of simplicity it will also be assumed that the mixing
matrix is square and invertible. While this is not strictly necessary for the
identifiability of the model, it simplifies the situation considerably, since the
task of ICA can now be formulated as estimating the mixing matrix A, and
obtaining the independent components as s = A−1x.

Inherent in the ICA model are the following two ambiguities.

1. The variances of the independent components cannot be determined.
This is readily seen from the form in equation (3.2). Scaling of the
sources by multiplication of a scalar αi can always be cancelled by
dividing the corresponding column in A by the same scalar,

x =
N∑

i=1

(
1

αi

ai)(αisi) (3.3)

since neither the mixing matrix nor the signals are known. The inde-
pendent components will therefore be assumed to have unit variance,
var [s2

i ] = 1.
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2. The order of the independent components cannot be determined.

Again this follows from the fact that both s and A are unknown. Hence
rearranging the order of of the components can be cancelled by a suit-
able rearrangement of A. Letting P denote a permutation matrix and
P−1 its inverse, we find that x = AP−1Ps. Ps consists of the elements
si of s but in a different order, and the matrix AP−1 is simply a new
unknown mixing matrix to be estimated.

Finally, it will also be assumed that both the mixture variables and the
independent components have zero mean. This can be done without loss
of generality, since we always can center the observed variables, say x′, by
subtracting their mean

x = x′ − E[x′] (3.4)

before doing ICA, thus also making the independent variables zero mean,
since

E[s] = A−1E[x] (3.5)

This does not affect the mixing matrix, so after having estimated A for the
zero mean data, the original independent components can be reconstructed
by adding A−1E[x′] to the zero mean independent components.

3.3 Preprocessing

Apart from the previously mentioned centering of the observations, there are
a few other preprocessing steps that can be usefull. A common one for many
ICA algorithms is to whiten or sphere the data.

3.3.1 Whitening

A zero mean random vector z = [z1 . . . zN ]T is said to be white if its elements
zi are uncorrelated and have unit variances:

E[zzT ] = I

In other words, to whiten, we seek a linear transformation matrix V of the
data x such that the transformed data

z = Vx

is white. Perhaps the most popular method for achieving this is through
eigenvalue decomposition of the covariance matrix E[xxT ] = EDET , where
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E is the orthogonal matrix of eigenvectors of E[xxT ] and D is the diag-
onal matrix with the corresponding eigenvalues along the diagonal, D =
diag(d1, . . . , dN). Whitening is now performed by V = ED−1/2ET

z = Vx = ED− 1
2ETx

where D−1/2 = diag(d
−1/2
1 , . . . , d

−1/2
N ). That this transformation indeed pro-

duces whitened data is easily verified from

E[zzT ] = VE[xxT ]VT =
(
ED− 1

2ET
) (

EDET
) (

ED− 1
2ET

)
= ED− 1

2DD− 1
2ET = I

It must be noted that this whitening matrix is by no means unique. In fact,
multiplying a whitening matrix V by any orthogonal matrix U will produce
another whitening matrix, as seen by

E[zzT ] = UVE[xxT ]VTUT = UIUT = I

Having performed whitening of the data, the task of ICA can now be viewed
as finding the modified matrix Ã = ED−1/2ETA given the whitened z, since

z = ED−1/2ETx = ED−1/2ETAs = Ãs

The usefulness of this lies in the fact that we can now restrict our search for
mixing matrixes to orthogonal matrixes. Since the si are independent and
with unit variance

E[zzT ] = ÃE[ssT ]ÃT = ÃÃT = I

Consequently the number of parameters to be estimated is greatly reduced,
since instead of having to estimate the n2 parameters that are the elements
of the original matrix A, we need only find the orthogonal matrix Ã. An
n × n orthogonal matrix has n(n − 1)/2 degrees of freedom, so the number
of parameters to be estimated is more than halved.

Concluding this section on whitening, the connection between whitening
and Principal Component Analysis (PCA) is interesting to note. Firstly,
PCA techniques are often used to find the eigenvectors and eigenvalues
needed to do the whitening. Furthermore, PCA is commonly used to per-
form a dimension reduction when the number of observations is large. This
is done through the standard technique of setting a limit below which the
eigenvalues, and hence the principal components, are deemed insignificantly
small and are hence disregarded. It is assumed that the reader is familiar
with PCA, so the details of the process are omitted. For a overview of PCA
see e.g. [16].
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3.3.2 Further Preprocessing

For noisy data some filtering may be desirable. It turns out that linear
filtering of the sensor signals xi(t) does not influence the ICA model. Letting
X be a matrix having the observations x(1), . . . ,x(N) as its columns, and
letting X̃ be its filtered version, the ICA model can now be represented as

X = AS

where S is a matrix consisting of the sources. Any linear filtering of X can
be representet as a multiplication from the right by a filtering matrix F.
Accordingly

X̃ = XF = ASF = AS̃

so we see that the model still holds, with the same mixing matrix A. In fact
we retrieve a filtered version of the original sources.

3.4 The Natural Gradient

Before proceeding to present some of the techniques used to perform ICA,
a few words about the optimization methods are warrented. Common to all
methods of performing ICA is that they proceed by optimizing some objec-
tive function. This is normally performed by gradient techniques, attempting
to increment the solution in the direction of steepest descent/ascent. In a
Euclidian orthogonal coordinate system, the gradient indeed gives the direc-
tion of steepest descent, but as Amari [1] makes clear, the parameter space
where the optimization takes place in ICA, is that of nonsingular square ma-
trixes, of dimesion say n × n. This space is not Euclidian, but rather has a
Riemannian structure which leads to the calculation of what has been termed
the natural gradient, to give the direction of steepest descent in such a space.

Now, in an optimization scheme for minimizing an objective function
J , we wish to find the direction for a small increment δW such that the
value J (W + δW) is minimized. W represents the point at the current
iteration. We further require that the squared norm ‖δW‖2 is constant,
hence constraining the length of the step to be constant. The squared norm
is defined as a weighed matrix inner product

‖δW‖2 = 〈δW, δW〉W

such that

〈δW, δW〉I =
n∑

i,j=1

(δwij)
2 = Tr[δWT δW]
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In [18] Amari makes the case that because of the Riemannian structure of
the matrix space, the following invariance should apply to this inner product:

〈δW, δW〉W = 〈δWM, δWM〉WM

for any matrix M. Putting M = W−1, gives

〈δW, δW〉W = 〈δWW−1, δWW−1〉I = Tr[(WT )−1δWT δWW−1]

Now, keeping the inner product thus defined constant, Amari showed that the
largest increment in J (W + δW) is in the direction of the natural gradient,
as defined by:

∂J
∂Wnat

=
∂J
∂W

WTW (3.6)

The natural gradient, as will become apparrant in the subsequent sections,
not only gives the direction of steepest descent, but actually reduces the
amount of calculations necessary to compute the update in many optimiza-
tion schemes, since it renders unnecessary the calculation of inverses.

3.5 ICA by Maximisation of Non-Gaussianity

Maximation of non-Gaussianity is an intuitively pleasing method for doing
ICA. The basic thought is that any mixing of signals will produce an output
which is more Gaussian than the original signals, and hence the objective in
achieving separation should be to maximize non-Gaussianity. Justification of
this can be found in the Central Limit Theorem, which states that the distri-
bution of a sum of independent random variables tends towards a Gaussian
distribution.

From equation (3.1), it is obvious that the independent components can
be written in terms of the observations as

s = A−1x (3.7)

Estimating an independent component can thus be seen as the search for
an appropriate linear combination of the observations, which we will denote
y = bTx, where b is a vector to be determined. This may of course be written
in terms of the sources as y = bTAs. Accordingly, y is a linear combination
of the si, with coefficients given by qT = bTA, so

y = bTx = qT s =
∑

i

qisi (3.8)
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The goal of ICA can be stated as finding b such that y equals one of the
sources. This is obviously achieved with b equal to a row in the inverse of A,
making q a vector with one of its elements equal to one, and the rest equal
to zero.
Regarding now the distribution of y = qT s, the basic idea for achieving
separation, is that the sum of independent variables will be more Gaussian
than the original variables. Hence y will be maximally non-Gaussian when
q is a vector of zeros and a single 1, corresponding to y being equal to one of
the sources. Accordingly, the goal should be to look for the b that maximises
the non-Gaussianity of y = bTx.

3.5.1 Measures of Non-Gaussianity

Having justified the maximisation of non-Gaussianity as a reasonable course
of action for performing ICA, we now need to look at some quantative mea-
sures of non-Gaussianity. The perhaps most common measure in this respect
is the kurtosis

Kurtosis For a zero mean random variable y, kurtosis is defined as

kurt(y) = E[y4]− 3(E[y2])2 (3.9)

Assuming that y has been normalized such that its variance is equal to one,
(3.9) may be simplified further to E[y4]−3. For a Gaussian random variable
kurtosis is equal to zero, whilst for most non-Gaussian variables it is nonzero.
Kurtosis can be both positive and negative. Random variables that have a
negative kurtosis are called sub-Gaussian, and those with positive kurtosis
are called super-Gaussian. Super-Gaussian random variables will typically
have a sharply peaked probability density function (pdf) with heavy tails,
whilst the pdf of a sub-Gaussian random variable will typically be flat, in the
sense that it is rather constant for some band near zero and drops sharply
to near zero for larger values.

Kurtosis is a perfectly viable measure of non-Gaussianity, and could be
used as a basis of developing algorithms for performing ICA (as indeed has
been done, see e.g. [27]). However, there are some practical drawbacks to
using kurtosis stemming from the fact that, in any practical implementa-
tion, it has to be estimated from a measured sample. The main problem is
that moment based estimates of kurtosis are extremely sensitive to outliers,
meaning that a single large (possibly erroneous) value will greatly affect the
estimate. This lack of robustness leads us to consider another measure og
non-Gaussianity, namely negentropy.
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Negentropy This is an information theoretic measure, based on the con-
cept of differential entropy. Stated simply, the (differential) entropy of a
random variable is related to the amount of information that the observation
of the variable gives. The more random a variable is, the larger the entropy.
For a more comprehensive overview of information theoretic concepts see e.g.
[14] or [16]. Formally, the entropy H of a random variable is defined as:

H(y) = −
∫

py(η) log py(η) dη (3.10)

Of all random variables of equal variance, it turns out that a Gaussian vari-
able has the largest entropy. Accordingly the negentropy J of a random
variable y, which is defined as

J(y) = H(ygauss)−H(y) (3.11)

will be nonnegative, and zero only if y has a Gaussian distribution. ygauss is
a Gaussian random variable with the same covariance matrix as y.
The superiority of negentropy as a measure of non-Gaussianity is argued for
convincingly in [16], and here we will content ourselves with presenting the
estimators of negentropy used in aforementioned reference. Here negentropy
is approximated as

J(y) ∝ [E[G(y)]− E[G(ν)]]2 (3.12)

where ν is a Gaussian variable of zero mean and unit variance, and G can be
practically any nonquadratic function, chosen so as to give robust estimators.
This entails choosing a G that does not grow to fast, and the following two
choises of G are suggested:

G1(y) =
1

a1

log cosh aiy (3.13)

G2(y) = − exp(−y2/2) (3.14)

3.5.2 A Fixed Point Algorithm

In this section it will be shown how a fixed point algorithm (to be defined)
can be used to perform ICA. It will be assumed throughout that the observa-
tions have been centered and whitened. The starting point will be a standard
gradient technique.

As argued in the introduction to section 3.5, our goal is to find the linear
conbination of the observations that maximises non-Gaussianity, that is, the
w that maximises the non-Gaussianity of wTx. Since, by assumption x is
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white, we can immediately see that E[wTx] = ‖w‖2. Since we desire the
separated components to have unit variance, this expectation must equal
unity (see section (3.3.1)). Accordingly, we have a constrained optimisation
problem, of maximising equation (3.12) w.r.t. w under the constraint that
‖w‖2 = 1.

Now, taking the gradient of the approximation of negentropy in (3.12),
yields the following algorithm

∆w ∝ γE[xg(wTx)] (3.15)

w← w/‖w‖ (3.16)

where γ = E[G(y)]− E[G(ν)], ν still being a standardized gaussian random
variable. g is the derivative of G. The normalization ensures that the con-
straint ‖w‖ = 1 is fulfilled.

It is of possible to use this algortihm to obtain the independent compo-
nents, but a more effective way is by performing fixed point iteration. A fixed
point x of a function f is a point where f(x) = x. Fixed point iteration is a
method for finding stable fixed points, which starts with an initial value x0,
and iterates to find xn+1 = f(xn). To derive a fixed point iteration scheme for
our problem, note that at a stable point of the gradient algorithm for finding
w, the gradient must point in the direction of w. In other words the gradient
must equal w multiplied by some scalar constant. This is evident from the
fact that when converged, then adding the gradient to w does not change its
direction. After normalisation the gradient will actually be equal to w (with
a possible and irrelevant change of sign). Hence a natural candidate for fixed
point iteration is

w← E[xg(wTx)] (3.17)

In [16] however, they find that updating w as

w← E
[
xg(wTx)− E[g′(wTx]

]
(3.18)

has vastly improved convergence properties, and this is the update used in
the FastICA package, which is of interest in this thesis. Equation (3.18) is
arrived at by noting that one can add w multiplied by some constant α to
both sides of equation (3.17) without changing the fixed points. They then
proceed by finding the update in terms of w by way of Newton’s method,
using some approximations.

So far we have showed how to find one independent component (IC).
To find further ICs we utilize the fact that the vectors wi corresponding to
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different ICs, are orthogonal. Thus, to estimate several ICs, we need to run
the one-unit algorithm several times, and for each new wi being iterated on,
ensure that it is orthogonal to the previously found w. This is easily achieved
using the Gram-Schmidt method (see e.g. [24]). Finally, to conclude this
chapter, the FastICA algorithm can be summed up neatly in the following
table from [16]:

1. Center the data to make its mean zero

2. Whiten the data

3. Choose m, the number of ICs to estimate. Set counter p← 1

4. Choose an initial (random) value of unit norm for wp.

5. Let wp ← E
[
xg(wTx)− E[g′(wTx]

]
6. Do the following orthogonalisation:

wp ← wp −
p−1∑
j=1

(wT
p wj)wj (3.19)

7. Let wp ← wp/‖w‖.

8. If wp has not converged, go back to step 5.

9. Set p← p + 1. If p ≤ m, go back to step 4.

3.6 The Maximum Likelihood Approach

The well known maximum likelihood (ML) method has been applied suc-
cessfully in the ICA problem. While providing an elegant solution to ICA, a
drawback with the technique is that it requires some knowledge or assump-
tions of the probability densities of the independent components. It turns
out, however, that approximation of the densities can be done by a family of
densities that are spesified by a limited number of parameters.

3.6.1 The likelihood function

Given the ICA model in equation (3.1) it is a well known result from prob-
ability theory (see e.g. [16]) that the density of this linear transformation is
given by

px(x) =
1

|A|
ps(A

−1x) (3.20)
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Denoting the inverse of the mixing matrix as W = A−1 and letting pi denote
the density of the ith independent component, we may write

px(x) = |W|
∏

i

pi(w
T
i x) (3.21)

where wi is the ith row of W. Now assuming we have T observations of x
which we denote by x(1), . . . ,x(T ), then the likelihood is given by

L(W) =
T∏

t=1

px(x(t)) =
T∏

t=1

N∏
i=1

pi(w
T
i x(t))|W| (3.22)

where we have made the standard assumption that the observations at any
two different time instances are independent of each other. Finally, denoting
the log-likelihood l(W), we find that

l(W) =
T∑

t=1

N∑
i=1

log pi(w
T
i x(t)) + T log |W| (3.23)

which may be rewritten

1

T
l(W) = E

[
N∑

i=1

log pi(w
T
i x(t))

]
+ log |W| (3.24)

where E[·] here denotes the sample average. Before using this expression in
an ICA scheme, some assumptions need to be made on the densities.

3.6.2 Estimation of the Densities

As shown in [16] it suffices to use only two approximations of the density
of an independent component, one for supergaussian densities and one for
subgaussian densities. The justification of this comes from the following
theorem also from [16]:

Theorem 3 Denote by p̃i the assumed densities of the independent compo-
nents, and

gi(si) =
∂

∂si

log p̃i(si) =
p̃′i(si)

p̃i(si)
(3.25)

Constrain the estimates of the independent components yi = wT
i x to be un-

correlated and to have unit variance. Then the ML estimator is locally con-
sistent, if the assumed densities p̃i fulfill

E[sigi(si)− g′(si)] > 0 (3.26)

for all i.
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This theorem tells us that small misspecifications in the densities p̃i do not af-
fect the local consistency of the ML estimator, since sufficiently small changes
do not change the sign in equation (3.26). Also the theorem aids us in the
construction of the two densities needed. Simply choose two densities such
that the condition in theorem 3 is always fulfilled for only one of them. As
an example, consider the following log-densities:

log p̃+
i = α1 − 2 log cosh(s) (3.27)

log p̃−i = α2 − [s2/2− log cosh(s)] (3.28)

where α1, α2 are normalizing parameters that ensure that p̃+
i and p̃−i are

probability densities. Here p̃+
i represents a super-Gaussian density, and p̃−i a

sub-Gaussian density. Inserted into equation (3.26) we find for p̃+
i

2E[− tanh(si)si + (1− tanh(si)
2)] (3.29)

and for p̃−i
E[tanh(si)si + (1− tanh(si)

2)] (3.30)

Clearly the signs of these expressions are always opposite (except when both
equal zero), so for practically any distribution of the si, one of these distribu-
tions fulfill the condition in theorem 3. Hence, in a practical implementation,
one can estimate the densities of the sources as being either p̃+

i or p̃−i .

3.6.3 A Gradient Algorithm

The obvious method for maximizing the likelihood is by a gradient method.
Computing the gradient of (3.24) yields the following expression:

1

T

∂l

∂W
= [WT ]−1 + E[g(Wx)xT ] (3.31)

where g(y) = (gi(yi), . . . , gN(yN)) is a component-wise vector function that
consists of the score functions gi of the distributions of si, defined as

gi = (log pi)
′ =

p′i
pi

(3.32)

This immediately gives rise to the following update for the de-mixing matrix
W:

∆W ∝ [WT ]−1 + E[g(Wx)xT ] (3.33)

Now, remembering that the direction of steepest descent is given by the
natural gradient, this algorithm may be modified using equation (3.6), to
yield

∆W ∝ (I + E[g(Wx)xT ])W (3.34)
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Here the benefit of using the natural gradient becomes clear. While calcula-
tion of the standard gradient requires the calculation of the inverse matrix
at each update, this is avoided when using the natural gradient. In addition,
of course, comes the faster convergence.

To complete the spesification of the algorithm, one must choose two den-
sities, one representing super-Gaussian sources and one representing sub-
Gaussian. Here we choose the densities from equations (3.27) and (3.28),
giving us the following score functions:

g+(y) = −2 tanh(y) (3.35)

g−(y) = tanh(y)− y (3.36)

To decide which of the two nonlinearities in (3.35) and (3.36) to use, one can
calculate the expectation

E[− tanh(si)si + (1− tanh(si)
2)] (3.37)

If this is positive, then use (3.35), otherwise use (3.36). The expectation
must of course be calculated using the estimate of the sources available at
the current iteration. The ML approach to ICA may finally be summed up
in the following points:

1. Center and whiten the data

2. Choose an initial separating matrix W, and choose initial values of
γi, i = 1, . . . , N , either randomly or using prior information. Set the
learning rates µ and µγ.

3. Compute y = Wx

4. If the nonlinearities are not fixed a priori

(a) update γi = (1− µγ)γi + µγE[− tanh(yi)yi + (1− tanh(yi)
2)].

(b) if γi > 0, define gi as in (3.35), otherwise define it as in (3.36).

5. Update the separating matrix by

W←W + µ(I + E[g(Wx)xT ])W (3.38)

where g(y) = (gi(yi), . . . , gN(yN))T .

6. If not converged, go back to step 3.
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3.7 Other Methods

In this presentation we have focused on two common techniques for perform-
ing ICA. It must be noted however, that there exist a vast number of other
approaches to the problem. Indeed, the techniques presented in the following
chapters, can readily be seen as falling under the ICA umbrella.

Of the methods not mentioned in this thesis, perhaps the most popular
is ICA by minimisation of mutual information. This technique is appeal-
ing, since mutual information is a natural information-theoretic measure of
dependence, and hence its minimisation is a natural objective for achieving
separation. Also it is a usefull framework for comparison of the various ICA
methods (see e.g. [22]).

In short, the field of ICA is large and growing. Among the main challenges
is the development of ICA scemes that take into account the presence of
additive noise. The techniques presented i the following chapters are an
attempt at achieving this.



Chapter 4

Independent Factor Analysis

4.1 Introduction

Independent factor analysis (IFA) is yet another method for recovering inde-
pendent sources from their observed mixtures. The method was proposed by
H. Attias in his article Independent Factor Analysis [4]. Its starting point is
the standard linear mixing model, but in contrast with standard ICA meth-
ods, the noise is explicitly taken into account through estimation of the noise
covariance. As its name implies, IFA can be reduced to either factor analysis
(FA), principal component analysis (PCA ) or ICA: When the sources are
Gaussian, IFA performs ordinary FA, whilst in the zero-noise limit standard
IFA reduces to an EM algorithm for PCA. A separate EM algorithm has
therefore been derived for the zero noise case, which basically performs ICA
with the nonlinearity in the learning rule for the separating matrix being a
sum of the state posteriors, scaled by the data and the model parameters.

The IFA algorithm consists of two separate stages. In the first stage
an EM algorithm is employed to perform unsupervised learning of both the
mixing matrix and the parameters of the probabilistic model describing the
noise and the signals being mixed. The sources are modeled as a mixture of
Gaussians, allowing all the probabilistic calculations to be performed analyt-
ically. The second stage is the reconstruction of the sources by an optimal
nonlinear estimator, in practise a Least Mean Square (LMS) or Maximum A
posteriori (MAP) estimate, based on the data and the parameters learned in
the first stage.

Besides the blind separation application, IFA has been proposed for mod-
eling multidimensional data by a highly constrained mixture of Gaussians and

29
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as a tool for nonlinear signal encoding.

4.2 The Model

The basic model we are considering is again the case of L independent sig-
nals s being mixed linearly by A (not necessarily square) and corrupted by
additive noise ν, producing the L′ mixtures x. s are referred to as the source
signals and x the sensor signals.

x = As + ν (4.1)

We are interested in finding an expression for the probability density of
the sensor signals p(x). To do so we model the sources xi as L independent
random variables with arbitrary distributions p(xi|θ), where θi is the pa-
rameter set parameterising the ith source density. Furthermore we assume
that the noise is Gaussian with zero mean and covariance matrix Λ. Λ is
not necessarily a diagonal matrix, thus allowing correlations between sen-
sors. Such correlations may be present due to source noise or propagation
noise.Therefore,

p(ν) = N (0,Λ) (4.2)

The model sensor densities can be written in terms of the source densities
and their parameters, in addition to the mixing matrix A and the noise
covariance Λ. These terms will henceforth be referred to collectively as W

W = (A,Λ, θ) (4.3)

p(x|W ) =

∫
p(x|s)p(s) ds

=

∫
N (As,Λ)

L∏
i=1

p(si|θi) ds (4.4)

The goal of IFA is to adapt the parameters W to minimise an error function
that measures the distance between p(x|W ) and the observed sensor den-
sities. To facilitate in these calculations, the probability density functions
of the sources p(si|θi) are modeled as mixtures of Gaussians (MOG). This
has several advantages, the most gratifying being that all calculations can
be done analytically. Also, such a MOG model can approximate any source
density with an appropriate number of mixture elements.
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4.2.1 The Source Model

Formally, the source model is defined as follows: For each source si, the
density is described as a mixture of ni Gaussians qi = 1, . . . , ni with means
µi,qi

, variances νi,qi
, and mixing proportions wi,qi

:

p(si|θi) =

ni∑
qi=1

wi,qi
N (µi,qi

, νi,qi
), θi = {wi,qi

, µi,qi
, νi,qi
} (4.5)

For this description to describe a genuine probability density function (pdf)
the mixing proportions for each source must sum to unity:

∑ni

qi=1 wi,qi
= 1.

To gain some insight into the generative probabilistic model in question, I
refer to figure (4.1). To generate signal si, pick a state qi with probabil-
ity wi,qi

, and then draw a number from the corresponding Gaussian density
N (µi,qi

, νi,qi
).

An important insight is gained when one studies the joint source density
p(s). By the assumption of independence we have that

p(s|θ) =
L∏

i=1

p(si|θi) =
L∏

i=1

ni∑
qi=1

wi,qi
N (µi,qi

, νi,qi
)

= (w1,1N (µ1,1, ν1,1) + w1,2N (µ1,2, ν1,2) + · · ·+ w1,nN (µ1,n1 , ν1,n1))

× (w2,1N (µ2,1, ν2,1) + w2,2N (µ2,2, ν2,2) + · · ·+ w2,nN (µ2,n2 , ν2,n2))
...

× (wL,1N (µL,1, νL,1) + wL,2N (µL,2, νL,2) + · · ·+ wL,nN (µL,nL
, νL,nL

))

=
∑(

L∏
i=1

wi,qi

L∏
i=1

N (µi,qi
, νi,qi

)

)

The summation above is to be understood as a sum over all the
∏L

i=1 ni com-
binations of the individual Gaussians. To help clarify matters the following
quantity is introduced:

q = (q1, . . . , qL) (4.6)

q is a vector whose entries are all the possible combinations of the individual
source states qi. As such q will have

∏L
i=1 ni different realizations. Each q

realises a different combination of the individual µi,qi
, νi,qi

, and wi,qi
. Define:

wq =
L∏

i=1

wi,qi
= w1,q1 × · · · × wL,qL

, µq = (µ1,q1 , . . . , µL,qL
)

Vq = diag(ν1,q1 , . . . , νL,qL
) (4.7)
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Figure 4.1: Generative model

With these definitions in place, it is trivial to show that the joint source
densities can be written in the following convenient form:

p(s|θ) =
∑
q

wqN (µq,Vq) (4.8)

From (4.8) it is evident that, viewed in L-dimensional space, the joint source
density p(s) is itself a MOG, with mixing proportions wq, mean µq, and
covariance matrix Vq. There is however an important difference between this
L-dimensional MOG model, and the standard MOG fitting scheme. This is
evident from the fact that modifying the mean and variance of a single-source
state qi results in a modification of all the n(L−1) different q (for the case of all
ni = n) which qi is an element in, whereas in ordinary MOG estimation the
Gaussians are free to adapt independently. Our source model is a mixture of
coadaptive Gaussians.

4.2.2 The Sensor Model

Having a description of the source model, we are now ready to proceed with a
probabilistic description of the sensor model. Specifically we are interested in
finding an analytically tractable description of p(x|W ), since later on we will
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be interested in finding the W that minimises the distance between p(x|W )
and the observed distribution p(x)0.

Now, referring again to figure(4.1), the basic generative model is as fol-
lows: For every source si, pick a particular realization of qi each with prob-
ability wi,qi

. The probability of a particular q is then

p(q) = wq (4.9)

Given qi for every source, each unit will produce a sample si from a Gaussian
density with mean µi,qi

and variance νi,qi
. It is straightforward to demonstrate

that the probability of generating a particular vector s is

p(s|q) = N (µq,Vq) (4.10)

Now, given a particular realization of s, it follows directly from (4.1) and
(4.2) that

p(x|s, W ) = N (As,Λ) (4.11)

Next we note from equation (4.4) that p(x|W ) can be written as

p(x|W ) =

∫
p(x|s, W )p(s|W ) ds =

∫
p(x|s,A,Λ)p(s|θ) ds (4.12)

where p(x|s, W ) = p(x|s,A,Λ), since the identity of the state that created
s has no bearing on the the probability of x once s has been created. Sim-
ilarly, the parameters describing the relationship between s and x have no
bearing on the the probability of generating a particular s to begin with. As
such the IF layers form a top-down first-order Markov chain, meaning that
the probability of a certain outcome in the next layer only depends on the
outcome in the present. Consequently, equation (4.12) is valid, and we can
write (dropping the explicit reference to A and Λ)

p(x|W ) =

∫
p(x|s)p(s|θ) ds =

∫
p(x|s)

∑
q

p(q)p(s|q) ds

=
∑
q

p(q)

∫
p(s|q)p(x|s) ds =

∑
q

p(q)p(x|q) (4.13)

where the last equality follows because
∫

p(s|q)p(x|s) ds = p(x|q). To find
the conditional distribution p(x|q) one may of course evaluate the integral,
which will yield an analytical solution since both quantities being integrated
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over are Gaussian. A less cumbersome alternative is to first find the con-
ditional distribution of y = As and then x = y + ν for a given q. The
characteristic function of p(y|q) is

φy|q(ω) = Ey|q
[
exp(−jωTy)

]
= Es|q

[
exp(−jωTAs)

]
=

∫
exp(−jωTAs)p(s|q) ds

=

∫
|2πVq|−

1
2 exp

(
− jωTAs− 1

2
(s− µq)

TV−1
q (s− µq)

)
ds

By completing the square in the exponent, we can write

φy|q(ω) =

∫
|2πVq|−

1
2 exp

(
− jωTAs− 1

2
(s− µq + jVqA

T ω)TV−1
q (s− µq + jVqA

T ω)

+jωT (As−Aµq)−
1

2
ωTAVqA

T ω
)
ds

= exp(jωTAµq −
1

2
ωTAVqA

T ω)

∫
|2πVq|−

1
2 exp

(
− 1

2
(s− µq + jVqA

T ω)T

×V−1
q (s− µq + jVqA

T ω)
)
ds

= exp(jωTAµq −
1

2
ωTAVqA

T ω)

It is a well known result (see e.g [29]) that the characteristic function of a
multivariate Gaussian is given by

φ(ω) = exp(jωT µ− 1

2
ωTΣω)

where µ is its mean, and Σ its covariance matrix. Since the characteristic
function of a random variable completely defines its pdf (they are paired
by the Fourier transform), we conclude that p(y|q) = N (Aµq,AVqA

T ).
Now, adding the noise ν ∼ N (0,Λ) which is independent of y, we find the
characteristic function for x = y + ν :

φx|q(ω) = φy|q+ν(ω)

= φy|q(ω)φν(ω) = exp(−jωTAµq −
1

2
ωTAVqA

T ω) · exp(−1

2
ωTΛω)

= exp

(
−jωTAµq −

1

2
ωT (AVqA

T + Λ)ω

)
Here we have used the well known fact that the pdf of a sum of two random
variables is the convolution of their respective pdfs. Since the characteristic
function is Fourier paired to its pdf, the convolution reduces to a multiplica-
tion in the above equation, and we can safely conclude that

p(x|q) = N (Aµq,AVqA
T + Λ) (4.14)
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Consequently the sensor density can be written

p(x|W ) =
∑
q

p(x|q)p(q) =
∑
q

wqN (Aµq,AVqA
T + Λ) (4.15)

and we can conclude that the sensor density model is a mixture of coadaptive
Gaussians.

4.3 Deriving The Learning Rules

As a starting point for learning the parameters in the IF model, we need an
error function that measures the distance between the model sensor density
p(y|w) and the observed density po(y). The goal will then be to adapt the
parameters W iteratively to minimise this error. A natural candidate for the
error function is the Kullback-Leibler (KL) distance, defined by

ε(W ) =

∫
po(x)log

po(x)

p(y|W )
dx = −E [logp(x|W )]−Hpo (4.16)

where the expectation is over the observed y and Hpo is the output entropy.
The entropy is independent of W and will henceforth be dropped, since its
presence does not affect the minimisation with respect to W . Consequently
our task is that of minimising −E [logp(y|W )]. We recognise the expectation
as the log-likelihood of the observed signals given the model parameters W .
Hence, minimising the KL distance is equivalent to maximising the likelihood
of the data with respect to the model.

Rather than using a gradient based technique for minimising equation
(4.16), a EM approach is chosen, since the former approach can result in
exceedingly slow learning. As discussed in chapter 2, the EM algorithm is
well suited to finding maximumlikelihoodd estimates in probabilistic models
when part of the data is missing. In our model the missing data are the
sources s and the states q, and W are theparameterss to be estimated. From
the formulation of the EM algorithm in chapter 2 we proceed by two steps:

1. The E-Step: Calculate l(W |W ′)

l(W |W ′) = Eq,s|x,W ′ [log p(q, s,x|W )]

=
∑
q

∫
p(q, s|x, W ′) log p(q, s,x|W ) ds (4.17)

for each observed x. The result is then averaged over all observations.
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2. The M-Step: Maximise l(W |W ′). That, is find the updated
estimate W ′′ such that

W ′′ = arg max
W

[l(W |W ′)] (4.18)

Now, returning to the joint density of the visible layer and the two hidden
layers (see figure 4.1), it is easy to show that because of the Markov
property

p(q, s,x|W ) = p(q)p(s|q)p(x|s) (4.19)

Inserted into equation (4.17) we obtain,

l(W |W ′) =
∑
q

∫
p(q, s|x, W ′) log [p(q)p(s|q)p(x|s)] ds

= Eq,s|x,W ′ {log p(q)}︸ ︷︷ ︸
lT

+ Eq,s|x,W ′ {log p(s|q)}︸ ︷︷ ︸
lB

+ Eq,s|x,W ′ {log p(x|s)}︸ ︷︷ ︸
lV

(4.20)

so we see that, because of the Markov property, we can split the problem of
maximisation into three parts: The visible layer lV , the bottom hidden
layer lB, and the top hidden layer lT . Writing out the individual terms we
find that

lV (W ′,A,Λ) =
∑
q

∫
p(q, s|x, W ′) log p(x|s) ds

=

∫
p(s|x, W ′) log p(x|s) ds

lB(W ′, {µi,qi
, νi,qi
}) =

∑
q

∫
p(q, s|x, W ′) log p(s|q) ds

=
∑
q

∫
p(s|q,x, W ′)p(q|x, W ′) log p(s|q) ds

=
L∑

i=1

ni∑
qi=1

p(qi|x, W ′)

∫
p(si|qi,x, W ′) log p(si|qi) dsi

lT (W ′, {wi,qi
}) =

∑
q

∫
p(q, s|x, W ′) log p(q) ds

=
L∑

i=1

ni∑
qi=1

p(qi|x, W ′) log p(qi) (4.21)
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where it is made explicit which of the parameters in W the different layers
depend on. Inserting the densities from equations (4.9), (4.10) and (4.11)
into the expressions we find:

lV (W ′,A,Λ)

=

∫
p(s|x, W ′) log

{
|2πΛ|−

1
2 exp

[
−1

2
(x−As)TΛ−1(x−As)

]}
ds

= −1

2
log |2πΛ| − 1

2

∫
p(s|x, W ′)

[
(x−As)TΛ−1(x−As)

]
ds

= −1

2
log |2πΛ| − 1

2

∫
p(s|x, W ′)Tr

[
xTΛ−1x− 2(As)TΛ−1x + sTATΛ−1As

]
ds

= −1

2
log |2πΛ| − 1

2

{
Tr
[
Λ−1xxT

]
− Tr

[
2Λ−1x〈sT |x, W ′〉AT

]
+ Tr

[
Λ−1A〈ssT |x, W ′〉AT

] }
= −1

2
log |2πΛ| − 1

2
Tr
[
Λ−1

(
xxT − 2x〈sT |x, W ′〉AT + A〈ssT |x, W ′〉AT

)]
(4.22)

lB(W ′, {µi,qi
, νi,qi
})

=
L∑

i=1

ni∑
qi=1

p(qi|x, W ′)

×
∫

p(si|qi,x, W ′) log

[
(2πνi,qi

)−
1
2 exp

(
− 1

2νi,qi

(si − µi,qi
)2

)]
dsi

=
L∑

i=1

ni∑
qi=1

p(qi|x, W ′)

×
[
−1

2
log(2πνi,qi

)− 1

2νi,qi

(
〈s2

i |qi,x, W ′〉 − 2〈si|qi,x, W ′〉µi,qi
+ µ2

i,qi

)]
(4.23)

lT (W ′, {wi,qi
}) =

L∑
i=1

ni∑
qi=1

p(qi|x, W ′) log(wi,qi
) (4.24)

The expectations in equations (4.22) and (4.23) deserve some special
attention. We need to calculate the following

〈m(s)|x, W ′〉 =

∫
m(s)p(s|x, W ′) ds (4.25)

〈m(si)|qi,x, W ′〉 =

∫
m(si)p(si|qi,x, W ′) dsi (4.26)
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where m(s) = s, ssT and m(si) = si, s
2
i . I will in the following, for

notational convenience, drop the explicit reference to the parameters W ′. It
should however be kept in mind that all the averages in equations (4.27) to
(4.42) are based on the parameters arrived at in the previous iteration W ′.
We could at this stage of course try to find an expression for p(s|x), but
this would be extremely cumbersome involving the quotient of two MOGs,
since p(s|x) = p(s)p(x|s)/p(x) with the relevant densities given in equations
(4.8), (4.11) and (4.15). A more productive course, is to first calculate the
expectations for a given q, and then sum over the posteriors p(q|x). That
is, find

〈m(s)|q,x〉 =

∫
m(s)p(s|q,x) ds (4.27)

and sum over the posteriors p(q|x) for all states q, since∑
q

p(q|x)〈m(s)|q,x〉

=
∑
q

p(q|x)

∫
m(s)p(s|q,x) ds

=

∫
m(s)

∑
q

p(q|x)p(s|q,x) ds =

∫
m(s)p(s|x) ds

= 〈m(s)|x〉

which is the desired result. Thus we need to find the density for s with x
and q given. Now, since

p(s|q,x) =
p(x|s)p(s|q)

p(x|q)
=

N (As,Λ)N (µq,Vq)

N (Aµq,AVqAT + Λ)
(4.28)

we can write out the terms in the exponential in equation (4.28) involving
s. Gathering terms, these are found to be:

−1

2
sT (ATΛ−1A + V−1

q )s + sT (ATΛ−1x + V−1
q µq)

Recognising this as a Gaussian in canonical form, we can immediately
conclude that the covariance matrix for s|q,x is

Σq = (ATΛ−1A + V−1
q )−1 (4.29)

Denoting its mean by ρq(x) we also find that

sT Σ−1
q ρq(x) = sT (ATΛ−1x + V−1

q µq)

⇓
ρq(x) = Σq(A

TΛ−1x + V−1
q µq) (4.30)
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Hence,
p(s|q,x) = N (ρq(x), Σq) (4.31)

and it follows that

〈s|q,x〉 = ρq(x), 〈ssT |q,x〉 = Σq + ρq(x)ρq(x)T (4.32)

If you are of a particularly masochistic persuasion, you can of course arrive
at the same result through meticulous manipulation of equation (4.28).
We now need to find the posteriors p(q|x). These are, however, readily
attained through equations (4.9) and (4.14), since

p(q|x) =
p(q)p(x|q)∑
q′ p(q′)p(x|q′)

(4.33)

and we have all we need to calculate

〈m(s)|x〉 =
∑
q

p(q|x)〈m(s)|q,x〉 (4.34)

Most of the work is now done, also for the calculation of the individual
source averages in equation (4.26). We note from equation (4.32) that
〈si|q,x〉 are simply the elements of 〈s|q,x〉 and 〈s2

i |q,x〉 the diagonal
elements of 〈ssT |q,x〉. Returning to equation (4.23), we see that we
actually need to calculate p(qi|x)〈m(si)|qi,x〉. A closer look reveals that

p(qi|x)〈m(si)|qi,x〉 =
∑
q

containing
qi

p(q|x)〈m(si)|q,x〉 (4.35)

where the summation is to be understood as follows: Each qi can take ni

different values. For one value of qi, there will be
∏L

j 6=i nj different q, where
qi is an element. These are the q that are to be summed over. The same
applies for finding the individual state posteriors, as seen by:

p(qi|x) =
∑
q

containing
qi

p(q|x) (4.36)

This completes the expectation step of the EM algorithm, since we are now
able to calculate l(W |W ′). What remains is the maximisation of l(W |W ′)
with respect to W . This is done by computing its gradient ∂l/∂W layer for
layer. Through standard rules of matrix calculus it is easily verified that:

∂lV
∂A

= −Λ−1x〈sT |x〉+ Λ−1A〈ssT |x〉
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∂lV
∂Λ

=
1

2
Λ−1 − 1

2
Λ−1

(
ssT − 2x〈sT |x〉AT + A〈ssT |x〉AT

)
Λ−1 (4.37)

For the bottom hidden layer we find

∂lB
∂µi,qi

=
1

νi,qi

p(qi|x)(〈si|qi,x〉 − µi,qi
)

∂lB
∂νi,qi

=
1

ν2
i,qi

p(qi|x)
(
〈s2

i |qi,x〉 − 2〈si|qi,x〉µi,qi
+ µ2

i,qi
− νi,qi

)
(4.38)

In the maximisation of lT with respect to the mixing proportions wi,qi
we

need to enforce the constraint that
∑ni

qi=1 wi,qi
= 1, and ensure that all the

wi,qi
are nonnegative, since wi,qi

= p(qi) are probabilities. This could be
done by the method of Lagrange multipliers, but for reasons not fully
understood, it is more practical to enforce the constraints automatically by
working with new parameters wi,qi

, related to wi,qi
through

wi,qi
=

ewi,qi∑
q′
i
ewi,qi

(4.39)

Taking the gradient with respect to the new parameters we find

∂lT
∂wi,qi

= p(qi|x)− wi,qi
(4.40)

What remains is to set these equations equal to zero, and to solve them
with regard to the parameters in W . Finally, one averages over all the x,
and arrives at the following rules for updating W :

Anew = E
[
x〈sT |x〉

] (
E
[
〈ssT |x〉

])−1

Λnew = E
[
xxT

]
− E

[
x〈sT |x〉

]
AT

new (4.41)

and, for the MOG parameters θ

µnew
i,qi

=
E [p(qi|x)〈si|qi,x〉]

E [p(qi|x)]

νnew
i,qi

=
E [p(qi|x)〈s2

i |qi,x〉]
E [p(qi|x)]

−
(
µnew

i,qi

)2
wnew

i,qi
= E [p(qi|x)] (4.42)

where the expectation operator is over all the observations, i.e. for any
function F of x, E [F(x)] = 1

T

∑T
t=1 F(x(t)).
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While we could be content with the learning rules as they stand, it is
practical to enforce a scaling on the parameters. This is because in the
Blind Signal Separation (BSS) problem, the sources are defined only within
an order permutation and scaling as discussed in chapter 3. In order to
prevent the parameters from acquiring arbitrarily large values, we perform
a scaling to ensure that the variance of each source is kept equal to unity,
and compensate the mixing matrix accordingly. This scaling takes the
following form:

σ2
j =

nj∑
qj

wj,qj
(νj,qj

+ µ2
j,qj

)−

 nj∑
qj

wj,qj
µj,qj

2

µj,qj
→

µj,qj

σj

, νj,qj
→

νj,qj

σ2
j

, Aij → Aijσj (4.43)
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Chapter 5

Scale Mixture Source
Separation

5.1 Introduction

The goal of this chapter is to develop a source separation algorithm where
the sources are modelled as scale mixtures of Gaussians [2]. Several
different approaches to the problem are studied, some making assumptions
on the prior distributions, and some not. The approach in itself is not
entirely novel. In particular J. A. Palmer has concerned himself with the
topic [26], where many aspects of the problem at hand are discussed.
Scale mixtures of Gaussians are well suited in modeling typically peaky
densities, which characterise many acoustic recordings, speech being
perhaps the most common variant. It is hoped that the algorithm will
prove general enough to separate a wide variety of signals.

5.2 The Model

Again we examine the case of an instantaneous mixture of L source signals,
creating L′ sensor signals consisting of the mixture plus noise.

x = As + ν, p(ν) = N (0,Σν) (5.1)

Each of the sources is modelled as a 1-dimensional scale mixture of
Gaussian

si =
√

ziyi, p(yi) = N (0, 1) (5.2)

The sources as well as the mixtures are assumed zero mean, without losing
generality, for the reasons explained in chapter 3.2. The generative model is

43
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* *

z i z j
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top hidden units

bottom hidden units
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Figure 5.1: Generative model. To generate a source si, draw zi from a
distribution p(z) (e.g. from equations (5.8) or (5.10)) and multiply with yi

which is drawn from a Normal distribution of zero mean and unit variance.
The observations xi then are generated as a mixture of all si and with noise
added.

illustrated in figure (5.1). The random variables zi will be termed the hyper
prior. Different distributions of the hyper prior will give rise to different
algorithms, since their distributions define the distributions of the sources
si. In this chapter, two distribution families will be considered, and a
source separation algorithm will be developed in detail for one of them.

Continuing with the specification of the model, the assumption of
independence means that we must have

p(s) =
L∏

i=1

p(si) (5.3)

Now let z = [z1, . . . , zL]T . From the independence of the si and the fact that
when zi is given, each of the si is distributed as N (0, zi), we may write

p(s|z) =
L∏

i=1

p(si|zi)
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=
L∏

i=1

(2πzi)
− 1

2 exp

(
− 1

2zi

s2
i

)

=

(
L∏

i=1

(2πzi)
− 1

2

)
exp

(
−1

2

L∑
i=1

1

zi

s2
i

)

= |2πΛ|−
1
2 exp

(
−1

2
sTΛ−1s

)
= N (0,Λ) (5.4)

where

Λ =

z1 0
. . .

0 zL

 (5.5)

The overall generative setting has many similarities with the MOG model
dealt with in chapter 4. Importantly, the Markov property still holds, and
we may write the joint density of the visible and the two hidden layers as

p(z, s,x|W ) = p(z)p(s|z)p(x|s) (5.6)

The form of p(s|z) was found in equation (5.4) and, by the same reasoning
as in chapter 4.2.2, p(x|s) is given by

p(x|s) = N (As,Σν) (5.7)

The density p(z) is simply the product of the individual densities p(zi) since
they are independent in our model. In this thesis we look at two different
distributions for the individual i.i.d. zi:

1. Γ distributed zi

p(zi) =
λα+1zα

i

Γ(α + 1)
exp(−λzi) z > 0, λ > 0, α > −1 (5.8)

This gives us K distributed si:

p(si) =
2√
2π

λα+1

Γ(α + 1)

(√
s2

i

2λ

)α+ 1
2

Kα+ 1
2

(√
2λs2

i

)
(5.9)

2. Inverse Gaussian (IG) distributed zi

p(zi) =
δ√
2π

eδγz−
3
2 exp

(
−1

2

(
δ2

zi

+ γ2z

))
z > 0, δ > 0, γ > 0

(5.10)
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This gives us normal inverse Gaussian (NIG) distributed si:

p(si) =
δγeδγ

π
√

δ + s2
i

K1

(
γ
√

δ2 + s2
i

)
(5.11)

λ and α in the Γ distribution are known respectively as the width and shape
parameter from the way they affect the distribution. For the IG distribution
γ and δ serve the same purpose. Γ(·) denotes the standard Gamma
function1. Kν(z) denotes the modified Bessel function of the second kind2.

5.3 Deriving The Learning Rules

5.3.1 No Prior Assumptions

Contrary to the situation in chapter 4, where modelling the sources as
MOGs allowed for the analytic calculation of all the quantities involved, we
will now be forced to take some shortcuts in the derivation. As a starting
point, we derive an algorithm without making any assumptions on the prior
distribution of the zi. As such, they can, in this context, be viewed simply
as variational parameters, under which we seek to optimise the likelihood of
the observations. The basic EM algorithm for achieving this is:

1. The E-Step: Calculate l(W |W ′)

l(W |W ′) = Es|x,W ′ [log p(s,x|W )]

=

∫
p(s|x, W ′) log p(s,x|W ) ds (5.12)

for each observed x. The result is then averaged over all the observed

x. Here W =
{
A,Σν , {zn}Nn=1

}
. N denotes the total number of

samples.

2. The M-Step: Maximise l(W |W ′). That is find the updated estimate
W ′′ such that

W ′′ = arg max
W

[l(W |W ′)] (5.13)

W ′ denotes the values of W from the previous iteration and W ′′,
naturally, the updated estimate.

1The Gamma function: Γ(z) =
∫∞
0

tz−1e−t dt
2Kν(z) are solutions to Bessel’s differential equation: z2 d2y

dz2 + z dy
dz − (z2 + ν2) = 0
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Many of the results from the chapter on IFA still apply, among them the
Markov property of the layers of the generative model. This means that,
analogous to the IFA case, we may split the maximisation problem into
parts, and we can write

lV (W |W ′) =

∫
p(s|x, W ′) log p(x|s) ds

lB(W |W ′) =

∫
p(s|x, W ′) log p(s|W ) ds

(5.14)

For the visible layer we apply directly the results from chapter 4.3, so

lV (W |W ′) = −1

2
log |2πΣν |

− 1

2
Tr
[
Σ−1

ν

(
xxT − 2x〈sT |x, W ′〉AT + A〈ssT |x, W ′〉AT

)]
(5.15)

where,

〈m(s)|x, W ′〉 =

∫
m(s)p(s|x, W ′) ds (5.16)

with m(s) = s, ssT . This of course yields the exact same update rules as in
chapter 4.3 equation (4.41) , though the estimation of the required means
will be slightly different. Accordingly:

Anew = E
[
x〈sT |x〉

] (
E
[
〈ssT |x〉

])−1
(5.17)

Σnew
ν = E

[
xxT

]
− E

[
x〈sT |x〉

]
AT

new (5.18)

For the bottom hidden layer we find

lB(W |W ′) =

∫
p(s|x, W ′) log

{
|2πΛ|−

1
2 exp

[
−1

2
sTΛ−1s

]}
ds

= −1

2
log |2πΛ| − 1

2

∫
p(s|x, W ′)Tr[Λ−1ssT ] ds

∂l(W |W ′)

∂Λ
= −1

2
Λ−1 +

1

2

∫
p(s|x, W ′)Λ−1ssTΛ−1 ds

= 0

⇓

Λ =

∫
p(s|x, W ′)ssT ds (5.19)
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or equivalently, in terms of zi(n) belonging to source i at time n

zi(n) = E[s2
i |xn, W

′] (5.20)

Now, following the same procedure as in chapter 4.3 it can be shown that

p(s|x, W ′) = N (µs|x,W ′ ,Σs|x,W ′) (5.21)

where

Σs|x,W ′ = (ATΣ−1
ν A + Λ−1)−1

= Λ−ΛAT (AΛAT + Σν)−1AΛ (5.22)

µs|x,W ′ = Σs|x,W ′ATΣ−1
ν x

= ΛAT (AΛAT + Σν)−1x (5.23)

which completes the specification of the algorithm. The algorithm is
summed up in table 5.1

5.3.2 Modifying the learning rules

As stated earlier, we seek a method in which to incorporate our
assumptions on the distribution of the hyper prior. The rigorous approach
for achieving this would be to employ the EM algorithm with the hyper
prior included in the log-likelihood, i.e.

l(W |W ′) = Ez,s|x,W ′ [log p(z, s,x|W )]

This, however, leads to hideously complicated integrals which no right
thinking individual should need be subjected to. Instead, we shall use a
result from [5], which states that the common a posteriori pdf fZ|S(z|s), of
the mixture model in equation (5.2) is a Generalised Inverse Gaussian
(GIG) distribution

GIG: fZ(z|θ, δ, γ) =
(γ

δ

)θ 1

2Kθ(δγ)
zθ−1 exp

(
−1

2
(
δ2

z
+ γ2z)

)
(5.24)

and its kth-order moments are

E[zk
i |si] =

(
δ

γ

)k
Kθ+k(δγ)

Kθ(δγ)
(5.25)
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Table 5.1: Algorithm for scale mixture source separation with no assumptions
made on priors

1. Center the observations

2. Initialise zn for all n, as well as A and Σν .

3. For all n, find 〈s|xn〉 = µs|xn
by means of equation (5.23), using the

current estimates of Λn = diag(zn), A and Σν

4. For all n, find estimate of 〈ssT |xn〉 by means of equation (5.22) and
µs|xn

from the previous step:

〈ssT |xn〉 = Σs|xn + µs|xn
µT

s|xn

From equation (5.20), update zn as

zn = diag
(
〈ssT |xn〉

)
where the diag(·) operator picks the diagonal terms of the matrix
argument.

5. Update A and Σν using equations (5.17) and (5.18). The expectations
are calculated as

E
[
x〈sT |x〉

]
=

1

N

N∑
n=1

xn〈sT |xn〉

E
[
〈ssT |x〉

]
=

1

N

N∑
n=1

〈ssT |xn〉

6. If not converged, return to step 3.
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We will consider spesifically the case of a Gamma distributed hyper prior,

in which case the a posteriori pdf is a GIG
{

α + 1
2
,
√

s2
i ,
√

2λ
}

, so its

moments are given by

E[zk
i |si] =

(√
s2

i

2λ

)k
Kα+ 1

2
+k(
√

2λs2
i )

Kα+ 1
2
(
√

2λs2
i )

(5.26)

The results for an IG distributed hyper prior are completely analogous, with

the posterior pdf given as a GIG
{
−1,

√
δ2 + s2

i , γ
}

, and will be omitted.

We are now ready to proceed with developing the algorithm. The overall
idea is that we proceed within the same framework as in the case where the
priors are viewed as variational parameters, and use the same updating
scheme for the mixing matrix and noise covariance. Now, as stated above,
we will use equation (5.26) to update our estimate of the zi. Since the
sources are not directly available, we will use their current estimate in said
equation, in other words

znew
i = E[zi|si = 〈si|x〉]

=

√
µ2

si|x

2λ

Kα+ 3
2
(
√

2λµ2
si|x)

Kα+ 1
2
(
√

2λµ2
si|x)

(5.27)

To update the parameters αi and λi needed in the above calculation, we
will use a simple moment based estimator of the form (see e.g. [11])

α̂i =
1

z2
i

z2
i
− 1
− 1 (5.28)

λ̂i =
α̂i + 1

zi

(5.29)

Here zi and z2
i are calculated from the current estimate of si, using the

following relations which are easily derived from equation (5.2), utilising
the independence of z and y:

zi = E[zi] = E[s2
i ] =

1

N

N∑
i=1

s2
i (5.30)

z2
i = E[z2

i ] =
E[s4

i ]

3
=

1

3N

N∑
i=1

s4
i (5.31)

The algorithm thus proceeds by alternately setting zi to its posterior mean,
and setting si = E[si|x, zi].
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Table 5.2: Algorithm for scale mixture source separation with Gamma dis-
tributed hyper prior

1. Center the observations

2. Initialise zn for all n, as well as A, Σν , λ and α

3. For all n, find 〈s|xn〉 = µs|xn
by means of equation (5.23), using the

current estimates of Λn = diag(zn), A and Σν

4. Update α and λ based on estimate of s from previous step, by way of
equations 5.28 through 5.31

5. For all n, update zi(n) from equation (5.27)

6. Update the estimate of s, again using equation (5.23), with the up-
dated estimates of z

7. Update A and Σν using equations (5.17) and (5.18).

8. If not converged, return to step 3.

For clarity, the steps are summed up in table (5.2). The notation is to be
understood as follows: λ and α are L by 1 vectors consisting of shape and
scale parameters for the hyper priors, xn = [x1(n), . . . , xL′(n)] and
zn = [z1(n), . . . , zL(n)].

5.4 Comments

The derivation of the algorithm in table 5.2 has been of a slightly ad hoc
nature. The results, however, are consistent with existing techniques.
Considering the work of J. A Palmer [26] [25] [20] we make use of the
following relationship, which applies to all Gaussian scale mixture densities
of the form of equation (5.2).

p′(s) =
∂

∂s

∫ ∞

0

p(s|z)p(z) dz = −
∫ ∞

0

1

z
s p(s, z) dz

= −s p(s)

∫ ∞

0

1

z
p(z|s) dz
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Hence, we see that

E[
1

zi

|si] =

∫ ∞

0

1

zi

p(zi|si) dz = − p′(si)

si p(si)
=

f ′(si)

si

(5.32)

where f(si) = − log p(si). Now, calculating f(si) for the case of a Gamma
distributed prior (in other words a K-distributed si) we find

f(si) = − log p(si)

= −(α +
1

2
) log |si| − log Kα+ 1

2

(√
2λs2

i

)
+ const w.r.t si (5.33)

so

f ′(si) = −(α +
1

2
)
1

si

+

√
2λs2

i

si

(
Kα− 1

2

(√
2λs2

i

)
+

α + 1
2√

2λs2
i

Kα+ 1
2

(√
2λs2

i

))
1

Kα+ 1
2

(√
2λs2

i

)
=

√
2λs2

i

si

Kα− 1
2

(√
2λs2

i

)
Kα+ 1

2

(√
2λs2

i

) (5.34)

and

E[
1

zi

|si] =
f ′(si)

si

=

√
2λ

s2
i

Kα− 1
2

(√
2λs2

i

)
Kα+ 1

2

(√
2λs2

i

) (5.35)

corresponding nicely with equation (5.26) for the case of k = −1. In the
work of Palmer, the zi are updated as the reciprocal of equation
(5.35)(actually, due to a slightly different definition of the scale mixture
model, he estimates zi, and its reciprocal make out the diagonal elements of
Λ).

The problem we have examined in this chapter, has been approached in a
number of different ways in existing literature. Worth mentioning, apart
from Palmer’s research, are the approaches taken in e.g. [12] [3], where they
approximate the joint posterior (in our case p(s, z|x)) as a variational
posterior q(s, z|x) which is restricted to the factorised form

q(s, z|x) = q(s|x)q(z|x) (5.36)
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This approximation renders it possible to maximise the likelihood through
the EM algorithm. This is referred to as a variational Bayesian framework.
Also worthy of mention, is the variational approach taken by M. Girolami
in [13]. He proceeds by expressing the assumed Laplacian source densities
as functions of an additional parameter ξ (which corresponds to the hyper
prior z in our case). Due to the convexity of the source densities, he utilises
some topological concepts that allow him to find a function that is bounded
from below by the source densities. This, in turn, allows him to formulate
an EM algorithm for source separation. Interestingly, the algorithm thus
derived, differs from that in table 5.1 only in its estimate of zi, which in his
case is estimated as zi =

√
〈s2

i |x〉, compared to zi = 〈s2
i |x〉 in our algorithm.

The performance of the respective algorithms will be compared in chapter 7.

Finally it must be mentioned that, though not explicitly taken into
account, our algorithms are expected to achieve separation only for
super-Gaussian sources. This stems from the fact that only in this case is
the EM algorithm guaranteed to increase the likelihood. For a thorough
discussion on why this is so, I refer again to [26].



54 CHAPTER 5. SCALE MIXTURE SOURCE SEPARATION



Chapter 6

Denoising Source Separation

6.1 Introduction

Denoising source separation (DSS) is an algorithmic framework for source
separation introduced by J. Särelä and H. Valpola [28]. The framework is
meant to facilitate in the development of source separation algorithms
which are optimized for specific problems, the main idea being to construct
the algorithms around denoising principles. This very limited presentation
of DSS will mainly concern itself with the derivation of the formulae
constituting the basic building blocks of the algorithms constructed within
said framework, since some of the steps omitted in [28] nontrivial. Since
DSS will occupy only a minor part of the experimental part of this thesis,
we will not concern ourselves with any in-depth discussion around practical
denoising schemes.

6.2 The Model

The basic model we are considering is again an instantaneous mixture
model:

X = AS + ν (6.1)

where

X =


x1

x2
...

xM

 , S =


s1

s2
...

sN


The N vectors si represent the source signals and the M vectors xi

represent their mixtures. si = [si(1) . . . si(t) . . . si(T )] and

55
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xi = [xi(1) . . . xi(t) . . . xi(T )] are both of length T. In the model the
columns of A, ai = [a1ia2i · · · aMi]

T , are called the mixing vectors since the
mixtures x(t) = [x1(t)x2(t) . . . xM(t)]T at a given time instance t can be
written as a linear combination of them (see 3.2). In the following we
assume that the sources, the noise and consequently the mixtures, are of
zero mean. This can be done without losing generality since the mean
always can be subtracted from the data. In general the independent noise
will be assumed normally distributed with covariance matrix Σν .

6.3 Deriving the learning rules

Again the starting point for deriving the learning rules is the EM
algorithm. In this case we use the formulation

1. E-step: compute

q(S) = p(S|A,X) =
p(X,A|S)p(S)

p(X,A)
=

p(X|A,S)p(S)

p(X|A)
(6.2)

2. M-step: find
Anew = arg max

A
Eq(S)[log p(S,X|A)] (6.3)

This maximisation has already been dealt with in slightly different
formulation in previous chapters, yielding, with our present notation

Anew = CXSC
−1
SS (6.4)

where

CXS =
1

T

T∑
t=1

x(t)E[s(t)T |X,A] (6.5)

CSS =
1

T

T∑
t=1

E[s(t)s(t)T |X,A] (6.6)

We will now assume that the data have been whitened such that CXX = I.
Also, we will follow the standard procedure of fixing the variance of the
sources to unity. So, together with the assumption of independence,
CSS = I. If we also assume that Σν ∝ I we have that
CXX = ACSSA

T + Σν = AAT + σ2
νI = I, which implies that AAT ∝ I.

Consequently the mixing matrix A is orthogonal (up to scaling) for
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whitened data (in the noiseless case it is of course orthogonal, as shown in
3.3.1).
A closer look at the likelihood of S reveals that it can be factorised with
respect to the individual sources (ãi denotes row i of A):

L(S) = p(X|A,S) =
T∏

t=1

p(x(t)|A, s(t))

=
T∏

t=1

1

(2π)
M
2 |Σν |

1
2

exp

(
−1

2
(x(t)−As(t))TΣ−1

ν (x(t)−As(t))

)

=
1

(2π)
MT
2 |Σν |

T
2

exp

(
− 1

2σ2
ν

T∑
t=1

M∑
i=1

(xi(t)− ãis(t))
2

)

=
1

(2π)
MT
2 |Σν |

T
2

exp

(
− 1

2σ2
ν

M∑
i=1

(xi − ãiS)(xi − ãiS)T

)

=
1

(2π)
MT
2 |Σν |

T
2

exp

(
− 1

2σ2
ν

Tr
(
(X−AS)(X−AS)T

))
=

1

(2π)
MT
2 |Σν |

T
2

exp

(
− 1

2σ2
ν

Tr
(
ATA(S−A−1X)(S−A−1X)T

))

=
1

(2π)
MT
2 |Σν |

T
2

exp

(
−1

2

N∑
i=1

aT
i ai

σ2
ν

(si − a−1
i X)(si − a−1

i X)T

)

=
1

(2π)
MT
2 |Σν |

T
2

N∏
i=1

exp

(
−1

2
(si − a−1

i X)Σ−1
s,ν(si − a−1

i X)T

)

= C

N∏
i=1

L(si) (6.7)

Here Σs,ν is a T × T diagonal matrix with elements σ2
ν/a

T
i ai along the

diagonal, and a−1
i is the ith row of A−1.

This means that the sources are independent in the posterior q(s) since all
terms involving S in (6.2) factorise in terms of the individual sources si. In
turn, this implies that CSS and C−1

SS are diagonal, and multiplication by
C−1

SS in (6.4) reduces to a simple scaling of the individual sources, which can
be ignored in the further development of the algorithm.
Noisy estimates of the sources can be recovered as the mode of the
likelihood, i.e. S = A−1X. We have already shown that for whitened data
and the appropriate assumptions, A−1 ∝ AT , and since the posterior q(S)
depends on the data only through the likelihood L(S), the expectation
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Table 6.1: The basic DSS algorithm

1. Centre and whiten the observations

2. Initialize w (e.g. randomly)

3. Find a noisy estimate of one source as the mode of the likelihood in
equation (6.7)

s = wTX (6.8)

4. Find the posterior expectation of s. This can be viewed as performing
denoising based on the model of the sources

s+ = f(s) (6.9)

5. Calculate the new ML estimate of the mixing vector w from (6.5),
normalising to prevent divergence (remember Anew = CXSC

−1
SS, and

since C−1
SS is a simple scaling it can be ignored)

w+ = Xs+ (6.10)

wnew =
w+

‖w+‖
(6.11)

6. If not converged, return to step 3.

E[S|X,A] is a function of ATX. Or, in terms of the individual sources,
E[si|X,A] = f(aT

i X). This leads to the one-unit source separation
algorithm summed up in table 6.1 (w = a, following the notation in [28]).

The development of algorithms within the DSS framework will thus
proceed by choosing the denoising function f(s) appropriately for the model
under consideration. The case of linearly mixed Gaussian signals is
discussed next.
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6.3.1 Separating Gaussian Sources (Linear DSS)

We will in this section find the denoising function f(s), for the case of a
Gaussian source with autocovariance matrix Σss. Its prior probability
function is

p(s) =
1√
|2πΣss|

exp

(
−1

2
sΣ−1

ss sT

)
. (6.12)

We remind the reader that s is here to be understood as a single source
s = [s(1), . . . , s(T )], and is not to be confused with the random variable
consisting of all sources, as the notation has been in earlier chapters.
Accordingly, the autocovariance matrix Σss is T × T . The likelihood is
obtained from equation (6.7) as

L(s) = exp

(
−1

2
(s−wTX)Σ−1

s,ν(s−wTX)T

)
, (6.13)

where we have used the orthogonality of the mixing matrix to replace the
inverse with the transpose. As argued for in the previous chapter, the
posterior can be written in terms of individual sources. Multiplying p(s)
and L(s), the only terms in equation (6.2) that involve s, we obtain (after
completing the square as in chapter (4.3)):

q(s) = (const. w.r.t s)× exp

(
−1

2
(s− µ)Σ−1(s− µ)T

)
, (6.14)

Where µ = wTX
(
I + σ2

νΣ
−1
ss

)−1
, and Σ−1 = 1

σ2
ν

+ Σ−1
ss . Referring to

equation (6.9), we see that, it in this case, takes the linear form

s+ = f(s) = s(I + σ2
νΣ

−1
ss )−1 = sD. (6.15)

In the simulations chapter, it will be demonstrated that two Gaussian
signals that have been mixed linearly, can be separated through use of the
DSS algorithm, using the denoising function above.
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Part II

Computer Simulations
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Chapter 7

Simulations

7.1 Introduction

In this chapter we will try to evaluate the performance of the different
source separation techniques discussed in the theory part of this thesis.
Most of the algorithms will be tested on the same data, with varying
signal-to-noise ratio. One exception is our treatment of the DSS technique.
Though, being a general framework for source separation, it could
conceivably be used on the same test data as the other techniques. The
obvious choice for the denoising function in this case would reduce it to the
standard FastICA algorithm, which is already covered. Instead, therefore,
we will demonstrate how it can be used to incorporate temporal
information so as to achieve separation of linearly mixed Gaussian signals,
something that standard ICA techniques cannot do. As such, it serves to
demonstrate how additional knowledge (here in the form of the knowing the
autocovariance matrix of the Gaussian signals) can render possible
separation where ICA, which exclusively uses spatial information (as in
information across the sensors/observations), fails.

7.2 The Data

In most of the simulations in this chapter, the data will consist of three
audio signals, sampled at 22050 Hz. Since some of the algorithms to be
tested are computationally quite expensive, we have used a modest 14000
samples, constituting around 0.6 seconds of sound. This should nonetheless
be more than adequate to capture the relevant statistics of the signals in
question. In any practical implementation, the algorithms would normally
be performed in batch mode anyway, with the batch size being of the order
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Figure 7.1: The centered sources

we have used, or smaller.
Due to the indeterminacies of the model, we have chosen to center and
normalize the source signals. While not necessary to achieve separation,
this makes the task of evaluating the performance of the algorithms slightly
easier. The centered and normalized sources are shown in figure 7.1.

In keeping with the purpose of this thesis, namely the study of
instantaneous linear mixture models, the mixing has been done artificially,
through multiplication of a three by three mixing matrix, thus ensuring
that the basic model holds. Any real world mixing of audio signals would of
course be complicated by propagation delays and reverberations,
necessitating a convolutive model (or an embedding of the signals, as
discussed briefly in the introduction to this thesis). This, however, is
beyond the scope of this thesis. To further control the mixing environment,
the same mixing matrices have been used in the simulations for the
different models. Specifically the instamix.m Matlab function (available for
download from http://sound.media.mit.edu/ica-bench/) has been used,
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which performs mixing with varying degrees of complexity. This function is
parameterised by a condition number, b, where b=0 represents a singular
matrix (consisting of only ones). The mixing matrix becomes proportional
to the identity matrix with increasing values of b (which can be arbitrarily
large). In our simulations we have used b=0.5.

Simulations have been performed at six different signal-to-noise ratios
(SNR). The SNR is obtained by noting that the signal level at observation i
is E[(

∑
j Aijsj)

2] =
∑

j (Aij)
2, since we have normalised the sources (they

are of course also statistically independent, so E[ssT ] = I). The
corresponding noise level is E[ν2

i ] = Σii. Averaging over all the
observations, we get

SNR =
1

L′

L′∑
i=1

[
L∑

j=1

(Aij)
2

]
/Σii (7.1)

For the purpose of our simulations, noise was added to each observation
from a zero mean Gaussian distribution with variance

Σii =
1

L′

L′∑
i=1

[
L∑

j=1

(Aij)
2

]
/SNR, (7.2)

yielding the desired SNR. So as to avoid confusion, it must be stressed that
we here are referring to the SNR of the observations xi, which is not to be
confused with the SNR of the recovered sources.

7.3 Performance Measures

There exist a multitude of different measures for evaluating the
performance of source separation techniques, and the pros and cons of the
various measures have been subject to much discussion (see e.g. [23] [10]).
The most rigorous attempt at defining a general framework for performance
measurement seems to be that of Vincent et. al. [10], and since they have
provided downloadable Matlab software on their homepage, this will be
used in this thesis.

The general idea in the above mentioned framework, is to decompose the
estimated sources ŝi as

ŝi = starget + einterf + enoise + eartif (7.3)
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where starget = f(si) is a version of the actual source si it is being compared
with, modified by an allowed distortion, in our simple case a gain factor.
The terms einterf, enoise and eartif are, respectively, the interference, noise,
and artifacts error term. Thus starget represents the part of ŝi perceived as
coming from the wanted source si, einterf the part coming from other
unwanted sources (sj)j 6=i, enoise the part coming from sensor noise, and eartif

from other causes. To perform this decomposition, one needs both the
estimated sources as well as the original sources and noise. These are of
course available for the simulated data under consideration in this chapter.
The decomposition is performed by projecting orthogonally the estimated
sources ŝi onto a subspace spanned by the relevant vectors (For details I
refer to [10]). From these decompositions, four performance criteria are
defined. The source-to-distortion ratio is defined

SDR:=10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(7.4)

the source-to-interferences ratio

SIR:=10 log10

‖starget‖2

‖einterf‖2
(7.5)

the source-to-noise ratio

SNR:=10 log10

‖starget + einterf‖2

‖enoise‖2
(7.6)

(7.7)

and the source-to-artifacts ratio

SNR:=10 log10

‖starget + einterf + enoise‖2

‖eartif‖2
(7.8)

(7.9)

We will content ourselves with calculating the first three of these measures.
In order to have a measure for each models performance as a whole (as
opposed to having one for every source), we will also include what Attias [4]
refers to as the mixing matrix error

ε =

(
1

L2 − L

∑
i6=j

J2
ij

)(
1

L

L∑
i=1

Jii

)−1

(7.10)
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Here Jij are the elements of the matrix J = Â−1A, where Â and A are the
estimated and actual mixing matrix, respectively. Thus ε quantifies the
distance between J and the identity matrix as the mean squared
nondiagonal elements of J, normalised by its mean squared diagonal
elements. To compensate for any permutations that may have occurred in
the separation algorithm, the columns of the estimated mixing matrix have
been rearranged to ensure that J has its largest element along the diagonal.

7.4 Results

In this section, the performance of the following six algorithms will be
presented.

1. The scale mixture of Gaussians algorithm with no assumptions on the
hyper prior in table 5.1. This will be referred to as the No prior
algorithm.

2. The scale mixture of Gaussians algorithm with Γ distributed hyper
prior in table 5.2. This will be referred to in the tables as Γ prior.

3. The scale mixture of Gaussians algorithm for IG distributed hyper
prior. This will be referred to as the IG prior algorithm.

4. Girolami’s algorithm from [13]. This is identical to the No prior
algorithm, except for the update of the zi which is calculated as
zi =

√
〈s2

i |x〉, compared to zi = 〈s2
i |x〉 in the No prior algorithm.

5. The FastICA algorithm presented in chapter 3.5.2. We use the
FastICA package for Matlab available for download from
www.cis.hut.fi/projects/ica/fastica

6. The Independent Factor Analysis algorithm from chapter 4. We have
modelled each source density by a 3-state MOG, ie ni = 3 in equation
(4.5)

The detailed results from running each of these algorithms once, are
presented in tables 7.1 through 7.6. While there is undoubtedly a wealth of
information to be obtained from the many measures that are included, we
will in the discussion mainly concern ourselves with the global mixing error
measure ε from equation 7.10. The other measures are useful when one
wishes to evaluate the quality of separation and recovery for a single source,
and we will in the discussion compare this with the quality of the estimated
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pdfs for some selected sources. Apart from this use, the measures are
tabulated for the interested reader since they are likely to become the
standard performance measures for blind audio source separation. (Note:
These measures give information about the reconstruction of the sources,
whereas ε only concerns itself with the demixing part of the problem,
ignoring the presence of noise).

In figure 7.2 the mixing matrix error ε is plotted for all algorithms and all
SNRs.
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Figure 7.2: The mixing error of the various techniques at different signal to
noise ratios. Included in the plot is Girolami’s method (dash-dotted with
squares), the IG distributed hyper prior method (dotted line with x’s), Γ
distributed hyper prior method (solid line with dots), non-random hyper
prior method (solid line with stars), FastICA (dotted line with triangles),
and IFA (dash-dotted with +’s).
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Table 7.1: Performance of algorithms for SNR = 5 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 1.6 1.8 1.7 15.8 8.1 10.1 1.9 3.6 2.8 -13.3
Γ prior 2.0 1.4 1.5 12.9 15.9 17.6 2.6 1.7 1.7 -17.6
IG prior 1.6 1.2 1.8 18.0 19.7 10.7 1.8 1.3 2.8 -17.4
Girolami 1.0 1.9 1.3 24.0 9.9 17.5 1.0 3.1 1.5 -16.6
FastICA 1.9 1.1 1.3 11.4 31.4 15.1 2.7 1.1 1.6 -17.3
IFA 2.1 1.4 1.8 13.6 22.3 13.1 2.6 1.4 2.3 -19.3

Table 7.2: Performance of algorithms for SNR = 10 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 6.2 5.9 6.1 14.0 12.7 14.7 7.2 7.2 6.9 -16.8
Γ prior 6.4 5.8 6.4 20.3 30.3 19.3 6.6 5.9 6.6 -24.1
IG prior 6.1 6.2 6.4 24.0 14.4 20.3 6.2 7.1 5.8 -20.7
Girolami 6.1 5.7 6.1 20.6 20.9 15.5 6.4 5.4 6.8 -21.5
FastICA 6.2 5.9 6.0 21.0 43.6 21.1 6.4 5.9 6.2 -26.0
IFA 7.0 6.2 6.3 19.8 26.7 22.5 7.7 6.3 6.5 -29.5

Table 7.3: Performance of algorithms for SNR = 15 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 10.7 11.0 10.7 17.3 25.0 19.1 12.0 11.2 11.5 -22.6
Γ prior 11.1 10.6 11.0 35.2 29.2 26.2 11.1 10.7 11.2 -31.8
IG prior 10.2 9.3 10.7 16.5 15.2 23.7 11.4 10.6 11.0 -20.0
Girolami 10.9 10.5 10.2 35.0 17.4 20.7 10.9 11.6 10.6 -23.5
FastICA 10.8 11.0 10.8 33.6 25.3 30.5 10.8 11.2 10.8 -31.3
IFA 11.5 10.4 11.1 31.5 26.4 28.6 12.0 10.7 12.1 -33.7
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Table 7.4: Performance of algorithms for SNR = 20 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 15.9 13.9 15.3 31.1 17.4 22.4 16.1 16.7 16.3 -23.9
Γ prior 15.9 15.1 16.0 40.7 25.4 31.4 16.0 15.6 16.1 -32.4
IG prior 15.9 14.3 15.1 44.3 20.7 21.7 15.9 15.4 16.2 -25.8
Girolami 15.9 15.1 15.5 35.3 24.5 25.0 16.0 15.7 16.1 -29.6
FastICA 15.4 15.8 15.6 26.9 28.1 29.7 15.7 16.1 15.8 -31.5
IFA 16.3 15.5 15.9 40.7 29.9 33.8 17.0 15.8 16.5 -35.8

Table 7.5: Performance of algorithms for SNR = 25 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 20.6 8.2 10.7 30.8 8.4 11.3 21.1 22.5 20.0 -14.5
Γ prior 20.7 19.8 21.0 35.6 28.0 38.7 20.9 20.7 21.1 -35.2
IG prior 19.4 17.4 20.4 24.9 20.7 28.6 20.9 20.5 21.1 -26.6
Girolami 19.6 16.5 17.9 26.1 18.7 20.6 20.7 20.5 21.35 -23.9
FastICA 20.0 18.4 20.2 26.5 22.7 29.4 21.2 20.5 20.8 -28.3
IFA 20.4 19.9 19.8 55.8 31.0 35.0 22.0 21.0 21.6 -34.1

Table 7.6: Performance of algorithms for SNR = 30 dB
SDR (dB) SIR (dB) SNR (dB)

Method ε (dB)
ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3 ŝ1 ŝ2 ŝ3

No prior 25.8 20.3 23.0 42.3 21.7 26.2 26.2 26.0 26.0 -28.4
Γ prior 25.3 23.2 25.7 34.7 27.5 39.5 25.9 25.7 26.0 -34.3
IG prior 23.8 19.6 22.3 27.7 20.9 25.1 26.1 25.6 25.6 -26.6
Girolami 25.4 21.0 25.0 34.9 22.8 32.3 25.9 25.7 25.9 -29.9
FastICA 22.1 24.8 24.3 24.8 30.8 29.5 25.6 26.0 25.8 -30.5
IFA 23.4 19.3 23.7 49.4 26.3 37.5 27.0 25.6 26.4 -34.1
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Figure 7.3: Illustration of the convergence of the No prior algorithm, and of
IFA for SNR=5dB. Plotted are the matrix elements of the inverse estimated
mixing matrix multiplied by the actual mixing matrix, J = Â−1A.

7.5 Discussion

7.5.1 The performance of the algorithms

Before proceeding to discuss the specifics of the various algorithms’
performances, it is important to state the fact that all the algorithms under
consideration do achieve some degree of separation. This can be clearly
seen from figure 7.3, where we have plotted the matrix elements of
J = Â−1A at each iteration of the ’no prior’ algorithm for SNR = 5dB.
This represents the worst case among our simulations, but even here we see
that clearly three elements stand out as converging to a larger value than
the rest. This is precisely what we want, and ideally we wish a single
element from each column to converge to one and the rest to zero,
representing complete separation. For comparison we have also plotted the
best case for SNR = 5dB, the IFA algorithm.

The no prior algorithm What is immediately obvious from figure 7.2,
is that the basic no prior algorithm consistently has the largest mixing
matrix error of all the algorithms under consideration. This should come as
no great surprise, since the other scale mixture models include more prior
knowledge, namely that of the super-Gaussianity of the sources. Since the
sources in our simulations are super-Gaussian, naturally this improves
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separation. Also, the other scale mixture models implicitly employ an extra
level of averaging through computation of the posterior expectations.

The Γ prior algorithm This algorithm actually performs quite well
throughout the SNR range we have covered. It does not in all cases,
however, do a particularly good job of estimating the source densities. This
can be seen from the middle column of figure 7.4, where we have plotted
the histogram of the sources along with the estimated source densities.
Particularly for source s2, we see that the estimated pdf misfits by a
substantial margin. Referring to table 7.4, we see that this is reflected here,
with s2 scoring lowest in every performance measure. It is probably not
coincidental that this algorithm has trouble with estimating s2. The
sources are modelled as the K-distribution (see chapter 5.2), which is
particularly well suited for sharply peaked densities. Since s2 is only
slightly super-Gaussian, it would necessitate a rather large value of the
shape parameter α to model it correctly. It would appear that our
algorithm does not favour this.

The IG prior algorithm The performance of this algorithm is
comparable to the Girolami algorithm, but noticeably inferior to the Γ
prior algorithm. This is somewhat surprising, since both scale mixture
models should be expected to have the same flexibility w.r.t. estimating the
pdfs of the sources. Examining Figure 7.4, however, we see that the IG
prior algorithm fails to capture the sharp peaks in the histogram for s1 and
s3. It does do a slightly better job in fitting s2 than the Γ prior algorithm,
but also here the misfitting is substantial. The IG and Γ prior algorithms’
failure probably lies in their parameter estimators sensitivity to outliers (for
a discussion see e.g. [9]).
The main explanation for the inferior performance of this algorithm
probably lies in the NIG distributions inability to represent the most
sharply peaked densities.

The Girolami algorithm Girolami’s algorithm was shown in [26] to be
equivalent to a scale mixture model, where the source distributions are
Laplacian. The Laplacian distribution is less flexible than both the
K-distribution and the NIG-distribution that describe the sources in the IG
and Γ prior algorithms. It is a sharply peaked density, characterised by a
single scale parameter. It is therefore not surprising that source s2 being
the source with the least ’peaky’ distribution (see figure 7.4), for the most
part scores lowest in the performance measures in tables 7.1 through 7.6.
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Figure 7.4: The estimated pdf of the sources are plotted together with the
histogram of the original sources for SNR=20 dB. The left column shows the
results obtained by IFA, the middle column shows the results for the Γ prior
algorithm, and the right shows the results for the IG prior algorithm.



74 CHAPTER 7. SIMULATIONS

Also, its lack of flexibility explains why it does not perform as well as the Γ
prior algorithm.

FastICA Slightly surprising, and very depressing, is the fact that
FastICA, which has been developed through a noiseless model, outperforms
most other algorithms even at the highest noise levels. At the lower noise
levels its performance is comparable to the Γ prior algorithm. It would
appear that the negentropy estimators are rather robust, and certainly are
able to cope with the moderate noise levels we have used in our
simulations. The fact that its performance seems to deteriorate slightly for
the lower noise levels, is most likely a consequence of how they have defined
the stopping criteria in the FastICA package. Allowing the algorithm to
run a few more iterations would probably improve its performance
compared to the other algorithms.

IFA The IFA algorithm’s performance is, by a comfortable margin,
superior to all the other algorithms we have considered, particularly at the
higher noise levels. The flexibility of the MOG model, allows it to precisely
estimate the source densities, as is apparent from from the first column of
Figure 7.4. IFA is the only one of the algorithms we have considered that
both explicitly takes the noise into account and can handle practically any
type of source distribution, even highly skewed and multimodal
distributions. A drawback with the algorithm, is that it in the no noise
limit will converge to the PCA solution, and does not perform separation.
Also, for low noise levels, its convergence speed will be exceedingly slow
(There exists a separate IFA algorithm for the no noise limit, but we will
not concern ourselves with it here), which is the likely explanation for the
slightly deteriorating performance as the noise level increases above 20 dB.

7.5.2 Computational Efficiency

To complete this discussion, a few words on the computational efficiency of
the various algorithms is warranted. Computational efficiency has not been
an issue when working on this thesis, so this section will only touch on a
very few issues and will not go into any great detail.

In a class of its own in terms of speed of convergence, was the FastICA
algorithm. For the data sets used here, the results were practically instantly
forthcoming. In the other end of the scale falls the IFA algorithm, being by
far the slowest to converge. Even with our modest sample size and only
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three sources, it took around 13 seconds to run one iteration of the EM
algorithm. The scale mixture algorithms, in comparison, all spent
approximately 4 seconds on one iteration, the ones requiring the calculation
of Bessel functions being slightly slower. This was despite the fact that the
IFA algorithm was optimized by implementing the more computationally
demanding functions i C, whilst the scale mixture algorithms were rather
naive Matlab implementations. The situation for IFA gets exponentially
worse with an increasing number of sources. This comes from the way the
conditional means are calculated in the E-step of the algorithm, where the
summations are done over all the possible configurations of the source
states. If each source is modelled as a n-dimensional MOG, then the
number of states to be summed over is nL, L being the number of sources.
This is obviously impractical for large L.

7.6 Separation of Gaussians

This section is merely a reiteration of the demonstrations in [28] for the
case of linear DSS. Its purpose is to demonstrate that Gaussians can in fact
be separated, if one has available knowledge of the temporal structure in
form of the covariance matrix.

Combining the steps in Table 6.1 with equation (6.15), we may write

w+ = Xs+T = XDsT = XDXTw (7.11)

Now, consider the eigenvalue decomposition of D = VΛDVT , with V being
the orthonormal matrix consisting of the eigenvectors of D and ΛD the
diagonal matrix with the corresponding eigenvalues. Writing

ΛD = Λ
1
2
DΛ

1
2
T

D = Λ∗Λ∗T we may split the denoising matrix into two parts

D = D∗D∗T (7.12)

with D∗ = VΛ∗VT . Defining Z = XD∗ we may write equation (7.11) as

w+ = ZZTw (7.13)

Seen from this perspective, the update scheme in linear DSS is simply the
power method (see e.g. [24]) for finding the dominant eigenvalue of the
unnormalised covariance matrix ZZT , and the algorithm converges to the
fixed point w∗ satisfying

λw∗ = ZZT /T w∗ (7.14)
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Figure 7.5: Linear DSS. Explanation in text
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We thus seek a solution to the problem of separation, by finding the
principle eigenvector of some transformed variables.
Now, considering Figure 7.5. The two Gaussian sources s1 and s2 depicted
in (a), have been mixed linearly to produce the mixtures or observations x1

and x2, whose scatter plot is depicted in (b). In all the graphs, the dashed
lines depict the mixing vectors, and the solid line depicts the largest
eigenvector (the direction of maximum variance). The solid curves denote
the standard deviation of the projection of the data in all directions.
The separation is achieved as follows: Firstly the observations are
whitened, producing the transformed y1 and y2 in (c). Here it is plain to see
that the mixing vectors have become orthogonal, a necessary condition for
separation within this framework. The signals still cannot be separated by
a principal eigenvector, since there is no principal eigenvector in the
whitened space. Performing a further transformation by postmultiplication
with D∗ produces the variables in (d), where the principal eigenvector has
lined up with one of the mixing vectors. Hence one source can be recovered
by projecting the transformed variables onto the principal eigenvector.
Obviously the second source can be recovered by projecting it on the
second eigenvalue (orthogonal to the first), and separation is achieved.
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Chapter 8

Summary

8.1 Conclusions

We have in this thesis studied several blind source separation algorithms,
and have developed BSS algorithms based on the scale mixture of
Gaussians model. The performance of the algorithms has been tested on
audio signals that have been mixed artificially.

Among the algorithms we have developed, the scale mixture algorithm
with the Γ distributed hyper prior has been shown to do the best job in
recovering the sources. We surmise that the reason for this, is the ability of
the K distribution to model the sharply peaked distributions that
constituted the sources in our experiments. Plotting the histograms of the
sources, along with the estimated distributions, seems to confirm this. It
also highlights how the model can fail to fit data that is only slightly
super-Gaussian. It must be stressed that the algorithms probably can be
modified so as to improve their modelling capacity, through better
estimators of the scale and width parameters.

We have learned that IFA is a powerful algorithm for source separation
when the noise level is high, and it will consistently deliver the best results.
When the number of sources increases, however, its computational
extravagance limits its usefulness (There does exist a modified version
which does not suffer from this defect, but this has not been studied in this
thesis).

FastICA performs beautifully for the noise levels we have considered, and
its near instant convergence makes it a very appealing algorithm.

79
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The simulations we have done, have been of a somewhat limited nature,
and it would not be prudent to infer too much from the results we
obtained. We do, however, feel that the Γ prior algorithm shows sufficient
promise so as to merit further examination. A more comprehensive
simulation scheme should expand on the range of signal-to-noise ratio that
the simulations are performed over, and the mixing matrix should also be
varied. The effects of filtering the signals for noise removal should also be
studied. Finally, each algorithm should be run several times under the same
conditions to guard against spurious effects.

8.2 Suggestions to Further work

A natural extension of the scale mixture of Gaussians approach, would be
to model each source as a mixture of scale mixtures of Gaussians, in the
same manner that Attias has modelled the sources as simple MOGs. This
has been done successfully for the noiseless case (see [20]), and it could be
interesting to see if the noise covariance matrix could be estimated in any
meaningful way.
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