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Abstract 

 

Multiple giant craters and mounds have been identified in the area of the Upper Bjørnøyrenna 

in the central Barents Sea from the reflection seismic and echo sounder data. Analysis of seismic 

and echo sounder data revealed clear connection between these distinct seafloor features and 

seismic amplitude anomalies. Distribution pattern of the numerous water column anomalies 

registered in the area and interpreted to be gas plumes, corresponds to the location of faults in 

the study area what suggest that gas is of thermogenic origin and is migrating from the deeper 

reservoir through porous layers and faults working as vertical conduits. Suggested that craters 

and mounds are collapsed depressions and collapsed gas hydrate pingoes and their formation is 

associated with the processes of formation and decomposition of shallow gas hydrates due to 

the last glaciation period in the area, the Late Weichselian Maximum.  
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1. Introduction 

 

Gas hydrates have been widely reported along continental margins and polar regions where 

required conditions for their formation are probable to occur. In the shallow lithosphere, they 

form one of the largest reservoirs of methane in the global organic carbon cycle. (Kvenvolden 

et al., 2001) Seafloor seeps and associated features represent the venting points of methane 

released from the shallow subsurface to the water column and further to atmosphere. (Serié et 

al., 2012) Since 1970 when gas leakage-related features called “pockmarks” were first 

described by King et al. (1970) the increasing interest to investigation of areas with gas venting 

from the seabed is observed. Gas seepage itself as well as sedimentary features associated with 

gas or gas hydrates became the object of variable researches within the marine environment. 

Reasons for that are mainly seep’s sensitivity to seismicity which makes them objects for 

geohazard monitoring, environmental impact of the methane from marine sediments, study of 

gas hydrates and also cold seep’s significance for biology, as unique ecosystems are formed 

around them. (King et al., 1970; Etiope, 2015; Kvenvolden et al., 2001) 

In the central Barents Sea, fields of semicircular, closed crater-like depressions have been 

reported and suggested to be formed due to gas release from the layers underlying the sea 

bottom. (Solheim et al., 1993; Lammers et al., 1995; Long et al., 1998) Number of water column 

anomalies registered in Upper Bjørnøyrenna suggests that active gas seepage occurs in the area. 

Multi-beam bathymetry data and echo sounder data from the part of the central Barents Sea 

were used to document in details multiple giant craters and prominent mounds, often in close 

proximity. Detailed seismic investigation supports suggestion that their origin is associated with 

the formation and decomposition of shallow gas hydrates. 

All this observations makes the crater field in the Upper Bjørnøyrenna a prime interest to study 

seafloor deformation processes, active gas seepage within the area and role of gas hydrate in 

the dynamics of formation of craters and mounds. 
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2. Objectives 

 

The principal objective of this paper is to acquire better understanding of the formation 

processes of distinct carters and mounds within the study area in the Upper Bjørnøyrenna, the 

central Barents Sea. Furthermore, it was considered relevant and important to map these 

prominent depressions and build-up structures, study their distribution pattern, internal 

structure and relation to the gas leakage from the seabed as well as to map seismic indications 

of fluid flow and faulting and observe the degree to which these correlate with the structures on 

the seafloor. 
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3. Settings 

 

The Barents Sea 

The Barents Sea is an epicontinental sea that covers one of the widest continental shelves in the 

world. It is bounded by Tertiary rift and shear margin to the north and west and by Novaya 

Zemlya to the east and by Norwegian and Russian coasts to the south. The Barents Sea is 

transected by several troughs, among them is the major Bear Island Trench (further in text: 

Bjørnøyrenna (norw.)) cutting the seafloor on east-west direction and two south-east to north-

west trending troughs: Ingøydjupet and Djuprenna. Bathymetry of the Barents Sea is 

characterized by relatively flat seafloor, typically shallow banks of 100-200 m and average 

water depth of 250 m. Water depth within troughs increases up to 300-500m. (Andreassen et 

al., 2009; Solheim et al., 1993) Bathymetry map is shown on the Figure 1.  

 

Figure 1. Bathymetric map of the Barents Sea with study area in Upper Bjørnøyrenna indicated by the 

red rectangle and arrow.  
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The Bjørnøyrenna 

The largest and most prominent trough is Bjørnøyrenna. It extends 750 km from Sentralbanken 

to the shelf edge in the west. Width of the trough varies from 150 to 200 km different places. 

Bjørnøyrenna is bounded by shallow bank areas: Sentralbanken, Spitsbergenbanken to the east 

and north and Thor Iversen-banken, Nordkappbanken and Tromsøflaket to the south. This part 

of the Barents Sea is covered with a thin, less than 5 meters, layer of unlithified sediment with 

a relatively low organic content. (Solheim et al., 1993) Average water depth vary from less than 

300 m to 500 m in the deepest central part. Bathymetry is demonstrated on the Figure 2a. The 

larger-scale seafloor geomorphology is characterized by several grounding zone wedges and 

sets of mega-scale glacial lineations (MSGL) extending to the shelf edge. Some of the MSGL 

in the western part of the trough are “larger than any of the onshore streamlined bedforms”, 

with “lengths up to 180 km, widths up to 5 km and vertical relief up to 7 m”. (Andreassen et 

al., 2008; Winsborrow et al., 2009) These landforms document the operation of an ice stream 

in the trough during the Late Weichselian glaciation.  

 

The study area 

The area surveyed covers about 36 km2 and is situated in the central Barents Sea at 74°54’N, 

27°35’E in the upper part of Bjørnøyrenna. Its exact location and orientation is demonstrated 

on the Figure 2. Based on the data delivered by multi-beam echo sounder it was discovered that 

water depth in the area of interest vary mostly in range of 330 – 340 m but can be as deep as 

360-370 m in a several depressions. The bathymetry within study area contains such distinctive 

features as deep crater-like depressions and rough, mostly uneven mounds. Apart from that, the 

morphology of the surrounding seafloor is rather smooth, although, additional features as 

smaller craters and the glacial related features, including mega-scale glacial lineations, iceberg 

plough marks and ice sheet retreat ridges, are observed.  
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Figure 2. a) Map showing the bathymetry of the central Barents Sea. Study area is indicated by the red 

rectangle A; b) Closer view (1:30 000) to the red rectangle A demonstrating bathymetry and exact 

orientation of the study area.  
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4. Glaciation history: Late Weichselian Maximum 

 

Major ice sheet was formed over the area during the Late Weichselian. Till overlain by 

glaciomarine sediments that date from Late Weichselian has been mapped on the seafloor of 

the most of Barents Sea and surrounding islands. One of the most convincing evidences of 

presence of grounded ice sheet was occurrence of subglacially-formed flute bedforms 

discovered in central Barents Sea in the Bjørnøyrenna and in the St. Anna Trough east to the 

Franz Josef Land. (Svendsen et al., 2003) Winsborrow et. al. (2009), based on the detailed 

bathymetry data and 3D seismic data, have proposed a five-stage reconstruction of the Late 

Weichselian deglaciation. Model is demonstrated on Figure 3.  

 

Stage 1 

At the Late Weichselian Maximum, ice covered the whole Barents Sea continental shelf. The 

footprint of the Bjørnøyrenna Ice Stream, extended to the shelf edge, was dominating in the 

glacial geomorphology of the Barents Sea shelf. According to Winsborrow et al. (2009), this 

ice stream had a length in approximately 600 km and a width of 165 km and was larger than 

the Hudson Strait Ice Stream and the Siple Coast Ice Streams of West Antarctica, reported to 

be of size of 800x90 km and 300x500 km, respectively. (Winsborrow et al., 2009; Vorren et 

al., 2011)   

 

Stage 2 

Deglaciation began with significant retreat of the ice sheet in the southern Barents Sea.  The 

gradual retreat of an active ice stream is indicated by grounding zone wedges with MSGL on 

their surface in Bjørnøyrenna. The deglaciation occurred along the western Svalbard margin 

and in Storfjordrenna. This early deglaciation stage is assigned an age of approximately 17 cal 

ka BP, based on radiocarbon dates form Tromsøflaket and Andfjørden. In the east, ice sheet 

configuration yet remained at the stage 1 and the ice extent had not reached its maximum. 

(Vorren et al., 2011; Winsborrow et al., 2009)  

 

Stage 3 

The next stage is characterized by significant change in the dynamics of ice sheet with eastward 

shift of the center of maximum ice volume and the deglaciation of the large part of the 

southwestern Barents Sea. Tromsøflaket and the deepest part of Bjørnøyrenna were ice-free, 

but the area of interest for this paper located in the upper part of Bjørnøyrenna was still covered 
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with ice. The ice margin has retreated closer to the coastal line along the western continental 

shelf. Djuprenna and Nordkappbaken-east Ice streams were major readvanced, but 

Bjørnøyrenna Ice Stream was still active and has its position marked by the grounding-zone 

wedge situated 250 km from the shelf break, according to Winsborrow et. al. (2009). Stage 3 is 

suggested to represent approx. 16 cal ka BP indicated by glaciomarine conditions in mid-

Ingøydjuppet by 15,7 cal ka BP. (Winsborrow et al., 2009; Vorren et al., 2011) 

 

 

Figure 3. Five-stage reconstruction of the Late Weichselian maximum and deglaciation of the southern 

Barents Sea. Ice streams are shown as large blue arrows, warm-based ice as dashed blue arrows, cold-

based ice as white discs and possible ice divides as dashed dark blue lines. Red rectangle marked on 

the stages 1- 4 shows location of the study area. Modified from Winsborrow et al. (2009), fig.10. 

 

Stage 4 and 5 

By stage 4, assigned an approximate age of 15 cal ka BP, the southern and central Barents Sea 

are completely ice-free while ice margin is located in the outer-fjord area in northern Norway 

and Kola Peninsula. Stage 5 marks the significant retreat of the ice cover to the west of Kola 

Peninsula and southwards in northern Norway. (Winsborrow et al., 2009) 
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5. Seismic indications of fluid migration 

 

Gas generated beneath the seafloor is buoyant and tends to migrate towards the surface. (Judd 

et al., 2007) There exist various different approaches, which can be used to identify evidence 

of shallow gas presence and fluid migration from geophysics datasets, and following section 

details some of those methods.  

 

Columnar disturbances and seismic chimneys 

Focused fluid flow vents from the underlying source region and forms vertical to sub-vertical 

pathways, which are recognizable on the seismic profile as columnar zones of disrupted 

reflection continuity extending across layered succession. Terminology associated with focused 

fluid flow related structures are potentially confusing as they may be referred to as fluid escape 

pipes, gas pipes, acoustic pipe structures, blow-out pipes, gas chimneys or seismic chimneys. 

The wide range of terms partly reflects continuity of the processes involved in structures 

formation, scale and seismic expression. Acoustic pipes are sub-vertical, narrow zones of 

acoustic masking with reflection continuity disrupted over some vertical extent. Identifying of 

the root zone of a pipe could be helpful and important to make connections with source region 

of fluid involved in pipe genesis. An upward limit of the seismically visible pipe structure is 

called pipe terminus and may provide important information related to pipe genesis, growth and 

timing. (Cartwright et al., 2015; Andreassen et al., 2007) 

 

High amplitude anomalies 

Amplitude anomaly is an abrupt change in seismic amplitude, indicating sudden changes in 

acoustic impedance, product of the compressional wave velocity and density. (Andreassen et 

al., 2007; Gillis, 2016) Presence of the free gas in the subsurface causes a significant reduction 

of compressional wave velocity, and will give rise to a reflection with anomalously high 

amplitude. One of the principle features are bright spots that are marked by high amplitude 

reflection from the top of the gas, which have negative reflection phase while seafloor reflection 

represent positive phase. They express increase in gas content within sedimentary horizon. 

Although, gas is not the only cause of such a feature as bright spot which is a result of 

impedance contrast between adjacent media. (Hovland et al., 1988; Judd et al., 1992) 
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Acoustic masking 

Acoustic masking or acoustic blanking in sediments represents an area where seismic 

reflections are highly distorted and disturbed due to very poor reflection and scattering of the 

seismic wave. This is an amplitude anomaly typical for gas-affected zones and may result from 

the disruption of sediment layering by the migration of pore fluid or be caused by the absorption 

of acoustic energy in overlying gas-charged sediments. Relatively low amplitude return signal 

can be also caused be the reflection of a large proportion of acoustic energy by an overlying 

hard sediment. (Jamaludin et al., 2015; Hovland et al., 1988; Andreassen et al., 2007) 

 

Velocity anomalies 

Such velocity anomaly as pull-down effect – “smile”- occur often at the edge of acoustic 

blanking. There is an indicator of the decrease in the seismic velocity and is caused by increase 

in gas content, but not to the point at which acoustic blanking will occur. (Hovland et al., 1988)  
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6. Gas hydrate  

 

Gas hydrates are crystalline, ice-like solids composed of rigid cages of water molecules that 

enclose guest gas molecules, usually methane. They are widespread on the 90% of continental 

shelf. Gas hydrates are formed in the pores of seabed sediments under conditions of low 

temperature, high pressure and certain gas concentration (at least 5-10% of gaseous methane 

should be presented for formation of methane hydrate). They are stable at certain pressure-

temperature equilibrium, but a modest increase in temperature or decrease in pressure may lead 

to decomposition. In this case, gas will be released with the potential for migration to the 

surface, water column and further to atmosphere. (Etiope, 2015, Long et al., 1998, Paull et al., 

2007) Gas hydrate pingoes are generally formed due to growth of hydrate in the shallow 

subsurface. Their formation requires continuous high flux of gas-saturated pore fluid to 

maintain high methane concentration within the sediments to prevent dissociation of hydrates 

and usually suggests supply of hydrocarbons of thermogenic origin. Gas hydrate pingoes have 

been observed in multiple places around the world: Beaufort Sea, Northern Gulf of Mexico, 

Barkley Canyon in Canada, offshore California, Japan. (Serié et al., 2012; Paull et al., 2007; 

Etiope, 2015)  

 

Figure 4. Sketch representing changes in acoustic impedance and their causes. Schematic temperature 

bar indicates typical temperatures for the processes. Modified from Berndt et al. (2004), fig.5. 

 

Gas hydrate stability zone refers to a zone at which gas hydrates naturally exist in the 

subsurface. Although, it is primarily dependent on temperature and pressure conditions, other 
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factors as gas composition may influence stability boundaries. The existence and depth of gas 

hydrate stability zone is often seismically indicated by bottom simulating reflector (BSR) that 

indicates the lower limit of the gas hydrate stability in sediments. Gas hydrate-related BSR is 

roughly parallel to the seafloor reflector and is caused by a density contrast between overlying 

gas hydrates and gas-saturated sediments underneath. (Cartwright et al., 2015; Berndt et al., 

2004; Sheriff, 2002) 
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7. Data and methods  

 

Most of the data used in this paper were collected during the marine geological cruises on R/V 

Helmer Hansen in July 2015 but partly also in 2014 and 2013. Study is based mostly on the 

high-resolution multi-beam and single-beam echo sounder data from the area of interest and 3D 

reflection seismic data. 2D seismic were used to get better regional understanding of the area. 

 

High resolution 2D seismic  

For this study, 2D reflection seismic acquisition were provided using two mini GI (Generator-

Injector) air guns with total volume of 60 in3, which are especially suitable to get high-

resolution data. Shooting rate was 3 seconds and the sampling rate - 0,25 ms. Data have been 

processed on-board in Radex-Pro for quality control and then imported to Petrel for further 

independent analysis. (Center for Gas Hydrate, Environment and Climate (CAGE), 2015) 

Additionally, several 2D seismic lines used in this study were provided by Norwegian 

Petroleum Directorate (NPD). Location of the seismic 2D lines is demonstrated on Figure 5. 

 

 

Figure 5. Bathymetry map of the area surveyed showing location of the seismic 2D lines: Rose and 

yellow lines were collected by CAGE during marine geological cruises in 2014 and July 2015, 

respectively; blue lines were provided by NPD. 

 

High resolution 3D seismic  

Although, both 2D and 3D seismic are based on the principle of penetration of the surface by 

sound waves to record lithological changes in the subsurface and were used to study deeper 

subsurface, 3D seismic allows imaging of deeper structure and stratigraphy with relation to the 

seafloor features and to analyze continuity of features of subsurface. During 3D reflection 

seismic survey, the P-Cable 3D high-resolution seismic system including 14 streamers 25 m 
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long each, were used. It allowed to cover large area with close channel spacing at 3,125 m. 

Shooting rate during 3D seismic survey was 6 seconds and sampling rate – 0,50 ms. After on-

board data processing in Radex-Pro for quality control and in Petrel, data were imported to 

Petrel for further analysis, which were provided independently for this study. Frequency of the 

3D seismic vary in range 20Hz - 250Hz after processing, but average frequency is about 100-

150 Hz as shown on Figure 6. (Center for Gas Hydrate, Environment and Climate (CAGE), 

2015)  

 

 

Figure 6. Frequency (Hz) vs Amplitude (%) graph compiled based on the migrated 3D seismic data 

used in the current investigation. 

 

Echo sounder data 

High resolution bathymetry data were collected using hull-mounted Kongsberg Simrad EM 300 

multi-beam echo sounder with wave frequency 30 kHz. The outer beams of the EM 300 can be 

of low quality due to speed and reception of signal errors so to prevent loss in quality there is 

usual overlap between tracklines about 7-25%. Programs Fledermaus and ArcGis were used to 

visualize and process the data. The backscatter data were acquired abroad R/V Helmer Hansen 

using a keel-mounted Simrad EK 60 single beam echo sounder. Transducer at frequency 18 

kHz were used to detect gas leakage from the seafloor. Distance between the tracklines is 60 

m. (Center for Gas Hydrate, Environment and Climate (CAGE), 2015) The water-column 

backscatter data were evaluated to identify anomalies using the software Fledermaus Midwater. 

Gas flares were mapped on the bathymetry of study area using Fledermaus and FM Midwater. 

Independent visual analysis was made to qualify gas plumes and a subjective quality factor 

from 1 to 9 was assigned to each flare. 

 

 



   17 

 

8. Results 

8.1 Seafloor geomorphology 

A range of the geomorphologic features on the seafloor within the study area provides 

information about two main processes: deglaciation and release of the free gas from subsurface.  

 

8.1.1 Glacial geomorphology 

Straight linear ridges 

Description 

Large elongated ridges are observed in the central part of the area surveyed. They are up to 2,3 

km long and 0,35-0,8 m wide The individual lineations have relief of up to 1,5 m, but averagely 

it varies in range 0,5 – 1 m. Elongation ratio of the lineations is up to 33:1. These features are 

barely recognizable on the seismic sections, but can be well seen on the shaded relief map (blue 

lines on the Figure 7b). 

Interpretation 

The streamline lineations observed on the study area of Upper Bjørnøyrenna are interpreted to 

be mega-scale glacial lineations (MSGL) produced by a fast-flowing grounded glacier. This 

interpretation has been made on the base of previous studies reporting similar features from the 

marine environments in Antarctica, offshore of Norway and Canada, where they appear in the 

areas occupied by fast-flowing ice streams. (Andreassen et al., 2008) 
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Figure 7. a) Shaded map of the study area in Upper Bjørnøyrenna; b) The same image as (a), with main 

glacial geomorphological features indicated: dashed yellow lines - ice sheet retreat ridges; solid blue 

and rose lines - mega-scale glacial lineations (MSGL), and iceberg plough marks, respectively. Location 

of bathymetry profile shown on Figure 8 is marked by solid white line. 
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Linear curved furrows 

Description 

Prolonged linear furrows occur at all parts of study area. Their distribution is shown on the 

Figure 7b where they are marked by solid rose lines. Features are often curved and U-shaped 

in cross-profile and vary significantly in length, depth and width both between furrows and 

within a single furrow. Orientation is random to preferred in west-east direction. Features are 

typically 2 m to 70 m wide and may be followed for up to 4 km. Common for these furrows is 

to have levees at their sides from few cm to 1 m high. Maximal relief is 1 m and structures are 

clearly visible on the shaded bathymetry map but are barely recognizable on the seismic profile.  

Interpretation 

Linear curved furrows on the seafloor are morphologically similar with features, which has 

been reported from other areas of the central and southwestern Barents Sea as Ingøydjupet, 

Djuprenna and Tromsøflaket, and are interpreted to be iceberg plough marks. (Andreassen et 

al., 2008) There are erosional structures caused by movement of icebergs by currents and wind 

along the seabed before final smelting of the glacier. Scouring of the seafloor is a very common 

feature in front of marine glacier and can lead to overprinting of previously formed 

geomorphological features but, in case of the study area, iceberg plough marks only erode and 

do not erase the underlying structures. (Andreassen et al., 2008; Benetti et al., 2010)   

 

Parallel elongated ridges 

Description 

Mainly only on the western slightly uplifted part of the study area where water depth vary 

between 337 and 333 m, small elongated ridge structures are recognized (Figure 8). Preferred 

orientation is west-east and they are typically occur parallel to each other. About 30 of these 

ridges are concentrated on the area of 3 km2 and are not presented or completely eroded on 

other parts of area of interest. Their location is presented on the figure 5. Ridges are 15-50 m 

wide with length varying in range 100-700 m. Relief is from 40 cm up to a slightly over 1 m. 

 

 

Figure 8. Bathymetry profile demonstrated iceberg retreat ridges and iceberg plough mark within the 

study area. Location is marked on Figure 7b. 
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Interpretation 

Based on morphological and morphometrical properties of the elongated ridges discovered on 

the study area two main preposition according to interpretation were made: glacial flutes and 

ice sheet retreat ridges. However, orientation of the described features perpendicular to the ice 

stream makes the first preposition extremely improbable. Therefore, small parallel ridges have 

been interpreted as ice sheet retreat ridges. Possibly, they were formed by meltwater flowing 

under the glacier and depositing sand and gravel in form of elongated tails, which were left 

standing after the glacier retreated. (Lucas, 2015) 

 

8.1.2 Craters and mounds 

Description 

In the study area, there are 18 large crater-like depressions of different shapes and diameters 

(Figure 9). Most of them have relief of 20-25 m and up to 35 meters, few are about 2-5 m deep 

but are still easy to identify on both the bathymetry map and seismic profile. Depressions have 

circular slightly prolonged to elongated shape stretching in two main directions: northeast - 

southwest and northwest –southeast. The individual craters can be up to over 900 meters long 

and 150 to 650 meters wide. Their elongation ratio are up to 2.5:1. Some of the depressions 

contain internal steep-sided mounds and ridges, rising as high as, or even greater than the crater 

walls. Numerous smaller scale depressions are spread around the whole study area but are 

slightly tighter distributed in the western and central parts than at the east. They have average 

diameter of 30-40 m, but individual depression can be up to 90m wide. These structures has 

oval to circular shape and relief varying in range 0.5-2m. Mound structures are represented by 

large formations in different shapes up to 17 m high, located just within the craters rim and 

nearby on the seafloor. There are characterized by lack of internal structures. It is typical for 

mounds in the study area to be eroded on top by what has be interpreted as iceberg plough 

marks. Depression and mound are often described together as a single feature because of close 

proximity.  
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Figure 9. Bathymetry map of the study area in Upper Bjørnøyrenna. Location of craters and mounds, 

named C1-C6 and M1-M3, respectively, which will be discussed further in this paper, is demonstrated.  

 

There is no direct correlation between location and size of the structures, although, based on 

the existing multi-beam echo sounder bathymetry map, the deepest depressions occur closer to 

the central part of the study area with highest water depth while the most pronounced build-up 

structures are absent in the center and concentrated in the both western and eastern slightly 

uplifted parts. Next several paragraphs are devoted to detailed description of several 

representative craters and mounds (Figures 10- Figure 17), named C1-C6 and M1-M3, whose 

location is demonstrated on the Figure 12, as well as smaller-scale structures marked on the 

Figure 17. 

 

Crater C1 

Structure C1 shown on Figure 10b has a shape of an irregular oval prolonged in northeast-

southwest direction with maximal length of 980 m, and width varying from 250 m in the 

northern end to 550 m in the middle part and to approximately 90 m in the southwest. 

Depression is 29 m deep and has extremely steep slope of 69° at the western side opposite to 

more gentle one of 14° at the East, as shown on Figure 10d and Figure 10e. There are two 

mounds rising from the craters floor almost to the level of the crater rim and one more a few 

meters higher (Figure 10d). A fourth mound is much smaller and is located on the western 

sidewall of the crater. Internal mounds are demonstrated closer on the Figure 10c. 
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Figure 10. a) Bathymetry map indicating location of (b); b) Perspective image of crater C1; c, d and e) 

bathymetry profiles across crater C1 with location indicated in (b). 
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Crater C2 

 

 

Figure 11. a) Bathymetry map indicating location of (b); b) Perspective image of crater C2; c and d) 

bathymetry profiles across crater C2 with location indicated in (b). 

 

Crater C2 has north-south orientation and is located in the central part of the study area less 

than 500 m from the structure C1, as shown on Figure 11a. It is shaped as an oval and has 

maximal width of 430m and length of 590 m (Figure 11b). Average depth is 18 m but steep 

depression on the crater floor causes the maximal depth of the structure to be 25 m (Figure 11d). 

Two internal mounds 3 and 2.5 meters high are located in the northern part of the crater and 

can be seen on Figure 8c.  
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Crater C3 

 

 

Figure 12. a) Bathymetry map indicating location of (b); b) Perspective image of crater C3; c, d and e) 

bathymetry profiles across crater C3 with location indicated in (b). 

 

Structure C3 is located 1.2 km in the central part of study area, east from the depression C2 and 

is orientated in north-south direction (Figure 12a). There is complex structure consisting of 

multiple connected sets of depressions and ridges on the seafloor and is shown closer on the 

Figure 12b. Maximal depth of the depressions is approximately 7 meters. Length and width of 

the depression is 660m and 450 m, respectively. Randomly orientated mounds and ridges cover 

crater floor forming pattern of several sets of small depressions and build-ups (Figure 12c,d). 
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Ridge on the rim of the crater consists of several mounds 1-3 m high and divides crater from 

another structure. Part of the seafloor with diameter of 160 m at the southern edge of the C3, is 

surrounded by three ridges with average height of 2 m and individual peaks rising up to 3.5 m. 

Profile across it is demonstrated on the Figure 12e. 7 meters-deep depression in the middle is 

formed by mounds sidewalls with slopes of 4° at the east and 12°-17° on the other sides. 

 

Crater C4 

 

 

Figure 13. a) Bathymetry map indicating location of (b); b) Perspective image of crater C4; c and d) 

bathymetry profiles across crater C4 with location indicated in (b). 

 

Structure C4 is situated close to the crater C1 in north-east direction. Depression has nearly 

ideal circular shape and diameter of 270 m. Relief is 6-7 m as shown on Figure 13. The western 

side of the crater B has a very steep slope of 26° while slopes from other sides are much more 

gentle and averagely equal to 4-6°. There are no internal structures on the crater floor or at the 

rim.  
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Crater C5 and mound M1  

Complex structure, shown on Figure 14, northeast to the crater C1 has northeast-southwest 

orientation and is easily divided on two structures: depression and mound, C5 and M1, 

respectively. Crater C5 is about 700 m long and 500 m wide with maximal depth of 24 m. 

Similar to the most of the depressions nearby it has very steep western slope of 34° and gentle 

eastern one. Two stand-alone internal mounds is located on the crater floor and the third one - 

on the western sidewall. All of them are approximately 20 m high and rise up to the craters rim. 

There are also multiple build-ups with height of 5-8 m at the edge of the crater, surrounding it. 

 

 

Figure 14. a) Bathymetry map indicating location of (b); b) Perspective image of crater C5 and mound 

M1; c) bathymetry profile across the whole structure C5-M1 with location indicated in (b); d and e) 

bathymetry profiles, with location indicated in (b), across the crater C5 and mound M1, respectively. 

 

Structure M1 is the elongated oval-shaped mound with maximal relief of 6 m. Mound is 900 m 

long and 330 m wide, has quite smooth surface and no recognizable peaks of single mounds it 

could has been composed of, based on the cross-section profile. Structure is eroded on top by 
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several iceberg plough marks. The most pronounced one is 2 m deep with rather large levees 

on sides, and crosses mound in northeast-southwest direction. 

 

Crater C6 and mound M2 

Structure composed of crater, named C6, and mound – M2 is located at the eastern part of study 

area and is orientated in northwest-southeast direction. Their location and structure is closer 

demonstrated on Figure 15. Crater has length of 650m and width varying in range 270- 370 m. 

Several insignificant internal mounds on the crater floor and at the sidewalls with height less 

than 50 cm are presented. Maximal relief of the depression is equal to 20 m.   

 

 

Figure 15. a) Bathymetry map indicating location of (b); b) Perspective image of crater C6 and mound 

M2; c) bathymetry profile across the whole structure C6-M2 with location indicated in (b); d) 

bathymetry profiles across the mound M1, with location indicated in (b). 

 

Formation M2 has length and width of 580 m and 350 m, respectively, and maximal relief is 

12 m. View from above gives strong impression that structure is composed of several ridges 

cause of significant relief variations. However, closer look on the bathymetry cross-section 

profile on Figure 15d makes it more probable for structure to be “one-piece” build-ups, 

although, roughly eroded by iceberg plough marks. Natural mound relief is enlarged by levees 

of iceberg scours forms highest peaks of the mounds. 
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Mound M3 

Mound M3, shown on the Figure 16, have the same orientation and are rather similar with 

mound M2, based on their morphological characteristics and cross-section. Mound M3 is, 

however, more circular-shaped, and is 430 m wide and 470 m long, and rises up to 8 m over 

the surrounding seafloor.  

 

 

Figure 16. a) Bathymetry map indicating location of (b); b) Perspective image of mound M3; c) 

bathymetry profile across mound M3 with location indicated in (b). 

 

Smaller craters  

More than 20 smaller scale craters are spread around the area surveyed. They occur irregularly 

on the seabed both single, in groups and as satellites of the larger formations. Some craters are 

deeper and more sharply defined than others. On Figure 17a part of the seafloor is shown and 

seven such smaller craters are labelled in red circles and indicated by arrows. These structures 

are oval to circular in shape and have diameter of 30-40m and relief varying in range 0.5-2m. 

Figure 17b and Figure 17c represent bathymetry profiles across two of craters on the study area.  
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Figure 17. a) Bathymetry of the part of the seafloor in the study area, which location is demonstrated 

on Figure 9. Location of craters C1, C2 and C4 is indicated, smaller craters are concluded in red circle 

and marked by arrows; b and c) bathymetry profiles across particular craters, which location is 

indicated in (a). 

 

8.2 Seismic interpretation 

 

Faults 

The study area at Upper Bjørnøyrenna is highly faulted. Fault system has been identified and 

interpreted from seismic profiles and variance maps preferably at depths from 485 to 550ms, 

which show different structural features dominant at different depths. Elongated structures on 

the variance maps are interpreted as faults and fractures and are identified in seismic profiles 

by reflection discontinuities. Faults have principle orientation in northwestern-southeastern 

direction with few exclusions, which corresponds to regional faulting from Permo-Triassic 

extension. Several cross-cutting faults are also presented. Figure 18 demonstrates variance 

maps and one of the seismic profiles across the study area used for fault interpretation. 
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Figure 18. Variance maps in combination with seismic profile for identification and interpretation of 

faults within the study area. Legend and direction of the north arrow in left lower corner apply to all 

figures a-e: a, d, e) Variance maps at 490, 530 and 550 ms, respectively; b) Variance map at 500 ms. 

Dotted rose lines demonstrate proposed fault lines. Solid green line marks location of seismic profile 

shown in (c); c) seismic profile across the seafloor. Dotted yellow lines demonstrate proposed fault 

lines. Solid green line marks depth of 500 ms. 
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The seismic data (Figures 19-23) show also vertical and sub-vertical zones of distinct distorted 

seismic signals, which resembles chimneys and pipes or similar focused fluid-flow structures 

in the subsurface. Analysis of seismic profiles reveals that these acoustic anomalies occur 

mostly within fault zones, what leads to preposition that faults in the study area may represent 

vertical migration routes for shallow gas.  

 

Focused fluid flow 

Typical for fluid escape pipes and seismic chimneys in this study area are to have rather distinct 

vertical orientation with minor lateral offsets. These vertical columnar structures have diameters 

varying with depth. Gas pipes are identified on the majority of seismic profiles across the area 

surveyed, examples are shown on Figures 19 - 24. Presence of gas pipes has been revealed 

under all of the internal mounds inside the craters (Figure 20). Gas chimneys that represent 

larger vertical or sub-vertical areas of distorted seismic, than gas pipes, are not ubiquitous, but 

sufficiently common to be significant features as well. They are, in most occasions, found in 

association with depressions on the seafloor, as shown on the Figures 19b, 20. Unfortunately, 

cases when root zone can be identified with certainty are not observed on the seismic profiles 

along the area of interest. Limited penetration of the subsurface by the seismic waves due to 

relatively hard and shallow sandstone bedrock is enhanced by the loss of imaging accuracy and 

data quality with depth. Pipes are most clearly visible at depth between 460 – 550 ms, seismic 

chimneys are identified to a bit deeper levels of 625 ms. Reduced signal combined with high 

noise ratios makes it impossible to identify the true base of pipes and leaves the possibility for 

the root zone to be located at the deeper horizons. During the study of multiple seismic profiles 

form the study area, focused fluid flow structures were observed along straight paths following 

faults, what revels faults zones to be acting as vertical conduits. Although, the vast majority of 

fluid flow structures terminate at surface depressions and mounds, demonstrating a link 

between their formations through transport of methane, there are few gas pipes presented, 

terminating abruptly at a discrete subsurface horizon. One of examples is demonstrated on 

Figure 22. Such pipes may represent potentially important paths for venting methane directly 

to the seabed and are most probable associated with faults. 
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Figure 19. a) Bathymetry map indicating location of (b); b) Perspective image of the part of the seafloor 

indicated on (a). Location of the seismic profiles c and d is indicated by solid black lines; c and d) 

Seismic profiles across the seafloor. Location is indicated on (b). Seismic anomalies are named and 

indicated by arrows. Faults are marked by black dotted lines.   
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Figure 20. a) Bathymetry map indicating location of (b) by black rectangle. Two solid yellow lines inside 

the rectangle indicate location of seismic sections; b) 3D view of time-structure map of the seafloor and 

associated crater C1 accompanied by two seismic sections through crater C1. Seismic anomalies are 

named and indicated by arrows. Approximate boundaries of gas chimneys are marked by yellow dotted 

lines. 

 

High amplitude anomalies 

Strong seafloor amplitudes are accompanied by the local occurrence of moderate to high 

amplitude anomalies that generally correlate with location of depressions and mounds and may 

suggest the presence of hardgrounds, carbonates, free gas or methane hydrates. Most of the high 

amplitude reflections are observed in association with gas chimneys and along faults what may 

be caused by fluid migrating vertically through them and by high gas content in the porous 

infill. These features indicated by arrows on Figures 19-24 and its noted that brightness of 

observed anomalies vary significantly. Bright spots observed under depressions within the 

study area are interpreted to be parts of bottom simulating reflector, which is discussed in the 

next indent. At depth of 550 ms seismic reflector with increased brightness and continuity is 

defined on the most of seismic profiles from the study area (Figures 19c, 20, 21c, 23, 24) and 

interpreted to represent a lithological change to a denser layer.  
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Figure 21. a) Bathymetry map indicating location of (b); b) Perspective image of the part of the seafloor 

indicated on (a). Location of the seismic profiles c is indicated by solid black line; c) Seismic profiles 

across the seafloor. Location is indicated on (b). Seismic anomalies are named and indicated by arrows. 

Faults are marked by black dotted lines. Anomaly in question is concluded in yellow circle; d) Time-

slice at 475 ms. Location of seismic profile (c) is indicated by yellow solid line; e) Vertical seismic 

section representing chaotic reflection zone with mound as upper boundary and V-bright as lower 

boundary. The chaotic reflection is interpreted as mud and sand and the high-amplitude V-bright as a 

carbonate-cemented sand injection. Modified from Løseth et al. (2009), fig. 6. 

 

On the few seismic profiles, other forms of high amplitude anomalies are observed. One of the 

most prominent of them is demonstrated on the Figure 21c and represents an individual bright 
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reflector beneath one of the mounds bend downwards. Time slice at 475 ms through the seismic 

profile (Figure 21d) reveals circular-shaped structure with high amplitude at the rim 

surrounding area of wipe-out seismic. Several explanations has been considered, most probable 

of which are paleo-pockmark on which place the mound was formed and V-bright observed 

below chaotic reflection zone, interpreted as mud and sand, and representing carbonate-

cemented sand injection structure, similar to one described by Løseth et al., 2009 (Figure 21e).  

 

 

Figure 22. a) Bathymetry map indicating location of (b); b) Perspective image of the part of the seafloor 

indicated on (a). Location of the seismic profile c is indicated by solid black line; c) Seismic profile 

across the seafloor. Location is indicated on (b). Seismic anomalies are named and indicated by arrows. 

Faults are marked by black dotted lines.   

 

 



   36 

 

Bottom simulating reflector 

In the study area, the presence of strong reflector with reserved polarity, commonly 

accompanied by sudden blanking of the reflection, are compared with gas hydrate-related 

bottom simulating reflector (BSR). The BSR is revealed in shallow subsurface underneath the 

most of depressions, at depth between 25 - 75 ms bsf, roughly mimicking seafloor reflector. 

However, its appearance is rather irregular and highly disturbed by acoustic masking zones. 

The occurrence of such discontinuous BSR may represent gas accumulations below hydrate 

stability zone within highly fractured fault zones. The BSR is marked on Figures 19, 20, 23 and 

Figure 24 and insets on the Figure 23c demonstrate phase and polarity of the probable BSR in 

comparison to the seafloor reflector. However, more detailed analysis is required to make 

certain conclusions.  

 

 

Figure 23. a) Bathymetry map indicating location of (b); b) Perspective image of part of the seafloor, 

with crater C5 and mound M1. Location of seismic profile (c) is indicated by solid black line; c) Seismic 

profile across the seafloor with location indicated on (b). Seismic anomalies are named and indicated 

by black arrows. Faults are marked by dotted black lines. Two small insets on the seismic profile 

indicated by white arrows show variable area/wiggle trace displays of a BSR (negative phase) and of 

the seafloor reflection (positive phase). 
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Velocity anomalies 

Presence of gas within sediments reduces seismic wave velocity and pull-down effect (smile) 

is created on the underlying reflector. This feature is observed on a few seismic profiles across 

the area and is marked on Figures 22 and 23. 

 

Acoustic blanking 

 

 

Figure 24. a) Bathymetry map indicating location of (b); b) Perspective image of part of the seafloor, 

with crater C6 and mound M2. Location of seismic profiles (c) and (d) is indicated by solid black lines; 

c, d) Seismic profiles across the seafloor with location indicated on (b). Seismic anomalies are named 

and indicated by black arrows. Faults are marked by dotted black lines.  
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In the study area, acoustic blanking in sediments is observed on the most of seismic profiles 

across the study area. Such anomaly in most occasions is observed at depth below 650 ms and 

within gas chimney where seismic reflection is highly distorted. Both cases is demonstrated on 

Figure 24c and 24d, respectively. It is interpreted to be caused by both disturbance of seismic 

wave in gas-charged sediments and reflection of a large proportion of acoustic energy by an 

overlying quite hard Triassic sandstone bedrock, reducing returning signal.   

 

8.3 Gas in water column 

The Upper Bjørnøyrenna in the central Barents Sea is an area with gas venting from a seabed. 

During analysis of backscattered data provided by 18 kHz echo sounder, 749 water column 

anomalies, which correspond to gas plume, have been identified during the investigation. Each 

of flares has been assigned a quality factor from 1 to 9 dependent on the set of qualities based 

on reflection strength, continuity and start point, in the study area. There has not been made 

chemical analysis of gas bubbles from plums but they most likely contain methane as the net 

flux of methane from the area of the Barents Sea only few kilometers away from the study area 

and with the same morphological features investigated by Solheim et al. (1993) and Lammers 

et al. (199) was estimated to be about 2.9 x 104 g CH4 km -2 yr-1 and vertical profile revealed 

extremely high methane content in range between 29.0 to 56.7 nM. (Lammers et al., 1995; 

Solheim et al., 1993)  

 

8.3.1 Gas flare classification 

Each single flare was assigned a subjective quality factor from 1 to 9 corresponding to 

combination of qualities such as strength, continuance and start point (Table 1). Quality factor 

1 to 8 was assigned to gas seepages that more or less corresponded to the qualities of interest. 

Estimations were made the following way: 

 Continuity: gas plumes with uninterrupted length equal or greater than 50 m were 

considered “long”.  Shorter than 50 m were interpreted as “short”.  

 Strength: flares which are visually perceived to be colored red more than yellowish or 

greenish when the target strength (Ts) histogram has range between 75 and 45 negative 

dB are interpreted to be “strong”. Others are considered to be “weak”. 

 Start point: difference between the seepages that go directly from the seafloor and the 

flares that start in midwater and are most likely to be a part of some bottom-plume but 

we cannot be sure which exactly. 
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After discussion, quality factor 9 was added to be used for classification of gas seepages which 

relation to quality factors 1 to 8 is uncertain because of variable features. There are mostly flares 

with uneven strength or discontinuous flares.  

Figure 25 represents the examples of along trackline echogram profile of water column 

backscattered data. Anomalies, red to green, in the black rectangles A and H on Figure 25a and 

I on Figure 25b are considered noise and excluded from qualification. Water column anomalies 

marked by black spheres B-G (Figure 25a) are all considered gas plumes remarkable enough to 

be reflected in the classification. The same principle of visual identification of gas seepages 

were applied to all other echogram profiles. 

 

 

Figure 25. Examples of along trackline echogram profiles of water column backscattered data; a) Water 

column anomalies marked A and H are classified as noise and B-G as gas plumes; b) Anomaly I in the 

black rectangle is considered noise. 

Following Table 1 demonstrates how combinations of qualities correspond to quality factors of 

gas plumes: 
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Table 1. Combination of qualities of interest correspondingly to quality factors 1 to 9. 

 

8.3.2 Results  

Figure 26 shows examples of gas flares assigned to each quality factor from 1 to 9. Quality 

factor 9 is represented by three images: Figures 26i, j, k shows different types of flares with 

variable features as discontinuity, uneven strength and external disturbance causing difficulties 

with identification of a flare, respectively.  
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Figure 26. Example of gas flares from water column backscattered data from the Upper Bjørnøyrenna 

in the central Barents Sea assigned to quality factors 1 to 9. Gas plum of interest for each quality factor 

is concluded in the black circle. Legend target strength (dB) in the higher right corner applies to all of 

the images a – k;.a) Quality factor 1; b) Quality factor 2; c) Quality factor 3; d) Quality factor 4; e) 

Quality factor 5; f) Quality factor 6; g) Quality factor 7; h) Quality factor 8; Quality factor 9 is 

represented by several images: (i):  discontinuous flare; (j):  uneven reflection strength; (k): disturbance 

in the water column causing difficulties to classify gas flare with confidence.  

 



   42 

 

When mapping and classification of gas seepages in the study area were completed, models 

shown below on Figure 27 were compiled. Images from (a) to (d), in alphabetic order, 

represents the bathymetry of Upper Bjørnøyrenna with mapped gas plums of one particular 

quality factor 1, 2, 3 and 4, respectively. Gas flares of quality factors 1 and 2 represent strong 

reflections directly from the sea bottom and form nearly the largest groups. They are almost 

evenly spread in east-west direction but with highest concentration of plums in the eastern end 

of the study area. Weak reflections assigned with quality factors 3 and 4 are going from the 

seabed and are densest in the western central part of the area of investigation. Their presence 

are easily associated with deep depressions and are possibly caused by small-scale and/or 

periodical gas leakage, which changes methane-flux in water column. More data and prolonged 

investigations are needed to discuss causes and changes in seepages. Flares in the midwater 

(quality factors 5 - 8) are parts of some bottom flares divided from it and are shown on the 

Figure 27f. They are traveling in the water column and are presented along all of the zigzag-

pattern where gas is leaking from the subsurface. Flares with variable features (quality factor 

9) are demonstrated on Figure 27e, some of them starts from the seabed and some are midwater 

plums. Table 2 provides information about quantity distribution of gas flares between quality 

factors 1 to 9. Note, that because of classification’s subjective nature, some of the gas flares 

might be missed or mixed up. 

 

 

Table 2. Quantity distribution of gas flares between quality factors 1 to 9 
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Figure 27. Bathymetry map of the study area in Upper Bjørnøyrenna with mapped gas flares of quality 

factors 1-9. Legends in the right upper corner show target strength (Ts) of gas flares in dB and 

bathymetry depth in meters. Both legends and north arrow apply to all of the images (a)-(e): a) 

Bathymetry map of the study area with gas flares of quality factor 1; b) Bathymetry map of the study 

area with gas flares of quality factor 2; c) Bathymetry map of the study area with gas flares of quality 

factor 3; d) Bathymetry map of the study area with gas flares of quality factor 4; e) Bathymetry map of 

the study area with gas flares of quality factor 9; f) Bathymetry map of the study area with gas flares of 

quality factor 5,6,7 and 8, all in midwater. 
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Figure 28a shows all 749 gas flares, which have been identified and mapped on bathymetry 

map of the Upper Bjørnøyrenna. Gas seepages form an irregular pattern on the seafloor and are 

most dense in the Eastern end of the study area and in the central cratered part and became 

fewer closer to the uplifted Western part. Only the gas plumes going directly from the seabed, 

what includes flares of quality factors 1-4 and partly factor 9, are presented on Figure 28b to 

demonstrate pattern of real leakage. Deeper investigations and re-survey are required to make 

reliable assumptions about local variations of seep activity. 

 

 

Figure 28. a) Bathymetry map of the study area in Upper Bjørnøyrenna with all identified gas flares 

mapped; b) Bathymetry map of the study area with mapped gas flares going directly from the seabed. 

 

8.4 Interpretation of craters and mounds 

The fault system, identified from the seismic data, and gas plumes directly from the seabed, 

show similar pattern of distribution, a correlation, which is considered unlikely to be random. 

Therefore, faults are interpreted to be active migration routes for the gas leaking from the 

subsurface. Figure 29 represent the bathymetry map of the area of interest, where faults and exit 

points of gas flares on the surface are marked. In addition, detailed seismic interpretation shows 

clear correlation between seismic amplitude anomalies, BSR and distinct craters and mounds 

on the seafloor. Based on overall analysis of seismic and echo sounder data from the area 

survey, the following were suggested: formation of craters and mounds has occurred, largely, 

as a result of gas hydrates formation and decomposition in shallow subsurface, supplemented 

by continuous supply of the gas-saturated pore fluid migrating through fractured fault zones 

from deeper reservoir. Therefore, craters and mounds in the study area are interpreted to 
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represent a result of the process of formation and decomposition of gas hydrate in shallow 

subsurface, described in detail in paragraph 8.5 and illustrated on Figure 30. Prominent craters 

C1, C2, C4 - C6 and other, similar to them, may be referred to as collapse depressions caused 

by gas hydrate decomposition and pore pressure build up. Mounds on the seafloor, including 

M1, M2 and M3, are interpreted to be collapsed pingo structures. Structure C3 (Figures 12) 

because of low relief may be referred to as both collapse depression and collapsed pingo. 

Location of all structures mentioned in the text is marked on Figures 9 and 29. 

 

 

Figure 29. Bathymetry map of the part of Upper Bjørnøyrenna. Black lines mark faults and red dots 

demonstrate distribution of gas plumes going directly from the seabed. Craters C1-C6 and mounds M1-

M3 are marked. 

 

Smaller craters, shown on Figure 17a, are interpreted to be pockmarks. These features were for 

the first time mentioned by King et al. (1970), who suggested them to be formed by ascending 

gas or water. Seismic profiles (Figure 22) from the study area show direct correlation between 

seismic anomalies (gas pipes) and distribution of the described features within the seabed. 

These small craters are considered to “record the existence of seepage” and be formed by the 

removal of material by fluid and gas escaping from the sediment. (Hovland et al., 1988)  

 

8.5 Formation model  

The formation mechanism of craters and mounds on the seafloor within the study area in the 

Upper Bjørnøyrenna, interpreted to be a function of gas hydrate formation and decomposition 

is schematically presented on Figure 30 according to the following six phases:    

1) Gas hydrate nucleation within the Triassic rocks beneath the ice during the last glaciation 

due to upward migration of gas-saturated pore fluid and free gas from deeper reservoir through 

existing fault system.  
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2) Gas hydrate growth results in expansion of volume, which is accompanied by uplift and 

deformation of upper sedimentary layers.  

3) During the deglaciation, gas hydrates became gradually depressurized what leads to them 

been unstable and melt. Decomposing of methane hydrate causes increase in required storage 

volume by factor at least six, according to Hovland et al., 1988. At the same time, continuing 

supply of pore fluid saturated with gas from underlying levels builds up excess pore pressure. 

Excess pore pressure and growth of gas hydrate is revealed by further deformation of the 

seabed, forming dome structure named gas hydrate pingo.  

4) Excess pore pressure in the dome structure, after it has been lost its holding strength, is 

released by eruption through the fractures in the dome. Gas, water and sediment are ejected in 

the water column. 

5) Gas hydrate pingo structure collapses forming variable structures such as collapse 

depressions and collapsed pingoes as a consequence of hydrate decomposition and pore 

pressure.  

6) Stabilization of gas hydrate. Fault zone and fractures in the gas hydrate layer are still working 

as leakage routes for gas from underlying levels.  
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Figure 30. A conceptual sketch showing formation model for craters in the Upper Bjørnøyrenna, the 

central Barents Sea. 1) Gas hydrates nucleation due to upward migration of gas-saturated pore fluid; 

2) Growth of gas hydrates leads to deformation of upper sedimentary layers; 3) Gas hydrates are 

depressurized during deglaciation and became unstable and melt what leads to increase in required 

storage volume and further expansion. Gas-saturated pore fluid continues to supply and builds up excess 

pore pressure. Gas hydrate pingo is being formed; 4) Expulsion of the gas, water and sediments in the 

water; 5) Collapse of dome structure forming collapse depression or/and collapsed pingo; 6) 

Stabilization of gas hydrates, leaving depression and collapsed pingo on the seafloor. Gas from 

subsurface continues to leak through fault zone and fractures. 
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9. Discussion 

Several researches have been previously made in the study area. Solheim et al. (1993), as well 

as Long et al. (1998), studying the area of the Upper Bjørnøyrenna, mention that seafloor in 

this part of the Barents Sea is characterized by a fields of large semicircular closed depressions 

(Figure 31). Data from hydrosweep survey in 1991 proclaimed also presence of the several 

mounds 5- 10 m high near the craters, but these formations were misinterpreted to represent an 

artefact in data acquisition due to cross-talk. However, later data proved mounds within the 

craters to be real geomorphological structures and initiated discussions about their potential 

origin as well as crater formation mechanisms. (Long et al., 1998; Solheim et al., 1993) 

 

 

Figure 31. Bathymetry map of the part of the study area in Upper Bjørnøyrenna provided by multi-beam 

echo sounder during survey in June 2015 underlying the 50% transparent elevation map of the same 

area compiled by Long, et al. (1998), based on the hydrosweep surveys from 1991 and 1993. Modified 

from Long et al. (1998), fig. 1. 

 

General understanding of glaciation history of the Barents Sea as well as identification of the 

glacial structures on the seabed within the study area suggests that this part of the Barents Sea 

has been covered by the ice sheet during the Late Weichselian Maximum and is confirmed by 
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Solheim et al. (1993) and Winsborrow et al. (2009). Pre-Late Weichselian age for the described 

crater and mound structures, assuming that they are a result of the same process and were 

formed simultaneously, seems unlikely. Pronounced and distinct patterns inside the depressions 

suggests that they were not filled with glacial sediments during glaciation, otherwise, it would 

be expected for them to be smoothed and infilled with time and demonstrate partly buried 

pattern. Hence, preposition was made that craters and mounds in the study area were formed 

during the deglaciation period, around 15 cal ka BP, while the area were rather unstable. 

(Solheim et al., 1993; Winsborrow et al., 2009)  

Mounds in the study area are characterized by an absence of basal structure corresponding to 

regional seafloor reflector (Figure 24), what makes them unlikely to be depositional structures.  

According to Serié et al. (2012), mounds without a basal paleoseafloor reflection “could result 

from intrusion of fluidized sediments or gas hydrate expansion in the shallow subsurface 

forming hydrate pingoes”. Lack of extrusive features such as mud diapirs suggests against 

interpretation of mounds as a result of extrusive processes forming mud mounds or mud 

volcanoes. Otherwise, the presence of deeper reservoir and related developed fault zone as well 

as continuous active gas leakage confirms the high fluid flux from thermogenic origin in the 

study area over a prolonged time, keeping the methane concentration at the necessary level. 

This fact, together with the morphological characteristics of the mounds with absence of 

internal structures and basal reflection, their close association with BSR and seismic anomalies, 

supports the interpretation of the mounds in the study area as gas hydrate pingoes and makes 

them rather similar to structures from the Kwanza Basin, offshore Angola, described by Serié 

et al. (2012). (Serié et al., 2012; Hovland et al., 2006)  

Solheim et al., 1993, considering shape and size of individual depressions in Upper 

Bjørnøyrenna, have discussed several possible mechanisms of their formation: meteorite 

impact, glacitectonic processes and processes related to shallow gas and gas hydrates in the 

area. (Solheim et al., 1993) These hypotheses were reconsidered with relevance to the 

depressions and mounds within the study area of Upper Bjørnøyrenna and contemporary data 

were taken into account. No survey and sampling provided since 1993 gave information, which 

could confirm the impact origin, like abundant impact metamorphic rocks or typical shock-

related structures. Some structures observed within the study area (Figure 15) meet the 

morphological description of “hill-hole pair”, which is the one of the most representative types 

of glacitectonic landforms consisting of a basic combination of “ice-scooped basin and ice-

shoved hill”. (Aber et al., 1989)  However, “hill-hole pair” formation is a direct result of 

movement of glacier along seabed, during which some material is removed from up-glacier 
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basin and deposited as ice moraine. This not corresponds with observation that mounds in the 

study area lack basal paleoseafloor reflector. Although, “holes”, in some cases, are identified, 

without “hills” in close proximity, the glacitectonic origin of the craters in the study area are 

still found unlikely. (Bluemle et al., 1984) Size of the depressions and suggested absence of the 

strong coupling between the glacier and its bed through freezing makes it doubtful for the 

glacitectonic processes to occur in the area. (Solheim et al., 1993) Active gas seepage in the 

study and presence of the numerous pockmarks within the study area confirms that gas is 

escaping through the seafloor and suggests eruptions. However, very vigorous gas eruption is 

required to create craters, which average diameter exceeds 400 m, in the rather hard Triassic 

bedrock. The origin of the mounds in the study area, interpreted to be collapsed gas hydrate 

pingoes suggests the possible influence of the processes of gas hydrates decomposition on the 

craters formation within the investigated area. It has been suggested that formation of the deep 

crater-like structures on the bottom of the central Barents Sea are most likely to be caused by 

eruptions of gas, when a large volume of free gas were released from the decomposition of gas 

hydrates during rapid deglaciation. (Solheim et al., 1993) Sultan, et al. (2010) introduced 

tentative model of the formation of collapse depressions in Niger delta as a function of hydrate 

formation and dissolution, which cause sediment collapse. He suggested five formation phases 

including free gas and gas hydrate nucleation above a critical depth; expansion of volume due 

to hydrate growth; decrease in gas content below saturation at the gas hydrate boundary due to 

decrease in fluid migration; hydrate dissolution and collapse; disappearance of the solid hydrate 

and the cease of fluid activities. Prior et al. (1982) and Hovland et al. (1988) also described 

pockmark-like features as collapse depressions in their studies and claimed them to be produced 

not because of erosion, but by the collapse of seabed when reduction of volume in “sediment-

pore water-gas system” has occurred. Although, they did not make certain connections with gas 

hydrates, it would not interfere the main principal of the formation.  

Proposed formation model, demonstrated in the paragraph 8.5, is a hypothesis, which is 

compiled based only on the analysis of seismic- and echo sounder data from the area surveyed. 

However, due to rather limited understanding of gas hydrate pingoes formation process, 

untypical morphometrical characteristics of the studied structures and subjective character of 

the current investigation, further data analysis and detailed discussions are required to make a 

conclusion about concepts viability. 
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10. Summary and conclusion 

 

Seismic and bathymetry data from area surveyed in the Upper Bjørnøyrenna, the central Barents 

Sea, confirmed presence of the deep crater-like depressions and rough, uneven mounds within 

the seabed, reported by the number of previous investigations. Analysis of seismic and echo 

sounder data reveals clear connection between these distinct crater and mound structures on the 

seafloor and high amplitude anomalies, fluid flow anomalies and strong discontinuous BSR. 

From the echo sounder data 749 gas flares have been identified during the investigation, each 

of which has been assigned with quality factor from 1 to 9 dependent on the set of qualities as 

reflection strength, continuity and start point. Distribution pattern of the gas seepages 

correspond to the location of faults in the study area what suggest that gas is of thermogenic 

origin and is migrating from the deeper reservoir through porous layers and faults working as 

vertical conduits. Formation and stability of gas hydrate layer in shallow subsurface are most 

probable connected with the last glacial period Late Weichselian Maximum. Rapid deglaciation 

could initiate the process of gas hydrate decomposition what, accompanied by continuous 

supply of free gas from deeper layers, led to enlargement of required storage volume for 

methane, formation of gas hydrate pingoes, deforming seafloor, and, finally, escape of the large 

amount of gas, when the structure collapse. Therefore, depressions and mounds are interpreted 

to be collapse depressions and collapsed hydrate pingoes, respectively, and formed as a result 

of processes of dynamic formation and decomposition of gas hydrates in shallow subsurface. 

These structures were formed around 15 ka cal BP, during the retreat of Last Weichselian ice 

sheet while area was rather unstable.  

The subjective nature of the current investigation always leave place for the possibility that 

some details of the study will be misinterpreted what will lead to the uncertain conclusions; 

second analysis of the available data or data from the re-survey may lead to the conclusions 

refinement in the future. Also, prolonged investigations and re-surveys are required to estimate 

development and observe changes happening with local methane in time perspective. 
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