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Abstract

The studies about the climatic changes have always more underlined the im-
portance of the climatic balance of the Arctic regions. For this reason the need
of monitoring the Arctic becomes always more urgent. To measure the sea ice
thickness, the sea ice cover, the motion of the glaciers and to discriminate the
various kind of ice are only several of the challenges about the Arctic moni-
toring. But the extreme climatic conditions make the Arctic one of the most
inaccessible regions on the Earth. Radar imaging and in particular polarimetric
radar imaging provide indispensable instruments in this challenge. In our thesis
work we analyzed a common topic in radar polarimetry: the model-based de-
compositions. Such decompositions have the goal of interpreting the scattering
mechanism for each single pixel in the polarimetric image through statistical
instruments, as the covariance or coherency matrix, and physical instruments,
as the main laws of the electromagnetism in the context of the scattering theory.
The model-based decompositions are typically characterized by a large number
of unknowns, the parameters of the target, but usually they cannot be estimated
for lack of enough equations. Typically, the model-based decomposition prob-
lems are underdetermined and in order to find an unique solution it is necessary
fixing some parameters or making some prior assumptions. The ideal condition
would be to have more equations in order to uniquely resolve the system, with-
out approximations. This it is exactly the goal of our thesis work, introducing
new equations using the fourth-order moments. Investigating such a possibility
we analyzed a particular specific model-based decomposition for the sea ice:
the Sea Ice Two-Component decomposition. The simulations have been made
using test pattern especially built in such a way to have a solid and effective
reference of the quality of the decomposition. Only after we tried with the real
sea ice image of the Fram Strait, Greenland. The obtained test pattern results
have shown a significant improvement in the parameters estimation compared
to the second-order case. As regards the real simulations, we cannot affirm the
same thing of the test patterns. However, we think the good test pattern re-
sults, are a preliminary confirm of the usefulness of the fourth-order moments
in the model-based decompositions. To use the additional equations given by
the fourth-order moments, it has enabled us: 1) to find an algebraic solution
without fixing any parameters, 2) the possibility of including the product model
and so to get the information texture for any model-based decomposition. How-
ever, often to find an analytic solution is very complicated. For this reason, we
implemented an optimisation algorithm with a relative normalisation strategy
that it allowed us: 1) to retrieve a solution when an algebraic solution cannot
be found and retrieving a lager number of free parameters in respect to the tra-
ditional model-based decomposition, 2) to obtain smooth image thanks to the
speckle robustness of the optimisation algorithm. Concluding, our work shows
a preliminary possibility of using the fourth-order moments in the model-based
decompositions.






Chapter 1

Introduction

1.1 Motivations and goals

In the last fifty years, it has been possible to see an important development
concerning Radar systems and Remote Sensing. Historically, Radars were born
in military context where the presence of impressive economic resources is well-
known. This fact has definitely contributed to its majestic scientific develop-
ment. It is easy to see how much nowadays radar systems are spread in several
fields: meteorology, astronomy, geophysics, surveillance systems and diagnostic
and therapeutic applications. A particularly important topic in radar studies
is polarimetry. Radar polarimetry uses the polarization of the electromagnetic
waves as additional parameter in order to get additional information about the
target. Nowadays Synthetic Aperture Radar are considered as the last genera-
tion radars. SARs are basically pulsed radar mounted on airborne or spaceborne
systems and they use the motion of the platform where they are placed in order
to realize a spatial sampling illuminating the target for a longer time interval
and to receive a large number of echoes from the target compared to the fixed
radar systems. This technique achieves very high spatial resolution. Particu-
larly innovative are the Polarimetric SAR or more commonly called PolSAR.
These last are SAR that use the polarimetry and they can be considered the
latest generation radar. The main characteristic of the PolSAR data is that
they are related to a large amount of information about the considered tar-
get. Often, the number of physical parameters that influence the signal are
greater than the measured terms. This fact has caused in PolSAR area the
birth of several studies and method with the same goal: to find estimators in
order to estimate the major number of parameters with an high degree of ac-
curacy. One of the first method applied at the analysis of PolSAR data have
been the “decompositions”. These methods consist of decomposing the covari-
ance matrix in N components each of them is related to a particular scattering
mechanism. The most used decompositions are the eigenvalue-decompositions
and the model-based decomposition. The eigenvalue decompositions are based
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on the eigenstructure of the covariance matrix while the model-based decom-
position are based on the physics meaning of the covariance matrix. Typically
the scattering mechanisms are three: surface scattering, volume scattering, and
double-bounce scattering. The main characteristic of the model-based decom-
position is that they are based on the physic scattering model derived from the
laws of electromagnetism. Unfortunately, often the number of unknowns, the
parameters describing the target, is more than the number of equations. In this
sense, it is usual to make prior assumptions or approximations in order to resolve
the problem uniquely. Typically the model-based decompositions use only the
second-order statistics, the covariance matrix. It is hard to find research about
polarimetry that use higher-order moments than the second-order. This is ex-
actly that we tried to verify: to use the fourth-order moments in order to have
a greater number of equations and so solve the problem without assumptions or
approximations. This goal is very ambitious and it is important to mark that
it has not been explored before. We think if we succeed it is possible to create
a new trend in radar polarimetry. A large important section of this thesis work
has been analyzing and implementing the specific model based-decomposition
for the Sea ice proposed in [9]. Later we will refer to this decomposition as
the Sea Ice Two-Component decomposition. In the literature it is easy to find
a large number of articles about the model-based decompositions, but most of
them propose model-based decomposition for urban area, forests, and vegetated
areas. It is harder to find a model-based decomposition specified for sea ice. Let
us try to understand why. Sea ice, in particular the Arctic sea ice, shows unique
characteristics very different from any other matter usually analyzed in remote
sensing. In our work we will describe the main electromagnetically properties of
sea ice. Climatic changes and global warming are topical issues. It is well known
that the Arctic climate plays a primary role in the world climatic balance. For
this reason a lot of studies and research originates with the goal of monitoring
and getting information about the Arctic regions. The extreme climatic condi-
tions, as the darkness, very low temperatures, impressive snowfall and strong
winds, make the Arctic one of the more inaccessible regions on the Earth. In
this sense, Remote Sensing and Radar Systems provide essential tools for the
ambitious challenge of monitoring of Arctic. In conclusion, the main goal of
our work has been verifying the possibility of using fourth-order statistics in the
model-based decomposition in order to extract a greater amount of information
without using prior assumptions or approximations. In doing so, we widely an-
alyzed the Sea Ice Two-component model and so we will show the development
of this specified decomposition for sea ice.

1.2 Structure of the thesis

Let us see the chapters in review.

e Chapter 2 “Polarimetric Radar Imaging” : in this chapter we will recall
the main concepts about the electromagnetic theory, Synthetic aperture
radar and Polarimetric Synthetic Aperture radar.
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e Chapter 3 “Arctic Sea Ice” : this chapter contains all the concepts about
sea ice that we think are useful for the following chapters. In order to de-
scribe the Sea Ice we started by describing the physical model and finished
with its electromagnetic behavior.

e Chapter 4 “Polarimetric Decomposition Theorems”: this chapter recalls
the most important concepts related to our work. In particular we recalled
all the concepts about radar polarimetry and we described with partic-
ular attention the most important model-based decomposition theorems.
The model-based decomposition considered have been the Freeman and
Durden decomposition, the Non Negative Eigenvalue Decomposition and
the Sea Ice Two-Component decomposition. We concluded this chapter
describing their differences.

e Chapter 5 “Model-Based Decomposition with Higher-Order Statistics”:
this is the heart of our work. We started describing the PolSAR data
statistics and recalling the product model and the texture concepts. Sub-
sequently, we described the used approach to apply the higher-order statis-
tics to the traditional model-based decomposition. Particularly important
is the description of the used optimisation algorithm strategy.

e Chapter 6 “Data Material Description” : this chapter is completely ded-
icated to provide to the reader with information about the data used in
our work. We described the used test images and the real images and we
conclude describing the used accuracy in order to have a measure of the
quality of the considered methods.

e Chapter 7 “Results”: In this chapter are shown all the results of the large
amount of theory described before. This chapter will verify whether the
theory described in Chapter 5 is appropriate. We will show the results
starting from the test images and we will conclude with the more realistic
images of Fram strait sea ice, Greenland, and the San Francisco Bay.

1.3 Previous works

The master thesis work finds its roots in two articles:

1. “Model-based polarimetric decomposition of Arctic sea ice.” [T. Eltoft,
A. P. Doulgeris, and J. Grahn] [9].

2. “Can higher-order statistics add information in model-based polarimetric
decompositions?” [A. P. Doulgeris and T. Eltoft.] [7].

The first article proposed the Sea Ice Two-Component decomposition. The sec-
ond paper, a natural and historical continuation of the first article, shows the in-
teresting possibility to use the higher-order moments, specially the fourth-order
moments, in order to have enough equations for estimating all the polarimetric
parameters.






Chapter 2

Polarimetric Radar Imaging

The goal of this chapter is to introduce the basics of Polarimetric Radar Imag-
ing. This is a multidisciplinary topic that involves electromagnetism, statistical
signal and image processing, remote sensing and radar fundamentals. Remote
sensing is defined as the acquisition of information about an object without being
in physical contact with it. Information is acquired by detecting and measuring
changes that the object imposes on the surrounding field, be it an electromag-
netic, acoustic or potential field. This could include an electromagnetic field
emitted or reflected by the object, acoustic waves reflected or perturbed by
the object or perturbations of the surrounding gravity or magnetic field due to
the presence of the object. Remote sensing techniques cover the whole elec-
tromagnetic spectrum from low-frequency radio waves through the microwave,
submilliliter, far infrared, near infrared, ultraviolet, x-ray and gamma-ray re-
gions of the spectrum [8]. RADAR is the acronyms of Radio Detection and
Ranging and uses mainly electromagnetic waves from radio frequencies [3-300]
MHz up to microwave frequencies [1-40] GHz. Radar principle is relatively
simple: it radiates electromagnetic waves towards the surrounding environment
and receives the reflected echoes. From the modification of the received echoes,
respect to the transmitted signal, it is possible to obtain information about the
environment. In this work, we will pay attention to a particular Radar Sensor:
Polarimetric Synthetic Aperture Radar. During the thesis, we will recall the
most important concepts of the cited topics in order to simplify the subsequent
argument.

2.1 Electromagnetic Fields

Electromagnetic theory is the basement of many modern applications. Radar,
Remote Sensing and Communications systems are ones of these. It is easy
to understand the importance of electromagnetic theory in Radar and Remote
Sensing. For this reason, we will briefly recall the electromagnetic theory start-
ing from the Maxwell’s Equations.
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2.1.1 Plane Waves

The basic laws of electricity and magnetism can be summarized by the Maxwell
equations. In the absence of sources and in the case of an infinite medium they
are:

V-B=0 VxH=92%
(2.1)

V-D=0 VxE=-9

where E and B are electric and magnetic field quantities, D and H are cor-
responding derived fields, related to E and B through the polarization P and
the magnetization M of the material medium by the constitutive relations for
linear, isotropic media:

D=¢cFE B=uH (2.2)
where ¢ and p are the dielectric constant and the magnetic constant, respec-

tively. In general £ and p may be complex functions of the frequency. Assuming
solutions with harmonic time dependence e~** !, the equations for the ampli-
tudes E can be written as:

V-B=0 VxH+iwD=0

(2.3)
V-D=0 VxE—-iwB=0
Then the equations for E and H are:
VxE—iwB=0
V x B +iwueE =0 (2:4)
By combining the two equations we get the Helmholtz wave equation:
(V2 + pew?) { g } =0 (2.5)

Consider as a possible solution a plane wave traveling in the x direction, we find
that the wave number k and the frequency w are related by:

k= \/uew (2.6)

With the convention that the physical electric and magnetic fields are obtained
by taking the real parts of complex quantities, we can write the fields as:

E H=¢& ikn-x—iwt

‘B((w7 ) eiknmfiwt (27)
x,t) = Be

considering an electromagnetic plane wave of frequency f and wave vector k =

kn, where &, %, and n are constant vectors. By the definition of k, it is

i is the imaginary unit.
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necessary that n be a unit vector such that n - n = 1. The divergence equations
in Equation [2.1] require that:
n-E=0 n-B=0 (2.8)

This means that E and B are both perpendicular to the direction of propagation
n. Such wave is called transverse wave:

H=nX&|Z (2.9)

where Z = \/p/e is an impedance. In vacuum, Z = Zy = /L% = 1207, the

impedance of free space [18].

Electrie field (x-y plane)

direction of
propagation

Magnetic field (x-z plane)

Figure 2.1: Representation of a monochromatic plane wave.

2.1.2 Polarimetry

Polarization is a characteristic of the electromagnetic waves and it describes
the oscillation direction of the electric field vector during the wave propagation
in the space. Considering the fields in Equation [2.7] and introducing a set of
mutually orthogonal real vectors [e1, €2, n], it is so possible to describe a linearly
polarized wave with polarization vector €; . Considering a second wave, linearly
polarized into direction €z and linearly independent from the first wave, it is
so possible to combine the two waves to define the more general homogeneous
plane wave E(x,t) propagating in the k = kn direction:

Ei=¢ geik-m—iwt

E; — el(gﬂzeikw—iwt (210)
with kX E
X .

B, = «ﬁueTj j=12 (2.11)
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E((Ifﬂf) = (615}1 + 62(532)61’16-1:—1'0.)75 (212)

The amplitudes, & and & are complex numbers, so it is possible to use their
phase difference to describe a different polarization from linear. If & and &5 have
the same phase E(x,t) it is called a linearly polarized wave with its polarization
vector forming an angle § = arctan(%) with €; and a magnitude £ = /&2 + &2
as shown in the following figure:

éalll

E

A J

Figure 2.2: Electric field of a linearly polarized wave.

If & and & have different phases, then E(x,t) is elliptically polarized. To
clarify this point, let us consider the simplest case, circular polarization. Then
&1 and & have the same magnitude, but differ in phase by ninety degrees,
0y — 0y = £7m/2 . The wave E(x,t) becomes:

E(x,t) = &y(€1 * ieg)etr@—iwt (2.13)

with &y the common real amplitude. Considering €; and €3 in the z and y
directions, respectively, and taking the real part of Equation [2.10], then

E.(x,t) = & cos(kz — wt + 0z)

E/(x,t) = & cos(kz — wt + 0y) = FEpsin(kz — wt + d,) (2.14)

For a fixed point in space, the electric vector is constant in magnitude, but
rotates in a circle with a frequency w, as shown in the following figure:
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Figure 2.3: Electric field of a circularly polarized wave.

For the positive case (€1 + i€z), the rotation is counterclockwise when the
observer is facing into the incoming wave. Such a wave is called left circularly
polarized. For the negative case (€1 — i€2), the rotation of E is clockwise when
looking into wave and is called right circularly polarized. It is important to
notice that the elliptical polarization is the general case [18].

2.2 SAR Theory

Synthetic Aperture Radars (SARs) are radar systems particularly used for Re-
mote Sensing. They are mounted on airborne or spaceborne systems. SAR
is basically a pulsed radar that uses advanced pulse compression techniques.
SAR systems and antennas array have some similarities. In the SAR case, we
have only one moving antenna transmitting pulses and receiving their echoes in
some different positions. This operation mode is called Synthetic Array. The
increased use of SAR in the Remote Sensing is based upon three main principles:

1. SAR is an active system, so it can work in darkness and unfavorable
meteorological conditions.

2. If microwave frequencies are used, the clouds and precipitations are almost
completely invisible at radar.

3. SAR are competitive with and complementary to multispectral radiome-
ters as the primary remote sensing instruments[19].

SAR image formation is done by pointing a radar beam approximately perpen-
dicular to the sensor’s motion vector, transmitting phase-encoded pulses and
recording the radar echoes as they reflect off the Earth’s surface. To form an
image, intensity measurements must be taken in two orthogonal directions. In
the SAR context, one dimension is parallel to the radar beam, as the time delay
of the received echo is proportional to the distance from the sensor, along the
image’s x-axis. The second dimension of the image is given by travel of the
sensor itself. As the sensor moves along in a nominally straight line above the
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Earth’s surface, the radar beam sweeps along the ground approximately the
same speed. The y-dimension is called azimuth or along-track [6]. Let us see in
the following figure the general SAR terminology and geometry:

Antenna
Along-track or
. azimuth direction

Figure 2.4: SAR geometry
The image, is obtained, with modifications, from [1].

The slant range resolution is given by:
o
- 2B
where c is the speed of light and B is the transmitted signal bandwidth. The
ground range resolution, called swath width in Figure [2.4], defined as the pro-
jection of slant range onto the ground, is given by:
~ sinf

Sy (2.15)

(2.16)

x

Often, the antennas used in SAR system are phased array of aperture antennas,
rectangular and foldable. This last characteristic is very useful to reduce the
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size during launch.

11.7

D

Figure 2.5: Typical geometry of SAR antenna.

For a fixed physical real aperture antenna, it is known that the Half Power

Beam Width (HPBW)), is:

ﬂ:a-% (2.17)

where a is the coefficient dependent on the distribution of current in the aper-
ture. Typically a is very close to one. From now we will consider a equals one
so the HPBW becomes:

A
B=% (2.18)

Let us consider the broadside geometry for a SAR of Figure [2.6]. Generally, 8
is small enough to consider the following approximations valid:

B B
tan — ~ — 2.19
In this way the expression of the size of the footprint in azimuthal direction, or

more simply the azimuth resolution, is given by:

~ Ry~ (2.20)

From such a relationship, it is possible to notice that the azimuth resolution is
directly proportional to A and Ry but inversely proportional to D. For focused
SARs, SARs that use Doppler techniques that allow to reach very high spatial
resolutions, the azimuth resolution becomes:

This result is very important because now the azimuth resolution is only related
to the antenna size in azimuth direction and not by Ry and A. Accordingly,
one may think of decreasing D to improve d,,, but this strategy has some
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limitations because to avoid Doppler ambiguity, it is necessary to satisfy the
following inequality:

4 \hvsin 6
D-W>——— 2.21
c-cos?f ( )

where D - W is the antenna area.

flight direction

000 000

l '50.‘: I \
target

Figure 2.6: Broadside SAR geometry.

L is the synthetic aperture length defined as the length of the sensor path
during the time that a target remains within the radar beam.

2.2.1 Airborne SAR and Spaceborne SAR

Airborne SARs resolutions are exactly given by Equation [2.15] and Equation
[2.20]. Spaceborne SAR and Airborne SAR are characterized by the same
ground-range resolution. The only one difference is the azimuth resolution.
Let us consider in the following figure, the particular geometry for this type of
SAR.
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Satellite

Target

Center of
Earth

Figure 2.7: Spaceborne SAR geometry.
The image, is obtained, with modifications, from [6].

R, is the radius of the Earth, h is the altitude of the platform and G is
the ground-range, defined as the arc length along the Earth’s surface from the
nadir point, N, to the target. The corresponding azimuth resolution for an
orbital SAR is given by:

R, D
T R.+h 2

Generally speaking, airborne SARs tend to have better resolution than space-
borne SARs, both in range and in azimuth, because of the shorter antenna
lengths and higher bandwidths employed. They also have a higher SNR, be-
cause of their large power supplies and shorter operating ranges [6]. Table [2.1]
gives a general view of the main characteristics and differences between air-
borne and spaceborne SAR systems. We will consider the ATRSAR mission and
RADARSAT-2 mission, Airborne SAR and Spaceborne SAR, respectively. In
our work we will only use images from these two types of radars.

50.2

(2.22)

| | [ AIRSAR | RADARSAT2 | |

Parameter Symbol Units
Bands L,p C C

Bandwidth B 20, 40, 80 100 MHz
Range resolution Ox 7.5, 3.75, 1.875 4.7 m
Azimuth resolution Oaz 1 28 m
Swath width S 10 25 km
Altitude h 8 798 km

Nominal speed v 778 8 km/h

Table 2.1: Representative Airborne and Spaceborne SAR parameters.
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2.3 Polarimetric SAR

If a radiated electromagnetic wave is scattered by an object and one observes this
wave in the far field of the scatterer, the scattered wave can, again, be adequately
described by a two dimensional vector. In this abstract way, one can consider the
scatterer as a mathematical operator that takes one two-dimensional complex
vector and changes that into another two dimensional vector, the scattered
wave [34]. Mathematically a scatterer can be characterized by a complex 2 x 2
scattering matrix:

e—jkr

E° =

S G (S| E' (2.23)

T T

—jkr .
e { Suh - She :|Ez _

where E? is the incident electric field on the target transmitted by the radar
antenna. [S] describes how the scatterer modifies the incident electric field vec-
tor and E? is the scattered electric field vector incident on the receiving radar
antenna. We must consider that the scattering matrix elements are complex
quantities and also that the scattering matrix is function of the radar frequency,
the scattering material and the considered reference system. The diagonal ele-
ments of S are called “copolar” terms and the off-diagonal elements are called
“cross-polar”. Considering S;; , the first subscript indicates the polarization of
the incident electric field while the second subscript indicates the polarization
of the scattered electric field towards the receiving antenna [34]. e=7*"/r is the
well known Green function that describes the propagation for spherical waves.
It must be noticed that this relation is only valid in the near field. Before to con-
tinue it is important to briefly recall the most used coordinates systems in radar
polarimetry. There exist two principal conventions regarding the polarimetric
scattering theory: forward scatter alignment, FSA | and backscatter alignment,
BSA. In both cases, the electric fields of the incident and the scattered waves are
expressed in local coordinates systems centered on the transmitting and receiv-
ing antennas, respectively. In the monostatic case, the backscattering matrix,
also called the Sinclair matrix, expressed in the FSA convention, can be related
to the matrix of the monostatic BSA convention as follows:

-1 0
Spsa = [ 0 1 :|SFSA (2.24)

Let us see a typical implementation of a polarimetric radar in Figure [2.8]: the
Radar, in our case SAR, transmits a wave of one polarization and it receives
echoes in two orthogonal polarizations simultaneously. Then is transmitted a
wave with the other polarization. In this way, it is possible to acquire four
images: one each for the HH, HV,VH, and VV channel. For this reason, polari-
metric SARs are called Multichannel SARs.

2.3.1 Polarimetric Coherency and Covariance Matrices

Now let us define the most used basis sets in radar polarimetry. From these bases
it is possible to define the “target-vectors” which are a vectorized representation
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BLOCK DIAGRAM TIMING DIAGRAM

Horizontally
polarized
antenna

(e Fﬁorizo ntal ; :

Transmission:

«+—— Receiver

Vertical
Transmitter Polarization I 1
switch
2 Reception:
i Horizontal
<«— Receiver [‘
AHH_HV /\HH L HV /\HH
gz{:;:gﬂ Vertical
antenna VH \AY VH vV VH

Figure 2.8: Typical implementation of a polarimetric radar.
The image, is obtained, with modifications, from [34].

of the corresponding scattering matrix S.

2.3.1.1 Bistatic Scattering Case

First we consider the bistatic scattering case. The following part is derived from
[19]. This is the case when two antennae are used, one to transmit and one to
receive, placed in different positions. One of these basis sets is the complex
Pauli spin matrix basis set defined as:

10 1 0 0 1 0 —i
wn=fald 2]l ][ At 5} e
The corresponding “4-D k-target vector” is:

1
K = ﬁ[ Shh + va Shh - S’uv Shv + Svh 7:(Shv - Uh)]T (226)

Another basis set is the Lexicographic matrix basis set defined as:

1 0 0 1 0 0 0 0
wr=p[3 B[22l 3] e
and the corresponding “4-D §2 -target vector” is:
2= [ Shh Sh'u Svh SUU]T (228)

The total received power from the radar is called Span and is defined as :

Span(S) = Tr(SSH) = |x|> = |02° =
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= 1Smn|* + [Sonl® + |1Shol® + [Sus|? (2.29)

Now, we recall briefly the concept of a distributed target. This concept derives
by the fact that usually the radar targets are not stationary or fixed but change
with time. Typical examples are the motion of water surface or clouds of water
droplets. This is particularly true in the case of SAR, where the sensor is
moving with respect to the target and illuminating in time the different parts of
an extended volume or surface. The radar will receive the time-averaged samples
of scattering from a set of different single targets. The set of single targets from
which samples are obtained is called a “distributed radar target”. An important
type of distributed target is that of an ensemble of targets generated by random
processes. Each single target member of the ensemble is then a realization or
sample event of the underlying random processes. The scattered return from a
distributed radar target which is illuminated by a monochromatic plane wave
with fixed frequency and polarization will in general be of the form of a partially
polarized plane wave. The state of a partially polarized wave is described by
the complex correlations of the electric field components [15]. From Equation
[2.23] we can apply the same concept directly to the scattering matrix and so
the target vector. Thus, we can define the 4 x 4 Polarimetric Coherency T'
matrix from the 4-D k-target vector:

T = (ke") = (2.30)
[ <|Shh + Sv’u|2> <<Shh + va)(Shh - S’U’U)*>
B ((Shh — Svo) (Shn + Svu)™) <|5hh - va|2>

DN | =

((Sho + Son)(Snn + Suw0)*)  {((Sho + Son)(Shh — Svw)*)

(i(Sho — Svn)(Shn + Svw)*)  (1(Sho — Son)(Shh — Svu)™)

((Shh + Svv)(Sho + Son)*)  (=i(Shn + Svv)(Sho — Sun)™)

<(Shh - va)(Shv + Svh)*> <*Z.(Shh - va)(shv - Svh)*>

(ISun + Shol) (~i(Sho + Sun)(Sho = Sun)”)

(i(Sho = Sun)(Sho + Son)") (1Sho = Sunl”)

From the 4-D k-target vector it is possible to define the 4 x 4 Polarimetric
Covariance C matrix:

C= <QQH> - (2.31)
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(ISm*)  (SunSi) (SunSin)  (SunSi)
<shvshh> <Shv ) <Shvszh> <s;ws 2
(SunSin) (SunSi) (1Sunl®)  (SunS)
(SuSin) <Sm,s;;v> (SuuSin) <|sw\>

where (---) is the temporal or spatial ensemble averaging, defined as:

. T
@)= " % /O o(t) dt (2.32)
1 L
<x>:f o (2.33)
=1

It is possible to show that T' and C matrices are Hermitian positive semidefinite.
This point is particularly important because:

e The eigenvalues of a Hermitian matrix are real.

e A Hermitian matrix is positive semidefinite if and only if the eigenvalues
are nonnegative.

e The eigenvectors of a Hermitian matrix corresponding to distinct eigen-
values are orthogonal [14].

The relation between the coherency T and covariance C' matrices is given by:
T =U,CU; " (2.34)

and inversely:
C=U;'TU, (2.35)

where Uy is the special unitary transformation matrix defined as:

1 0 O 1
1 1 0 0 -1

Uy = % 01 1 0 (2.36)
0 2 — O

2.3.1.2 Monostatic Scattering Case

In the monostatic case, when one single antenna is used for to transmit and
receive, we have:

She = Sun (2.37)

that derives from the reciprocity theorem. In this way, the complex Pauli spin
and Lexicographic matrix basis set become:

o= ([} 813 S ][ 1]} e
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{‘PL}={2[(1) 8]2\/5[8 3}2[8 H} (2.39)

and the corresponding “3-D k-target vector” and “3-D (2 -target vector” are :

1
= —[ Shwn+Sow Snh— Sew 2Sn, T 2.40
K \/5[ hh hh ho ] (2.40)

Q=[S V2% Sw " (2.41)
The new formulation of the Span is:
Span(S) = TT(SSH) = |F.2|2 = |Q\2 =
— [Sunl® 4 2 (S0 + [0 (2.42)

In the same way as seen for the bistatic case, we can define the 3 x 3 coherency
T and covariance C matrices as:

T = (ke") = (2.43)

<|Shh + Sm)‘2> <(Shh + Sm;)(Shh - SM))*> 2 <(Shh + 5111))Sh11*>

= 0| S S S (IS Sul) 24— Su)Sh)
2 (Sho(Shn + Sv)*) 2 (Shv(Shn — Spo)*) 4 <\s,w|2>
C=(00") = (2.44)

<|Shh|2> V2(SunSi,)  (SwnS;,)
= | V2SuSin)  2(ISwl®)  V2(SuSi)
(SuuStn)  V2(SwSi) (15wl

The relation between T and C is exactly the same seen previously for the
bistatic case:
T =UsCU; " (2.45)

and inversely:
C =U;'TU; (2.46)

where the only difference is represented from Uz which is the special unitary
transformation matrix defined as:

1 0 1 1 1 0
1 _ -1 _ 1
Us = 55 (1) \0@ 01 U; =2 (1) 91 \f (2.47)
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2.3.2 Speckle and Multilooking

SAR images are affected by the well-known Speckle noise. As the wave interacts
with the target, each scatterer contributes a backscattered wave with a phase
and amplitude change, so the total returned modulation of the incident wave is:

Ae'? = > Aen (2.48)
n=1

The received waves from each scatterer, although coherent in frequency, are no
longer coherent in phase. The sum can be constructive, giving a strong signal
sometimes called also up-fading, or destructive, giving a weak signal or also
called down-fading. From this, it is easy to understand that the observed signal
will be affected by interference effects as a consequence of the phase differences
between scatterers. In practice, we can think of the phase as being uniformly
distributed and independent of the amplitude [3].

N ‘42L'J¢? ‘43€j‘PQ
Aqeder

Figure 2.9: Speckle formation mechanism.
The image is obtained, with modifications, from[3].

This type of noise is visible in SAR images as “granular” noise. For large
numbers of statistically identical scatterers [25], we can assert that:

e the observed in-phase and quadrature components z; = Acos ¢ and z; =
Asin ¢, will be independent identically distributed Gaussian random vari-
ables with mean zero and variance and so they have a joint probability
density function:

At

—=2) (2.49)

Pz1,20 (Zla ZZ) - ;6.’[}7(

e the observed phase ¢ will be uniformly distributed over [—m, +7]

e the amplitude A will have a Rayleigh distribution

pa(d) = —exp(——) A=0 (2.50)
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o the observed intensity I = A2 will have a negative exponential distribution
(I) L exp( I) 1>0 (2.51)
= —exp(—— .
b1 o P o B

It is important to notice that, with the exception of the phase distribution, they
are completely characterized by a single parameter ¢ which corresponds to the
average intensity returned to the radar, defined as the Radar Cross Section in
the last section of this chapter. It is common to refer to the speckle with the
multiplicative noise model, given by:

I=ow (2.52)
where w, the speckle, is exponentially distributed:

puw(w) =e™" (2.53)

Multilooking

A way to improve the estimation of ¢ and to reduce the speckle is to aver-
age L independent intensity values related to the same position. This process,
called Multilooking, maintains the mean intensity ¢ but reduces the estimator
variance to 0?/L. Independent looks can be obtained either by splitting the
Doppler bandwidth within the imaging system or making a spatial averaging
between neighboring pixels. In both cases, the cost to be paid for the estimation
accuracy improvement is a spatial resolution loss by a factor L. The first tech-
nique consists to split the set of samples used for the full synthetic aperture into
several adjacent subsets. Each of these subsets can be used to form a separate
image, known as Look, each of which views a given point from a slightly different
angle. Splitting the synthetic aperture into Lg nonoverlapping sections means
that each of them has an effective aperture of length Lg/L, so the resolution is
degraded by a factor L. The loss of resolution is justified by the fact that now
the target is illuminated for a smaller interval time and the corresponding total
backscatter will be constituted by a smaller number of echoes. The second tech-
nique, done as post processing after a well-focused image is generated, consists
in a spatial average between neighboring pixels. In PolSAR, it is common to
refer to:

. L

(Clo= I Z 2,0/ (2.54)
. L

(C), = b7 Z 'ﬁz‘f’vf{ (2.55)

where the symbol H denotes the conjugate transpose operator or simply the
Hermitian operator. It is possible moving a small window over each pixel in the
image and using the pixel values to calculate the average and then replacing



CHAPTER 2. POLARIMETRIC RADAR IMAGING 24

the central pixel with the new value. The window is moved along in both
the row and column dimension one pixel at a time, until the entire image has
been covered. This method requires that the data are available in Single Look
Complex format, SLC. We conclude with the definition of the equivalent number
of looks, ENL. ENL is a parameter of multilook SAR images, which describes
the degree of averaging applied to the SAR measurements during data formation
and postprocessing [2]. There exists a lot definitions in the literature. We will
consider the traditional and the most used version:

2
ENL = B ]

(2.56)

var [I]

Figure 2.10: Splitting of the Synthetic Aperture Length in L=3 subsets.

2.3.3 Radar Cross Section

The Radar Cross Section, [31], of a target is the area intercepting that amount
of power that, when scattered equally in all directions, produces an echo at the
radar equal to that from the target, or in other terms:

power reflected toward source/unit solid angle
O— =

incident power density /4w

lim 2
R — o0

Es
E;

The limit R — oo indicates that such an expression is valid only in the far field.
Dimensionally the RCS is a surface and it is expressed in [m?]. In theory, the
scattered field, and hence the radar cross section, can be determined by solving
the Maxwell’s equations with the proper applied boundary conditions. Unfor-
tunately, the determination of the radar cross section with Maxwell’s equations
can be accomplished only for the most simple of shapes, and solutions valid

A7 R?

(2.57)
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over a large range of frequencies are not easy to obtain. The radar cross section
of a simple sphere with radius a is shown in Figure [2.1] as a function of its
circumference measured in wavelengths, A.
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Figure 2.11: Radar cross section for a perfectly conducting sphere.
The image, is obtained, with modifications, from [31].

It is possible to notice that the RCS is highly dependent from the frequency,
f =¢/X, where ¢ is the speed of light in vacuum. In cases different from the
sphere, the RCS is function of several parameters like the polarization p, angle
of incidence 6, target attitude and target dielectric constant e.

o=0c[\0,p,é (2.58)

The region where the size of the sphere is small compared with the wavelength
is called the Rayleigh region. This region is particularly important because is
the most common case in typical radar applications and because the radar cross
section varies as :

1
In SAR systems it is often used the backscattering coefficient ¢¥ , defined as the
radar cross section per unit surface area. Such a parameter is dimensionless. In

Polarimetric SAR systems such parameter becomes:

lim 2
4 E. E}
A— o0 (EriEy)

where subscripts p,v,7 and k indicate the polarization used, subscripts ¢ and s
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stand for incident and scattered fields, respectively, R is the distance from the
radar and A is the illuminated area [23].






Chapter 3

Arctic Sea Ice

In this chapter we will describe the main characteristics, physic, and electromag-
netic, of the Arctic sea ice. First, we will show the details of all the scattering
models used in our thesis work.

3.1 Why Remote Sensing of Sea Ice is impor-
tant?

World climate is changing and a global warming is observed. Arctic climate
warming plays an important role in the balance of the global climate. One of
the most dramatic indicators of the Arctic warming is the decline of the sea
ice cover. It manifests as a decrease in the ice extent, ice thickness, and the
length of the ice season [36]. We can resume the connections between the global
and Arctic climate warming through Figure [3.1]. We can notice that Arctic
and in particular Arctic Sea Ice are indicators of how much the global climate is
changing. In this sense, monitoring of Arctic Sea Ice plays a primary role. From
the point of view of weather and climate, and so from the sea ice monitoring
point of view, the most essential questions are how much the area covered by
sea ice is decreasing, how much the ice and snow thicknesses is decreasing, and
how much the melting and ice-free period is lengthening? [36]. To respond to
these questions it is crucial to have the appropriate instruments and measure-
ments. Arctic regions are unfriendly and the climate conditions are very strong.
Darkness, extremely low temperatures, heavy snowfalls and strong winds make
the Arctic regions one of the most inaccessible place on the Earth. In this sense,
Remote sensing and Radar can provide indispensable measurements. Passive or
active sensors mounted on satellites, drones, helicopters or airplanes are exactly
the instruments used in the challenging goal of Arctic sea ice monitoring.

28
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Figure 3.1: Global warming-Arctic Sea ice connection.
The image is obtained from[27].
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Figure 3.2: Current arctic sea ice extent with its lowest point reached in Septem-
ber 2012.
The image is obtained, with modifications, from the Alfred Wegener Institute
website.

3.2 Scattering Mechanisms

Introducing the physical model of sea ice and its relative electromagnetic behav-
ior, we consider it important to recall the main scattering mechanism models.
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z=0

Figure 3.3: Classical problem of reflection and transmission at a plane dielectric
interface.
The image, is obtained, with modifications, from [4].

To explain the backscattering and its corresponding scattering type, for a single
pixel, is the heart of the Decomposition Theorems in Radar Polarimetry. It is
easy to understand that the better defined are the scattering models, the better
will be the corresponding interpretation.

3.2.1 Surface Scattering

Surface scattering occurs when an electromagnetic wave strikes a surface. This
scattering type is strongly affected by the surface geometrical properties. The
surface small-scale geometric shape, also called roughness can be statistically
characterized by its root mean square h relative to a mean flat surface. Typi-
cally, a surface is statistically characterized by the surface height autocorrelation
function. The surface correlation length /¢ is the separation after which the de-
viation from the mean surface for two points are statistically independent and
mathematically is defined as the length after which the autocorrelation func-
tion is less than 1/e [8]. In order to describe in detail the surface scattering it
is important to start from the Fresnel equations, the solutions of the classical
problem of reflection and transmission at a plane dielectric interface [4]. This
problem is summarized in Figure[3.3]. Fresnel equations together with Snell’s
Law describe the behavior of light when moving between different media. For
simplicity we are considering only the horizontal polarization case, also called
Transverse Electric problem, TE. The upper medium and lower medium are
characterized by the dielectric constants €; and €5 , respectively. From the
basic laws of electromagnetism, the reflected wave is such that the angle of in-
cidence equals the angle of reflection, and the transmitted wave obeys Snell’s
law, given by:
ny sin 6,

- n =/ (3.1)

ny  sinb;

where n is the refractive index and the subscripts i , r, and ¢ indicate incidence
angle, reflected angle and transmitted angle, respectively. For each polarization
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combination we have two unknowns: the reflected and transmitted electric field
components [4]. A solution can be obtained using the continuity equations,
matching the tangential components of E and H at the interface z =0 :

H? cosf, — HY cos; = —H” cos b, (3.2)
In this way, we obtain two equations for the two unknown coefficients:

EF + EF = EF

ni(EHE — EX)cos0; = no BH cos o, (3.3)

Transverse Magnetic problem, TM, or rather the vertical polarization case, can
be resolved with an analogue procedure. Combining the TM and TE problem
solutions we can obtain the reflection R and transmission T matrices, also called
Fresnel equations:

r— | fim 0 p—| T 0 (3.4)
0 Ry, 0 Ty )
where:
__ nyicosf;—ns cosby __ mngcosf;—ny cos b
th " nicosf;+nscos by RU” " ngcos@;+ni cos by (35)

_ 2n4 cos 0, _ 2n4 cos 0,

Thh " nicosB;+ns éos 04 Tm’ " ngcosB;+ni éos 04 (36)

It is possible to reformulate the reflection Fresnel coefficients using the Snell’s

law and considering the upper medium as free space e; = 1. In this way, we
arrive to the most common expression in radar scattering problems:

cos 0; —+/e2—sin? 6; €2 cosf;—4/e2—sin? 0;
th — i 2 — i RU . 2 3 2 — i (37)
cos 0;++/e2—sin? 6; g9 COS 0i+\/52—sm 0;

3.2.1.1 Single-Bounce Scattering

Now we recall the polarization properties of the scattering matrix for rough sur-
faces. We start considering that a perfectly smooth surface has zero backscatter
for oblique incidence. However, most natural surfaces are not smooth and their
backscattering is always observed. The followed procedure is described by the
Physical Optics, PO, that consists of estimating the currents induced on the
surface. PO assumes that the current induced on any surface element of fi-
nite size L is the same of that induced on an infinite tangent plane. The only
change from the Fresnel equations is then to account for the finite extent L of
the surface and this means that integrals over the surface must be considered
[4]. Counsidering a simple uniform current of limited physical extent L we obtain
the following expression for the scattered field:

2y/7L sl - sin (BLsin®) [ Sy (0,¢,) 0
A ﬁL sin 6 0 va (9757“)

5(0,)) = (3.8)
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where :

Spp = €9 —sin® 0 — cos 6 g _ egcost) — €9 — sin’ 6 (3.9)

) v - 9
cosf + \/eo —sin“ 0 €9c080 + \/eo —sin” 0

It is important to recall that this expression is valid when L > A, or rather in
high frequency conditions, where the Physical Optics is valid. Otherwise, if L <
A, rather low frequency conditions, the sinc function and so the corresponding
backscattering tend to zero. This surface scattering mechanism is also called
Specular Surface Scattering [4]. The single bounce scattering can be summarized
by the following figure:

t
i
i
i
i
i
i
i
i
i

Figure 3.4: Geometry of Single-Bounce Scattering Mechanism.

3.2.1.2 Bragg Model

Until now we have considered rough surfaces without defining when a surface
is called rough. Several criteria exist to decide if a surface is smooth or rough.
The most commonly used one is the so-called Rayleigh criterion that classifies
a surface as rough if the root mean square height satisfies h > A/8 cosf. When
the surface facet is large compared to the wavelength, L > X but the surface is
not smooth over the surface correlation length ¢, a good model to describe this
type of scattering is the Small Perturbation Model, SPM, often referred to as
the Bragg model. In this case the solution for the scattered field can be obtained
as a perturbation of that from the underlying smooth surface and an analytical
solution obtained for the scattering matrix in terms of an infinite series [4]. A
good approximation is obtained keeping only the first term of the series. In
practice, this means to have :

Eu h < 0.3 (3.10)
A

that constitutes a good low-frequency approximation, where A is the wavelength
of the incident wave. The scattered field from an arbitrary rough surface char-
acterized by a height function z(z,y), which satisfy the above defined approxi-
mation, is given by [4] :

ES = i2B8c0s 0By, Z (B + Bsinb, B,) (3.11)
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where:
B (1 —¢&,)cosps
hh —
(cos 0s + /e, — sin? 95) (ET cosO + v/e, — sin? 9)
B —(1 —&,)sinp,\/e, —sin® 6
hv =
(cos 0s + e, — sin? 95) (ET cosO + /e, — sin® 9)
B (1 —¢,)singps\/e, —sin? 6
vh =

(cos 05 + Ve, — sin? 9) (sr cos @ + /e, — sin? 6)

(1 —¢,)e,sinfsinfy — \/sr — sin? 6, \/5,, — sin? 6, cos

(5,. cosfy + /e, — sin® 95> (5,» cos @ + /e, — sin? 9)

Bm; =

Z(ﬁmﬁy) = %//z(ac,y)e_i(ﬁ“’”+ﬁyy)8m8y (3.12)

where Z is the Fourier Transform of the surface height autocorrelation function.
Notice that Z is a power spectral density.

8= 27” By = —fBsinbfscosps [y = —Bsinb, cossinp

For the special case of backscatter we have:

0s=0 ps=m (3.13)
and then: R
E3 =20 cos 0By, Z(2f3sin0) (3.14)
cos® — /e, —sin’ 0
By = T = Run (3.15)
cosf + e, —sin’ 0
B, = By, =0 (3.16)

.2 .2
B’L)7j = (67’ 1) [Sln / 87"(]‘ * 2111 0)] 7& R’U’U (317)

grco86 + /e, —sin“ 0
The most important observation from the derived results is that the Bragg
Model has the same reflection HH coefficient of the Fresnel Equations but the
VV reflection coefficient is completely different. Also we can note that the
surface roughness information is completely contained in A , which is common
to all polarization channels. This shows the importance of Radar Polarimetry
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that often considers the ratio of the polarization channels and so allows the
cancellation of the roughness effects. We conclude with the final expression of
the Bragg Coherency matrix T'. The corresponding k-target vector is:

1
K/:ﬁ[ th+B’UU th_va 0

and so the form of the Bragg surface model Coherency matrix T is given by:

1" (3.18)

1 8 0
0O 0 O
where: ,
__ |Bhh+Bwv]| _ Bhh—Bwvv
fs - 92 B ~ Bhh+Bvv (320)

3.2.1.3 Double-Bounce Scattering

A particular case of specular scattering is the Double-Bounce scattering or also
called Dihedral Scattering. This mechanism arises when we have two orthogonal
surfaces shaping an angle of 7/2. In this case, as shown in Figure [3.5], a wave
is incident with an angle 6 on the surface A and is reflected in according to the
Fresnel equations, and then is incident on the second surface B at angle 7/2—6,
[4]. It is possible to notice that the total angle of reflection is m. The total
scattering matrix is simply the product of the Bragg scattering matrix of each
bounce scattering matrix of the corresponding surface:

ei2'yh 0

B B
S=(Sa]-[SB]=| ~M"W gh(B) (3.21)

Byy(4)Buv(Byeizvo

In addition, the propagating factors, e?27» and e727, are introduced to describe
the propagation attenuation and phase changes. The corresponding k-target
vector is:

K [ Bun(a) Bun()e™" + Buu(a) Boo() e

b
V2

- Bin(a)Brn(s)e™®"™ + Buya)Boo(p)e® 0 ] (3.22)
la* a 0

Top = (k™) =fs| a* 1 0 (3.23)
0 0 0

where: )
fa =3 |Bun(a)Bun(s) + Buo(a)Bou(n)
(3.24)

a = e2(m=0) Bina)yBrn(s)—Buvva)Buu(B)
Bhh(a)yBhn(s)y+Buv(a)Buu(B)

The Double-Bounce scattering can be described by the following figure:
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€g

Figure 3.5: Geometry of Double-Bounce Scattering Mechanism.

3.2.1.4 Extended Bragg Model

The Bragg Model is a good model for surface scattering but has some limitations.
The validity range of the Bragg scattering model is limited to the low roughness
domain. In this way the Bragg model does not account the cross-polarized terms
typical for rough natural surfaces. In order to extend the validity range of the
Bragg Model we use the Fxtended Bragg Model, also called X-Bragg Model. Let
us see the procedure in [4][12], in order to define this model. The procedure
produces a smooth transition from the extreme case of a very rough surface up
to a smooth surface:

Rough Sur face Smooth Sur face

B-h>1 — B-h<l1 (3:25)

The transition is done considering the major perturbation to the smooth case
arises from micro-variations in surface slope when the roughness increases.

\4

Azimuthal oriented surface

Figure 3.6: Azimuth slope x introduced in the X-Bragg model.
Image obtained and modified from [12].

This method consists of rotating the Bragg coherency matrix T' about an
angle x in the plane perpendicular to the scattering plane and averaging over a
particular distribution. In this sense ¥ can be seen as the mean azimuth slope.
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In fact, in the presence of a surface with azimuthal slope ¥ , the Bragg coherency
matrix T can be written as:

1 B 0
Ty = (re) = fo | 5 18] 0
0 0 0
which when rotated, transforms to:
1 0 0 r p* 0 1 0 0

Ts=| 0 cos2xy sin2y I3 |ﬁ|2 0 0 cos2xy —sin2y | =
0 —sin2y cos2y 0O 0 O 0 sin2y cos2y

1 B* cos 2x B*sin 2y
= | Bcos2y |8]? cos? 2y |8]? cos 2 sin 2 (3.26)
—f3sin 2y —|ﬂ\2cos2>Zsin2)Z |B|2sin2 2Y
Considering y randomly oriented, it is plausible to choose a uniform distribu-
tion:

- - , x| <6/2
p(x) = 0x/d with (|)Xl 5 </7r (3.27)

In this sense, §, the width of the distribution, is a measure of how much the
roughness perturbates the Bragg model and for this reason is considered a mea-
sure of the surface roughness. Low values of § indicate smooth surface while
high values denote rough surface. Averaging T's over such a distribution:

@) = [ T.(0p0x (3.29)
and calculating the following integrals:
1 §/2
Ty = /p(i)ax =53 ox=1 (3.29)
Y
1[92
Tio = /p()Z)@X =5 B cos 20y = B*sinc(20) (3.30)
—6/2
1 6/2
Ty = [ 5 sin2ap(0ov =35 [ prsin2non =
6 J s/2
B cos20  cos20|
= 5 5 =0 (3.31)
Ty =Ty, = Bsinc(29) (3.32)

T = [ 18 cost 20000 = 5 [ 181" cos? 2505 =
2

=
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_ @ [(5 N sin 48

5 |3 3 ] = % (14 sinc(49)) (3.33)

1 [9/2
Ths = / 8] cos 2 sin 2xp(X)dx = 5/ 8] cos 2 sin 2Ydx =
—5/2

18> [ cos4d  cos4d
= =0 3.34
] 8 8 (3:34)
T31 = T13 =0 (335)
T32 = T23 =0 (336)
2 .2 1 6/2 2 .92
Ty = [ 167 st 2ok =5 [ 19 s 205 =
—5/2
_ 18P [a _sind8] _ 18 (1 — sine(45)) (3.37)
=5 13 T | = > sinc .
we can write the final expression of the X-Bragg coherency matrix T'xp:
1 Bsinc(20) 0
Txo = fs | B*sinc(28) 3 |8° (1 + sinc(49)) 0 (3.38)
0 0 L1812 (1 — sinc(49))

where f; and § are given by Equation [3.20].

3.2.2 Volume Scattering

The second important class of polarimetric scattering is volume scattering. Vol-
ume scattering occurs when the medium contains local inhomogeneities that
cause variations in dielectric properties. Inhomogeneities allow a penetration of
the wave into the media. In this way, the wave is scattered and influenced from
a distributed cloud of scatterers.

o o/’
o v \ °
o/\\O/o
o/\‘

Figure 3.7: Geometry of the volume scattering mechanism.
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Particularly important in volume scattering is the depth penetration that is
related to dielectric properties and to the wavelength. The relative permittivity
&, of a medium :

e =¢ — je' (3.39)

is a complex number that characterizes the electrical properties of the media
itself. The real part, €, is called dielectric constant and gives the contrast with
respect to free space or air, where E;ir = 1. The imaginary part, g”, is called
dielectric loss factor and gives the electromagnetic loss of the material [13] . If
we consider an electromagnetic plane wave propagating in the z direction, the
intensity of the electric field at point z can be expressed as:

E(z) = Epe (3.40)

where Ejy is the intensity field at z = 0. The complex propagation constant of
the medium is denoted by v and is given by:

y=a+jp (3.41)

where « is the absorption constant what describes the transformation of energy
into other forms and g is the phase constant that is equal to the wave number
k = 27/X in a lossless medium. They are related to the complex permittivity
by:

o = ko [Im(\E)| B =ko|Re(\E)| (3.42)

where kg is the wave number in free space. Part of a wave incident upon the
surface of a medium from the air in the z-direction is transmitted across the
boundary into the medium. The penetration depth is defined as the depth at
which the wave is attenuated to 1/e :

Ple=b) 1 o A _ A
P(z=0) e " 2w 2m|Im(yz)|

(3.43)

Often, for most materials in microwave remote sensing the imaginary part is
much smaller than the real part:

g”’ A Ve
?<0.1—>6ng5”

(3.44)

This condition is also called “good conductor” approximation. The penetra-
tion depth indicates the maximum depth of the medium that contributes to
the backscattering. A complete dissertation would require finding the solution
of Maxwell’s equations expanding the field in terms of vector spheroidal wave
functions and matching the coefficients across the boundary for each layer of
the medium. Finite elements, finite difference equations and T-matrix approxi-
mations are all valid methods to this purpose [24]. In the literature, there exists
many models to describe volume scattering. In our work, we choose to use a
model based on the Strong Fluctuation Theory under the first-order distorted
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Born approximation for spheroidal and ellipsoidal scatterers with different ori-
entation distributions, as discussed in [23]. Restarting from the form of the
covariance matrix of a reciprocal medium with azimuth symmetry, we easily
obtain the final form of the volume scattering covariance matrix C'

SunSin  V2SuSi,  SwnSE,
Co=| V2SS  2Sh,Si, V2S:,Sh, | = (3.45)
SinSew V25,85, SuwSi,

1 0 p
—flo a-p 0 (3.46)
P 0 1
where:
ShnSy
p= I vy (3.47)
V ShhS}th : SU’US:;U
The corresponding coherency T matrix is given by:
(1+p) 0 0
T, = fo 0 (A-p 0 (3.48)
0 0 (1-p)

The p parameter, also called shape parameter, is real and is included within [0,
1]. Values of p lower than 1/3 tend to indicate a prolate form of the scatterers,
like dipoles, instead when p tends gradually to one the shape tends to be spher-
ical. This characteristic will be particularly important for the Sea Ice. Values
of p below 1/3 have difficult physical interpretation and so we will consider it
included in [1/3,1].

3.3 Physical Model of Arctic Sea Ice

Sea ice is one of the most complex earth terrain. Sea ice is produced when
seawater freezes and this occurs when the layer of air-seawater interface has a
temperature about —1.8 C. In remote sensing, materials of interest are generally
classified into one of the following groups [13]:

1. Homogeneous substances
2. Electrolytic solutions
3. Heterogeneous mixtures

First group examples are pure water and ice, sea water and brine are represen-
tative materials for the second group and sea ice and snow for the third group.
In this sense sea ice can be seen as a mixture of crystals, air pockets and liquid
brine inclusions, while snow as a mixture of air, ice particles and possibly liquid
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water inclusions [13]. The complexity of sea ice is attributed to its inhomoge-
neous composition, crystallography, structure, growth process, thermodynamic
variations, and environmental effects [23]. Electromagnetic properties of sea ice
are strongly related to the temperature and salinity. During the winter, near the
top of the ice layer the temperature is low and the salinity is high. Moving into
the middle of the ice the temperature increases, while the salinity decreases.

Low Temperature
High Salinity

High Temperature
Low Salinity

Figure 3.8: Temperature-salinity behavior of sea ice.

Particularly important is the sea ice growth that is determinated by envi-
ronmental conditions, winds and sea currents.

3.3.1 Sea Ice constituents

Let us see the most important sea ice constitutive elements. The following part
is derived from [13].

Sea Water: Sea water has a complex permittivity that is exceptionally high.
The dielectric behavior of pure water follows the Debye equation:
Ew0 — Ewoo
Ew =¢€ —_— 3.49
v woo + 14 727 f1 ( )
where €, is the static dielectric of pure water, €,,o is the high-frequency
limit of £,, and 7 is the relaxation time of pure water. Salts increase the
dielectric loss of water adding free charges carriers. Hence, the loss factor
of seawater includes an additional term due to ionic conductivity and the
complex permittivity of seawater follows the modified Debye equation:

Esw0 — Eswoo .Osw
E€sw = €swoo + — > — (350)
1+ j27 fTow €0
where o4, is the ionic conductivity of sea water. Thus, we can consider
sea water as the poorest emitter in sea ice scenes.

Freshwater Ice: Freshwater ice is free from salt, but usually it includes air
bubbles and impurities. Pure ice, frozen distilled water, is an idealization
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of freshwater ice. It has been experimentally shown that the relative
dielectric constant of pure and freshwater ice is constant :

£, =3.17 (3.51)
between 10 MHz and 1000 GHz.

Snow: many differences exist between dry snow and wet snow. Snow on ice
serves as a thermal blanket, since snow has a thermal conductivity much
less than that of sea ice. In addition, it may provides an impedance
matching function and reduces the effects of surface roughness. Electro-
magnetically, dry snow is a dielectric mixture of ice and air and therefore
its complex permittivity is governed by the dielectric properties of ice,
snow density and ice particle shape. Since the real part of the permittiv-
ity of ice is practically independent of temperature, the dielectric constant
of dry snow is only a function of density:

; 3
£ = { 1+ 1904, Zf pas < 0.5 g/em between 3 — 37TGH z
0.51 +2.88p4s if pas > 0.5 g/cm?
(3.52)

where pgs is the dry snow density. Electromagnetically, wet snow is a

three-component dielectric mixture consisting of ice particles, air , and

liquid water. The complex permittivity of ice and water depend on fre-
quency and temperature, consequently, the permittivity of wet snow is

a function of frequency, volumetric water content, snow density and the

shape of ice particles.

Air Bubbles and Brine Pockets: air and brine inclusions play a key role in
the formation of sea ice scattering mechanism. We will see later that
air bubbles and brine pockets are characteristic of old and young ice,
respectively.

3.3.2 Terminology

We consider it important to recall the main definitions of sea ice and furthermore
its stage of development. The following part is derived from [21].

New Ice is a general term for recently formed ice which includes frazil ice,
grease ice, slush, and shuga. These types of ice are composed of ice crystals
which are only weakly frozen together and have a definite form only while
they are afloat. It can be subdivided in:

e Frazil Ice : fine plates of ice suspended in water

e Grease Ice : a later stage of freezing than frazil ice where the crystals
have coagulated forming a dense layer on the surface. The grease term
derives from the opacity of this type of ice.
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e Slush : snow which is saturated with water on ice surfaces.

e Shuga : an accumulation of soft white ice blocks having a diameter of a
few centimeters across.

Nilas: a thin elastic crust of ice, easily flexible on waves and grow under pres-
sure forming a tangled network of ice pieces. Nilas may be subdivided
into dark nilas and light nilas:

e Dark nilas : nilas of very little thickness and which is very dark in color.

e Light nilas : thicker and lighter in color than dark nilas.

Young Ice: ice in transition stage between nilas and FY-ice. May be subdi-
vided into grey ice and grey-white ice.

o Grey-Ice : young ice less elastic than nilas and easily breakable under
pressure.

e Grey-white ice : young ice thicker than grey-ice which is more likely to
ridge under pressure.

First-Year Ice: sea ice of not more than one winter’s growth, developing from
young ice. It may be subdivided into thin medium and thick first year ice.

Old Ice: sea ice which has survived at least one summer’s melt. Typically is
smoother than first-year ice. It may be subdivided into second year ice
and multi-year ice:

e Second Year Ice : old ice which has survived only one summer’s melt.
Thicker than FY-ice and often out of water. In contrast to multi-year ice,
summer melting produces a regular pattern of numerous small puddles.

e Multi-Year Ice : old ice which has survived at least two summer’s melt.
This ice is usually blue in color and salt free.

In Table [3.1] is reported the sea ice Stage of Development.

3.3.3 First-year Ice vs Multi-Year Ice

From our work perspective, it is important to analyze the physical differences
between first-year ice and multi-year ice.

First-Year Ice

Ice growth begins with the formation of small platelets and needles, called frazil.
As frazil crystals continue forming, a dense mixture of unconsolidated crystals
and seawater is created, commonly referred to as grease ice. Under quiet condi-
tions, the frazil crystal begin to coalesce, freezing together to form a solid elastic
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Ice Type Subtype Thickness
New Ice < 10 cm
Frazil Ice
Grease Ice
Slush
Shuga
Nilas < 10 cm
Dark Nilas <5 cm
Light nilas 5~ 10 cm
Young Ice 10 ~ 30 cm
Grey Ice 10 — 15cm
Grey-White Ice 15 ~ 30 cm
Fist-Year (MY) Ice > 30 cm
Thin FY-Ice First stage 20 ~ 50 cm
Second Stage 50 ~ 70 cm
Medium 70 ~ 120 cm
Thick > 120 cm
Old Ice ~2m
Second year Ice ~2m
Multi-Year (MY )Ice ~2m

Table 3.1: Sea Ice Stage of Development.

cover, called nilas [32]. The action of wind and sea waves should not be under-
estimated. Arctic weather is very unfriendly and usually the wind speed is near
to 4 and 6 m/s, but during the snow storms can reach 25 m/s. The joined action
of wind and waves causes the formation of pancake ice, which consists of circu-
lar masses of semiconsolidated frazil. The final crystal structure that develops
contains vertically elongated columnar crystals aligned to the direction of heat
flow and having their axis generally orthogonal to the ice-water interface. Each
of these elongated crystals contain a particular substructure. Within each grain,
pure ice plates are separated by parallel layers of brine inclusions. This form of
the columnar crystals is particularly important because it determines the ver-
tical elongation of brine pockets and strongly influences the FY-Ice scattering
mechanism.

Multi-Year Ice

Multi-year ice, MY-Ice, is old ice which has survived at least two summer’s melt.
The most important process in sea ice evolution is the desalination. There are



CHAPTER 3. ARCTIC SEA ICE 44

Hummock \'
— Melt Pond
/

Air Bubbles

Recrystallized ice

Figure 3.9: Cross Section of MultiYear-Ice.
The image is obtained, with modifications, from [26].

several desalination mechanisms: brine migration caused by thermal gradient,
expulsion by pressure in brine pockets, drainage by gravity, and flushing by
surface meltwater [23]. The main effects of salinity decrease can be summarized
as a significant decreasing in the brine inclusion volume and their correspond-
ing enlargement that implies a formation of drainage channels and a density
reduction. Melting snow and ice provide a source of fresh water that perco-
lating through the ice, contributes to the salinity reduction of the upper layer.
Furthermore, warming causes a retexturing of the crystals that become more
rounded and there is an increasing of the porosity of the upper layers [32]. Dur-
ing the melt season the drainage channels born from the desalination process,
will be partially empty. During freezing time, the characteristic air bubbles of
MY-Ice will be the remaining empty regions of the drainage channels formed in
summer. From this it is possible to explain two facts: the typical vertical orien-
tation of the air bubbles and the tangled network of air bubbles near the surface.
Multiyear ice is typically composed of three scattering features [32]: hummocks,
melt ponds and ridges. To analyze the MY-Ice structure in terms of hummocks
and melt ponds is important because their physical differences serve to illustrate
the importance of the upper layer characteristics that determine the microwave
signature for MY-Ice. Figure [3.9] shows a schematic cross section of MY-Ice.
It is possible to notice that hummock surface can be modeled as convex while
the melt pond surface can be seen as concave. Typically, hummock surfaces
are exposed to more solar radiation and will melt a significant amount of water
and the desalination process will be more significant than in melt ponds. In
fact, the concave surface of melt pond ice does not allow a significant formation
of a drainage network [30]. This confirms the dense population of air bubbles
in hummock ice compared than the melt ponds. Melt pools typically are very
smooth surface and so the corresponding backscatter will be weak. It has been
shown that backscatter of hummock and melt pool differs in intensity by a fac-
tor about 32 [26]. The typical size of air bubbles is approximately less than
2 mm, so air bubbles can be modeled as Rayleigh scatterers. Several studies
have been done about the air bubbles shape [28][30]. The typical assumption



CHAPTER 3. ARCTIC SEA ICE 45

for MY-Ice air bubbles is a non perfect spherical shape, but many studies show
a more realistic oblate shape.

Summary

From an electromagnetic perspective, the most important difference between
FY and MY ice is the salinity. FY-Ice has high salinity, particularly near the
surface. MY-Ice, because of the desalination process, can be considered with
zero-salinity. The salinity strongly influences backscattering. High values of
salinity corresponds to high values of dielectric loss factor. Otherwise, low
values of salinity corresponds to low values of dielectric loss factor. For this
reason, F'Y-Ice scattering can be mainly modeled as surface scattering and MY-
Ice scattering as volume scattering.

FY —ice: 1 Salinity — tTe | dp — Surface Scattering

MY —ice: | Salinity — e 1 0, — Volume Scattering

Altough, the main scattering mechanism for FY-Ice is surface scattering, there
may also be a portion of volume scattering. This component is caused by the
presence of brine pockets. In this sense, studies about the size distribution of
brine pockets are very important. One of these, is surely the work presented in
[28] where it has been affirmed that brine pockets are more elongated than air
bubbles. If we assume an oblate shape for air bubbles we may consider a prolate,
needle-like, shape for brine pockets. This clearly shows the importance of the
shape parameter p defined in the volume scattering matrix of Equation [3.47].
In this sense we can see p as an ulterior parameter in order to discriminate
MY-Ice and FY-Ice. Another important difference between FY and MY ice is
the thickness. Arctic FY-Ice grows to a maximum thickness about 2 m in a
single season [32]. Arctic MY-Ice shows a mean thickness in the interval of 3
and 4 meters. In addition, the surface features are very different. Typically
deformed FY-Ice is characterized by sharp ridges and blocks. MY-Ice typically
shows smoothed deformations caused by the action of the time.

3.3.4 Polarimetric Parameters of interest of Sea Ice

We conclude the Arctic Sea Ice chapter with its most important polarimetric
signatures. The following part is derived from [22]. A typical problem for many
ice types is that the HH and VV intensities, often, show the same characteristics.
Nevertheless, the HH channel can be used to discriminate rough and smooth
level ice better than VV channel. The cross-pol intensity, |Sh, |2 , is not sensitive
to the incidence angle and is relatively independent of wind conditions compared
to HH or VV.

Span:
SPAN = |Sunl® + |Sunl® + [Shol® + |Ss0]? (3.53)
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The total power, typically is greater for MY than FY ice due to the fact the
MY-Ice gives an additional depolarized component of backscatter along
with the predominantly co-pol returns from FY-Ice of equivalent surface
roughness.

Geometric Brightness:
GB = {/det(C) (3.54)

where d is the number of polarimetric channels in C. The geometric
brightness is another way of representing the total power of the multi-
channel radar. It is the geometric mean of all channels, while Span is
arithmetic. This parameter is sensitive to the roughness, geometric shape
and orientation of the illuminating target.

Phase difference: It is the most important polarimetric parameter that shows
the correlation of the two-copol returns :

m{ }‘

3.55
Shh ( )

Onh—ve = arctan

If the surface is lossy, the co-pol phase term becomes negative and with
increasing negative phase difference with increasing the incidence angle.
This parameters increases with the increasing of the dielectric constant
of the surface. Thus, the co-pol phase difference in the range of 45-50 is
largest for open water and typically around -5 at L-band.

Co-Polarization Ratio:

_ (585
Mol = 18,5

Its value is determined by the dielectric constant of the surface. It is useful
to separate open water from thin-ice types. First-year and multi-year ice
have values about 1. Open water and new ice have the largest observed
values.

(3.56)

Cross-Polarization Ratio:

(ShoShy)

v (3.57)

th/gb =

The cross-polarization ratio has been shown to be useful to distinguish ice
types and estimating ice age.

Optimum frequency, polarization, and incidence angle

Frequency, polarization and incidence angle are key factors in remote sensing
of sea ice. In this sense it is legitimate to ask if there exists an optimum
frequency, polarization and incidence angle. Before answering, let us see the
typical frequency bands used in sea ice remote sensing.
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L-Band S-Band C-Band X-Band

1GHz 2 GHz 4 GHz 8 GHz 12 GHz

Figure 3.10: Typical frequency bands used in sea ice remote sensing.
The frequency bands information are taken from [17].

During winter the most critical point is discriminating FY-Ice and MY-Ice.
This can be done evaluating the dominating scattering mechanism: volume or
surface scattering. Reminding that in Rayleigh region the radar cross section
increase as A% we can choose an opportune wavelength in order to have surface
scattering as the main scattering mechanism. Also the wavelength should be
short enough to have a strong volume scattering. Observations and predictions
argue that discrimination at C-Band will be much better than at L-Band and
that results at X-Band will be similar to those at C-Band but with additional
dynamic range. The ability to discriminate improved with decreasing frequency
with the greatest separation at L-Band. For all season capability, selection of
a C-Band frequency is a very reasonable choice when we operate with only
a single frequency [26]. For many ice types, VV and HH intensities are very
similar. However, VV channel shows 5 to 7 db more than HH channel for calm
open water. VV channel shows also 2 to 3 db than HH channel for very thin ice.
MY-Ice shows more depolarization than FY-Ice and so the Cross-polarization
has been shown to increase the range between MY and FY ice returns by an
additional 3 db. This is attributed to the very weak depolarization that occurs
for smooth and slightly rough surfaces. A priori, there does not exist an exact
optimum value of the incidence angle. The best solution would be to have more
incident angle observations. Anyway, the optimum incidence angle range is from
20 to 70 degrees. Normal incident angles are dominated by surface scattering
and coherence effects. The worst range is from 10 to 15 degrees, where the main
scattering mechanism is not very well defined [26].



Chapter 4

Polarimetric Decomposition
Theorems

Having defined the Coherency T and Covariance C matrices in Chapter 2, now
we can introduce the “ Target decomposition theorems” well-known in radar
polarimetry. These theorems have the goal of understanding the scattering
mechanisms corresponding to the polarimetric signatures in PolSAR images.
There are many types of these decomposition theorems. We shall cite the most
important:

e Model-based decomposition
e Eigenvalue-Eigenvector decomposition
e Scattering matrix S coherent decomposition

In our work, we shall focus only on the model-based decompositions but we will
briefly recall the Eigenvector-based decomposition and the coherent decompo-
sition because they will be useful later.

4.1 Coherent Decompositions

Coherent decompositions have the goal of representing the scattering matrix
S as a combination of basis matrices corresponding to N canonical scattering
mechanisms [10][19].

N
S = Z OéiSi (41)

Now we consider only the most important coherent decomposition: the Pauli
decomposition. In this decomposition the scattering matrix S is expressed as
sum of the complex Pauli matrix basis set, defined in Equation [2.25]:

5= { g:l: gfi ] = a[Sa] + B [So] + 7 [Se] + 1[Sd] (4.2)

48
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where:
1 0 1 0 0 1 0 —1
se=lo 0] s=lo O s= [0 0] sl V)

a= %(Shh +Sw) B= %(Shh —Sw) 7= %(Shv +Sun) = %(Shv — Son)
The Pauli decomposition provides four main scattering mechanisms:
1. Single or odd Bounce scattering from a sphere, a plate or a trihedral.
2. Double or even Bounce scattering from a dihedral oriented at 0 degrees.
3. Double bounce or even Bounce scattering from a dihedral oriented at 7 /4.
4. Antisymmetric components of S.

From now on, we will consider the monostatic case, Sp, = Syp, then =0 and
the Span is given by:

Span = [Sun|* + |Suol* + 21Shol* = laf* + 18" + [ (4.3)
The RGB color-coded is:

Red = |3]*> Green = |y Blue=|a|’ (4.4)

4.2 Eigenvector-based Decompositions

Eigenvector-decomposition is based on the eigenstructure of the coherency T3
matrix. In the first chapter we have mentioned the properties of T and C
matrices which derived by the Hermitian property:

e The eigenvalues of a Hermitian matrix are real.

e A Hermitian matrix is positive semidefinite if and only if the eigenvalues
are nonnegative.

e The eigenvectors of a Hermitian matrix corresponding to distinct eigen-
values are orthogonal.

From this it is possible to decompose the Coherency T3 matrix as:

Ts = Us 33Uy (4.5)
where:
A 0 0
Zs=1] 0 X 0 (4.6)
0 0 A3

A1, A2, A3 are the real and nonnegative eigenvalues of T3 and U = [u1 us2 us]
is the special unitary transformation matrix defined in Equation [2.47]. It is
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important to notice that A\; > As > A3 > 0 . This decomposition associates
each eigenvector of T3 to three deterministic scattering mechanisms: surface
scattering, dihedral scattering and volume scattering. The eigenvector [u,],
specifies the type of scattering mechanism and the eigenvalue [A;], specifies its
relative magnitude [5]. In this way, we can write:

3
i=1
Span = A1 + Ao + A3 (48)
From the eigenvalues it is possible to define the pseudo probabilities P; :
3
Pi=X/ > A (4.9)
j=1
In this way we can define the following parameters:
Entropy:
3
H=— % Pilogs(P;) (4.10)
i=1

The polarimetric scattering entropy is a statistical measure of the randomness of
the scattering process. When the eigenvalues are equal we have H = 1 and this
means that the scattering process is completely random. A high entropy value
means that the target is represented by more than one scattering mechanism
and they are equal in strength. A depolarizing surface is characterized by a
non-zero entropy value. Low values means that the target is dominated by a
single scattering mechanism and a weakly depolarizing scattering process. H is
whiting [0,1].

Anisotropy:

A2 — A3
A2+ A3
The polarimetric anisotropy is the complementary parameter to the entropy.
When the entropy is high is difficult to distinguish the scattering process and in
such cases the anisotropy is very useful for to do this.
Mean angle alpha:

A= (4.11)

3
i=1
The @ parameter indicates the type of the average dominant scattering process
occurring [0° —90°] . Low values,[40° — 90°], are interpreted as surface scatter-
ing. Values ranging from [40° ~ 53°] are interpreted as volume scattering and
the remaining region [53°, 90°] determines when double bounce scattering occurs.
The previous part has been derived from [22].
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4.3 Model-Based Decompositions

The scattering matrix S is only able to characterize the so-called coherent or
pure scatterers. To describe distributed scatterers, we need some statistical
descriptors. Precisely, second order polarimetric descriptors are the covariance
C and coherency T matrices, described in Equations [2.30] and [2.31]. The
basic idea behind the decomposition, model-based and eigenvector based, is to
hypothesize that the measured covariance matrix can be modeled as the combi-
nation of a number of individual matrices representing scattering as predicted
by physical models [34]. Now let us see the main model-based decomposition
theorems.

4.3.1 Freeman and Durden Decomposition

Freeman and Durden decomposition is one of the most used model-based de-
composition theorem in radar polarimetry. This decomposition considers three
possible scattering mechanisms: volume, surface and double-bounce scatter-
ing [19]. Surface scattering is modeled as Bragg surface, described in Section
[3.2.1.2]. The corresponding covariance Cs matrix is given by:

1 B 0
T.= (k") =f | B I8 0 (4.13)
0 0 0

where

§= Bubu (4.14)

Bhh+Bovv|?

fs = | -; ve]

Double-Bounce scattering is modeled by scattering from a dihedral corner re-
flector, described in Section [3.2.1.3]. The corresponding covariance Cgp matrix

is given by:

lal> a 0
Tap = <KHH> =fa| o 1 0 (4.15)

0 0 O

where 1
2
Jab = > |th(A)th(B) + Byy(a)Bou(B) (4.16)
. B B - B’uv va

o = ei20m—0) DhR(A) Dhi(B) (4) (B) (4.17)

Brh(4)Bhh(B) + Buv(a)Bou(B)
and Ry, Rin, Ron, Ro, are the Fresnel coefficients for the first surface and the

second surface, respectively. The term exp 42i(y, — 7,) indicates the propa-
gation effects and their relative phase changes. Volume scattering is modeled
considering a cloud of randomly oriented very thin cylinder-like scatterers. The
average covariance volume (T, ), matrix is given by:

s [1roo o
(Ty)y =210 1/2 0 (4.18)
210 0 1/2
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where the subscript 6 indicates the average in respect to its probability function.
Freeman and Durden decomposition considers an uniform distribution for the
orientation angle 6 :

p(@)=00/2r 0<6<2r (4.19)

/2

3n/2

Figure 4.1: Uniform probability density function for the orientation angle 6 in
polar coordinates.

Appendix A gives the complete derivation of the volume covariance matrix.
Considering the three scattering mechanisms are uncorrelated, the total covari-
ance C matrix is given by the sum of each covariance matrix:

T=T,+Tg + <Tv>9 =

fo+ folaf + L fsB* + fapex 0
= fsB+ fava® fIBP+fm+2 0 (4.20)
0 0 L

Finally we can write the general form of the Freeman and Durden decomposition:

<[T]> = fs [Tsurface] + fdb [Tdoublefbounce] + fv [Tvolume] (421)

The system is undetermined having 4 equations in 5 unknowns. Subtracting the
common term f,, the system reduces to 3 equations in 4 unknowns, but it is
always undetermined. It is clear that prior assumptions must be taken. vanZyl
proposed in [33] a criterion to decide whether double-bounce or surface scatter
is dominant based on the sign of the real part of the co-pol term of T :

Double — Bounce : Re{SpnSp,} <0 — g=+1
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Surface : Re{SppSi,} >0 — a=-1

According to this criterion, fixing « or 8, the system has the same number
of equations and unknowns and so it is possible to find an unique solution.
The Span and the corresponding powers associated with the three scattering
mechanisms are given by:

Span = Trace (T) = Ps + P, + Py (4.22)

P32f5(1+|ﬁ|2) PU:fv de:fdb(l'i_‘alQ)

The previous part has been derived from [19].

4.3.2 Non-Negative Eigenvalue Decomposition

Non-Negative Eigenvalue decomposition, NNED, is an hybrid decomposition
proposed by vanZyl in [35]. Hybrid because it combines Eigenvalue decom-
position and the traditional Model-Based Decomposition. This particular de-
composition was born by the fact that Model-based Decomposition shows some
pixels with negative powers. This is clearly physical meaningless. It is pos-
sible to show that negative power arises by an overestimation of the volume
contribution. Negative power means that the covariance C matrix has negative
eigenvalues. NNED has the purpose to avoid the negativity of the eigenvalues.
To do this, a scale parameter ¢ is introduced. Let us see the mathematical proce-
dure. Consider the following measured covariance (C) matrix and the predicted
covariance [C\,oder] matrix of the considered model-based decomposition :

g 0 1% Em 0 Pm
<C> = 0 n 0 [Cmodel] = 0 Nm 0 (4.23)
pro0 € P 0 &m

From the form of these matrices it is possible to notice that the reflection sym-
metry condition is assumed. The heart of this method consists of subtracting
the predicted “model” covariance matrix, weighted by a real scale coefficient g,
from the measured covariance (C) matrix. In this way, the remainder covariance
[Cem] matrix can be written as:

[Crem} = <C> —q [Cmodel] (424)
e 0 p Em 0 Pm

[Crem] = 0 n 0 —q 0 Nm 0 (425)
pro0 ¢ P 0 &m

The real parameter ¢ is the variable that makes it possible to avoid negative

eigenvalues. This is achieved by maximizing ¢ with the condition that the
eigenvalues are non-negative. To do this means to find the maximum value of
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q. If ¢ = 1 we obtain exactly the original model-based decomposition. Let us
write the eigenvalues of [Crep], that are the roots of the following equation:

(N=1m—A) {/\2 —(e+&—qem — @m)A+ (e +qem)(§ — ¢€m) — Ip — pm|2} =0

(4.26)
AL = %(Y-FX)
Ag = %(Y - X)
Az =1—qn
Y:€+§—q€7n—61§m
X = /Y2 — (e — ) (€ = 76m) + 410 — 7o’ (4.27)

Since A1 > Ao the maximum value of ¢ is found when the smallest renaming
eigenvalue is equals to zero. To dictate Ay = 0 means to resolve the following
quadratic equation:

(€ = gem)(€ = 4€) = |p — qpm |’ (4.28)

The corresponding roots are:

qi1,2 = 2(emt 1_ I |2) (Z =+ \/Z2 —4 (‘Emfm - ‘pm|2) (55 - |p|2)

where :
Z =& +Eem — PP — P Pm (4.29)
To dictate A3 = 0 means:
n—=qnm =0 (4.30)
Choosing the smallest roots among [q1,¢2,g3] we obtain the value of ¢ that
provides non-negative eigenvalues:

q1
¢ = min Q2 (4.31)
a3 =1/Nm
Once the volume scattering has been removed, it is possible to continue using
the traditional model-based decomposition. NNED considers an eigenvalue-
decomposition for the total covariance C matrix: can be written as:

(C) = A1 [C1] + A2 [Ca] + A3 [C3] + Adigs [Caigyl (4.32)

Now it is clear why we have called NNED an hybrid method. It is possible to
obtain the intensities by :

Ivolume =Trace {q [Cmodel]}
Tsurface = Trace {\1 [C1]} (4.33)
Lgouble—bounce = Trace {/\2 [02]}
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The last matrix [Cq;f¢] will include additional cross-polarized power that could
represent terrain effects and rough surface scattering and typically this matrix
is ignored. This section has been derived from [35].

4.3.3 Sea Ice Two-Component Decomposition

Now let us see a specific model-based decomposition developed for Sea Ice in
[9]. This decomposition considers only two scattering mechanisms: surface scat-
tering and volume scattering. Double-bounce scattering is typically negligible
in sea ice scenes and for this reason it is not considered in this decomposition.
Surface scattering is modeled with the Extended Bragg model and the volume
model assumes randomly oriented scattering elements described by the shape
parameter p. The coherence decomposition can be written as:

T = f.Ts + f, Ty (4.34)
where:
1+18 Bsinc (26) 0
T, = | B*sinc(26) L|B)* (1 + sinc(49)) 0 (4.35)
0 0 L1812 (1 — sinc(49))
(1+p) 0 0
T, = 0 (1—p) 0 (4.36)
0 0 (1-p

where all parameters are exactly the same as defined in Sections [3.2.1.4] and
[3.2.2]. The form of T, denotes the assumption of azimuth symmetry. Azimuth
symmetry is a strong assumption but for sea ice scenes is often valid. Span is
given by:

Span = Trace {T} = fs (1 + |[3|2> + fo(3—p)=Ps+ P, (4.37)

Later, we will use a normalised form of the coherency T matrix :

1 1 Bsinc (26) 0
T, = —— | Bsinc(26) %8I (1 + sinc(49)) 0
(1 + 18] ) 0 0 L1817 (1 — sinc(49))
(4.38)
N 1 (1+p) 0 0
Ty=— 0 (1-p 0 (4.39)
3=r o 0 (1-p)

The normalisation in respect to the total power entails that the Span is equals
to one and f, and f; are between [0, 1].

Span = Trace {f} (4.40)
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fs+fo=1 (4.41)

Assuming the two scattering mechanisms are uncorrelated, the total normalised
coherency T matrix is given by the sum of each covariance matrix and we can
redefine the Sea Ice Two-Component decomposition as:

B T:n @2 0
T - T21 T22 0 (442)
0 0 Ty
where : s (14 )
Ty = s TP 4.43
= |B1* (1 + sinc(49)) (1-p)
Ty = fs 2(1+\B|2 + fo 5=, (4.44)
~ 1812 (1 — sinc(49)) (1-p)
Tss = [s 5 (1 N \5|2> + fo T (4.45)
Fi, — JsPsimc(20) (4.46)

(1 - IBI2)

This model has 5 unknowns f,, fs, 8, §, p but only 4 equations. To solve
this system it is necessary to fix one parameter or to take some kind of prior
assumptions. Otherwise, it is possible to use an optimisation algorithm. It is
important to notice that the speckle has not been considered yet. Fixing one
parameter, for example §, we can find an algebraic solution, given by:

| Tae — T3]

8] = TTralcos (28) (4.47)
/B = LT (4.48)
Tl (1+167)
Js= Bsinc(25) (4.49)
fvzl_fs (450)
31817 [T — (Tag — T3)] + (2 - |5|2) fo
p=— - (4.51)
161" [Th1 — (Toe — T33)] + (2 + 18] ) fo
Reminding that :
o th - va
5 B th + Bm; (452)

where Rpp, and R, are reflections coefficients defined in Equations [3.15] [3.17],
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we can see that § has an important physical meaning: it is related to the
dielectric constant & and the incidence angle #. In particular, high values of 8
are expected by open water that has a high dielectric constant. In Chapter 3,
during the X-Bragg model description, we have seen that ¢ is the parameter
which controls the depolarization as well as the cross-polarized power level.
If 6 = 0, the Extended-Bragg model converges to the Bragg model [11]. We
can see § as a measure of surface roughness. High values of § denote rough
surfaces while low values denote smooth surfaces. The limit of the X-Bragg
model is the ambiguity given by the sinc function. To avoid this ambiguity we
must choose ¢ below 7/4 . This fact should not be underestimated because
it limits the surface roughness measure. The shape parameter p is the most
critical parameter and it is the only one of the volume scattering model. Shape
parameter p lies between [0,1], but typical values are between [1/3 ,1] where low
values denote volume scattering caused by prolate, needle-shape particles, or
more simply dipoles, typical for the upper layer of new and first-year ice. High
values of p are expected for volume scattering caused by oblate or spherical
particles, like air-bubbles or brine-pockets typical for multi-year ice. For open
water we expect high values of fs and low values of § . For smooth first-year
ice we expect low values of p and low values of §. First-year ice is characterized
by strong surface scattering while multi-year ice by volume scattering. For this
reason we expect high values of f; and low values of f, for first-year ice and
the opposite for multi-year ice. Summarizing with the Sea Ice Two-Component
decomposition it might be possible to discriminate open water, smooth and
deformed first-year ice, and multi-year ice. A possible future work could be to
apply a specific classification algorithm for sea ice scenes. In Chapter 7 we will
see, in detail, the results for this decomposition.

4.4 Model-Based decompositions comparison

Now we see a brief review of the main model-based decompositions in order to
evaluate their advantages and disadvantages.

Freeman and Durden Decomposition

The main advantages of the Freeman and Durden decomposition are the rel-
ative simplicity and that it is mainly based on the physics of the scattering
mechanisms. The Freeman and Durden decomposition is particularly useful
for earth terrain and forest scenes, but is not for sea ice scenes. Previously,
we have showed that the volume scattering contribution is modeled considering
randomly oriented dipoles. In some regions, for example vegetated areas, vol-
ume contribution tends to be overestimated causing negative power associated
to surface or double-bounce scattering and so causing a loss of physical meaning.
Another possible deficiency of the Freeman and Durden decomposition is the re-
flection symmetry assumption that is not always valid, specially in urban areas.
From our work perspective, the most critical point is the need to take “prior”
assumption that allows to find an unique solution for this model. Our goal is
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precisely to find a way to avoid this kind of assumption using the fourth-order
statistical moments. This point will be more clear in the next chapter.

Non Negative Eigenvalue Decomposition

The Non Negative Eigenvalue decomposition allows to avoid the problem of
negative power that occurs in Freeman and Durden decomposition. NNED is
particularly used for forest land scenes. One of NNED problems is that the cross-
polarized power is ignored. This power could be useful to measure the surface
roughness, particularly used in sea ice scenes where surface scattering is typically
dominant. Later, we will show the results for NNED applied to Freeman and
Durden and Sea Ice Two-Component decompositions and we will show if it is
possible to obtain extra information using the fourth-order statistics.

Sea Ice Two-Component Decomposition

The Sea Ice Two-Component decomposition has the goal to introduce a specific
decomposition for sea ice scenes. To model sea ice polarimetric signatures is
very challenging, because, as previously described, the scattering mechanism
is different for new ice and multi-year ice and is dependent from the partic-
ular physical structure of these two types of ice. Double-bounce scattering
typically is not prevalent in sea ice scenes and this is the reason because it
is ignored in this decomposition. The Sea Ice Two-Component improves the
typical surface scattering model using the Extended Bragg surface model, also
known as X-Bragg model. Volume scattering is modeling trough the p param-
eter, defined in Section [3.2.2]. This decomposition has more unknowns than
equations and to find an unique solution is necessary to fix one parameter or
make prior assumptions, typical for model-based decompositions. The Sea Ice
Two-Component decomposition has been the first decomposition in [7] where it
has been shown that fourth-order statistics can improve traditional model-based
decompositions, removing prior assumptions. This point will be more clear in
the next chapter where we will explain the theory and the procedure behind the
use of higher-order statistics.






Chapter 5

Model-Based
Decomposition with
Higher-Order Statistics

In this chapter we will briefly recall the most important concept about the
statistics of PoISAR data and then we will show the heart of our work describing
the high-order statistics approach applied to the model-based decompositions.
We will give particular emphases to the Sea Ice Two-Component decomposition
because it is the decomposition chosen by us to demonstrate the usefulness of
the higher-order statistics. Then we will apply the same method to the Freeman
and Durden decomposition.

5.1 PolSAR Data Statistics

In Section [2.3.2] we have seen the expressions of the covariance and coherency
matrices, obtained after the multilooking process that for simplicity we rewrite
it:

™M =

L
1 H 1 H
i=1

=1

where L is the nominal number of looks. These two quantities are typically used
to represent Multilook PolSAR data. It is usual to assume that the scattering
vectors, §2 or k, have zero mean and are circular complex multivariate Gaussian
distributed :

2 ~N5(0,20) Kk ~NE(0,3,) (5.1)

where 0 is a column vector of zeros, d is the dimension of 2 or k and

So = B[22 3, = Elrs") (5.2)

60
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are the covariance matrices of 2 and k , respectively. The PDF of 2 and k are
given by:

pe(f2;X) = exp(—.QHEalQ) (5.3)

1
7| X

Pe(R;E) = s exp(—k" 2 1k) (5.4)
w3
where || is the matrix determinant. If L > d and the € and k are independent

and then we can define the scaled covariance and coherency matrix as:
Z =LCq Z =LC, (5.5)

that are complex Wishart distributed:

L—d
Z]

pz (Z;L,%) exp(—trace(X712)) (5.6)

= Ta(L)
where ¥ = E[Z]/L = E[Cy,q]. T'4(L) is the multivariate Gamma function that
plays as a normalisation factor and it is given by:

d—1
Ty(L) = 74D T (L - i) (5.7)
=0

where I'(L) is the standard Euler gamma function. Summarizing we can write:

Z ~WS (LX) (5.8)

5.1.1 Product model and Texture

The randomness of a SAR measurement is mainly attributed to two unrelated
factors, speckle and texture [2]. The texture is the spatial variation of the radar
cross section, which can be associated with a group of scatterers. Gaussian
models do not consider the texture but only the speckle. In this sense, many
statistical models include the texture as a separate random variable. This family
of models is called product model and it has been shown to be a successful model
of SAR signals. Before exploring the PolSAR product model it is useful to recall
the product model for single channel SAR. In Section [2.3.2] we have seen the
multiplicative noise model for speckle for single-look data. As described in [25],
for L-looks, the intensity I can be represented as the product of the RCS with
a speckle term w whose PDF is given by:

LyyL—1
p(w) = LFTG_LUJ (5.9)

This model forms the basis of reconstruction filters and segmentation methods
but always derives from the product model that we write as:

S =+ow (5.10)
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where S represents the observed complex SAR data, w is the speckle modeled
as circular zero-mean complex Gaussian with unit variance and o is the RCS.
The intensity data is given by :

I=15)P =0 |w]? (5.11)

Now we can introduce the PolSAR data product model, that is also called the
multivariate product model. Using the same procedure in [37] we can write the
scattering vector, k or §2, as a product of two independent stochastic processes

K = /Tw =\/rw (5.12)
The w process is the speckle:
w ~ N5 (0,%,) (5.13)

while the second process is the texture. The PDF of the texture is arbitrary,
but its mean is always unitary :

Elr]=1 (5.14)
In the literature, it is possible to find many studies about the PDF of the
polarimetric texture. The best PDF choice is not unique and it depends on
the particular scene analyzed. Two of these possible choices are the Gamma
distribution and the Dirac delta distribution. If 7 is Gamma distributed the
scattering vector follows the K-distribution while if 7 is constant, Dirac delta
distributed, the scattering vector follows the Gaussian distribution. However,

we can always consider the texture independent of the polarization. In the
multilook domain, the product model becomes:

Z=mW (5.15)
where Z is the same defined in Equation [5.5] and W is the covariance matrix
for the speckle, multiplied for the number of looks:

L
1 H
W=1- T E_l w;w; (5.16)

that it is assumed complex Wishart distributed:

W~ WS(L, ) (5.17)

5.2 Model-based Decompositions with fourth-
order statistics approach

Traditional decomposition are used to decompose the covariance or coherency
matrix as a sum of covariance or coherency matrices corresponding to one of N
scattering mechanism:

([C]) = i, PC; ([T]) = S, BT (5.18)



CHAPTER 5. MODEL-BASED DECOMPOSITION WITH HIGHER-ORDER STATISTICS63

e.g.
<[T}> =P [Tsurface] + P, [Tvolume] (519)

In addition, each matrix is multiplied for the power P; of a such scattering
mechanism. This form of C or T can be reformulated in an equivalent form
defining the power fractions as:

fi=P/SPAN P, =f;-SPAN (5.20)

where P; is the power of the corresponding scattering mechanism. Considering
the normalised covariance or coherency matrix in respect to the Span:

(IC1) = ([C)) /sPAN  (IT]) = (IT)) /SPAN (5.21)

we can rewrite the decomposition as:

N N N
(C) = fiCi=>_fi SPAN -C; = PC; (5.22)
i=1 i=1 i=1
N N _ N N
<[T]>:Zfin:Zfi'SPAN'TiZZPiTi (5.23)
i=1 i=1 i=1

It is important to not confuse the normalised matrices T and C with the tra-
ditional matrices T' and C, although, the formulation is completely equivalent.
For example, if we consider the Sea-Ice Two-component decomposition, with
the traditional form we have:

<[T]> = fs [Tsurface] + fv [Tvolume] (524)

and with the new, but equivalent, formulation we have:

<[T}> =P [Tsurface] + P, [Tvolume] (525)

([C)) = Ps[Csurrace] + Po[Cuotume] (5.26)
but using the Equation [5.20] we obtain:

<[C]> = fs -SPAN - [Csurface] + fv -SPAN - [Cvolume}
(5.27)
<[T}> = fs -SPAN - [fsurface] + fv -SPAN - [fvolume]

In the same way proposed in [7], we can see the decomposition as mixing frac-

tions leads to a statistical interpretation as a probabilistic mixture. If we report
this approach to the scattering vector, we can write:

N
pr(k) = Z fipj(k) (5.28)
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or N
= fipi(£2) (5.29)
j=1

Now, let us see the procedure to compute the fourth-order moments of the
scattering vector. Using the Span normalised formulation we can write:

(T)) =N, fi- SPAN - T,
(5.30)
([Cl) =N, fi- SPAN - C;

Now we compute the expression of the second-order moments and the fourth-

order moments. The second-order moment of k; is furthermore given as:

N N
B[k ny /k‘ikf{mi,j(ki)dki =) fiE [lkmﬂ =D fiTu;
j=1 j=1

The fourth-order moment of k; is given as:
N
4
Bk} ij [l o gk = 3" 52 [t G0
j=1

In our model E [|k:i,j|4} is given as:

E {|ki7j|4} :/ )Tj?prj (15) (/(kv) |ki4pki,j(k:i)dki> dr; = 2B[T|T? ; (5.32)

i
The multiplicative factor 2 is the kurtosis of w . Indeed, recalling the skewness

and kurtosis definitions for a zero-mean random variable X :

E [X3]
skewness = 3 (5.33)
o
E[Xx*
kurtosis = [4 ] (5.34)
o
we have :
skewness =0 (5.35)
kurtosis = 3
if X is a Gaussian random variable or:
skewness =0 (5.36)

kurtosis = 2
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if X is a complex Gaussian random variable. Inserted the Equation [5.32] into
[6.31] we get the final expressions of the fourth-order moments of the scattering
vectors:

B[k "] Z f;2E[r?|SPAN?T? (5.37)

i,]

E[|2:4 Z f;2E[r?]SPAN?C?

1,7

(5.38)

where iw and @U are the it diagonal elements of the j** model matrix. The
procedure to compute the fourth-order moment of the Lexicographic vector §2;
is analogue.

5.2.1 Sea Ice Two-component Decomposition

Restarting from the Sea Ice-Two component decomposition, described in Section
[4.3.3], now we can rewrite it using the new Span normalised formulation:

(IT)) = fs - SPAN - [Ts] + f, - SPAN - [Tyorume] (5.39)

_ 1 1 Bsinc (26) 0

Ty = — | B'sinc(20) §|8]* (1+ sinc(45)) 0

(1+ 8] ) 0 0 118 (1 — sine(49))
(5.40)
N 1 (1+p) 0 0
T,=—— 0 (1—-p) 0 (5.41)
S 0 0 ’ (1-p)

The normalisation in respect to the total power entails that the Span is equals

to one and f, and f, are between [0, 1], so we can write:

fs+fv:1 (542)

Assuming the two scattering mechanisms are uncorrelated, the total normalised
coherency T matrix is given by the sum of each covariance matrix and we can
write the Sea Ice Two-Component decomposition as:

B T:n @2 0
T=|Tn T 0 (5.43)
0 0 Ts3
where : SPAN )
Ty = 12 ~ + fo- SPAN <3+p) (5.44)
(1+157) Bl
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187 (1 + sinc (46)) L fL . SPAN. (1-p) (5.45)

Too = %fS.SPAN-

(1 +18/° 3=p
2 )
Ty = 34, span - PO e ) | f span. U=P) 54
2 (1 + 1Al ) 3-p
Tiz = f,- SPAN - ﬁLC(Qf) (5.47)
(1+157)
The expressions of the fourth-order moments are given by:
2
2
(k)" = 2E [r?] SPAN? . | f, - o e [(1+P)] (5.48)
(1 + Iﬁlz) 3—p
o ' . _ .
k)t = 2B [7?] spaN?. | g, | PO Esinc @) |- o (1= p)
2(1+18%) | 1 3—p |
(5.49)
r 12
2 ; r 12
(ks3)* = 2E [72] SPAN? .- | f. - 16]” (1 — sinc (49)) e (1-p)
2(1+18%) | [ 3—p |
(5.50)

Using these three new equations and considering the Span equation we have
8 equations and 7 unknowns. In this way it is possible to find an algebraic
solution without needing to fix any parameter or making some kind of prior
assumptions. The unknowns for such a decomposition are:

fs fo 6 p Re{B} Im{p} E|[r’] (5.51)

It is important to consider two different cases:

1)Non — Textured Data: E[7?] =1
(5.52)
2)Textured Data: E %] #1

The second case, that considers the texture, is the more general case and we
expect best result from it. It is important to remember that we do not know
anything about the distribution of the texture and we assume no particular
hypothesis about its distribution. The power of the texture is a new variable
although we know its mean. From this parameter it is possible to see how much
the texture distribution deviates from the Gaussian distribution. This part will
be shown in Chapter 7. Appendix B gives the complete procedure in order
to obtain the algebraic solution for the Non-Textured data case. To find an
algebraic solution for the Textured data case is more complicated and may not
even be possible. This could be a part of a future work.
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5.2.2 Freeman and Durden Decomposition

Now, in order to conclude our work, we present an application of the higher-
order statistics approach to the most traditional model-based decomposition:
the Freeman and Durden decomposition. It is important to remember that
such a decomposition requires some prior assumptions in order to find an unique
solution. This problem will be avoided using the fourth-order equation, as we
show now. Restarting from the Freeman and Durden decomposition, defined in
Section [4.3.1], we rewrite it using the Span normalised formulation :

<[T]> = fs'SPAN'[fsurface]"i_fv'SPAN'[fvolume]"’_fdb'SPAN'[fdouble—bounce]

(5.53)
where:
i . 1 B 0
To=F——x |8 18 0 (5.54)
(HWI) 0 0 0
S I
T,=5 |0 1/2 0 (5.55)
0 0 1/2
_ 1 la* a 0
Tdbzi Ot* 1 O (556)

2
(1 + [a ) 0 00
The normalisation in respect to the total power entails that the Span is equals

to one and [fy, fs, fan] are between [0, 1] so :

fs+ fot fan =1 (5.57)

Assuming the three scattering mechanisms are uncorrelated, the total nor-
malised coherency T matrix is given by the sum of each covariance matrix
and we can redefine the Freeman and Durden decomposition as:

B jjll @2 0
T=|Tn T 0 (5.58)

0 0 T3z

~ s SPAN ? 1
11:f72+fdb-SPAN-¢2+fv-§ (5.59)
(1+151) (1+laf*)
- .- SPAN -|8|? .SPAN 1

T = f A", Jw + fo- (5.60)

4

(1+187) (1+laf*)



CHAPTER 5. MODEL-BASED DECOMPOSITION WITH HIGHER-ORDER STATISTICS68

Tio = f, - SPAN - ﬂ72 + fay - SPAN - —— (5.61)
(1+187) (1+laf?)
~ 1
Ts3 = f, - SPAN - 1 (5.62)
Now, we write the expression of the fourth-order components:
2 2
4 _ 2 AN?2 1 |04\2 1
(K1) *2E[T]SP N7 fs- m + fav - m Jrfu‘z
o
(5.63)
) 2 2
1 1
<’€2>4:2E [7'2] SPAN?-| fs- (llﬂ:ﬁ2> + fab - m +fv'16)
+ + |
(5.64)
1
(k3)' = 2B [1?] SPAN?, - 6 (5.65)

Summarizing, the “new” decomposition has 8 equations and 8 unknowns:

fs fo fa Re{8} Im{B} Re{a} Im{a} E[T2] (5.66)

The traditional Freeman and Durden decomposition consider f3 is real, but it can
be considered as complex, in more general case. We choose this last hypothesis.

5.2.3 Optimisation Algorithm

We have just seen that to use the new three fourth-order equations allows to
have, at least, the same number of equations and unknowns. However, to find
a close form solution is not always easy. For this reason, and to contrast the
speckle, we choose to use an optimisation algorithm. This choice has also been
done considering the speckle perspective. In fact, with the optimisation al-
gorithm it is possible to consider the speckle that it is not possible with the
algebraic or analytic solution. In the Results Chapter we will show the speckle
robustness of the chosen optimisation strategy. The software used to realize
the simulation is Matlab. We have used two types of optimisation algorithm:
a genetic algorithm and a nonlinear algorithm. The Matlab functions used are
Particle Swarm and Fmincon. Particle Swarm is a particular genetic algorithm
that simulates the behavior of the nature, in particular that of the insects. Fmin-
con is a typical non-linear solver. Particle swarm, being a genetic algorithm,
improves its accuracy with increasing the computation time. Fmincon, instead,
shows more speed, precision and speckle robustness. For these last reasons we
have chosen to show the results obtained using Fmincon. In order to implement
the optimisation algorithm, we have defined the cost function as the sum of each
equation constituting the coherency matrix T as:

J(x) = (21)® + (22)* + (23)* + (z4)* + (25)* + (26)* + (27)? (5.67)
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where: N N _ _
21 =T11 — NMieasureas T2 = T22 — To2measured; (5.68)
w3 = T3 — Tygmeasured; T4 = ‘Tu‘ - ’TIQmeasured (5.69)
5 = <k1>4 - <k1measured>4; Te = <k2>4 — <k2measur€d>4 (5.70)
27 = (ks)" — (ksmeasurea)’ (5.71)

and the T is derived from the model given the current or testing parameters.

5.2.3.1 Relative weights

In order to improve the quality of the optimisation, we choose to utilize a
weighted cost function. Our goal is to balance the error introduced by each
equation. In particular, we would like to model the error introduced by each
equation as a random variable with zero mean and unitary variance. The start-
ing point has been to introduce the relative weights considering that the Co-
herency matrix T typically shows higher values for 771 compared than T3s.

J(x) = a1 (21)® + az(w2)? + as(w3)® + a(wa)® + as(25)” + ag(26)” + az(ar)?

(5.72)
where:

a1 = I/Tflmeasured; Qg = 1/T222measured asz = 1/T323measured (573)
Qy = 1/\/T11measu7'ed . T22measu7'ed (574)

4 2
Qa5 = ]-/ {<klmeasured> } (575)

4 2
Qg = 1/ {<k2measm“ed> } (576)

2
Q7 = 1/ {<k3m6asured>4} (577)

The relative weights choice has been validated from the results. However, the
challenging part is to model the weight for T375. It is known that T35 is not real
but complex. We have to say we used an optimisation algorithm for real value.
For this reason we considered the absolute value of T12 and so we can use as its
weight the root square of the correlation between T7; and T5o. It is important
to reiterate that this is only a first approach but we think a more analyzed study
about the theoretical variance of each equation, can allow to get better results.



Chapter 6

Data Material Description

Before to show the results, we think it is important to recall the information
about the Polarimetric Data used and the metric used to evaluate the perfor-
mance of the studied decomposition theorems.

6.1 SLC and MLC Data

PolSAR data are usually express in SLC and MLC format. SLC is the acronyms
of Single Look Complex. SLC data represents the vectorized scattering matrix
defined in Equation [2.23]. In this way, we can see SLC data as a D-dimensional

array :
SLC : [D, N, , N, (6.1)

where D is equal to 3 in monostatic case or equals to 4 in the bistatic scattering
case and N, and N, represent the x and y coordinates, respectively. Let us see
in the following figure the SLC data format:

Nx

Figure 6.1: SLC Data Format.

Notice that for each pixel is characterized by a vectorized form of the 2 x 2
scattering [S] matrix. MLC is the acronyms of Multi Look Complex and is
obtained trough the multilooking process defined in Equations [2.54] and [2.55].
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If we consider the k vector defined in Equations [2.26] and [2.40] for each pixel
we obtain the Coherency T matrix, otherwise the covariance C' matrix if we
consider §2 vector defined in Equations [2.27] and [2.41].

MLC : [D, D, Ny/Wa, N,/W,) (6.2)

where W, and W, are the x and y dimensions of the particular chosen window to
realize the spatial average. We have seen that the Multilooking process reduces
the spatial resolution but is very useful to reduce the image size and so the
image processing time. It is possible to notice that the L-parameter defined in
Equations [2.54] or [2.55] corresponds to the window area, given by [W, - W,].
Being the elements of the complex scattering matrix, it is obvious that SLC and
MLC data are complex valued.

6.2 Test Images

The most part of our work has been focused on the Sea Ice Two-Component
decomposition. The main problem for the Sea Ice scenes is often not having
ground truth measurements. In this way, it is difficult to evaluate if a decom-
position is reliable or not. In order to have a fast and sure way to compare
the quality of such a decomposition we used test images. Exactly as shown in
[7] we used a Coherency matrix test-pattern, with 6x6 blocks, using different
parameter values taken from real values for sea ice and ocean. Data have been
generated using an hard probabilistic mixture model for the scattering vector
K:

N,

pi(s) =Y fiNG(0,T5) (6.3)
j=1

with the multivariate complex Gaussian data model. We have used a large

window to realize the multilooking, 50 x 50 , in order to suppress the speckle.

Suddenly we will refer to Equation [6.3] as Gaussian data. Furthermore, we will

also generate the same data using an hard probabilistic mixture model for k but

with the multivariate complex K-Distribution data model :

Nc
pr(k) =) K50, 1)) (6.4)

j=1

It is important to recall that the K-distribution for the scattering vector origi-
nates from the assumption of a texture 7 Gamma distributed:

exp(—ar) (6.5)

In our implementation we used o = 10. In the following figure are shown the
test-images so built:
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Figure 6.2: Test images used to simulate Sea Ice Two-Component decomposition
parameters.

The size of each test-image is [24 x 24] and the same colormap has been
used. The Matlab colormap used was “Jet”. The small size of the images
allowed for fast implementations. This is particularly important if we consider
using optimisation algorithms. It is also important to recall that § is a surface
parameter and p is a volume parameter. This means that it is only important
to have well-defined § when f; shows high values. The same reasoning is valid
for p in respect to f,. Notice that f; and f, are complementary, being only
two scattering components. It is important to remember that we used the test
pattern simulation only for the Sea Ice Two-Component decomposition.

6.3 Real Images

The real images used in our work are two. The first image is the sea ice scene
from the Fram Strait, Greenland. The figure [6.3] shows the Pauli decomposition
of such an image. It is possible to notice a section black on the left that is
open water. The central part of the image, in light purple, is a smooth first-
year ice zone. In top-right corner, instead, there are ridges and very deformed
ice. Thickness measurements, obtained with a helicopter-borne laser altimeter,
confirms the hypothesis of very smooth ice in the central part of the image. The
second image is the well known San Francisco Bay, California. This image is
commonly used in SAR image processing because provides a perfect scenario
for radar polarimetry. Indeed, it provides sea, mountains and urban areas. This
image is not appropriate for the Sea Ice Two-component decomposition but it
is useful to compare the results for Freeman and Durden decomposition using
second order and fourth-order statistics.

6.4 Accuracy

To measure the quality of the reconstruction images we have used the following
metrics. The Mean Square Error , defined as:

m—1n—1

MSE= SN[ 5) ~ F9)P (6.6)

i=0 j=0

measures the average of the squares of the errors, defined as the difference be-
tween the observed f and the model value f [20][16]. Since we use a normalised
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cost function in our optimisation problem, we consider it important to use a
normalised version of the metric. We call this quantity Relative Mean Square
Error, rMSE | which is given by:

rMSE:lnfSV(i’j)._.f(i’j)r (6.7)

The Root Mean Square Error is typically used, defined as the root square of the
MSE:
RrMSE =VrMSE (6.8)

In the result chapter, in order to better interpret the results, we will use the
relative root mean square error expressed in percentage:

RrMSE% = RrMSE - 100 (6.9)
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Figure 6.3: Pauli decomposition of sea ice scene from Fram Strait, Greenland.
The image has been processed with the PolSARPro software [29].
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Figure 6.4: Pauli decomposition of San Francisco Bay, California.
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Chapter 7

Results

In this final chapter we will show the results of the discussed decompositions.
We start from the traditional model-based decompositions and we will conclude
with the new higher-order model based decomposition.

7.1 Traditional Model-Based Decompositions

Before showing the found results using the higher-order statistics, we will see
the traditional model-based decompositions applied to the work images in order
to have a possible visual comparison. In particular, it will be possible to see
how difficult it is to analyze the sea ice scenes with the traditional methods
and so the possible usefulness of the proposed specific model-based decomposi-
tion for the sea ice. Figure [7.1] shows the surface, volume and double-bounce
Span normalised powers obtained with the NNED. Figure [7.2] shows the same
components but using the Freeman and Durden decomposition. The same Mat-
lab colormap and the same number of looks, 8, have been used. As expected,
NNED and Freeman and Durden decomposition give similar results. Both of
them, show high surface scattering and very low double-bounce scattering. In
particular, we can see the big difference among the double-bounce power and
the other two remaining powers. This confirms the hypothesis made in [9] about
the possible negligence of the double-bounce scattering in sea ice scenes.
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Volume Double-Bounce

Figure 7.1: Non Negative Eigenvalue decomposition of sea ice scene from Fram
Strait, Greenland. Span normalised powers.
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Figure 7.2: Traditional Freeman and Durden decomposition of sea ice scene
from Fram Strait, Greenland. Span normalised powers.

7.2 Model-Based Decomposition using fourth-
order statistics
Let us see the main results of our work: higher-order statistics applied to model-

based decompositions. We will show the results for the following decomposi-
tions: Sea Ice Two-Component and Freeman and Durden.
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7.2.1 Sea Ice Two-component Decomposition

As introduced in Chapter [6], the Sea Ice Two-Component decomposition has
been the most analyzed decomposition in our work. We will show separately the
results of such a decomposition for test patterns and real images, respectively.

7.2.1.1 Test Pattern

As described in Section [6.2], we used two models to build test patterns: Gaus-
sian model and Non Gaussian model.

Gaussian Data

Second Order Moments

The test patterns are useful to show the improvement caused by the use of
the fourth-order moments. For this reason it is important to start showing the
obtained results using only the second-order information. Table [7.1] shows in
first column the test patterns and in the second column the estimated values.
Where it is possible to notice that using only second-order information does not
cause satisfactory results. To have a better measure than a visual interpretation
we show the RrMSE computed for each test pattern. In particular, in order to
simplify the interpretation, we showed the RrMSE for each block of each test
pattern. For example, test pattern of |3 |2 is constituted by two values, and we
will show the RrMSE corresponding to each value. In this way, it is easy to
understand how far, in percentage, the real value is from the estimated value
and to have a quality measure of the considered decomposition. In addition,
we will average these values and we will propose, in the last column the mean
value of the RrMSE for each test pattern, RrMSE%.

Fourth-Order Moments Non-Textured model- Algebraic Solution
Let us start the fourth-order statistics analysis with the results obtained for the
Non-Textured model using the algebraic solution, shown in Table [7.2]. It is
important to remind that the Non-Textured case means:

E[r*] =1 (7.1)

It is already possible to see the strong improvement introduced by the fourth-
order statistics. The only exception is about |ﬁ|2. Let us see our hypothesis
about the odd RrMSE values of |6|2. The algebraic solution, unlike the op-
timisation algorithm strategy, does not contrast the speckle. In this way it is
possible all the noise converges in this parameter. We think this situation can be
improved realizing a perfect balance of the errors introduced by each equation.
It is also true that only the left side of |3 |2 shows a noisy behavior.

Fourth Order Moments Non-Textured model
Table [7.3] shows the results for the Sea Ice Two-Component decomposition
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using the fourth-order statistics in the case without texture, and using the opti-
misation strategy defined in Section [5.5]. As confirm of the previous hypothesis
about |8 |2, the optimisation strategy shows a more reliable value RrMSE. We
repeat that a perfect error balance introduced by the optimisation algorithm
would allow a better reconstruction.

Fourth-Order Moments Textured model

Table [7.4] shows the results for the Textured model. The results are similar to
the Non-Textured model. It is also important to remind that we are considering
Gaussian Data. Typically, PolSAR data are not Gaussian and so we expect
better result for the Textured model but only for the Non Gaussian Data, as
shown in the following part.

Summary

In order to show more clearly the improvement introduced by the fourth-order
statistics we show in Tables [7.5] and [7.6] all the results obtained and their
differences in terms of RrMSE%. The underscored values represent the best
improvement between models for each parameter. From such a table we can
conclude that for Gaussian data, the fourth-order moments without considering
the texture allows a better parameters estimation.
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Test Pattern Estimated RrMSE%
RrMSE for each block
h L 0 19.57%

A I “
I R R T N I

0.5488 0.2306 0.1626 0.1122 0.0760 0.0441

£ I Ii gll l 15.16%
(1] 2] (3] [4] [5]

(6]
0.0915 0.0922 0.1220 0.1496 0.1900 0.2646

o1 0.1
5 - T - . 37.93%
[1] 2] 3]
0.4912 0.3786 0.2682
M— y
P | 06
p ) B el 04 13.12%
1] 2]
0.1365 0.1260
I i:i :
02 0.2
18] . 0 36.62%

[1] 2]
04354 0.2970

Table 7.1: Sea Ice Two-Component decomposition using second-order statistics
and the optimisation strategy, for Gaussian data.
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Test Pattern Estimated RrMSE%

RrMSE for each block
1 1
£, . 0 14.21%
(1] 2] [5] (6]

B
a iy
0.1711 0.3138 0.3264 0.0181 0.0123 0.0106

(3] [4]
£, “ Ii ﬁ Iio 8.62%
(1] 2] (3] [4] [5] [6]

0.0285 0.1255 0.2448 0.0242 0.0309 0.0106

02

-igi gﬁni

01 =, 0.1

. mml b I .
2] 3]

[1]
0.3452 0.1362 0.0619

,
:
—
n,
§
”
— -
p

o4 5.55%

1] [2]
0.0988  0.0123

. 1
. L
, : | .‘-:. ' 0.2
18] : -, 108.36%
a2

2.09 0.0772

Table 7.2: Sea Ice Two-Component decomposition using fourth-order statistics
for the Non-Textured model computed with the algebraic solution and Gaussian
data.
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Test Pattern Estimated RrMSE%
RrMSE for each block
fs “ 0 6.78%
1] 2] 3] [4] [5] [6]
0.1637 0.0799 0.0532 0.0383 0.0362 0.0355
1 a 1
“ Iizi
fo . . 0 7.286%
1] 2] (3] [4] [5] [6]
0.0273 0.0320 0.0399 0.0510 0.0906 0.1964
-iif
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[1] 2] 3]
0.3520 0.1424 0.0781
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M— e g M-
I— ﬁi: 08
p L & = o 3.91%
1] 2] -
0.0452 0.0330
:i 04
. 02
182 . 0 18.00%
2]

[1]
0.1731 0.1870

Table 7.3: Sea Ice Two-Component decomposition using fourth-order statistics
and the optimisation strategy, for the Non-Textured model and Gaussian data.
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Test Pattern Estimated RrMSE%
RrMSE for each block

fs ) . 0 7.29%
(1] 2] (3] [4] [5]

(6]
0.1886 0.0932 0.0645 0.0484 0.0480 0.0426

. al ’
o ) = 0 9.29%
w2 B 4 B[

0.0315 0.0373 0.0484 0.0646 0.1200 0.2555

0 20.3%

[1] 2] [3]
0.3703  0.1559  0.0829

6.82%

[1] 2]
0.0864 0.0500

I i . Uovs
1812 . 0 18.73%
[1] 2]

0.1887 0.1859

Table 7.4: Sea Ice Two-Component decomposition using fourth-order statistics
and the optimisation strategy, for Textured model and Gaussian data.
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1
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19.57% 15.16% 37.93% 13.12% 36.62%

Fourth-Order Solution- Non Textured data

1 a

E I U : I . UM
08
. 05
0.1 5o e | {os 02
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6.78%
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Fourth-Order Solution- Non Textured data- Algebraic Solution
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: 02 : 04
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g 0.1 06 - 02
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0 : . o 04 v 0

8.62% 18.11% 5.55% 108.36%

Fourth-Order Solution- Textured data

1 1 0.5
02
05 04
05
0 0 0

20.3% 18.73%

7.29%

Table 7.5: Summary results for the various Sea Ice Two-Component decompo-
sition with Gaussian data.
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Results comparison

ARrMSEe%

2nd — Order
Vs

4th — Order

NoTexture

fs o

+12.79 +7.88 +18.85 +9.21

4 p

Elk

+18.62

2nd — Order
VS
4th — Order
No — Texture
Algebraic — Solution

fs fo

+5.36 +6.54

4 P

+19.82 +47.57

187

—71.74

2nd — Order
Vs
4th — Order
Textured
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+12.28 +5.87

4 p

+17.63 +6.3

187

+17.89

4th — Order
No — Texture
vs
4th — Order
No — Texture
Algebraic — Solution

fs o

+743 +1.34

4 p

—-0.97 +1.64

182

—90.36

4th — Order
No — Texture
Vs
4th — Order
Textured

fs fo

+0.51 +2.01

4 p

+1.22 +2091

18

+0.73

(%]

4th — Order
No — Texture
Algebraic — Solution
V8
4th — Order
Textured

fs o

—-6.92 +0.67

4 P

+2.19 +1.27

18

—89.63

(%]

Table 7.6: Second-Order and High-order methods comparison, with Gaussian

data.

Non Gaussian Data

As described in Section [6.2], we used o = 10 in order to build the data with
the K-distribution model for the scattering vector k.

Fourth-Order Moments Non-Textured model
As expected the results with the Non-Textured model are not satisfying. Only
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|8 |2, d, and p show a soft improvement over the second-order case, as shown in
Table [7.7].

Fourth-Order Moments Textured model

This case shows a more reliability than the Non-Textured model, as it is possible
to see in Table [7.8]. In particular, considering that the PolSAR data are non
Gaussian, this “road” could be very interesting. We choose the K-distribution
but clearly it is not the unique possibility. To analyze the study of the Non-
Gaussian distribution of the product model could be an interesting future work.

Summary for test pattern simulations:

Let us try to resume the obtained results for the test pattern simulations. All
the fourth-order moments cases show a strong improvement in respect to the
second-order case, both for Gaussian and Non Gaussian data. In particular, the
best results for Gaussian data, is shown by the fourth-order statistics case not
considering the texture, as it is possible to see comparing Table [7.1] and Table
[7.3]. Another important result is observable comparing Table [7.2] and Table
[7.3], the Non-Textured model with the algebraic solution and the Non-Textured
model with the optimisation algorithm, respectively. This comparison allows us
to see smoother images when we use the optimisation algorithm. Therefore, we
can affirm that using the optimisation algorithm allows to reduce the speckle
in a larger manner than the algebraic solution. For non Gaussian data, the
best results are shown for the Non-Textured model, as expected. However,
these results do not show a better behavior than the best results obtained for
the Gaussian data. Before to conclude we must reaffirm that we have not
realize a perfect balance of the error equations but nevertheless it is already
possible to affirm the usefulness of the fourth-order moments in the model-based
decompositions.
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Test Pattern Estimated RrMSE%
RrMSE for each block
0 26.12%

oz .
fs ‘ .
(1] 2] 3] [4] [5] (6]
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[1] [2]
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: 04
N 02
181> ) 0 28.13%
1] 2]

0.3794 0.1832

Table 7.7: Sea Ice Two-Component decomposition using fourth-order moments
and the optimisation algorithm for Non-Textured model and Non Gaussian data.
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Test Pattern Estimated RrMSE%
RrMSE for each block

£, Iﬂ E I iu 7.64%
1] 2] 3] [4] [5] [6]

0.1687 0.0775 0.0523 0.0480 0.0440 0.0681

So Ii E l 11.34%
(1] (2] (3] [4] [5] (6]

0.0281 0.0310 0.0392 0.0639 0.1100 0.4085

-igi B i
o1 1 01
s i sEEa

[3]

o 25.23%
1] 2]

0.4486 0.1944 0.1141

1
H 08
06
o 7.15%

,
:
—
r,,
§
”
— -
p

o

[1] 2]
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[l I i: . 'H in 24.79%
1 2

0.3111 0.1848

Table 7.8: Sea Ice Two-Component decomposition using fourth-order moments
and the optimisation algorithm for Textured model and Non Gaussian data.

7.2.1.2 Real Images

Let us see now the more interesting real sea ice image of the Fram strait, Green-
land. The next images have been obtained with a multilooking process with a
[100 x 100] window in order to suppress the speckle.
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Second Order Moments

Figure [7.3] shows the retrieved parameters using the second-order moments.
We used the optimisation algorithm and not fixing the delta parameter. The
results seems very different from the traditional decompositions. High volume
over all the scene can be noticed, as not expected from sea ice. The uncer-
tainty about the ground truth cannot allow to be completely sure about the
interpretation. We think the non perfect balance of the errors may mislead to
a not proper interpretation. Nevertheless, analyzing the results we can see the
correct behavior for the open water, high surface and low volume as expected.
This is an indication of a possibility to have good interpretations of the scene.
The § parameter, the roughness measure, shows higher values for the open wa-
ter than the smooth area. We think this is not perfectly correct, but we must
remember that J is the noisiest parameter as seen in the test pattern results.
The p parameter is the most difficult parameter to interpret. If we interpret
what the image of p shows, we can see the highest values around the smooth ice
zone. Remembering that p is the shape parameter and high values of p mean
a spherical shape of the scatterers, we can try to interpret the smooth zone as
multiyear ice zone. It is important to repeat that the non perfect balance error
equations could influence all the parameters value, as shown by the high volume
over all the scene. The |3|° parameter shows a non perfect behavior from what
expected. |B |2 is connected to the dielectric constant, and so we expect high
|8 |2 values for open water that is characterized by a higher dielectric constant
than sea ice. It is important to remind that the second-order moments case is
the more noisy case as seen for the test patterns in Table [7.1].

Fourth-Order Moments Non-Textured model - Algebraic Solution
Let us see now the results obtained with the algebraic solution in Figure [7.4].
The results are generally similar to those obtained with the second-order mo-
ments. The only differences are in |3 |2 and §. The § parameter is very noisy
and it is impossible to interpret it. |3 |2 is practically constant and although a
visible difference between sea ice and water exists. To be honest, it is important
to remember that the algebraic does not consider the speckle. In addition, we
included the the imaginary part of 3, that is connected to the imaginary part
of the dielectric constant. The high values of the imaginary part of 8 are in
correspondence to the sea water, as expected. After a general interpretation of
all the parameters we can affirm the poor reliability of the algebraic solution.
Although the algebraic solution shows strong mathematics characteristics, it
does not show the same strength for the real images.

Fourth-Order Moments Non-Textured model

In Figure [7.5] are shown the retrieved parameters considering the Non-Textured
model. The general behavior seems to be better than the previous cases. How-
ever, it is possible to see clearly the smooth ice zone that was not possible to
see with the second-order moments. In addition, it is possible to observe a more
general definition of the details, in particular for the ridges and deformed ice.
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0 has the same problem described for the previous cases. The |3 |2 parame-
ter shows a better behavior in respect the second-order moments but it is not
reliable yet.

Fourth Order Moments Textured model

We conclude the Sea Ice Two-Component decomposition with the Textured
model, as shown in Figure [7.6]. The results are very generally similar to the
Non-Textured case but they seems to be the best obtained results. The image
definition is the highest of all the previous seen cases and in addition it is
possible to observe a correct behavior of |3 |2. Furthermore, this model allows
to retrieve the texture that shows a correct behavior, as we will describe in the
next paragraph. Considering the Non-Gaussianity of PolSAR data we believe
this case is the more reliable between those just seen.
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Figure 7.3: Sea Ice Two-Component decomposition using second-order statistics
and the optimisation strategy.
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Figure 7.4: Sea Ice Two-Component decomposition using fourth-order statistics
with the algebraic solution, for Non-Textured model.
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Figure 7.5: Sea Ice Two-Component decomposition using fourth-order statistics
and the optimisation strategy, for Non-Textured model.
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Figure 7.6: Sea Ice Two-Component decomposition using fourth-order statistics
and the optimisation strategy, for Textured model.

7.2.1.3 Texture Analysis:

Using the textured model it is possible to compute the texture power E[r2].
Reminding that E[r%] = 1 describes the Gaussian model, we show in Figure
[7.7] the behavior of such a retrieved parameter. It is possible to observe two
peaks. Considering the Greenland sea ice scene, the lowest peaks corresponds
to the sea water and the highest to the sea ice. Nevertheless, the most texture
power is centered on 1. This means that globally the sea ice scenes considered
is well defined with a Gaussian model with the only exception of the sea water
zone. It is important to say that we have considered the simplest case of the
texture. In fact, we have considered the same texture for the volume and the
surface components. We think the volume component has a Gaussian behavior,
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Figure 7.7: Texture power of the Sea Ice-Two component decomposition.

with the power texture near to one, but we believe that this behavior is not
appropriated for the surface. In fact we expect a strong Non-Gaussianity for
the sea ice surface scattering. We have not had time in order to realize this
point but we think it could be a very interesting future work. Also to use the
texture information in order to realize a classification algorithm could be an
important application of our work.

7.2.2 Freeman and Durden Decomposition

Now we can see the results obtained with the Freeman and Durden decompo-
sition. The following images are obtained with a multilooking process with a
[10 x 10] window. This it is only a first tentative attempt to apply the higher-
order statistics to the traditional decomposition theorems.

Second-order moments with traditional prior assumptions

In order to have a simple comparison we show in Figure [7.8] the retrieved
components for the Freeman and Durden decomposition using the usual method
of fixing « or § in according to Re {S, S}, }, as seen in Section [4.3.1]. In this
way we assume that « or § are real, indeed the proper model considers these
two parameters as complex. It is important to remember that the components
are Span normalised.

Second Order Moments with the optimisation algorithm

Figure [7.9] shows the retrieved parameters of the Freeman and Durden decom-
position using only the second-order moments and the optimisation strategy.
Overall, the parameters show a realistic behavior: high surface and low double
bounce and volume for the water. In addition we have high volume for the
mountains and high double-bounce for the urban area. The best improvement
introduced by the optimisation strategy is the possibility to compute with pre-
cision the o and 8 parameters, without fixing any of them. It is important to
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repeat that this is not possible with the traditional method. We think this is
the major improvement introduced by the optimisation strategy.

Fourth-Order Moments Non-Textured model

Figure [7.10] shows the Freeman and Durden decomposition using the fourth-
order moments for the Non-Textured model. The general behavior is similar
to the previous case with the only difference about 8 and «. Also in this case,
using the optimisation algorithm it is possible to retrieve the modulus of o and
B, but the introduction of the three new high-order equations might lead of
finding an algebraic solution and so to retrieve the complex values of these two
parameters. We have not tested for lack of time, but we believe that to use the
higher-order moments may represent a new interesting way in order to retrieve
a greater number of parameters than the traditional methods.

Fourth-Order Moments Textured model

Figure [7.10] shows the case considering the texture. The results are similar to
the second-order case, but with the important possibility to retrieve the texture
information. The power texture seems to show a right behavior discerning sea
water from the mountains and urban area.

Summary

To apply the higher-order moments method to the traditional Freeman and
Durden it was only a first tentative attempt and we think this road could be
furthermore explored. Comparing Figure [7.8] and Figures [7.9], [7.10], and
[7.11] it is possible to notice that using the optimisation algorithm it is possible
to retrieve a more defined value of @ and 8 compared to the traditional Free-
man and Durden decomposition. Another interesting point is the possibility to
retrieve the texture information, that was not possible in the traditional model-
based case. Obviously, using a classification clustering algorithm it is possible
to obtain the texture information, but it is not achievable using the tradition
model-based decompositions. The Figure [7.12] shows the RGB images for the
described methods. In particular it is possible to see the main similarity of the
images. This fact confirms furthermore the proper validity of the used optimisa-
tion strategy. The RGB image for the Textured model, that we remember they
are power fractions, shows a more realistic behavior compared to the others, as
expected. In addition, using a more complex model of the texture, as described
in Section [7.2.1.3], it might lead to additional better results.
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Figure 7.8: Traditional Freeman and Durden decomposition fixing 8 or a.
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Figure 7.9: Freeman and Durden decomposition obtained with the second-order

moments and the optimisation algorithm.
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Figure 7.10: Freeman and Durden decomposition obtained with the fourth-order
moments for the Non-Textured model.
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Figure 7.11: Freeman and Durden decomposition obtained with the fourth-order
moments for the Textured model.
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Figure 7.12: RGB images power fractions of the considered decompositions.






Chapter 8

Conclusions

8.1 Summary

Let us analyze the conclusions of our work. We start listing all we have done
and then we will describe each point in detail.

e We studied and analyzed the physical and electromagnetic model of the
Sea Ice, in particular the Arctic Sea Ice. Afterward, we applied such an
analysis to the specific Sea Ice model-based decomposition: the Sea Ice
Two-Component decomposition.

e We have confirmed a recently proposed statistical method based on the
fourth-order moments to apply the traditional model-based decomposi-
tions.

e We showed preliminary results for an optimisation strategy with a pre-
liminary algorithm that are able to solve the system of equations of the
model-based decompositions.

In the part of the sea ice analysis we focused on the main characteristics that
influence the scattering type of the Sea Ice. We mainly focused on the differences
between Multi-Year ice and First-year ice. The Multi-year ice is characterized
by strong volume scattering because the almost zero salinity allows a larger
depth penetration of the incident wave and so to allow to the air-bubbles and
air inclusions in the upper layer of the ice to influence the electromagnetic
response. The First-year ice, characterized by a strong salinity does not allow
a significant depth penetration. Theoretically, this is the reason that the First-
year ice is strongly characterized by surface scattering. The main part of our
work has been to evaluate the possibility of using the higher order moments
than those of the second order, to the traditional model-based decomposition.
The second-order moments are typically used because they have a clear physics
meaning: the power. The fourth-order moments do not have a physical meaning
but only a statistical meaning. This is the reason because we choose the title:

104
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“Physical and statistical based decomposition of PolSAR images of Arctic sea
ice”. Such a possibility has been evaluated using the Sea Ice Two-Component
decomposition and so we were able to get the following results:

1. to have the possibility to get an analytic or algebraic solution without
fixing any parameters, as shown in Table [7.2 | for test patterns and in
Figure [7.4] for the real images, in Subsection [7.2.1]

2. to have the possibility of including the product model and so to get infor-
mation about the texture for any model-based decomposition.

3. using an optimisation algorithm it was possible to retrieve a solution when
an algebraic solution cannot be found.

4. using an optimisation algorithm we obtain smooth images and so we can
affirm the more speckle robustness of the optimisation strategy, than the
algebraic solution, as it is possible to see comparing Table [7.2] and Table
[7.4] in Subsection [7.2.1].

In order to evaluate the possible benefits introduced the fourth-order moments
we built the test patterns in order to have a quick and reliable comparison
method. The test pattern was built using real typical sea ice and ocean water
parameters. The most important result of our work is shown by the strong im-
provement in the test pattern results. In particular we have found that the use of
the fourth-order moments, for the Non-Textured model and for Gaussian data,
allows to reduce to half the RrMSE compared to that of the second-order case.
From that standpoint, we can affirm the usefulness of using the fourth-order
moments to the traditional model-based decomposition in radar polarimetry.
Altough this is well-confirmed for the test pattern we cannot say the same for
the real sea ice image we tested. The lack of in situ measurements does not
allow a certain interpenetration of the Sea Ice Two-Component decomposition,
but considering the main differences between First-year ice and Multi-year ice,
explained in Subsection [3.3.3], we are almost sure that the diffuse high volume
component over all the scene is not correct. The Sea Ice Two-Component de-
composition it was not the only analyzed decomposition with the fourth-order
statistics. We applied the same statistical method to the most traditional model-
based decomposition: the Freeman and Durden decomposition, and using the
well-known image of the San Francisco Bay, California, for which we know the
ground scenario. The corresponding results in Subsection [7.2.2] show some in-
teresting aspects: although the reconstructed images are very similar, the image
obtained considering the fourth-order moments with the texture seems to show
a more realistic behavior, as it is possible to see in Figure [7.12]. It is important
to remember we used the simplest case of the texture, common to the all scat-
tering mechanisms. On the other hand, the similarity of the images confirms the
goodness of the proposed optimisation strategy. The last aspect, but not less
important, we were to able to retrieve, without making prior assumptions, three
free parameters, a, 8 and the texture compared to the traditional Freeman and
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Durden decomposition. Indeed, the traditional Freeman and Durden decompo-
sition allows to find « or 8 only fixing one of them. Comparing Figure [7.8] and
Figures [7.9], [7.10], [7.11] it is possible to observe a more realistic behavior of
«a and B. Concluding, we believe this fact is very significant: we have proposed
a preliminary method applicable to any model-based decomposition in order to
retrieve a larger number of parameters compared to the traditional cases.

8.2 Future challenges

Before showing the possible future challenges, it is important to remember what
we think could be improved in our work. As first point will be important to im-
prove the implementation of the Sea Ice Two-Component decomposition. The
imbalance of the error equations was a clear limitation in the presented work and
we are sure that fixing this point it would be possible to get stronger improve-
ment for all the results. We propose now our ideas about the balance between
the errors introduced by each equation. Considering a small sliding window on
each component of the MLC data and extracting the variance and using such
a variance as the normalisation factor for the optimisation algorithm we think
this method might considerably improve the image reconstruction. For lack of
time, we have not tested this idea. Another possible future work is about the
texture. The extraction of texture information from the higher-order model-
based decompositions is one of the best possibility of our work. We considered
the simplest case of the texture, common to all the scattering mechanism. We
believe that using two texture parameters, one for each component, would be
more physically realistic and it might lead a significant improvement. In partic-
ular, we think the texture could be very different for the volume scattering and
for the surface scattering. We expect a non Gaussian behavior for the surface
scattering texture and a Gaussian behavior for the volume scattering texture.
This confirms the possibility of a future exploration of the texture starting from
our work.
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Appendix A

Freeman and Durden
Decomposition

Derivation of Volume Scattering
Covariance Matrix

Freeman and Durden decomposition consider the volume scattering generated
from a cloud of randomly oriented cylinder-like scatterers. The scattering ma-
trix for a small vertical dipole is given by:

sz{g H (A1)

If we consider € as the angle of the particle around the radar line of sight, we
can write, through the Singular Value Decomposition, SVD, the equivalent form
of the scattering matrix S :

S:[ cos sin@}{o O][cos@ —sin9}:

—sinf cosf 0 1 sinf  cosf

) .
sin” 6 sin @ cos
B { sinfcosf  cos?f } (A-2)
Reformulating S as a Pauli scattering vector we have:
sin? § 4 cos? 0 1 1
_ .2 2 _
K=—| sin“f0 —cos*f | =—= | —cos2f (A.3)
V2 2sin 6 cos 6 V2 sin 26

The corresponding coherency T matrix is given by:

T = (ke") =
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1 1 —cos 20 sin 26
=g | —cos 20 |cos 26/ — cos 20 sin 20 (A.4)
sin20  —cos20sin 20 |sin 26|

Assuming the prolate particle randomly is randomly oriented about the radar
line of sight, we can average this matrix over all possible angles 6 :

p(@)=00/2r 0<6<2rm (A.5)

In this way the off-diagonal terms will be zero, as expected. Resolving the
following integrals:
2m
1 1 1
= 2/’7()a 477/8 2
0

27
1 1
Tio = —5/00S26‘p(9) 00 = —5/6052959 =0
0

0
1 27 1 27
T3 = i/sm 20p (0) 00 = y= /sm 2000 =0
0 0
To1 =Thz
i i 11, 1 11
_ 2 _ = 2 R - 27 -
T = 2/|COS29\ p(0) 00 47T/|C0829| 00 i {29—1— 48111(20)0 Pl
0 0
1 2m 1 27
Tos = f§/cos 20 sin 20p (0) 00 = I /cos 20sin2000 = 0
™
0 0
T5 =Tis
T2 = T3
i i 11, 1 11
P = — 1 2 = — 1 2 = — |- — —si 27 = — = —
T3 2/|51n20| p(0) 00 47T/|sm267| 00 i {29 851n(29) 0 Pl
0 0
(A.6)
we finally obtain the coherency T matrix form:
12 0 0
T=| 0 1/4 0 (A7)

0 0 1/4
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and using Equation [2.44] we can write the volume scattering covariance C
matrix as:

L34 0 14
c=-| 0 1/2 0 (A.8)
1/4 0 3/4

It is important to notice that, having considered 6 uniformly distributed, the
previous form of C' would have been obtained also in case of horizontal dipoles:

s:[}) 8} (A.9)






Appendix B

Sea Ice Two-Component
Decomposition

Derivation of Algebraic Solution

We show the procedure in order to derive the algebraic solution for the Sea
Ice Two-Component decomposition. It is important to notice that having more
equations than unknowns it is not the unique possible procedure. We start
subtracting T33 from Tha: 5 }

Thy — 133 =

18> (1 + sinc (46))
(1 + \ﬂIQ)

_Lrspan +fspANETP)
2 3—0p

2 .
*lfsspAN‘ﬁ| (1+SZTLC 46)) *fUSPAN(l *p) _
’ 1+|Bl2) 3—p
2 2 .
e e
: (1+\5|) ? <1+|B|) 3—p
2 2 .
_lfSSPAN%_F lfSSPANw —fvSPAN(l_p) _
2 (1“5') ? <1+\5|> 3=p
_ ;.. gpanfsinc(49) -

(1+18)

Let us do the same with (ko) and (ks)*:

(ka)* — (k3)" =

116
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B 182 (1 + sinc (49)) i (1-p)1°
— 2SPAN? (fs[ 2 (12107) ] s [P} )

181 (1 = sinc (49)) i a-p1*)
—2SPANT (fs [ 2<1+|ﬂ|2) } e {S—ﬂ ) B

— 2SPAN?f, ( 8l* n |8[* sinc? (49) n || sinc (45))

a(ivi?) a(iei?) 2(141?)

18* 18]" sinc? (48) || sinc (49)
*fs 2\ 2 + 2\ 2 - 2\ 2 +
a(1+18%)"  4(1+187)  2(1+18P)

2 2
12SPAN2Y, {(1 - p)} —2SPANZf, {M} -
3—p 3—p
|B|4 sinc (40)
(1 + |ﬁ\2)2

Considering the ratio of Thy — Tss and (ko)* — (ks)™:

= 2SPAN?f,

TQQ - T33 —
(ka)* — (k3)!

2
_ f,- spanPlsine (1), (1 197) _
° (1 i |ﬁ|2) 2SPAN2f,sinc (46) 8]

(1+18F)
2SPAN |

- S

it is possible to obtain |3|’:

Too — Tis 2 2
b | 25PAN | = (1+181)
ke — k
8] = —= T (B.2)

[Ty — T3] - 2- SPAN — kg + ks
Now we find fs from the product of flg and fl*Q:
B*sinc (29) Bsinc (29)

T12Ti5 = fs (1—|—|ﬂ\2) fs (1—|—|B|2) =




APPENDIX B. SEA ICE TWO-COMPONENT DECOMPOSITION

8|7 sinc? (26)

=1
(1+ \BI2)2

and f; is given by:

Tio| (1+ 181

= 18] sinc(26) - SPAN
Using the Span relationship we can find f,:

fvzl_fs

fs

Now we can find § substituting f, in Toy — ng:
Ty — Ty =
181 sinc (46))

T )

’Tu‘ (1+18) 18I sinc (4))

= SPAN
|8] sinc(26) - SPAN (1 n mlz)

B ’Tu] 18] sinc (46))
N sinc(29)

sinc (49)) _ ‘TU‘ -|Blsin (46)) 5

= |Tia| 181

sine(20) 26 sin(20)
e sin (40))
B ‘T12‘~IB| 2sin(20)

and using the duplication formula:

sin 2ac = 2 sin v cos «

we obtain: in (45))
~ sin
— |7 ‘ g SL20))
‘ 12| - 18] 2in(26)
In this way, it is possible to arrive to the final expression of 4:
5— 1 Toy — T3
= —arccos | —F——
T ’Tu‘ 1B

From 77, it is possible to calculate p:

T =
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— APAN g span e

S(1+|BI2) 3=p
 f.SPANG = p) + f,SPAN(1+ p) (1+181)
(1+18F) 3-p)

Resolving we have:
T (1+4187) (3= p) = [,SPAN(3 = p) + fuSPAN(1 + p) (1+|8]) =
3T11 + 3T |B° — Tip — Tuip |8 =
=3f,SPAN + p [f,SPAN(1+|3") - f,SPAN| + f,SPAN + f,SPAN 5]

_ (1+ |B|2)(fv -SPAN — 3f11) +3fy, - SPAN
- [(1 + 1B8°)(T11 + fo - SPAN) + SPAN - f,

Finally we can write the expression of the algebraic solution for the Sea Ice
Two-Component decomposition:

B = 2 hs (B.7)
[TQQ — T33] -2-SPAN — ko + k3
1 Tp — Tss
0 = —arccos | ——— (B.8)
o ’Tn‘ . 5|]
‘Tm‘ (1+18)
Js = 18] sinc(20) - SPAN (B.9)
fvzl_fs (B].O)
) -
b (1+|B1*)(fo - SPAN — 3T11) + 3f, - SPAN (B.11)

— |+ 18 (T11 + fo - SPAN) + SPAN - f,






