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Abstract 
 

A comprehensive study of the Russenes postglacial fjord-side fan delta and landslide complex has 

been undertaken in inner Balsfjord, Troms county, northern Norway. High-resolution bathymetric 

data, digital terrain models, aerial photography, ground penetrating radar profiling, radiocarbon 

dating and field mapping have been used to determine the geometry, structure, lithofacies and 

evolution of the Russenes fjord-side fan delta. A 1:10 000 scale Quaternary Geological Map of the 

Russenes fjord-side fan delta and associated deglacial landforms has been produced during this 

study. Previously unrecognised deglacial ice-contact landforms have been mapped above the 

Russenes fjord-side fan delta. These landforms provide new insights into the deglaciation history of 

Balsfjord because they indicate that there was a halt in the retreat of the Balsfjord glacier at 

Russenes. Radiocarbon dating of Balanus shells located within these deglacial ice-contact landforms 

provides a minimum age for the glacier standstill of 10 884 ± 96 cal. yr BP (1σ). 

Detailed field investigation of a distinctive rock-avalanche complex located immediately above the 

Russenes fjord-side fan delta suggests that it was deposited by multiple rock-avalanche events. The 

composition of the boulders in the lower section indicates that they have been sourced from outside 

the catchment area, transported on the Balsfjord glacier and subsequently, deposited along with the 

ice-contact landforms. The composition of the rock-avalanche boulders in the upper section of the 

rock-avalanche complex indicates another rock-avalanche event was triggered on the mountains 

located directly above the Russenes fjord-side fan delta. 

Investigation of the present-day morphology and structure of the fjord-side fan delta indicates there 

are two distinct depositional environments within the postglacial fan delta: (1) a subaerial alluvial 

fan; and (2) a subaqueous Gilbert-type delta. Within both environments sediment transport occurs 

during episodic high-energy flood events. The subaerial alluvial fan contains two perennial river 

channels that migrate over the fan via channel back-filling and avulsion processes. Additionally, the 

subaqueous component of the fan delta can be further divided into three depositional environments: 

(1) a flatly lying intertidal delta platform; (2) a steeply dipping subaqueous delta slope; and (3) a 

deep, subaqueous, gently dipping prodelta region. Investigation of the deltaic subsurface reveals the 

delta has a Gilbert-type tripartite structure composed of bottomset, foreset and topset units and the 

relationship between the subsurface structure and the present-day fan delta morphology has been 

discussed. The surficial morphology and subsurface structure of the postglacial fjord-side fan delta 

has been used to determine the progradational and aggradational history of the fan delta. Finally, 

the response of the Russenes fjord-side fan delta to variations in climate, sea level and sediment 

supply over the Holocene has been investigated.  
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1 Introduction 
 

This study investigates the Quaternary sedimentology and geomorphology of a fjord-side fan delta at 

Russenes (or Russenest). The study area is located at the head of Balsfjord, Troms county, northern 

Norway (Figure 1), which is approximately 60 km south-east of Tromsø. Balsfjord is a narrow, shallow 

fjord, with a length of 46 km, maximum width of 5 km and maximum depth of 190 m (Wassmann et 

al., 1996, Forwick and Vorren, 2002).  

 

 

Figure 1: A) Terrain map of Troms county showing a distinctive mountainous landscape dissected by fjords. The 
stars show the location of fjord-head deltas. This map has been produced from www.norgeskart.no B) A 
topographic map of inner Balsfjord showing the location of the Russenes fan delta. This map has been produced 
from digital data available at www.kartverket.no.  
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Balsfjord has been repeatedly eroded by large ice sheets that formed during glacial-interglacial cycles 

throughout the Late Quaternary (Andersen, 1968, Forwick and Vorren, 2002, Stokes et al., 2014). 

Fjords occur at the interface between continents and the sea and the processes that occur within 

fjords are directly related to the movement of water and sediment and thus are dependent on the 

hydrological cycle (Syvitski et al., 1987). Rivers are the main source of fresh water into fjords and the 

majority of fluvial activity occurs at the head of the fjord whereby retreating glaciers or fjord-valley 

rivers deliver a large amount of fresh water and sediment. The deposition of this sediment into the 

fjord produces a fjord-head delta (Syvitski et al., 1987, Benn and Evans, 1998) and Balsfjord has a 

fjord-head delta located at Nordkjosbotn (Figure 1). 

Consequently, fjord-head deltas are common across northern Norway (Figure 1A) and have been 

widely studied (Corner et al., 1990, Corner et al., 1996, Corner, 1998, Corner, 2006, Eilertsen et al., 

2006), whilst fjord-side fan deltas are rare and poorly studied (Corner, 1977, Rose and Synge, 1979, 

Postma and Cruickshank, 1988). The protrusion at Russenes can be defined as a fan delta because it 

is a coarse-grained delta formed by an alluvial fan prograding directly into a standing body of water 

from an adjacent highland (Holmes, 1965, McPherson et al., 1987). However, the Russenes fan delta 

is unusual because it is fed by two distinct rivers systems and it has a very steep gradient. 

Additionally, it also contains a large partially buried rock-avalanche that provides information about 

the rock-avalanche history of Troms county (Blikra, 1998, Braathen et al., 2004, Blikra et al., 2006, 

Fenton et al., 2011). 

1.1 Objectives 
 

This study aims to use a diverse range of datasets to investigate different aspects of the Russenes 

fjord-side fan delta, including the modern subaqueous delta, the present-day surficial sediments and 

the subsurface sediments, to determine the deglacial depositional history of the fjord-side fan delta.  

The specific aims of this study are: 

(1) Produce a Quaternary Geological Map of the deglacial, postglacial and present-day surficial 

sediments of Russenes fan delta; 

(2) Investigate the subaerial and subaqueous morphology of the modern fjord-side fan delta; 

(3) Investigate the subsurface structure of the fjord-side fan delta; and 

(4) Determine the depositional history of the postglacial fjord-side fan delta. 

Finally, the data collected during this study will be used to determine how the fan delta has 

responded to changes in sea level, sediment supply and climate since the deglaciation of Balsfjord 

and determine why the occurrence of fjord-side fan deltas in unusual in Troms county. 
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1.2 Setting 
 

The Russenes fjord-side fan delta protrudes into Balsfjord as a 1 km wide, fan shaped accumulation 

of predominately sandy gravel sediment (69°13’N, 19°29’E; Figure 1). This fan delta is located on the 

south side of the fjord and it is 500 m from the fjord-head delta at Nordkjosbotn. The two different 

river systems feeding the fan delta are called the Buktelva river and the Russdalselva river and they 

are 4 km and 6 km in length respectively (Figure 2). The combined catchment area is approximately 

20.5 km2.  

Balsfjord is surrounded by large mountains that rise directly from the sea and the study area is 

located adjacent to three tall mountains; Store Russetinden (1405 m), Rakeltinden (1400 m) and 

Halvorsfjellet (1214 m) (Figure 2). These mountains host three small cirque glaciers that have a total 

area of 2.02 km2. The Russetindbreen glacier is the largest with an area of 1 km2 (Andreassen et al., 

2012) (Figure 2). The glaciers all drain into rivers that feed the Russenes fjord-side fan delta. The high 

topography surrounding the fan delta causes the study area to be affected by mass movement 

processes. Sediment deposited in the fan delta is derived locally from deposits of colluvium and till as 

well as glaciofluvial and fluvial gravel, sand and occasional mud.  

The sea in inner Balsfjord is protected and wave energy is low. Sea ice forms on the fjord surrounding 

the Russenes and Nordkjosbotn deltas during winter. The region has a semi-diurnal, mesotidal 

regime with a mean spring tidal range of 2.9 m (Kartverket, 2016) (Figure 3A). The Skjevelnes 

moraine divides the Balsfjord into an inner and outer basin and restricts deep water circulation 

(Forwick and Vorren, 2002). Balsfjord is connected to the open ocean by a number of inlets, such as 

Straumsfjord and Grøtsundet, and has relatively high water temperatures (Figure 1A) (Wassmann et 

al., 1996).  

 

 

Figure 2: Oblique aerial view of the Russenes fjord-side fan delta and surrounding catchment area (red line) 

produced using Google Earth Pro.    
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1.2.1 Climate 
 

A large temperature anomaly occurs along the coast of northern Norway whereby the mean January 

temperature is approximately 24°C warmer than the worldwide mean temperatures for the same 

latitude (Bakke et al., 2005). This temperature anomaly is created by the heat advection of warm air 

and water masses from the Norwegian Current and consequently, Balsfjord has a subartic climate 

with a mean annual precipitation of 768 mm (Norwegian Meteorogisk Institutt). Figure 3B shows that 

the amount of precipitation in Balsfjord has a seasonal cyclicity with the highest precipitation 

occurring in autumn and winter whilst the month of May has the lowest mean precipitation. River 

discharge is also highly seasonal. The maximum river discharge occurs in early summer (May and 

June) due to snow and ice melt, whilst minimum river discharge values occur during winter (Figure 

3C). The rivers can also have an increased discharge during periods of heavy rain in autumn 

(Wassmann et al., 1996). The wind in the fjord is affected by the high topography, which causes the 

wind direction to often align with the fjord (Wassmann et al., 1996). The air temperature varies 

between a January mean of -6.5°C and a July mean of 12.8°C with a yearly average of 2.4°C 

(Norwegian Meteorogisk Institutt) (Figure 3B).  

 

  

Figure 3: A) Tide table for Storsteinnes, Balsfjord, which is located 10 km northwest of Russenes (Figure 1A). The 
tide table shows the mean tidal levels and extreme values. The tide table has been modified from (Kartverket, 
2016) B) Graph showing the monthly mean precipitation and temperature measured at the Storsteinnes weather 
station from 1961 to 1990. The data was downloaded from the Norwegian Meteorogisk Institutt and is available at 
met.no. C) Graph showing the average monthly river discharge of the Lille Rostavatn river from 1960 to 2016. 
The Lille Rostavatn is located 25 km SSE of Russenes and the lake is surrounded by tall mountains that host 

small cirque glaciers. Data provided by the Norwegian Water Resources and Energy Directorate (NVE). 
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1.2.2 Bedrock Geology 
 

Most of the bedrock in Troms county is composed of Caladonian nappes, which are part of the 

Caledonian Orogenic Belt that was formed during a Himalaya-type collision between the Baltic and 

Laurentian Shields in the Early to Mid Paleozoic (Andersen, 1988, Corner, 2005b, Fossen et al., 2008). 

The Caladonian nappes can be divided into four main complexes, called the Lower, Middle, Upper 

and Uppermost Allochthon, based on how far the rock units have been transported and their degree 

of metamorphism (Fossen et al., 2008). The rocks within Troms county primarily belong to the Upper 

Allochthon, which consists of metasedimentary rocks of Ordovician and Lower Silurian age and 

oceanic crust (ophiolites) bounded by major thrusts and extensional or strike-slip faults (Fossen et 

al., 2008, Corfu et al., 2014). Rock types include gabbros, greenstones, granitoids, polymict 

conglomerates, marbles, mylonites, mica schists, gneisses and ultra-mafic rocks. 

 

Figure 4: A) Bedrock geological map (1:50 000 scale) of the study area created from the Berggrunn N50 digital 
dataset available from Norges Geologiske Undersøkelse (NGU, 2015a). This dataset is a national-scale bedrock 
geology map of Norway. B) Photograph of the Store Russetinden and Rakeltinden mountains taken from across 
the fjord with the bedrock geology annotated. The vegetation on the Store Russetinden mountain highlights the 

change in bedrock geology. 

A) 

B) 
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The basement rocks in the study area belong to two different nappes; the Nordmannvik nappe and 

the Lyngen nappe (Figure 5 and Figure 4). The Nordmannvik nappe occurs on the eastern side of the 

study area and it is a high grade tectonic unit that consist of high-temperature granulites as well as 

Early Silurian gabbroic intrusions and some lower-grade metasedimentary and metavolcanics rocks 

(Andersen, 1988, Corfu et al., 2014). Figure 4 shows that the east side of the Store Russetinden 

mountain and the Russedalselva valley are part of the Nordmannvikk nappe. They are composed of 

garnet biotite gneiss and amphibolite hornblende schist and the boundary between these rock units 

can be identified by changes in vegetation on the mountain (Figure 4B).  

The Lyngen nappe has been thrust on top of the Nordmannvik nappe (Figure 4) and contains an 

ophiolite fragment known as the Lyngen Gabbro. This gabbro forms most of the Lyngen Alps and it is 

the largest layered mafic complex within the Scandinavian Caledonides (Bergh and Andresen, 1985, 

Andersen, 1988). The Lyngen ophiolite has been assigned a relative age of 469 to 481 Ma based on 

tonalities that intrude related units (Corfu et al., 2014). Figure 4 shows that a large area above the 

Russenes fjord-side fan delta is composed of gabbro, from the west side of the Store Russetinden 

mountain to the east side of the Rackeltinden mountain and a cirque glacier is located within this 

area. Therefore, a lot of the rocks deposited within the Russenes fjord-side fan delta are sourced 

from this gabbro bedrock.  

The large-scale structure of the Caladonian nappes is controlled by the overall northwest to 

southeast emplacement of the major thrust units (Figure 5) (Corfu et al., 2014). In Troms county, 

post-Caladonian brittle, rift-related faults occur form NNE-SSW and ENE-WSW trending normal faults 

that are steeply to moderately dipping (Indrevær et al., 2013). Many of the valleys and fjords in the 

Lyngen region are structurally controlled, including the Lyngen peninsula (Figure 6A) (Osmundsen et 

al., 2010). A continental-scale tectonic lineament map has been produced using LandsatTM 7 data for 

Norway (Gabrielsen et al., 2002) and Figure 6B shows the lineaments mapped within Troms county 

are dominated by NE-SW lineament sets.   

 

Figure 5: A) A geological map showing the distribution of Precambrian and Caledonian rocks in Troms County B) 
Schematic west-east profile showing the geology between Kvaløya and Sweden/Finland. Reproduced from 
Forwick (2001). 

A) 

B) 
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Figure 6: A) Regional tectonic map of the SW Barents Sea margin based on interpreted lineaments from onshore 
fieldwork (green lines), digital elevation model (blue lines), magnetic anomaly data (red lines) and seismic 
interpretation (black lines). Modified from Indrevær et al. (2013) B) Map of Troms county showing the lineaments 
identified using Landsat data (Gabrielsen et al., 2002). The head of Balsfjord is located within the red box.  

 
Additionally, there is a lot of evidence of postglacial deformation in northern Norway (Olesen et al., 

2013). For example, there is a 2 km long, NE-SW striking postglacial normal fault, called the 

Nordmannvikdalen fault, located near Kåfjord (Figure 1A) and a high concentration of rock-avalanche 

deposits occur within the vicinity of this fault (Olesen et al., 2013). Neotectonics within Troms county 

has been dominated by gravitational faulting resulting in slope failure and large-scale rock-

avalanches. The distribution and timing of the rock-avalanches suggests there was major seismic 

activity immediately after deglaciation whereby several magnitude 7 or 8 earthquakes triggered 

rock-slope failures (Olesen et al., 2013). 

1.2.3 Quaternary Geology 
 

1.2.3.1 Glaciation and Deglaciation History 
 

The Quaternary was a period of major environmental change. It is characterised by large and 

frequent temperature fluctuations creating a series of glacial periods separated by interglacials 

(Vorren and Mangerud, 2008, Olesen et al., 2013). These fluctuations resulted from a number of 

different factors including changes in the position of the continents, uplift of mountains, changes in 

the Earth’s orbit (Milankovitch cycles), and changes in atmospheric chemistry (Bradley, 2015). 

Quaternary ice sheets have had a large effect on the Norwegian landscape creating deep fjords, U-

shaped valleys and cirques (Corner, 2005a). Figure 7 shows the maximum extent of the ice sheets 

over northern Europe during the Quaternary. The Last Glacial Maximum (LGM) occurred in the Late 

Weichselian between 20 and 15 ka BP, and during the glacial maximum the Fennoscandian Ice Sheet 

advanced across the continental shelf to reach the shelf break along the entire length of Norway 

from the Norwegian Channel to Svalbard (Vorren and Mangerud, 2008, Olsen et al., 2013, Rydningen 

et al., 2013). 

A) 

Tromsø 

B) 
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Figure 7: The extent of ice sheets in northern Europe during the Quaternary. Red line = LGM. White line = 
Saalian and Elsterian glaciations. Yellow stippled line = Quaternary maximum glacial extent. Reproduced from 
Olsen et al. (2013).  

Deglaciation of the Fennoscandian Ice sheet occurred between 15.5 and 10 Ka BP due to increasing 

solar insolation. Deglaciation was rapid and the western margin of the Fennoscandian Ice Sheet was 

characterised by fjord-filling outlet glaciers that drained large parts of the ice sheet (Marthinussen, 

1960, Marthinussen, 1962, Andersen, 1968, Sollid et al., 1973, Corner, 1978, Vorren and Elvsborg, 

1979, Andersen, 1980, Corner, 1980, Kverndal and Sollid, 1993, Vorren and Plassen, 2002, Hald et al., 

2003, Eilertsen et al., 2005, Mangerud et al., 2013, Stokes et al., 2014) and the Balsfjord glacier in 

northern Norway was one of these outlet glaciers (Fimreite et al., 2001, Forwick and Vorren, 2002). 

Glacier readvancement occurred during a climatic cooling a period known as the Younger Dryas and 

Younger Dryas marginal moraines occur almost continuously along the coast of Norway (Vorren and 

Elvsborg, 1979, Andersen, 1980, Andersen et al., 1995). In Troms county, these marginal moraine 

deposits are called the Tromsø-Lyngen moraines (Figure 8). Retreat from the Tromsø-Lyngen 

moraines occurred rapidly around 12.1 ± 0.2 cal. Ka BP (10.4 Ka BP) (Forwick and Vorren, 2002, 

Stokes et al., 2014) and the chronology of the ice recession has been determined by radiocarbon 

dating of moraines and correlation to raised shorelines (Marthinussen, 1960, Marthinussen, 1962, 

Corner, 1980, Andersen et al., 1995, Forwick and Vorren, 2002, Stokes et al., 2014). 

End moraines of Preboreal age occur inside the Tromsø-Lyngen moraines and they were deposited 

during a halt or readvancement of the retreating glaciers (Andersen, 1968, Andersen, 1980, Corner, 

1980). These Preboreal climatic cooling events are called Stordal events (Andersen, 1968) and within 

the Lyngen-Storfjord area three Stordal events have been recorded: the Ørnes event  11.4 ±  0.2 cal. 

Ka BP (9.8-9.9 ± 150 Ka BP), the Skibotn event 10.8 ± 0.2 cal. Ka BP (9.5-9.6 ± 150 Ka BP), and a 

younger event 10.4 ± 0.2 cal. Ka BP (9.4 ± 250 Ka BP) (Corner, 1980, Stokes et al., 2014). Forwick and 

Vorren (2002) document the retreat of the glacier in Balsfjord and show that the Skjevelnes moraine 

was deposited during a the first Stordal event 11.4 ±  0.2 cal. Ka BP (10.3 – 9.9 Ka BP) (Andersen, 

1968, Corner, 1980, Forwick and Vorren, 2002) and two minor end moraines, Tennes and Ryvoll, 

were deposited during further retreat of the Balsfjord glacier (Figure 8). Balsfjord was deglaciated by 

10,942 ± 77 cal. BP (9.6 Ka BP) before the second Stordal event (Forwick and Vorren, 2002, Fenton et 

al., 2011). 
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Figure 8: A) Map of the Troms county showing the location of the Tromsø-Lyngen moraines. The Preboreal 
moraines that were deposited within Balsfjord are shown within the black box. B) Time-distance deglaciation 
diagram of the Balsfjord glacier. Reproduced from Forwick and Vorren (2002). 

1.2.3.2 Sea Level Change 
 

The Fennoscandian Ice Sheet exerted a large load on the crust during glaciation, which created an 

isostatic crustal depression beneath the ice (Eronen, 2005, Vorren et al., 2008). Therefore, glacio-

isostatic uplift has occurred across Fennoscandia during the deglacial and postglacial periods order to 

restore isostatic equilibrium (Vorren et al., 2008, Lowe and Walker, 2015). The rate of uplift is 

directly related to the thickness of ice, which creates uneven rates of uplift across Norway with the 

lowest rates occurring along the coast and the highest rates occurring inland where the ice was the 

thickest (Figure 9A).  

In Norway, glacio-isostatic uplift has exceeded eustatic sea-level rise during the majority of the 

deglacial and postglacial period causing a relative sea-level fall (Corner, 2006). This has resulted in a 

sea level regression whereby old shorelines have been raised and coastal landforms such as deltas, 

spits, and ridges, are now located above sea level (Vorren et al., 2008, Lowe and Walker, 2015). 

Therefore, the position of past shorelines can be identified across Norway based on the identification 

 A) 

B) 
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of both erosional and depositional geomorphological features, however, measurement of these 

features can be difficult and requires experience (Sollid et al., 1973, Corner, 1980).  

The marine limit is a term given to the highest lying shore features (Vorren et al., 2008). The marine 

limit formed diachronously along the fjord as the glacier retreated and inner areas were 

progressively inundated by the sea and therefore, the marine limit becomes progressively younger 

inland (Figure 9B) (Marthinussen, 1960, Marthinussen, 1962, Corner and Haugane, 1993, Corner, 

2006, Vorren et al., 2008). Due to differences in the rate of glacio-isostatic uplift, the height of 

marine limit varies from approximately 100 m.a.s.l. in the inner fjord areas to approximately 20 

m.a.s.l. in the outer fjords areas in Troms county (Corner, 1980, Corner, 2006). Additionally, higher 

rates of uplift towards the former ice-sheet centre cause older (and higher) shorelines to have a 

greater tilt than younger shorelines (Sollid et al., 1973, Corner, 2006).  

 

Figure 9: A) Isobases (in metres) showing the elevation of the postglacial marine limit across Scandinavia. 
Reproduced from Corner (2006). B) Schematic showing how the marine limit is formed diachronously as the 
glacier retreats. Reproduced from Vorren et al. (2008)  

In the outer fjord regions of Troms county there are two particularly distinctive and laterally 

extensive raised shorelines, which were created during periods of sea level still stand or relative sea 

level rise: (1) the late glacial main shoreline (denoted S0); and (2) postglacial Tapes shoreline 

(Andersen, 1968, Vorren et al., 2008). The main shoreline formed during the Younger Dryas (12.1 ± 

0.2 cal. Ka BP; 11-12 ka BP) (Corner, 1980, Stokes et al., 2014) and corresponds to the Tromsø-Lyngen 

moraine. Therefore, it does not occur in the inner fjord areas that were still glaciated at the time of 

shoreline formation. The Tapes shoreline formed during an interval known as the Tapes 

transgression, which occurred in the mid-Holocene, c. 8 000 cal. yr BP, when the sea level rose faster 

than the rate of uplift in the outer fjord areas (Corner and Haugane, 1993, Bakke et al., 2005, Eronen, 

2005, Corner, 2006, Vorren et al., 2008).  

The deglacial and postglacial relative sea-level history of northern Norway is known from shoreline 

displacement curves (Marthinussen, 1962, Donner et al., 1977, Corner, 1980, Hald and Vorren, 1983, 

Møller, 1989, Corner and Haugane, 1993, Corner et al., 2001, Bakke et al., 2005) and shoreline 

A) B) 
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diagrams (Marthinussen, 1960, Marthinussen, 1962, Andersen, 1968, Sollid et al., 1973, Corner and 

Haugane, 1993). Isobases for the extended S0 shoreline (main shoreline) over Balsfjord are shown in 

Figure 10A. In Troms county, four Holocene shoreline displacement curves have been constructed 

(Corner, 1980, Hald and Vorren, 1983, Corner and Haugane, 1993, Bakke et al., 2005) and most of the 

reconstructions are based on the early works of Marthinussen (1960, 1962).  

A shoreline emergence curve for inner Balsfjord, Troms county, has been constructed for this study 

based on the elevation of the marine limit and Tapes shorelines at Russenes and the rates and trends 

in sea level fall obtained from the previously published shoreline emergence curves (Figure 10B). This 

curve shows two different rates of sea level change during the Holocene; (1) sea level fall was 

relatively rapid during the deglacial period (before 10,000 cal. yr BP); and (2) sea level fall was much 

slower during the postglacial period (after 7,000 cal. yr BP) (Corner and Haugane, 1993). Today the 

rate of uplift along the coast of Troms county is 1 – 1.5 mm/yr (Olesen et al., 2000). 

 

Figure 10: A) Isobases over Balsfjord for the extended S0 (main shoreline) constructed using isobases from 
Corner (1980) as well as Marthinussen (1960), Andersen (1968) and Møller (1989). B) Shoreline emergence 
curve for inner Balsfjord, Troms county. This curve has been produced based on the elevation of marine limit and 
Tapes shorelines at Russenes and the trends in the rate of sea level fall documented by other shoreline 
emergence curves from Norway (Corner, 1980, Corner and Haugane, 1993, Bakke et al., 2005, Romundset et al., 
2010). C) Equidistant shore-line diagram for the Balsfjord area modified from Andersen (1968). The points 
represent field observations of raised shorelines collected across the Balsfjord (Pettersen, 1880, Pettersen, 1884, 
Helland, 1899, Grønlie, 1914, Grønlie, 1940, Grønlie, 1951, Andersen, 1968). The data points outside the 
Tromsø-Lyngen moraine represent the highest observed raised shorelines in Balsfjord. The stars show the 
approximate location of the marine limit (red) and Tapes (blue) shorelines at Russenes. 

B) A) 

C) 
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Andersen (1968) constructed an equidistant shoreline diagram for the Balsfjord area (Figure 10C) 

based on the identification of raised shorelines by a number of different researchers (Pettersen, 

1880, Pettersen, 1884, Helland, 1899, Grønlie, 1914, Grønlie, 1940, Grønlie, 1951, Andersen, 1968). 

Figure 10C shows that measurements of the Tapes shoreline in Baslfjord plot close together, which 

confirms the shoreline is very distinctive. The elevation of the Tapes shoreline has been extrapolated 

to show that the approximate elevation at Russenes is 40 m a.s.l. In contrast, it is often difficult to 

identify the exact height of the marine limit. Figure 10C shows a wide spread of data corresponding 

to the highest observed raised shorelines in Balsfjord and many of the measurements for the marine 

limit are too high (e.g. almost as high as the So shoreline). Therefore, the approximate position of the 

marine limit at Russenes has been extrapolated based on the lowest recorded shorelines on the 

diagram of Andersen (1968) to give an elevation of 87 m a.s.l. 

1.2.3.3 Postglacial Sedimentation 
 

Glaciers are powerful agents of erosion and therefore, the present-day sedimentary deposits within 

Balsfjord were deposited during the deglacial and postglacial periods following the LGM. Figure 11 

presents a Quaternary geological map of the study area created from digital data available from 

Norges Geologiske Undersøkelse. This map shows that landslide and till deposits are the dominant 

sediment type deposited on the steep slopes surrounding the fjord and fluvial and marine deposits 

are the dominate sediment type deposited below the marine limit. Sedimentary depositional 

processes within fjords are discussed in detail in Chapter 0. 

 

Figure 11: Quaternary geology map of the study area created from the Løsmasser N50/N250 digital dataset 
available from Norges Geologiske Undersøkelse (NGU, 2015b). This dataset provides national-scale information 
about the surficial sediments in Norway at various scales. The sediment boundaries shown in this figure have 
primarily been produced from Sletten et al. (2006) at the 1:15 000 scale. The sediment type displayed in the 
legend has been translated from Norwegian.  
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1.2.3.4 Holocene Climate Reconstructions 
 

Global Holocene climatic fluctuations have been determined using a wide range of different proxies, 

such as ice cores, pollen, foraminifera, and speleothems. In northern Scandinavia, there are a few 

continuous temperature reconstructions for the Holocene based on proxies, such as pine-tree limit 

fluctuations, pollen, chironomids and speleothems (Figure 12) (Alm, 1993, Vorren and Alm, 1999, 

Seppä and Birks, 2001, Korhola et al., 2002, Seppä et al., 2002a, Seppä and Birks, 2002, Seppä et al., 

2002b, Bakke et al., 2005, Lilleøren et al., 2012).  

 

Figure 12: Continuous temperature reconstructions of the Holocene across northern Scandinavia, which have 

been adjusted for uplift. The source of the data is given in the graph titles. Reproduced from Bakke et al. (2005). 

Nonetheless, the major climatic trends of the Holocene have been reconstructed for northern 

Norway and consist of: (1) a humid oceanic climate during the early Holocene (Bjune et al., 2004); (2) 

a warm period, known as the Holocene Thermal Optimum (HTO), in the mid-Holocene (8,500 and 

4,500 cal. yr BP); and (3) a period of gradual cooling, known as the Neoglacial cooling period, which 

commenced approximately 4,000 cal. yr BP (Bakke et al., 2005). However, the coldest part of the 

Neoglacial period did not occur until the Little Ice Age (LIA) between AD 1600 to 1900.  

Many high altitude polythermal (subpolar) glaciers occur within a zone of discontinuous permafrost 

across Norway (Bakke et al., 2005) and fluctuations in glacier size and equilibrium-line altitude (ELA) 

are another sensitive proxy for variations in climate. Consequently, glacier fluctuations during the 

Holocene have been determined at a number of locations across Norway in order to reconstruct the 
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paleoclimate (Dahl and Nesje, 1992, Dahl and Nesje, 1996, Bakke et al., 2005, Bakke et al., 2010). In 

addition, the study of glacier fluctuations in Norway during the Holocene can provide information 

about the dynamics of the cirque glaciers within the study area.  

Figure 13 shows a reconstruction of fluctuations in the ELA for a glacier located in the northern 

Lyngen Alps (Bakke et al., 2005). This area was deglaciated well before inner Balsfjord and the 

reconstruction shows that cirque glaciers fluctuated during the early Holocene (11,500 – 8,800 cal. yr 

BP) whereby three glacial advances have been recorded (Bakke et al., 2005). The climatic warming 

period that occurred during the mid-Holocene (HTO) caused most cirque glaciers in northern Norway 

to disappear including the glaciers in Lyngen. Glacier growth recommenced in the Late Holocene 

(3,800 cal. yr BP), but, in most locations the evidence of major glacier advancement events has been 

destroyed by the most recent glacier advance of the Little Ice Age glacier, which reached its 

maximum extent at c. AD 1910 (Ballantyne, 1990, Bakke et al., 2005).  

 

Figure 13: Mean Temperature-Precipitation-Wind Equilibrium Line Altitude of Lenangsbreene in Strupskardet, 
Lyngen, from 20,000 cal. yr BP to the present. Reproduced from Bakke et al. (2005). 
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1.3 Previous Work 
 

The deglaciation history of Troms county has been studied over several decades by many different 

researchers (Marthinussen, 1962, Andersen, 1968, Vorren and Elvsborg, 1979, Andersen, 1980, 

Corner, 1980, Stokes et al., 2014) and the deglaciation history of Balsfjord has been documented by 

Forwick and Vorren (2002). The study area is included in a number of Quaternary geological maps 

produced by Norges Geologiske Undersøkelse (NGU) including maps by Sveian et al. (2005) and 

Sletten et al. (2006). These maps are now available digitally as a combined Løsmasser N50/N250 

dataset, which represents the surficial material at various scales and Figure 11 shows a map of 

surficial sediment within the study area produced using this dataset.  

The tall mountains surrounding Balsfjord make it susceptible to mass movement processes (Forwick 

and Vorren, 2002) and many of the landslide deposits within the Russenes fan delta have been 

previously mapped (Sletten et al., 2006). For example, the front of the rock avalanche deposit has 

been studied in detail (Blikra et al., 2006, Sletten et al., 2006, Fenton et al., 2011). Recently, the 

Norwegian Geotechnical Institute (NGI) and the Norwegian Water Resources and Energy Directorate 

(NVE) have assessed the risk of “skred” mass movement processes and created hazard risk maps for 

various locations (Sandersen, 2011, Eidsvåg and Øystein, 2016). Skred is a Norwegian term that 

represents many different mass movement processes in English including flooding, debris flows and 

snow avalanches. Figure 14 shows the results of the “skred” hazard mapping within the study area. 

The results suggest that the highest probability of mass movement processes occurs along the 

Buktelva river.  

 

Figure 14: Map of the skred danger zones for Russenes that have been identified by NVE and NGI. Skred is a 
Norwegian term that is difficult to translate into English. The term corresponds to many different mass movement 
processes in English, including flood, debris flow, landslide and snow avalanche processes. These danger zones 
are defined by Eidsvåg and Øystein (2016) and Sandersen (2011) and the polygons can be downloaded from 

www.nve.no/flaum-og-skred/.  

  

http://www.nve.no/flaum-og-skred/
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2 Fjord Geomorphology and Sedimentary Processes 
 

A fjord is a deep high latitude estuary that has been (or is presently being) excavated or altered by 

land-based ice (Syvitski et al., 1987, Syvitski and Shaw, 1995). Fjords are formed by extensive glacial 

erosion and occur along fault or lithology controlled zones or incisions created by fluvial activity. 

Therefore, the location of fjords is controlled by the presence of current or former ice sheets. Fjords 

are a geomorphological landform, which consists of a long steep sided coastal trough that has been 

inundated by the sea (Figure 15) (Syvitski et al., 1987, Howe et al., 2016). Fjords are U-shaped in 

cross-section and often have a sill at their entrance, which restricts the movement of deep water 

(Skei, 1983, Syvitski and Shaw, 1995, Vorren et al., 2008). Fjords occur at the transition of the 

terrestrial and marine environments and their sediments often preserve a high resolution continuous 

record of climate and environmental change (Syvitski and Shaw, 1995, Corner, 2005a, Howe et al., 

2016). 

 

Figure 15: Photograph of Ersfjord in northern Norway, which has a characteristic fjord geomorphology with a long, 
narrow and deep coastal inlet and mountainous steep-sides. Photo by Rowan Romeyn.  

2.1 Fjord Sedimentation 
 

Fjords are semi-enclosed marine basins that have a large accommodation space (Skei, 1983, Howe et 

al., 2016). Fjords are efficient sediment traps (Syvitski and Shaw, 1995). Large volumes of sediment 

are deposited within fjords during interglacial periods and subsequently removed by erosion during 

glacial periods (Corner, 2006, Howe et al., 2016). Most of the sediment accumulated within fjords 

relates to the deglacial and postglacial sedimentary processes after the last major ice advance 

(Syvitski and Shaw, 1995). Fjords usually have a high sedimentation rate and the sediment is 

primarily transported to the fjords through fluvial, glaciofluvial and mass movement processes. This 

sediment commonly completely fills the inner part of the fjord creating a fjord valley (Corner, 2006, 

Eilertsen et al., 2006).  

Fjord sediments are derived from many different sources (Hambrey, 1994). Corner (2006) divides 

fjord sedimentation into two stages: (1) a deglacial stage whereby glacier meltwater deposits a large 

amount of sediment in front of a retreating glacier; and (2) a postglacial stage whereby most of the 

sediment that is deposited into the fjord is derived from fluvial discharge. Sediment deposited within 
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fjords during the deglacial stage results from a complex interplay of different processes, such as 

glacier meltwater discharge, suspension settling, iceberg rafting and mass movement process. These 

processes can form a range of different depositional features, including ice-front accumulations and 

glaciomarine and glaciofluvial deposits (Hambrey, 1994, Corner, 2006, Howe et al., 2016). These 

processes and products are outlined in Figure 16A.  

 

Figure 16: Principle processes and deposits within fjords A) during the deglaciation stage and B) during the 
postglacial stage. Reproduced from Howe et al. (2016). 

During the postglacial stage the majority of sediment is supplied to the fjord by rivers and the rate of 

sediment accumulation is often directly connected to river dynamics (Syvitski and Shaw, 1995). 

Glacio-isostatic uplift can cause rapid fluvial erosion (Figure 10B) (Vorren et al., 2008). The sediment 

is usually locally derived, immature, and coarse-grained. The coarsest sediment (e.g. gravel and sand) 

is usually deposited at the head of the fjord forming deltas and outwash fans (Howe et al., 2016), 

whilst the fine-grained component (e.g. silt and clay) is carried by hyperpycnal plumes and turbidity 

currents to the base of the fjord. Subaqueous slope instabilities are common due to the deposition of 

a high sediment load on steep slopes (Howe et al., 2016). The deposition of fluvial sediment varies 

seasonally and can occur in a rapid or pulsed manor (Skei, 1983). Other sources of fjord sediment 

include rockfall, aeolian sediment and mass movement deposits, however, the total sediment input 

from these sources is low (Hambrey, 1994). 

  

A) 

B) 
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2.1.1 Glaciofluvial Deposits 
 

Glaciofluvial deposits are formed by the deposition of sediment from glacial meltwater. Glaciofluvial 

sediment is usually composed of sand, gravel and cobbles that have been transported by the glacier 

and the sediment is sorted and stratified by fluvial processes. Glaciofluvial sediment is deposited in a 

wide variety of different settings, for example, as esker ridges, kames or ice front accumulations 

deposited directly in contact with the ice (Leeder, 1999). If glaciers terminate on land, glaciofluvial 

sediment is deposited as outwash plains or sandurs, which are dominated by braided streams fed by 

glacier meltwater. Glaciofluvial deltas occur where glacial meltwater enters a standing body of water 

and these deltas can be classified as Gilbert-type deltas with steeply dipping foreset beds composed 

of gravel and sand (Gilbert, 1885, Corner, 2006). 

2.1.2 Ice Front Accumulations 
 

Ice front accumulations are sedimentary deposits that are formed in contact with a glacier (Powell, 

1990, Lønne, 1995, Lowe and Walker, 2015). During continuous retreat of a glacier ice-proximal 

sediments are deposited as a thin layer on the floor of the fjord, whilst thick ice front accumulations 

are created during halting or readvance of the glacier (Corner, 2006). Ice front accumulations can 

have a range of sizes and shapes and they often have a complex structure, including fans, ridges and 

ice-contact deltas (Powell, 1990, Lønne, 1995, Corner, 2006).  

Ice front accumulations are a type of glaciofluvial deposit because they are predominately formed 

through the discharge of subglacial and englacial streams, which can carry large amounts of fluvial 

bedload and suspended load sediment directly into the marine environment (Benn and Evans, 1998). 

Submarine discharge occurs as a turbulent jet, which creates a plume that rises upwards because the 

sediment-laden water is less dense than the surrounding seawater (Hambrey, 1994, Syvitski and 

Shaw, 1995, Benn and Evans, 1998). The coarsest sediment is deposited quickly close to the 

discharge point, whilst the finer material is transported further by the jet. Therefore, ice front 

accumulations consist of relatively coarse sand and gravel, which fines rapidly down the fjord 

(Syvitski and Shaw, 1995, Benn and Evans, 1998, Corner, 2006). 

2.1.3 Glaciomarine Deposits 
 

Glaciomarine sediments are usually composed of sand, silt and clay that is deposited in the fjord by 

suspension settling of fine material from meltwater plumes, or through turbidity currents created by 

slope failure (Corner, 2006). Glaciomarine sediments usually have parallel laminated bedding, 

however, some sedimentary structures, such as cross-bedding, can occur in proximal high energy 

settings (Corner, 2006, Howe et al., 2016). Glaciomarine rhythmites can also occur due to variations 

in discharge or tidal energy and iceberg-rafted debris may be present in glaciomarine sediment 

(Corner, 2006, Howe et al., 2016).  
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2.2 Deltas 
 

Deltas are coastal landforms that occur where rivers discharge sediment into a standing body of 

water (e.g. a lake or the sea). Deltas have both subaerial and subaqueous components and are 

regressive landforms (Giosan and Goodbred Jr, 2007, Bhattacharya, 2010). Deltas are complex 

sedimentary systems and the morphology of a delta results from the interplay between sediment 

supply (fluvial sediment discharge), accommodation space and the redistribution of sediment by 

coastal processes (e.g. tides and waves) (Giosan and Goodbred Jr, 2007). Deltas are often classified 

based on the tripartite classification system of Galloway (1975) where it was recognised that 

different ratios of fluvial, wave and tidal processes in delta systems produces different and 

recognizable plan-view morphologies (Figure 17A) (Bhattacharya, 2010).  

 

Figure 17: Process-based tripartite classification of delta morphology based on the relative influence of fluvial 

discharge and wave and tidal energy. Reproduced from Giosan and Goodbred Jr (2007) after Galloway (1975). 

A delta is formed when sediment-rich river water enters a standing body of water and loses its ability 

to carry the sediment resulting in a deposit at the month of the river (Bhattacharya, 2010). The flow 

of a river entering a standing body of water is described as a free turbulent jet and the competence 

and capacity of the flow decline with distance from the river mouth (Anderson and Anderson, 2010). 

As the river water is discharged into the standing body of water the sediment load carried by the 

river separates into two components: the coarse-grained bedload and the fine-grained suspended 

sediment. The bedload material is rapidly deposited onto the delta slope as the competence of the 

flow decreases, whilst the suspended sediment is carried seaward by a sediment plume and 

undergoes suspension settling (Syvitski and Shaw, 1995). The subaqueous delta slope is highly 

unstable and the rapid deposition of the bedload can result in over steepening of the delta slope 

(Leeder, 1999, Anderson and Anderson, 2010). This causes the redistribution of sediment by 

slumping or gravity flows to maintain slope stability. The unstable sediment often completely 

liquefies and develops into turbidity currents (Syvitski and Shaw, 1995).  
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2.2.1 Fjord-Head Deltas 
 

Fjord-head deltas are very common across Norway and other high latitude countries such as Canada 

and Greenland (Corner et al., 1990, Corner et al., 1996, Corner, 1998, Gutsell et al., 2004, Eilertsen et 

al., 2006, Eilertsen et al., 2011). These deltas occur at the interface between fjords and fjord valleys 

and they usually undergo rapid progradation due to a high sediment supply and a restricted 

accommodation space created by the steep-sided fjord setting (Gutsell et al., 2004). Figure 18 shows 

the dominant sedimentary processes that occur within fjords that are not currently influenced by 

glaciers and the processes forming a fjord-head delta are shown.  

 

Figure 18: Sketch showing the dominant sedimentary processes that occur within a fjord environment. Most of the 
sedimentation occurs at the head of the fjord and results in the progradation of a fjord-head delta. Reproduced 
from Ballantyne (2007). 

There is currently no universal nomenclature system for classifying the different geomorphological 

environments within deltas. In northern Norway, a classification system is being developed for fjord-

head deltas. The flatly lying intertidal to subtidal region is called the delta plain and the delta plain 

terminates at a sharp boundary called the delta rim. The delta slope occurs after the delta rim and it 

has a concave profile with an initial steep gradient of 35° that decreases to approximately 5° at the 

base. The delta slope transitions into a deep, flatly lying prodelta area (3 to 4°) followed by an open 

fjord environment (Figure 18) (Corner et al., 1990, Eilertsen et al., 2006).     

Fjord-head deltas can be classified as Gilbert-type deltas (Gilbert, 1885) because they are coarse-

grained deltas with a steep foreset slope and tripartite structure (Corner et al., 1990, Gutsell et al., 

2004). The tripartite structure forms a distinctive prograding clinoform morphology with a flat top 

(topset), steeply dipping front (foreset) and relatively flat lying bottom sediment (bottomset) (Figure 

19) (Anderson and Anderson, 2010). The prodelta bottomset forms in the distal part of the delta and 

is composed of fine grain sediment deposited from suspension settling and turbidity flows. The 

prodelta forest beds are steeply inclined and deposited on pre-existing bottomset beds. These 

foreset beds are formed by the deposition of river bedload material and the redistribution of 

sediment by gravitational mass movement processes. The topset beds are predominately deposited 

by fluvial processes on the subaerial delta plain and can erode pre-existing foreset beds 

(Bhattacharya, 2010). This prograding clinoform architecture produces an upward coarsening facies 

succession (Giosan and Goodbred Jr, 2007). 
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Figure 19: Idealized cross-section showing the different depositional environments and internal geometry of a 

prograding Gilbert-type delta. Modified from Eilertsen et al. (2011) and Corner et al. (1990). 

2.2.2 Fan Deltas 
 

A fan delta is defined as an alluvial fan that is prograding directly into a standing body of water from 

an adjacent highland (Holmes, 1965, McPherson et al., 1987). Therefore, fan deltas only occur in 

specific physiographical settings such as in front of mountains, volcanic highlands and escarpments 

produced by active faulting (McPherson et al., 1987). Fan deltas can develop along the edge of fjords 

that are surrounded by high mountains, however, they are not commonly observed in northern 

Norway.  

Fan-deltas are coarse-grained (gravel-rich) Gilbert-type deltas that have a very steep gradient 

(McPherson et al., 1987). Therefore, fan deltas usually have the foreset, topset and bottomset 

bedding structure of Gilbert-type deltas (Gilbert, 1885) and their sediment is immature due to their 

close proximity to the source area (Wescott and Ethridge, 1990). Fan deltas have an overall wedge or 

prism shaped geometry that thins away from the mountain front (Wescott and Ethridge, 1990). The 

thickness and extent of a fan delta depends on the complex interplay of the following processes: 

uplift or sea level fluctuations, sediment supply and basin subsidence (Wescott and Ethridge, 1990, 

Corner, 2006). 

Fan deltas have distinctive subaerial and subaqueous depositional environments (Figure 20). The 

subaerial component is aggradational and consists of an alluvial fan, which is a fan-shaped (radial) 

accumulation of sand and gravel deposited by water (channelized and unchannelized flow) and 

sediment gravity processes (cohesive and non-cohesive) (McPherson et al., 1987, Galloway and 

Hobday, 1996). The depositional processes may include debris flows, debris avalanches, 

hypoconcentrated stream flows and mud flows and these processes are often highly irregular, flashy 

and sometimes catastrophic in nature (McPherson et al., 1987). Fan deltas have a transitional zone 

between the subaerial and subaqueous depositional environments where fluvial processes are 

modified by marine processes, such as waves, tides and currents (McPherson et al., 1987, Wescott 

and Ethridge, 1990). The subaqueous depositional environment of a fan delta is very similar to that 

of a fjord-head delta with sediment gravity processes, such as debris flows, slumping and turbidity 

currents, redistributing sediment on the delta slope. 
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Figure 20: Schematic of an ideal unconfined fan delta showing the different subaerial and subaqueous 
depositional environments. Modified from Nemec and Steel (1988). 

2.3 Mass Movement Processes 
 

Retreat of glaciers during deglaciation often leaves mountain slopes over-steepened, unsupported 

and unstable and a large amount of unconsolidated paraglacial sediment can be exposed on the 

steep-sided fjords (Benn and Evans, 1998, Ballantyne, 2007, Vorren et al., 2008). Therefore, these 

slopes often undergo a phase of high landslide activity in order to restore slope stability and the 

gravitational mass movement of sediment is an important process for sediment transport (Benn and 

Evans, 1998). Mass movement processes are significant for transporting and redistributing sediment 

within two different environments on fan deltas: (1) the subaerial alluvial fan; and (2) the 

subaqueous delta. 

2.3.1 Mass Movement Processes within Alluvial Fans 
 

Mass movement processes, such as rockfalls, rockslides, rock-avalanches and debris flows, can 

transport sediment from the catchment area of alluvial fans onto the fan surface (Blair and 

McPherson, 2009). These mass movement processes are primarily triggered by intense rainfall or 

earthquakes, and therefore, they are usually infrequent, short-lived events that result in the 

aggradation of sediment within the alluvial fan (Blair and McPherson, 2009).  

2.3.1.1 Rock Slope Failures 
 

Rock slope failures have had fatal consequences in Norway in recent times. For example, tsunamis 

were created from rockfall in western Norway (Tafjord in 1934 and Loen in 1905 and 1936), which 

resulted in a combined loss of 174 lives (Braathen et al., 2004, Vorren et al., 2008, Romstad et al., 

2009). In Troms county there is one historical record of a rock-avalanche, which created a tsunami in 

Lyngen fjord in 1810 that killed 14 people (Vorren et al., 2008). Consequently, it is important to be 

able to predict rockfalls in the future. 150 gravitational slope failures have been mapped in the 

Balsfjord-Lyngen-Kåfjord region and these are shown in Figure 21 (Olesen et al., 2000, Vorren et al., 

2008).  
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Figure 21: A) Outline map of Norway showing regions where a high number of rock slope failures have been 
recorded. B) Location of rock avalanches and rock slope failures in Troms county, Northern Norway. Reproduced 
from Braathen et al. (2004). 

Rock slope failure involves the detachment of rock from a very steep slope and subsequent 

disintegration of the rock as it bounces, falls and slides down the mountain slope (Benn and Evans, 

1998, Olesen et al., 2000, Braathen et al., 2004, Evans et al., 2006). Massive rock slope failures often 

transform into debris flows or rock-avalanches (Blikra et al., 2006, Evans et al., 2006). Rockslides, 

rockfalls and rock-avalanches are a frequent type of mass movement deposit observed in recently 

glaciated areas and rock-avalanches are the dominating type of event in Norway (Blikra et al., 2006, 

Hermanns and Longva, 2012). Rock slope failures are trigged on bedrock slopes that are greater than 

40 to 45° and they often occur as catastrophic slope failures that result in the rapid redistribution of 

debris downslope (Benn and Evans, 1998, Vorren et al., 2008). Rock-avalanches are defined as very 

coarse deposits from a single high-magnitude event and they can have large run-out distances (Benn 

and Evans, 1998).  

Rock-avalanches are created by instabilities in mountain slopes caused by local forces such as 

earthquakes, glacial debuttressing (a reduction of slope support due to the removal of glaciers) and 

frost shattering (the expansion of freezing water causing fractures to open or grow) (Benn and Evans, 

1998, Vorren et al., 2008, Blikra and Christiansen, 2014). In northern Norway, it is suggested that 

rapid glacio-isostatic uplift immediately following deglaciation caused major earthquakes that 

triggered multiple mass movement events, such as rock-avalanches and debris flows (Blikra et al., 

2006, Vorren et al., 2008, Hermanns and Longva, 2012, Olesen et al., 2013). 

2.3.1.2 Subaerial Debris Flows 
 

Debris flows are a very important mass movement processes within alluvial fans. Subaerial debris 

flows occur when sediment on steep slopes (27-56°), such as colluvium or till, is mixed with water 

and air and moves downhill under the force of gravity in a viscous state (Blair and McPherson, 2009). 

A) B) 
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Debris flows are usually initiated by the addition of a large amount of water to the sediment. This 

water can be produced by rapid precipitation (e.g. thunderstorm) or rapid snow and ice melt. 

Consequently, debris flows are common in recently glaciated terrain where unconsolidated sediment 

is abundant and there is a large water supply from ice and snow melt (Benn and Evans, 1998). The 

presence of clay and water within debris flows is important for lowering the yield strength of the 

flow allowing it to transport larger particles (Galloway and Hobday, 1996). Debris flow deposits 

consist of unsorted, muddy to gravelly sediment that usually has a lobe-shaped morphology (Jones 

and Lee, 1994, Blair and McPherson, 2009). 

2.3.2 Mass Movement Processes within Deltas 
 

The steep subaqueous delta slope is highly unstable and the sediment on the slope can be 

redistributed by mass movement processes to restore slope stability, such as slumping, sliding, or 

debris flows. The sediment transport mechanism can evolve over time and sometimes the sediment 

completely liquefies forming turbidity currents (Leeder, 1999, Anderson and Anderson, 2010). 

2.3.2.1 Slides and Slumps 
 

Slumping and sliding involves the movement of a coherent body of rock or unconsolidated sediment 

downslope. Movement usually originates from a point and occurs along a basal rupture surface 

known as a slip surface or shear plane (Jones and Lee, 1994). Slides occur along a planar glide plane 

and show no internal deformation, whilst slumps occur along a concave-up glide plane and often 

contain extensive evidence of internal deformation, such as folds, faults and clast imbrication (Benn 

and Evans, 1998, Shanmugam, 2016). Slumps often evolve into debris flows (Figure 22).  

2.3.2.2 Subaqueous Debris Flows 
 

Debris flows have a plastic rheology and laminar state and they are dominated by inter-granular 

movements (Shanmugam, 2016). Debris flows have the same flow behaviour in both subaqueous 

and subaerial environments, however, the mechanism of formation is different within each 

environment. Subaqueous debris flows occur due to the build-up of sediment on a slope, which 

results in the redistribution of sediment downslope or they can be triggered by earthquakes. 

Subaqueous debris flows can transform into turbidity flows.  

 

Figure 22: A schematic diagram showing four common types of subaqeuous mass movement processes. The 
mass movement process can evolve during sediment transport depending on the properties of the flow. Adapted 
from Shanmugam (2016). 
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2.3.2.3 Turbidity Flows  
 

A turbidity current is a type of density flow where the sediment is maintained in turbulent 

suspension within the flow. Turbidity currents can originate from the acceleration of sediment 

slumps on the slope or they can form when a large amount of river sediment is deposited onto the 

slope during flood conditions. Turbidite deposits are often found in the prodelta region of deltas and 

they are composed of a characteristic graded vertical sequence called the Bouma Sequence. The full 

Bouma sequence from top to bottom is: 

▪ Massive clay or silt (E); 

▪ Interlaminated silt and/or clay (D); 

▪ Ripple cross-laminated sand and silt (C); 

▪ Planar laminated sand (B); and 

▪ Massive or normally graded sand or gravel (A). 

2.3.3 Mass Movement Deposits at Russenes 
 

There is a lot of evidence of mass movement processes within Balsfjord. Mass movement deposits 

have been observed along the fjord margins (Blikra and Longva, 1999, Olesen et al., 2000, Blikra et 

al., 2006) and within the fjord sediments (Forwick and Vorren, 2002). At Russenes there is a 1 km 

long rock-avalanche deposit located above the fan delta. Field evidence indicates that the front of 

the rock-avalanche was deposited into the sea (Blikra et al., 2006, Fenton et al., 2011). Balanus shells 

have been found on boulders at the front of the rock-avalanche and radiocarbon dated giving a 

reliable minimum age of 10 942 ± 77 cal. BP (1σ) (Blikra, 1998, Blikra and Longva, 1999, Forwick and 

Vorren, 2002, Fenton et al., 2011). This date supports the hypothesis that many of the rock-

avalanches located in the Troms county occurred shortly after deglaciation. Blikra (1998), Blikra and 

Longva (1999) and Olesen et al. (2000) suggest that the period between 10.0 and 9.5 Ka BP is 

characterised by increased activity of rock-avalanches due to seismic triggering created by significant 

uplift after deglaciation (Vorren et al., 2008).  

2.4 Anthropogenic Activity 
 

In recent times the study area has been influenced by human activity primarily created due to 

agriculture and transportation. Most of the anthropogenic changes to the fan delta can be identified 

on aerial photography and occur below 70 m a.s.l. A large proportion of the lower fan delta has been 

cleared for farming and 10 farming properties are located across the study area. Additionally, a 

shooting range facility is located in the south-east of the study area at 100 m a.s.l. Two bitumen 

roads have been built through the study area in an east-west direction; a small country road named 

Fv295 and the European route E6 highway. The Fv295 road services the properties located within the 

study area and there are a few dirt roads and tracks that branch out from the Fv295. The E6 is a large 

two lane highway, which forms part of the main north-south road through Norway. It was 

constructed in the 1960s and its construction altered the morphology of the surrounding landscape. 

6 gravel pits of varying size have been identified within the study area. None of the gravel pits are 

currently operational. Finally, some man-made spit structures protrude into the fjord in the intertidal 

area of the fan delta.   
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3 Methods and Materials 
 

This study involves a detailed investigation of different components of the postglacial Russenes fjord-

side fan delta, including the modern subaerial and subaqueous environments, the subsurface 

structure and the associated deglacial landforms. The range of different datasets and methods have 

been applied in this investigation and they are described in detail below. 

3.1 Quaternary Geological Map 
 

A Quaternary map can contain a variety of information about the surface including information 

about the morphology, grain size, origin and age of the landforms (Knight et al., 2011) and a 

Quaternary Geological Map of the surficial sediments within the postglacial Russenes fjord-side fan 

delta and associated deglacial landforms has been produced during this study. Many different 

methods have been used to produce this Quaternary Geological Map, including direct methods, such 

as field mapping, and remote sensing methods, such as interpretation of aerial photography, satellite 

imagery and digital terrain models. The Quaternary Geological Map was produced in ArcMap 10.4.1 

and all datasets used to create the geological map were georeferenced using the ETRS 1989 datum 

and UTM zone 33N projection. The techniques that were used to produce the Quaternary Geological 

Map of the study area are explained below.  

3.1.1 Visual Interpretation of Aerial Photography 
 

Geomorphological mapping is the identification of landforms according to their morphology and 

formational processes (Hubbard and Glasser, 2005, Knight et al., 2011). Aerial photographs can be 

used to identify many types of geomorphological features such as landslides, beach ridges and 

terraces. These features are identified using the following characteristics: shape, size, colour, tone, 

mottling, texture, pattern of objects, topography and setting (Guzzetti et al., 2012).  

The aerial photographs that were used in this study are listed in Table 1. The aerial photograph that 

was most commonly used is titled Midt-Troms 2013 and this dataset has the best resolution (0.1 m). 

The aerial photographs were primarily viewed and interpreted in ArcMap 10.4.1, however, some of 

the aerial photographs were also viewed in 3 dimensions using a virtual 3D globe, which is available 

at www.norgei3d.no. A preliminary geomorphological map was produced from aerial photograph 

interpretation before field investigations commenced and the aerial photographs were used to refine 

the Quaternary map throughout the study.  

Stereoscopy is a technique that allows photographs to be viewed in three-dimensions because 

stereoscopic vision creates an illusion of depth. Viewing photographs stereoscopically increases the 

morphological appearance of the terrain and assists with the recognition of geomorphological 

features (Guzzetti et al., 2012). If two aerial photographs that are taken from different positions 

overlap they can be viewed stereoscopically and are called stereoscopic pairs. One stereoscopic pair 

that was taken in 1960 is available for the study area: WF_1133_F7 and WF_1133_F8. This pair 

allowed the western side of the fan delta to be viewed stereoscopically and this was extremely useful 

because the geomorphological landforms that were destroyed by the construction of the E6 highway 

could be viewed with their original morphology (Figure 23).  

  

http://www.norgei3d.no/
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Table 1: The aerial photographs used in this study. Many of these photographs are available as orthophotographs 
from www.norgeibilder.no.   

Name Date Resolution Type Source 

Midt-Troms 2013 11 August 2013 0.1 m Colour Norge i bilder 

Troms 2011 17 August 2011 0.4 m Colour Norge i bilder 

Troms 2006 29 July 2006 0.5 m Colour Norge i bilder 

Balsfjord 2003-

2004 

5 August 2004 0.2 m Colour Norge i bilder 

WF_3380_016 2 August 1969 1:15 000 Black and 

white 

Widerø’s 

flyveselskap A/S 

WF_1133_F7 22/24 July 1960 1:10 000 Black and 

white 

Widerø’s 

flyveselskap A/S 

WF_1133_F8 22/24 July 1960 1:10 000 Black and 

white 

Widerø’s 

flyveselskap A/S 

 

 

Figure 23: A) Aerial photograph WF_1133_F8 taken between 22 and 24 July 1960. This photograph was taken 
before the E6 highway was built. B) Aerial photograph Midt-troms 2013 taken on 11 August 2013. The red boxes 
highlight some of the areas that have changed between 1960 and 2013 due to construction of the main road.  

3.1.2 Field Mapping 
 

Collecting observations and data in the field is a direct method for obtaining information about the 

geomorphology and Quaternary geology of an area (e.g. measurements, descriptions, photographs 

and samples) (Knight et al., 2011). Field mapping allows the researcher to become familiar with the 

landscape, however, information collected is subjective and dependant on the skills and experience 

of the researcher (Hubbard and Glasser, 2005). Field mapping can be used to validate remotely 

sensed observations.  

A) B) 

E6 

http://www.norgeibilder.no/
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Field mapping was undertaken at Russenes in May, July, September and October 2016 to obtain 

direct observations and measurements on the geomorphology and sediment distribution in the study 

area. Mapping of the breaks in slope and the surface and subsurface material was performed by 

visual inspection and interpretation. Observations were recorded in a field notebook. Aerial 

photographs and topographic maps were used for navigation in the field. A hand-held GPS (Garmin 

eTrex 30) was used to mark tracks and way points, and this allowed the observations recorded in the 

field to be spatially located in ArcMap 10.4.1 upon return from the field (Figure 24). Furthermore, the 

photographs that were taken during fieldwork could be georeferenced using the hand-held GPS track 

upon return from the field (Appendix 1).  

 

Figure 24: Map of the study area showing the GPS tracks (blue) and waypoints (yellow) that were recorded during 
fieldwork. Background map = Midt_troms 2013.  

3.1.3 Surface Sediment Analysis 
 

During fieldwork the clast size, shape and roundness of the surficial sediments was recorded at many 

locations. Grain size was divided into size fractions based on the Udden-Wentworth-Krumbein scale 

(Udden, 1914, Wentworth, 1922, Krumbein, 1934) (Table 2). Sediment grain size was recorded at 

many locations across the study area (Figure 25 and Appendix 3). At each location the percentage of 

each size fraction in the sample was estimated visually and the facies codes shown in Table 3 were 

used to represent all main fractions comprising >5% according to the method used by Corner (1977) 

and Lyså and Corner (1994). The name of the dominant size fraction is used substantially and the 

names of the other size fractions are used adjectivally in order of increasing importance. For 

example, a sample containing 60% sand, 30% gravel and 10% cobbles would be called a gravelly 

cobbly sand. When the sediment grain size was greater than 0.5 mm a mode and maximum grain size 

was also recorded. In addition to grainsize analysis, clast roundness was recorded using the six-

category chart of Powers (1953) (very angular to well-rounded).  
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Table 2: The Udden-Wentworth-Krumbein grainsize scale (Udden, 1914, Wentworth, 1922, Krumbein, 1934) 

Ø Scale Size range (metric) Name 

<-8 >256 mm Boulder 

-6 to -8  64 – 256 mm Cobble 

-5 to -6 32 – 64 mm Very coarse gravel 

-4 to -5 16 – 32 mm Coarse gravel 

-3 to -4 8 – 16 mm Medium gravel 

-2 to -3 4 – 8 mm Fine gravel 

-1 to -2 2 – 4 mm Very fine gravel 

0 to -1 1 – 2 mm Very coarse sand 

1 to 0 0.5 – 1 mm Coarse sand 

2 to 1 0.25 – 0.5 mm Medium sand 

3 to 2 125 – 250 μm Fine sand 

4 to 3 62.5 – 125 μm Very fine sand 

9 to 4 2.0 – 62.6 μm Silt 

10 to 9 0.98 – 2 μm Clay 

 

 

Figure 25: Map showing the location of sediment grainsize data recorded during fieldwork (orange points). 

Background map = Midt_troms 2013. 
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Table 3: Lithofacies codes for the sorted sediments at Russenes based on the distribution of major grain-size 
fractions comprising > 10 %. Adapted from Corner (1977) and Lyså and Corner (1994). 

 

3.1.4 Digital Terrain Models 
 

A digital terrain model (DTM) is a topographic model of the bare earth whereby spatial elevation 

data is presented in a rectangular grid. A DTM that was regularly used in this study is a national scale 

DTM gridded to 10x10 m that is available from the Norwegian Mapping Authority 

(www.data.kartverket.no). This DTM was used in various ways throughout the study. For example, 

elevation profiles of the fan delta were created using the DTM to investigate the surficial morphology 

and a few raster surfaces were created using the DTM, such as hillshade and slope surfaces 

(Appendix 1). Hillshade surfaces use shading to give an impression of depth information from a 

three-dimensional surface on a two-dimensional image (Figure 26) and these surfaces were 

particularly useful in this study. 

Another important DTM used in this study was created by Statens Kartverk using airborne Lidar data 

(Light Detection and Ranging), which is an active remote sensing technique that uses infrared light 

from a pulsed laser to measure ranges to the terrain and objects. This is currently the most accurate 

method of creating a digital elevation model. Airborne Lidar data used in this study was acquired by 

Terratec on behalf of the Norwegian Mapping Authority (Statens Kartverk) in 2013. A Leica ALS70-II 

laser scanner was used to collect the data with a minimum point density of 3 points/m2.  

Facies 
code 

Description Facies 
code 

Description 

L 

zL 

szL 

Clay 

Silty clay 

Sandy silty clay 

 Z 

lZ 

sZ 

sgZ 

gsZ 

scZ 

Silt 

Clayey silt 

Sandy silt 

Sandy gravelly silt 

Gravelly sandy silt 

Sandy cobbly silt 

S 

zS 

zgS 

zcS 

gS 

gzS 

Sand 

Silty sand 

Silty gravelly sand 

Silty cobbly sand 

Gravelly sand 

Gravelly silty sand 

G 

sG 

scG 

csG 

cG 

szG 

Gravel 

Sandy gravel 

Sandy cobbly gravel 

Cobbly sandy gravel 

Cobbly gravel 

Sandy silty gravel 

C Cobbles B Boulders 

http://www.data.kartverket.no/
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Figure 26: A hillshade image of the study area (azimuth = 315° and sun elevation = 45°). This hillshade image 
was created using a national scale digital terrain model with a 10 m resolution that is available at 
www.data.kartverket.no.    

The Lidar data that is available over the study area occurs as a narrow band (300 m wide) over the E6 

highway. A digital terrain model (DTM) created from the Lidar data can be download at 

https://hoydedata.no/LaserInnsyn/. This DTM provides high resolution elevation data (0.5 m 

resolution) and hillshade images were created using this data and used to identify morphological 

features (Figure 27). 

 

Figure 27: Hillshade image of the DTM created from the Lidar data that is available over the study area. The DTM 
can be downloaded from Statens Kartverk (https://hoydedata.no/LaserInnsyn/). The hillshade image uses a light 
source with an azimuth of 315 degrees and a sun elevation of 45 degrees to create a 3D shadow effect. This 
dataset provides detailed morphological information, which can be extrapolated to other areas of the fan delta.  

  

http://www.data.kartverket.no/
https://hoydedata.no/LaserInnsyn/
https://hoydedata.no/LaserInnsyn/
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3.1.5 Global Positioning Systems (GPS) 
 

Global Positioning System (GPS) is a global satellite navigation system that allows GPS receivers to 

record information about position, velocity and time (Hubbard and Glasser, 2005). A minimum of 

four GPS satellites are required to record location information. Two different GPS receivers were 

used during this study: (1) a hand-held GPS receiver; and (2) a differential GPS receiver. The single 

hand-held GPS receiver (Garmin eTrex 30) was used to mark tracks and way points with a 3 m 

accuracy. Occasionally, the differential GPS receiver was used to obtain more precise elevation data 

and this information was collected using a Trimble R4 GPS with a Juno T41 X Handheld tablet. For 

example, the Trimble R4 GPS was used to obtain precise elevation data along the ground penetrating 

radar (GPR) profiles so that they could be corrected for changes in elevation. The Trimble R4 GPS has 

a horizontal accuracy of ± 8 mm and a vertical accuracy of ± 15 mm. The GPS measurements were 

taken by attaching the Trimble R4 GPS to a 1.36 m long pole. Measurements were either taken as 

point measurements or collected continuously along a profile. Point measurements are more 

accurate because the pole is kept level (vertical) and stationary whilst the measurement is taken.  

3.2 Subaqueous Morphology 
 

The subaqueous morphology of the present-day fan delta has been investigated using a detailed 

multibeam bathymetry dataset that was collected over the subaqueous component of the 

Nordkjosbotn and Russenes deltas (Corner and Eilertsen, 2013). This dataset was displayed in a few 

different ways during this study, including as bathymetric maps, slope maps and cross-profiles on 

order to determine the subaqueous geomorphology of the present-day fan delta.  

3.2.1 Multibeam Bathymetry 
 

Sidescan sonar systems send out acoustic pulses into the sea and measure the time taken for the 

pulses to reflect from the sea floor and return to the receiver. The elapsed time is a measure of the 

water depth and it can be used to determine the bathymetry of the sea floor (Hubbard and Glasser, 

2005). Multibeam bathymetry data was collected over the subaqueous component of the 

Nordkjosbotn and Russenes deltas on a marine geological cruise with the RV Hyas in September 2013 

(Corner and Eilertsen, 2013). The multibeam equipment consisted of a GeoAcoustics 125 kHz 

GeoSwath interferometric sidescan sonar that was provided by NGU (Corner and Eilertsen, 2013). 

The sidescan sonar transponder was mounted onto the bow of the boat and a GPS antenna (Trimble 

R4 GNSS GPS/GLONASS Rover receiver) was mounted onto a vertical steel pole and place directly 

above the transponder to record location information. The accuracy of data acquisition is in the cm 

to dm scale. Sound velocity profiles (SVP) of the water column were made at selected locations in the 

survey area using a Valeport 650 SVP. Processing of the data was performed in GeoSwath software. 

Further information about the data acquisition on the cruise can be found in the post survey report 

by Corner and Eilertsen (2013). 
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3.3 Subsurface Composition and Structure 
 

The structure and composition of the deglacial and postglacial sediment located below the surface of 

the Russenes fjord-side fan delta was investigated through the interpretation of vertical sedimentary 

successions and the collection and interpretation of ground penetrating radar (GPR) profiles. 

Additionally, some marine shells that were identified within the deltaic subsurface sediments have 

been radiocarbon dated.  

3.3.1 Sedimentary Logs 
 

Sedimentary successions were exposed at a few locations within the study area, including river 

banks, road cuttings and gravel pits. Graphical logs were drawn in the field to represent and record 

information about the vertical sedimentary successions. A sedimentary graphical log records the bed 

thickness on the vertical axis and grainsize variations on the horizontal axis (Hubbard and Glasser, 

2005). A lot of additional information can be included in the graphical log including lithology, bed 

boundaries (sharp, erosive, transitional etc.) sedimentary structures, colour and fossils. This 

information is displayed using symbols, patterns, colours and text. Consequently, there are many 

different styles of graphical logs depending on the purpose of the log and the type of information 

being displayed. One of the graphical logs produced in this study is shown in Figure 28. Facies codes, 

which represent the interpreted depositional process, have been included in the lithological log and 

the sediment grainsize distribution is also represented. Table 4 shows the facies codes used in this 

study. 

 

 

Figure 28: Example of a lithological log created during this study. The vertical axis records the bedding thickness 
and the horizontal axis records the dominant grainsize. The bedding orientation and sedimentary structures are 
also shown and the facies and units have been defined (left-hand columns).  
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Table 4: Lithofacies codes for the different types of bedding at Russenes and their interpretation. Modified from 
from Lyså and Corner (1994). 

Facies code Description Interpretation 

m Massive to crudely bedded Suspension settling, cohesionless 
debris flows 

l Horizontal/sub horizontal (parallel 
bedding)  

Longitudinal bars, lag deposits, planar 
bed flow 

d Deformed bedding  Slump, liquefied flow 

g Normal graded bedding. Fining upwards Turbidity current, debris flow waning 
current 

I Inverse graded bedding. Coarsening 
upwards 

Cohesionless grain flows 

im Preferential alignment of clasts Gravity flows 

 

3.3.2 Ground Penetrating Radar 
 

3.3.2.1 Theory 
 

Ground penetrating radar (GPR) is a non-destructive geophysical subsurface imaging technique. It 

uses high-frequency electromagnetic waves (in the microwave band) to image the subsurface. The 

principles of GPR are comparable with reflection seismology, except electromagnetic energy is used 

instead of acoustic energy. Most GPR instruments contain a transmitter and a receiver in a fixed 

geometry, which are moved across the ground to detect reflections from the subsurface (Annan, 

2009). A transmitter emits the electromagnetic radiation into the ground, and this energy is 

reflected, refracted and scattered by boundaries in the subsurface with different electrical properties 

(Figure 29). The changes in dielectrical properties within the subsurface may be caused by changes in 

sediment grain-size, mineralogy, density, water content and consolidation (Mauring et al., 1994, 

Eilertsen et al., 2011). Although a lot of the energy is dissipated, a component of the energy is 

reflected back to the surface and recorded by the receiver. The arrival time of the reflected energy is 

related to the depth and location of different boundaries.   

 

Figure 29: Schematic showing the principles of ground penetrating radar (GPR). The transmitted wave travels 
through the subsurface and is reflected from boundaries with different electrical properties. The time taken for the 
wave to return to the receiver is recorded. Radar A-Scan and Radar B-Scan show how the return signal can be 
displayed for interpretation. Reproduced from Milsom and Asger (2011) 
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The penetration depth of GPR systems is determined by the electrical conductivity of the subsurface 

(soil type), the source frequency and the size of the target. Radio waves are attenuated or absorbed 

differently by different soil conditions. The electromagnetic waves become attenuated with 

increasing electrical conductivity, which decreases the penetration depth. Therefore, the penetration 

of GPR is very limited in highly conductive materials, such as soils contaminated with salt. Lower 

frequency electromagnetic waves penetrate further than higher frequency waves, however, the 

resolution increases with higher frequencies. Therefore, when deciding what frequency to use there 

is a trade-off between resolution and penetration. Radar frequencies between 50 and 200 MHz give 

the best resolution and penetration for clastic coarse-grained sediments (Hubbard and Glasser, 

2005). 

3.3.2.2 GPR Data Acquisition 
 

The GPR system used in this study was a PulseEKKOTM IV (Sensors & Software Inc., Mississauga, ON, 

Canada) and the instrument is shown in Figure 30. 100 MHz antennae were used for the transmitter 

and receiver and the distance between the antennae was 1.0 m. The data was collected in step mode 

and measurements were taken every 0.25 m (step size) across the entire profile. The step size was 

measured using markers on the antennae. Other system specifications used during data acquisition 

include a time window of 500 ns, a pulser voltage of 400 V and 4-fold stacking. The instrument 

supports higher degrees of stacking, which could be applied in the future to improved data quality in 

the deeper section. 11 GPR profiles were collected in the study area (Table 5 and Appendix 3) and 

the location of these GPR profiles is shown in Figure 31.  

 

 

Figure 30: Photograph of the PulseEKKOTM IV GPR instrument used in this study. The antennae have a fixed 
position 1.0 m apart. Two people are required to operate the system: one person to move the GPR antennae; and 
one person to operate the computer.  

 



 

Page 39 of 164 

 

Figure 31: Orthophotograph Midt_Troms_2013 showing the location of the GPR lines collected during this study.  

 

Table 5: List of the GPR lines collected in this study. 

Line Name Length 

(m) 

Trace 

number 

Location description Comments 

Russ0 92 370 South-north line across 

fluvial material 

The top section of the profile is 

distorted. 

Russ 1 55.75 224 North-south line above 

gravel pit 

No data beyond 37 m due to 

battery failure. 

Russ 2, 3 and 

4 (merged) 

258.5 915 West-east line across ice 

front deposit 

Lines were acquired 

consequently and merged during 

processing. 

Russ 5 86.75 348 South-north line across 

ice front deposit 

 

Russ 6 48 193 North-south line above 

deltaic material 

 

Russ 7 35.75 144 East-west line above 

deltaic material 

 

Russ 8 62 249 North-south line above 

gravel pit 

 

Russ 9 38.75 156 East-west line above 

fluvial sediment 

 

Russ 10 26.75 108 Line following terrace 

above gravel pit. 

Direction of acquisition changes 

towards the end of the line 
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3.3.2.3 GPR Data Editing and Processing 
 

The GPR data was edited and processed using Ekko View Deluxe software and the lines were viewed 

using Ekko View software (Sensors & Software Inc., Mississauga, ON, Canada). Two-way-travel time 

was converted to depth using a velocity value of 0.1 m/ns, which is a typical velocity value for coarse-

grained sediment (Sensors & Software Inc., Mississauga, ON, Canada). The data processing sequence 

is outlined in the following section. For further information refer to the Ekko View Enhanced and 

Deluxe instruction manual (Software and Sensors, 2003). 

Elevation data 

The PulseEKKOTM IV GPR instrument does not have an inbuilt GPS system and therefore, elevation 

data for the GPR lines was obtained from other sources. For example, lidar data with a 0.5 m 

resolution exists over GPR profile Russ1,3&4 (merged) and Russ 5 (Section 3.1.4). The resolution of 

this data was sufficient to determine the elevation changes along these lines and this information 

was added to the GPR profiles using EKKO view deluxe. There was no Lidar coverage for the other 

GPR lines and therefore, the changes in elevation along these lines were determined using the 

Trimble R4 GPS (Section 3.1.5). Figure 32 gives an example of a GPR line before and after topographic 

correction was applied.  

Topographic information was added to the GPR profiles in Ekko View Deluxe using the following 

procedure: 

- Create a text file with a .TOP extension listing the changes in distance along the line next to 

the associated elevation changes.  

- Add the .TOP file. Data editing > file > Add topography using topo file… 

- Shift the topography. Data editing > file > Shift topography 

 

Figure 32: GPR line Russ5 (A) before topography information was added, and (B) after topography information 
was added to the line. 

Re-picking timezero 

Timezero is the first large deflection (either a positive peak or negative trough) in the trace that 

shows the arrival of the direct air wave to the receiver (Software and sensors, 2013). If GPR data 

collection is commenced before the instrument has warmed-up, then the initial timezero may not be 

in the right position. This causes the topmost reflectors in the GPR profile to start below timezero 

and gradually increase towards timezero as the instrument warms up (Figure 33). This occurred for 

GPR profiles Russ1, Russ6 and Russ8. Ekko view deluxe allows the user to redefine timezero using an 

A) B) 



 

Page 41 of 164 

input threshold and this function was applied for GPR profiles Russ1, Russ6 and Russ8 with a 

threshold value between 5 and 10% (Software and Sensors, 2003). 

 

Figure 33: GPR profile Russ8 showing the profile is initially not located at timezero. 

GPS coordinates 

GPS coordinates were added to each GPR line using a text file with a .GTP extension. The text file 

must have the X, Y and Z (optional) coordinates for at least two trace numbers within the line. The 

text file was added to the line using the following method: data editing > file > Add GPS data. The 

GPS coordinates were added so that the lines could be viewed in 3D, however, unfortunately the 

coordinate information could not be exported with the lines from Ekko View Deluxe. 

Migration 

Automatic gain control (AGC) was applied during data collection and this process destroyed most of 

the frequency dynamic range in the data causing most reflections to have the maximum available 

positive or negative values. This meant that there was limited potential to improve the data. 

Migration is the only processes that was observed to enhance the GPR profiles (Figure 34).  

 

Figure 34: GPR profiles Russ2, 3 and 4 (merged) (A) before migration and (B) after migration (velocity value used 
= 0.03 m/ns). The red circle highlight the diffractions that were improved by the migration processing.  

A) 

B) 
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Migration is a processing technique that moves dipping reflectors to their true subsurface positions 

and collapses diffractions. This processing technique was applied to all the GPR profiles in EKKO View 

Deluxe through the following method: Instant process > 2D filters > migration. A velocity of 0.03 or 

0.02 m/ns was used for all GPR profiles because it was found to produce the best results. Some 

migration artefacts remain because only a single migration velocity could be used.   

After editing and processing of the GPR profiles the data was exported to a SEG-Y and imported into 

Petrel software for interpretation.  

3.3.3 Radiocarbon Dating 
 

3.3.3.1 Theory 
 

Radiocarbon dating is a commonly used method for determining the age of organic material that is 

less than 50 000 years old (Libby, 1955, Bradley, 2015, Lowe and Walker, 2015). Carbon has three 

naturally occurring isotopes whereby two of the isotopes are stable, carbon-12 (12C) and carbon-13 

(13C) and one is unstable (radioactive), carbon-14 (14C). Carbon-14 is continually produced in the 

upper atmosphere by neutron bombardment of atmospheric nitrogen atoms according to the 

following equation:  𝑛 +  
14
7

𝑁 →  
14
𝑐

𝐶 + 𝑝 

14C is rapidly oxidised to 14CO2 and this compound diffuses through the atmosphere. Carbon-14 has a 

half-life of 5,730 years and an equilibrium exists between the rate of new Carbon-14 creation in the 

upper atmosphere and the rate of decay of Carbon-14 in the atmosphere and biosphere. Therefore, 

it is assumed the concentration of Carbon-14 is constant over time (Bradley, 2015, Lowe and Walker, 

2015). Carbon-14 is dissolved in the ocean and assimilated into plants and animals through 

photosynthesis. As living plants and animals are continually exchanging carbon, the carbon-14 

content of living organisms is assumed to be equilibrium with the atmosphere. However, when an 

organism dies the system becomes closed. Therefore, the organism stops obtaining Carbon-14, but, 

the existing Carbon-14 within the organism will continue to decay to nitrogen (Bradley, 2015, Lowe 

and Walker, 2015). Since the decay rate of 14C is known, the time an organism died can be 

determined by measuring the amount of 14C atoms within an organic sample of the organism. 

Radiocarbon dating is based the following key assumptions: (1) the production of 14C is constant over 

time; (2) The 14C/12C ratio in organisms is in equilibrium with the atmosphere; (3) the decay rate of 
14C known and precise; and (4) the system is closed after the death of an organism (Bradley, 2015).   

However, there are some problems with some of the assumptions. For example, CO2 is transferred 

from the atmosphere to the ocean by dissolution of CO2 at the surface. The mixing time of the ocean 

is much longer than that of the atmosphere and therefore, it takes a long time for the 14C atoms to 

be distributed throughout the ocean. Therefore, the 14C/12C ratio in marine organisms is not in 

equilibrium with the atmosphere and this causes radiocarbon dated marine fossils to appear too old. 

This is known as the marine reservoir effect and consequently, a correction is applied to marine 

samples to account for the reservoir effect (Bradley, 2015, Lowe and Walker, 2015).  
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3.3.3.2 Accelerator Mass Spectroscopy (AMS) 
 

Conventional radiocarbon dating measures the amount of 14C atoms in a sample indirectly by 

counting β-particle emission. In the 1970s and early 1980s, radiocarbon dating was revolutionised by 

the development of the Accelerator Mass Spectroscopy (AMS) technique, which uses an accelerator 

coupled to a mass spectrometer to directly count the number of 14C atoms relative to 12C and 13C to 

give a direct ratio of 14C/12C (Bradley, 2015). Ions that are accelerated to very high velocities are 

passed through a magnetic field that separates the ions allowing them to be counted. AMS 

radiocarbon dating can be performed on much smaller samples than conventional 14C dating 

(approximately 1 mg of carbon).  

3.3.3.3 Laboratory Analysis 
 

AMS radiocarbon dating was performed on three of the samples that were collected from the field 

by the Beta Analytic Inc. laboratory located in Miami, Florida, United States of America (Table 6). A 

conventional radiocarbon age (corrected for isotopic fractionation) has been determined by the 

laboratory. The resulting 14C dates were calibrated to calibrated radiocarbon years (cal. yr BP) by the 

laboratory using the MARINE13 database and the 2013 INTCAL program (Ramsey, 2009, Reimer et 

al., 2013). A global marine reservoir correction of -200 to 500 years and a local reservoir correction of 

71±21 (DeltaR) was applied during calibration (Mangerud et al., 2006). The calibrated ages are given 

within the ±2σ interval.  

A few previously published radiocarbon ages were also used in this study. These ages were primarily 

obtained from the Radiocarbon Laboratory in Trondheim, Norway and all ages have been corrected 

for a reservoir effect of 440 years (Corner, 1980, Forwick and Vorren, 2002). Therefore, to compare 

these conventional ages with the radiocarbon ages obtained during this study 440 years must be 

added to the previously published ages. Additionally, the previously published radiocarbon ages have 

been recalibrated during this study using the MARINE13 database, the 2013 INTCAL program and a 

DeltaR value of 71±21 (Mangerud et al., 2006, Ramsey, 2009, Reimer et al., 2013). 

Table 6: Information about the samples prepared for AMS 14C radiocarbon dating. 

Lab 
reference 

Location 
number 

Sample 
depth (m) 

Species Weight 
(g) 

Easting Northing 

Beta - 463114 HD2016-
Russ01 

25 
 

Macoma Calcarea 
(Gmelin, 1791) 

0.67 
 

677101 

 

7685062 

 

Beta - 463115 HD2016-
Russ04 

25 Mya Truncata 
(Linné, 1758) 

1.69 677104 

 

7685050 

 
Beta - 463116 HD2016-

Russ05 
51 Balanus sp.  6.9 676974 

 

7684851 
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4 Results 
 

A comprehensive study of the Russenes postglacial fjord-side fan delta and landslide complex has 

been undertaken. This study examines the surficial morphology and subsurface structure of the 

postglacial fjord-side fan delta and associated deglacial landforms. A Quaternary Geological Map of 

the postglacial fjord-side fan delta has been produced during this study. The results have been 

divided into two sections: (1) a description of the deglacial sediment that has been mapped within 

the study area; and (2) an investigation of the present-day morphology and subsurface structure of 

the postglacial fjord-side fan delta. The progradation history of the fan delta and associated deglacial 

deposits provides an important record of the deglacial and postglacial history of Balsfjord. 

4.1 Quaternary Geological Map 
 

A 2 km2 Quaternary Geological Map of the Russenes postglacial fjord-side fan delta and landslide 

complex has been produced during this study (Figure 35). This map is at the 1:10 000 scale and it 

shows the surficial sediments and geomorphological features identified within the upper 0.5 m of the 

Russenes fjord-side fan delta. The map has been constructed in ArcMap 10.1.4 using a wide range of 

data (Section 3.1) and it is displayed in the ETRS 1989 datum and UTM zone 33N projection. 

Polygons, lines and point symbols are all used to represent the surficial sediment and 

geomorphological landforms on the map.  

Sediment within the mapped area has been deposited from approximately 11,500 cal. yr BP to 

present and some areas of the fan delta are still actively developing through sediment depositional 

and erosional processes. Older postglacial fan delta sediment and associated deglacial landforms 

have been raised above present-day sea level due to glacio-isostatic uplift. Mapping of this raised 

surficial sediment and present-day surficial landforms allows the postglacial depositional history of 

the fjord-side fan delta to be determined.  As the land has been uplifted since the deglaciation, the 

morphology of some of these depositional elements has been altered by post depositional fluvial, 

wave and tidal processes. In many cases these processes have created distinct geomorphological 

features, such as shore notches, beach ridges and erosional gullies and these features have been 

included on the Quaternary Geological Map.  

The identification of raised shorelines is particularly useful for determining the rate of relative sea 

level change within the study area and a several raised shorelines have been identified. These 

shorelines have been recognised by the presence of shore notches, which are erosional features that 

has been cut into the deglacial and postglacial sediment by wave and tidal processes when the 

sediment was located at sea level. Shore notches usually correspond to periods of sea level stand still 

and therefore, the most prominent shore notches within the study area correspond to the marine 

limit and the Tapes transgression, which occur at 83 m a.s.l and 35 m a.s.l respectively (Section 

1.2.3.2). 

Active surficial features are also shown on the Quaternary Geological Map, such as river channels, 

streams, gullies and areas of active fluvial incision. For example, the intertidal region of the fan delta, 

called the delta platform, is a very active component of the present-day fan delta because the 

geomorphology and sedimentology of the intertidal region is influenced by fluvial, wave and tidal 

processes. The delta platform is exposed at low tide and therefore, the present-day morphology of 

the intertidal delta platform has been mapped and included in the Quaternary Geological Map. 
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Figure 35: Quaternary Geological Map produced during this study. The map shows the surficial sediment and 
geomorphological features of the postglacial Russenes fjord-side fan delta and associated deglacial sediment. 
The map has been produced using a wide variety of data sources including aerial photographs, previous 
geological maps, digital terrain models, and fieldwork data. The legend has been adapted from a legend supplied 

by NGU. 
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4.2 Deglacial Sediment 
 

A large volume of sediment was deposited in Troms county during the deglaciation of the 

Fennoscandian Ice Sheet. The Quaternary Geological Map produced during this study contains 

several deglacial deposits that are associated with the postglacial fjord-side fan delta, including 

deposits of till, glaciolacustrine, glaciofluvial, rock-avalanche and colluvial sediment (Figure 35). Most 

of these deglacial deposits are located immediately above the postglacial fjord-side fan delta and 

they provide a source of sediment for the fan delta. These deglacial deposits are described in detail 

below.  

4.2.1 Till 
 

Till is a generic term for a poorly sorted diamicton that has been deposited directly from a glacier 

(Hambrey, 1994, Benn and Evans, 1998). Till usually contains a wide variety of clast sizes and it is 

often dominated by coarse, poorly sorted, matrix-rich sediment (Leeder, 1999). Till can also form a 

wide variety of morphologies, including ridges, mounds and sheets. Till has been mapped on the 

edges of the Quaternary Geological Map as a patchy, thin layer of till that has been deposited 

directly over the bedrock. The till is composed of clay, silt and very fine sand with interspersed 

cobbles and boulders of various lithologies. The fine-grained component of the till often has a silver 

colour.  

4.2.1.1 Interpretation 
 

Till can be deposited within many different glacial environments. For example, it can be deposited 

from the melt out of stationary ice or by direct emplacement from subglacial flow (lodgement till) 

(Hambrey, 1994, Benn and Evans, 1998, Leeder, 1999). Till is commonly deposited as a thin layer of 

sediment during glacial retreat. Therefore, surficial till was probably deposited over the entire study 

area during glacier retreat and most of the younger sediment within the study area has probably 

been deposited onto a thin layer of till. 

 

4.2.2 Glaciolacustrine Deposit 
 

A deposit of well sorted silt sediment has been mapped on the upper eastern side of the fan delta 

(Figure 36 and Figure 37A). This deposit is located next to a shooting range. According to a local 

resident, the landscape surrounding the shooting range has not been disturbed by anthropogenic 

activity. The upper surface of the deposit forms a gently dipping terrace and a 1 m high scarp occurs 

in the south-western side of the deposit, which exposes a section of sorted silt sediment (Figure 

37A). The northern edge of the deposit is also defined by an erosional scarp (Figure 36) and another 

erosional scarp occurs 5 m below the sorted silt deposit (Figure 37B). 
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Figure 36: Detailed map of the sorted silt sediment (glaciolacustrine deposit) located on the upper eastern side of 

the fan delta.  

 

 

 

Figure 37: A) Photograph of the well sorted silt sediment located within an erosional scarp on the south-western 
side of the deposit. B) Photograph of the terrace-like surface located below the deposit of sorted silt. This surface 
occurs above the marine limit.  

  

A) 

B) 
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4.2.2.1 Interpretation 
 

The sorted nature of the sediment indicates it must have been deposited into standing water. 

However, the sediment is located above the marine limit. Therefore, it is likely that the silt was 

deposited within a lacustrine environment. Ice-dammed lakes can be formed when a glacier forms a 

barrier to the natural drainage and they are common in all present-day glaciated regions of the world 

(Benn and Evans, 1998). Therefore, we suggest that an ice-dammed lake formed at the side of the 

Balsfjord glacier during deglaciation and the silt sediment was deposited into this ice-dammed lake. 

Figure 38 shows one possible glacier configuration that could have resulted in the formation of an 

ice-dammed lake. Ice-dammed lakes often drain catastrophically, producing outburst floods 

(jökulhlaups) that are orders of magnitude larger than the normal river discharge (Benn and Evans, 

1998). However, no evidence of outburst floods has been found in the study area.  

The erosional scarp on the south-western side of the deposit is interpreted to be produced by post 

depositional erosion of the glaciolacustrine sediment by glaciofluvial processes. The east-west 

orientated terrace-like features that occur below the glaciolacustine deposit and parallel to the fjord 

are interpreted to represent erosional surfaces created by the Balsfjord glacier. The sedimentology 

and lithofacies of the sorted silt sediment was not investigated in detail during fieldwork due to the 

proximal location of the shooting range to the deposit. Therefore, a more detailed investigation of 

the deposit could be undertaken to determine the specific glaciolacustrine lithofacies, which could 

include rhythmites, varves and deltas.  

 

Figure 38: Schematic diagram of the interpreted depositional environment of the glaciolacustrine deposit. It is 
hypothesised that the sorted silt sediment was deposited into an ice-dammed lake at the end of the 
Russedalselva valley. The background image is a DTM-derived shaded-relief map of the study area (azimuth = 
315° and sun elevation = 45°) and the position of the glaciers has been drawn using elevation information from 

this DTM. 
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4.2.3 Ice Front Accumulation 
 

A large gravel pit is located on the western side of the Buktelva river directly below the E6 highway 

(Figure 39). This gravel pit occurs within an accumulation of coarse-grained sediment and the original 

surface morphology of this accumulation has been destroyed by gravel pit operations. At the edges 

of the gravel pit the sediment consists of sorted cobbly, sandy gravel with a maximum clast size of 7 

cm (Figure 39C). It is likely that this course sediment is representative of the sediment that has been 

removed. Additionally, poorly-drained fine-grained sediment is located at the base of the gravel pit. 

This sediment is composed of well sorted fine sand and silt with occasional gravel. Two aerial 

photographs taken in 1960 were used stereoscopically to investigate the original morphology of the 

area (WF_1133_F7 and WF_1133_F8) and a large ridge was observed in the location of the current 

gravel pit (Figure 40). This ridge is approximately 350 m long, 260 m wide and has a sinuous crest. 

 

 

Figure 39: A) Aerial photograph of the fan delta showing the location of the gravel pit on the western side of the 
Buktelva river. B) Photograph of part of the gravel pit showing the present-day grainsize distribution C) 
Photograph of the cobbly sandy gravel located at the edge of the gravel pit. 

The present-day morphology of the gravel pit is shown in Figure 41. Some of the glaciofluvial 

sediment was not disturbed during the extraction. For example, there is a prominent 125 m long 

ridge on the western side of the gravel pit that still has its original morphology and is covered by 

vegetation. Therefore, the western side of the glaciofluvial ridge is interpreted to be undisturbed. 

Additionally, three small circular mounds are located beneath electricity poles within the gravel pit. 

The electricity poles existed before earth moving operations commenced and therefore, it is believed 

that these sediment mounds were not disturbed and they show the height of the original 

glaciofluvial deposit at these three specific locations.   

 

B) A) 

C) 

Gravel pit 
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Figure 40: A) Aerial photograph WF_1133_F8 showing the landscape in 1960 before gravel pit operations 
commenced. The glaciofluvial sediment is outline in orange. B) Detailed map of the ridge. The original 

morphogenic features have been mapped using stereophotogrammetry.  

 

Figure 41: Lidar-derived shaded-relief map of the present-day gravel pit created from a DTM available from 
Statens Kartverk (https://hoydedata.no/LaserInnsyn/). The location of GPR profiles Russ2, 3 & 4 (merged) and 
Russ5 are shown. Contours = 1 m.  

A) 

B) 

Ridge 

Ridge 

https://hoydedata.no/LaserInnsyn/
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Two ground penetrating radar (GPR) profiles were taken perpendicular to each other across the ridge 

composed of coarse cobbly sandy gravel: Russ5 and Russ2,3&4 (merged). The location of these GPR 

profiles is shown in Figure 41. These profiles provide information about the sub-surface structure of 

the sediment accumulation and they are presented and interpreted below. 

GPR profile Russ2,3&4 (merged) 

GPR profile Russ2,3&4 (merged) is a 258.5 m long west-east profile taken across cobbly sandy gravel 

ridge (Figure 42). A large section of the profile was taken within the present-day gravel pit (Figure 41 

and Figure 42). Several deep high amplitude reflections (below -400 ns) are observed on the eastern 

side of the profile. These reflections have a large relief and are interpreted to be produced by the 

presence of bedrock. Above the bedrock reflections two different sediment packages have been 

identified based on reflection geometry and continuity.  

Unit A has been divided into two units. Unit A1 occurs below the gravel pit and consists of 

continuous wavy sub-horizontal reflections, which are interpreted to be produced by marine or till 

sediment. Unit A2 represents the possible continuation of Unit A beneath Unit B. Unit B 

predominantly occurs beneath the present-day ridge and consists of semi-continuous gently dipping 

reflections, which are truncated on the eastern side due to the removal of sediment by gravel pit 

operations. Some of these reflections appear chaotic. Unit B corresponds to the cobbly sandy gravel 

sediment exposed at the edges of the gravel pit. Finally, there are two high amplitude continuous 

reflections below Unit B, which could represent till material deposited before the deposition of the 

coarse-grained ridge. 

 

Figure 42: A) Uninterpreted GPR profile Russ2,3&4 (merged). B) Interpreted GPR profile Russ2,3&4 (merged). 
Two sediment packages have been identified: Unit A (green) and Unit B (blue). 

B) 

A) 
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GPR profile Russ5 

GPR profile Russ5 is located perpendicular to Russ2,3&4 (merged) (Figure 41 and Figure 43). Most 

the reflections in the top -300 ns of this profile have a high amplitude and are steeply dipping. Some 

of the reflections have a sigmoidal shape. These dipping reflections are interpreted as foreset beds, 

which form part of Unit B identified in GPR profile Russ2,3&4(merged) (Figure 42B) and therefore, 

they are composed of the cobbly, sandy gravel sediment identified at the surface.  

The geometry of the reflections indicates there are two different sediment packages, labelled B1 and 

B2. Unit B1 occurs on the southern side of the profile and consist of continuous, high-amplitude 

reflections that have a sigmoidal shape. Unit B2 downlaps onto Unit B1 and contains shorter 

sigmodal semi-continuous dipping reflections. The dipping reflections in units B1 and B2 are 

interpreted as foreset beds, however, the different units represent different periods of deposition 

whereby Unit B1 was deposited before Unit B2. Additionally, the downlapping nature of reflectors in 

Unit B2 indicates an unconformity exists between the two sediment packages. Both GPR profiles 

Russ2,3,4 (merged) and Russ5 show obliquely dipping foreset beds, which indicate that the true dip 

is towards the centre of the fjord in a north-west direction.  

 

Figure 43: A) Uninterpreted GPR profile Russ5. B) Interpretation of GPR profile Russ5. One unit has been 
identified within the GPR profile (B), which contains two different sediment packages (B1 and B2). 

  

B) 

A) 
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4.2.3.1 Interpretation 
 

This large ridge-shaped accumulation of cobbly sandy gravel is interpreted as an accumulation of 

glaciofluvial sediment that was deposited during deglaciation. The sea level was very close to the 

marine limit (83 m a.s.l) at this time and the fine-grained sand and silt sediment located beneath the 

ridge is interpreted to have a marine origin. The maximum height of the present-day glaciofluvial 

sediment at the edge of the gravel pit is 54 m a.s.l (Figure 41). This is not the true maximum height of 

the deposit because the crest of the ridge has been removed (Figure 40). However, it indicates this 

ridge of glaciofluvial sediment was deposited well below the marine limit. It follows that this 

sediment must have been deposited directly from subglacial and englacial streams during a halt in 

the retreat of the Balsfjord glacier because this is the only depositional process that allows an 

accumulation of coarse-grained glaciofluvial sediment to form within an open marine environment 

(Powell, 1990, Hambrey, 1994, Lønne, 1995, Benn and Evans, 1998).  

 

Figure 44: Sketches of the interpreted depositional environment. The glaciofluvial sediment was deposited as a 
submarine ice-front fan directly in front of the Balsfjord glacier during a halt in the retreat of the glacier. A) Plan-
view interpretation. The background image is a DTM-derived shaded-relief map of the study area (azimuth = 315° 

and sun elevation = 45°) and the position of the glaciers has been drawn using elevation information from this 

DTM. B) Cross-section interpretation.  

A) 

B) 
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The glaciofluvial sediment did not build up to the contemporaneous sea level, and therefore, the 

glaciofluvial ridge is interpreted as a submarine ice-contact fan (Powell, 1990, Lønne, 1995). The 

morphology of the glaciofluvial ridge supports this interpretation. A submarine ice-contact fan is 

defined as a wedge of coarse-grained sediment deposited subaqeuously at the grounding line of a 

glacier (Lønne, 1995) and the internal structure of a submarine ice-contact fans consists of bottomset 

beds overlaid by steeply dipping foreset beds created by sediment gravity flows (Figure 44A). The 

steeply dipping foreset beds of the submarine ice-contact fan have been identified on the GPR 

profiles taken across the deposit. Figure 44 shows the interpreted depositional environment 

whereby the eastern side of the deposit represents the ice-contact slope. Ice-contact submarine fans 

are usually deposited due to a halt in the retreat of the glacier (Benn and Evans, 1998, Corner, 2006) 

and therefore, the identification of this landform indicates that the retreating Balsfjord glacier halted 

in the location of the present-day fjord-side fan delta.  

4.2.4 Glaciofluvial and Rock-Avalanche Complex 
 

A distinctive deposit of glaciofluvial and rock-avalanche sediment is located on the upper western 

side of the study area, immediately above the postglacial fan delta (Figure 45). Within the complex, 

the cobbly sandy gravel sediment and rock-avalanche boulders interfinger and therefore, this 

sediment will be described together. The description focuses on three different areas within the 

complex (A, B and C) and the location of the descriptions is shown in Figure 45A. 

The rock-avalanche deposit is one of the most distinctive morphogenetic elements within the study 

area. A lot of the rock-avalanche and glaciofluvial sediment is covered by a thick sub-boreal birch 

forest. Therefore, it is difficult to determine the true thickness of the deposit and mapping is 

primarily based on the surface expression. The boundaries of the rock-avalanche deposit were 

mapped during fieldwork using a hand-held GPS. Where vegetation cover is thin, rock-avalanche 

boulders were identified, and mapped using aerial photographs. Additionally, the frequency and size 

of rock-avalanche boulders was also recorded in the field. Detailed mapping of the morphology of 

the rock-avalanche deposit found that it is complex and has been altered by post depositional 

processes.  

In plan-view the rock-avalanche deposit is elongate (Figure 45). It is 1 km long and its width varies 

between 100 and 300 m. In cross section, the morphology of the rock-avalanche deposit consists of 

long elongate north-south orientated lobes and ridges (200 to 400 m long and up to 10 m high). The 

Buktelva river flows along the eastern edge of the rock-avalanche and glaciofluvial complex and a 

distinctive bend in the river that is shown in Figure 45 indicates that it could have been diverted by 

deposition of the rock-avalanche boulders. Colluvial sediment has been deposited from this bend in 

the river over the lower section of the rock-avalanche deposit (Figure 45). The front of the rock-

avalanche complex interfingers with coarse cobbly, sandy gravel sediment.  
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Figure 45: A) Detailed map of the rock-avalanche deposit (red) and glaciofluvial sediment (orange) created 
through field mapping and aerial photograph interpretation. B) Oblique aerial view photograph of the rock-
avalanche deposit taken from norgei3D (looking south west) (www.norgei3d.no). The boundaries of the rock-

avalanche and important geomorphological features have been annotated on this photograph.   

4.2.4.1 Area A: Front of rock-avalanche and glaciofluvial complex 
 

Unfortunately, the original morphology of the front section of this deposit has been destroyed by the 

construction of the E6 highway and gravel pit operations. Figure 46 shows an abandoned gravel pit, 

which has exposed a very thick accumulation of glaciofluvial sediment and rock-avalanche boulders. 

This slope represents the present-day northern-most extent of the deposit. This glaciofluvial 

sediment is composed of sub-rounded to sub-angular cobbly sandy gravel. The gravel size fraction 

has a mode of 2 cm and a maximum clast size of 15 cm (Figure 46B).  

A) 

B) 

A 
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http://www.norgei3d.no/
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Figure 46: A) Photograph of the front of the present-day glaciofluvial deposit. A lot of sediment has been removed 
during gravel pit operations and the front of the deposit now consists of a smooth, sparsely vegetated gravel 
slope. B) Photograph of the glaciofluvial sediment, which consists of sub-rounded to sub-angular cobbly sandy 
gravel. The location of the photographs is shown in Figure 46. 

The original morphology of this glaciofluvial sediment has also been investigated and mapped 

stereoscopically. Figure 47 shows the original morphology consists of three distinctive elongate 

accumulations of sediment with an approximate north-south orientation that are separated by wide 

erosional gullies. It is hypothesized the glaciofluvial sediment originally had a larger extent. However, 

following deposition, the glaciofluvial sediment has been subjected to headward erosional processes, 

which has eroded and redistributed the sediment forming the large gullies. This headward erosion 

will be discussed in more detail in section 4.2.7. The glaciofluvial sediment is graded to the marine 

limit (83 m a.s.l).  

 

Figure 47: Detailed map of the front of the glaciofluvial and rock-avalanche complex, which is located immediately 
behind the submarine ice-contact fan. The original morphology has been mapped based on stereoscopic 

interpretation of aerial photographs.  
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The front-most boulders of the rock-avalanche was deposited deposit onto this glaciofluvial 

sediment (Figure 45) and these boulders were subsequently buried by glaciofluvial and fluvial 

sedimentation. Excavation of a gravel pit within this sediment has exposed a vertical sedimentary 

section (Figure 46) and six large boulders at the front of the rock-avalanche deposit occur within this 

section. The elevation of these boulders ranges from 80 to 50 m above the present-day mean sea 

level (Figure 48 and Figure 49). 

 

Figure 48: A) Photograph of a vertical sedimentary section of glaciofluvial sediment and rock-avalanche boulders 
taken shortly after the section was exposed by gravel pit operations. Reproduced from Blikra et al. (2006). B) 
Lidar-derived shaded-relief map of the front of the rock-avalanche deposit showing the present-day morphology, 
which has been altered by anthropogenic gravel pit operations (Sun azimuth = 315° and Sun elevation = 45°) 
(https://hoydedata.no/LaserInnsyn/). The black box shows the approximate position of the photograph shown in 

(A). Orange colour = glaciofluvial material and red circles = rock-avalanche boulders.  

Unfortunately, the vertical sedimentary section has degraded over time and it is now difficult to 

observe the original sedimentary structures (Figure 49). For example, more rock-avalanche boulders 

could be observed within the sedimentary section when it was first exposed (Figure 48A) compared 

with the present-day section (Figure 48B). However, Blikra et al. (2014) documented the section 

shortly after it was exposed. They describe the sediment as large boulders with the interstitial spaces 

filled with undeformed, stratified and laminated sediments consisting of silt, sand and gravel. The 

boulders are between 4 and 7 m in length and are sub-rounded to sub-angular. Some of the front-

most rock-avalanche boulders are covered in Balanus shells, which are filled with silty sand (Figure 

50). This indicates that the shells were buried and they have been recently exposed by the 

A) 

B) 

https://hoydedata.no/LaserInnsyn/
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excavation activity (Figure 48 and Figure 49). The growth of Balanus shells indicates the front-most 

rock-avalanche boulders were deposited into the sea. One Balanus sample that was attached to a 

rock-avalanche boulder located at 51 m a.s.l was radiocarbon dated during this study (Table 7). This 

age has been added to the three previously published ages to give a reliable weighted mean age of 

10 884 ± 96 cal. yr BP (1σ) (Blikra, 1998, Blikra and Longva, 1999, Fenton et al., 2011).  

 

Figure 49: A) Photograph showing the vertical sedimentary section at the back of the gravel pit. It is composed of 
glaciofluvial sediment and rock-avalanche boulders. B and C) Photographs of large rock-avalanche boulders 
located on the slope of the gravel pit. These boulders are partially buried by glaciofluvial sediment. The location of 
the boulders is shown by the white boxes in A. The location of the photographs is shown in Figure 46. 

 

Figure 50: Balanus shells observed on one of the large rock-avalanche boulders at the front of the deposit (65 m 
a.s.l). Sand was observed within some of the Balanus shells indicating that they have been buried by sediment. 
Pencil = 14.5 cm. The location of the photograph is shown in Figure 46. 
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Table 7: Ages of material attached to the rock-avalanche boulders. All radiocarbon dates from Forwick and 
Vorren (2002) were corrected for a reservoir effect of 440 years and calibrated using the INTCAL98 database. All 
ages have been recalibrated using the MARINE13 database. 

Lab 
number 

Dated 
material 

Published 
Age (14C 
BP) 
corrected 
for 
reservoir 
effect 

Conventional 
Age (14C BP) 

Published 
calibrated 
age (cal. yr 
BP; 1σ) 

Recalibrated 
age (cal. yr 
BP; 2σ) 

Weighted 
mean 
calendar 
age (± 1σ) 
(cal. yr 
BP)* 

Reference 

T-
13805 

Mya 
truncata 

9555 ± 75 9995 ± 75 10 369 - 11 
122 

10 674 – 11 
108 

10 884 ± 96 (Forwick 
and Vorren, 
2002) 

T-
13806 

Balanus 
sp. 

9610 ± 80 10 050 ± 80 10 609 - 11 
136 

10 719 – 11 
155 

(Forwick 
and Vorren, 
2002) 

T-
13807 

Balanus 
sp. 

9615 ± 70 10 055 ± 70 10 609 - 11 
136 

10 738 – 11 
148 

(Forwick 
and Vorren, 
2002) 

Beta - 
463116 

Balanus 
sp. 

- 9930 ± 30 - 10 664 - 10 
974 

Obtained 
during this 
study 

*Weighted mean calculated using inverse variance weighting 

 

 

Figure 51: A and B) Photographs of the rock-avalanche boulders located above the gravel pit. The boulders are 
angular and chaotically distributed. C) Photograph of the terrace surface surrounding the rock-avalanche 
boulders. D) Photograph of the glaciofluvial sandy gravel. The location of the photographs is shown in Figure 46. 

There are a many rock-avalanche boulders located immediately above the gravel pit (Figure 51). 

These boulders are angular and vary in size from 50 cm to 6 m. The boulders have no preferred 

orientation and frequently occur in piles. Additionally, the surface has a ridge and furrow 

morphology whereby ridges occur in a north-south orientation and are 100 to 150 m long and 

approximately 20 m wide.  

A) B) 

C) D) 
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A few different rock-types have been identified at the front of the rock-avalanche deposit. Blikra et 

al. (2006) and Fenton et al. (2011) have identified boulders of quartz mica schist. Samples collected 

during this study have been identified as biotite gneiss and garnet biotite gneiss. Occasionally, some 

of the boulders have a jigsaw fit texture that indicates they were broken in situ. An irregular terrace 

surface with a gentle upward slope has been identified close to the marine limit on the rock-

avalanche deposit. The sediment within the terrace surface is composed of cobbly sandy gravel 

(Figure 51 C and D). 

River downcutting by the Buktelva river on the eastern boundary of the rock-avalanche deposit has 

exposed rock-avalanche boulders (Figure 52). These boulders are angular to sub-angular and 

randomly distributed. Occasionally an unusual sub-rounded boulder was observed (e.g. Figure 52A), 

which indicates the boulder has been subjected to abrasion. Exposures in the river bank show that 

the boulders have been deposited onto sorted sandy gravel. The gravel clasts are sub-angular and 

have a maximum clast size of 10 cm. Some boulders were also observed on the eastern side of the 

Buktelva river. 

 

Figure 52: A and B) Photographs of the rock-avalanche boulders located next to the Buktelva river. The location 
of the photographs is shown in Figure 46. 
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4.2.4.2 Area B: Colluvium  
 

Colluvium has been mapped through the centre of the rock-avalanche deposit (Figure 45). The 

colluvium commences at the bend in the Buktelva river shown in Figure 45 and occurs as an elongate 

band (approximately 400 m long and 150 m wide). The colluvium is characterised by an undulating 

surface morphology with common ridges and gullies (Figure 53). Some boulders are observed within 

the colluvial sediment but most of these boulders are less than 1 m long and are interpreted to be 

deposited as part of the colluvium. Occasionally large rock-avalanche boulders were observed (>1 

m). Two small streams flow through this area and the presence of colluvium is often accompanied 

with a change in vegetation, whereby the sub-boreal birch forest becomes much thicker. 

 

Figure 53: A and B) Photographs showing the colluvial sediment that is located in the middle of the rock-
avalanche complex. The photographs show the surface is undulating and can contain ridges and streams. Small 
boulders are common and large isolated rock-avalanche boulders occur sporadically. The location of the 
photographs is shown in Figure 46. 

4.2.4.3 Area C: Top of rock-avalanche deposit 
 

The upper part of the rock-avalanche deposit has a steep gradient (25°) and there is a very high 

concentration of rock-avalanche boulders (Figure 54). These boulders are angular, vary in size from 

50 cm to 10 m and are distributed chaotically. The rock-avalanche boulders frequently form 

distinctive ridges. The rock-avalanche boulders within this area are composed on gabbro and 

metagabbro. Figure 55 shows a distinctive rock-avalanche lobe that is located at the top of the rock-

avalanche deposit. This lobe is 500 m long and has a characteristic head and tail region. The front half 

A) 

B) 

Stream 

Ridge 
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of the lobe forms the head (150 m wide), whilst the back of the lobe thins to an apex point forming 

the tail. Figure 55B shows a cross section of the rock-avalanche lobe, which is approximately 10 m 

high. Colluvium has been deposited around this rock-avalanche lobe.  

 

Figure 54: A to C) Photographs of rock-avalanche boulders in the upper section of the deposit. There is a high 
concentration of boulders in this area. The boulders are randomly distributed and are often piled on top of each 
other. The location of the photographs is shown in Figure 46.   

 

Figure 55: A) Oblique aerial view looking south of the upper section of the rock-avalanche deposit from norgei3D 
(www.norgei3D.no). The morphology of the rock-avalanche deposit is annotated and a 500 m long rock-
avalanche lobe with a distinctive head and tail is shown. B) Elevation profile Z-Z’ across the rock-avalanche lobe 
showing the rock-avalanche lobe is 10 m high (location shown in A). 

  

A) 

B) C) 

A) B) 

http://www.norgei3d.no/
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4.2.4.4 Source of rock-avalanche 
 

Several different rock types have been identified within the rock-avalanche complex, which indicates 

that the boulders have been deposited by multiple rock-avalanche events. The slopes directly above 

the rock-avalanche complex are greater than 45° and belong to the Store Russetinden and 

Rakeltinden mountains. The composition of the bedrock directly above the rock-avalanche deposit is 

dominated gabbro and metagabbro (Figure 56). Therefore, the grabbro and metagabbro rock-

avalanche boulders identified in the upper section of the rock-avalanche complex probably 

originated from this gabbro bedrock and the possible rock-avalanche paths are shown in Figure 56. 

The head and tail morphology of the rock-avalanche lobe shown in Figure 55 supports this conclusion 

because it shows the flow direction of the rock-avalanche boulders and indicates that they originated 

from the tall mountains located directly above the deposit. The present-day cirque glaciers located 

above the rock-avalanche deposit could have had a larger extent during the deposition of the rock-

avalanche and therefore, the rock-avalanche could have partially travelled along the glaciers.   

 

Figure 56: Map showing the bedrock geology above the Russenes rock-avalanche. The blue arrows show the 
possible rock-avalanche paths for the gabbro and metagabbro boulders located in the upper section of the rock-
avalanche complex. The garnet biotite gneiss boulders in the bottom section of the rock-avalanche complex must 
have been partially transported by a glacier and the black arrows show the possible transport paths. This map 
has been created from the Berggrunn N50 digital dataset available from Norges Geologiske Undersøkelse (NGU, 

2015a). 

The rock-avalanche boulders located at the bottom of the rock-avalanche complex have been 

identified as garnet biotite gneiss, biotite gneiss and quartz mica schist. Therefore, these boulders 

have been sourced from the garnet biotite gneiss located in the study area (Figure 56). However, the 

bedrock geology map indicates that this rock types does not occur on the slopes immediately above 
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the rock-avalanche deposit (Figure 56). Therefore, these rock-avalanche boulders must have been 

partially transported by a glacier or glacier ice must have occupied the run-out zone of the rock-

avalanche. Figure 56 shows some hypothesised rock-avalanche trajectories and subsequent glacier 

transport paths (black arrows). Further fieldwork is required to determine the source areas, 

boundaries and relationship between the two rock-avalanche deposits. 

4.2.4.1 Interpretation 
 

The cobbly sandy gravel-dominated glaciofluvial sediment is interpreted as a glaciofluvial delta 

deposit that is graded to the marine limit. This glaciofluvial delta could have been deposited within 

two different depositional environments: (1) as an ice-contact delta that was deposited directly from 

the Balsfjord glacier; or (2) as a valley-side glaciofluvial delta. However, the interfingered nature of 

the glaciofluvial and rock-avalanche sediment can be used to differentiate these two glaciofluvial 

deltaic environments.  

The front of the rock-avalanche was deposited onto this glaciofluvial delta and subsequently partially 

buried by glaciofluvial and fluvial sediment. It has been determined that the biotite garnet gneiss 

rock-avalanche boulders have been sourced from outside the catchment area and therefore, they 

must have been transported on the Balsfjord glacier. Consequently, these rock-avalanche boulders 

would have been deposited from the melt-out of glacier ice and the geomorphology of the rock-

avalanche complex supports this interpretation. The melting of ice from the rock-avalanche debris 

following deposition can produce the following morphologies: chaotic topography, openwork 

texture, dominantly angular class with occasional glacially rounded boulders, piles of boulders and a 

lack of fine material (Hewitt, 2009) and most of these characteristics have been observed at the front 

of the rock-avalanche complex. For example, most of the rock-avalanche boulders are angular but 

occasionally rounded, abraded boulders occur, which suggests that have been deposited from a 

glacier.  

Therefore, it is likely that both the glaciofluvial sediment and rock-avalanche boulders have been 

deposited by the Balsfjord glacier as an ice-contact glaciofluvial delta (Figure 57A). This hypothesis is 

supported by the identification of the submarine ice-contact fan that is aligned with the ice-contact 

glaciofluvial delta and rock-avalanche complex (Section 4.2.3) because all this sediment could have 

been deposited simultaneously during a halt in the retreat of the Balsfjord glacier. Therefore, the 

radiocarbon dates obtained from the Balanus shells located on the front-most rock-avalanche 

boulders give a minimum age of 10 884 ± 96 cal. yr BP (1σ). 

Some of the rock-slide boulders that were deposited below the marine limit show signs of abrasion 

suggesting that they were eroded by waves and currents when they were exposed on the sea floor. 

Following the retreat of the Balsfjord glacier, the front-most rock-avalanche boulders were later 

infilled and covered by silt, sand and gravel from the progradation of a valley-side glaciofluvial and 

subsequent fluvial delta and the Balanus shells were buried (Figure 58) (Blikra et al., 2006). The 

glaciofluvial terrace that has been identified surrounding the rock-avalanche boulders immediately 

above the marine limit indicates that some sediment was transported and deposited in this area by 

fluvial processes following the deposition of the rock-avalanche.  
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Figure 57: Schematic model showing the depositional environment of the multiphase rock-avalanche and 
glaciofluvial complex. A) Interpreted depositional environment of the ice-contact glaciofluvial delta and rock-
avalanche deposit during a halt in the retreat of the Balsfjord glacier. B) Interpreted depositional model of the 
upper section of the rock-avalanche deposit that originated from the Store Russetinden or Rakeltinden mountains. 
The glacier configuration and timing of this deposit is unknown. The background image of both models is a DTM-
derived shaded-relief map of the study area (azimuth = 315° and sun elevation = 45°) and the position of the 

glaciers has been drawn using elevation information from this DTM. 

 

 

Figure 58: Reconstruction of how the front-most rock-avalanche-boulders were buried by sediment from a side 

entry fluvial delta.  

The schematic diagram presented in Figure 57 shows the multi-phase nature of the rock-avalanche 

deposit. The timing of the deposition of the upper section of the rock-avalanche complex has not 

been constrained and it is unknow whether the rock-avalanche boulders partially travelled on the 

cirque glaciers. The colluvium sediment mapped through the centre of the rock-avalanche deposit is 

interpreted to be deposited after both rock-avalanche events. Colluvium is deposited by mass 

movement processes, such as debris flows and catastrophic debris flows can be triggered by rock-

avalanches. However, they are usually triggered within the unconsolidated, water-saturated 

sediment at the front of the rock-avalanche (Evans et al., 2006). Therefore, it follows that the 

colluvium sediment located in the centre of the rock-avalanche deposit, was deposited after the 

rock-avalanche. The location of the colluvium indicates it could be been deposited due to flooding of 

the Buktelva river or from debris flows that originated on the Store Russetinden mountain. However, 

it is hypothesised that this section of the rock-avalanche deposit only contained sparse rock-

avalanche boulders because it is unlikely that the colluvium sediment could have buried the large 

rock-avalanche boulder ridges observed elsewhere within the deposit. 

  

A) B) 
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4.2.5 Eastern Glaciofluvial Delta Complex 
 

Another deposit of sandy gravel is located on the upper eastern side of the fan delta adjacent to the 

glaciolacustrine deposit (Figure 59). The morphology of this deposit is complex and results from the 

interplay between depositional processes, marine and fluvial erosional processes and anthropogenic 

activity. In plan-view, this deposit has a fan-shaped morphology with the sediment originating from 

an apex point (Figure 59). Most of the deposit is located above the marine limit and the upper 

section is characterised by a very shallow gradient (0.8°) compared with the surrounding steep slopes 

(10°) (Figure 59). Bedrock is located close to the surface in this area and the shallow gradient is 

attributed to a natural break in the bedrock slope (Figure 60). This indicates that there is only a thin 

cover of sandy gravel sediment in the upper part of this deposit.  

 

Figure 59: A) Detailed map of the glaciofluvial sediment on the eastern side of the fan delta. B) Oblique aerial 
view image (looking south) of the upper eastern side of the fan delta produced using norgei3D. The approximate 
position of the glaciofluvial sediment is shown by the orange, dashed outline. The glaciofluvial sediment has a 
complex morphology and some of the morphological features are highlighted in this image. 

A) 

B) 
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The bottom section of the glaciofluvial deposit is located below the marine limit (Figure 59) and 

therefore, this sediment was deposited below sea level. The Russedalselva river cuts steeply into the 

glaciofluvial and fluvial sediment on the western side of the deposit, which indicates that the river 

has been in this location for a long time (Figure 59 and Figure 60). There is also a steep relict gully in 

the centre of the glaciofluvial sediment (Figure 59) that will be discussed further in Section 4.2.7. The 

large extent of fluvial downcutting by both the Russedalselva river and relict gully indicates that 

there is a thick accumulation of glaciofluvial and fluvial sediment at the bottom of the deposit.  

4.2.5.1 Interpretation  
 

This deposit is interpreted as a glaciofluvial delta that was graded to the marine limit. The fan shaped 

morphology indicates that the sediment was deposited from a retreating valley glacier rather than 

from the main Balsfjord glacier (Corner, 2006, Eilertsen et al., 2006). Therefore, it is interpreted as a 

valley-side glaciofluvial delta fed by remnant valley glaciers following the deglaciation of Balsfjord. 

Although the morphology of the deposit is fan-shaped, it is interpreted as a common glaciofluvial 

delta rather than a fan delta because the subaerial component does not have an alluvial fan.  

 

Figure 60: Schematic diagrams showing the interpreted depositional environment of the valley-side glaciofluvial 
delta A) Cross-sections showing the depositional environment of the glaciofluvial and subsequently fluvial deltas. 
During the postglacial period the sediment has been altered by erosion and the deposition of colluvium and fluvial 
sediment. B) Interpretation of the depositional environment of the valley-side glaciofluvial delta deposit. The 
background image is a DTM-derived shaded-relief map of the study area (azimuth = 315° and sun elevation = 
45°) and the position of the glaciers has been drawn using elevation information from this DTM. 

A) 

B) 
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Figure 60A presents a schematic model of the depositional environment of the valley-side 

glaciofluvial delta. The model shows that delta terraces should have formed due to sea level fall, and 

recorded the progradation history of the delta. However, these terraces have not been identified 

within the deposit and it is hypothesised that they have been destroyed by fluvial depositional and 

erosional processes. Figure 60B shows that following deglaciation, progradation of the delta 

continued as fluvial sediment was delivered to the sea by the Russedalselva river. A single postglacial 

delta terrace has been preserved at 60 m a.s.l (Figure 59). 

4.2.6 Colluvium 
 

The proximity of the Russenes fjord-side fan delta to high mountains directly influences the type and 

nature of the sediment supplied to the alluvial fan component of the fan delta. The gradient of many 

of the slopes within the catchment area of fan delta ranges from 30° to 80° and over time colluvium 

has been deposited onto these slopes by mass wasting processes. Whilst colluvium has not been 

mapped on the postglacial alluvial fan, it has accumulated on the steep slopes directly above the fan 

and next to the rock-avalanche deposit during both the deglacial and postglacial periods (Figure 35) 

and Figure 61 shows that many of the slopes located above the fjord-side fan delta are covered with 

colluvium sediment. The colluvium is composed of loose, angular, unsorted, surficial sediment with a 

wide range of grainsizes and vegetation is usually spars surrounding the colluvium. Some debris flow 

deposits were also identified in the catchment area above the fan delta and consist of 

unconsolidated poorly sorted sediment (Figure 62A), which form ridges or mounds covered by thick 

vegetation (Figure 62B). 

 

Figure 61: A) Photograph of part of the catchment area of the Russenes fjord-side fan delta taken from across the 
fjord by Rowan Romeyn. B)  Panarama photograph of the Russetinden mountain taken from the middle of the 
rock-avalanche deposit. Both photographs show many of the steep slopes above the Russenes alluvial fan are 
covered with colluvium. 

A) 

B) 
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Figure 62: A) Photograph of the colluvium sediment located adjacent to the rockslide deposit. The sediment 
consists of thin deposit of loose sub-angular to sub-rounded cobbles and boulders. B) Photograph showing the 
surface morphology of colluvium sediment located immediately above the postglacial alluvial fan. The surface is 
undulating and elongate ridges or mounds often occur.  

4.2.6.1 Interpretation 
 

The loose, unconsolidated colluvium and till sediment located on the steep slopes within the 

catchment area of the Russenes fjord-side fan delta can be transported by mass movement 

processes, such as snow avalanches and debris flows (Blair and McPherson, 2009). Debris flows are 

particularly good at delivering large volumes of sediment to alluvial fans and they can be initiated 

infrequently on the slopes above the alluvial fan during periods of intense rainfall or due to rapid 

snow or ice melt (Section 2.3.1.2: Debris flows) (Galloway and Hobday, 1996, Blair and McPherson, 

2009). Numerous gullies occur along the colluvium-covered slopes above the fan delta, which form 

pathways for debris flows. Deposition of debris flows has occurred periodically above the fan delta, 

during short-lived high-energy events throughout the deglacial and postglacial periods. However, 

debris flows are not a dominate mode of sediment transport on the Russenes fjord-side fan delta.  

 

 

A) 

B) 
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4.2.7 Headward Erosion 
 

The glaciofluvial delta deposits contain large relict gullies (Figure 63). The eastern relict gully is 236 m 

long, 125 m wide, 15 to 20 m deep and this gully is currently dry (Figure 60). The western relict gully 

is 280 m long, 110 m wide at the widest point, approximately 15 m deep and this gully currently 

contains a small perennial stream (Figure 64). The top of western relict gully contains boulders from 

the rock-avalanche deposit (Figure 63). Apart from the small present-day stream within the western 

gully, there is no evidence of fluvial depositional or erosional processes above the relict gullies. For 

example, there is no geomorphological or sedimentological evidence to indicate the Russedalselva 

river once flowed through the eastern relict gully.  

 

Figure 63: A section of the Quaternary Geological map of the study area. The relict gullies (pink dashed lines) are 
shown within the red boxes.  

Erosion has removed a lot of sediment from the gullies and this sediment has been transported and 

redistributed within the postglacial fjord-side fan delta. On the western side of the fan delta the 

eroded sediment has been redeposited below the relict gully as an alluvial fan (Figure 63 and Figure 

64). The apex of this fan occurs within the relict gully and the fan widens towards the sea with a 

maximum width of 217 m at its base. Figure 64C shows the alluvial fan has an overall concave cross-

profile that contains small depressions, which are interpreted as channels created by fluvial 

processes. The sediment within the alluvial fan is composed of medium to coarse gravelly sand with 

occasional sub-rounded cobbles. 

Alluvial fan 
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Figure 64: A) Photograph of the small stream that is currently flowing through the western gully. B) Detailed map 
of the alluvial fan created using a lidar-derived shaded relief map overlayed with the Quaternary Geological Map 
produced during this study. The Lidar-derived DTM available from Statens Kartverk 
(https://hoydedata.no/LaserInnsyn/)  Contours = 1 m. C) Cross-profile G-G’ showing the elevation changes across 
the fan. The location of the profile is shown in B  

4.2.7.1 Interpretation 
 

Both relict gullies are interpreted to be produced by headward erosion, which is the process of fluvial 

erosion at the top of the gully that causes the head of the gully to erode and move backward. Gullies 

formed by headward erosion are common features of alluvial fans and they often form in the 

inactive areas of the fan (Blair and McPherson, 2009). The headward erosion could either be created 

by streams or groundwater located close to the surface. It is hypothesised that headward erosion is 

not possible within course-grained sediments (e.g. gravel). Therefore, the sediment that has been 

removed from the gullies must be easily transportable and predominately composed of fine-grained 

sediment, such as sand. The rock-avalanche boulders located at the top of the western relict gully are 

too large to be transported by headward erosional processes and the presence of these boulders 

could prohibit further headward erosion of the gully.   
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4.2.8 Raised Beach 
 

A relatively thin cover of well-sorted gravel and sand occurs along the edges of the fjord (Figure 35). 

This sediment can also contain geomorphological features, such as beach ridges and it is interpreted 

as raised beach sediment. Surficial raised beach sediment has been primarily mapped outside the 

extent of the fan delta. However, some raised beach features are preserved in the inactive parts of 

the alluvial fan. Additionally, there is a small vertical section of raised beach sediment exposed above 

the present-day beach at the top of the fan delta (Figure 65). This sediment consists of a clast-

supported conglomerate with a mode of 3 cm and the maximum clast size is 40 cm. The clasts are 

sub-rounded to rounded and have no preferred orientation. This raised beach sediment is capped by 

a thin fluvial unit.   

 

Figure 65: Photograph of a 40 cm tall vertical sedimentary section containing raised beach sediment located just 
above the present day beach.  

4.2.8.1 Interpretation 

 

Sediment within the intertidal zone of the fjord can be reworked by wave and tidal processes to 

produce well sorted beach sediment with sub-rounded to rounded clasts and the present-day beach 

sediment within the fan delta is described in Section 4.3.2.1.1. Norway has been uplifted due glacio-

isostatic uplift for most of the deglacial and postglacial periods (Section 1.2.3.2: Sea level change). 

Therefore, beach sediment has been simultaneously uplifted to form raised beach deposits and a 

relatively thin cover of beach sediment occurs along the edges of the fjord (Figure 35). Raised beach 

sediment has been primarily mapped outside the extent of the fan delta because most of the beach 

sediment deposited within the fan delta has been reworked or eroded by fluvial sediment from the 

aggrading alluvial fan. 
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4.3 Postglacial Fjord-Side Fan Delta 
 

The Russenes fjord-side fan delta has been prograding into Balsfjord throughout the postglacial 

period. The present-day morphology of the fan delta has been investigated in this study and the 

subaerial component has been included within the Quaternary Geological Map of the study area 

(Figure 35). A description of the surficial morphology of the postglacial fjord-side fan delta and the 

subsurface structure of the deltaic sediment is presented and discussed below.  

4.3.1 Subaerial Morphology 
 

The Russenes fan delta is a radial, fan-shaped accumulation of sand- and gravel-dominated sediment 

that protrudes 500 m into the fjord and has a maximum width of 1.5 km. The extent of the 

postglacial fjord-side fan delta is shown in Figure 66. This map shows that there are two different 

apex points because the fan delta is fed by two separate perennial river systems (Figure 66). The 

extent of the fjord-side fan delta is restricted on the western side due to the rock-avalanche and ice-

front accumulation complex.  

 

Figure 66: Map of the extent of the postglacial fjord-side fan delta (yellow). The stars show the location of the fan 
apexes. The rock-avalanche complex and glaciofluvial sediment located above the fan delta are also shown in the 
map. The lines A-A’ and B-B’ show the location of the profiles in Figure 67. The background information on map 
has been produced from digital data available at www.kartverket.no.   

The subaerial component of the postglacial fjord-side fan delta has a very steep gradient (3° to 10°) 

and consists of an alluvial fan that is prograding directly into the sea. Figure 67A shows a longitudinal 

profile of the postglacial fan delta from the western fan apex (100 m a.s.l) to the sea. This concave 

profile shows the maximum gradient of the subaerial alluvial fan is 10° and the fan gradient 

decreases to 3° towards the sea. The fan delta has an asymmetric cross profile (Figure 67B) because 

http://www.kartverket.no/
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there is a 10 m high scarp on the eastern side of the fan delta and the western side slopes gently into 

the sea. This indicates that the eastern side of the delta has been eroded by waves and tides, whilst 

the western and northern sides experience net sediment deposition.  

 

Figure 67: Elevation profiles of the fan delta created using the 10 m DTM available for the study area 
(www.data.kartverket.no). A) Longitudinal profile of the fan delta showing the alluvial fan steepens towards the fan 
apex. B) A transverse profile across the fan delta showing the delta has an asymmetric cross-profile with a wave 
cut escarpment on the eastern side. The location of both profiles is shown in Figure 66. VE = vertical 
exaggeration.  

The postglacial fjord-side fan delta is dominated by fluvial sediment deposited by the two perennial 

river systems. There is an overall decrease in grainsize from the fan apex towards the sea created by 

a decreasing slope gradient, which reduces the competency of the rivers (Figure 68 and Figure 74). 

The morphology and sedimentology of the present-day rivers and fluvial sediment is described 

below. 

4.3.1.1 Rivers 
 

A slope map of the catchment area is presented in Figure 68 and all the sediment deposited within 

the fan delta is locally derived from this catchment area. This map shows steep gradients (>40°) 

occur immediately above the fan delta, which causes the delta to be affected by mass movement 

processes. However, two perennial river systems within the catchment area, called the Buktelva and 

Russedalselva rivers, are the main conduits for sediment transport within the fan delta.   

A) 

B) 

http://www.data.kartverket.no/
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Figure 68: Slope map created from the 10 m DTM available for the study area overlayed on a shaded-relief map 
created from the same DTM (azimuth = 315° and elevation = 45°). This map shows that some of the slopes 
directly above fan delta have a gradient that is greater than 40°. The DTM is available at www.data.kartverket.no. 

4.3.1.1.1 Buktelva river 

 

The Buktelva river is currently the largest river supplying the fan delta and it is most active conduit 

for sediment transport. The Buktelva river is steep (Figure 69) and the catchment area is small (5.3 

km2). Two small cirque glaciers are located at the top of the catchment, between 1000 and 1200 m 

a.s.l, (Figure 68) and these glaciers are the main river source. The river has its highest discharge 

during the spring and summer melt seasons (Figure 3C).  

The upper part of the Buktelva river is downcutting through till and colluvium as the river 

equilibrates with falling sea level. Below the apex of the alluvial fan the river profile is smooth and 

has a convex shape (Figure 69). Most of the lower section of the Buktelva river is downcutting 

through existing fluvial deltaic sediment (Figure 70A) and downcutting terminates just 80 m from the 

river mouth. This creates steep scarps (0.5 to 4 m) along the edges of the present-day river, which 

exposes vertical sections of sediment. The lower section of the Buktelva river has a medium sinuosity 

(1.25) with an irregular width variation. Most of the sediment transport occurs by bedload processes 

when the river floods. Flooding occurs due to snow melt in spring and summer and during infrequent 

large storms in (Figure 71). Figure 72 shows a section of the Buktelva river in flood in August 2004. 

This flooding was a localised event that occurred due to unusual torrential rain created by a 

thunderstorm (Geoffery Corner, pers. comm.). When the river velocity decreases at the end of a 

flood, sediment within the river is deposited and a lot of fluvial sediment accumulates as midchannel 

bars and side bars along the river (Figure 70). 

http://www.data.kartverket.no/
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Figure 69: Elevation profile of the Buktelva river. The location of the profile is shown by the red line on the locality 
map. The profile starts at the sea and terminates at the Russebreen cirque glacier. An enlargement of the river 
profile through the fan delta is also shown. VE = vertical exaggeration. Profile has been created from the national 

scale DTM that is available at www.data.kartverket.no. 

 

Figure 70: A) Orthophotograph (Midt_troms_2013) of the lower section of the Buktelva river located within the fan 
delta. The active and inactive river channels and areas of fluvial downcutting are shown. B) Photograph looking 
north of the lowest section of the Buktelva river before it enters the sea. C) Photograph looking south of the 

Buktelva river below the E6 highway. Both photographs were taken on 18 September 2016. 

A) B) 

C) 

Fan apex 

E6 

http://www.data.kartverket.no/
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Figure 71: Graph showing the daily river discharge of the Lille Rostavatn river in 2006. The Lille Rostavatn river is 
located 25 km SSE of Russenes and small cirque glaciers occur within the catchment area. Therefore, the yearly 
variations in discharge shown in this graph should be similar to the rivers within the Russenes fan delta. However, 
the daily discharge values are probably much larger than that of Russenes because the catchment area of Lille 
Rostavatn (638 380 km2) is much larger than that of Russenes (20.5 km2). Data provided by the Norwegian Water 
Resources and Energy Directorate (NVE). 

 

Figure 72: A) Photograph of the Buktelva river with low water flow on 18 September 2016. B) Photograph of the 
same section of the Buktelva river in flood on 6 August 2004. Photograph by Geoffery Corner. The location of the 

photographs is shown in Figure 70. 

Sediment is temporarily stored within bars during periods of low water level, which gives the 

Buktelva river a braided character. The degree of braiding is approximately 50%, however, the 

amount of braiding increases to 65% for the final 300 m of the river and likewise, the width of this 

final section of the river also increases from 20 m to 165 m. Two different facies occur within the 

Buktelva river: (1) gravelly sand; and (2) sub-rounded cobbles and boulders. The cobbles and 

boulders are primarily equant and imbrication was sometimes observed. The overall sediment 

gainsize increases towards the fan apex and Figure 73 shows the cobbles and boulders are common 

immediately below the fan apex because the competency of the river flow is reduced by a decrease 

in slope gradient at this location (Figure 69).  
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Figure 73: A and B) Photographs of the Buktelva river fan just below the fan apex. These photographs were taken 
on 13 July 2016 and show the Buktelva river at 80 m a.s.l. The location of the photographs is shown in Figure 70. 

4.3.1.1.2 Russedalselva river 
 

The catchment area of the Russedalselva river is much larger than that of the Buktelva river (15.2 

km2; Figure 68). A 4 km long valley, called the Russedalselva valley, feeds the river. However, most 

the river water does not originate at the head of the valley and instead, it is sourced from the valley 

sides. For example, melt from a small cirque glacier located behind Store Russetinden is currently the 

main source of the Russedalselva river (Figure 68). Figure 74 shows the convex river profile of the 

Russedalselva river from the sea to the cirque glacier located behind Store Russetinden. Interestingly, 

an 800 m long section of the river located above the apex of the fan delta is aggrading, and 

therefore, the sediment being deposited within the present-day fan delta is primarily sourced from 

below this aggrading section. Above the fan apex the river is steeply downcutting through existing 

sediment and bedrock (Figure 75A) and the sediment eroded by this section of the river will be 

deposited within the fan delta system.  

A) 

B) 
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Figure 74: Elevation profile of the Russedalselva river. The location of the profile is shown by the red line in the 
locality map. The profile starts at the sea and terminates at the small cirque glacier located behind Store 
Russetinden. This glacier is the main source of the present-day river. An enlargement of the river profile through 
the fan delta is also shown. VE = vertical exaggeration. Profile has been created from the national scale DTM that 
is available at www.data.kartverket.no 

 

Figure 75: A) Orthophotograph (Midt_troms_2013) of the lower section of the Russedalselva river. The active and 
inactive river channels and areas of fluvial downcutting are shown. B and C) photographs taken at different 
locations along the Russedalselva river. The photographs were taken on 19 September 2016. 

A) 

B) 

C) 
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The character of the lower section of the Russedalselva river has similarities and differences with 

that of the Buktelva river. Figure 75 shows immediately after the fan apex the river is downcutting, 

which creates a very high erosional scarp. Below the fan apex the river channel has a medium 

sinuosity (1.07) and one main active channel. Sediment transport processes are similar to that of the 

Buktelva river with transport occurring through bedload processes during flooding. Thick vegetation 

occurs along the banks of the river, which indicates that the Russedalselva is more stable than the 

Buktelva river. Sidebars commonly occur whilst midchannel bars are rare (Figure 75) and the degree 

of braiding is 30%. The width of the river varies from 10 m to 40 m. The bars contain two different 

facies composed of: (1) well sorted medium sand; and (2) sub-rounded cobbles. The cobbles are 

often oblate and preferably orientated and dip in the upstream direction (Figure 75B). The grainsize 

mode increases towards the fan apex. Bifurcation of the Russedalselva river occurs in the final 300 m 

whereby the river splits into numerous channels.  

4.3.1.2 Raised fluvial sediment 
 

The surficial fluvial sediment located above the present-day rivers gently dips towards the south and 

has a mound and furrow morphology (Figure 76). The mounds are primarily orientated in a north-

south direction and approximately 6 m long and 1.5 m wide. A detailed Lidar-derived DTM is 

available over the E6 Highway and this data provides detailed information about the morphology of 

the fluvial sediment (Figure 77). 

 

Figure 76: A and B) Photographs showing the surface morphology of some of the fluvial sediment within the study 
area. The surface of the fluvial sediment often contains elongate ridges or a mound and furrow morphology. 

Photo A was taken on 16 September 2016 and photo B was taken on 14 July 2016 (location shown in Figure 77). 

A) 

B) 
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Figure 77: A) Locality map. B) Vertical cross-section of the fan delta (Y-Y’) produced from the lidar-derived DTM 
data with a 0.5 m resolution. This cross-section shows the changes in elevation across the alluvial fan, which 
correspond to distinct morphological features. C) Lidar-derived shaded-relief map (0.5 m resolution) showing that 
fluvial sediment next to the Russedalselva river is characterised by elongate ridges and furrows. Erosional scarps 
also occur where the river has cut down through the fluvial sediment. The lidar data is available from Statens 
Kartverk (https://hoydedata.no/LaserInnsyn/). 

A) 

B) 

C) 

https://hoydedata.no/LaserInnsyn/
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Downcutting along the Buktelva river has exposed thick (1 – 2.5 m high) sections of fluvial sediment 

along the edges of the river (Figure 78). Figure 78C shows a graphical log of one of the vertical 

sediment exposures. Two different units have been identified within the log. Unit 1 is 40 cm thick 

and it is dominated by sand. This unit has discontinuous horizontal laminations and lenses of coarse 

sand and silt. Imbricated gravel clasts occur at the base of the unit.The boundary between Unit 1 and 

2 is erosional. Unit 2 mainly consists of cobbly sandy gravel. The clasts are sub-rounded to rounded 

and some of the clasts have an oblate shape. Many of the cobble sized clasts are imbricated and dip 

in the upstream direction. The grainsize mode is 1 cm and maximum clasts size is 6 cm. Both of the 

units logged are interpreted as fluvial sediment. Unit 1 is interpreted to be deposited as part of the 

finer grained component of the fluvial system, whist Unit 2 represents the dominate sediment-type 

deposited by the Buktelva river.  

 

Figure 78: A) Photograph of a thick accumulation of fluvial sediment that has been exposed along the Buktelva 
river. B and C) Photograph and graphical log of fluvial sediment exposed by the downcutting Buketlva river. Two 
different depositional units have been logged. Location shown in Figure 77A. Photographs taken on 18 

September 2016.  

A) 

B) C) 
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Fluvial sediment is also exposed in the banks of the Russedalselva river, however, the banks are a lot 

lower than the banks of the Buktelva river. Figure 79 shows a small vertical sedimentary section 

located on one of the river banks. This section contains 55 cm of gravelly cobbles that are rounded 

and have an oblate shape. This cobble unit is capped by 15 cm of well sorted medium sand, which 

was massive to finely laminated.   

  

Figure 79: Photograph of a 70 cm high river bank located on the Russedalselva river. The bottom section of the 
river bank is dominated by cobbles and the top 15 cm consits of well sorted medium sand. Photograph taken on 
19 September 2016 (location shown in Figure 77). 

4.3.1.2.1 Fluvial terraces 
 

Rivers within northern Norway adjust to the gradually falling base sea level by downcutting through 

existing sediments (Corner, 2006, Eilertsen et al., 2006). River downcutting often creates fluvial 

terraces as steps down to the present-day river level. Therefore, the highest terrace is usually the 

oldest. Fluvial terraces are not commonly observed within the Russenes fan delta, however, they 

have been recorded in a few locations. For example, a series of fluvial terraces occur on the eastern 

side of the Russedalselva river, immediately below the eastern fan apex (Figure 80) and these 

terraces record the downcutting history in the upper section of the fan delta. The fluvial terraces 

identified within the study area often have an uneven surface created by the presence of ridges or 

mounds.   

One prominent, isolated, fluvial terrace occurs below the E6 highway. This terrace is located at 36 m 

a.s.l in the centre of the alluvial fan and the terrace surface is 205 m long and 125 m wide at its 

widest point. The terrace narrows and gently dips towards the south. This terrace surface represents 

the oldest fluvial sediment deposited below the E6 highway and the sediment could have been 

deposited by either river or a combination of both rivers. The terrace is bound by a 3 m erosional 

scarp on the western side and a 10 m erosional scarp on the eastern side. This terrace separates the 

present-day surficial alluvial fans from the Buktelva and Russedalselva rivers. 

4.3.1.2.2 Interpretation 
 

The subaerial component of the Russenes fan delta consists of a streamflow-dominated alluvial fan. 

The alluvial fan has been formed by the aggradation of fluvial sediment as two perennial river 

channels undergo periods of channel infilling and avulsion. Therefore, both present-day rivers can be 

used as a modern analogue for the deposition of fluvial sediment located elsewhere in the alluvial 

fan. The mound and furrow morphology commonly observed on the surface of the alluvial fan is 

interpreted to be abandoned fluvial midchannel and side bars, which are very common within the 

present-day rivers (Figure 81). These mounds are composed of cobbly sandy gravel and have been 

abandoned on the surface of the alluvial fan during the channel infilling and avulsion process. The 
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well-sorted medium sand observed within the vertical sedimentary sections is interpreted to have 

been deposited during sheetflooding of the river following intense rainfall events. Fluvial and deltaic 

terraces are uncommon on the surface of the alluvial fan because they are destroyed by fluvial 

aggradational and erosional processes. 

 

Figure 80: A) Lidar-derived shaded relief map of the fluvial sediment below the eastern fan apex overlaied by the 
Quaternary Geological map. The lidar data is avalaible from Statens Kartverk 
(https://hoydedata.no/LaserInnsyn/). B) Elevation profile I-I’ showing the fluvial terraces located beneath the 
eastern fan apex.  

 

Figure 81: A) and B) Photographs of fluvial bars located in the present-day Buktelva river. These bars primarily 
consist of sub-rounded cobbles and boulders. The photographs were taken on 18 September 2016 (location 
shown in Figure 77). 
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4.3.2 Subaqueous Morphology 
 

The modern delta has three major environments: (1) the intertidal to subtidal delta platform; (2) the 

subaqueous steeply dipping delta slope; and (3) subaqueous gently dipping prodelta area (Figure 82). 

The delta rim is a sharp boundary between the delta platform and the delta slope that is located 2 m 

below mean sea level. The delta platform was studied in the field at low tide, whilst the delta slope 

and prodelta have been investigated using a multibeam bathymetry dataset (Corner and Eilertsen, 

2013). The modern delta is an analogue for the older deltaic sediment within the study area and the 

morphology can be related to the tripartite structure of Gilbert-type deltas whereby the bottomset 

sediment is deposited in the prodelta, foreset beds are deposited on the delta slope and topset beds 

are deposited on the delta platform.  

 

Figure 82: A) Locality map. B) Morphogenic profile of the modern Russenes fjord-side fan delta. The elevation 
data has been obtained from two sources: the subaerial data is from the national-scale 10 m DTM 
(www.data.kartverket.no) and the subaqueous data is from the multibeam bathymetry dataset (Corner and 
Eilertsen, 2013). The data has been corrected to the lowest astronomical tide map datum. The different delta 
morphogenic features are annotated and the mean high and low water spring tidal levels are shown (MHWS and 
MLWS). 

4.3.2.1 Delta platform 
 

The delta platform is the gently sloping intertidal region of the fan delta located between the mean 

high water spring (MHWS) tidal level and the delta rim, which occurs just below the mean low water 

spring (MLWS) tidal level. Therefore, most of the delta platform is exposed at low tide. The delta 

platform is located where the rivers discharge into the sea and therefore, it occurs at the interface 

between the terrestrial and marine environments and the morphology of the delta platform records 

subtle changes in environmental conditions. The delta platform unconformably overlies delta slope 

sediment.  

The Russenes fan delta has an extensive flat lying delta platform that protrudes into the fjord. The 

delta platform has been included on the Quaternary Geology Map of the study area because the 

morphology and sedimentology of the delta platform could be studied at low tide (Figure 83). The 

A) 

B) 

http://www.data.kartverket.no/
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plan-view width of the delta platform varies from 90 m on the east side of the delta to 260 m where 

the Buktelva river discharges into the fjord. The geomorphology of the delta platform is variable and 

results from the complex interplay between fluvial, wave and tidal processes. Consequently, the 

delta platform can be divided into two major zones based on morphogenetic criteria: the fluvial-

dominated zone and the wave- and tide-dominated zone.  

4.3.2.1.1 Wave- and tide-dominated zone 
 

The wave- and tide-dominated zone of the delta platform has a very distinctive beach morphogenic 

element, which occurs almost continuously along the top of the delta platform (Figure 83). The upper 

limit of the beach is defined by the highest lying high-tide mark (formed during spring tide) and the 

lower limit is defined by a decrease in gradient that is usually accompanied by a decrease in 

sediment grainsize (Figure 84). In some places, the lower boundary can be hard to determine 

because there is a gradational change at the bottom of the beach. The position of the beach facies 

can be identified using the aerial photographs and it has been mapped along the top of the entire 

delta platform except for directly in front of river discharge channels. The beach morphogenic 

element has distinctive geomorphological features, such as beach ridges and high tide seaweed 

marks. The morphology of this element provides information about the depositional and erosional 

regime along the delta platform and variations in the beach morphogenic element are described in 

detail below.  

 

Figure 83: Detailed map of the front-most section of the fan delta. The extent of the delta platform is shown by the 
red outline. The beach and fluvial dominated delta platform units are distinctive geomorphological elements that 
occur within the delta platform. Letters A to D correspond the location of the descriptions given below. 
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Figure 84: Photograph of a beach exposed at low tide on the western side of the Russenes delta platform. The 
upper and lower morphogenic boundaries and geomorphic features, such as high tide marks, have been 
annotated on the photograph.  

Beach Area A 

Area A has a wide delta platform, which can be attributed to the deposition of sediment from fluvial 

discharge of the nearby Buktelva river (Figure 85). The beach sediment in Area A is mainly composed 

of well-sorted sandy gravel with a grainsize mode of 2 cm. There is a distinct change in the gradient 

between the beach sediment and the flat lying delta platform below (Figure 86), which is also 

accompanied by a change in grainsize whereby sandy gravel dominates the beach element and the 

delta platform is predominately composed of well-sorted sand.  

 

Figure 85: Detailed map of the delta platform surrounding Area A showing that the platform is dominated by fluvial 
discharge from the Buktelva river, however, a large continuous present-day beach element occurs at the top of 
the delta platform.  
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Figure 86: A and B) Photographs of some of the beaches in Area A. Distinct changes in the gradient and 
sediment grainsize distinguishes the beach sediment from the rest of the delta platform. Photographs taken in 
July and September 2016.  

 

Figure 87: A) Photograph of one of the beaches in Area A. A gravel berm occurs at the top of the beach and 
below the berm there is a coarsening downwards grainsize trend. B, C and D) Photographs of the sediment 
located at different places on the beach (position shown in A). Photographs taken on 20 September 2016. 
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Figure 87 shows the variations in grainsize at one of the beaches in Area A. This beach is unusual 

because the sediment fines landwards whilst most beaches in the fan delta fine seawards. The 

sediment at the base of the beach is composed of gravel with a grainsize mode of 3 cm and a 

maximum grainsize of 6 cm. The clasts are sub-rounded to rounded and well sorted (Figure 87D). The 

sediment near the top of the beach is a gravelly sand (Figure 87C). The gravel fraction has a grainsize 

mode of 1 cm and a maximum clast size of 4 cm. The gravel clasts are sub-rounded and often have an 

oblate shape. A gravel berm occurs at the top of the beach (Figure 87B). The berm consists of an 

elongate mound composed of well sorted, sub-rounded, oblate clasts with a grainsize mode of 2 cm 

and maximum grainsize of 7 cm.  

Area A has both constructive and destructive beaches. A 1 m high terrace occurs behind the beach 

on the eastern side of Area A, which indicates that the area has been subjected to erosion (Figure 

86A). Large sub-rounded cobbles occur on the beach below the terrace. These cobbles have a mode 

of 7 cm and a maximum grainsize of 30 cm and are interpreted to be sourced from erosion of the 

terrace. However, the beach element widens towards the west indicating that the western part of 

the beach is constructive and it is possible that longshore drift processes occur, transporting 

sediment in a westerly direction. 

Beach Area B 

This part of the delta platform is located at the front of the fan (Figure 88). The delta platform 

becomes wider in this area and the beach element is further characterised by a thicker and wider 

accumulation of sediment. There are no erosional terraces along Beach Area B and the backshore 

consists of a large flat lying grassy plain (Figure 89).  

 

Figure 88: Detailed map of the beach morphogenic element located at the front of the fan delta (Beach Area B). 
This area has thick accumulations of beach sediment and the beach element is interrupted by fluvial discharge 
channels. Lagoonal features occur within the red boxes.  
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A prominent beach face has been built up by the deposition of a large amount of sediment. The 

beach face is steeper than elsewhere in the delta platform, which indicates that this area currently 

receives a net accumulation of sediment. The sediment consists of well-sorted sandy gravel with a 

grainsize mode of 1 cm and a maximum grainsize of 3 cm. No boulders are observed in this area and 

the sediment becomes finer towards the bottom of the beach. Figure 89 shows seaweed commonly 

marks different high tide levels. The beach element in Area B is interrupted by channels that occur 

where fluvial material from the Russedalselva river discharges into the fjord. 

 

Figure 89: A and B) Photographs of beaches located in Area B. Both beaches have a flatly lying grassy 
backshore, steep beach face and multiple seaweed high tide marks. Location of the photographs is shown in 
Figure 88.  

A few standing bodies of water have been identified in the backshore area behind the present-day 

beach sediment in Area B (Figure 88). These standing bodies of water are interpreted to be small, 

enclosed lagoons whereby the water is separated from the sea by the build-up of beach sediment 

forming a beach ridge. Beach ridges are common in coastal environments and consist of elongate 

ridges of unconsolidated sand and gravel that are formed by wave and tidal processes (Van Heteren, 

2014). Figure 90 shows one of these lagoonal features and a beach ridge is clearly visible at the front 

of the lagoon, which prevents the regular transfer of water from the lagoon to the sea. This beach 

ridge is composed of well-sorted, sub-rounded, sandy gravel with a grainsize mode of 2 cm and 

maximum grainsize of 4 cm. All the clasts have an oblate shape and the sediment forms an elongate 

ridge.  

 

Figure 90: Photograph of one of the lagoons located within the study area (location shown in Figure 88). The 
water within the lagoon has been blocked by the beach ridge shown in the photograph.   

A) B) 

Channel discharge 

Lagoon 
Beach ridge 

Tidal marks 



 

Page 92 of 164 

Beach Area C 

Beach Area C contains two prominent 6 to 10 m high erosional scarps with very steep gradients 

(approximately 40°). These scarps are located along the back of the beach (Figure 92). A shore notch 

has been mapped within one of the erosional scarps. The steep slopes are covered with vegetation, 

however, some sub-rounded cobbles between 10 to 20 cm long were observed on the slope, which 

indicates the sediment within the erosional scarp is very coarse. These high terraces gives the fan 

delta an asymmetric profile (Figure 67) and they are the result of net sediment erosion by wave and 

tidal processes. 

 

Figure 91: Detailed map of the beach morphogenic element located on the eastern side of the fan delta.  

Large boulders and cobbles are often observed at the base of the erosional scarp and this sediment 

appears to have been eroded and deposited directly from the scarp. This provides further evidence 

that the sediment within the erosional scarp is very coarse. Occasionally, the boulders and cobbles 

occur as a 4 to 5 m long beach ridge at the top of the beach, directly beneath the erosional scarp 

(Figure 92). These boulders are sub-rounded, show a preferential orientation and have a mode of 25 

cm and a maximum clast size of 35 cm. A well-sorted gravel with a mode of 1 cm occurs beneath the 

beach ridges.  

It is difficult to determine the lower beach boundary in this area because there is a gradational 

decrease in grainsize between the bottom of the beach sediment and the start of the delta platform. 

The steep erosional scarps terminate at the end of Area C and large boulders are not observed to the 

north of the erosional scarps. Additionally, a few groundwater seeps or springs were observed along 

the beach in both Area C and D. These seeps occur as small areas of flowing water on the beach that 
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do not have an obvious source or identifiable channels. The beach gravel and cobbles located in the 

path of the groundwater springs are sometimes stained red.  

 

Figure 92: A) Photograph the eastern side of the Russenes fan delta taken from across the fjord by Rowan 
Romeyn. The steep scarp and terraces located directly behind Beach Area C are clearly visible. B) Photograph of 
high erosional scarp located immediately behind the beach in Area C (location given in Figure 91). A line of 
cobbles and boulders is observed at the base of the erosional slope forming a 4 m long beach ridge. 

Beach Area D 

The beach element in Area D has a very distinctive profile with a flat grassy backshore region and a 

prominent boulder beach ridge located in the middle of the beach. This ridge is elongate, semi-

continuous and approximately 3.5 m wide (Figure 93). The beach ridge is composed of cobbles and 

boulders with a grainsize mode of 50 cm and a maximum grainsize of 135 cm. The boulders are sub-

rounded to sub-angular and show imbrication. The beach ridge does not have a matrix. The thickness 

and height of the beach ridge varies and the maximum height is 80 cm. The gradient of the beach is 

steepest at the beach ridge. The mean high tide level is located at the top of the beach ridge.  

The backshore consists of a flat grassy area located directly behind the beach ridge. This grassy area 

is sometimes boggy and contains occasional boulders and seaweed marking the storm high tide level. 

Some of the boulders show evidence of frost shattering. The sediment in front of the beach ridge is 

well sorted and has a bimodal grainsize distribution. It is composed of: (1) coarse to very coarse sand; 

and (2) gravel and cobbles with a grainsize mode between 1.5 and 3 cm and a maximum clast size of 

12 cm. There is a decrease in grainsize from the top of the beach towards the sea as well as some 

variations in the gravel and cobble size fraction along the beach.  

Beach ridge 

A) 

Terraces 

Beach Area C 

Terrace 
B) 

Shore notch 



 

Page 94 of 164 

Area D is undergoing net sediment erosion and therefore, the cobbles and boulders located on the 

beach could be representative of the sediment that have been eroded from the fan delta. For 

example, the large boulders that occur along this section of the beach could indicate that very course 

sediment was deposited in this part of the fan before net erosion commenced. However, the 

distribution and morphology of the boulder beach ridge suggests that the boulders have been 

deposited by sea ice, which forms in the fjord during winter. Similar boulder beach ridges deposited 

by sea-ice-pushed boulders have been recorded in on the Kola Peninsula in northwest Russia (Møller 

et al., 2002). 

 

Figure 93: A) Photograph of the beach on the south-eastern part of the delta platform (Area D). This beach has a 
very distinctive morphology with a large semi-continuous bouldery beach ridge and a flat grassy backshore area. 
B) Photograph of a bouldery beach ridge that is 100 cm high. Spade = 75 cm. The location of the photos is shown 

in Figure 91. 
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4.3.2.1.2 Fluvially-dominated zone 
 

There are a few areas on the delta platform where fluvial processes dominate over wave and tidal 

processes. These areas can be recognised on aerial photographs by the presence of channels 

traversing across the delta platform and are defined as the fluvial dominated zone on the Quaternary 

Geology Map (Figure 83). This morphological element predominately occurs where the Buktelva and 

Russedalselva rivers discharge into the fjord.  

 
 

Figure 94: Detailed map of the fluvial dominated zone of the delta platform located at the top of the fan delta 
where the Russedalselva river discharges into the sea.  

 
A 100 m wide delta platform is exposed at low tide where the Russedalselva river discharges into the 

fjord and this part of the delta platform is traversed by fluvial channels ( 

Figure 94 and Figure 95). Sediment within the channels is composed of well-sorted, sub-rounded 

gravel with a grainsize mode of 3 cm (Figure 96). The bars commonly have an elongate rhombohedral 

shape and a bimodal grainsize distribution of well-sorted medium sand and coarse gravel. The gravel 

is usually preferentially located at the top or along the edges of the bars and there is often a 

decrease in grainsize down the bar. There is also a general decrease in grainsize from the top of the 

fluvially dominated delta platform where the grainsize mode is 7 cm to the edge of the delta 

platform where sand becomes more abundant and ripple marks were observed on some bars. Gravel 

is observed within the channels at the edge of the delta platform (Figure 96). 
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Figure 95: A and B) Photographs of the fluvial dominated delta platform located in front of the Russedalselva 
river. The photographs were taken at low tide on 20 September 2016 and show a distinctive channel and bar 
morphology. The closest bars are outlined in white and the location of the photographs is given in Figure 94. 

 

 

Figure 96: A and B) Photographs of a channel located near the delta lip that were taken on 20 September 2016. 
The sediment within the channel consists of well-sorted gravel whilst the bar next to the channel is dominated by 

gravelly sand. The location of the photographs is given in Figure 94. 

Four orthophotographs of the study area are available from www.norgeibilder.no and these 

photographs have been taken over a 10 year period from 2003 to 2013 (Section 3.1.1). Figure 97A to 

D shows how the channel and bar morphology of the fluvial dominated delta platform has changed 

A) 

B) 

A) B) 

http://www.norgeibilder.no/
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over time. It should be noted that the resolution of the photographs is not constant and therefore, in 

some cases it can be difficult to distinguish all of the channels and bars. Nonetheless, the channels 

that could be distinguished have been digitised on each orthophotograph and these digitized 

channels are displayed together in Figure 97E. This shows the position of the channels has been very 

dynamic over the last 10 years.  

 

Figure 97: A to D) A series of orthophotographs over the fluvial dominated delta platform in front of the 
Russedalselva river mouth. The orthophotographs have been acquired over a 10 year period and show changes 
in the distribution of channels and bars on the delta platform over time. Details about the orthophotographs, 
including resolution, can be found in Section 3.1.1. E) The channels observed in the orthophotographs shown in A 

to D have been digitised and are displayed together to show the changes in the position of channels over time. 
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Where the Buktelva river discharges into the fjord the fluvial dominated delta platform has its widest 

extent with a width of approximately 230 m (Figure 98). This extensive delta platform occurs due to 

the large accumulation of sediment at the mouth of the Buktelva river, which indicates that this river 

is currently very active in transporting sediment. This part the delta platform is also traversed by 

channels and bars that are exposed at low tide (Figure 99).   

 

Figure 98: Detailed map of the fluvial dominated zone of the delta platform located where the Buktelva river 
enters the fjord.  

 

Figure 99: A) Panorama photograph of the fluvial-dominated delta platform where the Buktelva river discharges 
into the sea, showing the distinctive channel and bar morphology. The closest bars are outlines in white. The 
photograph was taken during a rising tide on 18 September 2016 and therefore, the full extent of the delta 
platform is not shown. 

The sediment grainsize decreases away from the river mouth. The bars located on the upper delta 

platform are high (approximately 30 cm) and elongate in the direction of channel flow (Figure 99). 

The bars are composed of bimodal sediment that consists of wel- sorted coarse gravel with a 

grainsize mode of 5 cm (70%) and medium to coarse sand (30%) (Figure 100).  
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Figure 100: A and B) Photographs of bars located in the upper section of the fluvial-dominated delta platform. 
Both bars are elongate in the direction of flow. The bar shown in (A) is most proximal to the river mouth and has a 
larger grainsize than that of the bar shown in (B). The location of the photographs is given in Figure 98 and they 
were taken on 18 September 2016. 

There is a significant decrease in grainsize away from the river mouth. On the lower part of the 

fluvial-dominated area of the delta platform, the channels are dominated by gravel and the bars are 

predominately composed of medium to fine sand with occasional gravel (Figure 101). The finer 

grainsizes of silt and clay are also observed. The sandy bars of the lower delta platform are much 

larger and shallower than the gravelly bars of the upper platform and contain abundant ripple marks 

and bioturbation (Figure 101). The ripple marks have a wavelength of 4 cm, are slightly asymmetric 

with occasional branching. 

 

Figure 101:  A) and B) Photographs of ripple marks on the sand-dominated bars of the lower fluvial-dominated 
delta platform beneath the Buktelva river mouth.  

 

A) 

B) 

A) B) 



 

Page 100 of 164 

The intertidal delta platform component of the Russenes fjord-side fan delta has a complex 

morphology. The wave- and tide-dominated zone has a distinctive beach morphogenic element, 

whilst the fluvial-dominated zone is traversed by a dendritic network of channels. The morphological 

and sedimentological analysis of the delta platform presented above indicates that some sections of 

the present-day delta platform are constructive due to the net deposition of sediment, whilst other 

sections are destructive due to net erosion, which results in the formation of erosional scarps at the 

back of the beach. Figure 102 shows the areas of the present-day delta platform that are 

constructive and destructive. The constructive areas occur under two conditions: (1) where sediment 

derived from the river mouths is being deposited by fluvial processes; and (2) through redistribution 

of sediment along the delta platform by wave and tidal processes. 

 

Figure 102: Map of the top of the Russenes fjord-side fan delta showing the present-day constructive and 
descructive areas of the delta platform. Some associated morphogenic elements are shown. Base map = 
Orthophotograph Midt_Troms_2013. 

4.3.2.2 Delta slope 
 

The morphology of the present-day subaqueous component of the Russenes fjord-side fan delta has 

been investigated using a multibeam bathymetry dataset collected beneath the Russenes and 

Nordkjosbotn deltas (Section 3.2) (Corner and Eilertsen, 2013). A shaded-relief map of this dataset is 

presented in Figure 103 and this map shows the fjord is very shallow beneath both deltas with a 

maximum water depth of 14 m. The delta rim is located at the intersection of the delta platform and 

the delta slope and it is located 2 m below the mean sea level. The radius of the delta rim was 

observed directly at low tide to be 1 to 2 metres wide (Corner and Eilertsen, 2013).  

The multibeam bathymetry map shows the Nordkjosbotn delta has a steep and featureless delta 

slope, whilst the morphology of the Russenes fan delta slope is more variable (Figure 103). Figure 

104 shows that the gradient of the slope surrounding the fan delta is highly variable. The steepest 

slopes are located directly in front of the present-day fluvial discharge channels, with maximum 

slope gradients between 30 and 40 degrees. In contrast, the delta slope is shallow (less than 20 

degrees) on the eastern-most and western-most sides of the fan delta (Figure 104). The gradient of 
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the delta slope is the steepest directly in front of the present-day river mouths because these are the 

areas that are actively prograding. Additionally, Figure 105 shows small bulges in the slope at the 

sites of fluvial discharge indicating there is a lot of sediment on the slope at these locations. In 

contrast, the gradient of the delta slope is shallower away from the sites of active delta progradation 

because wave and tidal processes have eroded and redistributed the sediment on the delta slope. 

 

Figure 103: A) Orthophotograph Midt_troms_2013 overlaid by a shaded-relief multibeam bathymetry map of the 
subaqueous component of the fan delta (azimuth = 315° and elevation = 45°). Data collected by Corner and 

Eilertsen (2013). Bathymetry map datum = lowest astronomical tide. 

4.3.2.3 Prodelta 
 

The prodelta is defined by a shallow gradient (3-4°) and it is usually composed of mud. It is difficult to 

differentiate the end of the delta slope and subsequent commencement of the prodelta from 

bathymetric data alone. The prodelta and fjord beyond is generally between 10 and 14 m deep. The 

distal prodelta and fjord-bottom sediments interfinger. The shallow water depths provide a limited 

accommodation space for the accumulation of sediments, which will result in the rapid forward 

progradation of both deltas. 

The multibeam bathymetry shows some interesting features within the prodelta and fjord area 

beyond the delta. Two elevated mounds have been identified on the sea floor (bathymetric highs) 

(Figure 103). One is located directly in front of the Russenes fan delta and the other is located on the 

western side of the fan delta. Both mounds have minimum depth of -8 m l.a.t. The protrusion of the 

Russenes fan delta 500 m into the fjord and accompanying bathymetric high beneath the delta 

creates two separate basins around the fan delta (Figure 103) and the circulation of deep water 

between these basins may be restricted by the bathymetric high. These elevated mounds on the 

fjord floor could be caused by the presence of bedrock directly beneath the fjord sediments or they 
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could be further deglacial ice-contact landforms deposited during the halt in the Balsfjord glacier 

(Section 4.2.3 and 4.2.4). 

 

Figure 104: Slope map of the sea floor created from the multibeam bathymetry data (Corner and Eilertsen, 2013). 
The steepest slopes along the front of the Russenes fan delta are highlighted by the red circles and are located at 
the site of present-day fluvial discharge, whilst the areas with the shallowest delta slope are shown by the blue 
circles. 

Figure 105 shows a number of small mounds (20 m wide) that occur on the northern side of the 

fjord, which are interpreted as rockslide debris because the mountain located immediately above the 

debris contains a lot of evidence of mass movement processes (Sletten et al., 2006). There are also a 

number of small circular depressions observed within the sediment in the deeper parts of the fjord, 

below a depth of 10 m l.a.t. Figure 105 shows a section across one of these depressions, which is 

very shallow (approximately 2 cm deep and 6 m wide) and they are interpreted as pockmarks that 

were formed during dewatering of the sediment.  

 

Figure 105: Enlargement of the multibeam bathymetric map at the front of the Russenes fjord-side fan delta. 

Some of the morphogenic features are highlighted. Data collected by Corner and Eilertsen (2013)  
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4.3.2.4 Summary 
 

The postglacial Russenes fjord-side fan delta has two distinctive subaerial and subaqueous 

environments: (1) a subaerial alluvial fan; and (2) a subaqueous delta. The alluvial fan consists of a 

steep fan shape accumulation of alluvial sediment (3° to 10°) that has two apex points. The western 

fan apex is located at 100 m a.s.l and it is fed by the Buktelva river and the eastern fan apex is 

located at 65 m a.s.l and it is fed by the Russedalselva river. Both rivers have a braided character and 

sediment transport occurs by bedload processes during flooding. Sediment can be transported from 

the fan apex to the subaqueous component of the fan delta or it can be stored within the alluvial fan.  

Below the subaerial alluvial fan, the modern delta has three major environments: (1) the intertidal 

delta platform, (2) the subaqueous delta slope; and (3) prodelta. The delta platform is the gently 

sloping intertidal region of the fan delta, which occurs at the interface between the terrestrial and 

marine environments and it is formed where the rivers discharge their sediment load into the sea. 

The delta platform is divided into two major zones due to the variations in the amount of fluvial, 

wave and tidal processes: (1) the wave- and tide-dominated zone; and (2) the fluvial dominated 

zone. The delta platform is generally constructive within the fluvial dominated zone and destructive 

within the wave- and tide-dominated zone. The delta rim is located 2 m below mean sea level and it 

has a radius of 1 to 2 m. The delta slope is steepest directly in front of the river mouths where it has 

a maximum gradient of 40 degrees. The delta slope has a concave-upward parabolic, longitudinal 

profile that decreases towards the prodelta region. The prodelta has a shallow gradient (3° to 2°) and 

occurs between a depth of 10 and 14 m. Consequently, the fan delta has a very shallow marine 

accommodation space.  
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4.3.3 Deltaic Subsurface Sediments 
 

The subsurface of the Russenes fjord-side fan delta is composed of deltaic sediment that has been 

deposited into Balsfjord under a forced regressive depositional regime created by a falling sea level. 

Investigation of the delta subsurface indicates that the fan delta has a Gilbert-type tripartite 

structure consisting of bottomsets, foreset and topsets beds (Figure 19). This structure produces a 

coarsening-upward sedimentary succession and the present-day delta morphology can be used as an 

analogue for the depositional environment of the older deltaic subsurface sediment.  

4.3.3.1 Facies Architecture 
 

Three deltaic depositional units (bottomsets, foresets and topsets) have been identified beneath the 

subsurface of the Russenes fjord-side fan delta through the interpretation of exposed vertical 

sedimentary sections and the collection and interpretation of a few ground penetrating radar (GPR) 

profiles. The key characteristics that were used to identify and define the different deltaic units are 

presented below. 

4.3.3.1.1 GPR profiles 
 

The bottomset, foreset and topset facies architecture of the Gilbert-type delta is recognised by 

specific reflection characteristics and configurations within the GPR profiles. The GPR reflection 

character of each unit is shown in Figure 106.  

 

Figure 106: A ground penentrating radar profile collected in the study area showing the GPR facies architecture of 
topset (green), foreset (blue and orange) and possible bottomset (yellow) reflections.  

Bottomset reflections 

Bottomset reflections consist of gently dipping parallel continuous to discontinuous reflections 

located below foreset reflections. It can be difficult to recognised bottomset reflections because they 

are often located 5 to 10 m below the surface and the GPR signal is attenuated with depth. 

Therefore, the bottomset reflections usually have a low amplitude and low frequency, which often 

makes the identification uncertain. 

 

 



 

Page 105 of 164 

Foreset reflections 

Foreset reflections are easily identifiable within GPR profiles that are collected parallel to the dip 

direction of the foresets beds because in this direction they occur as oblique, parallel, continuous 

reflections with a steep gradient (20 to 30°) (Figure 106). These foreset reflections usually have a 

high amplitude that decreases with depth and the angle of the foreset reflections may also decrease 

with depth. The continuity of the foreset reflections can vary laterally and they commonly dip 

towards the fjord. Where GPR profiles are collected perpendicular the dip direction of the foresets, 

the reflections are characterised as high amplitude, semi-continuous, sub-horizontal reflections. 

Topset reflections 

Delta topset reflections consist of a thin unit (2 to 3 m) of sub-horizontal reflections that 

unconformably overly the delta foreset reflections. The character of the reflections can have 

considerable lateral variation, whereby reflections can be laterally continuous or chaotic and 

hummocky. Topset reflections always occur at the top of the GPR profiles. The lower boundary is 

often erosive and truncates the foreset reflections. Additionally, the first reflection can be difficult to 

interpret because it often has a high amplitude and low frequency caused by differences in the 

electric properties of the subsurface and the atmosphere. 

4.3.3.1.2 Sedimentary sections 
 

Within the exposed vertical sedimentary sections the tripartite structure of the deltaic sediment was 

identified based on several characteristics including: the orientation of the beds; the character of the 

contact between different units (e.g. conformable, erosional etc.); sedimentary structures; and 

grainsize (e.g. silt, sand and gravel). A summary of the key characteristics of the deltaic bottomset, 

foreset and topset sediment is presented below. 

Bottomset sediment 

The bottomset sediment consists of horizontal to sub-horizontal, laterally continuous beds of clay 

silt, silty clay, sandy silt and silty sand. The dominant lithofacies is massive beds. However, laminated 

and deformed beds were also observed. Marine macrofossils are common (Section 4.3.3.3.1).  

Foreset sediment 

The foreset sediment consists of inclined (20 to 30°) beds of alternating sand and gravel. The beds 

are dominantly massive. However, other lithofacies occur including normal grading, inverse grading 

and deformed beds. The dip of the foreset beds often decreases with depth and some of the foreset 

beds pinch out. There is considerable lateral variation in grainsize and the long-axis of many of the 

gravel clasts is aligned with the dip of the foreset bed.  

Topset sediment 

The topset sediment is dominated by massive sandy gravel beds that erosively overlie the foreset 

sediment. Occasional laminated sand and silt sediment occurs. As the topset sediment occurs at the 

surface of the alluvial fan, the topset sediment has also been described in Section 4.3.1.2.  

Deltaic sediment is exposed at two locations in the study area. At each location the exposed 

sedimentary sections have been examined and logged. Additionally, GPR profiles have been collected 

above the sedimentary sections. Therefore, the results have been combined and are presented 

below.  
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4.3.3.2 Locality 1: Gravel pit 
 

The subsurface structure of deltaic topset, foreset and bottomset sediment has been investigated 

within the gravel pit shown in Figure 107 where both topset and foreset sediment is exposed in 

vertical sedimentary sections. In addition, three GPR profiles of the subsurface have been collected 

near the gravel pit to assist with interpretation.  

 

Figure 107: Aerial photograph of the gravel pit (Midt_troms_2013). The location of the GPR profiles obtained near 
the gravel pit are shown. Additionally, the morphological and geological features surrounding the gravel pit are 
also indicated. 

4.3.3.2.1 Topsets 

 

A small fluvial terrace is located at the southwestern edge of the gravel pit and sediment within the 

terrace is shown in Figure 108A. This sediment is composed of massive, sub-rounded cobbly sandy 

gravel and it is interpreted as a topset unit that is erosively overlying foreset beds. The subsurface 

structure of this topset sediment was further investigated by the collection of a GPR profile across 

the fluvial terrace (GPR Profile Russ10) (Figure 108). Two different units have been identified within 

the profile: (1) a foreset unit; and (2) a topset unit. The foreset unit consists of dipping high 

amplitude continuous reflections. The topset unit unconformably overlies the foreset unit. The 

topset unit has a variable character. On the southwestern side of the profile the reflections are 

chaotic and on the northwestern side continuous high amplitude reflections occur. This indicates 

that there is considerable lateral variation in the character of the unit. The topset reflections are sub-

horizontal and truncate the underlying dipping foreset reflections. The topset unit correlates to the 

fluvial sediment observed within the gravel pit (Figure 108A).  
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Figure 108: A) Fluvial topset sediment exposed within the gravel pit. The sediment is composed of massive, sub-
rounded cobbly sandy gravel. B) Uninterpreted GPR profile Russ10. C) Interpreted GPR profile Russ10. A topset 
unit (green) and foreset unit (blue) have been identified. The location of the profile is shown in Figure 107. 

4.3.3.2.2 Foresets 
 

Two vertical sedimentary sections with deltaic foreset sediment are located within the abandoned 

gravel pit (Figure 107). The sedimentary section located on the eastern side of the gravel pit (Figure 

109) shows lateral variations in grainsize, bed thickness and dip angle. In the southeast, the foreset 

sediment consists of interbedded sand- and gravel-dominated beds that dip at 25° (Figure 109 and 

Figure 110). A prominent 5.5 m long sand-dominated foreset bed occurs in the centre of the 

exposure (Figure 109). The dip of this sand bed decreases from 25° at the top to 22° at the bottom 

and the foreset beds above downlap onto this bed (Figure 109). The northwest section of the 

exposure is dominated by cobbly gravel foreset beds, which have a very steep gradient in the upper 

part of the bed (35°) that decreases towards the bottom of the bed. These observations are recorded 

in the graphical log presented in Figure 111.  

A graphical log of the alternating sand- and gravel-dominated foreset beds is shown in Figure 110. 

This log shows that the bedding types include: massive laminations, imbrication and deformed 

bedding. Imbrication occurs when the long-axis of the gravel clasts is aligned with the dip of the bed. 

Soft sediment deformation structures were observed within a sand bed located between 23.55 m 

and 23.6 m (Figure 110B). A thick (40 cm) gravel-to-cobble-dominated bed occurs immediately above 

the soft sediment deformation structures. Therefore, these deformation structures could have been 

created due to the rapid deposition of the coarse-grained sediment on top of the sand causing 

liquification of the sand. Alternatively, they could be created by sediment creep on the delta slope. 

B) C) 

A) 
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Figure 109: A) Photograph of the gravel pit showing the location of the two sedimentary sections. B) Photograph 
of the foreset beds located on the eastern side of the gravel pit showing lateral changes in grainsize and bed 
orientation. The dip of the foreset beds varies between 22° and 35°. 

 

 

Figure 110: A) Photograph of the sand- and gravel-dominated delta foresets beds located on the south-eastern 
side of the gravel pit. B) Graphical log of the foreset beds showing changes in sediment grainsize and facies. 
Location of the log is shown in Figure 109. 

A) 

B) 

B) A) 

Soft sediment 

deformation  
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Figure 111: A) Photograph of the gravel-dominated delta foreset beds located on the north-western side of the 
gravel pit. B) Graphical log of these foreset beds showing changes in sediment grainsize and facies. Location of 
the section is shown in Figure 109. 

Another sedimentary section is located at the back of the gravel pit (southern wall; Figure 107) and 

two different foreset units have been identified within the section (Figure 112). Unit 1 consists of 

thin (5 to 10 cm) sandy gravel beds that are dipping at 20° towards the northeast. The long-axis of 

most of the gravel clasts are preferentially aligned with the dip of the beds. Unit 1 is interpreted as 

delta foreset beds and they are located stratigraphically below the foreset beds on the eastern side 

of the gravel pit. The top of Unit 1 is truncated by Unit 2 and therefore, an unconformity occurs 

between these units. Unit 2 consists of laterally continuous sub-horizontal beds that alternate 

between gravel and sand. The gravel-dominated beds have a grainsize mode of 1 cm and a maximum 

grainsize of 9 cm. Some of the gravel clasts are oblate and imbricated. Unit 2 is also interpreted as 

delta foreset beds, whereby, the sedimentary section occurs perpendicular to the foreset dip 

direction. These foreset beds belong to the same unit that is exposed on the eastern side of the 

gravel pit.  

 

Figure 112: A) Photograph of the vertical sedimentary section located at the back of the gravel pit (Figure 107). 
The two different foreset units are shown. B) Photograph of the boundary between Unit 1 and 2. Unit 1 contains 
dipping foreset beds that are truncated by Unit 2. The location of the photograph is shown by the red box in A.  

 

A) B) 

A) 

B) 
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4.3.3.2.3 Large-scale architecture 
 

The GPR profiles that were collected around the gravel pit can provide further information about the 

structure of the subsurface sediments and they can be used to place the detailed sedimentological 

information recorded in the gravel pit into a wider context (Figure 107).  

GPR profile Russ8 

GPR profile Russ8 is a 62 m long profile that was acquired in a north-south direction immediately 

adjacent to the gravel pit (Figure 107 and Figure 113). This GPR profile can be compared with the 

exposed vertical sedimentary section on the eastern side of the gravel pit (Figure 109). This GPR 

profile has been collected across an area with distinctive morphogenic features. The vegetation has 

been cleared along the first section of the profile and it is unclear if any sediment has been removed 

by gravel pit operations. There is an increase in the gradient of the slope at approximately 18 m 

(Figure 113). It is difficult to determine if the slope has been affected by anthropogenic activity. A 

shore notch has been identified at the bottom of this slope and a ridge occurs at the top (Figure 

107B).  

 

Figure 113: A) Uninterpreted GPR profile Russ 8. B) Interpreted GPR profile Russ 8. Delta bottomsets (yellow), 
foresets (blue and orange) and topsets (green) have been identified. The location of the profile is shown in Figure 

107. 

Most of the reflections in the top -300 ns of the GPR profile have a high amplitude and are steeply 

dipping, however, the continuity of the reflections varies along the profile. All three deltaic units 

(topsets, foresets and bottomsets) have been identified based on reflection geometry, amplitude 

A) 

B) 
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and frequency (Figure 113), although the bottomset unit is uncertain. The bottomset unit occurs at 

the base of the GPR profile and contains discontinuous low frequency reflections. A foreset unit 

overlies the bottomset unit and it has been divided into two units. Foreset unit 1 primarily occurs on 

the southern side of the GPR profile and consists of discontinuous dipping medium amplitude 

reflections, whilst foreset unit 2 occurs on the northeastern side of the profile and consists of 

continuous, high amplitude dipping reflections. These two foreset sub-units are interpreted to 

represent changes in the delta slope depositional environment or sediment supply. A thin topset unit 

erosively overlies the foreset unit on the south side of the profile and consists of sub-horizontal 

reflections. This unit is interpreted to be deposited unconformably over the foreset unit. The foreset 

unit within the GPR profile is interpreted to be equivalent to the delta foreset beds observed within 

the gravel pit, however, the continuity and length of the reflections is much greater (4 to 9 m) than 

that observed within the vertical sections in the gravel pit (1 m). This indicates that only a small 

section of the foreset beds is exposed within the gravel pit.  

GPR profile Russ9 

GPR profile Russ9 is an east-west profile located perpendicular to GPR profile Russ8 (Figure 107). 

These two GPR profiles intersect 10 m from the end of Russ8. All three deltaic units (topsets, foresets 

and bottomsets) have also been identified within this profile (Figure 114). Possible delta bottomset 

reflections occur at the base of the profile (below -170 ns) and these reflections have a medium 

amplitude and low frequency. The foreset reflections consist of high amplitude, semi-continuous, 

sub-horizontal reflections, which is interpreted to be equivalent to the delta foreset reflections 

identified in Russ8 (Figure 113). A thin topset unit defined by horizontal continuous reflections occurs 

at the top of the profile.  

 

Figure 114: A) Uninterpreted GPR profile Russ9. B) Interpreted GPR profile Russ9. A bottomset unit (yellow), 

foreset unit (blue) and topset unit (green) have been identified. Location of the profile is shown in Figure 107. 

A) 

B) 
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4.3.3.3 Locality 2: River Bank 
 

Deltaic bottomset and foreset sediment occurs within a sedimentary section that has been exposed 

by fluvial downcutting on the western side of the Buktelva river (Figure 114). The total height of the 

section is 3.9 m and variations in grainsize and lithology have been recorded in a graphical log that is 

presented in Figure 116.  

 

 

Figure 115: A) Aerial photograph Midt_troms_2013 showing the morphological and geological features mapped 
around the river cutting. The location of GPR profiles Russ6 and 7 is also shown. B) Photograph of the river 
cutting showing the location of the foreset and bottomset beds.  

4.3.3.3.1 Bottomsets 
 

The sedimentary section has been divided into two units. The bottom unit (Unit 1) consists of fine-

grained clay silt and silty sand. Abundant paired molluscs have been found within this unit (Table 8), 

which indicates that the organisms are in situ and favourable conditions existed for the growth of 

molluscs. Therefore, the sediment was deposited in a calm environment with a low sedimentation 

rate. Most of Unit 1 is massive, however, thin wavy laminations (0.5 – 1 cm) were observed within 

the silty sand sediment located at the top of the unit (Figure 116C). Unit 1 is interpreted as prodelta 

bottomset beds and an erosional unconformity occurs at the top of Unit 1.  

A) 

B) 
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Figure 116: A) Graphical log of a sedimentary section located in the bank of the Buktelva river (Figure 115). The 
section has been divided into two units: Unit 1 is interpreted as prodelta bottomset sediment and Unit 2 is 
interpreted as prodelta foreset sediment. B) Photograph of part of the logged vertical section showing the deltaic 
foreset and bottomset sediment. C) Wavy laminations observed within silty sand in the upper section of Unit 1. 

Four sediment samples were collected from this delta bottomset sediment and analysed in the 

laboratory. A list of the identified species is given in Table 8. Most of the identified species are 

suspension feeders and the only deposit feeder is Macoma Calcarea (Gmelin, 1791). Two of the 

mollusc samples were radiocarbon dated and the results are shown in Table 9. The radiocarbon date 

on the Macoma Calcarea sample gives the sediment an age between 10 472 and 10 234 cal. yr BP 

and the radiocarbon date from the Mya Truncata sample gives a similar age of 10 455 to 10 218 cal. 

yr BP.  

4.3.3.3.2 Foresets 
 

Unit 2 consists of inclined beds alternating between sandy gravel and gravelly sand. Bed thickness 

varies between 5 and 50 cm and normal grading occurs in the upper section of the unit. Figure 117 

presents another graphical log that was produced at the river bank showing alternating gravel- and 

sand-dominated inclined beds. The majority of the beds are massive, however, one bed shows 

inverse grading. Unit 2 is interpreted as delta foreset beds that unconformably overly the bottomset 

sediment. 

A) 

B) 

C) 

Foreset beds  

Bottomset beds  
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Table 8: List of the mollusca species identified in the study area. The environment information has been obtained 
from Oliver et al. (2016). 

Species Feeder type Environment 
Chlamys Islandica (Müller, 
1776) 

Suspension Lives on hard substrates from the intertidal region to 
the shelf edge. 

Macoma Calcarea (Gmelin, 
1791) 

Deposit Lives on fine sand and mud from the intertidal zone 
down to 200 m. 

Cerastoderma edule 
(Linnaeus, 1758b) 

Suspension Occurs in sandy mud, sand or fine gravel, from mid-tidal 
level to just below extreme low water spring tide level. 
Abundant in sheltered bays and estuaries. 

Astarte Sulcata (de Costa, 
1778) 

Suspension Offshore in muddy sands to gravels. Depth range 5 to 
250 m. 

Hiatella Arctica (Linnaeus, 
1767) 

Suspension Lives on hard substrates and can hide in holes and 
crevices or borrow into soft rocks. Occurs from lower 
shore to the edge of the continental shelf. 

Thyasira Flexuosa (Montagu, 
1803) 

Suspension Lives offshore to the edge of the continental shelf in 
muddy sand.  

Heteranomia squamula? Suspension Occurs on hard substrates with algae. 

Mya Truncata (Linnaeus, 
1758a) 

Suspension Lives in mixed sandy material from the lower shore to 
approximately 70 m. Burrower. 

 

Table 9: Radiocarbon dates obtained from shells within the bottomset sediment during this study. The ages are 
given in yr BP and calibrated yr BP. Ages have been calibrated with 2013 INTCAL using the MARINE13 database 
(Ramsey, 2009, Reimer et al., 2013). 

Laboratory 
no. 

Elevation 
(m) 

Material dated 14C age (yr 
BP) 

Calibrated age 
(yr BP, 2σ 
interval) 

Weighted mean 
calendar age (± 
1σ) (cal. yr BP)* 

Beta - 
463114 

25 Macoma Calcarea  9570 ± 30 10472 – 10234 10 345 ± 84 

Beta -
463115 

25 Mya Truncata  9550 ± 30 10455 – 10218 

*Weighted mean calculated using inverse variance weighting 

 

 

Figure 117: A) Photograph of part of the foreset sediment identified within the river cutting. The location is shown 
in Figure 115. B) Graphical log of the foreset beds showing changes in grainsize and facies.  

A) B) 
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4.3.3.3.3 Large-scale architecture 
 

GPR profile Russ7 is an east-west profile that was collected perpendicular to the present-day 

Buktelva river (Figure 118 and Figure 114). This GPR profile has a few distinctive reflection packages 

that are identified as different units. A high amplitude continuous reflection with a high relief occurs 

on the eastern side of the GPR profile (purple) and this reflection is interpreted as a large erosional 

channel. This prominent reflection separates two different foreset units. Foreset unit 1 infills the 

channel and primarily consists of discontinuous high amplitude reflections. The top most reflections 

of this unit are dipping to the east and correspond to the foreset beds identified within the river bank 

(Figure 116). Therefore, the erosive channel is interpreted as a submarine channel that was formed 

on the delta slope. Submarine channels have not been identified on the present-day delta slope. 

However, they are common features in other deltas (Eilertsen et al., 2011). Foreset unit 2 consist of 

high amplitude semi-continuous dipping reflections, which are interpreted as extensive foreset beds. 

The bottomset sediment observed within the river bank cannot be identified within the GPR profile. 

 

Figure 118: A) Uninterpreted GPR profile Russ 7. B) Interpreted of GPR profile Russ 7. A channel and two 
different foreset units have been identified. Location shown in  

.  

4.3.3.4 Interpretation 
 

Interpretation of the depositional environment of the deltaic bottomset, foreset and topset units is 

given below. Table 10 provides information about the lithofacies observed within the study area. 

4.3.3.4.1 Bottomsets 
 

The bottomset sediment is interpreted to be deposited in the prodelta region of the fan delta. The 

bottomset sediment is dominated by massive bedding, which indicates that it has primarily been 

deposited from suspension settling of silt and fine sand. Additionally, the abundant macrafossils 

indicate a quiescent depositional environment. In other deltas in northern Norway, it is common for 

A) 

B) 
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bottomset sediment be dominated by rhythmic bedding, however, this lithofacies was not observed 

in the study area (Eilertsen et al., 2011). 

Table 10: Summary of the lithofacies observed within the deltaic subsurface sediment. Table adapted from 
Eilertsen et al. (2011) 

Lithofacies Description Frequency Depositional 
component 

Interpretation 

Massive beds 
(m) 

Silt, sand and gravel 
beds; sharp 
boundaries; 10 to 60 
cm thick. 

Abundant Bottomsets, 
foresets, 
topsets 

Massive silt beds deposited by 
suspension settling. 
Massive sand and gravel beds 
deposited by cohesionless 
debris flows 

Normal 
graded beds 
(g) 

Gravel to medium 
sand. Sharp 
boundaries. 20 to 40 
cm thick. 

Common Foresets Turbidity currents; debris 
flows waning current 

Inverse 
graded beds 
(i) 

Medium sand to fine 
gravel. Sharp 
boundaries. 25 cm 
thick 

Rare Foresets Cohesionless grain flows 

Deformed 
beds (d) 

Medium to fine sand 
beds. < 10 cm thick. 
Erosional upper 
boundary. Folds and 
flame structures 

Rare Foresets Liquification, slumping and 
sliding 

Imbrication 
(im) 

Preferential alignment 
of the long-axis of 
gravel clasts 

Common Foresets Gravity flows, such as turbidity 
currents and grainflows 

Laminated 
beds (l) 

Thin (0.5 to 1 cm) beds 
of sand and silt.  

Rare Topsets Planar bed flow 

 

4.3.3.4.2 Foresets 
 

The foreset sediment is interpreted to be deposited on the delta slope by mass movement processes 

and consequently, the foreset sediment consists of steeply dipping (22 to 35°) gravel- and sand-

dominated beds. The lateral changes in grainsize reflect changes in the sediment supplied to the 

delta slope. The changes in the dip of the foreset beds can be correlated to the modern delta slope, 

whereby the dip of the bed decreases with increasing depth. The lithofacies observed include 

massive, deformed, normal graded and inverse graded beds, which indicate that sediment gravity 

flows are the dominant depositional process on the delta slope, such as turbitity currents, 

cohesionless grain flows and cohesionless debris flows. This is consistent with other Gilbert-type 

deltas (Prior and Borhold, 1989, Prior and Borhold, 1990, Eilertsen et al., 2011). However, massive 

beds are the most frequent lithofacies observed within the delta foreset sediment, which suggests 

cohesionless debris flows are the most comment depositional processes. This is consistent with the 

morphology of the present-day delta slope, which is reasonably smooth and featureless, indicating 

that it has been subjected to repeated unconfined flows (Prior and Borhold, 1990, Hansen et al., 

2016). The delta foreset beds range in height from 4 to 9 m, which is similar to the height of the 

modern delta slope.  
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4.3.3.4.3 Topsets 
 

Topset sediment is observed in two exposed sedimentary sections within the study area (Figure 78 

and Figure 108) and the dominant lithofacies are massive and laminated beds. The maximum 

thickness of the delta topset sediment is 2.5 m and an erosional basal contact is often observed. The 

topset sediment does not contain beach sediment. The thickness of the topset unit and the erosive 

basal boundary indicate that the topset sediment has been deposited by a bedload dominated river 

as a result of aggradation and fluvial incision.   
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5 Discussion 
 

5.1 Implications of the Ice-Contact Deglacial Landforms 
 

This study of the postglacial Russenes fjord-side fan delta and associated deglacial landforms has 

uncovered a complex depositional history. It is the first time that the ice-contact deglacial landforms 

have been identified and mapped at Russenes and the presence of these landforms has implications 

for the deglacial history of Balsfjord.   

5.1.1 Halt in the Retreat of the Balsfjord Glacier 
 

A halt in the retreat of the Balfjord glacier in the location of the Russenes fjord-side fan delta has 

been recognised by the presences of two distinct landforms: (1) an submarine ice-contact fan; and 

(2) an ice-contact delta and rock-avalanche complex. Figure 119 shows a schematic model of the 

interpreted depositional environment of these landforms. The model shows that the submarine ice-

contact fan and adjacent ice-contact delta were deposited by subglacial and englacial streams into an 

open marine environment during a halt in the retreat of the Balsfjord glacier. 

 

Figure 119: Schematic model of the deposition of the submarine ice-contact landforms during a halt in the retreat 
of the Balsfjord glacier. A) A submarine ice-contact fan is deposited from subglacial and englacial streams into an 
open marine environment. B) Simultaniously, an adjacent ice-contact delta that is graded to the marine limit is 
deposited. Rock-avalanche sediment is transported on the glacier to the site of the ice-contact delta and 
subsequently deposited.  

During this study, it has been determined that the lower section of the rock-avalanche complex has 

been transported on the Balsfjord glacier and subsequently deposited onto the ice-contact delta 

(Section 0; Figure 119B). Recently, the effects of rock-avalanches on alpine glaciers in currently 

glaciated areas, such as New Zealand, Alaska and the Himalaya, has been an active area of research 

A) 

B) 
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(Deline, 2009, Hewitt, 2009, Reznichenko et al., 2011). It has been found that the presence of 

supraglacial rock-avalanche debris can modify the mass balance of a glacier because rock-avalanche 

debris can protect the glacier from solar radiation, which causes a reduction in surface ablation 

(Reznichenko et al., 2011). This can lead to thickening of the glacier ice and result in a glacier advance 

or surge (Reznichenko et al., 2011). For example, glacier surges following the deposition of rock-

avalanches have been observed in the Himalaya (Hewitt, 2009). Reznichenko et al. (2011) have 

developed a depositional model for rock-avalanche debris that has been deposited onto the ablation 

zone of an alpine glacier and this model is shown in (Figure 120). 

 

Figure 120: Schematic model showing the response of a glacier to rock-avalanche debris covering the ablation 
zone. A) the glacier is in equilibrium before the deposition of the rock-avalanche. B) Deposition of the rock-
avalanche. Ablation is reduced by 70% C) Ice thickens and glacier advances. D and E) Glacier separates from 
debris-covered ice and retreats. Debris-covered ice continues to flow and the ice slowly melts forming a moraine. 
Adapted from Reznichenko et al. (2011). 

Therefore, it is possible that the deposition of the rock-avalanche material onto the Balsfjord glacier 

could have affected the mass balance of the glacier resulting in a halt or a small glacier advance. 

Consequently, the ice-front landforms that were deposited during a halt in the retreating Balsfjord 

glacier could have been deposited due to the presence of rock-avalanche debris on the glacier. 

However, the effect of rock-avalanches on glacier dynamics has been primarily studied on small 

alpine glaciers, and therefore, it is difficult to determine whether the presence of rock-avalanche 

debris on the Balsfjord glacier would significantly reduce ablation. Regardless of whether the halt in 

the retreat of the glacier was caused by the rock-avalanche or other external factors, the rock-

avalanche debris was transported to the front of the glacier and deposited as a mix of glacier ice and 

rock-avalanche boulders. The ice slowly melted and eventually deposited the rock-avalanche debris 

on top of the ice-contact delta.  

5.1.2 Revised Deglacial History of Balsfjord 
 

Ice front accumulations are deposited during a halt or readvance in the glacier retreat (Hambrey, 

1994, Benn and Evans, 1998, Corner, 2006) and therefore, the identification of ice front 

accumulations within a fjord environment provides information about the glacier retreat chronology. 

The deglacial history of Balsfjord has been determined by the identification and mapping of subaerial 

and subaqueous deglacial landforms (Andersen, 1968, Forwick and Vorren, 2002). A summary of the 

previously published deglaciation history of Balsfjord is give in Section 1.2.3.1, which shows that a 
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Preboreal moraine has been identified in Balsfjord and radiocarbon dated to 11.4 ± 0.2 ka cal. yr BP 

(Forwick and Vorren, 2002) and two younger minor end moraines were also deposited into Balsfjord 

(Figure 8). However, previous authors have not recognised the submarine ice-contact fan and ice-

contact delta located above the present-day fan delta at Russenes. Therefore, some authors have 

interpreted the growth of Balanus shells on the rock-avalanche boulders at Russenes to indicate the 

whole fjord was deglaciated by the time the rock-avalanche was deposited (Forwick and Vorren, 

2002, Blikra et al., 2006, Fenton et al., 2011). Consequently, the radiocarbon date obtained from the 

balanus shells have been interpreted to give a minimum age for the deglaciation of Balsfjord at 10.9 

± 0.77 cal. Ka BP (Forwick and Vorren, 2002, Fenton et al., 2011).  

However, the identification of the ice-contact delta and rock-avalanche complex and submarine ice-

contact fan indicate that there was an additional halt in the retreat of the Balsfjord glacier at the 

location of the present-day Russenes fjord-side fan delta that was previously undocumented. 

Additionally, the detailed mapping of the ice-contact delta and rock-avalanche complex indicates 

that the front-most rock-avalanche boulders were deposited into the fjord as part of the ice-contact 

delta and the balanus shells grew on the boulders following deposition. Therefore, the radiocarbon 

dated rock-avalanche boulders give a minimum age for the halt in the retreat of the Balsfjord glacier 

and subsequent deposition of the ice-contact deglacial landforms (10 884 ± 96 cal. yr BP; weighted 

mean age calculated during this study) rather than a minimum age for the deglaciation of Balsfjord 

(Forwick and Vorren, 2002). 

Recently there has been a lot of interest in the retreat chronology of the marine-terminating outlet 

glaciers that drained the Fennoscandian Ice Sheet following the Last Glacial Maximum (Winsborrow 

et al., 2010, Rydningen et al., 2013, Stokes et al., 2014) because the response of these outlet glaciers 

can be used as an analogue for the present-day retreat of the marine terminating glaciers in 

Greenland and Antarctica (Dowdeswell et al., 2005, Ó Cofaigh et al., 2005). A study by Stokes et al. 

(2014) investigates the deglaciation chronology of eight major outlet glaciers within the 

Fennoscandian Ice Sheet and concludes that fjord topography (e.g. bathymetry and width) exerts an 

important control on the rate of glacier retreat. The location of the ice-contact deglacial landforms 

within the study area supports this theory because the fjord narrows and shallows at Russenes, 

which could be responsible for a halt in the glacier retreat.  

However, the minimum age of these deglacial ice-contact landforms is similar to the age of a large 

moraine deposited in the Lyngen-Storfjord area, which is radiocarbon dated to 10.8 ± 0.2 cal. Ka BP. 

This moraine was deposited during a climatically induced cooling event, known as the Skibotn event 

(Corner, 1980, Stokes et al., 2014). Therefore, the ice-contact deglacial landforms at Russenes could 

have been deposited during the Skibotn event. Some large ice-contact deglacial landforms are also 

located at Storesteinnes and Stromo-Høgmo in inner Balsfjord. However, these ice-contact landforms 

are younger than the ice-contact deposits that are located at Russenes (approximately 9190 ± 160 

BP; radiocarbon date obtained from shells located immediately in front of the ice-contact delta at 

Stromo-Høgmo) and therefore, they were not deposited during the Skibotn event.  
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5.2 Implications of the Origin and Age of the Rock-Avalanche 
Complex 

 

Mass movement processes in Norway have been widely studied over the last 20 years and remain a 

very active area of research because they pose a significant threat to Norwegian communities (Blikra, 

1998, Forwick and Vorren, 2002, Braathen et al., 2004, Blikra et al., 2006, Sletten et al., 2006, 

Romstad et al., 2009, Dahl et al., 2010, Sandersen, 2011, Blikra and Christiansen, 2014, Eidsvåg and 

Øystein, 2016). Studying mass movement deposits can provide critical information about the 

depositional processes, such as source area, trigger, run-out distance and timing (Blikra et al., 2006). 

Determining the spatial and temporal pattern of rock-avalanche events is important for evaluating 

background hazard levels.  

The rock-avalanche deposit at Russenes has been studied by a few different researches (Blikra et al., 

2006, Sletten et al., 2006, Fenton et al., 2011). These researches have constrained the timing of the 

rock-avalanche deposit using the radiocarbon dates obtained from the Balanus shells that were 

attached to the rock-avalanche boulders and found that the rock-avalanche was deposited into an 

open marine environment during the deglacial period or shortly after deglaciation.  

However, this study provides the first detailed map of the surficial morphology of the rock-avalanche 

complex at Russenes and mapping has determined that there were multiple rock-avalanche events 

that originated in different locations. This new information has implications for the timing of the 

rock-avalanche events and present-day hazard mapping and modelling in inner Balsfjord. For 

example, field mapping indicates that the lower section of the rock-avalanche deposit was sourced 

from outside the catchment area of the rock-avalanche complex and it was partially transported on a 

glacier. Therefore, identifying the source area of the rock-avalanche could provide important 

information about the risk of further mass movement processes at this location.  

Additionally, the identification of multiple rock-avalanche events at Russenes has implications for the 

timing of the rock-avalanche events. The radiocarbon dated Balanus shells can still constrain the 

timing of the event by providing a minimum radiocarbon age for the rock-avalanche of 10 884 ± 96 

cal. yr BP (σ). However, the recognition of a second rock-avalanche deposit indicates that there was 

another rock-avalanche event during the deglacial or postglacial period and the timing of this event is 

unconstrained. Most of the rock-avalanches mapped in Troms county where deposited during the 

period between 11,000 to 10,5000 cal. yr BP (Blikra et al., 2006), and therefore, it is likely that the 

upper rock-avalanche event occurred during this period. However, further fieldwork and dating 

would be useful to constrain the age of the upper rock-avalanche deposit.  

  



 

Page 123 of 164 

5.3 Evolution of the Postglacial Fjord-Side Fan Delta 
 

The postglacial Russenes fjord-side fan delta has prograded into Balsfjord under regressive 

depositional regime. The fjord-side fan delta has two different depositional environments: (1) a 

subaerial alluvial fan; and (2) a subaqueous Gilbert-type delta (Section 4.3). These components have 

developed through aggradational and progradational processes respectively. In both environments 

sediment transport is dominated by bedload processes during infrequent large flooding events and 

the relationship between fan delta aggradation and progradation is very dynamic because 

aggradation of sediment on the alluvial fan reduces sediment supply to the delta front. Therefore, 

the depositional regime varies between periods of net aggradation on the alluvial fan and periods of 

fluvial downcutting and sediment deposition at the delta front. The information that has been 

presented on the morphology and structure of the Russenes fjord-side fan delta will be used to 

determine the aggradational and progradational history of the fan delta. 

5.3.1 Fan Delta Aggradation 

5.3.1.1 Streamflow and Sheetflow Processes 
 

The major defining feature of a fan delta is the steep subaerial alluvial fan. This feature separates fan 

deltas from other types of deltaic environments, such as fjord-head deltas. The postglacial alluvial 

fan of the Russenes fjord-side fan delta is dominated by streamflow and sheetflow processes and 

therefore, most of the aggradation on the postglacial alluvial fan has occurred through the 

deposition of fluvial sediment. Streamflow dominated aggradation occurs by channel infilling and 

avulsion (Galloway and Hobday, 1996, Field, 2001) and aggradation usually occurs when there is an 

excess in sediment supply. However, aggradation can also be effected by changes in sea level and 

climate (Blikra and Nemec, 1998). The alluvial fan on the Russenes fjord-side fan delta is composed 

of fluvial sediment that is deposited by two separate perennial river systems with adjacent 

catchment areas (Section 4.3). Therefore, the alluvial fan is composed of sediment that has been 

deposited by both rivers and this sediment interfingers laterally. The two river systems are subjected 

to the same sea level and climate regime; however, they have different catchment areas and 

therefore, the processes occurring within the two perennial river channels may differ depending on 

their independent supply of sediment.  

Field (2001) determined that streamflow dominated alluvial fan aggradation involves five different 

stages of channel downcutting, backfilling and abandonment and the morphology of the river 

channels can be used to determine the present-day stage of the channel avulsion processes (Figure 

121B). The Buktelva river is characterised by high and steep vertical banks and a wide bankfall area, 

which indicates that river is in the adjusted channel phase of the channel avulsion processes (Figure 

121). Therefore, during flooding erosion occurs along the edges of the river channel and sediment is 

transported by bedload processes and deposited near the river mouth where the bank height 

decreases. Figure 123A shows the position of the present-day active depositional lobe at the end of 

the Buktelva river. However, the Buktelva river also has a large amount of sediment located within 

river channels and bars (Figure 123), and therefore, it is possible that the river has recently 

commenced an aggrading phase. Field (2001) suggests that large floods will continue to transport 

sediment to the active depositional lobe, whilst, small floods will lead to the deposition of sediment 

within the river channel, which will cause the channel to backfill and channel avulsion will eventually 

occur.  
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Figure 121: A) Five distinct channel morphologies observed on alluvial fans related to different stages of the 
channel avulsion processes. Reproduced from Field (2001). B) Channel profiles of the rivers within the 
Russedalselva alluvial fan. The Buktelva river has an adjusted channel profile and the Russedalselva river has a 
new channel profile. The profiles have been created using the Lidar-derived DTM avalaible from Statens Kartverk 
(https://hoydedata.no/LaserInnsyn/) and the location of the profiles is shown in Figure 123. 

 

 
Figure 122: A) Lidar-derived shaded relief map of the Buktelva river near the western fan apex overlaied with the 
Quaternary Geological Map (sun azurmith = 315° and sun elevation = 45°). The lidar data is avalaible from 
Statens Kartverk (https://hoydedata.no/LaserInnsyn/). B) Elevation profile across the upper Buktelva river 
produced using the lidar-derived DTM. The profile shows a lot of sediment has accumulated within the bankfall 
area of the river. The location of the profile is shown by the red line in A. 

A) 

B) 

B) 

A) 

https://hoydedata.no/LaserInnsyn/
https://hoydedata.no/LaserInnsyn/
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The morphology of the Russedalselva river is different to that of the Buktelva river, which primarily 

reflects differences in the sediment supply and lithology. The upper section of the Russedalselva river 

is steeply downcutting through existing sediment, however, below the Tapes shoreline the banks of 

the Russedalselva river are low (<1 m) and vertical. This channel morphology indicates that the lower 

section of the Russedalselva is in the “new” channel phase of the channel avulsion processes (Figure 

121) and therefore, channel avulsion has recently occurred below the Tapes shoreline. As the river 

bank height is low, this section of the Russedalselva river is also susceptible to sheetflow processes 

during flooding. 

5.3.1.2 History 
 

It is difficult to determine the depositional history of the alluvial fan as many landforms have been 

destroyed by fluvial erosional and depositional processes. For example, in other fluvial deltaic 

environments, distinct fluvial and deltaic terraces occur as steps down to the present-day river or sea 

level respectively, however, fluvial and deltaic terraces are uncommon on the Russenes alluvial fan. 

The morphology of both present-day rivers within the postglacial alluvial fan indicates that they are 

primarily downcutting through existing fluvial deltaic sediment. The final section of both rivers is 

interpreted to be aggradation and consequently two active depositional lobes occur near the head of 

each river.  

 

Figure 123: Map showing the morphology of the subaerial alluvial fan of the Russenes fjord-side fan delta. The 
fan is dominated by fluvial sediment and the areas that are actively downcutting and aggrading are shown. The 
distribution of the present-day active and abandoned lobes is also indicated. The location of the profiles from 

Figure 121B is shown by the white lines. 
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This indicates that the present-day active areas occur at the transition between the subaqueous and 

subaerial environment and consequently, the fan delta is currently dominated by subaqueous 

progradation and aggradation of sediment at the front of the alluvial fan where the river channels 

bifurcate and shallow. Figure 123 shows the present-day distribution of the active and abandoned 

depositional lobes of the Russenes fjord-side fan delta. The abandoned lobes are raised above the 

present-day mean sea level and some of the sediment within the abandoned lobes has been eroded 

by wave and tidal processes, creating erosional scarps at the back of the beach area. The abandoned 

lobe located on the east side of the fan delta is the oldest.   

5.3.2 Fan Delta Progradation 
 

5.3.2.1 Processes 
 

Fan deltas prograd through the deposition of sediment on the subaqueous delta slope (Figure 19) 

and major delta progradation occurs during large high-magnitude low-frequency events, when 

coarse sediment (e.g. gravel and sand) is ejected from a flooded river mouth and transported to the 

delta slope (Prior and Borhold, 1989, Nemec, 1990a, Prior and Borhold, 1990). Sediment can be 

transported down the delta slope by a number of different processes including debris flows, inertia 

flows, turbidity currents and hypopycnal plumes. The raised foreset beds observed within the study 

area are dominated by interbedded sand and gravel and these size fractions are usually transported 

down the delta slope by debris flows and turbidity currents (Prior and Borhold, 1990). The multibeam 

bathymetry data collected over the present-day delta slope does not show evidence of slides, slumps 

or channels and therefore, unconfined debris flows are the dominant sediment transport mechanism 

on the present-day delta slope (Prior and Borhold, 1990, Hansen et al., 2016). The raised delta forest 

beds documented within the study area confirm that unconfined that debris flows dominate 

sediment transport (Section 4.3.3), however, they also indicate that other modes of sediment 

transport have occurred, such as sliding and turbidity flows. For example, the channel feature 

observed in GPR profile Russ7 (Figure 118) was probably created by turbidity currents. Turbidity 

currents are often a common method for sediment transport on the fan delta slope because high-

energy hyperpycnal flows ejected from the river mouths during floods can reach the slope and 

subsequently transform into turbidity currents due to the relatively narrow intertidal delta platform 

region (100 to 200 m wide) (Prior and Borhold, 1989, Blikra and Nemec, 1998).  

5.3.2.2 History  
 

As a delta progrades under a regressive sea level regime old delta terraces are raised above the 

present-day mean sea level with the highest delta terraces corresponding to the oldest position of 

the delta front (Eilertsen et al., 2006). Therefore, it is possible to determine the progradational 

history of a delta through the radiocarbon dating of deltaic sediment and correlation of the deltaic 

terraces to sea level curves (Corner et al., 1990, Eilertsen et al., 2006). Unfortunately, the delta 

terraces within the Russenes fjord-side fan delta are not well defined and many of the terraces have 

been destroyed by the fluvial aggradation or erosion. Table 11 presents a summary of the 

radiocarbon dates that are available for the study area. Only two sediment packages have been 

radiocarbon dated: (1) radiocarbon dates have been obtained from the rock-avalanche boulders 

located on a paleo-deltaic slope (10 884 ± 96 cal. yr BP; Section 4.2.4); and (2) radiocarbon dates 

have been obtained from bottomset sediment (10,345 ± 84 cal. yr BP; Section 4.3.3.3.1). 

Nonetheless, the progradation history of the Russenes fjord-side fan delta has been reconstructed 
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based on these radiocarbon dates and correlation of a few identified deltaic terraces with the 

shoreline emergence curve shown in Figure 10. 

Table 11: Summary of the radiocarbon dates that are avaliable for the study area. Calibration has been done 
using the INTCAL13 program and the MARINE13 database.  

Lab number Dated 
material 

Location Conventional 
Age (14C BP) 

Calibrated age 
(yr BP; 2σ) 

Weighted mean 
calendar age (± 
1σ) (cal. yr BP)* 

Reference 

T-13805 Mya 
truncata 

Rock-
avalanche 
boulder 

9995 ± 75 10 674 – 11 
108 

10 884 ± 96 (Forwick and 
Vorren, 2002) 

T-13806 Balanus 
sp. 

Rock-
avalanche 
boulder 

10 050 ± 80 10 719 – 11 
155 

(Forwick and 
Vorren, 2002) 

T-13807 Balanus 
sp. 

Rock-
avalanche 
boulder 

10 055 ± 70 10 738 – 11 
148 

(Forwick and 
Vorren, 2002) 

Beta - 
463116 

Balanus 
sp. 

Rock-
avalanche 
boulder 

9930 ± 30 10 664 – 10 
974   

This study 

Beta - 
463114 

Macoma 
Calcarea 

Bottomset 
sediment 

9570 ± 30 10 234 – 10 
472  

10 345 ± 84 This study 

Beta -
463115 

Mya 
Truncata 

Bottomset 
sediment 

9550 ± 30 10 218 – 10 
455  

This study 

*Weighted mean calculated using inverse variance weighting 

The progradation history of the Russenes fjord-side fan delta is shown in Figure 124 and the rate of 

fan delta progradation corresponds well with changes in the rate of sea level fall. Delta progradation 

was initially very rapid in the early parts of the Holocene (0.26 m/year) when the rate of sea level fall 

was the greatest and there was a large supply of glaciofluvial and fluvial sediment. This initial rapid 

rate of delta progradation is well constrained by the two sediment packages that have been 

radiocarbon dated (Table 11). During the early part of the Holocene the morphology of the delta 

slope was different to the present-day delta with heights of 30 m and 12 m respectively (Figure 124). 

This indicates that there was a larger subaqueous accommodation space at the start of the Holocene. 

The rate of delta progradation was the lowest between 10,200 cal. BP and approximately 5,100 cal. 

BP (0.02 to 0.09 m/year), which corresponds to the period known as the Tapes transgression, 

whereby sea level fall ceased in the inner fjord areas and sea level rose in the outer fjord areas 

(Figure 10). Following the Tapes transgression sea level started to fall again but at a slower rate than 

during the early Holocene and delta progradation continued at a rate of 0.17 to 0.1 m/year. These 

progradation rates correspond well with changes in relative sea level. However, this correlation could 

be effected by one of the methods used to determine the progradation rates, which correlates the 

deltaic terraces with the local sea level emergence curve. Therefore, the relationship between delta 

progradation and relative sea level could be better constrained by further radiocarbon dating of 

deltaic sediment.  

The reconstruction of delta progradation rates indicates that there were two different styles of delta 

progradation during the evolution of the Russenes fjord-side fan delta (Figure 125). The initial 

progradation style is similar to conventional river deltas whereby sea level regression caused new 

delta terraces to form at lower elevations, which resulted in delta progradation. The second style of 

delta progradation occurred after the Tapes transgression and was characterised by extensive 

forward progradation of the fjord-side fan delta into the fjord (Figure 125B) and simultaneous 

subaerial aggradation.  
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Figure 124: Reconstruction of fan delta progradation based on radiocarbon dated foreset and bottomset 
sediment, and the reconstruction of delta rim positions from deltaic terraces and foreset beds. The delta terraces 
have been correlated with the shoreline emergence curve (Figure 10) and subsequently, the delta progradation 

rates have been calculated.  

The initial rapid progradation rate of the Russenes fjord-side fan delta is very similar to the early 

response of fjord-head deltas in northern Norway, which also underwent rapid progradation at the 

start of the Holocene (Eilertsen et al., 2006). Initial rapid progradation can be attributed to the rapid 

sea level fall and a large sediment supply of glaciofluvial and fluvial sand and gravel created rapid 

river incision (Eilertsen et al., 2006). Additionally, basin morphology has also had a major control on 

the progradation rates of many fjord-head deltas with shallow water promoting rapid progradation 

(Corner et al., 1990, Corner, 2006, Eilertsen et al., 2006). Therefore, it is possible that the change in 

delta progradation style could have been caused by a decrease in accommodation space created by a 

shallowing basin morphology.  

 

 

Figure 125: Schematic diagram showing the different styles of delta progradation that have occured during the 
evolution of the Russenes fjord-side fan delta. A) The initial style of delta progradation was similar to conventional 
river deltas that form under a regressive sea level regime. B) The second style of delta progradation resulted in 
extensive progradation of the fan delta into Balsfjord. This extensive progradation was accompanied by subaerial 

aggradation.  

  

A) B) 
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5.3.3 Russenes Fjord-Side Fan Delta Depositional Model 
 

5.3.3.1 Initial Valley-Side Delta Progradation (before 8, 000 cal. Yr BP) 
 

Following the retreat of the Balsfjord glacier, valley-side river deltas were formed where the Buktelva 

and Russedalselva rivers entered the sea. These deltas were initially fed by glaciofluvial sediment and 

meltwater from the valley glaciers. Delta progradation continued after the valley glaciers retreated 

into the mountain cirques through the deposition of fluvial sediment. Figure 126 shows a schematic 

model of the first stage of delta progradation at Russenes. Sea level fall was initially very rapid 

following deglaciation and there was a reasonably large accommodation space within the fjord. 

Therefore, the style of valley-side delta progradation was similar to common river deltas during this 

period and deltaic terraces were built out to contemporaneous sea level as the sea level continually 

fell. Most of these deltaic terraces were later destroyed by fluvial, wave and tidal processes.  

 

 

Figure 126: Schematic model of the two different stages of delta progradation under a regressive sea level 
regime. A) Model of the initial valley-side delta progradation style, which occured under a rapidly falling sea level 
B) Model of the progradation of the fjord-side fan delta after the Tapes transgression. Delta progradation was 
accompanied by fluvial aggradation forming a subaerial alluvial fan. 

  

A) 

B) 
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5.3.3.2 Progradation of the Fjord-Side Fan Delta (after 8,000 cal. Yr BP) 
 

The style of delta progradation changed after the Tapes transgression to form a fjord-side fan delta. 

During fan delta progradation the position of the delta rim prograded a long way into the fjord 

compared with the rate of sea level fall. Therefore, the deltaic terraces that formed during 

progradation had long horizontal surfaces (Figure 125). This change in delta progradation style was 

accompanied by aggradation of the subaerial component of the delta, producing an alluvial fan. The 

extensive forward progradation of the fan delta into the fjord could have created shallow river 

gradients and resulted in the subaerial aggradation of fluvial material to restore river equilibrium. 

This second style of delta progradation created a true fjord-side fan delta. 

5.4 Reflections on the Factors Controlling Fan Delta 
Deposition 

 

5.4.1 Is Russenes a true fan delta? 
 

Fan deltas were first recognised as distinct sedimentary systems by Holmes (1965) and defined as an 

alluvial fan that progrades into a standing body of water from an adjacent highland. However, during 

the 1980s and 1990s the definition of the term “fan delta” was very controversial and there were 

many attempts at modifying or improving the fan delta concept (McPherson et al., 1987, McPherson 

et al., 1988, Nemec and Steel, 1988, Nemec, 1990b). In the original definition, a fan delta is defined 

by the alluvial fan feeder system (Holmes, 1965). Consequently, the definition is directly related to 

the definition of an alluvial fan (Nemec and Steel, 1988). 

Both the terms “fan” and “delta” are derived from geometric shapes; however, using geometric 

shapes to define fan deltas is not effective since the morphology of both alluvial fans or deltas does 

not necessarily fit into this geometric definition. For example, the morphology may be confined by 

topographic features (Nemec and Steel, 1988). Conversely, there are also many fan-shaped common 

river deltas that have been miss-identified as fan deltas because they are fan-shaped. Some 

researchers have applied the term fan delta to any coarse-grained bedload-dominated river delta, 

which has been formed by the progradation of braided alluvial plain systems into a standing body of 

water (McPherson et al., 1988). These types of deltas have also been incorrectly identified as they do 

not have an alluvial fan feeder system and therefore, they should be classified as braidplain deltas 

instead (McPherson et al., 1987, McPherson et al., 1988, Nemec and Steel, 1988). 

 McPherson et al. (1988) and McPherson et al. (1987) also argue that streamflow dominated alluvial 

fan deltas should be classified as braid deltas because their sedimentary characteristics are similar to 

a braided alluvial plains. Therefore, according to this definition, the Russenes fjord-side fan delta, 

which contains a streamflow-dominated alluvial fan with two perennial river systems, should be 

classified as a braidplain delta. However, Nemec and Steel (1988) disagree with this definition and 

argue that the term fan delta should apply to all types of alluvial fans regardless of grainsize, size, 

tectonic regime or depositional process (streamflow- or massflow-dominated).  

A three-dimensional view of the subaqueous and subaerial components of the Russenes fjord-side 

fan delta is shown in Figure 127 and it demonstrates that the morphology of the delta fits well with 

the original definition of a fan delta because it consists of a 1 km wide, steep, streamflow-dominated 

alluvial fan that is prograding directly into Balsfjord beneath tall mountains. The fan shape is slightly 
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restricted on the western side due to the presence of the rock-avalanche and ice-contact fan 

deposits. Therefore, we conclude that the delta at Russenes is a true fjord-side fan delta. 

 

 

Figure 127: 3D oblique aerial view of the Russenes fjord-side fan delta showing the the delta contains the 
distinctive geomorphological elements of a fan delta. The image has been produced in ArcGlobe using the 
following datasets: 10 m DTM (avaliable at www.data.kartverket.no), aerial photographs Midt_Troms_2013 and 
TROMS_2006 (Table 1) and multibeam bathymetry (0.5 m resolution) (Corner and Eilertsen, 2013). Bathymetry 
map datum = lowest astronomical tide. 

5.4.2 Other Examples of Holocene Fan Deltas 
 

This study describes a postglacial fjord-side fan delta in Troms county, northern Norway. 

Investigation of the coastline of Troms county indicates that fjord-side deltas are common landforms, 

however, most of these deltas are common coarse-grained river deltas rather than fan deltas (G. 

Corner, per. Comm., 2017). For example, Figure 128C shows a small fjord-side fan-shaped delta with 

a glacier meltwater source in Lyngenfjord, however, the feeder system of this delta is a braided 

alluvial plain rather than an alluvial fan. Fan-shaped river deltas in Storfjord have been previously 

identified as cobbly, gravelly fan deltas (Corner, 1977). However, they are not true fan deltas because 

they do not have a subaerial alluvial fan (G. Corner, pers. comm., 2017). This raises some very 

important questions, such as: What are the favourable conditions for fan delta progradation? And 

what is the difference between the location of the Russenes fjord-side fan delta and other fjord-side 

river deltas in northern Norway?  

A few deglacial and postglacial fjord-side fan deltas have been described at other locations across 

Norway, such as Svalbard, Finnmark and western Norway. However, not all of these deltas can be 

considered true fan deltas according to the definition of Holmes (1965). For example, a deglacial 

glaciofluvial, fjord-side fan delta has been described in Varangerfjord in Finnmark, northern Norway 

by Postma and Cruickshank (1988). This fjord-side delta consists of steeply dipping delta foreset beds 

overlaid by a topset unit composed of beach sediment. However, an alluvial fan does not occur 

above the deltaic sediment and therefore, this fjord-side delta cannot be considered a true fan delta.  

http://www.data.kartverket.no/
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The physiographic setting of western Norway is similar to that of Troms county because steep 

mountains rise directly from the fjords. Consequently, mass movement processes have resulted in 

the redistributed of a lot of sediment in western Norway and some of this sediment has been 

deposited as debris-flow dominated colluvial and alluvial fans and fan deltas (Blikra and Longva, 

1995, Blikra and Nemec, 1998). For example, an array of debrisflow-dominated colluvial fan deltas 

are located along the western margin of Tomrefjord, in western Norway (Blikra and Longva, 1995, 

Blikra and Nemec, 1998) and several small alluvial and colluvial fan deltas have been deposited 

around Lovatnet lake, in western Norway (Hansen et al., 2016). These deglacial and postglacial fan 

deltas have a similar morphology to the Russenes fjord-side fan delta. For example, the alluvial or 

colluvial fans have a slope of 15 to 20° and display one main active channel. The present-day delta 

shoreline is located close to the delta slope (i.e. the intertidal region is narrow) and the delta slope is 

between 20 and 35° (Hansen et al., 2016). Therefore, the morphology of the fan deltas surrounding 

the Lovatnet lake indicate that the depositional processes are similar to the depositional processes of 

the Russenes fjord-side fan delta.  

 

Figure 128: A) Aerial photograph showing a large section of Troms county. The locations of photographs B, C and 
D are shown. B) Aerial photograph of a small fjord-side fan delta at Elsnes in Storfjord. C) Aerial photograph of 
the southern Lyngen alps. This area contains many cirque glaciers and a fan-shaped braided delta is shown 
within the red box. D) Aerial photograph of the northern Lyngen alps. No fjord-side deltas exist. All aerial 

photographs are from Google EarthTM. 

5.4.3 Comparison with Fjord-Head Deltas 
 

While fjord-side fan deltas are rare in northern Norway, fjord-head deltas are very common and have 

been widely studied. The Russenes fjord-side fan delta has many similarities with fjord-head deltas in 

Norway (Corner et al., 1990, Corner, 1998, Eilertsen et al., 2006, Eilertsen et al., 2011). For example, 

the delta rim, delta slope and prodelta morphogenic elements of the Russenes fjord-side fan delta 

are similar to the modern morphology of fjord-head deltas (Figure 129) (Corner et al., 1990, Corner, 

A) B) 

C) 

B 

C 

Study 

area 

D) 

D 
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1998, Eilertsen et al., 2011). Both types of deltas have a steep slope with a concave profile that 

decreases from 40 to 35° at the top of the slope to 3 or 4° at the bottom. This steep delta slope 

causes both types of deltas to have a Glilbert-type tripartite structure composed of topset, foreset 

and bottomset beds and therefore, the same types of subaqueous depositional processes occur 

within both deltas (Corner et al., 1990, Corner, 1998, Eilertsen et al., 2006, Eilertsen et al., 2011).   

 

Figure 129: Profiles across (A) the Alta delta and (B) the Russenes fjord-side fan delta, which allow the 
morphology of the subaqueous components of the deltas to be compared. Mean high and low water spring tide 
levels (MHWS and MLWS) are indicated on both profiles. The diagrams have different vertical exaggerations. (A) 
is reproduced from Corner et al. (1990). 

The main difference between a fjord-side fan delta and a fjord-head delta is the subaerial component 

of the deltas. Fjord-side fan deltas contain a steeply dipping subaerial alluvial fan, whilst fjord-head 

deltas contain a subaerial flatly lying alluvial plain. Additionally, the intertidal region of fjord-head 

deltas in northern Norway is an order of magnitude wider than the intertidal region of the Russenes 

fjord-side fan delta, which are 1.8 km and 200 m respectively.  

The progradational history of the Russenes fjord-side fan delta is also similar the history of many 

fjord-head deltas in northern Norway, such as the fjord-head deltas located at Målselv and Alta 

(Corner et al., 1990, Eilertsen et al., 2006, Eilertsen et al., 2011). For example, falling sea level created 

by glacio-isostatic uplift has supplied a high rate of sediment to the deltas during the Holocene. 

During the deglacial phase the progradation rate of both types of deltas was very high due to an 

abundant supply of sediment created by a high rate of glacio-isostatic uplift that caused extensive 

fluvial incision. Both types of deltas experienced lower rates of sediment supply and subsequent 

delta progradation during the postglacial period because the rate of sea level fall and fluvial incision 

decreased (Corner et al., 1990, Corner, 2006, Eilertsen et al., 2006, Eilertsen et al., 2011). However, 

the progradation rate of fjord-head deltas is two orders of magnitude higher than the progradation 

rate for the Russenes fjord-side delta. For example, the maximum progradation rate of the Målselv 

fjord-head delta is 44 m/year (Eilertsen et al., 2006) whilst with the maximum rate at Russenes is just 

0.26 m/year. The difference in the magnitude of delta progradation can be attributed to differences 

in the delta catchment size.  

A) 

B) 
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5.4.4 Sea level, climate and sediment supply 
 

It has been determined that the Russenes fjord-side fan delta is an unusual prograding coastal 

landform in Troms county because fjord-side fan deltas are uncommon. Deltas prograde in response 

to changes in sea level, climate and sediment supply, and therefore, these factors will be investigated 

to determine why the Russenes fjord-side fan delta has prograded into inner Balsfjord during the 

Holocene.  

5.4.4.1 Sea level fall 
 

Sea level has fallen during the progradation of the postglacial fjord-side fan delta due to glacio-

isostatic uplift. Sea level fall has resulted in fluvial incision to restore channel equilibrium and this 

process has had a large effect on the progradation rate of the Russenes fjord-side fan delta (Section 

5.3.2). The rate of sea level fall varies between the inner and outer fjord areas (Section 1.2.3.2), with 

the largest rate of sea level fall occurring in the inner fjord areas. Therefore, it is more likely that 

fjord-side fan deltas will be deposited in the inner fjord areas due to higher rates of fluvial incision.  

5.4.4.2 Climate 
 

The progradation of the Russenes fjord-side fan-delta could be related to the presence of the three 

cirque glaciers located within the catchment area because they have provided the fan delta with a 

source of water and sediment throughout the Holocene (Figure 2). Studies of the nearby cirque 

glaciers located in the Lyngen Alps show that they fluctuated during the Holocene and there was a 

period where the glaciers disappeared entirely in the mid-Holocene due to a warming known as the 

Holocene Thermal Optimum (Ballantyne, 1990, Bakke et al., 2005). The only Holocene cirque glacier 

moraines that have been identified above the study area are the Little Ice Age moraines, which show 

that the glaciers have retreated by approximately 600 m since the Little Ice Age. 

The effect that these glaciers had on fan delta progradation is examined through considering the 

primary methods of sediment transport and deposition within the fan delta. For example, there is a 

fjord-side fan delta located in Adventfjord, Svalbard, which was also located beneath tall mountains 

that hosted a cirque glacier during the early Holocene (Lønne and Nemec, 2004). It has been 

determined that progradation of the fan delta was directly related to the supply of seasonal 

meltwater and sediment from the cirque glacier because fan delta progradation ceased when the 

cirque glacier disappeared (Lønne and Nemec, 2004). However, the climate of Svalbard is very 

different to that of Troms county and consequently, the processes resulting to fan delta progradation 

are different. For example, rainfall is sparse in Svalbard and most of the flowing water is produced by 

meltwater during the summer months. Therefore, sediment transport within the fan delta in 

Adventfjord, Svalbard, occurred through meltwater induced alluvial and colluvial processes and the 

cirque glacier exerted a large control on fan delta progradation.  

However, the maritime sub-arctic climate of Troms county is a very different to the polar climate of 

Svalbard and the morphology of the present-day Russenes alluvial fan indicates that most of the 

sediment transport occurs during periods of flooding induced by intense rainfall (Section 4.1). It 

follows that although the cirque glaciers within the study area have provided the fjord-side fan delta 

with a large sediment supply, episodic floods have been the primary control on fan delta 

development. This conclusion is supported by an investigation into the effects of glacier variations on 

a Late Holocene alluvial fan in southern Norway by McEwen et al. (2011), which found that although 
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glacier variation was a major control on sediment supply, episodic floods were the primary control 

on alluvial fan development.  

5.4.4.3 Geographical location 
 

The inner fjord location of the Russenes fjord-side fan delta in Balsfjord has had a large effect of fan 

delta progradation. The present-day fjord-side fan delta is located 500 m from the fjord-head delta at 

Nordkjosbotn and consequently, the fjord is extremely shallow in this location with a maximum 

depth of 14 m. Therefore, there is a restricted accommodation space within the fjord, which has 

caused extensive progradation of the fan delta during the Holocene (Section 5.3). The inner fjord 

location of the Russenes fjord-side fan delta also provides a sheltered subaqueous depositional 

environment with low wave energy. This is confirmed by the formation of sea ice surrounding the 

delta during winter because sea ice only forms in the sheltered parts of the fjords in Troms county. 

This sheltered inner fjord environment causes the fan delta to be dominated by fluvial processes 

rather than wave and tidal processes.  

5.4.4.4 Summary 
 

The Russenes fjord-side fan delta has received a large sediment supply during the Holocene due to 

three factors: (1) rapid fluvial incision created by a falling relative sea level; (2) the presence of three 

small cirque glaciers within the catchment area; and (3) sediment supply from two different river 

catchments. The Russenes fjord-side fan delta also has a favourable climate for sediment transport 

because the fan delta has been subjected to infrequent intense rainfall events during the Holocene 

allowing for sediment transport by bedload processes. However, a lot of the fjord areas in Troms 

county were subjected to the same climate regime and sediment supply processes during the 

Holocene. Therefore, the main control on the progradation of the Russenes fjord-side fan delta 

compared with other fjord-side deltas in Troms county is the geographical location of the fan delta. 

The sheltered and shallow inner fjord setting in Balsfjord has resulted in the extensive forward 

progradation of the Russenes fjord-side fan delta, which has been accompanied by alluvial fan 

aggradation.  
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6 Conclusions 
 

A Quaternary Geological Map of the postglacial Russenes fjord-side fan delta and associated deglacial 

landforms has been produced during this study. Detailed mapping of the deglacial landforms has 

uncovered two previously undocumented deglacial ice-contact deposits located above the present-

day fan delta: (1) a submarine ice-contact fan; and (2) an ice-contact delta and rock-avalanche 

complex. These landforms were deposited simultaneously during a halt in retreat of the Balsfjord 

glacier at Russenes. The minimum age of the ice-contact landforms is 10 884 ± 96 cal. yr BP (1σ), 

which has been determined from radiocarbon dating of Balanus shells attached to rock-avalanche 

boulders within the ice-contact delta and rock-avalanche complex.  

Detailed mapping of a distinctive rock-avalanche complex located above the postglacial fjord-side fan 

delta indicates that it has been deposited by at least two different rock-avalanche events. The biotite 

garnet gneiss boulders that are located at the bottom of the rock-avalanche complex have been 

sourced from outside the catchment area and were transported on the Balsfjord glacier. These rock-

avalanche boulders were subsequently deposited as part of the ice-contact glaciofluvial delta. The 

gabbro and metagabbro boulders identified in the upper section of the rock-avalanche complex were 

deposited by a separate rock-avalanche event that originated in the mountains directly above the 

deposit. The timing of this event is unconstrained.  

Investigation of the present-day morphology of the postglacial Russenes fjord-side fan delta indicates 

that there are two distinctive depositional environments: (1) a subaerial alluvial fan; and (2) a 

subaqueous Gilbert-type delta. The steep present-day subaerial alluvial fan contains two perennial 

river channels that both have a braided character. Aggradation of the alluvial fan occurs by channel 

backfilling and avulsion. However, both rivers are currently predominantly downcutting through the 

alluvial fan and aggradation is restricted to two small active lobes at the river mouths. The present-

day subaqueous delta has three major environments: (1) a flatly lying intertidal delta platform; (2) 

steeply dipping subaqueous delta slope (40 to 20°); and (3) deep, subaqueous, gently dipping 

prodelta region. Sediment transport on the delta slope is dominated by cohesionless debris flows.  

Investigation of the subsurface structure the Russenes fjord-side fan delta shows that it has Gilbert-

type structure that is composed of three main elements: (1) bottomset sediment composed of 

massive and laminated silt and fine sand; (2) foreset sediment composed of steeply dipping beds of 

sand- and gravel-dominated sediment (35 - 20°); and (3) topset sediment that erosively overlies the 

foreset unit and is dominated by massive cobbly gravel.  

The progradation rate of the postglacial Russenes fjord-side fan delta corresponds with the rate of 

sea level fall and three different rates of delta progradation were observed: (1) fan delta 

progradation was initially very rapid in the early Holocene (0.26 m/year); (2) delta progradation was 

the slowest during the Tapes transgression; and (3) during the late Holocene the rate of delta 

progradation was between 0.1 and 0.17 m/year. Additionally, the morphology of the postglacial fan 

delta indicates that there were two different styles of delta progradation: (1) an initial valley-side 

delta progradation stage; and (2) a fan delta progradation stage following the Tapes transgression.  

Three factors have affected the development of the Russenes fjord-side fan delta are: (1) abundant 

sediment supply from the catchment area; (2) a favourable climate for periodic high-energy flooding; 

and (3) a shallow accommodation space. However, the main control on the formation of a fjord-side 

fan delta at Russenes is the sheltered and shallow inner fjord depositional setting that has promoted 

extensive delta progradation after the Tapes transgression.   
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Appendix 1: ArcGIS Methodology 
 

The ArcGIS 10.4.1 software was used extensively during the study. This is a very useful software 

package for displaying, analyzing and interpreting spatial datasets. Some of the different methods 

employed in ArcGIS to view and interpret the data used in this study are outlined below. 

Georeferencing field photographs 
 

A hand-held GPS was used during fieldwork to record the path or track taken each day. This GPS 

track records information about the time, location (coordinates) and elevation at each point along 

the track. Simultaneously, the time that each photograph was taken in the field is recorded in the 

photo’s metadata. Therefore, the field photos can be georeferenced by matching the time each 

photo was taken with the GPS track log. The Garmin BaseCampTM was used to georeferenced the 

photos as follows: 

1) Load GPS tracks into Garmin BaseCamp 

2) Right click on the GPS track > select the Geotag Photos using Track… > browse to the photo 

location 

Once the field photos have been geotagged with location information they can be imported into 

ArcMap as points using the “Geo Tagged Photos to Points” tool. This tool creates a point feature 

class in a geodatabase with each point representing a photo location and the photos can be attached 

to each point. The method is as follows: 

1) In ArcMap find the Geo Tagged Photos to Points tool. Go to Toolbox > Data Management 

Tools > Photos > Geo Tagged Photos to Points tool. 

2) Fill in the dialog box shown below by browsing to the location of the geotagged photos. 

 

3) When the process is complete the new point feature class will be added to your map.  



 

Page 148 of 164 

4) The photos can be viewed by clicking on the points with the HTML Popup tool as shown in 

the figure below.  

 

Adding field photos to your ArcMap project is a very powerful tool at assist with digitizing your 

map. 

DTM visualization and interpretation 
 

The Raster Surface Toolbox can be used to quantify and display different information about the 

terrain using a digital terrain model (DTM). To use the toolbox the raster elevation surface (DTM) 

needs to be used as the input, therefore, add the DTM to the ArcMap project. 

Hillshade creates a shaded relief image of the DTM. To view the DTM using the hillshade function: 

1) Windows > image analysis. The image analysis window will open. 

2) Fill in the following parameters (shown in the image below): 

- Highlight the DTM at the top of the window.  

- Check the DRA box 

- Choose a greyscale colour bar 

HTML tool 
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- Click the shaded relief button shown in the picture below. 

This will create the hillshade raster surface and add it to the ArcMap project. 

 

Alternatively, the hillshade tool can be used as follows Arc Toolbox > 3D analyst tools > Raster 

Surface > Hillshade. 

3) The azimuth and elevation of the light can be changed as follows: 

Right click on the hillshade layer > properties > functions > hillshade function (double click) 

> change the azimuth and elevation as required.  

The raster surface toolbox contains other useful tools including the “contour tool”, which produces a 

line feature class of contours based on the DTM and “slope tool”, which measures the gradient for 

each cell in the raster surface. 

The 3D analysis toolbar can be used to visualize the DTM in 3D through creating profile graphs and 

this data can be exported. The process is outlined below: 

1) View > toolbars > 3D analyst 

2) Select the digital terrain model from the drop down menu. 

3) Create a profile line using the interpolate line tool. 

4) Display the profile by clicking profile graph in the dropdown menu. 

5) To export the graph or data right click on the graph > export. 

Shaded relief button 
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The image above shows the 3D analyst tool bar and an example profile graph created using the DTM.  

Georeferencing maps in ArcMap   
 

Some of maps and aerial photographs used in this study did not contain special information. 

Therefore, this data needs to be manually georeferenced in order to be viewed and interpreted in 

ArcMap. The process is outlined below: 

1) Add the map or photograph to the ArcMap project. You will receive a warning that the data 

does not contain special information. Click OK.  

2) Add the georeferencing tool bar. View > toolbars > georeferencing. 

3) Select the dataset from the dropdown menu in the georeferencing tool bar.  

4) Click georeferencing > fit to display. This will make the dataset appear. 

5) Now you need to find points in the dataset that match points in a reference dataset/s that is 

already specially located (e.g. a different aerial photograph or map). These points could 

include buildings, roads, coastline etc.  

6) Use the “add control points” tool to mark these matching points. First click the point on the 

dataset with known spatial information. This will place a cross mark at the location. Then 

click on the same location in the undefined map or photograph. Repeat this step for different 

control points across the image. For best results the first four points should be located in the 

outer corners of the dataset.  

7) To check the accuracy of the georeferenced image click on the “view link table” button. The 

residual column shows how well the fit is between the true locations and the transformed 

location. Points with large residual values can be deleted from the table using the “delete link” 

tool to produce more accurate results.  

  

Interpolate line tool Profile graph tool 
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Appendix 2: GPR Profiles 
 

10 GPR profiles were collected across the study area and the locations of the GPR profiles are shown 

in the figure below. This appendix contains the uninterpreted GPR profiles and associated field notes.  

 

17 September 2016 

GPR profile Test 5 was acquired in the paddock to the east of the gravel pit. This profile has been 

relabelled to Russ 0. The location of the GPR line is shown below. It started at the gate at the top of 

the paddock and followed the track. It passed one power line post and ended at the second power line 

post.  
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The elevation change along the profile was 695 cm and the GPR profile needs to be corrected. A 

second profile was taken perpendicular to Russ 0 and commencing at the first pole however, the 

computer battery died during acquisition and therefore the line failed.  

 

 

5 October 2016 

GPR line Russ1 was collected above the gravel pit. The line started at the power pole and ended at 

the top of the rise when a battery stopped working and we lost the signal. The first section of the line 

was collected on flat terrain, whilst the slope increased towards the end as shown in the picture below.  

 

 

 

Start 

End 

Slope increase 

Slope starts 

Approx. end 
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14 October 2016 

Collected 8 GPR profiles were collected. The GPS tracks and line locations are shown below. 

 

GPR Profile Russ2 

The first three profiles (Russ2, 3 and 4) were collected in a continuous line and will be merged 

together during processing. Russ2 commenced on the alluvial fan and transitioned into the ice front 

deposit. It was stopped at the top of the mound just after the electricity poles. This part of the line is 

believed to be undisturbed by anthropogenic activities due to the thick vegetation cover.  

 

GPR Profile Russ 1 

Russ2 Russ3 Russ4 

Russ5 
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Line Russ3 

This line continued from Russ2 at the top of the ice front deposit and ended in the middle of the boggy 

section marked by GPS waypoint. This part of the line has clearly been disturbed by anthropogenic 

activity. It contains minimal vegetation and its appearance suggests material has been removed (i.e. it 

forms part of a gravel pit). From 30 m to 60 m the line is quite boggy/wet. 

 

Line Russ4 

This line continues from Russ3 to the top of a small mound beneath electricity poles. The material in 

the mound could be in its original position.  

 

GPR Profile Russ 2 

GPR Profile Russ 3 
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These three GPR profiles have been combined together to form one line shown below.  

 

 

GPR Profile Russ5 

This profile started at the top of the ridge beneath the power lines and followed the ridge down. It 

ended at the bottom of the second rise before the large boulders.  

 

GPR Profile Russ 4 
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GPR profiles Russ 6 and 7 

The next two lines were taken to assist with interpretation of the delta section observed in the river 

bed.  

 

GPR profile Russ 6 occurs parallel to the river. It started where the car was parked and ended where a 

ditch started to form on the east side of the line. The line is shown below.  

 

Russ 7 

End 

Start 

End 
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Russ 7 occurs perpendicular to Russ 6. And the start of Russ 7 is approximately 8 m south of Russ 6. 

Russ 7 changed direction slightly during the profile to end at the 3 orange markers.  

 

GPR profiles Russ 8, 9 and 10 

 

 

These lines were collected near the gravel pit to finish the work that was started with Russ 1. Three 

lines were collected. The first line, Russ 8, started to the east of Russ 1. It travelled over the cleared 

area above the gravel pit, up the shore notch and south across the vegetated area.  

Start 

Start 

End 

Russ 9 

End 

Start 

Russ 10 
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Russ 9 was taken perpendicular to Russ 8 from and the topography stepped down twice just before 

the end of the line.  

 

 

Russ 10 was taken over the fluvial terrace beside the gravel pit. It started from Stop 404 and went to 

the edge of the pit before the direction changed 90 degrees for the final 5 m of the line. All the lines 

are shown below.  
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Appendix 3: Grainsize Data 
 

The table below contains the grainsize information that was recorded for different sediment samples 

during fieldwork. The location of each grainsize sample was recorded as a waypoint using the hand-

held GPS (accurate to 3 m). The methodology for recording grainsize information is outlined in 

section Section 3.1.3. The faces codes are as follows: clay = L; silt = z; sand = s; gravel = g; cobbles = c; 

and boulders = b. 

Longitude  Latitude Grainsize 
Mode 
(cm) 

Maximum 
grainsize 
(cm) 

Composition  Description Location 
description 

19.488113 69.214668 
 

7 60ms/10cs/5L/15g/10c Cobbly 
gravelly sand 

Terrace 
slope 

19.48622 69.213656 
 

20 100fs Sand Terrace 

19.485767 69.213452 1.5 6.5 60fs/40c Fine sand 
with cobbles 

Terrace 

19.487149 69.213836 
 

9 70cs/15g/15c Cobbly 
gravelly sand 

Terrace 
slope 

19.487149 69.213836 
 

9 70z/30c Silt with 
cobbles 

Terrace 
slope 

19.489037 69.213952 
 

5 70cs/15g/15c Cobbly 
gravelly sand 

Gravel pit 

19.489037 69.213952 
 

5 80z/20g Silt with 
gravel 

Gravel pit 

19.478127 69.217641 1 9 25cs/25vcs/25g/25c Cobbly 
gravelly sand 

Gravel pit 

19.498464 69.217167 
 

50 80cs/20c Cobbly sand Terrace 
slope 

19.49495 69.218546 3 8 60cs/20g/20c Cobbly 
gravelly sand 

Beach 

19.489987 69.220809 1 
 

30cs/20vcs/50g Sandy cobbly 
gravel 

Terrace 

19.506145 69.214633 
 

15 30cs/50g/20c Sandy cobbly 
gravel 

Terrace 
slope 

19.475835 69.217144 1.5 6.5 50cs/30vcs/20c Gravelly sand River bank 

19.474398 69.214786 
 

6 50ms/20cs/15g/15c Cobbly 
gravelly sand 

Gravel pit 

19.472802 69.214719 2 15 50cs/25g/15c Cobbly 
gravelly sand 

Gravel pit 

19.47039 69.214603 5 25 20ms/30cs/20vcs/30g Gravelly sand Rockslide 

19.470824 69.214944 
 

7 10ms/40cs/20vcs/30g Gravelly sand Gravel pit 

19.47394 69.213112 
 

10 30z/30fs/20cs/30g Gravelly silty 
sand 

River bank 

19.461336 69.211212 
 

6 20L/50z/20fs/20c Cobbly sandy 
silt 

Rockslide 

19.467127 69.214871 
 

20 100fs Fine sand 
with boulders 

Terrace 

19.464539 69.215162 
 

14 50fs/30z/20L Gravelly silty 
sand 

Terrace 
slope 

19.470379 69.213894 
  

80z/20fs Sandy cobbly 
silt 

Rockslide 

19.471757 69.214276 
  

70fs/20z/10g Silty cobbly 
sand 

Rockslide 

19.470281 69.220123 1.5 19 20ms/30cs/20vcs/30g Gravelly sand beach 
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19.467603 69.219929 
 

4 40ms/30cs/20vcs/10g Gravelly sand beach 

19.465211 69.219518 
 

5 70vfs/20L/10c Cobbly sand 
 

19.464529 69.218888 
 

4 70vfs/20L/10c Cobbly sand 
 

19.461539 69.218678 1.5 4 50L/40z/10fs Silty gravelly 
sand 

 

19.460544 69.218293 2 22 40vfs/10fs/40z/10c Silty gravelly 
sand 

 

19.456929 69.217571 1.5 5 30ms/30cs/30g Gravelly 
cobbly sand 

Terrace 

19.454789 69.216917 
 

5 20fs/50z/30L Silty gravelly 
sand 

 

19.455657 69.217854 
 

16 20fs/50z/30L Cobbly sandy 
silt 

Terrace 

19.45691 69.219951 1.5 13 20clay/20silt/30fs/30ms/10g Silty gravelly 
sand 

 

19.481629 69.214918 11 2 50ms/20cs/10vcs/20g Gravelly 
cobbly sand 

Terrace 
slope 

19.48139 69.214353 2 
 

80fs/10cs/10g Gravelly sand Terrace 

19.480264 69.212355 
  

20L/50z/30fs Sandy silt 
 

19.482409 69.210091 
 

7 30L/40z/20fs/10c Sandy silt 
 

19.483754 69.211954 
  

100fs Sand 
 

19.482509 69.212788 
 

8 10L/10z/50fs/10cs/20g Gravelly silty 
sand 

 

19.480321 69.213536 
  

60z/30vfs/10g Sandy 
gravelly silt 

 

19.488037 69.215783 
  

20z/30ms/20cs/30g Gravelly silty 
sand 

Ridge 

19.49184 69.214393 2 11 20fs/50ms/10cs/20g Gravelly sand Gravel pit 

19.490979 69.213973 
  

100ms Sand Gravel pit 

19.490979 69.213973 
 

8 30ms/30cs/20g/10c Gravelly 
cobbly sand 

Gravel pit 

19.490248 69.213173 
  

20L/50z/30fs Silty sand 
 

19.49015 69.212502 
  

80ms/30g Gravelly sand 
 

19.490647 69.211956 
  

100ms Sand 
 

19.49211 69.211606 
  

10L/20z/70fs Silty sand Terrace 

19.495816 69.213315 
  

20L/50z/30fs Sandy 
gravelly silt 

 

19.470275 69.215406 1 14 30ms/20cs/20vcs/30g Gravelly sand Gravel pit 

19.469522 69.2155 
  

20L/50fs/20cs/10g/10c Cobbly 
gravelly sand 

Gravel pit 

19.469001 69.214774 
  

20z/30fs/20ms/15g/15c Cobbly 
gravelly sand 

Rockslide 

19.468516 69.214547 2 18 20L/50z/30fs Sandy cobbly 
silt 

Valley 

19.468504 69.214262 
  

20L/40z/40g Gravelly 
sandy silt 

Rockslide 

19.467869 69.214317 
 

15 50fs/20z/30g Gravelly silty 
sand 

 

19.46958 69.212585 
  

20L/80z Silty gravelly 
sand 

Rockslide 

19.47222 69.216194 2 
 

10L/70fs/20c Cobbly sand 
 

19.473788 69.217244 
 

7 20ms/20cs/20vcs/40g Gravelly 
cobbly sand 

 

19.472922 69.218887 
 

200 B 
 

River bar 
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19.472425 69.221615 
  

60z/20fs/20L Sandy silt Delta bar 

19.472425 69.221615 
  

100L Clay Delta bar 

19.472425 69.221615 
 

4 60cs/40g Gravelly sand Delta bar 

19.472365 69.22138 2 6 
 

Clay with 
gravel  

Delta 
channel 

19.472198 69.221326 0.75 
 

100ms Sand Delta bar 

19.472198 69.221326 
  

50fs/50z Silty sand Delta bar 

19.472198 69.221326 1 
 

60cs/40g Gravelly sand Delta bar 

19.472009 69.221184 
  

80fs/20L Sandy clay Delta bar 

19.472009 69.221184 1.5 4 60g/30vcs/10cs Sandy gravel Delta bar 

19.47165 69.220844 1 3 100g Gravel Delta bar 

19.471673 69.220817 2 8 100g Gravel Delta bar 

19.471381 69.220713 3 11 100g Gravel  Delta bar 

19.470997 69.220406 3 7 70g/30ms Sandy gravel Delta bar 

19.471042 69.22031 5 25 100g Cobbly gravel Delta bar 

19.47132 69.220204 0.5 2 50vcs/50g Sandy gravel River bank 

19.47132 69.220204 
 

7 10L/60cs/30c Cobbly stily 
sand 

River bank 

19.47098 69.220252 1 5 70g/30cs Sandy gravel Delta bar 

19.471017 69.220166 3 5 100g Gravel Delta bar 

19.470734 69.220178 5 10 50g/30c/20cs Sandy cobbly 
gravel 

Delta bar 

19.47101 69.220039 8 30 
 

cobbles with 
fine sand 
matrix 

River bar 

19.471433 69.219696 11 15 
 

boulders with 
medium sand 
matrix 

River bar 

19.472339 69.219143 4 14 70cs/30g Gravelly sand River bar 

19.473401 69.219362 6 10 20cs/40g/40c Cobbly sandy 
gravel 

River bank 

19.473402 69.219238 7 40 
 

Boulder with 
fine sand 
matrix 

River bar 

19.473856 69.219001 4 12 50g/50cs Sandy gravel River bar 

19.474141 69.218958 4 30 50g/20cs/30vcs Sandy gravel River bank 

19.474311 69.218797 6 20 
 

Boulders 
with a coarse 
sand martix 

River bar 

19.475086 69.218323 10 30 60cs/40g Sandy gravel River bar 

19.476093 69.217639 10 50 
 

Boulders 
with very 
coarse sand 
matrix 

River bar 

19.476073 69.217586 
  

40fs/40ms/20c Cobbly sand River bank 

19.475904 69.217353 4 10 50ms/30cs/20c Cobbly sand River bank 

19.476092 69.217069 14 35 
 

Boulders 
with coarse 
sand matrix 

River bar 

19.476378 69.216968 
 

20 
 

Boulders 
with coarse 
sand matrix 

River bar 
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19.476403 69.216612 2 30 
 

Boulders 
with very 
coarse sand 
matrix 

River bar 

19.476341 69.216271 
 

50 50g/50vcs Sandy gravel River bank 

19.476729 69.216143 20 40 
  

River bar 

19.47685 69.216041 10 15 
 

Boulders 
with coarse 
sand matrix 

River bar 

19.476325 69.221059 2 8 60g/40cs Sandy gravel Terrace 
slope 

19.476325 69.221059 
  

60z/40fs Sandy silt Terrace 
slope 

19.477584 69.2213 4 14 50ms/30c/20g Cobbly 
gravelly sand 

Terrace 
slope 

19.481306 69.222223 2 4 20cs/80g Sandy gravel Beach 

19.483437 69.222755 4 15 100g Gravel Delta 
channel 

19.483806 69.222772 2 9 70g/30cs Sandy gravel Delta bar 

19.485113 69.222725 4 15 80g/20vcs Sandy gravel Delta 
channel 

19.486377 69.22219 5 20 
 

Cobbles with 
coarse sand 
matrix 

River bar 

19.486592 69.221829 5 30 
 

Cobbles with 
medium sand 
matrix 

River bar 

19.486159 69.221547 15 17 
 

Boulders 
with find 
sand matrix 

River bank 

19.485804 69.221118 4 50 
  

River bank 

19.4859 69.220011 5 30 
 

Boulders 
with medium 
sand matrix 

River bar 

19.485906 69.219789 10 25 
 

Boulders 
with fine 
sand matrix 

Tributary 
channel 

19.486449 69.219309 4 15 60cs/40g Gravelly sand River bar 

19.48516 69.218842 5 30 
 

Boulders 
with fine 
sand matrix 

Tributary 
channel 

19.485296 69.218744 10 20 
  

River bank 

19.484989 69.218148 15 25 
 

Boulders 
with medium 
sand 

River bank 

19.484233 69.217665 2 7 20cs/70g Sandy gravel Tributary 
channel 

19.484233 69.217665 10 60 
 

Coarse sand Tributary 
channel 

19.483446 69.217371 3 20 60cs/30c Cobbly sand River bank 

19.483446 69.217371 5 20 
 

Boulders 
with medium 
sand 

River bed 

19.483258 69.217258 
 

7 100ms Sand River bank 

19.483258 69.217258 
 

3 70vcs/30g Gravelly sand River bank 
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19.483841 69.217112 8 20 
  

River bar 

19.48447 69.216523 6 25 
  

River bar 

19.484173 69.216369 15 30 
 

Boulders 
with fine 
sand matrix 

Tributary 
channel 

19.483542 69.21586 20 15 
  

River bar 

19.473262 69.216977 1 7 60cs/40g Gravelly sand Gravel pit 

19.472186 69.216978 1 10 60cs/40g Gravelly sand Gravel pit 

19.468709 69.213604 15 70 
  

Rockslide 

19.474704 69.213963 
 

200 
 

Boulders 
with coarse 
sand matrix 

River bed 

19.474633 69.213409 
 

55 
 

Boulders 
with gravel 
matrix 

River bed 

19.473763 69.212877 6 10 
 

Boulders 
with fine 
sand matrix 

River bank 

19.473453 69.212545 
  

30g/50cs/30z Gravelly silty 
sand 

River bank 

19.504177 69.215881 20 75 
  

Beach 

19.504177 69.215881 3 12 60vcs/40g Gravelly sand Beach 

19.502757 69.21618 50 135 
  

Beach 

19.502757 69.21618 1.5 12 80cs/20g Gravelly sand Beach 

19.501957 69.21636 1.5 65 70g/30cs Sandy gravel Beach 

19.501288 69.216566 60 100 
  

Beach 

19.501288 69.216566 1 10 
 

coarse sand Beach 

19.500425 69.216733 20 105 
  

Beach 

19.500425 69.216733 2 20 
 

Cobbles with 
coarse sand 
matrix 

Beach 

19.49868 69.216922 6 40 
 

Cobbles with 
gravel matrix 

Beach 

19.498637 69.216959 1 20 70g/30c Cobbly gravel Beach 

19.498637 69.216959 3 20 80g/20cs Sandy gravel Beach 

19.498157 69.217249 8 40 
  

Beach 

19.498157 69.217249 3 8 
 

Cobbles with 
coarse sand 
matrix 

Beach 

19.497051 69.217704 3 15 70vcs/30g Gravelly sand Beach 

19.496171 69.218001 8 20 
 

Boulders 
with gravel 
matrix 

Beach 

19.496171 69.218001 3 15 
 

Boulders 
with gravel 
matrix 

Beach 

19.495189 69.218351 25 35 
 

Boulders 
with gravel 
matrix 

Beach 

19.495189 69.218351 2 10 
 

Cobbles with 
coarse sand 
matrix 

Beach 

19.494245 69.218823 3 10 70g/30cs Sandy gravel Beach 
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19.493683 69.219327 2 14 50cs/50g Sandy gravel Beach 

19.49295 69.220497 5 15 
 

Gravelly sand Beach 

19.492353 69.220917 
 

3 80cs/30c Cobbly sand Terrace 
slope 

19.492353 69.220917 4 30 50vcs/50g Sandy gravel Terrace 
slope 

19.492474 69.221066 4 15 
 

Gravelly sand Beach 

19.492237 69.221523 1 5 
  

Beach 

19.492237 69.221523 2 15 
  

Beach 

19.491797 69.221831 1 3 
 

Sandy gravel Beach 

19.49105 69.22188 1.5 4 70g/30cs Sandy gravel Delta 
channel 

19.490788 69.221902 0.5 5 80g/20cs Sandy gravel Delta bar 

19.490986 69.222053 
  

70cs/30g Sandy gravel Delta bar 

19.491149 69.222084 3 6 50g/50cs Sandy gravel Delta bar 

19.490007 69.221915 2 3 30cs/70g Sandy gravel Beach 

19.490053 69.222128 
 

3 80cs/20g Gravelly sand Beach 

19.48986 69.222434 3 10 70g/30cs Sandy gravel Beach 

19.487995 69.222601 4 27 
 

Cobbles with 
fine sand 
matrix 

Delta 
channel 

19.487485 69.222596 3 15 
 

Gravelly sand Beach 

19.486697 69.222667 3 5 
 

Gravel Delta bar 

19.486413 69.222574 7 20 
 

Boulders 
with coarse 
sand matrix 

Delta bar 

19.486987 69.223134 2 10 
 

Cobbles with 
coarse sand 
martrix 

Delta bar 

19.486993 69.223589 3 10 
 

Cobbles with 
medium sand 

Delta bar 

19.485433 69.223383 4 15 
  

Delta bar 

19.484574 69.223316 3 15 
  

Delta bar 

19.471834 69.220486 2 15 50g/50cs Gravelly sand Beach 

19.47197 69.220655 1 4 
  

Delta 
channel 

19.47352 69.220897 3 6 
 

Cobbles Beach 

19.473637 69.220836 1 4 
 

Gravelly sand Beach 

19.473704 69.220791 2 7 
  

Beach 

19.475822 69.221075 20 30 
 

Gravel Beach 

19.47751 69.221303 3 15 60ms/40g Gravelly sand Terrace 
slope 

19.478455 69.221526 4 20 
 

Cobbles with 
gravel matrix 

Beach 

19.478851 69.22154 3 10 
 

Conglomerate Terrace 
slope 

19.479319 69.221748 2 12 
 

Gravel beach 

19.48105 69.222278 1 4 
 

Sandy gravel Beach 

19.483502 69.22247 2 12 
  

Beach 

19.483625 69.222443 1 8 
 

Gravel Beach 

 


