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SUMMARY

Enzymes are protein molecules that accelerate, or “catalyze”, specific chemical reactions. The
reacting molecules, or substrates, bind to the enzyme which then enables their effective conver-
sion into different product molecules. Virtually all metabolic processes in the cell need enzymes
to occur at speeds fast enough to maintain life.

The kinases are a large group of phosphotransferases, i.e. enzymes which catalyze the transfer
of the gamma-phosphate group from an ATP, as (phosphate donor) to a hydroxyl group (accep-
tor) of specific substrates. Protein kinases transfer the phosphate groups to other proteins as
substrates. These processes enable the cell to transfer signals between different components of
the cell that control essential processes. Tyrosine protein kinases transfer them to the phenolic
hydroxyl group of amino acid residues in proteins called tyrosine, while serine/threonine protein
kinases transfer the phosphate groups to the alcohol group of the serine or threonine amino acid
residues.

Protein kinases also represent a key interest in the pharmaceutical industry, because they are
considered therapeutic targets for diseases, including e.g. diabetes, neurodegenerative diseases,
Alzheimer’s disease, herpes simplex virus infection, malaria, but especially for cancer. Since the
year 2001, some 30 cancer drugs that block the activity of cancer causing protein kinases have
been approved.

This project describes basic chemical research of protein-ligand interactions, using key cancer
drug targets as model enzymes. The research is designed to advance basic knowledge of the
chemical recognition mechanisms of enzymes, and enable the design of new and improved
therapeutic inhibitors.

The first part of this work, represented by two published papers and two manuscripts, ana-
lyzes inhibitor interactions in key tyrosine protein kinases involved in cancers, including ABL1
(a leukemia target) and EGFR (a lung cancer target). These analyses optimize approaches to

identify new inhibitors with potentially improved protein kinase inhibition profiles to forestall
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the development of drug resistance. The second manuscript analyses the geometric variability of
a key amino acid residue of protein kinases that is often involved in drug resistance generation.
The second part analyses the ATP and potential inhibitor binding site of a different class of
enzyme involved in cancer, a “heat shock protein”.
The key technologies used in this project are chemical synthesis; enzyme purification, crys-

tallography, SPRspectroscopy, and molecular modeling.
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INTRODUCTION

Ongoing “structural genomics” research efforts aim to follow up on complete genome determi-
nations of DNA and protein sequences by catalog in addition the three-dimensional structures
of the expressed proteins (Grabowski et al., 2016; Gagna and Clark Lambert, 2007; Chandonia
and Brenner, 2000). In contrast to this, efforts to understand the structural and chemical recogni-
tion mechanisms that govern ligand-protein interactions (referred as “chemogenomics”) require
much more detailed knowledge, including detailed empirical studies of multiple ligand-protein
complex structures and variations of closely related complexes (Medina-Franco et al., 2013;
Rognan, 2013; Bredel and Jacoby, 2004). The Emil Fisher metaphor of a “lock and key” mech-
anism describes the fact that an enzyme, as “lock”, recognizes and captures the right ligand, as
“key”, out of innumerable alternative possibilities (Fischer, 1894).

However, this metaphor does not do justice to the fact that both “lock™ and “key” are flexible,
and interact via a complex variety of chemical interactions, not simply by a steric fit. This
behavior has been known for some time (for example (Lauria et al., 2012; Engh et al., 1996))
and remains a central research area (see for example (Persch et al., 2015; Li et al., 2013a; Meyer

et al., 2003; Perlstein, 2001)).

1.1 ATP DEPENDENT ENZYMES

Adenosine triphosphate (ATP) dependent enzymes share the property of ATP binding, but dif-
fer considerably in protein fold and function (Gold and Jackson, 2006). From a chemogenomic
point of view, whereby inhibitor-binding profiles determine interrelatedness, their similarities
diverge rapidly into families that share overall folds that make up the ATP binding sites, roughly
reflecting overall sequence similarities (Brakoulias and Jackson, 2004).

The protein kinases represent one of these families, some others are from heat shock proteins
(HSPs) (Deutscher and Saier, 1983; Hoffmann et al., 2004). Many key targets in cancer drug
research can be found among the protein kinases and HSPs (Khajapeer and Baskaran, 2015).

Differences between the architectures of the ATP binding sites separate them clearly into distinct
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groups, but common scaffolds can also be found among inhibitors now in clinical trials as well
(Cavanaugh et al., 2015).

There are more than 500 protein kinases in the human genome, and a multiple of this when
considering the diversities introduced by alternate splicing, post translational modifications, mu-
tations, etc (Manning et al., 2002). The common fold of their catalytic domains, whereby the
ATP pocket is formed at the intersection of two lobes linked by a hinge segment, first suggested
that inhibitors could not be specific enough to be good inhibitors (Zhu et al., 2005). This is not
the case however, and several kinase inhibitors are approved as drugs, and more are on the way
(Garber, 2006).

However, selectivity remains a key parameter, and current research now is beginning to iden-
tify empirically both positive and negative selectivity patterns (e.g. (Force et al., 2007)). A gen-
eral rule for protein kinase binding has been the so-called Donor Acceptor Donor rule, character-
izing optimal hydrogen bonding pattern between the inhibitor and backbone atoms of the hinge
region (see e.g. (Noble et al., 2004)).

However, as the database of binding interactions increases, exceptions have been found for
most of the canonical rules for binding such as a glycine residue allowing a reversal of the
rule and generating exquisite selectivity: Structural basis for p38a Mitogen-Activated Protein
(MAP) kinase quinazolinone and pyridolpyrimidine inhibitor specificity, (Fitzgerald et al., 2003)
many more are certain to be discovered. In contrast to protein kinases, fewer heat shock protein
inhibitors are in clinical trials, and there is a smaller chemogenomic database (Cavanaugh et al.,
2015).

The ATP binding pocket of HSPs is constructed differently from protein kinases, and is thus
chemogenomically distinct, but the common ATP binding property demonstrates a similarity as
well. Many ligands, especially small weak binding ligands, have a good propensity for cross
reactivity (Jones et al., 2016). HSP70 play key roles in proteostasis, and recent studies verify
HSP70 as an emerging drug target (Evans et al., 2010; Goloudina et al., 2012; Kumar et al.,
2016). HSP70 is an ATP-dependent molecular chaperone, X-ray structures of the HSP70 nu-
cleotide binding domain show the ATP pocket and Adenosine diphosphate (ADP) binding ge-
ometries; however, the nucleotide binding domain has been crystallized without a bound ATP

pocket, and there is evidence that ATP binding alters the structure (Shida et al., 2010).
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Further, ATP/ADP and peptide substrate binding are cooperative in specific ways, and X-ray
and Nuclear magnetic resonance (NMR) studies on multidomain constructs of HSP70 do not
match with respect to relative domain geometries (Zuiderweg et al., 2013). Thus, protein kinases
and heat shock proteins both show considerable flexibility associated with inhibitor binding.
Crystal structures need to be analyzed with this in mind, and thus research into inhibitor binding
must include techniques whereby the extent of flexibility can be estimated. Possible rigidifying
or other effects of crystal packing must be taken into account. To ensure that binding studies are
relevant to in vivo structures, in vitro studies are required to validate the equivalence of model

systems to actual targets.

1.1.1 Protein kinase

Protein kinases are a large group of phosphotransferases, enzymes that catalyze the trans-
fer of a phosphate group. Protein kinases transfer the phosphate group from an adenosine-5-
triphosphate (ATP, as phosphate donor) to a hydroxyl group (acceptor) of specific protein sub-
strates (Johnson and Lewis, 2001). This process is a key mechanism by which the cell may
transfer signals that control essential processes of the cell (Lemmon et al., 2016; Kholodenko,
2006; Bossemeyer et al., 1993).

Tyrosine protein kinases transfer the phenolic hydroxyl group of amino acid residue called
tyrosine, while serine/threonine protein kinases transfer the phosphate groups to the alcohol
group of the serine or threonine amino acid residues. The serine/threonine kinases are classify
into AGC, CAMK, CK1, CMGC, STE and TKL groups (Fig 1); several kinases may act as both
tyrosine or serine/threonine protein kinases.

Protein kinases were first discovered in the late 1950s by Krebs and coworkers while investi-
gating the glucose metabolism in the liver. They showed that molecular signaling is switched on
by an enzyme which phosphorylated glycogen phosphorylase (Krebs et al., 1959). This was the
first protein kinase to be purified and characterized (Fischer, 2010), for which the Nobel Prize
in Medicine was awarded to Krebs and Fischer. It took 10 more years to discover the next pro-
tein kinase, the second messenger Cyclic adenosine monophosphate (cAMP) dependent protein

kinase (or protein kinase A) (Walsh et al., 1968).
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Later, in the 1970s, the viral oncogene Src, which encoded for proto-oncogene tyrosine kinase
src was discovered (Collett and Erikson, 1978), showing the first connection between kinase

activity and cancer development.

CAMK

Figure 1: Human kinases used in this thesis illustrated (as caps, color coded and underlined according

to the target name) using phylogenetic tree from (Chartier et al., 2013; Manning et al., 2002).
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Over the next 10 years much protein kinase research focused on the protein phosphorylation
mechanism and their signaling effects in eukaryotic cells (Krebs, 1985). The first crystal struc-
ture of protein kinase A helped researchers to design drugs for treating cancer (Knighton et al.,
1991; Bossemeyer et al., 1993) already helped researchers to design protein kinase inhibitor
drugs, and approvals for therapeutic use came soon afterwards, with HA-1077 (Asano et al.,
1989) in 1995; Imatinib (Gleevec) in 2001 (Druker and Lydon, 2000).

Sequencing the human genome determined that about 1.7% of the protein encoding genes
transcribe to protein kinases, with the total set referred to as the kinome, comprising over 500
members (Fig 1) (Manning et al., 2002). Alternate splice variants generate a multiple of this in
healthy cells, while mutations and pathological splice variants increase the number manyfold.
This signaling is directly involved in regulation of eukaryotic cell function, while uncontrolled

signaling may lead to cancer or other diseases (Cui et al., 2014; Brognard and Hunter, 2011).

Protein kinases and drug targets

There is evidence that many diseases, mostly frequently cancer, are linked with abnormal ac-
tivity of protein kinase (Blume-Jensen and Hunter, 2001) and frequent mutations in tumors are
often identified as involving kinases (Lin et al., 2007; Wood et al., 2007). As cancer involves
unregulated proliferation of cells, often combined with other altered properties such as loss of
tissue differentiation properties (as in adhesion) and insensitivity to apoptosis (programmed cell
death) signals, dysregulation of the kinases involved in the relevant signaling networks is quite
naturally a common mechanism for the disease. With the approval of the ABL kinase inhibitor
imatinib as a highly successful therapy for (Chronic myelogenous leukemia (CML), (Druker
and Lydon, 2000)), kinase inhibitors became one of the most interesting drug targets against
cancer (Somerville, 2002). By 2015, 28 small molecule kinase inhibitors have approved by the
US Food and Drug Administration (FDA), of which half of those were approved since 2012
(Wu et al., 2015), showing the growth of this drug design area.

The morphology of protein kinases

The domain structures and amino and carboxy termini of the protein kinases vary in sequence,
length and structure. The architecture and catalytic residues of the core kinase domain are highly
conserved. It consists of an amino (N)-terminal lobe and a carboxy (C)-terminal lobe. As shown

in (Fig 2) the N-terminal lobe is the smaller part of the kinase domain and consists of about 100
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amino acids folded into 5 beta sheets and one highly conserved alpha-helix. The C-terminal lobe
is mostly alpha helical and forms the substrate peptide binding site. The ATP binding pocket is
nestled between the N and C terminal lobes, and notably is adjacent to the “hinge” segment that
links the two lobes. This segment contains hydrogen bonding donors and acceptors that bind to
ATP and also to most inhibitors (Chico et al., 2009).

Glycine-
rich loop

N-terminal domain

C-helix

Activation
loop

C-terminal domain

Nature Reviews | Drug Discovery

Figure 2: Structural morphology of protein kinase catalytic core. Figure from (Chico et al., 2009).

The gamma phosphate of ATP, the energy carrier group of the molecule, is also the phosphate
which is transferred to the substrate protein. This transfer of charged phosphate group to the
amino acid (Ser,Thr,Tyr etc) typically causes conformational changes in target protein (Schom-
burg et al., 2005), often at the activation loop of a protein kinase as substrate. Other changes may
involve protein complexation interface properties. The modification affects function of protein

as a molecular switch (on or off, depending on protein and phosphorylation site), with the switch
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modulating enzyme activity, protein or membrane interaction properties, structural stability, or
other properties (Taylor et al., 2012).

Most kinase inhibitors are ATP competitive, inhibiting enzyme activity by blocking the ATP
site, including the hinge binding interactions, shape and ability to make polar interactions and
the large surface area of ATP binding pocket helps to design tight affinity compounds (Zhang
et al., 2009).

The ATP binding architecture of protein kinases is highly conserved among human protein
kinases, making it seem difficult to design specific and selective inhibitor for the target pro-
tein. However, differences in regulatory mechanisms involving different inactive conformations
provides one mechanism for selective targeting (different states involving transitions known as
DFG-in/out, C-helix in/out, active/inactive, and activation loop conformational changes), and

categorize inhibitor types (Fig 3).
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Figure 3: Ligand induced structural subdomain flexibilities in protein kinase (grey cartoon). a-e,b-f
are Type I inhibitors inducing a DFG-in conformation. c-g is a Type Il inhibitor with DFG-out
conformation. d-h is a Type III inhibitor bound in the allosteric pocket of the kinase domain

(Bernard-Gauthier et al., 2015).

Protein-ligand interactions typically include a network of interdependent interactions, requir-
ing detailed analyses to predict the effects of changes to binding strengths from e.g. of protein
mutation or competitive ligand binding (Andrews and Bray, 2004). They depend on the spatial

arrangement of ligand binding chemical groups in the protein surface, which in turn will have



INTRODUCTION

further interactions within the inner core of the protein, all of which will affect the binding site
specificity of the target. One of the most familiar non-covalent interactions critical in this inter-
action network is the largely electrostatic interaction of hydrogen bonding. These ionic interac-
tions involving partial sharing of a hydrogen atom between ligand and protein chemical groups
links the hydrogen bond donor and acceptor to distances of less than 3.5 A. Hydrogen bond-
ing between chemical groups of complementary charge creates so-called “salt bridges”. This
type of charge facilitated hydrogen bond interactions is seen in many protein-ligand complexes
(Hubbard, 2010).

A key interaction between non-polar side chain amino acid and lipophilic ligand groups is the
hydrophobic interaction. Compared to H-bonding, hydrophobic interactions do not enforce par-
ticular orientations for specific chemical groups; instead, lipophilic surfaces of various shapes

may match between protein and ligand, contributing significantly towards binding affinity.

Figure 4: Crystal structure of WZ4002 in complex with EGFR T790M mutant (PDB ID: 3IKA (Zhou
et al., 2009)). H-bond interactions showed as red lines between hinge Met793 and WZ4002.
Cys797 — covalent bond is shown in magenta at the acrylamide moiety. Met790 is the “gate-
keeper” residue of this drug resistant mutation of EGFR, showing a hydrophobic interaction

with the chlorine atom of WZ4002.
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The affinity arises mostly from the displacement of water molecules from the respective
lipophilic surfaces and their consequent energetically favorable removal to bulk water (Matthews,
2001). Examples of hydrogen bonding and other interaction types are shown in (Fig 4)

H-bond interactions at hinge binding is a virtual necessary for tight binding for a ligand at
the ATP binding pocket of protein kinases. Even tighter binding may arise from covalent inter-
actions; these require however sufficient affinity in a non-covalent binding mode for a reaction
to occur. In the case of EGFR, an acrylamide moiety (Liu et al., 2013), a reactive electrophilic
group, targets cysteine 797 to enable covalent binding of inhibitor WZ4002. The halogen inter-
action with methionine in the gatekeeper position was an important hydrophobic interaction to
address specificity (Fig 4).

For the scope of my PhD project, we focused on opportunities to derive key selectivity de-
terminants from assessments of all available structural and ligand binding information to move
toward polypharmacological (simultaneous) targeting of Alk, Met, EGFR, and the drug resistant
mutant T790M (Fig 1), all important targets in lung cancer. Crizotinib is known as cross reactive
inhibitor of Alk and Met, and covalent inhibitors of EGFR were emerging, so all targets are vali-
dated approaches, and targeting them in combination would potentially synergistically combine
efficacy with expanded patient populations and prevention of drug resistance. Although the ap-
proach is ambitious, it seems clear that optimized target profiles has become the top priority for
new drug design, becoming feasible considering the extent of knowledge of the protein ligand
interactions (Fig 4) that determine the selectivity and specificity towards protein kinase targets.

One aspect of this is the dependence of protein target side chain geometries and flexibilities
on inhibitor binding. We analyzed the distributions of rotamers and spatial coordinates of gate-
keeper methionine side chains and how they are correlated to inhibitor binding (Fig 4). These
studies should aid the design of new protein kinase inhibitors against gatekeeper methionine
protein kinases as part of strategies against new targets, drug resistant targets, or targets as part

of a polypharmacological target profile.

1.1.2 HSP70
For robustness, cells must be able to respond to variations in environmental conditions; one
important response must be to control effects of changes in temperature. Heat stress, for ex-

ample during exercise and elevation of the core body temperature, leads to upregulation of the
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expression of so-called heat shock proteins (HSPs). HSPs repair the damaged protein in the cell,
refolding or stabilizing them into their native structures. HSPs prevent oxidative stress scav-
enging free radicals. The oxidized and unfolded proteins that HSPs fail to rescue are degraded.
In the case of physical exercise, resulting in a net increase in muscle mass, HSPs cause a net
increase in protein synthesis (Sallam and Laher, 2016).

HSPs are classified into families according to their molecular weights (Fig 5). There are both
constitutive and inducible members. One of the most studied HSPs is 70 KDa heat shock protein

(HSP70). The different HSP70s are expressed and localized in different parts of the cell (Fig 6).

Protein Synonyms Locus Cellular localization

Hsp70 Hsp72, Hsp701,Hsp70- HSPAIAHSPAIB Cytosol, nucleus, membranes
1(A).Hsp70-1(B)*

Hsc70 Hsp73 HSPAS Cytosol, nucleus, lysosomes

Bip Grp78 HSPAS Endoplasmic reticulum

MtHsp70 Grp75 HSPA9 Mitochondria

Hsp70-6 Hsp70B HSPAG6 Cytosol, nucleus

Hsp70t Hsp70-Hom HSPAIL Cytosol

Hsp70-2 HSPA2 HSPA2 Cytosol, nucleus

*00% amino-acid 1dentity with HSP70-1(A)

Figure 5: The HSP70 family. Figure from (Calderwood et al., 2007)

Ssbl,2 ER,
Kar2, Sscl mitochondria
Humans Monomer
Hsc70, Hsp70  cytosol,
BIP, mHsp70  nucleus
ER,

mitochondria

Hse/Hsp70  E.coli DnakK cytosol
S.cervisiae  Ssal-4, cytosol

Figure 6: HSP70 family nomenclature and localization. Figure modified from (Zorzi and Bonvini,

2011)

Chaperonins plays a key role in the regulation of protein misfolding and aggregation. Hsp70
belongs to this class, and both prevents molecular aggregation and refolds proteins to their native
structures (Alderson et al., 2016). But they may play hyperactive proteostatic roles in cancer

(Lianos et al., 2015; Murphy, 2013).
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HSP70 overexpression in tumor cells can inhibit multiple pathways, both intrinsically and ex-
trinsically, acting as a selective survival mechanism for cancer cells, often in interaction with pro-
tein kinases. In the intrinsic pathway, HSP70 binds directly to BAX (a member of pro-apoptotic
BCL2 family) preventing mitochondrial translocation. Furthermore, HSP70 interaction prevents
APAF-1 and procaspase-9 recruitment to the apoptosome. The ability of the kinase to function in
programmed cell death is inhibited by HSP70 binding. Several stress-induced kinases and apop-
totic signal regulating kinases, such as c-jun N-terminal kinase and p38 mitogen-activated pro-
tein kinase, are inhibited by HSP70 binding (Murphy, 2013). HSP70 binds to apoptosis-inducing
factor (AIF) and inhibits caspase-independent cell death and prevent AIF-induced chromatin

condensation (Fig 7).

Apoptosome i
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Figure 7: Apoptosis relevant pathways in connection with HSP70. Figure modified from (Murphy,
2013)

HSP70 is of interest as a drug target also for Alzheimer disease (AD). Endogenous and ex-
ogenous stress responses in the cell increase HSP70 levels, inhibiting the cytotoxicity of alpha-
beta, resulting in AD apoptosis. Increasing HSP72 expression and inhibiting Heat shock cog-
nate (HSC)70 will clear the tau, further reducing tauopathy (Lu et al., 2014). Another approach
is to use HSP70 ATPase inhibitors to reduce the brain tau pathogenicity (Fig 8).

The chaperone pathway study shows that in the mitochondria and cytosol of prokaryotes and
eukaryotes, HSP70-class proteins interact with newly built or translocating peptides. The HSP70
interaction with short stretches of hydrophobic polypeptide chain protects them from premature

aggregation or misfolding (Kang et al., 1990; Langer et al., 1992)
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Figure 8: HSP70: a drug target for Alzheimer disease. Figure from (Lu et al., 2014)

The structural morphology of the HSP70 system consists of a NBD and the Substrate binding
domain (SBD). ATP binds to NBD and hydrolyzes, with the hydrolysis energy used to fold non-
native proteins in the chaperone. So, in the bacterial DnaK-HSP70 (peptide bound) when the
chaperone is in an ADP-bound state (post hydrolysis state), the polypeptide is stably bound (Zhu
et al., 1996). The release of polypeptide occurs only when the nucleotide is removed from the N
terminal nucleotide-binding domain, with the help of an exchange factor (GrpE-bacteria). This
structural rearrangement in the active site of NBD allows the ADP to release, enabling ATP to
then enter the pocket. During the release and binding of nucleotides, an allosteric crosstalk takes
place, mediating the peptide and GrpE release. After the polypeptide is released from HSP70 it
could fold properly, transfer to another chaperone or could enter a new cycle of refolding to the
native state in the HSP70 system (Mayer and Bukau, 2005; Zhuravleva et al., 2012)

The uncertainty and challenges behind effective inhibitors of HSP70 are due to the deep grove
shape of active site located in its nucleotide-binding domain (Li et al., 2015). So developing
competitive inhibitors at this site remains challenging due to the strong ATP binding affinity
towards HSP70 (Massey et al., 2010).

Recently, there have been some competitive inhibitors developed for targeting ATPase site of

HSP70, mostly nucleotide analogs (Williamson et al., 2009; Jones et al., 2016). There are also
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small molecule inhibitors for Hsp70 chaperones, mostly targeting the allosteric site of HSP70,
as the mechanism seems to be more complex than simple substrate competition (Assimon et al.,

2013; Li et al., 2013b; Miyata et al., 2013; Rousaki et al., 2011).

()

Low-affinity state

Substrate

Fast

Linker

Figure 9: HSP70 open and closed conformation. Figure modified from (Mayer, 2013). A) High (ADP-
bound) and low (ATP-bound) affinity conformations of HSP70 shown. B) Crystal structure of
DnaK (ATP-bound) HSP70.

There are various crystal structures representing these different conformations of HSP70
(Fig 9). The opening and closing of cleft in NDB are revealed in these crystal structures and
controlled by the active site residues in ATP ribose moiety. Its important to understand the de-
tailed role of active site residues involved in ribose moiety binding of HSP70 (NBD), one focus

of this thesis.

1.2 DRUG DESIGN

The biological systems of protein kinases and HSPs were addressed above; now let us look
into drug design. Before the 20th century only few drugs, natural products such as aspirin or
quinine, were identified for human use (Cragg et al., 2012; Drews, 2000; Stone, 1763). As con-
cerns about public safety grew, beginning in the 1900s, a legal framework for safe drug discov-
ery and market use began to evolve. In 1906, the United States Food and Drug Administration
(FDA) was first established as a regulatory body. Since then, the drug discovery process has
been transformed, including many stages of research prior to testing with humans. Initial steps

often involve screening of compound effects on bacteria, animals or tissues. In the current era,
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much drug discovery is based on testing for specific target interactions. High throughput screen-
ing (HTS) of target interactions, or for a variety of cellular effects, dominate the search for new
potential drugs. Most recently, parallel to the development of genomic technologies, precise
clinical diagnostics support research into drug discovery for personalized medicine (Carneiro
et al., 2016), combining progress in molecular target based drug discovery with informatics
based applications to clinically observed drug resistance and patient specific efficacy.

Lipitor, a cholesterol-lowering medicine (Roth, 2002) and Gleevec, a tyrosine kinase inhibitor
for CML patients (de Lavallade et al., 2008) were some of the important accomplishments of the
modern drug discovery process. These discoveries began with serendipity, but were followed up
by knowledgeable and precise action. The typical progress of such discoveries characteristically
begins with the identification of a target that accounts for the disease, either isolated biochemi-
cally or identified at the cellular level. Developing a drug for such a target involves compound
screening, as mentioned above, and transforming initial hits into promising lead compounds.
Preclinical tests of the compounds then include biochemical and toxicity cell assays, and animal
model testing. Thereafter it is assessed in progressively larger clinical trials involving human
subjects, first to identify safe dosing regimes, followed by larger scale and longer term tests for
efficacy and toxicity. It has been estimated that on average 10-15 years and half to two billion
dollars is required to develop a drug (Basak, 2012).

In general, there are three fundamental classes of molecules that constitute drugs. The clas-
sical drugs include small organic molecules with molecular weights of less than five hundred
daltons, orally and intravenously administered. This thesis concentrates on molecules of this
class. The second class of drugs are many hundred—or thousand—fold heavier, as therapeutic
proteins, administered intravenously. This relatively new class is rapidly growing and represents
one third of the drug market today. The final class of drugs comprises vaccines, primarily viruses,

that used to evoke a disease response (Schreiber, 2007).
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Drug design cycle
Despite—or because of—the advances, the path for discovering a new drug is long and laborious,
needing to overcome many challenges. Although no one procedure can be defined for all cases,

in general, some appropriate combination of diverse approaches and techniques (Fig 10) will be

used in modern research to design a drug.
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Figure 10: An overview of different methods and disciplinary subjects used in a conventional drug

design cycle. Figure from (Greer et al., 1994)
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From an initial set of hit compounds (these could be from various sources, including screen-
ing of natural or synthetic compounds, or from literature of known binding compounds such as
enzyme ligands) the binding or activity profile is determined (typically biological or biochem-
ical assays), focussing on a therapeutic area of interest. An iterative process follows, whereby
this experimental information is used by medicinal chemists to synthesize analogs that promise
better binding affinities for the drug target or improved properties relevant to other criteria; this
is mostly carried out conventionally in pharmaceutical companies (Greer et al., 1994). Another
screening approach is to test a reasonable number of computer generated hits (mostly filtered
from huge compound libraries using computational methods) against a particular molecular ther-
apeutic target for biological assays.

Affinities are improved during the lead compound optimization cycle most typically by pre-
serving elements required for target binding, but adding new and appropriate chemical groups or
substituents at sites expected to increase binding. Alternatively, the essential binding elements
may be “swapped” to new scaffolds, or the initial binding moiety may be linked to fragment
molecules known to bind at adjacent sites (Sliwoski et al., 2013).

The choice of receptor-ligand complex structure determination depends on the quality of in-
formation available for the three-dimensional target structure (Fig 10). Best is the availability
of multiple target-ligand structure complexes, possibly also with information from NMR exper-
iments. Intermediate is the structure of a closely related target. And finally, in the absence of 3d
target structure, purely ligand based approaches may be used, as described below in the section
on Computer-aided drug design (CADD).

Homology model based

Different computational methods may be used to predict 3d protein structures when a tar-
get structure is lacking. Because structures cannot be predicted from first principles, modelling
based on related—homologous—structures is required. Homology modeling, as the name implies,
is the target protein structure prediction using the related protein structures that are identified
via protein sequence similarities (homologies). Within specific protein classes, particularly en-
zymes, protein structures (and sequences) are quite conserved. Even if a structural classification
is uncertain, similarity or homology at moderate levels may be good enough for successful ho-
mology modelling, in particular successful prediction of ligand binding properties (Evers et al.,

2003).
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Homology modeling starts with target template identification (related protein structures) fol-
lowed by the sequential alignment of the related proteins. Insertions or gaps in the template
are constructed by performing low energy loop conformational sampling to predict side chain
conformers. The final step involves the model refinement and evaluation that takes care of ideal
bond geometries (Vyas et al., 2012). In this step non-favorable contacts with in the final modeled
structure are removed. The modeled protein structures are compared with different experiment
protein structures, for example using CASP (Cozzetto et al., 2009), MODBASE (Pieper et al.,
2009). One homology modeling example carried out on a drug target is Cdc25A phosphatase.
Here the crystal structure of the Cdc25B was used to model Cdc25A. The model enabled the
discovery of a new chemotype scaffold compound with IC50 values less than 10 uM (Park
et al., 2009) after computational docking of around 80,000 virtual compounds. Swiss-Model
(web-based) (Arnold et al., 2006; Kiefer et al., 2009) and MODELLER (software tool) (Sali
and Blundell, 1993) are some of the modeling tools currently available.

Experimental structure and binding data based

An experimentally determined target structure is better than a homology model, but good
understanding and prediction of inhibitor binding properties requires an understanding of the
flexibility of the protein target as well. Experimental structure determination using crystallogra-
phy provides 3d structural information of the target, and characterizes molecular binding in the
protein active site if ligand is also present. Since the early 1980s, 3d structures have been used
in drug discovery; since, more and more drug targets have been determined by proteomics and
genomics (Bambini and Rappuoli, 2009; Lundstrom, 2011), with ever greater coverage by X-
ray crystallography. The Protein Data Bank (PDB) (Berman et al., 2000) established originally
at Brookhaven National Labs in 1971, now contains more than 100,000 protein structures, of
which around 90% are from X-ray crystallography and around 9% are from NMR spectroscopy.
When multiple structures for a particular target are available, the extent of flexibility of the tar-
get may be evaluated. This is especially true when methods that can measure flexibility directly,
such as NMR, have been used. Still, even when flexibility is extensively characterized, bind-
ing energies cannot be predicted reliably. Combined however with binding studies, including
measured binding energies, molecular recognition may be studied by computational and statis-

tical methods (Wang et al., 2004). These interaction studies help scientists to design potential
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binders for the biological target of interest with tailored specificities and selectivities (Laurie

and Jackson, 2006).

1.2.1 Computer Assisted Drug Design (CADD)

CADD has become a central tool drug discovery to analyze target interactions (Macalino

et al., 2015). CADD methods may be classified into two groups, ligand-based and structure-

based (Fig 11).
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Figure 11: The role of CADD in the drug design pipeline. Figure from (Macalino et al., 2015)

The ligand based approach requires no or limited target structural information. From known

actives and inactives screened against the target, binding affinities may be predicted using simi-
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larity, quantitative structure-activity relationship (QSAR) and pharmacophore methods (Johnson
et al., 1990; Zhang, 2011).

In contrast, a structure-based approach relies on the detailed interactions between protein and
ligand from three dimensional protein structure. Here interaction energies from the complex are
modelled quantitatively (but with incomplete accuracy), prioritizing modifications that may im-
prove lead compounds (Kalyaanamoorthy and Chen, 2011). Here the goal is to model ligands
with high affinities towards the protein of interest, and if possible, to achieving high target speci-
ficity by choosing modification which simultaneously give low off-target effects (Jorgensen,

2010).

1.2.1.1 Ligand-based drug design

In Ligand based cycle (LBC), information is extracted from active chemical and 3d ligand
structures and linked to the extent of activity. This information then become predictive of activity
for at least similar compounds, and may be used to screen compounds (compound libraries) for
potentially new active compounds (Fig 10). There are two different approaches for LBC.

1) The information is extracted as “molecular fingerprints” (various properties of a ligand
compound), whereafter molecular similarity metrics identify compounds that closely match the
fingerprint for active compounds.

2) The information is extracted as “Quantitative SAR”— similar to molecular fingerprints, but
the properties are more closely linked to variations at specific substitution sites of the ligands
(see discussion below).

Cheminformatics

Molecular similarity plays an important role in cheminformatics (Nikolova and Jaworska,
2003; Johnson et al., 1990). Cheminformatics (or chemoinformatics or chemical informatics)
(Brown, 1998, 2005) is the combination of two different fields, chemistry and information tech-
nology. Chemistry plays a key role with chemical structures represented in different represen-
tation formats like text string (SMILES), fingerprints (MDL: (Durant et al., 2002)), 2D (SDF,
Mol file formats (Dalby et al., 1992)) and 3d (CIF, PDB formats (Brown and McMahon, 2002;
Westbrook et al., 2002)). These formats are used in cheminformatics databases and software
to describe atom, bond type and connectivity with in the molecule. These common formats

are used to perform chemical structure visualization, database matching (maximum common
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substructure, similarity), structure activity relationship and descriptor calculations to read, con-
vert, visualize and write compounds using cheminformatic software. Publicly available chemical
databases provide large amounts of information for these methods, such as PubChem (Wheeler
et al., 2006) with information on more than 60 million compounds, including information about
compound structure and bioactivity, deposited by companies, research institutions, universities,
etc.

The throughput of high quality in silico screening of compounds has been made efficient
by huge improvements in parallel computational cluster algorithms and necessary hardware
(Agarwal and Fishwick, 2010). General and specific target (family of targets) focused virtual
screening libraries are available (Kick et al., 1997; Wyss et al., 2003; Shoichet, 2004). GDB is
a chemical library generated by graph connected theory, in which about 25 million chemical
structures are generated from the most common organic elements in the periodic table (C, N, O,
F), removing unstable compounds. A variant of the GDB-13 database (2009) was released in
which F is replaced with Cl. (Fink et al., 2005; Fink and Reymond, 2007; Blum and Reymond,
2009). A new graph based search algorithm (eSynth) service is currently available to reconstruct
chemical compounds from fragments (Naderi et al., 2016). Ligands necessary for Virtual high
throughput screening (VHTS) are synthesized and stored as small molecular databases which
(PubChem, PDBeChem, LIGAND, ZINC, chEMBL, MDDR, DrugBank etc) contains known
drugs, compounds, reactants etc (Ortholand and Ganesan, 2004; Song et al., 2009).

Preparation of ligand libraries

Virtual libraries may be encoded by several formats. Some of the most convenient are simple
character representations that are compatible with text editing software and databases. They
differ with respect to the amount of information possible to encode with the system, and with
respect to the uniqueness of the representation. SMILES stands for Simplified Molecular Input
Line System (Wiswesser, 1985), and has several variants. SMARTS (SMILES ARbitrary Target
Specification) in an extended SMILES format that supplements chemical encoding with logi-
cal functions that enable molecular similarity substructure searches (Ullmann, 1976; Weininger
et al., 1989). InChl (International Chemical Identifier), released in 2005, ensures unique rep-
resentation, and thus is suitable for online database molecular search engines across web ser-
vices (Heller et al., 2013). While preparing libraries of ligands, drug likeness or certain physio-

chemical properties towards the target are considered. Here, Lipinski’s rule of five commonly
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plays a major role. For better blood brain penetration and oral absorption, the polar surface area
plays a crucial role (Kelder et al., 1999). It is common in VHTS is to filter out molecules that
are predicted to have unfavorable ADMET properties. From known ligand-receptor interactions,
patterns of physico-chemical properties that match receptor classes may be matched to chemi-
cal scaffolds best suited for those receptors (for example, protein kinases, GPCRs, Ion-channels)
(Orry et al., 2006; Harris et al., 2011).

The ADMET predictions may be based on studies of millions of compounds that resulted
in several web based drug databases available to public. Some of the popular ones include
Drug-Bank (Online drug resource: (Law et al., 2014)), Therapeutic Target Database (drug target
and disease indications: TTD; (Qin et al., 2014)), Pharmacogenomics Knowledge Base (drug
side effects or dosing effects: PharmGKB; (McDonagh et al., 2011)), Super-Target (automated
datamining about chemicals and biological targets: (Hecker et al., 2012); and ChEMBL (Bioac-
tivity data: (Davies et al., 2015)).

Computational methods are used to store (database), analyze (fingerprints, descriptors) and
manipulate (2D, 3D format) chemical data. These methods play key roles in different phases
of drug discovery. Recent expansion of open-access web-based cheminformatics database or
tool resources include ChEBI (Degtyarenko et al., 2009; Hastings et al., 2013), CDK, Open
Babel and RDKit, exemplifying the emergence of chemical genomics (Bisson, 2012). These
open access web-based databases and tools familiarize cheminformatics to a wide community
of scientific users (biologists, medicinal chemists, biochemists and bioinformaticians) (Singla
et al., 2013; Wishart, 2016).

OSAR

(Quantitative structure-activity relationship (QSAR)) studies define statistical relationships
between compound structural characteristics and biological activity. The relationships (QSAR
models) are formulated as correlations of molecular descriptors of structural and physico-chemical
features with bioactivities of the molecules (Zhang, 2011), which include both active and inac-
tive ligands. From the QSAR model, a relationship is predicted between descriptors and bioac-
tivities of the compound set. This model is applied to a set of test compounds using the same
descriptors that were used in training models to predict the activities of the test compounds. The
accuracy of the QSAR model depends on the training set of actives and inactives and also on

the choice of descriptors selected. Greater chemical divergence of the training set of compounds
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improves the accuracy of the QSAR prediction of test compounds (Zhang, 2011). It is impor-
tant to check the scaffold or functional group diversity before training a set of compounds for a
QSAR model. In predicting test compounds, correctly encoding the chemo-type information of
the descriptor set (independent of training set) is crucial for acceptable model accuracy.

Prediction of biological and/or chemical properties of novel compounds may be possible us-
ing cheminformatics databases (Wishart, 2016). These databases contain structural and biolog-
ical properties of known compounds, analyzed using cheminformatic software tools (Lawless
et al., 2016) that match the compound’s descriptor fingerprint, including properties such as
simple molecular weight, hydrogen bond donor, acceptor, logP etc., to appropriately correlated
biological properties such as drug-likeness, and especially activities. After converting molecules
to descriptors, cheminformatics tools use a variety of data mining algorithms or machine learn-
ing techniques, including artificial neural networks, support vector machines (SVM), decision
trees, etc to predict bio-activities of the compound of interest (Wishart, 2016). The choice of al-
gorithm to be used in determining the outcome of the predictions depends on the type of predic-
tors (bioactivities, binary class etc). Some of the multivariate statistical techniques like principal
component analysis (dimensionality reduction), hierarchial clustering and correlational analysis
are commonly used depending on the input data and predictive class (Hassan et al., 2006).

The choice of algorithm to perform QSAR depends on the case scenario. For example, using
neural network regression models are used to predict the pIC50 from a set of actives belonging

to two different variations of the same active target (Gani et al., 2013).

1.2.1.2  Structure-based drug design

X-ray crystallography, NMR, and homology modeling techniques all help researchers obtain
the 3d macromolecular structures that are a fundamental requirement for Structure based drug
design (SBDD) (Macalino et al., 2015). An understanding of protein — ligand active site inter-
actions and net ligand binding efficiency depends on knowledge acquired from the 3d protein
structure of the drug target, preferably many structures complexed with many diverse ligands

(Lavecchia and Di Giovanni, 2013; Grinter and Zou, 2014).
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Molecular docking and scoring

Knowledge of the 3d protein structure is a prerequisite for evaluating the binding pocket for lig-
and interactions in docking (Hajduk et al., 2005; Fauman et al., 2011), which is one of the most
popular SBDD methods. It predicts the geometry, or binding mode, of the way a compound
binds to the target, and assesses the affinity of that mode based on the protein — ligand inter-
actions in the active site pocket (Macalino et al., 2015; Lengauer and Rarey, 1996). There are
two different types of steps: 1) a search method, and 2) a scoring function. The search method
may be one of two types: Systematic or Stochastic (Morris and Lim-Wilby, 2008). In a system-
atic search method, the number of total parameters for the search must be limited, and is thus
used when the receptor is rigid, while a stochastic search allows the variation of more parame-
ters, and flexibility may be introduced to proteins (Halperin et al., 2002; Dias and de Azevedo,
2008). Scoring functions on the other hand can be calculated in multiple ways with differing
computational requirements. They attempt to estimate the quality of the complex, which should
reflect binding energies; empirical methods are required for computational feasibility, and the
algorithms applied may be knowledge based in general ways, or may use typical molecular-
mechanics energy functions (Taylor et al., 2002). Separate scoring functions are often used in
docking and postdocking ranking of hits, to enable a greater range of searching in docking, and
higher accuracy in final scoring (Mohan et al., 2005).

In molecular modeling software, docking receptor ligand structures are represented as atomic,
surface or grid types; for the latter, the target structure grid features surface physico-chemical
properties. Hits are scored and ranked based on corresponding potential energy functions. The
surface representation of a target protein typically involves the definition of a limiting extent of
atomic electron distribution, or van der Waals surface, that determines the molecular topology
(Halperin et al., 2002; Kitchen et al., 2004).

In docking program GLIDE (part of the Schrodinger molecular modeling software), a grid
is precomputed using the shape and physiochemical properties of the target protein. To fully
account for ligand flexibility, exhaustive sampling of the ligand torsion angle space selecting
the best ligand conformers according to torsion energies. The low-energy conformers of ligands
produce a list of shape and geometric constraints of ligand poses. Favorable poses that satisfy
specific ligand-protein constraints are filtered, reducing the ligand conformational space to be

searched using energy minimization (via Monte Carlo methods) to ranking ligand hits (Friesner
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et al., 2004). The ligand conformers are first docked into receptor active site using soft energy
potentials.The final orientation of ligand pose within the receptor binding site is achieved with
a series of hierarchical filters.

GLIDE docking compound libraries are ranked as “hits” or “inactives” using three optional
protocols of increasing precision: high throughput virtual screening (HTVS), (Standard preci-
sion (SP)), and (Extra precision (XP)). The low energy ligand conformers are fitted into the
protein active site. The ligands are ranked according to interaction energy obtained by the force
field OPLS-AA which accounts for interaction energies as well as internal strain in the active
site bound pose (Friesner et al., 2004).

The differences between the 3 different protocols are in their ligand conformer generations,
with low (HTVS) to medium (SP-softer docking method is used to identify weak binder), to
extensive (XP- high ligand conformers) generation usage at the active site of the protein. Mostly
XP is much more penalty imposing on violations that effect the docking score. This method is
used in lead optimization stage studies where less compounds are used in the analysis.

Of the two types of GlideScore 1) Glide-Score SP 2) Glide-Score XP, the Glide-Score SP is
a softer scoring, able to find ligands that have a reasonable chance to bind, without eliminating
them due to “hard” incompatibilities with binding. This scoring function is quite rapid, usable
for screening compounds in a database, and seeks to minimize false negatives in the hits. In
contrast, XP scoring imposes severe penalties for “hard” incompatibilities, such as violating
charge complementarity, or if polar groups are not exposed to solvent (Friesner et al., 2004).
GlideScore is a modified and extended ChemScore function Eldridge et al. (1997) as shown

below.

AGyng = Clipo—lipozﬂrlr) +
Ch g(Ar) h(Aa) +
Chb-&)nd—ncut—chargcd g(AI') h(AO.) +
Chbond—chargcd—xhargod g(AI') h(A(I) +
Cmax—mctal—ion I(rlm) + Cr Hrotb +
C V +C, +
C,awE.qw T solvation terms

bond—ncut—ncut

otbh

polar—phob " polar—phob oulbcoul
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The first lipophilic term of ligand/receptor atom pairs is interpreted as in Chem-Score. The
second, third and fourth terms encode for hydrogen-bonding terms, differentiated according to
charge. The fifth term is metal-ligand interaction term that augments the Chem-Score with a
term to evaluate metal ion interactions depending on charge. Receptor interactions that restrict
rotation accounts for the sixth term. The next three terms model the Coulomb and vdW energies
of ligand and receptor interactions (Friesner et al., 2004). Solvation effects are introduced into
GlideScore by incorporating water explicitly, an advantage especially when water molecules in

the active site act as bridges to link protein and ligand polar groups.

Receptor flexibility using induced fit docking model

Because ligand binding often alters protein structure, considering protein flexibility in docking
often helps improve protein ligand binding poses. The induced fit model allows protein side
chain movements, increasing the number of conformations and orientations that ligands may
adopt when binding to the now elastic target. GLIDE has an induced fit protocol whereby side
chains are first truncated (mutated to alanine) followed by side chain sampling. Target amino
acids and ligands in the binding site are minimized to produce energy favorable docking poses
(Sherman et al., 2006b,a).

Side chain conformations may also be searched exhaustively (Meng et al., 2011). With flexi-
bility, the best ligand-protein bound conformation must be selected from an ensemble of protein
conformations (Carlson, 2002). Although this increases the chances for errors in modelling, it
is necessary to account for physically realistic ligand induced effects (B-Rao et al., 2009; Sinko

etal., 2013).

Detecting active site binding pocket

Ligand binding prediction requires recognition of potential binding pockets. For structures with
known ligands, this is as straightforward as seeing where the ligands are bound. In the ab-
sence of suitable co-crystal structures, several computational methods are available, such as
Q-SITEFINDER (Laurie and Jackson, 2006; Henrich et al., 2010), CASTp (Dundas et al., 2006),
ConCavity (Capra et al., 2009). Such programs evaluate the shape of the molecular surface, and
identify concave and often complex surfaces, with dimensions suitable for ligand binding. This

procedure is sometimes considered the evaluation of the “druggability” of a target.
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The compilations of protein crystal structures show how proteins are dynamic, with flexibili-
ties at scales ranging from small atomic groups to entire protein domains. The flexible receptor
docking described above takes into account some of this. For proteins with a potentially greater
range of flexibility, additional methods may be used. Docking calculations may then use an
ensemble of structures instead of an individual one (Fischer et al., 2014). To predict plausi-
ble ensembles, computationally demanding molecular dynamics methods, based on sampling
molecular mechanics energy potentials are used. The literature has many examples of such
approaches, including as examples HIV integrase, p38 MAPK, and Protein kinase A (PKA)
(Abrams and Vanden-Eijnden, 2010; Summa et al., 2008; Frembgen-Kesner and Elcock, 2006;
Durrant and McCammon, 2010). Flexible receptor methods and MD ensemble generation differ
more in scale than in principle; ROSETTALIGAND e.g. takes into consideration target protein
flexibility while running docking, eliminating the requirement of an ensemble portrait (Meiler
and Baker, 2000).

As a course-grained overview, there are 3 approaches for predicting ligand binding interaction
geometries: 1) Identify the interaction site or pocket on the protein surface, 2) Rank likely ligand
binding poses based on their estimated binding energies (calculated from different interactions—
electrostatic, hydrophobic, hydrogen-binding, van der Waals, etc.), and 3) use methods to predict

the range protein receptor geometries, such as molecular dynamics, as described above.

1.3 FRAGMENT SCREENING

At least in part due to low success rates of standard HTS approaches to drug discovery, frag-
ment screening has become important in pharmaceutical and biotech R&D (Siegal et al., 2007).
A key advantage of fragment based screening approaches is that it finds hits of low molecu-
lar weight, typically less than 250 Dalton (Goddette, 2006). It has been shown that building
a compound from a binding fragment is easier than downsizing larger molecules (Erlanson,
2006). Low molecular weight compounds that bind with significant potency have high (Ligand
efficiency (LE)) values. LE is a measure that reflects how much of a compound contributes to
binding (Murray et al., 2010), as defined below

LE = AG/N

where AG = -RTInKy and N is the no. of non-hydrogen atoms
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Another advantage of fragment screening is that smaller libraries are needed, usually from
hundreds to thousands of compounds, because that is sufficient for good sampling of the diver-
sity of small molecules, and because fewer compounds will fail because of poor fit and steric
clashes (Lesuisse et al., 2002; Rees et al., 2004). Identification of fragment hits is possible with
a variety of methods, including X-ray crystallography (along with structures), SPR (along with
binding kinetics), NMR etc. (Congreve et al., 2003).

Building a fragment library for screening involves computational chemistry methods to ex-
clude likely reactive and toxic compounds and to maximize chemotype diversity and solubility
(Verheij, 2006). The corresponding methods usually involve filters such as the “Rule of 3” (Ro3),
along with selecting the distribution of physiochemical properties that may either emphasize
chemical diversity (Goddette, 2006), or may focus the library toward expected properties for
a given target. In general, average hit rates are inversely proportional to the average molecular
weight of libraries (Hann et al., 2001).

Certain undesirable functional groups may be removed, such as aziridines or anhydrides, and
molecules containing at least one ring of five or more atoms may be preferred. Individual com-
panies have developed specialized protocols. Vernalis filters for ring containing compounds
with carboxylic groups, followed by selection for diversity of physiochemical properties, then
searches for binding using NMR (Baurin et al., 2004). Astex focused on small fragments, be-
tween 100 and 250 Da, that show binding via X-ray crystallography (Hartshorn et al., 2005).
Plexxikon applied a molecular weight cut off (120-350 Da), removing the reactive groups and
fragmenting into small substructures through rotatable bonds (Card et al., 2005). SGX pharma-
ceuticals selected their fragments using molecular weight, ClogP, and the presence of bromine,
in order to use X-ray anomalous dispersion to identify binding in crystals (Blaney et al., 2006).
Evotec and Pfizer used biochemical assays and NMR, respectively, to identify hits after filter-
ing according to physiochemical properties (Brewer et al., 2008; Lau et al., 2011). The Broad
Institute created their library using diversity-oriented synthesis (Hung et al., 2011).

The Maybridge library relevant to this thesis consists of 1000 compounds with good diversity
properties. Some of the main characteristics of this library are compliance with Ro3, guaranteed
solubility in DMSO at 200mM, and high purity, with qualitative analysis reported to be >=95%

as monitored by NMR for each compound.
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1.4 ENZYME INHIBITOR INTERACTIONS

Proteins control biological functions in a variety of ways. Among them are the catalysis of
chemical reactions (proteins as enzymes), activation or inhibition of macromolecular binding
partners, or anchoring proteins to specific locations. Such mechanisms are used to mediate sig-
nals in cellular signaling cascades. Interactions between proteins and their small-macromolecular
binding partners can be transitory, long-lived but non-covalent and/or reversible, or permanent
(Alberts et al., 2002). Cellular mechanisms in normal biological system are robustly regulated
and involve networks of interactions. Protein kinases regulate processes via enzymatic interac-
tions that phosphorylate target proteins, modulating their activity as part of metabolic and other
cellular process pathways. Both kinetic and thermodynamic aspects of these chemical reactions

are critical for their functional roles (Berg JM, 2002b).

Kinetics vs Thermodynamics

The standard kinetic characterization of enzyme reactions is the Michaelis-Menten model (Michaelis
etal., 2011):
ki kn

E4+S—<—ES—E+P
k—1

where E — an enzyme, S — Substrate, ES — complex, P — Product, k1, k-1 and k2 are rate
constants.
With this model, kinetic constants K, and V.« provide simple parameters to understand the

reaction (Berg JM, 2002c):

Km - =

Vmax — kl [ET]

where K, — Michaelis constant and V,x — maximal rate (turnover number) of the enzyme in

the reaction. Er is the total enzyme concentration.

Km =[E.S]/[E][S]
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Ky, indicates the strength of binding or affinity of the substrate for the enzyme, combined
with the chemical reaction rate. In the limit of an infinitely slow reaction, Km is the thermody-
namic dissociation constant for the enzyme and the substrate (see below). With a steady state
assumption

K, = [E.S]/[E] [S], which in turn, given excess [S] compared to [E], such that these cases,
K, is the concentration of substrate at which half the active sites of the enzyme are occupied by
the substrate. Tightly bound substrates have low Ky, values, often in micromolar ranges, while
weaker binding substrates may have high K;,, values in mM ranges (note how high reaction rates
may also create high Ky, values). K;;, values range widely but most lie between 1 uM and 0.1
M.

Vmax,» the maximal reaction rate, is also called the turnover rate of the enzyme, In other words,
this is the number of substrate molecules that are catalyzed per second by the enzyme. This
varies considerably, e.g. lysozyme works slowly (Viax=0.3) compared to carbonic anhydrase
(Vimax=600,000) (Inada et al., 2005; Ross, 2012).

While kinetics describes the rates of reaction, thermodynamics describes energetics and equi-
librium states of the enzyme, the substrate, and their interacting state(s). Therefore, the equi-
librium association constant K, is a thermodynamic quantity that depends only on the overall
reaction at equilibrium (Berg JM, 2002a):

Ka =[E.S]/[E][S]

where E — an enzyme, S — Substrate, ES — complex and K, — equilibrium association constant
(the reciprocal of the dissociation constant mentioned above).

In contrast to kinetics (reactivity), thermodynamics can be considered in terms of the energy
(stability) of the reactants and the products. It can also be thought of as the different forms of
energy that are converted from or to chemical energy when a reaction is exothermic or endother-
mic (H et al., 2000). The equilibrium constant K is related to Gibbs free energy of the reaction
by

AG = -RTInK

where AG is the change in free energy, where R is the gas constant, T is its temperature in
degrees, K is the equilibrium constant for the reaction.

Any enzymatic reaction may be characterized by its thermodynamic and kinetic properties.

However, the role of the enzyme is to lower the activation energy barrier of the reaction, but
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does not change the energies of the initial and final states and thus does not change the relative
proportions of the two states for reversible reactions. In contrast, the kinetics of the reaction are
determined by the activation energy, thus the enzyme critically changes the kinetics of product

formation.

Thermodynamic optimization

If substrate binding to the enzyme is considered as the reaction, the “final state” of this reaction
is the formation of the enzyme complex, which is at least part of the process of lowering the tran-
sition state energy (thermodynamics). This be optimized by understanding the actual physical

interactions that contribute to thermodynamics of the activation barrier.

Protein Ligand
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Figure 12: Regularly occurring protein-ligand interactions are well categorized according to type of

interactions. Figure from (Klebe, 2013)
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These physical interactions are well described in the literature as molecular recognition by ei-
ther covalent or non-covalent interactions of various kinds as shown in (Fig 12). Ligands bind to
protein covalently by forming chemical bonds, and also form non-covalent interactions (Klebe,
2013). Contributions from these interactions have been well studied over recent decades, and
include enthalpies and entropies of interaction, desolvation, internal energy and conformational
change. The energies of these interactions may be calculated from atomic resolution crystal
structures (Klebe, 2015).

One of the most challenging issues in determining these energies is the role of water. The
association of proteins and ligands does not occur in a vacuum but in aqueous solution, where
water may compensate for the loss of specific interactions in the ligand-protein interface. In
particular, strong ligand-protein interactions such as hydrogen bonds and salt bridges may be re-
placed by water interactions. Therefore, calculating the protein-ligand binding energies involves
subtracting water mediated interactions before the ligand interactions, and then finding the net
free energy of binding (Klebe, 2013).

Therefore, it is essential to determine the role of water in protein-ligand interactions from
various perspectives such as Isothermal titration calorimetry (ITC), cryo-X-ray crystallography,

high-level computing and molecular simulations, and mutational studies (Klebe, 2015).

1.5 BIOPHYSICAL METHODS

Biophysical methods that measure ligand binding properties provide essential and often com-
plimentary information for hit characterization in both pharmaceutical R&D and academic re-
search have been using biophysical methods in different areas of drug discovery (Renaud and
Delsuc, 2009). Most interest has been toward the measurement of equilibrium binding constants
between molecules (protein, ligands, nucleic acids etc.) in biological systems, but the kinetics
of these processes has been of increasing interest.

Advancing developments in biophysical methods efficiently contribute to binding mode char-
acterization, including conformational changes that accompany the interactions, and stoichiom-
etry of the binding (Copeland, 2003). To assess and compare target protein variation of normal
and mutated forms relevant to clinical disease conditions, biophysical tools like ITC, NMR and

SPR can play key roles to predict drug binding estimates (Miller et al., 2010). For estimating
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affinities of small molecular ligands in low binding ranges biophysical techniques are preferred
over biochemical assays (Danielson, 2009).

Currently biophysical affinity based methods are used in HTS approaches and hit identifi-
cation. NMR, SPR, Mass spectrometry (MS) etc are widely used in academics for primary
fragment library screening of 10,000s of compounds and fragment screening with hit evalua-
tion (Edfeldt et al., 2011). Biophysical methods may be used to differentiate between true target
binding and nonspecific binding hits found in a primary screen (Zhu and Cuozzo, 2009). Bio-
physical methods help to increase the success-rate of producing protein-ligand complexes in

crystallography (Chung, 2007).

1.5.1 SPR

Binding affinity determination using SPR is currently known as a standard technique where
interactions are measured directly without any modification in target protein (Huber and Mueller,
20006), although surface immobilization of one binding partner is required. In this technique light
is used to detect changes in surface plasmons, modulated by the composition of the fluid in the

sample channel (Fig 13).
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Figure 13: SPR technology is summarized in the figure, with refractive index measured by deviations
of the light beam on a photodetector (green). The ability of ligand (yellow) to bind protein
(red) is recorded as shifts in the angle of resonance of the reflected light (I and II). Here in
addition to the binding affinity of the ligand, both association (k,,) and dissociation (ko) rate

constants may be measured. Figure from (Klebe, 2013)
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This angle of reflection shift, corresponds to a spacial change on the sensor chip (Chowdhry
and Harding, 2001). On the gold film a dextran matrix is attached which includes mechanisms
for immobilizing proteins. When a ligand (analyte) binds, there is an increase of mass on the
gold plate, causing the SPR shift, which may be monitored in real time. The technique is sensi-
tive enough to register the binding of small molecules of 100 Da. The reliability of SPR exper-
iment depends on successful protein immobilization, possible with diverse coupling methods,
which should produce stable associations and consistent amounts of immobilized protein.

The ligand solution is passed over the chip with the immobilized protein to allow binding,
followed by ligand-free solution, to allow ligand release. The measured response forms the sen-
sogram curve. If not too fast, on-rate and off-rate constants may be determined and their ratios
provide an accurate estimation of binding affinity. Because good pharmacokinetics of a potential
drug molecule often requires slow dissociation, SPR provides a mechanism for monitoring and
thus optimizing this property.

This technique is widely used in screening a large number of compounds for new lead molecules
(Lofas, 2004). The improvement in current SPR technology has enabled its use in the primary
screening of potential fragments. Here, however, special precautions are needed for analyzing
weak binding of small fragments, since testing in high concentrations leads to non-specific bind-

ing.

1.5.2  Crystallography

The most successful technique for protein macromolecular structure determination is X-ray
crystallography. Advances of methods, sensitivities, and throughput in the field of protein crys-
tallography have transformed interdisciplinary biological sciences. Atomic resolution structures
are routinely determined for protein-ligand complexes, and also for more extended systems,
such as viruses, protein-protein and protein-nucleic acid complexes. This has enabled applied
research areas of structure based drug design, site directed mutagenesis, enzyme mechanism
clarification, and specificity studies of the selectivity of protein-ligand interactions (Smyth and
Martin, 1999).

X-ray crystallography enables the determination of 3d structural of macromolecules ordered
in a crystal lattice (Blundell and Johnson, 1976). X-rays radiation is required, because the wave-

lengths are short enough (0.5 — 4 A) to be diffracted by periodic structures in crystals down to
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interatomic distances (0.9 — 2.3 A). The photon energies at these wavelengths are high enough
to ionize molecules and break chemical bonds (Alberts et al., 2002), and so radiation damage
may be a disadvantage of the technique. The periodic molecular stacking in a crystal causes
scattered X-rays to interfere destructively and constructively, described by Bragg’s law
nA = 2dsin®

where d is the diffracting plane spacing, n is any integer, © is the incident angle between the
plane and the incoming wave and A is the wavelength of the beam (Jauncey, 1924).

To perform the X-ray diffraction measurement (Carter and Sweet, 1997), the crystal of interest
is mounted on a rotatable stage (goniometer). The sample is exposed to X-rays with systematic

goniometer rotation to collect a complete diffraction pattern of reflections as allowed by Bragg’s

law

1.5.2.1 Crystallization
Crystallization is a time dependent (slow or fast) precipitation process from a solution of a

substance to form a periodic grid of unit cells that create a crystal.

A . Supersaturation

Precipitation

f[protein]

Undersaturation

>

f[precipitant]

Figure 14: Phase diagram showing zone of crystal nucleation, growth and precipitation, from (Luft
etal., 2014)

It may occur when the solution is concentrated to over the solubility limit. Simplified phase

diagrams (Fig 14) are used to illustrate different crystallization techniques (Garcia-Ruiz, 2003).
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The quality of crystals depends on the solution environment, and there are various approaches
to optimize crystallization conditions. The regular grid of molecules and ions in the crystal is
formed when the forces of intermolecular action orient the molecules in identical ways as the
crystal grows. Forces include electrostatic (charge interactions), hydrogen bond and van der
Waals interactions (Wilson et al., 1991).

The supersaturated region in the phase diagram is where nuclei form and subsequent crystal
growth takes place. Nuclei are ordered clusters of protein molecules that are stable enough to
support crystal growth. Higher levels of supersaturation are required for initial nuclei formation
followed by crystal growth. A lower level of supersaturation, the metastable zone, is sufficient
to sustain an ongoing crystal growth. The crystal will continue to grow, causing the concentra-
tion of the macromolecule in the surrounding solution to decrease, until a state of equilibrium
between solid phase and liquid phase is reached. This often marks the endpoint of the crystal-
lization procedure (Asherie, 2012).

A variety of factors are important for good protein crystals. Although crystallization is itself
a purification method for small molecules, proteins for crystallization usually need to be very
pure. The level depends on the type of impurities, but if they are other proteins, or especially
if they are alternate forms of the protein of interest, selective precipitation into an ordered ar-
ray is unlikely. A minimum check for purity is provided by sodium dodecyl sulfate (SDS) gel.
Reaching sufficient purity with a sufficient amount of protein is a major hurdle for protein crys-
tallography. A suitable understanding of essential cofactors, ligands and ions needed for the
proper state of the protein is important, along with the effects of variation of temperature, pre-
cipitating agents, buffers and pH effects necessary for the success of crystallization experiments
(Dessau and Modis, 2011).

For good amounts of pure protein, they may be expressed recombinantly in a suitable host
(often E.coli). The cells are lysed, often by sonication, and the lysate is loaded onto an affinity
column. Purification is continued via dialyzing with a protease to cleave an affinity tag, followed
by affinity column to remove the protease and cleaved tags. Final purification may proceed by
use of an ion exchange chromatography step to discriminate based on charge, followed by gel
filtration to purify according to protein size. Together, these steps usually provide protein of

crystallization purity (Kim et al., 2008).
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The sample purity can be monitored at all the different levels of purification step, through
visualization by running SDS gels. The protein characterization is important for the documenta-
tion of homogeneity and to monitor possible batch variations, for example protein degradation,
which may occur over time even under favorable conditions. The protein is concentrated before
running crystallization trials. Concentration is done by filtering the protein with a molecular
weight cutoff (MWCO) of one-third to one-half the molecular weight of the protein. The pro-
cess is done by repetitively centrifuging the protein/buffer mixture for 10-15 minutes. After each
step the protein concentration is determined using Nanodrop. After several centrifugation steps
the protein reaches the required concentration for crystallization and the process is stopped. Af-
ter each step there is the chance of protein precipitation in which case the process is stopped. An
excellent method for storing proteins is to flash freeze in liquid nitrogen with small aliquots of
50-100uL, enough for several crystallization experiments (Hoffman, 2011).

Approaches to attain supersaturation vary. Most rely on competition with the protein for water.
This corresponds to “salting-out”, by adding salts (most commonly ammonium sulphate) or by
adding uncharged polyethylene glycol molecules (Poly ethylene glycol (PEG)s), which maintain
a lower ionic strength solution. For example the process commonly starts by mixing commercial
JCSG+ screen solutions with protein in 96 well plates, where 50-500nl protein per well may
sufficient to produce a hit. Initial crystals may require optimization, and expansion of conditions
derived from the commercial kits into grids of 24 or 48 variations are a logical next step. Other
factors, such as protein concentration, crystallizing agent concentration, reservoir volume and
temperature also may be adjusted for optimal crystal growth conditions (Newman et al., 2005).
Protein stability is important for crystal growth, as rigid proteins have a higher chance to bind to
a growing crystal with identical orientations. Substrates (protein, ligands) detergents are widely

used for protein stabilization.
1.5.2.2  Techniques

Batch crystallization

Batch crystallization is one of the simplest, oldest, most reproducible and best character-
ized crystallization techniques, offering many variables to explore small volumes of biological
macromolecular crystallization (Gilliland et al., 1996). The experiment starts with a high protein

concentration in a mixture with a crystallization agent at constant concentration. Due to the high
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levels of supersaturation from the initial phase of the experiment, nucleation occurs, leading to
the transition of proteins from the solution phase to crystalline phase. The removal of the protein
from the solution decreases the level of supersaturation (Rayment, 2002).

The starting conditions will remain the same throughout the experiment until precipitation
from the solution occurs (Luft et al., 2003). The success of the experiment to produce crystals
lies in a narrow range of solubility in the concentration of the cocktail and protein sample. The
disadvantage of this method is that by approaching equilibrium rapidly, the quality of the crys-

tals may be harmed.

Vapour diffusion methods

Improving on the speed of the batch methods, vapour diffusion is the most commonly used
crystallization technique. Many variables can be varied in this method, including parameters
involved in the kinetics of diffusion through the vapor phase. Both “hanging drop” and “sit-
ting drop” geometries are common, as are solution volumes ranging from 10nLs to seveal pLs.
Compared to batch crystallization, vapour diffusion has a more dynamic phase diagram (Chayen,
1998).

The crystallization drop is sealed into an airtight chamber containing a small drop with dis-
solved protein in vapor contact with a larger reservoir volume. Due to the difference in higher
vapour pressure of water in the experimental drop compared to the reservoir solution of higher
precipitant concentration, a controlled dehydration occurs (Luft et al., 2003). This typically con-
centrates both the protein and precipitating agent in the crystallization drop. Depending on the
chemical composition of the reservoir solution, (salts, PEGs) it might take from hours to days to
reach equilibrium. A simple model for estimating concentrations is that a starting volume ratio
of the crystallization agent to protein of 1:1 would lead to a doubling of their concentrations as
the vapor diffusion equalizes the concentrations of the precipitant in the reservoir and the drop.
The actual concentrations depend on the totality of chemical components, some of which may
also be volatile (in particular alcohols when used as precipitants).

To obtain protein-ligand complex crystals, the complexes may be made before crystallization
(“cocrystallization™), or the crystals may be soaked in appropriate ligand solutions. With soak-
ing, the ligand is soaked either into an apo-enzyme crystal or into a ligand-enzyme complex

crystal, whereby the cocrystallized ligand is replaced by the soaking ligand. Cocrystallizing a
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protein-ligand solution produces crystals in hours to days depending upon crystallization con-
ditions, as described above. The success rate of cocrystallization is typically higher than that
of soaking, in part because ligand binding may alter the protein surfaces involved in crystal
packing interactions. Soaking is chosen when cocrystallization fails to produce crystals (Hassell
et al., 2006), or to improve the turnaround time for the experiment.

Two widely used methods to obtain protein-ligand complex crystals are soaking and cocrystal-
lization. The difference between them is to mix the ligand and protein before or after obtaining
crystals. In soaking, the ligand is soaked either into an apo-enzyme crystal or into a ligand-
enzyme complex crystal, whereby the cocrystallized ligand is replaced by the soaking ligand.
Cocrystallizing a protein-ligand solution produces crystals in hours to days depending upon
crystallization conditions, such as temperature. The success rate of cocrystallization is higher
than that of soaking. Soaking is mostly chosen when cocrystallization fails to produce crystals

(Hassell et al., 2006).

Seeding techniques

Seeding is a technique to obtain crystals when nucleation does not occur as needed, or to in-
crease the size of crystals. The most common type of seeding used in protein crystallography
is simple transfer of small crystals to a new crystallization experiment. Depending on what is
needed, two different seeding methods are used; streak or macro seeding (Khurshid et al., 2010).

Streak seeding is fast, easy, and used to bypass the nucleation stage. With the help of a wire or
hair, small nearly invisible seeds are transferred to a fresh crystallization drop by streaking the
tip in a line through the drop. The initial drop streaking may deposit too many nuclei (the seeds),
leading to the appearance of too many microcrystals. Moving the seed-loaded hair to successive
drops reduces the number of transferred seeds each time, enabling optimization of the number
of seeds transferred.

Macro seeding is a time consuming process, primarily used to grow small crystals larger. This
requires an additional step of crystal washing in order to create growth surfaces on the crystal.
Here, macro crystals are transferred to a washing station for slight dissolution of the crystal,
taking care not to dissolve too much. After washing the crystal is transferred to a new drop

under conditions for crystal growth (Bergfors, 2007).
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Robotics

Robotics has enable testing of a larger variety of conditions in smaller and smaller drops. The
process typically starts with multiple plates, each with 96 different commercial screen condi-
tions, in 50-500nl sitting drops. Using this technique fewer proteins can be tested under more

conditions, since protein quantity is limiting if yields are low in volume (Li et al., 2012).

Mounting and handling the crystals

For data collection, crystals must be removed from their growth solution. They are typically
mounted in capillaries or cryo loops. A glass capillary of 0.7 to 1mm may be used to hold the
crystal in a protected environment for data collection. One end of capillary is sealed and it is
filled with a reservoir solution. The crystal is transferred to the capillary and allowed to sink to
the end of in capillary tube (Makino et al., 2012). The removal of excess reservoir solution and
sealing of the other end then complete the preparations for diffraction. Freezing is required for
mounting the crystal into open loops. A reservoir solution with an appropriate concentration of
cryoprotectant is prepared, and the crystal is harvested with the loop and transferred to the cry-
oprotectant drop and briefly rinsed (Pflugrath, 2015). The crystal in some cryoprotectant liquid
is then captured in the loop and frozen in liquid nitrogen (McFerrin and Snell, 2002).

The X-ray crystallography project has three basic steps. The first step is to produce the crystal,
often the most difficult and unpredictable step in crystallography. The second step is to collect
the X-ray data by rotating the crystal while in an X-ray beam, recording the diffracted X-rays
as a function of position on a 2D detector and rotation angle. The best suited X-ray sources are
synchrotrons. Synchrotron radiation occurs when charged particles are accelerated in a curved
path or orbit, traveling at great speeds. The crucial component in the synchrotron device is an
electron storage ring (Helliwell, 1922); the bending electron path causes the emission of energy
across a broad range of high energy wavelengths, including X-rays. Recording enough reflection
spots as the crystal is rotated is crucial for information completeness and the ability to calculate
an electron density map. The diffraction spot intensities are integrated and scaled appropriately.
Structure solution involves solving the "phase problem", which for ligand studies is usually done
with molecular replacement. One probem that might be noticed during structure solution is the
occurrence of twinned crystals (Smyth and Martin, 1999). A twinned crystal is an aggregate of

multiple crystals of the same species, joined together in differing orientations, but these defects
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may be accounted for in structure solution (Hoffman, 2011). Finally, the refined crystal structure

is stored, typically in a public database like Protein data bank (PDB) (Berman et al., 2000).

1.6 STATISTICAL DATA METHODS

Statistical data methods are needed for a wide variety of drug design relevant tasks. In gen-
eral, the types of data available regarding ligand binding are many, diverse, and often inexactly
matched (e.g. ligand binding strengths measured under different conditions). Some prediction
methods are essentially interpolation methods, required cross-validation with known data to
demonstrate their validity. One example here is to evaluating the performance and accuracy of a
virtual screening protocol for a target, whereby a set of actives and inactive compounds known

for the target are used to demonstrate the suitability of the screening (Stumpfe et al., 2012).

1.6.1 Metrics for analyzing ligand binding efficiency

Drug design computational methods-necessarily empirical-rely on statistical properties of
structural or binding data sets that are sparse, even with thousands of data points, compared
to the dimensionalities of the systems to be modelled. Although these shortcomings are well
known, the data have value, and methods are needed for their use. Under the term “Big data”,

several methods are coming into widespread use, as discussed below.

Principal component analysis (PCA)

PCA is a statistical method that is used to effectively reduce the dimension of multivariate
dataset while minimizing information loss. It transforms a data set in which there are large
numbers of interrelated variables into a new set of uncorrelated variables, the principal compo-
nents. Each principal component is a linear combination of the original variables in which the
coefficients indicate the relative importance of the variable in the component (Jolliffe., 2002).
In effect, the coordinate system is rotated, in multiple dimensions, aligning the distribution of
the data along the new coordinates. Each axis in the new coordinate system is a newly defined
parameter (variable), ordered from most important to least that creates the spread of the data.
For an example of only two variables, with the data plotted in two dimensions, (Fig 15)
depicts geometrically the meaning of the two variable principal component analysis. The al and
a2 represent the original variables and axes. The PC1 and PC2 are the transformed variables and

axes. The direction of the principal axes indicates the principal components (Kshirsagar, 1972).
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The first principal component is a transformed coordinate o’ a, onto which the transforma-
tion o aligns the greatest variation in the data:
&’1a= xq1a1+x1202
In the above equation, al and a2 are the two original variables, &’ a is the eigenvalue of the
first principle component and «;; is the coefficient of i in component “one” that is orthogonal to
the first principle component.
0(’2 a= X210a1+x2203
(Fig 15) shows how the variation in the data is reflected mostly across PC1, and the correlation

of the data distribution is removed in the new coordinate system (Jackson., 1972).

PC2
PC1

Original Variable, a3

>

Original Variable, aq

Figure 15: Geometric interpretation of principal component analysis

This statistical method is widely used to reduce data dimensionality where the Principal Com-
ponent Analysis (PCA) transformed data is effectively of lower dimensionality than the input
data. The maximum variance is distributed along the first Principal Component (PC), succeeded
by lower PCs each with successively less variance, and the distribution of the data is uncorre-
lated between the new components (Pearson, 1901; Hotelling, 1933). PCA is popular because
it quickly shows in noisy data the essential parameters that describe why the data points dif-
fer. Thus, if certain molecular “fingerprint” parameters (e.g. polarity, molecular size, or shape

parameters) are strongly represented in PCA #1 for inhibitor binding strength data, those param-
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eters are highly relevant to what determines inhibitor binding strength (Awale and Reymond,

2016; Shamsara, 2014).

Neural network regression

The idea of an artificial neuron was conceived by McCulloch and Pitts (1943), but came into
more widespread use with the development of further algorithmic implementations (Werbos,
1994; Haykins, 1999). An artificial Neural Network (ANN) is developed to model the way neu-
rons in the human brain work. The network function is determined largely by the connections
between elements that are initially trained for later application. A neural network is trained to
associate patterns of outputs with a set of inputs by adjusting the values of the weights between
elements (Fig 16). The network is iteratively adjusted, based on a comparison of the output and

the target, until the network output matches the target (Bishop, 1995).

Neural Network

——p» including connections
(called weights)

Input between neurons Output

Compare

Adjust
weights

Figure 16: Overview of Neural Network.

They can be applied to QSAR modelling (Livingstone, 2008). These models use self-organized
algorithms for training the neural network to understand the relationship between molecular de-
scriptors and biological activity through repetitive improved cycle prediction (Acharya et al.,
2011). Chemical descriptors (patterns) are linked to recognition categories (binder/non-binder)
via hidden layers of functionality passing to different layers when certain conditions are met.
Strong linear correlations between molecular descriptors of the inhibitors and activities can be

identified (Schneider and Wrede, 1998).
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1.6.2  Metrics for analyzing ligand-target screening efficiency

For estimating virtual screening/docking protocol accuracy, several metrics are used to calcu-
late the efficiency of hits with respect to the compound library. Two of those metrics are used
widely in virtual high through put screening, (Receiver-operating characteristic curves (ROC))
and Enrichment factors (EFs) (Empereur-mot et al., 2015).

Here these two metrics (Enrichment factor (EF) and ROC) are used to analyze the success
rate of hits from the virtual screening protocols. EF is defined as function of active percentage
ranked list from the hits versus all hits percentage from the database. Through GLIDE docking
filters actives and decoys were identified from the hits and are ranked according to Glide docking

scores (Halgren et al., 2004). So in an XY plot to calculate EF calculation (Gani et al., 2013),

y— No. of actives identified as hits
- All active hits

_ Screened hits (Actives + Decoys)
~ Al active hits + All Decoy hits

x 100, and

100.

(Warren et al., 2006) study shows that from a pool of actives and decoys known for eight
different protein targets, GLIDE docking and scoring function could select actives being perfor-
mance of ligand-ranking varies across multiple targets.

ROC plots are also interpreted as the area under the ROC curve (Area under curve (AUC))
(Triballeau et al., 2005). Here in the virtual screening method, the probability of assigning higher
ranks to a randomly chosen active compound than an inactive compound is analyzed as a metric
in the AUC plot. Both the Y-axis for EF and ROC are identical but in different X-axis positions.
The EF plot shows the success of predicting actives over decoys over the total number of com-
pounds. The curve shape provides the active and decoy relative proportions. While in the ROC
plot the sensitivity will be less due to explicit calculation of false positive rates (Truchon and
Bayly, 2007; Zhao et al., 2009). Receiver operating characteristic represents the true positive
rate along the Y-axis as a function of the corresponding false positive rate along the X-axis

calculated as shown below

B No. of actives identified as hits

Y= All active hits x100,and
No. of decoys identified as hits
X= All Decoy hits X 100.
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AIM OF THE STUDY

Main objectives

Overall, the project aims at understanding the chemical interactions involved in ATP site ligand
binding, to an extent that binding energies can be semi quantitatively predicted for specific
targets. This understanding can be used to implement knowledge into in silico methods for
ligand design, and select small molecules and fragment moieties for focused chemical libraries,
mainly for protein kinase drug targets targeting individual kinase targets or polypharmacological
cancer targets.

Secondary objectives

Investigate details of relevant target structures from both novel structures and from evaluations
of published structures. Create a set of inhibitors for specific drug targets and scaffolds for

human kinome that can attain specificity and selectivity for one or more kinase targets.
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3.1 PROTEIN TYROSINE KINASE (PTK)

The PTKs, a subclass of protein kinase is of clinical importance for the treatment of cancer.
Improper functioning of tyrosine kinase leads to NSCLC. EGFR belongs to Protein Tyrosine
Kinase (PTK)s and is an anti-cancer drug target. (Lynch et al., 2004) and (Paez et al., 2004)
described EGFR mutations as a major and potent oncogenic driver of advanced NSCLC. The
first paper discusses poly-pharmacological targeting of protein kinases Anaplastic lymphoma ki-
nase (ALK), Hepatocyte growth factor receptor (MET), and EGFR (including the drug resistant
EGFR mutant T790M) for NSCLC.

The oncogenic activity is accounted for by the tyrosine kinase activity of Abelson murine
leukemia viral oncogene homolog 1 (ABL1) protein by ABL1-BCR chromosomal transfer
(Wapner, 2014). In the second paper a virtual screening approach is used for the ABL1 WT

and ABL1-T3151 drug-resistant mutant leukemia kinase targets.

For evaluating protein kinase target similarity several metrics can be used. Designing ligands
for a specific kinase target, a 3d crystal structure is analyzed focusing on the role of the active
site key residues and their influence on ligand-receptor interactions. In the third paper structural
similarities at active site of the kinase domain and inhibition correlation plots between NSCLC

targets are examined.

Mutations at the gatekeeper position in the kinase domain of PTK are of clinical importance
by contributing towards acquired resistance. The term gatekeeper emerged as it determines the
hydrophobic back pocket in the active site kinase domain. The human kinome holds a 40% oc-
currence of methionine as the most frequent gatekeeper residue followed by the second most
frequent occurring threonine amino acid residue. In the fourth paper, we investigate the chi ro-

tamer distribution of methionine as gatekeeper residue from available PDB structures. This is
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further applied to the in-house fragments to select top ranked hits and crystallize those small

molecular compounds to verify the binding modes at the ATP binding site.

3.1.1 Paper I: Structure analysis for polypharmacology
The aim of paper I is to derive the requirements for polypharmacological targeting of ALK,
MET, EGFR, and the drug resistant mutant T790M from all available structural and ligand

binding information.

Activity homology and Inhibition profile plots

The activity homology for each pair of kinases A and B is calculated as the prior probability of
activity for kinase B given activity for kinase A, i.e., the percent of active compounds (<= 13%
control) for kinase B that are also active for kinase A. An activity homology of 65% implies
that 65% of the compounds that are active for kinase B also had activity for kinase A. Activity
homology data (21851 compounds at 1uM against 317 — 402 Ambit Biosciences kinase assay
panel) for ALK, MET, EGFR and EGFR-L858R,T790M is taken from (Posy et al., 2011).

The Ambit binding data study of 72 inhibitors and 442 kinases interactions as correlation of
inhibition profiles are plotted as disks at the respective kinase positions on to sequence based hu-
man kinome phylogentic tree (Manning et al., 2002). The multi target-multi inhibitor similarity
is analyzed through PCA (using Mathematica) a technique reducing redundancy of similarities
between inhibitors, and further clustering of the targets with reduced dimensionality as a mea-

sure of variance.

Structural superpositions across NSCLC targets

ALK, MET, and EGFR protein kinase structures are downloaded from the Protein Data Bank
(PDB) and their 3d-structures are superimposed using Pymol (special attention is taken while
extracting kinase monomers from the entries). Structural alignment includes the Cx atoms from
the gatekeeper + 3 residue as hinge anchor position (1196-1199 from ALK, 1158-1161 from
MET, 766-769 or 790-793 from EGFR), along with «F helix atoms as the core of the C—lobe
(1308-1324 — ALK, 1262-1278 — MET, 869-885 or 8§93-909 — EGFR) residues.

Binding analysis of tricyclic compounds for polytargeting

Common high affinity inhibitors (,Ki > 7.5) for ALK, MET and EGFR are considered for
choosing the scaffold (Metz et al., 2011). (Three (1b, 2a and 2b) tricyclic compounds are
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3.1 PROTEIN TYROSINE KINASE (PTK)

synthesized and tested for binding affinity with screening concentration at 1uM against ALK,
MET and EGFR (L858R, L858R_T790M) using KAELECT and scanKINETIC from DiscoverX
(KINOMESscan-(Fabian et al., 2005; Wodicka et al., 2010))
3.1.2  Paper II: Scoring function (rigid and flexible receptor)

In the second paper the importance of optimum Virtual screening (VS) protocols accounting

for flexible ligands and target plasticity is investigated.

ABLI inhibitors and kinase domain structures set

A library of 38 active compounds that binds to both ABL1-WT and ABL1-T315I in enzyme
assays with IC50 < 100nM is retrieved from the KKB (Kinase Knowledgebase). Three sets of
decoys are chosen of which two are inactive compounds (Directory of Useful Decoys (DUD)-
decoy set for homologous SRC kinase and 1000 universal decoys set from GLIDE) while the
third set includes 89 inhibitors that weakly binds ABL1 target with IC50 values ranging between
100 to 1000nM. Four versions of ABL1WT and 5 ABL1-T315I structures are used as receptor

kinase domain structures for the VS approach.

Docking and scoring analyses

GLIDE SP docking is used and the poses are ranked according to GlideScore. Further more
GLIDE SP poses are re-scored using Molecular Mechanics-Generalized Born Surface Area
(MM-GBSA) for rigid and partially flexible receptors. Free energy of binding in solutions is sim-
ulated by MM-GBSA. The output hits are used to evaluate the VS enrichment success through
two metrics: the enrichment factor (EF) and the receiver operating characteristics (ROC) plot

(discussed in introduction).

3.1.3  Paper Ill: Protein kinase target similarity
This paper elucidates the importance of combining ligand inhibition profiling with recep-
tor plasticity and adopting machine learning algorithms on cheminformatics to predict binding

affinities of protein-ligand complexes from compound molecular properties.

Target similarity analysis

PDB structures of ALK and MET kinase domains are structurally superimposed using Pymol
(alignment criterion limited to C « atoms from the gatekeeper + 3 residue, oF helix atoms of

the C—lobe). Using Bristol-Myers Squibb published binding assay data on 21851 compounds at
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1uM against 317 — 402, Ambit Biosciences kinase assay panel are analyzed to plot the activity
homology for NSCLC (ALK, MET and EGFR) targets.

3.1.4 Paper IV: Methionine as a gatekeeper selectivity determinant for PKI

In this paper the gatekeeper methionine residue distribution of all protein kinase domains
from all PDB structures and the inhibitor binding profiles of the EGFR target in the Ambit assay
panel are analyzed. The role of methionine as a selectivity determinant for protein kinase in-
hibitors is evaluated using 3d structure superposition, modeling high affinity inhibitors to EGFR
WT and mutant structures. The rotamer receptor methionine geometry distribution is used as VS
optimum protocol on Maybridge Ro3 fragment library and co-crystallized selected fragments

on the PKA kinase.

Rotamer distributions

For understanding the methionine contribution in the human eukaryotic protein kinase (ePK)
multiple sequence alignments are retrieved (kinase.com/human/kinome/groups/ePK.
aln,(Manning et al., 2002)). Only the corresponding protein kinase with methionine as gate-
keeper is used in the rotamer distribution analysis. All the humans PKs (PDB codes and chain
identifiers) are extracted from Credo database (Schreyer and Blundell, 2009) with ligand—methionine
distance constraints (<= 4A). These PDBs are structurally superimposed and analyzed accord-

ing to methionine residue chil distribution.

Modeling and binding distribution of selective inhibitors on EGFR targets

Using Mathematica EGFR wt and mutant effects on inhibitor binding are plotted from Ambit
panel 2011 panel data (Davis et al., 2011). Since there is no crystal structure available for la-
patinib and staurosporine bound to EGFR threonine and methionine gatekeeper mutations, the

ligand binding conformations to the respective target structures are modeled and analyzed.

In-house fragment library ligand screening and crystallography

From the gatekeeper methionine rotamer geometry distribution top ranked hits are selected by
docking the Maybridge fragments on the PKA model (methionine as gate keeper). We evaluated
the binding mode of fragments with respect to overall human kinome structural alignment of

the methionine gatekeeper chil distribution.
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3.2 HEAT SHOCK PROTEIN 70 (HSP70)

3.2 HEAT SHOCK PROTEIN 70 (HSP70)

Due to the over-expressed HSP70 ability to inhibit multiple pathways it both intrinsically and
extrinsically constitutes the survival mechanism of tumor cells (Nylandsted et al., 2000; Murphy,
2013). The chaperone function of HSP70 assists the survival of cancer cells, which otherwise
may be too destabilized to avoid apoptosis (Whitesell and Lindquist, 2005; Zorzi and Bonvini,
2011).

3.2.1 Paper V: Nucleotide binding and hydrolysis of HSP70 NBD
The properties of HSP70-NBD crystals and binding site interactions are investigated for drug
discovery purposes using site-directed mutagenesis, Translation Libration Screw (TLS) protein

dynamics and surface plasmon resonance (SPR).

HSP70 (NBD) model design

Site-specific mutations in the adenosine-binding region of the active site HSP70 are created to

investigate binding and structural properties influencing ATP hydrolysis (Fig 17).
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Figure 17: Flow diagram of HSP70 (NBD) model design. Created site-specific mutations in the adeno-
sine binding region of active site HSP70 to investigate binding and structural properties influ-

encing ATP hydrolysis.
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4.1 PROTEIN TYROSINE KINASE (PTK)
The work is reported in two stages, in this first phase the results are covered for PTK described

in Paper I, II, IIT and IV

4.1.1 Paper I: Structure analysis for polypharmacology

Several metrics including cheminformatics, structure and inhibitory data are used to design
compounds that inhibit ALK, MET and EGFR (L858R-T790M), mutation targets for Non-small
cell lung cancer (NSCLC) therapy. Three compounds are synthesized and tested for polyphar-

macology target profiling.

ALK, MET and EGFR similarity metrics

From the activity homology score it is shown that ALK and MET are similar and EGFR WT
is distinct from the EGFR primary mutation L858R and the drug resistance gatekeeper muta-
tion T790M. 35% of ALK potent inhibitors share 43% activity homology with MET-M1250T
while less than 5% of the ALK inhibitor bind to EGFR mutants, but more to the EGFR-(L858R,
T790M) double mutant (Fig 1).

Correlation plots were used to study the correlations among protein kinases with respect
to inhibitor binding interactions, focussing on particular targets of interest. We used inhibitor
correlation plots from Ambit kinase panel (Davis et al., 2011) to highlight the similarity of ALK
and MET, and the dissimilarity of EGFR. In this study very few kinases are correlated with
EGFR, mostly are from the same class of TKs (Fig 2 a). On the other hand, a large number of
protein kinases across the kinome share moderate similarities to ALK, including MET but not
EGFR (Fig 2 b).

We used PCA to analyze the similarity of multiple ligand-target binding assemblies, reducing
the redundancy of similarities between inhibitors and clustered the targets. These clusters are

projected into PC planes to explain the variance of the data (Fig 3)
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: The “activity homology” (AH) similarity measure (Posy et al., 2011) as applied to ALK, MET,

and EGFR. Fractions of the sets of tight binding compounds of a reference PK target that also
tighly bind to the tested PK are plotted for the ca 400 PKs of the test set. The curves are
color coded according to the reference PK “A”: black for ALK, red for MET, blue for EGFR,
and yellow for the drug resistant mutant EGFR (L858R,T790M), which is abbreviated EGFR-
LR/TM on the plot. The PKs of the test set are ordered according to the AH with ALK. The
peaks with high homology to EGFR marked with an asterix are EGFR mutants other than
EGFR-LR/TM, and have high AH similarity to EGFR (but not EGFR-LR/TM).

Here in PC coordinate #1 shows all three targets ALK, MET and EGFR to be in the middle or

“typical” range of the first PC. The second PC places EGFR at one extreme, but ALK, MET and

the EGFR-T90M protein kinases are in a “typical” range. PC 3 clearly defines the separation

EGFR and EGFR T790M with the rest of the kinases, including ALK and MET.

51



RESULTS AND DISCUSSION

Figure 2: Correlations of inhibition profiles of the Ambit 2011 kinase profiling dataset (Davis et al.,

2011). Disk sizes and colors (Red: 100%, Magenta: 80%, Blue: 50%, Green: 20%) show the
correlations of inhibition profiles of individual PKs with that of the PK of interest. (a) Correla-
tions with EGFR. (b) Correlations with ALK.

Figure 3: PCA transformation of the Ambit 2011 dataset, highlighting ALK, MET, and EGFR kinases.
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Of the first three dimensions of the principal component transformation of the dataset, principal
component 3 clearly distinguishes EGFR and variants from the other kinases, while ALK, MET,
and EGFR all are similar with respect to PC #1. PC #2 distinguishes the T790M mutants from
the other EGFR forms



4.1 PROTEIN TYROSINE KINASE (PTK)

This plot first demonstrates how ALK, MET are rather typical with respect to the inhibitor
set forming the basis of the data, and most strikingly, how EGFR is unique, and how the T790M
mutants are intermediate: the inhibitors that make up PC #3 continue to distinguish all EGFR
proteins from the rest, while PC #2 is made up of inhibitors that recognize the drug resistant

mutant T790M but not EGFR similar to other protein kinases.

Similarity analysis of crizotinib binding to ALK and MET structures

Detailed active site residue analysis of crizotinib within ALK and MET target structures reveals

the ligand-receptor induced flexibility. This knowledge can be used for structure based design

of inhibitors with selective and low nM ALK and MET inhibition.

Figure 4: Superposition of structures of crizotinib in complexes with ALK (PDB: 2YFX; orange/brick)
and MET (PDB: 2WGJ], violet/indigo). Side chains within a contact distance of 4 A are shown
as sticks, while main chain hydrogen bonding contact atoms are shown as small spheres. A
dashed line indicates the approximate position of the disordered glycine-rich loop of ALK. The
side chains of the activation loop phosphorylation sites are widely separated, with Tyr-1230 of
MET in a m — 7t interaction with crizotinib, and Tyr-1278 of ALK anchored away from the ATP

pocket by a helical conformation of the activation loop.
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Automated bioinformatics or structural methods seem highly unlikely to explain the ALK
and MET cross-reactivity (Jambon et al., 2003; Laskowski et al., 1997; de Beer et al., 2014).
Different amino acids in the ATP binding active site pocket share specific crizotinib interac-
tions between ALK and MET structures. These amino acids positioned through out the pocket
with Leu as gatekeeper, Val at the glycine-rich loop, Gly-GK+6 residue are involved in the
pyrazole—proton interaction. Amino acids that share crizotinib interactions between ALK and
MET include the gatekeeper leucine, the C-terminal ATP site anchor of the glycine-rich loop va-
line, an alanine residue two positions N-terminal to the active site lysine, and a pyrazole—proton
interaction at a gatekeeper+6 glycine residue. Other shared non-residue specific interactions in-
cluding hinge hydrogen bond binding and the main chain carbonyl group they may attribute for
low to high nM inhibition values. One important interaction that is unique for MET is the 7t — 7t
stacking between Tyr1230 and crizotinib aryl ring which may account for the tighter crizotininb

MET binding compared to ALK (Fig 4).

Scaffold library analysis for ALK, MET and EGFR polypharmacological inhibition

The tricycle scaffold is selected (Fig 5 “top right corner”) from different chemotypes analyzed
from Abbott (Metz et al., 2011) and prioritized according to the ALK, MET, EGFR nM binding
data. A previous similarity plot of activity homology analysis (Fig 1) shows ALK and MET
MET to be statistically similar, with dissimilarity of EGFR and an intermediate position for
EGFR-T790M drug resistant mutation. Considering the active site crizotinib kinase domain key
interactions (Fig 4) from co-crystal structures of ALK and MET and their cross-reactivity (Kp)
against ALK (3nM) and MET (2nM) (Davis et al., 2011) this scaffold is selected and modified

for covalently trapping of cysteine at the gatekeeper+7 site in EGFR.

Polytargeting binding analysis on tricyclic compounds

Comparing the binding affinity values (Table 1) on ALK, MET and EGFR mutants from Kd-
ELECT screening, 2a shows a better Kp for ALK and MET. The affinities reported are the same
for compounds 1b and 2a towards EGFR L858R_T790M drug resistance gatekeeper mutation.
1b is better matched with the primary mutation L858R (SM) than the other two compounds. 2b

is more selective than 1b of ALK and MET targets.
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Figure 5: Candidate chemotypes for orthogonal EGFR covalent inhibition, prioritized based on the

the figure at lower saturation.

binding data of Abbott (Metz et al., 2011). Values for individual inhibitors are plotted accord-
ing to ALK and MET binding strengths, with chemotypes indicated by symbol (and defined for
the tightest binders) and EGFR binding strengths indicated by color (red=1nM, violet=10nM,
blue=100nM). The complete structure of the inhibitor for which the data point is plotted, is

disclosed in the analysis and the corresponding substituents are depicted for this chemotype in

The compounds reversibility and dissociation constant values are measured using scanKI-

NETIC. Four different arms in scanKINETIC give time dependent dilution series measuring

association and dissociation values of the compound to determine the rate of covalent inhibition

of the target (Fig 6). Comparing arms A and C determines association behavior, in which bind-

ing values for 1b and 2a (Table 2) defines that 10% of 1b and 13% of 2a was bound after 1 hour,

while compared to 60% of 2b EGFR (SM). 2b associates very fast as compared to 1b and 2a,

where both compounds associate slower for both EGFR mutants.
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Table 1: Binding affinity analyzed for tricycles using KAELECT (nM) against NSCLC targets.

Structure Molecule ALK MET EGFR-L858R EGFR-L858R_T790M Dissociation

Cl

N \

f 1b 800 >1000 420 110 Slow

N

? 340 250 710 110 Slow
Kij @ 2b 390 330 780 270 Fast

NH

To analyze dissociation Arm A and Arm B binding constants are compared. 1b and 2a disso-
ciated only 12% to 25% after 30-fold dilution and 5 hours of equilibration, while 2b dissociates
87 to 100% for both EGFR (SM) and (Double Mutation (DM)). This shows that 2b associates
and dissociates faster compared to 1b and 2a while both association and dissociation are much
slower. One interesting aspect about the structural difference of compound 2b compared to 2a
is an extra CH2. This has a dramatic effect on k,,, and koﬁc on 2b where arm values from scanKI-

NETICS show faster dissociation and moderately faster association for 2b than 1b and 2a.
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scanKINETIC ARMS
Address association and dissociation kinetics
Equilibrate
ArmA Add . > Readout
Inhibitor t,+1t, 6hr

Addresses dissociation kinetics
Add Equilibrate. Dilute Equilibrate,

Inhibitor ¢ (1 nr) R:?ﬂid?n t, 5hr

Address association kinetics (in concert with Arm A)

Equilibrate
Arm C Add > Readout

Inhibitor  t, (1hr)

Addresses dissociation kinetics and serves as a control for reagent dilution (30-fold)

Pre-dilute S Equilibrate >Readout

Kinase & inhibitor t,+t, 6hr

Arm B Readout

Arm D

Figure 6: Description of dilution dependent association/dissociation study arms used in scanKINETIC

(Gunawardane et al., 2013)

Table 2: scanKINETIC reversibility and dissociation kinetic data on tricyclic compounds (nM)

EGFR-L858R EGFR-L858R_T790M

Molecule
A B C D A B C D

1b 57 32 57 270 32 12 25 97
2a 47 340 340 1800 7.7 56 56 300
2b 110 2900 170 4100 100 4100 58 5000
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4.1.2  Paper II: Scoring function (rigid and flexible receptor)

In this paper, we describe how inhibitor type (I/II) (Paper 2, Table 3) and the corresponding
ABLI1 crystal (Paper 2, Table 2) would effect the enrichment factors (as mentioned in introduc-
tion) and preference towards Type II ABL1-T315I mutant target structures over Type I ABL1-
WT kinase domain structures. MM-GBSA approach was biased for type I inhibitor enriching
the actives from decoys despite of low EFs than SP docking. We found key molecular properties
that correlates with binding affinity. We investigated the importance of target flexibility (also
influenced by Type I/II inhibitors) for docking in the active site pocket of ABL1 kinase domain

by including all nine crystal structures in the current study.

Evaluating enrichment factors

As shown in (Table 3), SP virtual screening EFs was relatively high for actives in top ranking
poses than decoys. Between two inhibitor types (I and II), type II target conformations provide
better active inhibitors rate (89%) ratio over (30%) decoys hits. Although the number of actives
ranked as hits is higher (80%) decoys show poor enrichment for type I kinase domain conforma-
tions. Comparing type II inhibitor kinase targets for complexes with DCC-2036 and ponatinib,
the actives identified as hits for DCC-2036 gave higher enrichment values, but more than 70% of
decoys ranked in early enrichment factors, compared to better enrichment percentiles for pona-
tinib. Thus, the type II conformation ponatinib bound ABL1-T315I structure outperforms the

others and may be chosen as the better target for optimum VS approach.

Enrichment with MM-GBSA

After evaluating MM-GBSA based free energy binding, type II conformations show decreased
ROC AUC and enrichment values (Table 4). But type I conformations show mixed results with
MM-GBSA approach, with overall enrichment percentile higher than SP approach. On the other
hand, comparing enrichment factors across mutants and WT SP-based docking performed better
than MM-GBSA. The binding energy values calculated using MM-GBSA approach show better

results for actives over decoys.

58



4.1 PROTEIN TYROSINE KINASE (PTK)

Table 3: Overall and early enrichment of high-affinity inhibitors in SP docking. All values are shown in

percentage
Actives identified Decoys identified
EF1% EF5% EF10%
Ligand of target kinase as hits as hits
ABL1- ABLI- ABLI- ABLI- ABLI- ABLI- ABLI- ABLI- ABLI- ABLI-
WT T3151 WT T3151 WT T3151 WT T3151 WT T3151
Danusertib - 100 79 - 21 39 50 - 61
PPY-A 100 100 80 80 37 37 39 47 53 61
SX7 100 100 80 80 11 26 58 68 74 84
DCC-2036 97 95 70 51 65 61 86 86 92 97
Ponatinib 95 89 55 30 67 47 86 82 94 87

EF, enrichment factor; SP, standard precision

Table 4: ROC AUC and early enrichments by MM-GBSA energies on SP docked poses

Ligand of = ABLI-WT ABLI-T3151
target kinase ROC ROC
EF1% EF5% EF10% EF1% EF5% EF10%

AUC AUC
Danusertib - - - - 0.82 13 55 63
PPY-A 0.83 27.78 50 61.11  0.81 21 47 50
SX7 091 26.63 6053 7632 091 42 52 66
DCC-2036 0.82 4595 4595 5405 0091 19 52 64
Ponatinib 0.85 4722 5556 61.11 092 50 56 71

AUC, area under the curve; EF, enrichment factor;

MM-GBSA, molecular mechanics — generalized Born surface area;

ROC, receiver operating characteristic; SP, standard precision.
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Correlation between physiochemical properties and binding affinity

Strong linear correlations between molecular descriptors of the inhibitors and activities were

identified. The hydrogen bond donors and rotatable bonds gave the strongest correlation for

ABLI1-wt. But only rotatable bonds were strongly correlated for ABL1-T315I and mutation in

gatekeeper from threonine to isoleucine lost the hydrogen bond acceptor (Fig 7).
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Figure 7: Neural network-based prediction of pICs values of the active inhibitors from their molecu-

lar properties (ABLI-wt, ABL1-T315I)
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Structure-based studies

Structural super positioning all available ABL1 kinase domain crystal structures from PDB,shows
clusters of clearly different DFG states (DFG -in, DFG-out and DFG-intermediates), C-helix

states. These states were visualized in protein kinase and shown as correlated with different

activation loop conformations, with the main contribution from inhibitor types (I and II, respec-
tively) (Fig 8). We examined an inhibitor induced conformational change in glycine rich loop

motion upon on the nine available PDB structures, while the rest of the conformations were

representatives of different DFG states.

In target based drug discovery it is important to consider these different states of target flexibil-
ity. Considering this protein flexibility for designing specific inhibitor type (I/Il) as revealed by
crystallography has played an important role to overcome drug resistance gatekeeper (T3151)
mutation, which is one of the most serious mutations in CML leukemia patients (Shah et al.,

2002).

Figure 8: Overview of published ABL structures showing the clustering of DFG states at the ATP
binding pocket. (A) The location of the DFG conformation clusters relative to the hinge (front).
The positions of the DFG phenylalanine affect the ATP pocket volume most significantly and
cluster into several groups. (B) Detail of the clustering of DFG states including the positions of
the C helix: DFG-in (cyan), DFG-out (dark blue), inactive DFG-intermediate (steel blue), and
DFG-“src like” (turquoise), the latter represented by a single Protein Databank (PDB) entry
(2GIT)
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4.1.3  Paper IlI: Protein kinase target similarity

In this paper different protein kinase targets in human kinome were analyzed using sequence,

structure and ligand binding properties. For example inhibitor cross-reactivity using structural

superpositions and activity homology between PTK targets were used to understand key selec-

tive determinants responsible for better binding affinities across human protein kinome.

Applying activity homology towards cancer drug targets

As discussed in Paper I, ALK, MET and EGFR are drug targets for lung cancer. A distinct pat-

tern was examined while comparing ALK, MET and EGFR inhibitor correlation profiles.
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Figure 9: Activity homology plots for selected sets of kinases: ALK, MET, and EGFR
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From the activity homology plots ALK, MET was similar (left side) with the dissimilarity of
EGFR shown (in the extreme right of the plot) (Fig 9). Polypharmacologically we could target
these three kinases using an ALK/MET cross-reactive compound like crizotinib scaffold and
adding a covalent trapper functional group to the compound. This modification will bind the in-
hibitor covalently with cysteine of gatekeeper + 7 hinge position of EGFR achieving orthogonal

binding towards three kinase targets of interest.

Crizotinib polypharmacology

Crizotinib is a cross-reactive inhibitor targeting sub nano molar inhibition values for ALK and

MET NSCLC tyrosine drug targets.

Figure 10: Superposition of ALK and MET structures The ALK structures in the PDB (here with a single
representative in red) share a configuration with the activation loop locked in a helix with the
phosphorylation site tyrosine (red sticks) oriented toward the back. The MET structures cluster

into several groups (green and violet), DFG-in, DFG-out and intermediate states.
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From the available crystal structures of ALK, MET we conclude that ligand hinge binding and
the overall 3D ligand geometry were same. But few of the amino acid side chain interactions
with the inhibitors were common between both targets. The sequence based analysis reveals
no similarity with with the contact side chain distribution in the targets. The available ALK
and MET structures superimposition shows different activation loop geometries, highlighting
the difficulty to make direct ligand-receptor shared interactions with in the active site kinase

domain (Fig 10).

Box 4.3 Summary of paper 111

e Activity homology (AH), measure of evaluating lung cancer target protein kinase similar-

ity show ALK and MET similarity but dissimilar for EGFR.

o Structure based studies of ALK and MET shows that inhibitor induced structural changes

results in divergent secondary structure geometry with in and across targets.

4.1.4 Paper IV: Methionine as a gatekeeper selectivity determinant for PKI

In this paper, we analyze the distributions of rotamers and spatial coordinates of gatekeeper
methionine side chains and how they are correlated to inhibitor binding. By mining geometry
data from structural binding databases (Credo, KLIFS), we show how the rotamer distributions
depend on inhibitor binding, how a subset of these distributions orient the methionine sulfur
atom to be accessible for sulfur-aromat and other interactions, and how inhibitor subtypes clus-
ter according to gatekeeper interactions. Analogously, kinase profiling data comparing EGFR in-
hibitors identifies chemotypes according to their gatekeeper preference: threonine (WT EGFR)
or methionine (drug resistant EGFR). Applying a Gate-keeper Methionine (gkMet) suitable hy-
drophobicity filter to a library of 490 fragment compounds, we identified suitable fragment
for further study, solving 2 high resolution crystal structure complexes in PKA. These studies
should aid the design of new protein kinase inhibitors against gkMet protein kinases as part of
strategies against new targets, drug resistant targets, or targets as part of a polypharmacological

target profile.
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Gatekeeper methionine geometries

Examination of the methionine gatekeeper rotamer conformations from Credo database PDB
entries show the gatekeeper residue to adopt a wide range of structures in the ATP-site cleft.
The three torsion angles of the side chain (X1, X2, X3), defined by the dihedrals N-CA-CB-CG,
CA-CB-CG-SD, CB-CG-SD-CE, respectively, determine its placement within the ATP pocket,
at the site commonly referred as the “back pocket”. The three torsion angles of the side chain (x1,
X2, x3), defined by the dihedrals N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE, respectively,
determine its placement within the ATP pocket, at the site commonly referred as the “back
pocket”. The chil angles observed for the methionine gatekeepers in the PDB are distributed
into two peaks. Most (168) have the (gauche-, centered at -60°) rotamer, while 73 have the
g+ rotamer (gauche+, centered at +60°). Only one (3UZP) has the t (trans, centered at 180°)
rotamer (Fig 11). This differs significantly from the general distribution for methionine rotamers,
for which “t” is most common (Dunbrack and Karplus, 1993; Shapovalov and Dunbrack, 2011).
The variability of rotamer conformations seen in the PDB structures maps a distribution that

reflects rotamer conformation energies.

Figure 11: The g- rotamer (cyan) is most common, followed by g+ rotamers (pale green), with one t
rotamer (orange); the rotamers cluster the sulfur atoms (spheres) with different inhibitor
accessibilities. Viewed from the “front” of kinase domain, with the N-lobe up and C-lobe
down, the unique t rotamer is seen associated with inhibitor PF670462 whereby an unusual
(methionine) SD-Tt interaction (yellow dotted lines) characterizes binding in the ATP binding

pocket of casein kinase 1 delta.
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Gatekeeper effect on inhibitor binding

Kinase inhibitor profiling data on four EGFR proteins allows study of the effect of the gatekeeper
mutation T790M on EGFR inhibitors Davis et al. (2011). Pairwise comparisons of the binding

energies of the inhibitors to EGFR-WT vs. EGFR-T790M and EGFR-L858R vs. EGFR-L858R-
T790 are depicted in (Fig 12).
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Figure 12: The effects of T790M mutation on binding of inhibitors from the Ambit 2011 panel (Davis
et al., 2011). Data are plotted according to the logarithm of the shift of binding strength as a
function of the T790M mutation of the WT EGFR protein kinase domain (X-axis) and of the
T790M mutation of the L§58R mutant EGFR protein kinase domain.

Plotted in two dimensions, the figure also highlights any effect of the activating mutation

L858R on the T790M selectivity. Inhibitors plotted in the upper right quadrant are weakened by
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the T790M mutation, while inhibitors in the lower left quadrant are strengthened by it. The shift
may differ depending on the presence of the L858R mutation (which activates the kinase domain
presumably by decreasing the proportion of inactive conformations). Points along the dotted line
show inhibitors whose 790(T,M) preference is unaffected by the L858R mutation. Inhibitors
plotted above the dotted line have a Thr790 preference strengthened by L858R (or equivalently,
their Met790 preference weakened by L858R), and vice versa for inhibitors plotted below the
dotted line. Red points show data for which the weakened inhibition is weaker than the Ambit
threshold for kg determination of 10uM (the data points are plotted with an assumption of the
kq to be at the threshold, while the associated arrows indicate the direction in which the actual
position must be). Disk sizes (and font color saturation) indicate the strength of binding of the
strongest interaction.

Lapatinib has the strongest Thr790 preference, with the preference strengthened by the L858R
mutation to the extent that the interaction with the L858R, T790M kinase domain is weaker than
the Ambit threshold. Gefitinib and Erlotinib prefer T790 with little or no effect of L858R.

The fact that L858R either has no effect on 790(T/M) preference, or increases the preference
for T790, is consistent with inhibitor binding to active EGFR conformations. At the opposite end
of the scale, staurosporine shows a clear preference for M790, independent of the L858R muta-
tion, as do the cognate inhibitors PKC-412 and CEP-701. Of the covalent inhibitors, CI1033 is
notably potent independent of both mutations, HKI-272 shows a preference for T790, but only
in the L858R mutated kinase domain, while BIBW-2992 is intermediate between HKI-272 and
CI1033.

Modeling high nM specific inhibitors on EGFR WT and GK mutant as validated by the ex-

perimental binding energies.

Fig 12 highlights the staurosporine preference towards methionine (0.77 nM) against EGFR
threonine WT (370 nM), and the opposite preference of lapatinib for the EGFR WT threonine
(2.4 nM) against weaker methionine gatekeeper mutant (860 nM).

Since there are no crystal structures available for staurosporine bound EGFR structures in
PDB, we performed SP docking from 63 PDB co crystallized staurosporine (STU) ligand geome-
tries into 5 EGFR gatekeeper mutant (M790_R858) structures, representing different DFG/C-

helix states, and 6 DFG-in WT structures, to identify the best predicted poses. Gatekeeper mu-
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tant docking predicted a good pose (DS: -9.847 Kcal/mol) as shown in (Fig 13A). Docking
identifies a preference of M790 over than T790 for STU by the fact that docking failed to pro-
duce viable poses for EGFR-WT, presumably due to steric clashes with T790.

EGFR_T790M.STU EGFR_T790.LAP

Figure 13: Models of EGFR kinase domain with high nM Inhibitors A) Model (PDB: 3W2R -M790,
R858) of EGFR with staurosporine B) Model (PDB: 1XKK -T790, L858) of EGFR-T790 with

lapatinib.

For comparison and energy estimation, lapatinib was docked against the same 11 EGFR pro-
tein structures, using the lapatinib geometry as determined in the 1XKK structure of the EGFR-
lapatinib complex. SP docking produced the best pose (DS: -13.336 Kcal/mol) for the model as
shown in (Fig 13 B), matching how 1XKK shows laptinib co-crystallized in the kinase domain.
(While this was docking of lapatinib into its parent structure, the protein coordinates had been
minimized prior to docking. The next best pose was to 3LZB, at -10.34 kcal/mol).

Docking to the T790M structures produced a best docking pose of energy -7.419 Kcal/mol
(in the minimized gatekeeper mutant EGFR of 3W2P), confirming the observed preference for
the WT kinase. Gatekeeper threonine interactions with lapatinib (at the halogenated aryl ring)
and DFG phenylalanine interactions with the aryl ring of inhibitor were the major contributions

to the differences in binding energies.

Gatekeeper methionine preference applied to fragment library.

Applying rigid and flexible docking on PKA WT with a hydrophobic constraint as a key filter to
in house fragment library, we ranked and screened compounds that had hydrophobic interactions

with the gatekeeper methionine of PKA.
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In the top 5% of the docking hits we determined that most of fragments contains halogens,
with halogen-hydrophobic interactions in addition to the hydrogen bonding at the hinge, con-
tributing towards docking scores typically in the range of -7.5 to -8.5. We screened 5 fragments

for crystallization, and 2 of those fragments provided structure with PKA WT (Fig 14).

J

Figure 14: Structure alignment of WT PKA co-crystalized fragments (frag195_Cl, cyan stick) and
(fra414_S, white stick). The protein molecular surface was created from the fra414_S model.

Two different rotamer conformations of the methionine gatekeeper are shown (as sticks).

Box 4.4 Summary of paper IV

e PDB superimposed methionine distribution and Ambit panel based modeling studies
shows gatekeeper hydrophobicity is a selective determinant in screening ligands for spe-

cific protein kinase model.

e Applying methionine gatekeeper selectivity to Maybridge fragment library on PKA-WT

produce two fragment crystallized PKA structure.
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4.2 HEAT SHOCK PROTEIN 70 (HSP70)

The second phase results covered in Paper V (HSP70 system)

4.2.1 Paper V: Nucleotide binding and hydrolysis of HSP70 NBD

In this work, we studied the binding of ATP analogs to the HSP70 NBD and mutants using
protein crystallography and surface plasmon resonance. The conservative mutation of a highly
conserved arginine involved in ATP binding to lysine (R272K) strengthens nucleotide binding,
but does not qualitatively alter catalytic, structural or dynamic properties. However, the addi-
tional isosteric mutation of a neighboring complementary charge of glutamic acid to glutamine
(E268Q) greatly weakens nucleotide binding, accelerates nucleotide dissociation, and inacti-
vates the NBD with respect to ATP hydrolysis. These observations are discussed with respect to

NBD-SBD crosstalk and potential ramificatios for drug targeting.

Active site residue mutation resulted in sub domain movement.

In the nucleotide free NBD structure Arg272, Glu268 from subdomain IIB interacts with Tyr15
and Lys56 from subdomain IB (WT) (Fig 15). The single mutant Arg272Lys removes the hy-
drogen bond interactions due to shorter amino acid side chain Lys. The electrostatic interactions
network as a characteristic feature of the closed form is featured in both structures (Rk-ADP
and Rk-ADP-Phosphate (Pi)). The major difference between Rk-ADP and Rk-ADP-Pi other
than all the similar interaction networks is the presence of phosphate ion in the active site with
respected to Arginine lysine (Rk)-ADP. The double mutation Glu268GlIn / Arg272Lys conse-
quence in non-hydrolyzed substrate ATP, seems to be the loss in hydrogen bond network due
to the Glu268 mutation. This mutation also resulted in lost cross talk between the two sub do-
mains IB and IIB, even though the other mutation Lys272 forms an electrostatic interaction with
non-hydrolyzed substrate ATP (RkGlutamic acid glutamine (Eq)-ATP).

In the absence of substrate the double mutation sub-domain IIB moved away from the sub-
domain IB, lacking the Lys272 interaction as compared to RkEq-ATP (RkEq-apo). The sub-

domain IB electrostatic interactions (Lys56-Tyr15) are retained in all the structures.
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9]

ADP/ATP "

Figure 15: Active site of NBD hHSP70 WT and mutant structures. A—E shows WT, single mutation
with hydrolyzed substrate (and presence and absence of phosphate ion), Double mutants (non

hydrolyzed and apo) structures and their electrostatic interactions.

Mutation studies using SPR spectroscopy reveal divergent binding affinities to ATP-analogs.

In general adenyl-5’-yl imidodiphosphate (ANP) shows the weakest binding compared to ADP
and ATP substrate affinities on WT and mutant proteins. None of the kinetic model could be
used to determine ATP substrate binding affinity for all the protein states, so steady state plots
were used to determine binding affinities (Table 5). Affinity values for ATP are much lower than
ADP but closer to ANP binding affinities. In the case of dissociation for ATP a mix of fast and
slow dissociation is visualized for R272K, much closer dissociation rates for WT. ATP, ADP

and ANP show faster dissociation on RkEq, but much tighter association for WT and R272K.
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Table 5: Binding and kinetic constants for ATP analogs interacting with HSP70 (NBD)

. ADP (Kp) ANP (Kp) ATP (Kp)
Protein
Binding'/Kinetics> Binding'/Kinetics> Binding
HSP70 WT 0.08uM? 1.95uM? 1.26uM
R272K 0.04uM? 0.59uM? 0.51uM
E268Q + R272K  5.4uM! 47uM! 38.2uM

On the other hand ADP has slow dissociation for WT and R272K showing better affinity
towards them while double mutant shows weak ATP binding affinity (Fig 16).

From the binding measurements, the single mutation shows improved binding across all the
3 ATP analogs as compared to WT, while the double mutation decreases binding with all the
3 analogs not favoring the double mutation for HSP70 model. In general ATP, ADP and ANP
show faster dissociation with double mutant (RKkEq). Slower dissociation from WT and single
mutant (Rk) leads to tighter binding. ATP, ADP, and AMPPNP bind to HSP70 at roughly 1% of
the strength seen with WT and Rk. The off-rates are faster, and the association kinetics may be
complicated by the movement of IIB subdomain as seen in the X-ray structures, but the kinetics

were too fast to resolve this.

Secondary structure sub-domain movement shows a semi open-form.

We extracted and superimposed all the molecular chaperons (92 structures) from the PDB than
varied from Human to E.coli.

The variability of the IIB domain orientation is evident (Fig 17), and ranges from closed-
NBD forms (including WT, Rk, and RkEq-ATP structures, yellow) to open forms. The double
mutant structures RKEq-Apo (red) represents a partially opened form, unique in comparison to

the previously reported Hsp70-NBD crystal structures which all adopt the closed-NBD form.
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Figure 16: Sensogram showing binding affinities of ADP (A, D and G) , ANP (B, E and H) and ATP
(C, F and 1) in columns, with HSP70 (NBD) WT, R272K (Rk) and E268Q+R272K (EqRk)
mutants in rows respectively. A one state kinetic model (J) was used for ADP (WT: A, Rk: D).
A two-state kinetic model for ANP (WT:B, Rk:E). Because of rapid binding kinetics, steady
state affinities were used to analyze the remaining data: ADP (RkEq: G), ANP (RkEq: H) and
ATP (WT, Rk, and RkEq: C, F and I).
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Figure 17: 92 PDB structures of molecular chaperones from diverse eukaryotic and prokaryotic

species, superimposed with the 5 crystal structures in the current study.

Box 4.5 Summary of paper V
e Key mutations of adenine binding residues of the HSP70 NBD influence the binding and
hydrolysis of substrate (ATP).

e SPR experiments show the variations of affinities and kinetics of ATP (and analog) bind-

ing to WT, R272K, and E268Q + R272K variants of HSP70-NBD.

e Subdomain movements at [IB domain shows divergent structural flexibility from closed -

NBD form to semi-open form.
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ATPases play key roles in capturing the energy that is liberated during ATP hydrolysis and
release of free phosphate, a reaction that drives many biological processes that are otherwise
thermodynamically unfavorable. Some of these enzymes (HSPs) use ATP hydrolysis to accom-
plish cellular function acting in concert with kinase signaling molecules (Csermely et al., 1998).
But also for these, dysregulation can lead to human disease, and overactivity has been associated
with cancer, accounting for their priority as drug targets in drug discovery. So inhibiting these
ATPases could be beneficial in human diseases. Of the very few competitive inhibitors described
against ATPases, most are close ATP-analogs, and the design of competitive ATP inhibitors is
an active research area. This in contrast to protein-kinase inhibition approaches, with their great

success in the area of competitive inhibition (Baby et al., 2016).

Studies of ligand binding to ATP binding sites.

HSP70 and protein kinases are ATP-binding proteins. Despite the fact that they share an ATP
binding site, they differ significantly with respect to apparent druggability. In contrast to target-
ing protein kinases, it has proved difficult to design competitive inhibitors for HSP70, a differ-
ence apparently due to the different binding mode and function of bound nucleotide in the active
site pocket. By now, drug design has been shown to be easier for protein kinases. The crystal
structures of HSP70 with nucleotide bound show the nucleotide-moiety of ADP to be partially
surface accessible; the ribose-moiety (Paper V) most closely associated with open/close state dy-
namics of the HSP70 protein. The arrangement and binding of the phosphate groups in HSP70,
between a [3-strand and an «-helix, interacting with a loop, make phosphate binding particularly
interesting with respect to binding interactions that are available to competitive inhibitors. How-
ever, low bioavailability and poor solubility of phosphate containing molecules give similarly

charged ATPase inhibitors (ATP mimics) poor prospects (Chene, 2002).
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In the case of protein kinase nucleotide binding, the adenine moiety is mostly inaccessible
to solvent, and fills out the hydrophobic pocket of active site. Binding in protein kinases of
adenine ring is via H-bonding with the hinge part of the kinase, while the phosphate group is
partially exposed to surface. This arrangement allows competitive inhibitors to be designed to
mimic the hydrophobic and hydrogen bonding aspects of ATP, quite distinct from HSP70. Most
of the protein kinase inhibitors approved or extensively studied (both type I and type II) target
the ATP binding site (Huang et al., 2010) (with the binding type depending on the structure
of the DFG activity “switch”, papers I and II). The active site pockets of the two classes of
ATP-binding proteins (PKs and HSPs) are structurally distinct, so it is to be expected that com-
pounds that are cross reactive (beginning with ATP) bin may readily be designed to distinguish
between them. On the other hand, it is also possible to explore the relatively smaller “chemical
space”, of molecules with cross-reactivity. In either case, protein flexibility should be taken into
account. Both protein kinases and HSP70 are known to be highly flexible as part of their func-
tion, suggesting that there are undiscovered compounds that can bind to unanticipated structure
variations. On the other hand, tightest binding my be expected from compounds developed from
fragments with good ligand efficiency. These will most likely involve more rigid architecture

elements.

Relevance to anticancer drug discovery.

Protein kinases have emerged as a major new class of drug targets (Hunter, 2007; Zhang et al.,
2009). Compounds that selectively block their signalling activities may correct or compensate
for defects of e.g. mutated cells, as in cancer. The intense protein kinase research of the last
twenty years has generated a huge and growing body of data concerning their spatial structures
and inhibitors. In addition, early patents are now expiring (Davis et al., 1999). Taken together,
this has created unprecedented opportunities for data driven drug optimization. One opportunity
in the area of lung cancer drug design is a currently approved therapy includes different in-
hibitors that target different protein kinases, including EGFR, MET, and ALK. New approaches
attempting to inhibit multiple targets with a single compound is well studying research are called
polypharmacology (Dar et al., 2012; Garuti et al., 2015; Lavecchia and Cerchia, 2016) in human
cancer. In paper I, we use statistical methods to analyse the structural and inhibition properties

of EGFR, MET, and ALK and selected chemical scaffold for targeting all three kinases. We then
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SUMMARY DISCUSSION

verify the approach with the synthesis and testing of model compounds on the targets. Success-
fully optimized compounds may be valuable for increased patient response rates and forestalled
drug resistance.

The chaperone function of HSP70 promote the survival of cancer cells, which otherwise may
be too destabilized to avoid apoptosis (Whitesell and Lindquist, 2005; Zorzi and Bonvini, 2011).
HSP70 binds misfolded proteins via the substrate binding domain, while ATP hydrolysis at the
nucleotide binding domain (NBD) powers refolding. HSP70 protein complexes possess various
drug targeting sites, but the NBD may have the most druggable pocket (Powers et al., 2010).
Despite this, few inhibitors have been described, possibly due to unique properties of ATP bind-
ing. In paper V we investigated properties of HSP70-NBD crystals and binding site interac-
tions, using techniques including site-directed mutagenesis, surface plasmon resonance (SPR)
spectroscopy and structural studies, aiming to create new HSP70 NBD drug discovery model
systems.

Structural studies highlight the complexity of predicting ligand-target interactions.

At the outset of the paper I, we aimed to derive from all available structural and ligand binding
information the requirements for polypharmacological targeting of Alk, Met, EGFR, and the
drug resistant mutant T790M. Crizotinib is known as cross reactive inhibitor of Alk and Met,
and covalent inhibitors of EGFR were emerging, so it seemed clear that optimized target profiles
had become the top priority, and also that such design is feasible. Structure based drug design
involves many practical but extreme assumptions, including rigidities of molecular structures,
invariance of complex structures and binding constants, and the applicability of simple force
fields for binding energy calculations. Publications that aim to explain drug binding properties
typically rely on single crystal structures, with little analysis of the effects of crystal packing,
crystallization conditions, or the effects of construct design.

For drug design, binding data needs to be interpreted via links to structure, but this is so
variable that it needs clustering into a meaningful but simplified set of structural parameters.
Part of the complexity include the statistical nature of cross reactivity, the special character of
EGFR, the confusing range of flexibilities apparent in the PDB, even within single crystals, the
importance of subtle electronic interactions for inhibitor binding, and the likely transformation

of kinase inhibitor research away from novel scaffold discovery, as patents expire.
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This thesis as a whole has aimed to improve the understanding of the chemical interactions
involved in ATP site ligand binding, hopefully to an extent that binding energies can be semi-
quantitatively predicted for specific targets. Detailed studies of a limited set of target proteins
probed the energetics of ligand interactions. The targets include PKA, tyrosine kinases, as well
as nucleotide binding domains of heat shock proteins HSP70, and studied using crystallography
and other experimental biophysical techniques (SPR), in combination with molecular mechanics
and other theoretical methods.

One of the major over all conclusions is showing the need for drug discovery methods to
move beyond "simple docking" against a "simple view of target structure". In paper II, We
show the importance of choosing the PDB structures that represent receptor plasticity, results in
Type II Ponatininb-bound gatekeeper resistant kinase structure provide better ROC and EFs. As
seen in Paper I, III, it is very difficult to analyze ligand induced conformational changes while
considering a small set of PDB structures. Due to the dynamic nature of protein, including
both functional flexibilities as well as natural protein dynamic phenomena, the ambitious goal
of understanding (as in predicting) target-ligand interactions across multiple targets, requires
extensive structural characterization to have a reasonable expectation that the structures are
representative. The study of common sequences does enable some prediction at a statistical
level, however, supporting the idea of focussed library design to exploit this.

All proteins are dynamic and due to the nature of constant motion between different con-
formational states with similar energies. This is not been taken into consideration during drug
design, mostly out of the practical consideration that these states have not been well known.
Protein flexibility plays a key role in increase or decrease of binding affinity between ligand and
target; increased flexibility may increase the entropy of binding, but will reduce the frequency
of the enthalpically most favored state. The net effect of this entropy-enthalpy compensation

is not predictable. Here in Paper I, we saw MET structures have the greatest conformational
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flexibility in the active site. Different crystallographic space groups reveal the opening and clos-
ing of N-and C-lobe variations to be the most than ALK or EGFR. There are variations in
DFG states (DFG-in/out and intermediates), C-helix (in/out), activation loop variations due to
high B-factors. Some of these variations is a result of inhibitor binding interactions constitut-
ing this changes in the active site. HSP70 is also flexible, and recent research has focussed on
understanding the flexibility with respect to functionality. However, the ramifications for ligand
binding remain largely unknown.

Crizotinib is cross-reactive between ALK and MET, but few shared interaction types apparent
from the published structures involve proton aromat and CH-O hydrogen bonding interactions
that are not typically encoded into interaction analysis algorithms. Superposition of cocrystal
structures of crizotinib with ALK and MET reveals more how the binding energies that corre-
spond to the highly selective and nanomolar ALK and MET co-inhibition depend on interactions
that are not readily identified with standard structural biology or bioinformatic methods. This
interaction analysis shows the importance of interactions that are not well modelled by typical in
silico methods. The universal appearance of drug resistance via diverse mechanisms following
EGFR inhibition therapy has generated widespread interest in polypharmacological or combina-
torial treatment strategies. The potential of targeting ALK, MET, EGFR (T790M-drug resistance
mutation) in NSCLC is achieved by analyzing structurally, biochemically identifying chemical

determinants that helps to design inhibitor targeting cancer pathway.
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The literature, including examples shown in this work, show the technical feasibility of deter-
mining many structures, and also show the need for experimental energy determinations (e.g.
binding strengths) to understand ("calibrate") the structures. But the diversity of structure and
data also hint at an essential impossibility to use this data in at a level of basic molecular theory
for understanding. Instead, these complex systems need study at informatics levels to discov-
ery key correlates of binding. In this work, we used structural and cheminformatics approaches
to analyze geometries of structural variability between protein targets could be analyzed using
PCA-Partial Least Squares (PLS). This will provide information about essential structure, bind-
ing characteristics that make the targets similar or dissimilar. In paper IV, we identified sulfur-
aromat interactions important while considering inhibitors for protein kinases with methionine
gatekeepers-including a drug resistant mutation kinase that appears in kinase inhibitor treated
lung cancer patients. The charge interactions in key ATP binding side chains of the HSP70 NBD
(Paper V) are shown to have effects on both inhibitor binding and on target flexibility, providing
ideas for future drug design. In paper I, we suggested principles for the design of a focused
chemical library based on a pan-kinome scaffold, and tested it with respect to ALK, MET, and
EGFR polypharmacology. Both the library, and the ideas in its generation, will be taken up in

future studies.
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