
Faculty of Science and Technology
Department of Computer Science

Space-Bounded Async Scheduling
A UPCxx extension
—
Nishant Verma
INF-3990 Master's Thesis in Computer Science - May 2017

2

Abstract

It is estimated that computers and mobile devices use more than 2% of

the total energy consumed. That means a lot of energy is going in

powering our cpu,display and gpu. In this paper we are trying to

optimize the power consumed by cpu in partitioned global address

space environment. Recent research suggests that there is scope in

improving cpu power usage by having a better scheduler. Simhadri et

al.[14] concluded that space bounded scheduler can improve the

efficiency by 60% in parallel environment in shared global address

space.

In this paper we introduce data centric approach to PGAS, particularly

UPCxx[17], referred to as DUPC, inspired by space bounded

scheduler. The scheduler determines the cache hierarchy which allows

it to make intelligent decisions to schedule task given the size of task is

known beforehand.Hwloc library is used to detect the cache hierarchy.

Once the cache hierarchy and sizes of each cache is known, we can

track available cache sizes. With this information in hand, and if task

size is known, we are able to provide better cache locality. We use

PGAS for high performance computing. We use UPCxx, which exploits

power of PGAS.

3

4

Acknowledgements

I want to thank my advisor Phuong H. Ha for his idea, encouragement and

support. Weekly meetings with Mr. Phuong helped me keep on track and

move in the right direction. My fellow student friends deserves my thanks,

without them it would be impossible to complete this thesis who contributed

with their insights and discussions.

5

6

Table of Contents
Introduction..11

1.1 Problem Definition..12
 1.2 Method and Approach..12

1.3 Outline..13
Background..15

2.1 Introduction to PGAS...15
2.2 Introduction to UPCxx...17
2.3 UPCxx programming constructs..18

2.3.1 Shared variables..18
2.3.2 Global pointers..18
2.3.3 Dynamic memory management..19
2.3.4 Bulk Data transfer functions..19
2.3.5 Memory Consistency model and Synchronization.....................20
2.3.6 Remote Function Invocation..20

2.4 Experimental Analysis of space bounded scheduler........................21
2.4.1 Scheduler Properties..22
2.4.2 Scheduler Implementation..22

 2.4.3 Promising results...23
2.5 Habanero UPCxx...23

Design and Analysis..25
3.1 Overview..25
3.2 High Level Architecture..25

3.2.1 CORE Api...26
3.2.2 Extended Api...26

3.3 Discovering memory hierarchy..27
3.4 Scheduling Algorithm...27

Implementation..31
4.1 Async task..32
4.2 Active messages..32
4.3 Core Affinity..33
4.4 Discovering hardware topology..33
4.5 Tree Creation..35
4.6 Task Size...36
4.7 The Scheduler..37

Experimental Evaluation..41
5.1 Functionality Evaluation...41
5.2 Performance Evaluation...44

5.2.1 SPMV Performance Test...45
5.2.2 Test Program for DUPC...46

Conclusion..49

7

Future Work..51
7.1 Differentiating core from rank..51
7.2 Developer Friendly Implementation...51

8

List Of Figures

2.1 PGAS Memory Layout 16

2.2 UPCxx Design 17

3.1 GASNet Architecture 25

3.2 Discovering topology 28

3.3 Scheduling Algorithm 28

3.4 Communicating with Scheduler 29

4.1 Xeon E5-2650L architecture 35

5.1 Xeon E5-2650L Architecture 42

9

10

Chapter 1

Introduction

Moore’s law predicts that the computing power doubles every 18

months. That has been the case for last 100 years from the time of

birth computers until recently when we are unable to do so because of

the heating effect of the cpus. Parallel computing comes to rescue as

we try to increase computation power.

Having a smart scheduler will be one way to utilise cpu efficiently.

There is a lot of research on this topic which there is still room for

improvement. One of such scheduling model is hierarchy aware

scheduler. Such type of schedulers have shown promise as suggested

by Simhadri et al.[14] in his paper. He concluded that a space bounded

scheduler will be 60% more efficient than a normal work stealing

scheduler. The cache hierarchy is known beforehand and user needs

to specify the task size. The cache hierarchy is determined using

hwloc[12] library. Based on space available on cache scheduler can

make smart decision to place the tasks to the most suitable core. We

investigate Simhadri theory by creating our own scheduler based on

UPCxx[17] in a shared memory based parallel environment.

PGAS provides such abstraction over shared memory environment.

UPCxx is an extension over PGAS. It uses operator overloading,

lambda functions and several other clever techniques to provide

simple apis to interact with the environment. The library is open source

and we take it to our advantage and implement a space bounded

scheduler.

11

1.1 Problem Definition

The goal of the thesis is to create a scheduler which will be able to

assign task to cores available on a cpu based on the amount of

available space in memory cache and thus able to improve

performance of a cpu in a parallel shared address space. To achieve

our goal we have to tackle two major problems:

1. Discover hardware topology : We need to gain information

about how memory hierarchy is being laid out.

2. Implement a scheduling algorithm : The task must be assigned

to a core based on space bounded scheduling defined later.

 1.2 Method and Approach

We followed agile software development approach called scrum in

developing the thesis. The agile software development model

encourages more face to face communication unlike waterfall

development model. Scrum is iterative and incremental agile software

development approach.

Scrum methodologies contains two backlogs called product backlog

and sprint backlog. The product owner adds entries to the product

backlog based on the user requirement. Developers can pick up items

from product backlog and try to accomplish the task in a sprint which

can be 2-4 weeks long. The task acquired from product backlog

becomes the part of sprint backlog. Each sprint ends with sprint review

and identify the progress and lesson learned from the previous sprint.

Scrum methodology defines three roles mainly product owner,

Scrummaster and team. Product owner should be a person with vision,

12

authority and availability. Scrummaster acts as a facilitator and works

to remove obstacles that are stopping the team from moving forward.

Scrummaster however does not manage the team. The Team is

usually self managing and can consists of developers, designer and

quality assurance members.

1.3 Outline

The thesis consists of the following chapters:

Chapter 1 - Introduction

Chapter 2 - Background

This chapter presents related work on space bounded scheduling and work

on scheduling in UPCxx domain.

Chapter 3 - Design and Analysis

This chapter discuss about design UPCxx, GASNet. This provides base for

discussion of design of DUPC.

Chapter 4 - Implementation

Discuss in depth explanation of the implementation of the design.

Chapter 5 - Experimental Evaluation

Evaluates the functionality and performance of the DUPC.

Chapter 6 - Conclusion

Concludes the research and results achieved.

Chapter 7 - Future Work

Discuss about areas of improvement.

13

14

Chapter 2

Background

This chapter presents previous work which are relevant to the thesis.

We look into some work done in scheduling in UPCxx[17] and similar

work on space bounded scheduling. While there has been a lot of work

in making scheduling task more efficient, there has not been enough

research in space bounded scheduling. Simhadri et al.[14] did

analysed the scope of space bounded schedulers and found scope in

making a smart scheduler based on memory hierarchy. There has

been a lot of research on popular work stealing schedulers. Habanero

UPCxx brings work stealing schedulers to UPCxx. We bring space

bounded scheduler to UPCxx.

2.1 Introduction to PGAS

PGAS (Partitioned global address space) is a parallel programming

model which assumes the global memory address space is logically

partitioned and portion of which is local to each process. There has

been a lot of developments like chapel, X10, etc. This only shows the

popularity of PGAS and shared memory as a whole in high

performance computing referred to as HPC. Message passing used to

be popular choice for HPC and it is impossible to draw conclusions

and find reasons to prefer shared memory over message passing.

Shared memory presents the challenge of concurrency while certain

protocols need to laid out. Serialization of data is another challenge

that is needed to overcome in message passing. The problems does

not stop here as different machines may have different operating

15

system, architecture and hardware. The most common problem occurs

when two systems have different endianness. Memory laid out by one

system can be different from other as some system chose to most

significant byte first in the memory while others chose to write least

significant byte.That being said, most of the problems has been

handled already at system level. Shared memory approach are often

difficult to scale unlike message passing model. While there has been

a lot of research and it's difficult to reason against any of them, in

certain scenarios one can be preferred to other. What we need is a

hybrid approach. PGAS provides such a hybrid approach and combine

the power of both as this has both shared and local memory.

Fig 2.1 PGAS memory layout

The above figure[20] shows how the memory hierarchy looks like in

PGAS. While the program stacks are private to the processes, the

allocated memory in heap is shared among the processes.

The biggest advantage of shared memory is sharing of data structure.

Our benchmarks share data across nodes. It's easy to parallelize

programs by annotating or dividing the loop. An example in openmp

#pragma omp parallel for

 for(int i =0; i<n ; i++)

16

This makes it really easy to convert sequential code into parallel code.

This also means the parallel code is very close to what sequential

code will look like.

2.2 Introduction to UPCxx

We need a simple programming language to express and implement

our ideas. UPCxx[17] closes the GAP between HPC and object

oriented programming by providing a PGAS implementation in C++. It

provides other superior features and bring other parallel programming

model likes MPI and openMp to PGAS. The other good thing about

 UPC++ is that it is library extension to C++ which is very lightweight.

This does make developer life little harder as compile time errors can

be frequent. The library approach allows it to provide interoperability

with other popular libraries.

Figure 2.2 UPCxx Design

17

2.3 UPCxx programming constructs

2.3.1 Shared variables

Shared variables can be read and write across ranks and nodes.

Shared variable has to be explicitly declared like

 UPCxx:: shared_var<Type> shardVar;

Shared variable can be declared in global space, so its lifetime is

execution of the program.

Similarly shared arrays are defined in UPCxx.

UPCxx:: shared_arrray<T,BS> shardArr(size);

T is the element type and BS is the block size. The data is accessible

with [] operator similar to scalar array variables. This is achieved by

overriding [] operator. The shared array can also be initialized at run

time as follows:

sharedArr.init(size)

Where size is number of threads, which allocates block cyclically

distributed global address space.

2.3.2 Global pointers

UPC++ considers the address space of each nodes into one single

virtual global address space. The shared object created in global

address space can be referenced by global pointer. The global pointer

encapsulates the local address and the thread id.

UPCxx::global_ptr<Type> ptr;

18

The global pointer contains the rank information in addition to the logical

address. The global pointer arithmetic logic is same as any normal pointer.

The rank information is constant.

int rank = ptr.where()

Where returns the rank of the node which owns the pointer. Similarly we can

get raw pointer using raw_ptr() method.

Type *local_ptr = ptr.raw_ptr();

The local address can also be obtained by typecasting to regular C++ pointer.

Void * local_ptr = (void *)ptr;

2.3.3 Dynamic memory management

Similar to malloc and calloc in c++, UPCxx[17] has allocate() method

for dynamic memory allocation.

UPCxx:: allocate<T>(uint32_t rank, size_t count);

Here ranks is thread id or the node on which the memory will be

allocated on for count number of elements of type T. The allocate does

not call constructor explicitly, which can be achieved by using new

operator. With the use of global_ptr we can escalate a private object

into a shared object. We can free the memory using deallocate.

2.3.4 Bulk Data transfer functions

Copying data in bulk is more efficient than copying in chunks.

UPCxx[17] provides blocking and non-blocking apis to achieve the

same.

19

copy(global_ptr src,global_ptr dst, size_t count);

Source and destination buffer are supposed to be contiguous.

async_copy() is asynchronous version of the copy with option to

provide a callback method.

 async_copy(global_ptr src,global_ptr dst, size_t count);

User can also register for an event with async_copy.

2.3.5 Memory Consistency model and Synchronization

UPCxx uses relaxed consistency model to gain more performance

compared to other consistency models. This means programmer

should be more careful about writing the program in a distributed

parallel environment. UPCxx provides a handful of synchronization

programming constructs to help developers. Synchronization in UPCxx

can be achieved using barrier, fence or lock apis each having their own

advantage in different use case scenarios.

2.3.6 Remote Function Invocation

This feature is inspired by X10. The functionality is clear from the title

like remote procedure invocation. The function invocation means it

returns a future object, which can be used to get the return value of the

called function.

future<T> f = async(place)(function,args...);

Here place is thread id and function is the name of the method

followed by its params. UPCxx provides two programming methods for

20

asynchronous programming. Event driven programming keeps thread

free and are less resource hungry. We can supply event object to

async call as follows:

future<T> f = async(place, event *ack)(function, args...);

To keep the learning curve for x10 programmers, UPCxx[17] provides

finish block.

finish{

future<T> f = async(place)(task,args...);

}

Task must be completed before code exits the finish block. The

implementation detail is beyond the scope of this paper.

2.4 Experimental Analysis of space bounded

scheduler

In a parallel environment, processes or threads can request memory

location despite being concerned about the performance cost

associated with it. If a memory location is accessed that is not in the

current page(a cache miss), several cpu cycles will be wasted to bring

required data to cache depending on where it resides in the memory

hierarchy. This means scheduling of the process or thread can have

significant performance cost. The paper argues that we can improve

on performance if we can improve cache hit ratio by scheduling our

task based on space available in the memory hierarchy.

Space bounded schedulers are able to preserve the locality of the

program resulting in fewer cache miss. The work stealing scheduler

are great in load balancing and it is quite unclear how space bounded

scheduler will perform against work stealing scheduler.Simhadri et al.

21

[14] tested space bounded scheduler on a series of divide and conquer

algorithms against popular work stealing schedulers. He concludes

that space bounded scheduler results in fewer l3-cache miss

compared to work stealing scheduler as well as a significant

improvement in runtime performance of the scheduler.

2.4.1 Scheduler Properties

A space bounded scheduler must satisfy the two properties. The first

property is called anchored which means that every task should get

anchored to the smallest possible cache amongst available cache. In

most of the cpu architectures, L1 cache has unique cores associated

with it. L2 cache might be shared among cores while it is common to

note that L3 cache is shared among cores. Thus, in cases where the

cache is shared, any of the core which shares the cache can be

chosen as the candidate core for scheduling. Second property is called

bounded. This means that sum of sizes of all subtasks must be less

than the size of the cache.

2.4.2 Scheduler Implementation

The paper discusses about capturing a snapshot of memory hierarchy

and a queue for each cache based on best fit policy as described

earlier. It creates a tree of the memory hierarchy of the target machine

with leaf nodes of the tree representing core. The paper does not go in

detail and to answer how it does it. Once the tree is created, each

cache in the tree is assigned a queue and variables for bookkeeping

occupied space. There are locks for concurrency control in parallel

environment. When a task is assigned, the scheduler first gathers all

locks from the path of the tree from the core to the cache. It make a

decision based on the predefined properties for a space bounded

scheduler and add the task to the queue for the cache.

22

 2.4.3 Promising results

The paper concludes that space bounded scheduler improves L3

cache hits in a memory intensive program. Space bounded scheduling

comes with increased overhead for scheduling. This is reflected in

computation intensive programs where work stealing scheduler

outperforms the space bounded scheduler slightly. The primary reason

for that due to the small scheduling overhead incurred by work stealing

schedulers.

2.5 Habanero UPCxx

This work is relevant as the work is related to scheduling and is based

on UPCxx. While the scheduling idea is different (work stealing rather

than scheduling based on memory hierarchy), HabaneroUPCxx[9]

brings a hybrid approach to task parallelism and integrates intra task

parallelism and inter-task parallelism in one PGAS based library.

HabaneroUPCxx implements intra space work stealing in addition to

function shipping. It maintains a worker pool for scheduling incoming

tasks, preferably on idle processors and unburdening the processors

which are overloaded. A worker thread pool is a great idea to have in

our own implementation, but it is also costly to maintain pool of

workers waiting for incoming tasks. Features like joining async tasks,

collective communications are highlight of HabaneroUPCxx apart from

well known async remote copy and async remote function invocation

which are familiar to UPCxx users.

23

24

Chapter 3

Design and Analysis

In this chapter we present design of the various components required

to make our space bounded scheduling work.

3.1 Overview

Space bounded scheduling requires the program to know the memory

hierarchy beforehand and then it can make a scheduling decision.

Once it has made the decision it can alter the rank. After the program

is concluded we have to make appropriate adjustment to reflect the

actual state of the new memory hierarchy. Thus our scheduler consists

of mainly three components mainly discovering the memory hierarchy,

the actual scheduling algorithm and adjusting the memory hierarchy

when the program concludes.

3.2 High Level Architecture

The original architecture remains the same as we have modified the

existing code and the behaviour. The initial GASNet architecture is

shown below which is taken from GASNet official website[18].

25

Figure 3. 1 Gasnet Architecture

GASNET is a library which implements PGAS. It basically provides

functionality like remote memory access and remote method

invocation which will be discussed in detail later. It is highly portable

and supports a number of operating system. GASNET supports a

number of networking interfaces including mpi. Programmers can write

their own conduit if there is no such conduit available.

GASNet (Global address space networking) is composed of three

components. The lower layer is core api. This layer is a generic

interface and is responsible for remote procedure calls using active

messages. The middle layer is extended api and is primarily

responsible for remote put and get operations.The operations are one

sided and caller provides all the information including address of data,

data and length of data.

3.2.1 CORE Api

Core api consists of active messages. Active messages are basically

low level remote procedure calls. An active message request will go

from initiator to a node which register the request on a handler.

Handler extracts the request from payload,process and prepare a

response. A reply for the request can be delivered to the initiator node

on response handler.

3.2.2 Extended Api

Above core api is extended api. Extended api provides functionality

like remote put and get operation.It is basically one sided.operation

26

where caller provides local and remote address and length of the

payload. User has option to choose between blocking and non-

blocking put and get operation where blocking will return only when the

operation is complete and non-blocking will return immediately after

the call. The non blocking operation can be explicit where it provides a

handle, which can be used for completion. Alternatively we can define

a region, where compiler waits for the pending operations to return(eg

begin-end blocks). This type of non-blocking operation is called implicit

non-blocking operation.

3.3 Discovering memory hierarchy

We must know the memory hierarchy before we can make any

scheduling decision. We take advantage of UPCxx program lifecycle to

determine the memory hierarchy. Every UPCxx program must start

with init() call and end with finalize() call. Our call to determining

memory hierarchy is closely tied to this lifecycle of a UPCxx program.

On init() call, we determine the memory hierarchy. It is important to

note that the memory hierarchy is obtained on a core with rank 0. A

UPCxx program flow will now look like as shown in figure 3.2.

3.4 Scheduling Algorithm

The second step is to determine and the schedule the task on new rank.

UPCxx[17] provides an api called async to schedule task or a method on

certain rank. The DUPC scheduler tries to find the best rank based on space

available on cache. This is discussed in detail in later section. UPCxx is open

source library which means we can modify the async code. Without trying to

complicate things, our design decision was to determine the rank by

scheduler before forwarding the call to gaset.

27

Figure 3.2 Discovering topology

Figure 3.3 Scheduling logic in a UPCxx program

28

There can be scenarios when call to async is made from a non-zero

rank. We use active messages to communicate with the scheduler

which is based on rank zero. The high level design is shown below:

Fig 3.4 Communicating with Scheduler

29

30

Chapter 4

Implementation

Now that we have defined space bounded scheduler, we implement

the scheduler which is based on UPCxx. The implementation extends

and override certain api of UPCxx to achieve our target. The challenge

is to find an optimal core for a task based on the size of the task and

state and availability of the cache in memory hierarchy to obtain

maximum cache hit.

For scheduling, the first requirement is to know the memory and cache

hierarchy. A library called hwloc[12] is used to discover the topology

when the UPCxx program is initialized.The implementation modifies

async api of UPCxx. The async api executes a method on a core

provided by the user. The modified async calls the scheduler which is

based on a core with rank zero. If the async call is from a core whose

rank is not zero, the communication to the scheduler is achieved using

active message api provided by GASNET. The call to schedule

contains rank and task size of the task. The scheduler traverses the

memory topology and find an optimal rank for the current task. If the

optimal rank is not the rank selected by the user, we change the rank.

This is discussed in detail in the following sections.

31

4.1 Async task

Async task is usually referred as a short term for asynchronous tasks.

In UPCxx async is an api for remote function invocation. This allows

individual task to run asynchronously on different nodes. An async call

in UPCxx[17] looks like

async(place)(function,args...)

The async(place) call creates an async object which has an

overloaded “()” operator for handling the function pointer and

arguments in the second parenthesis. UPCxx then packs the function

pointer and args in a continuous buffer and send it to the target node

using active messages. On receiving the message, the remote node

unpacks the buffer and place the request in a task queue. When the

task is executed, the runtime sends a reply with return value as param.

In case when space bounded scheduling is enabled, the scheduler

finds the optimized place value using the scheduling algorithm and

place value is altered to be the one chosen by scheduler.

4.2 Active messages

Active messages are part of gasnet components which are responsible

for communication between nodes. There are separate handlers which

are responsible for handling active message requests and response

and are handled by their corresponding handlers. Communication

between two nodes A and B is handled as follows:

1. To send a request from A to B, A call gasnet_AMRequest*() with

data payload, node index of B and index of the request handler

to run on B as arguments.

32

2. On receiving the request, node B runs the request on

appropriate handler and prepare a response for the arguments

supplied in the request. It calls gasnet_AMReply*() to send a

response back to A.

3. After some time, A receives the response back from B and runs

the response handler with data from gasnet_AMReply*().

4.3 Core Affinity

For each core there is rank assigned by GASNET. The rank value is

unique to each core and have values between 0 and n-1, where n is the

number of cores present in the system. UPCxx[17] has provided simple

apis to detect the value of n and rank of the system on which it is

running on. To get the current rank we can use myrank() from UPCxx

namespace. Space bounded scheduler also need to detect the cache

hierarchy and core information. This is done using a library called

hwloc.

When a UPCxx program is initialized, hwloc library detects the topology

and core information. Each core discovered an id between 0 to n-1 is

assigned to each core, where n is the number of cores. UPCxx assign

rank (a value between 0 and n-1) to each core. We need a proper

mapping between id of the core and rank assigned by UPCxx before

we make a scheduling decision, which the current implementation

lacks.

4.4 Discovering hardware topology

For scheduler to make smart decision on where to place the task, it

must know the cache hierarchy and core information. We will look in

detail, how to get this information using hwloc. The library gives the

topology(cache hierarchy and core information) information in a struct

33

hwloc_topology_t. The following api calls populate the items of the

aforementioned struct.

hwloc_topology_t topology;

hwloc_topology_init(& topology);

hwloc_topology_load(topology);

Once we have the topology struct, we can obtain the cache and core

information from a series of api provided by the library. The cache is

represented by a struct hwloc_obj_t, which has member fields providing

crucial information for our implementation like cache size, parent, child

and sibling information.Following api returns such struct of type L3

cache.

Int L3_CACHE_DEPTH =

hwloc_get_type_depth(toplolgy,HWLOC_OBJ_L3CACHE);

hwloc_obj_t L3_CACHE = hwloc[12]_get_obj_by_type (topology,

HWLOC_OBJ_L3CACHE),

 hwloc_get_nbobjs_by_depth(topology,l3depth)-1);

Similarly, we can extract core, L1 and L2 cache information from

topology object. Now, we have the tools to create the hierarchy tree,

which the scheduler will use to make smart decisions to schedule a

task from the available choice of cores.Next section discusses how we

create the scheduling tree.

34

Fig 4.1 Xeon E5-2650L architecture

4.5 Tree Creation

This is a data structure which represents the cache hierarchy of the

system. From previous section, we know how to get the core and cache

information including its childs, parent and siblings. Using this

information, we can now create the tree. The following implementation

considers L3 cache to be at the top level of cache hierarchy which is

consistent with most of the cpus out there but not all. First we obtain L3

cache information in a struct hwloc_obj_t. We store information like

cache size and number of children and pointers to it. Using the children

pointers, we traverse the L2 cache. L2 cache struct is processed in the

same way and we can process the L1 cache using child pointers and

so on. A struct shced_tree_t is the data structure which is used to store

the cache hierarchy information. Here is a snippet of code showing

how the struct is being populated after obtaining information from L3

cache(described in previous section).

35

shced_tree_t *tree = allocate(sizeof(shced_tree_t));

int num_of_cache = hwloc_get_nobjs_by_type(

topology, HWLOC_OBJ_L3CACHE);

for(int i=0; i <num_of_cache;i++){

hwloc_obj_t L3_CACHE = getL3Cache(); //from previous

section

sched_tree_node_t L3 = malloc(sizeof(sched_tree_node_t));

L3->size = L3_CACHE->attr->cache.size

L3->num_children = L3_CACHE->arity

L3->sibling_id = i;

for(int j=0; j<L3->num_children; j++){

//fetch l2 cache and so on

}

}

4.6 Task Size

Previous section described how to create the tree representing memory

hierarchy. For the scheduler to make decision on core, it must know the

task size beforehand. The developer must provide the size of the task

when executing an async operation. There are few ways to accept the

task size parameter from the user in async. We exploit the async api

capability to accept events(a UPCxx struct) as param. Our

implementation expects developer to provide task size in an event

struct. So a typical async request should look like:

36

event * ev = new event;

ev->task_size = TASK_SIZE;

async(rank,ev)(function,args ...);

The task size should be in mb. If the task size is not provided, the

scheduler will use a default task size of 3k mb which might result in

abnormal behaviour and performance gain might seem minimal or

none. While calculating a task size can be cumbersome for tedious

algorithms, we can use and test the scheduler for simple algorithms.

There are certain ways which can be used to calculate the size of task,

and we provide some insights in future work section.

4.7 The Scheduler

Now we have all the ingredients ready to create the scheduler. The goal

is to match a computation with available cache space. In case of

UPCxx[17], user may try to run an asynchronous operation on a node,

and we are trying to find a node which matches the computation with

available cache size. In simpler words we are trying to find a better

‘place’ in async call.

async(place)(function,args...);

Since, we have all the memory hierarchy in place in a tree data

structure, all we need to do is to traverse the tree and match the

computation size or task size provided by the developer as suggested

in previous section. For this async implementation is modified.

The scheduling logic is handled on super node. We chose the node

with rank 0 to be supernode. To keep the implementation generic, so

that place variables is always chosen wisely regardless of the rank of

the node it is being called from, we need to communicate with the

37

scheduler in case where the async is called from a node whose rank is

not zero. Active messages is used for communication. The modified

async implementation calls a method sched_get which returns a new

rank and handles the communication.

int new_rank = sched_get(rank_t rank, size_t task_size);

To communicate with the scheduler, an active message request is

created. The request contains a call back event, rank of the current

node,task size and a pointer to reply message.

After the request is prepared, the active message request is sent to

node with rank 0 using gasnet api and we wait for response event.

GASNET_CHECK_RV(gasnet_AMRequestMedium(

0,SCHED_GET,&req,sizeof(req)))

A handler on node 0 receives this request with data and a token to

respond to. It extracts necessary data and process the request.

Sched_am_t req = (Sched_am_t *) req_buf;

int new_rank = sched_tree_schedule(req->rank, req-

>task_size);

The overridden implementation calls sched_tree_schedule. The

method is responsible for finding a new rank or core based on the

computation size. It takes computation size and rank as param and

return new rank. The first step is to find a cache where the task can fit

on the original core provided by the user. It starts with L1 cache on that

rank and L2 cache and so on, until it finds a place where the

computation can fit or it reaches the main memory which will be able to

accommodate task of any size. On finding such cache, it is marked

occupied and we also need to add the task size. We also need to mark

38

the cache occupied all the way upto the main memory as there is no

direct line from cache to main memory.

void sched_tree_schedule(int rank, int task_size){

sched_tree_node_t *core = tree->leaf_array[rank]

sched_tree_node_t *l1_node = core->parent;

for(node =l1_node; node != null; node = node->parent){

if(task_size < available size){

return rank;

}

}

In case, if there is no available space in memory hierarchy on the core

provided by the user, the scheduler tries one of the sibling and follows

the same steps as mentioned above. It might try all siblings until giving

up and schedule the task on the rank provided by user.

For example, suppose a processor has two L3 cache each having n

number of L2 cache each connected to a separate core. If one of the

L3 cache is occupied, the scheduler will ignore all the n cores

connected to this cache.

The scheduler keeps track of all the cores on which a task is

scheduled and eliminate them from possible candidate from selection.

Now, we have computed the new rank based on space available in

cache hierarchy, we need to send a response back using active

message as described earlier.

 response->rank = new_rank;

GASNET_CHECK_RV(gasnet_AMRequestMedium(

0,SCHED_REPLY,&response,sizeof(response)))

39

The requester receives the response on a handler. It process the

response and broadcast the event it has received a response on

scheduling decision.

void sched_reply_handler(gasnet_token_t token, void

*buf, size_t nbytes){

sched_reply_t reply = getFromBuffer(buf);

notifyResponseRecieved();

}

When a task is complete, we need to readjust the occupied task size

value in the tree to keep the behaviour correct for upcoming async

requests. For this whenever a task is finished an event is delivered to

supernode with task size and rank. The scheduler then traverses the

tree and make proper adjustment to reflect the correct task size.

40

Chapter 5

Experimental Evaluation

This chapter evaluates functionality and performance of space

bounded scheduler. The first section discusses and tests functionality

on a string of tests and benchmarks. The second section tests

performance of the scheduler on a Intel Xeon E5-2650L processor with

24 cores.

5.1 Functionality Evaluation

Automation testing framework like Junit can be be really helpful in the

course of development cycle. We will need some testing framework in

c++ or UPCxx[17] in our case. We instead tested all our functionality

manually and including automation testing for the project can be

considered for future work. As mentioned before, we have three core

functionality and each of them should work as expected.

The first functionality is to discover hardware topology and populate

our tree data structure with the size, number of child and pointer

information. The library used to extract the information(hwloc[12])

provides a command called ‘lstopo’ which gives a visual representation

of the tree data structure as seen in figure 5.2. Using this information,

we can test and make sure that our first functionality is correct.

The scheduling algorithm is the heart of what we are trying to achieve.

To test this functionality we need to test the behaviour in certain

41

scenarios. We discuss one such scenario for the cpu with following

architecture:

Figure 5.1 - Xeon E5-2650L Architecture

42

Figure 5.2 lstopo Output

We expect the rank to be changed to a core shared with the second L3

cache in case where first L3 cache can no longer hold the task. We

wrote a simple program with each task size just large enough to be

held by L3 cache and tested and verified this behaviour.

#include <upcxx.h>

#include <iostream>

#define TIME() gasnett_ticks_to_us(gasnett_ticks_now())

int number =5000000;

using namespace UPCxx;

void test(){

int sum =0;

int *arr = new int[number];

printf("rank == %d\n",myrank());

for(int i=0;i<number;i++){

arr[i] = i;

}

int sw = 1;

for(int i=0;i<number;i++){

if(sw == 1){

sum += arr[number-1-i] ;

}else{

sum += arr[i] ;

}

sw = 1-sw;

}

43

std::cout << "sum = \n"<<sum;

}

int main (int argc, char **argv)

{

 upcxx::init(&argc, &argv);

 if(myrank() == 0){

 int P = 2;

int n = number*P;

async_wait();

double start_time = TIME();

std::cout <<"start time ="<<start_time;

int size = 0;

for(int i =0; i< P; i++){

event * ev = new event;

 int var_size = sizeof(int);

ev->task_size = number*var_size;

size = ev->task_size;

async(i,ev)(test);

}

async_wait();

std::cout <<"end time ="<<TIME()-start_time<<" size = "<<size;

 }

UPCxx::finalize();

return 0;

}

5.2 Performance Evaluation

We were unable to observe any kind of performance gain in any of the

benchmarks we tried. We are missing one crucial step in our

implementation that can be the primary reason for this behaviour.

44

Although we are changing the rank during scheduling according to

space bounded scheduling algorithm, this does not mean that we

actually schedule on the core we desired to run the thread on. UPCxx

can assign ranks to core in a random manner, and all this means when

we schedule a task on some rank, we are not sure which core it is

going to run. We still do not have a good solution to this problem. But

hopefully after this problem is solved we will be able to see some

performance gain in memory intensive benchmarks.

We performed a series of test on standard algorithm and programs

intended to create scenarios where it will benefit from DUPC

scheduler.

5.2.1 SPMV Performance Test

Sparse Matrix vector multiplication(SPMV) is a upcxx benchmark

which uses async to perform computation. The program can be

considered memory intensive if we create a matric large enough so

that it can take advantage of DUPC scheduler. We set up a test

environment which uses 24 cores on aforementioned cpu with

following results.

45

The x-coordinate shows number of of rows and number of columns

times 1000 in a matrix and y-coordinate represents time in

milliseconds. We did not expect any performance gains and the

program actually performs better without the scheduler which can be

due to scheduling overhead but can not be said with certainty. We

expect scheduling overhead to be small as we are traversing a small

tree without any complex computation.

5.2.2 Test Program for DUPC

We created a simple program to create scenarios where it can actually

take advantage of DUPC and test functionality. The program does

nothing interesting, it creates an array of a predetermined size. A large

array makes the program memory intensive and ideal for our test.

 After a series of test, it shows the following result.

46

The x-coordinate represents number of elements in array times 1000

and y axis represent time in milliseconds.The program does show

slight improvement in two of the three scenarios. But there is no

continuous trend which concretes our finding. As we did not expect any

improvement in first place, all we can say that the mean of the

execution time of the programs in two scenarios will approach each

other when the experiment is performed enough number of times.

47

48

Chapter 6

Conclusion

In this thesis we introduce data-centric approach to UPCxx[17],

inspired by space bounded scheduler. The scheduler determines the

best possible rank for the task based on the amount of available space

in memory hierarchy, given the task size is determined. We were able

to evaluate the functionality but did not saw any performance gain.

The functionality evaluation showed that the scheduler works as

expected and shows potential for performance gain as we aimed for.

While the algorithm for finding the correct core is correct, the currently

implementation of DUPC cannot differentiate between the core and

rank assigned by UPCxx[17]. This is the primary reason, we are not

able to see any performance gain in memory intensive task.

We can conclude that, the current implementation of DUPC has

potential but limited to functionality and will potentially show

performance gain with required changes in future.

49

50

Chapter 7

Future Work

The current implementation of space bounded scheduler has a number

of areas for improvement. We present two major areas for

improvement in future. The implementation lacks the ability to

differentiate between a rank and a core. Apart from this, future

implementation should focus on making the scheduler more developer

friendly.

7.1 Differentiating core from rank

Our scheduler is not able to differentiate between a core and a rank.

Even though we are able to change the rank based on space bounded

scheduling algorithm, we are unable to place the task on the core we

would have wanted. We expect to see some performance gains once

we have added this feature to our implementation, which has already

been shown in previous work.

7.2 Developer Friendly Implementation

The library should not add extra burden on developer and must remain

user/developer friendly. For instance our implementation requires the

developer to provide task size for our algorithm to work. The future

implementation might be able to figure out the task size on its own.

This does sound challenging and there is no easy way to do this. We

51

did have a look at Dynamorio[19] to achieve the same without having

the understanding of the approach.

52

References

[1] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers

as memory hierarchies. In Programming Models for Massively Parallel

Computers, 1993. Proceedings, pages 116–123, Sep 1993.

[2] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and

Harsha Vardhan Simhadri. Scheduling irregular parallel computations

on hierarchical caches. In Proceedings of the Twenty-third Annual

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA

’11, pages 355–366, New York, NY, USA, 2011. ACM.

[3] D Bonachea and J Jeong. Gasnet: A portable high-performance

communication layer for global address-space languages. CS258

Parallel Computer Architecture . . . , pages 1–27, 2002.

[4] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick,

Eugene Brooks, Karen Warren, Lawrence Livermore, and National

Laboratory. Introduction to upc and language specification introduction

to upc and language specification introduction to upc and language

speci- fication. 2000.

[5] Rezaul A. Chowdhury, Francesco Silvestri, Brandon Blakeley, and

Vijaya Ramachandran. Oblivious algorithms for multicores and network

of processors. In Proceedings of the 24th IEEE International Parallel &

Distributed Processing Symposium, pages 1–12, April 2010.

[6] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem,

and Wolfgang De Meuter. Partitioned global address space languages.

ACM Comput. Surv., 47(4):62:1–62:27, May 2015.

53

[7] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon

Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex

Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming the

memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[8] Karl Feind. Shared Memory Access (SHMEM) Routines. Cray

User Group, pages 303–308, 1995.

[9] Vivek Kumar, Yili Zheng, Vincent Cav´e, Zoran Budimli´c, and Vivek

Sarkar. Habaneroupc++: A compiler-free pgas library. In Proceedings

of the 8th International Conference on Partitioned Global Address

Space Programming Models, PGAS ’14, pages 5:1–5:10, New York,

NY, USA, 2014. ACM.

[10] Ewing L. Lusk and Katherine A. Yelick. Languages for high-

productivity computing: The darpa hpcs language project. Parallel

Processing Letters, 17(1):89–102, 2007.

[11] Robert W. Numrich and John Reid. Co-array fortran for parallel

programming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[12] Open MPI project. Portable Hardware Locality hwloc. https://www.

open-mpi.org/projects/hwloc/, 2016.

[13] Jean-No¨el Quintin and Fr´ed´eric Wagner. Hierarchical work-

stealing. In Proceedings of the 16th International Euro-Par Conference

on Parallel Processing: Part I, EuroPar’10, pages 217–229, Berlin,

Heidelberg, 2010. Springer-Verlag.

[14] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman,

Phillip B. Gibbons, and Aapo Kyrola. Experimental analysis of

spacebounded schedulers. In Proceedings of the 26th ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’14,

pages 30–41, New York, NY, USA, 2014. ACM.

54

[15] Berkeley UPC. Berkeley UPC unified parallel c. http://upc.lbl.gov,

2016.

[16] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and

Klaus Erik Schauser. Active messages: A mechanism for integrated

communication and computation. In Proceedings of the 19th Annual

International Symposium on Computer Architecture, ISCA ’92, pages

256–266, New York, NY, USA, 1992. ACM.

[17] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and

Katherine Yelick. Upc++: A pgas extension for c++. In Proceedings of

the 2014 IEEE 28th International Parallel and Distributed Processing

Symposium, IPDPS ’14, pages 1105–1114, Washington, DC, USA,

2014. IEEE Computer Society.

[18] GASNet, Global Address Space Networking, https://gasnet.lbl.gov,

2017

[19] Dynamorio, Runtime Code manipulation system and support code

transformation, http://www.dynamorio.org

[20] PGAS architecture,

https://mohamedfahmed.wordpress.com/2010/05/06/partitioned-global-

address-space-pgas/

55

https://gasnet.lbl.gov/
https://gasnet.lbl.gov/

	Introduction
	1.1 Problem Definition
	1.2 Method and Approach

	1.3 Outline

	Background
	2.1 Introduction to PGAS
	2.2 Introduction to UPCxx
	2.3 UPCxx programming constructs
	2.3.1 Shared variables
	2.3.2 Global pointers
	2.3.3 Dynamic memory management
	2.3.4 Bulk Data transfer functions
	2.3.5 Memory Consistency model and Synchronization
	2.3.6 Remote Function Invocation

	2.4 Experimental Analysis of space bounded scheduler
	2.4.1 Scheduler Properties
	2.4.2 Scheduler Implementation
	2.4.3 Promising results

	2.5 Habanero UPCxx

	Design and Analysis
	3.1 Overview
	3.2 High Level Architecture
	3.2.1 CORE Api
	3.2.2 Extended Api

	3.3 Discovering memory hierarchy
	3.4 Scheduling Algorithm

	Implementation
	4.1 Async task
	4.2 Active messages
	4.3 Core Affinity
	4.4 Discovering hardware topology
	4.5 Tree Creation
	4.6 Task Size
	4.7 The Scheduler

	Experimental Evaluation
	5.1 Functionality Evaluation
	5.2 Performance Evaluation
	5.2.1 SPMV Performance Test
	5.2.2 Test Program for DUPC

	Conclusion
	Future Work
	7.1 Differentiating core from rank
	7.2 Developer Friendly Implementation

