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Abstract

It is estimated that computers and mobile devices use more than 2% of

the total  energy consumed. That  means a lot  of  energy is going in

powering  our  cpu,display  and  gpu.  In  this  paper  we  are  trying  to

optimize  the  power  consumed by cpu in  partitioned global  address

space environment. Recent research suggests that there is scope in

improving cpu power usage by having a better scheduler. Simhadri et

al.[14]   concluded  that  space  bounded  scheduler  can  improve  the

efficiency by  60% in  parallel  environment  in  shared global  address

space. 

In this paper we introduce data centric approach to PGAS, particularly

UPCxx[17],  referred  to  as  DUPC,  inspired  by  space  bounded

scheduler. The scheduler determines the cache hierarchy which allows

it to make intelligent decisions to schedule task given the size of task is

known beforehand.Hwloc library is used to detect the cache hierarchy.

Once the cache hierarchy and sizes of each cache is known, we can

track available cache sizes. With this information in hand, and if task

size is known, we are able to   provide better cache locality. We use

PGAS for high performance computing. We use UPCxx, which exploits

power of PGAS.
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Chapter 1 

Introduction

Moore’s  law  predicts  that  the  computing  power  doubles  every  18

months. That has been the case for last 100 years from the time of

birth computers until recently when we are unable to do so because of

the heating effect of the cpus. Parallel computing comes to rescue as

we try to increase computation power. 

Having a smart  scheduler  will  be one way to  utilise cpu efficiently.

There is a lot of research on this topic which there is still  room for

improvement.  One  of  such  scheduling  model  is  hierarchy  aware

scheduler. Such type of schedulers have shown promise as suggested

by Simhadri et al.[14] in his paper. He concluded that a space bounded

scheduler  will  be  60%  more  efficient  than  a  normal  work  stealing

scheduler. The cache hierarchy is known beforehand and user needs

to  specify  the  task  size.  The  cache  hierarchy  is  determined  using

hwloc[12] library. Based on space available on cache scheduler can

make smart decision to place the tasks to the most suitable core. We

investigate Simhadri theory by creating our own scheduler based on

UPCxx[17] in a shared memory based parallel environment.

PGAS provides such abstraction over  shared memory environment.

UPCxx  is  an  extension  over  PGAS.  It  uses  operator  overloading,

lambda  functions  and  several  other  clever  techniques  to  provide

simple apis to interact with the environment. The library is open source

and  we take it  to  our  advantage  and  implement  a  space bounded

scheduler. 
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1.1 Problem Definition 

The goal of the thesis is to create a scheduler which will be able to

assign  task  to  cores  available  on  a  cpu  based  on  the  amount  of

available  space  in  memory  cache  and  thus  able  to  improve

performance of a cpu in a parallel shared address space. To achieve

our goal we have to tackle two major problems:

1. Discover  hardware  topology  :  We  need  to  gain  information

about how memory hierarchy is being laid out.

2. Implement a scheduling algorithm : The task must be assigned

to a core based on space bounded scheduling defined later.

         1.2 Method and Approach

We  followed  agile  software  development  approach  called  scrum in

developing  the  thesis.  The  agile  software  development  model

encourages  more  face  to  face  communication  unlike  waterfall

development model. Scrum is iterative and incremental agile software

development approach. 

Scrum methodologies contains two backlogs called product  backlog

and sprint  backlog.  The product  owner adds entries to  the  product

backlog based on the user requirement. Developers can pick up items

from product backlog and try to accomplish the task in a sprint which

can  be  2-4  weeks  long.  The  task  acquired  from  product  backlog

becomes the part of sprint backlog. Each sprint ends with sprint review

and identify the progress and lesson learned from the previous sprint.

Scrum  methodology  defines  three  roles  mainly  product  owner,

Scrummaster and team. Product owner should be a person with vision,
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authority and availability. Scrummaster acts as a facilitator and works

to remove obstacles that are stopping the team from moving forward.

Scrummaster  however  does  not  manage  the  team.  The  Team  is

usually self managing and can consists of developers, designer and

quality assurance members.

1.3 Outline

The thesis consists of the following chapters:

Chapter 1 - Introduction 

Chapter 2 - Background 

This chapter presents related work on space bounded scheduling and work

on scheduling in UPCxx domain.

Chapter 3 - Design and Analysis 

This chapter discuss about design UPCxx, GASNet. This provides base for

discussion of design of DUPC. 

Chapter 4 - Implementation 

Discuss in depth explanation of the implementation of the design.

Chapter 5 - Experimental Evaluation 

Evaluates the functionality and performance of the DUPC.

Chapter 6 - Conclusion

Concludes the research and results achieved.

Chapter 7 - Future Work

Discuss about areas of improvement.  

13
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Chapter 2 

Background

This chapter presents previous work which are relevant to the thesis.

We look into some work done in scheduling in UPCxx[17] and similar

work on space bounded scheduling. While there has been a lot of work

in making scheduling task more efficient, there has not been enough

research  in  space  bounded  scheduling.  Simhadri  et  al.[14]  did

analysed the scope of space bounded schedulers and found scope in

making  a  smart  scheduler  based  on  memory  hierarchy.  There  has

been a lot of research on popular work stealing schedulers. Habanero

UPCxx brings work  stealing schedulers to  UPCxx.  We bring space

bounded scheduler to UPCxx.

2.1 Introduction to  PGAS 

PGAS (Partitioned global  address space) is a parallel  programming

model which assumes the global memory address space is logically

partitioned and portion of which is local to each process. There has

been a lot of developments like chapel, X10, etc. This only shows the

popularity  of  PGAS  and  shared  memory  as  a  whole  in  high

performance computing referred to as HPC. Message passing used to

be popular choice for HPC and it is impossible to draw conclusions

and  find  reasons  to  prefer  shared  memory  over  message passing.

Shared memory presents the challenge of concurrency while certain

protocols   need to laid out. Serialization of data is another challenge

that is needed to overcome in message passing. The problems does

not  stop  here  as  different  machines  may  have  different  operating
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system, architecture and hardware. The most common problem occurs

when two systems have different endianness. Memory laid out by one

system can be different  from other as some system chose to most

significant byte first in the memory while others chose to write least

significant  byte.That  being  said,  most  of  the  problems  has  been

handled already at system level. Shared memory approach are often

difficult to scale unlike message passing model. While there has been

a lot  of  research and it's  difficult  to reason against any of them, in

certain scenarios one can be preferred to other. What we need is a

hybrid approach. PGAS provides such a hybrid approach and combine

the power of both as this has both shared and local memory.     

Fig 2.1 PGAS memory layout

The above figure[20] shows how the memory hierarchy looks like in

PGAS. While  the program stacks are private to  the processes,  the

allocated memory in heap is shared among the processes. 

The biggest advantage of shared memory is sharing of data structure.

Our  benchmarks  share  data  across  nodes.  It's  easy  to  parallelize

programs by annotating or dividing the loop. An example in openmp 

#pragma omp parallel for 

 for(int i =0; i<n ; i++ ) 
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This makes it really easy to convert sequential code into parallel code.

This also means the parallel  code is  very close to  what  sequential

code will look like.

2.2 Introduction to UPCxx

We need a simple programming language to express and implement

our  ideas.  UPCxx[17]  closes  the  GAP  between  HPC  and  object

oriented programming by  providing a PGAS implementation in C++. It

provides other superior features and bring other parallel programming

model likes MPI and openMp to PGAS. The other good thing about

 UPC++ is that it is library extension to C++ which is very lightweight.

This does make developer life little harder as compile time errors can

be frequent. The library approach allows it to provide interoperability

with other popular libraries. 

Figure 2.2 UPCxx Design
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2.3 UPCxx  programming constructs

2.3.1 Shared variables 

Shared  variables  can  be  read  and  write  across  ranks  and  nodes.

Shared variable has to be explicitly declared like 

 

  UPCxx:: shared_var<Type> shardVar;  

Shared variable  can  be declared in  global  space,  so  its  lifetime  is

execution of the program. 

Similarly shared arrays are defined in UPCxx. 

UPCxx:: shared_arrray<T,BS> shardArr(size);  

T is the element type and BS is the block size. The data is accessible

with [ ] operator similar to scalar array variables. This is achieved by

overriding [ ] operator. The shared array can also be initialized at run

time as follows: 

sharedArr.init(size)

Where  size  is  number  of  threads,  which  allocates  block  cyclically

distributed global address space.

2.3.2 Global pointers 

UPC++ considers the address space of each nodes into one single

virtual  global  address  space.  The  shared  object  created  in  global

address space can be referenced by global pointer. The global pointer

encapsulates the local address and the thread id.

UPCxx::global_ptr<Type> ptr;
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The  global  pointer  contains  the  rank  information  in  addition  to  the  logical

address. The global pointer arithmetic logic is same as any normal pointer.

The rank information is constant.

int rank = ptr.where()

Where returns the rank of the node which owns the pointer. Similarly we can

get raw pointer using raw_ptr() method.

Type *local_ptr = ptr.raw_ptr();

The local address can also be obtained by typecasting to regular C++ pointer.

Void * local_ptr = (void *)ptr;

2.3.3 Dynamic memory management 

Similar to malloc and calloc in c++, UPCxx[17] has allocate() method

for dynamic memory allocation. 

UPCxx:: allocate<T>(uint32_t rank, size_t count);

Here  ranks is  thread  id  or  the  node on which  the  memory  will  be

allocated on for count number of elements of type T. The allocate does

not  call  constructor  explicitly,  which  can be achieved by using  new

operator. With the use of global_ptr we can escalate a private object

into a shared object. We can free the memory using deallocate. 

2.3.4 Bulk Data transfer functions 

Copying  data  in  bulk  is  more  efficient  than  copying  in  chunks.

UPCxx[17]  provides  blocking  and  non-blocking  apis  to  achieve  the

same.
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copy(global_ptr src,global_ptr dst, size_t count);    

Source  and  destination  buffer  are  supposed  to  be  contiguous.

async_copy()  is  asynchronous  version  of  the  copy  with  option  to

provide a callback method.

 async_copy(global_ptr src,global_ptr dst, size_t count);    

User can also register for an event with async_copy.

2.3.5 Memory Consistency model and Synchronization

UPCxx  uses  relaxed  consistency  model  to  gain  more  performance

compared  to  other  consistency  models.  This  means  programmer

should  be  more  careful  about  writing  the  program  in  a  distributed

parallel  environment.  UPCxx  provides  a  handful  of  synchronization

programming constructs to help developers. Synchronization in UPCxx

can be achieved using barrier, fence or lock apis each having their own

advantage in different use case scenarios.

2.3.6 Remote Function Invocation

This feature is inspired by X10. The functionality is clear from the title

like  remote  procedure  invocation.  The  function  invocation  means  it

returns a future object, which can be used to get the return value of the

called function.

future<T> f = async(place)(function,args...);

Here  place  is  thread  id  and  function  is  the  name  of  the  method

followed by its params. UPCxx provides two programming methods for
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asynchronous programming. Event driven programming keeps thread

free  and  are  less  resource  hungry.  We can supply  event  object  to

async call as follows:

future<T> f = async(place, event  *ack)(function, args...);

To keep the learning curve for x10 programmers, UPCxx[17] provides

finish block. 

finish{

future<T> f = async(place)(task,args...);

}

Task  must  be  completed  before  code  exits  the  finish  block.  The

implementation detail is beyond the scope of this paper.

2.4  Experimental  Analysis  of  space  bounded  

scheduler

In a parallel environment, processes or threads can request memory

location  despite  being  concerned  about  the  performance  cost

associated with it. If a memory location is accessed that is not in the

current page(a cache miss), several cpu cycles will be wasted to bring

required data to cache depending on where it resides in the memory

hierarchy. This means scheduling of the process or thread can have

significant performance cost. The paper argues that we can improve

on performance if we can improve cache hit ratio by scheduling our

task based on space available in the memory hierarchy.

Space bounded schedulers  are  able  to  preserve the  locality  of  the

program resulting in fewer cache miss. The work stealing scheduler

are great in load balancing and it is quite unclear how space bounded

scheduler will perform against work stealing scheduler.Simhadri et al.
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[14] tested space bounded scheduler on a series of divide and conquer

algorithms  against  popular  work  stealing  schedulers.  He  concludes

that  space  bounded  scheduler  results  in  fewer  l3-cache  miss

compared  to  work  stealing  scheduler  as  well  as  a  significant

improvement in runtime performance of the scheduler.

2.4.1 Scheduler Properties

A space bounded scheduler must satisfy the two properties. The first

property is called anchored which means that every task should get

anchored to the smallest possible cache amongst available cache. In

most of the cpu architectures, L1 cache has unique cores associated

with it. L2 cache might be shared among cores while it is common to

note that L3 cache is shared among cores. Thus, in cases where the

cache  is  shared,  any  of  the  core  which  shares  the  cache  can  be

chosen as the candidate core for scheduling. Second property is called

bounded. This means that sum of sizes of all subtasks must be less

than the size of the cache.  

2.4.2 Scheduler Implementation

The paper discusses about capturing a snapshot of memory hierarchy

and a queue for  each cache based on best  fit  policy as described

earlier. It creates a tree of the memory hierarchy of the target machine

with leaf nodes of the tree representing core. The paper does not go in

detail  and to answer how it  does it.  Once the tree is created, each

cache in the tree is assigned a queue and variables for bookkeeping

occupied space.  There are locks  for  concurrency control  in  parallel

environment. When a task is assigned, the scheduler first gathers all

locks from the path of the tree from the core to the cache. It make a

decision  based  on  the  predefined  properties  for  a  space  bounded

scheduler and add the task to the queue for the cache. 
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         2.4.3 Promising results

The  paper  concludes  that  space  bounded  scheduler  improves  L3

cache hits in a memory intensive program. Space bounded scheduling

comes with  increased  overhead  for  scheduling.  This  is  reflected  in

computation  intensive  programs  where  work  stealing  scheduler

outperforms the space bounded scheduler slightly. The primary reason

for that due to the small scheduling overhead incurred by work stealing

schedulers. 

2.5 Habanero UPCxx

This work is relevant as the work is related to scheduling and is based

on UPCxx. While the scheduling idea is different (work stealing rather

than  scheduling  based  on  memory  hierarchy),  HabaneroUPCxx[9]

brings a hybrid approach to task parallelism and integrates intra task

parallelism  and  inter-task  parallelism  in  one  PGAS  based  library.

HabaneroUPCxx implements intra space work stealing in addition to

function shipping. It maintains a worker pool for scheduling incoming

tasks, preferably on idle processors and unburdening the processors

which are overloaded. A worker thread pool is a great idea to have in

our  own  implementation,  but  it  is  also  costly  to  maintain  pool  of

workers waiting for incoming tasks.  Features like joining async tasks,

collective communications are highlight of HabaneroUPCxx apart from

well known async remote copy and async remote function invocation

which are familiar to UPCxx users.
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Chapter  3 

Design  and Analysis

In this chapter we present design of the various components required 

to make our space bounded scheduling work.

3.1 Overview

Space bounded scheduling requires the program to know the memory

hierarchy  beforehand  and  then  it  can  make  a  scheduling  decision.

Once it has made the decision it can alter the rank. After the program

is concluded we have to make appropriate adjustment to reflect the

actual state of the new memory hierarchy. Thus our scheduler consists

of mainly three components mainly discovering the memory hierarchy,

the actual scheduling algorithm and adjusting the memory hierarchy

when the program concludes.

3.2 High Level Architecture

The original architecture remains the same as we have modified the

existing code and the behaviour.  The initial  GASNet architecture is

shown below which is taken from GASNet official website[18]. 
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Figure 3. 1 Gasnet Architecture

GASNET is  a library which implements PGAS. It  basically provides

functionality  like  remote  memory  access  and  remote  method

invocation which will be discussed in detail later. It is highly portable

and  supports  a  number  of  operating  system.  GASNET supports  a

number of networking interfaces including mpi. Programmers can write

their own conduit if there is no such conduit available. 

GASNet  (Global  address  space  networking  )  is  composed  of  three

components.  The  lower  layer  is  core  api.  This  layer  is  a  generic

interface and is responsible for remote procedure calls using active

messages.  The  middle  layer  is  extended  api  and  is  primarily

responsible for remote put and get operations.The operations are one

sided and caller provides all the information including address of data,

data  and length of data. 

3.2.1 CORE Api

Core api consists of active messages. Active messages are basically

low level remote procedure calls. An active message request will go

from  initiator  to  a  node  which  register  the  request  on  a  handler.

Handler  extracts  the  request  from  payload,process  and  prepare  a

response. A reply for the request can be delivered to the initiator node

on response handler. 

3.2.2 Extended Api 

Above core api  is extended api.  Extended api  provides functionality

like remote put and get operation.It  is basically one sided.operation
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where  caller  provides  local  and  remote  address  and  length  of  the

payload.  User  has  option  to  choose  between  blocking  and  non-

blocking put and get operation where blocking will return only when the

operation is complete and non-blocking will  return immediately after

the call. The non blocking operation can be explicit where it provides a

handle, which can be used for completion. Alternatively we can define

a region, where compiler waits for the pending operations to return(eg

begin-end blocks). This type of non-blocking operation is called implicit

non-blocking operation.

3.3 Discovering memory hierarchy

We  must  know  the  memory  hierarchy  before  we  can  make  any

scheduling decision. We take advantage of UPCxx program lifecycle to

determine the  memory  hierarchy.  Every  UPCxx program must  start

with   init()  call  and  end  with  finalize()  call.  Our  call  to  determining

memory hierarchy is closely tied to this lifecycle of a UPCxx program.

On init()  call,  we determine the memory hierarchy. It  is important to

note that the memory hierarchy is obtained on a core with rank 0.   A

UPCxx program flow will now look like as shown in figure 3.2.

3.4 Scheduling Algorithm

The second step is to determine and the schedule the task on new rank.

UPCxx[17] provides an api called async to schedule task or a method on

certain rank. The DUPC scheduler tries to find the best rank based on space

available on cache. This is discussed in detail in later section. UPCxx is open

source library which means we can modify the async code. Without trying to

complicate  things,  our  design  decision  was  to  determine  the  rank  by

scheduler before forwarding the call to gaset.       
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Figure 3.2 Discovering topology 

Figure 3.3 Scheduling logic in a UPCxx program
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There can be scenarios when call to async is made from a non-zero

rank.  We use active  messages to  communicate  with  the  scheduler

which is based on rank zero. The high level design is shown below: 

Fig 3.4  Communicating with Scheduler
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Chapter  4

Implementation

Now that we have defined space bounded scheduler, we implement

the scheduler which is based on UPCxx. The implementation extends

and override certain api of UPCxx to achieve our target. The challenge

is to find an optimal core for a task based on the size of the task and

state  and  availability  of  the  cache  in  memory  hierarchy  to  obtain

maximum cache hit. 

For scheduling, the first requirement is to know the memory and cache

hierarchy. A library called hwloc[12] is used to discover the topology

when the UPCxx program is initialized.The implementation modifies

async api  of  UPCxx.  The async api  executes a  method on a core

provided by the user. The modified async calls the scheduler which is

based on a core with rank zero. If the async call is from a core whose

rank is not zero, the communication to the scheduler is achieved using

active  message  api  provided  by  GASNET.  The  call  to  schedule

contains rank and task size of the task. The scheduler traverses the

memory topology and find an optimal rank for the current task. If the

optimal rank is not the rank selected by the user, we change the rank.

This is discussed in detail in the following sections.   
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4.1 Async task 

Async task is usually referred as a short term for asynchronous tasks.

In UPCxx async is an api for remote function invocation. This allows

individual task to run asynchronously on different nodes.  An async call

in UPCxx[17] looks like

async(place)(function,args...)

The  async(place)  call  creates  an  async  object  which  has  an

overloaded  “()”  operator  for  handling  the  function  pointer  and

arguments in the second parenthesis. UPCxx then packs the function

pointer and args in a continuous buffer and send it to the target node

using active messages. On receiving the message, the remote node

unpacks the buffer and place the request in a task queue. When the

task is executed, the runtime sends a reply with return value as param.

In case when space bounded scheduling is  enabled,  the scheduler

finds the optimized place value using the scheduling algorithm and

place value is altered to be the one chosen by scheduler.

4.2 Active messages 

Active messages are part of gasnet components which are responsible

for communication between nodes. There are separate handlers which

are responsible for handling active message requests and response

and  are  handled  by  their  corresponding  handlers.  Communication

between two nodes A and B is handled as follows: 

1. To send a request from A to B, A call gasnet_AMRequest*() with

data payload, node index of B and index of the request handler

to run on B as arguments.
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2. On  receiving  the  request,  node  B  runs  the  request  on

appropriate handler and prepare a response for the arguments

supplied in the request. It  calls gasnet_AMReply*() to send a

response back to A.

3. After some time, A receives the response back from B and runs

the response handler with data from  gasnet_AMReply*().

4.3 Core Affinity 

For each core there is rank assigned by GASNET. The rank value is

unique to each core and have values between 0 and n-1, where n is the

number of cores present in the system. UPCxx[17] has provided simple

apis to  detect  the value of  n and rank of  the system on which it  is

running on. To get the current rank we can use myrank() from UPCxx

namespace. Space bounded scheduler also need to detect the cache

hierarchy  and  core  information.  This  is  done  using  a  library  called

hwloc. 

When a UPCxx program is initialized, hwloc library detects the topology

and core information. Each core discovered an id between 0 to n-1  is

assigned to each core, where n is the number of cores. UPCxx assign

rank (a value between 0 and n-1)  to  each core. We need a proper

mapping between id of the core and rank assigned by UPCxx before

we  make  a  scheduling  decision,  which  the  current  implementation

lacks.

4.4 Discovering hardware topology 

For scheduler to make smart decision on where to place the task, it

must know the cache hierarchy and core information. We will  look in

detail,  how to get this information using hwloc. The library gives the

topology(cache hierarchy and core information) information in a struct
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hwloc_topology_t.  The  following  api  calls  populate  the  items  of  the

aforementioned struct.

hwloc_topology_t  topology; 

hwloc_topology_init(& topology);

hwloc_topology_load(topology); 

Once we have the topology struct, we can obtain the cache and core

information from a series of api provided by the library. The cache is

represented by a struct hwloc_obj_t, which has member fields providing

crucial information for our implementation like cache size, parent, child

and  sibling  information.Following  api  returns  such  struct  of  type  L3

cache.

Int L3_CACHE_DEPTH = 

hwloc_get_type_depth(toplolgy,HWLOC_OBJ_L3CACHE );

hwloc_obj_t  L3_CACHE = hwloc[12]_get_obj_by_type (topology,

HWLOC_OBJ_L3CACHE),

 hwloc_get_nbobjs_by_depth(topology,l3depth)-1);

Similarly,  we  can  extract  core,  L1  and  L2  cache  information  from

topology object. Now, we have the tools to create the hierarchy tree,

which the scheduler will  use to make smart decisions to schedule a

task from the available choice of cores.Next section discusses how we

create the scheduling tree.
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Fig 4.1 Xeon E5-2650L architecture

4.5 Tree Creation

This is a data structure which represents the cache hierarchy of the

system. From previous section, we know how to get the core and cache

information  including  its  childs,  parent  and  siblings.  Using  this

information, we can now create the tree. The following implementation

considers L3 cache to be at the top level of cache hierarchy which is

consistent with most of the cpus out there but not all. First we obtain L3

cache  information  in  a  struct  hwloc_obj_t.  We store  information  like

cache size and number of children and pointers to it. Using the children

pointers, we traverse the L2 cache. L2 cache struct is processed in the

same way and we can process the L1 cache using child pointers and

so on.  A struct shced_tree_t is the data structure which is used to store

the cache   hierarchy information. Here is a snippet of  code showing

how the struct is being populated after obtaining information from L3

cache(described in previous section).
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shced_tree_t  *tree = allocate(sizeof(shced_tree_t));

int num_of_cache = hwloc_get_nobjs_by_type(

topology, HWLOC_OBJ_L3CACHE);

for(int i=0; i <num_of_cache;i++ ){

hwloc_obj_t   L3_CACHE  =   getL3Cache();  //from  previous

section

sched_tree_node_t  L3 =  malloc(sizeof(sched_tree_node_t));

L3->size = L3_CACHE->attr->cache.size 

L3->num_children = L3_CACHE->arity

L3->sibling_id = i;

for(int j=0; j<L3->num_children; j++){

//fetch l2 cache and so on

}

}

4.6 Task Size 

Previous section described how to create the tree representing memory

hierarchy. For the scheduler to make decision on core, it must know the

task size beforehand. The developer must provide the size of  the task

when executing an async operation. There are few ways to accept the

task size parameter from the user in async. We exploit the async api

capability  to  accept  events(a  UPCxx  struct)  as  param.  Our

implementation  expects  developer  to  provide  task  size  in  an  event

struct. So a typical async request should look like:
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event * ev = new event;

ev->task_size = TASK_SIZE;

async(rank,ev)(function,args ...);   

The task size should be in mb. If  the task size is not provided, the

scheduler will  use a default task size of 3k mb which might result in

abnormal  behaviour  and  performance  gain  might  seem  minimal  or

none.  While  calculating a task size can be cumbersome for  tedious

algorithms, we can use and test the scheduler for simple algorithms.

There are certain ways which can be used to calculate the size of task,

and we provide some insights in future work section. 

4.7 The Scheduler

Now we have all the ingredients ready to create the scheduler. The goal

is  to  match  a  computation  with  available  cache  space.  In  case  of

UPCxx[17], user may try to run an asynchronous operation on a node,

and we are trying to find a node which matches the computation with

available cache size. In simpler words we are trying to find a better

‘place’ in async call.

async(place)(function,args...);

Since,  we  have  all  the  memory  hierarchy  in  place  in  a  tree  data

structure,  all  we need to  do  is  to  traverse  the  tree  and match the

computation size or task size provided by the developer as suggested

in previous section. For this async implementation is modified.  

The scheduling logic is handled on super node. We chose the node

with rank 0 to be supernode. To keep the implementation generic, so

that place variables is always chosen wisely regardless of the rank of

the node it  is  being called from, we need to communicate with the
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scheduler in case where the async is called from a node whose rank is

not zero. Active messages is used for communication. The modified

async implementation calls a method sched_get which returns a new

rank and handles the communication.

int new_rank = sched_get(rank_t rank, size_t task_size);  

To  communicate  with  the  scheduler,  an   active  message request  is

created. The request contains a call back event, rank of the current

node,task size and a pointer to reply message. 

After the request is prepared, the active message request is   sent to

node with rank 0 using gasnet api and we wait for response event.

GASNET_CHECK_RV(gasnet_AMRequestMedium(

0,SCHED_GET,&req,sizeof(req)))

A handler on node 0 receives this request with data and a token to

respond to. It extracts necessary data and process the request.  

Sched_am_t  req = (Sched_am_t  *) req_buf;

int   new_rank  =  sched_tree_schedule(req->rank,  req-

>task_size); 

The  overridden  implementation  calls  sched_tree_schedule.  The

method is responsible for finding a new rank or core based on the

computation size. It  takes computation size and rank as param and

return new rank. The first step is to find a cache where the task can fit

on the original core provided by the user. It starts with L1 cache on that

rank  and  L2  cache  and  so  on,  until  it  finds  a  place  where  the

computation can fit or it reaches the main memory which will be able to

accommodate task of any size. On finding such cache, it is marked

occupied and we also need to add the task size. We also need to mark
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the cache occupied all the way upto the main memory as there is no

direct line from cache to main memory. 

void  sched_tree_schedule(int rank, int task_size){

sched_tree_node_t  *core = tree->leaf_array[rank]

sched_tree_node_t  *l1_node = core->parent;

for(node =l1_node; node != null; node = node->parent){

if(task_size < available size){

return rank; 

}

}

In case, if there is no available space in memory hierarchy on the core

provided by the user, the scheduler tries one of the sibling and follows

the same steps as mentioned above. It might try all siblings until giving

up and schedule the task on the rank provided by user. 

For example, suppose a processor has two L3 cache each having n

number of L2 cache each connected to a separate core. If one of the

L3  cache  is  occupied,  the  scheduler  will  ignore  all  the  n  cores

connected to this cache. 

The  scheduler  keeps  track  of  all  the  cores  on  which  a  task  is

scheduled and eliminate them from possible candidate from selection.

Now, we have computed the new rank based on space available in

cache  hierarchy,  we  need  to  send  a  response  back  using  active

message as described earlier. 

        response->rank = new_rank; 

GASNET_CHECK_RV(gasnet_AMRequestMedium(

0,SCHED_REPLY,&response,sizeof(response)))
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The  requester  receives  the  response  on  a  handler.  It  process  the

response  and  broadcast  the  event  it  has  received  a  response  on

scheduling decision.

void   sched_reply_handler(gasnet_token_t  token,  void

*buf, size_t nbytes  ){

sched_reply_t  reply = getFromBuffer(buf);

notifyResponseRecieved();

}

When a task is complete, we need to readjust the occupied task size

value in the tree to keep the behaviour correct for  upcoming async

requests. For this whenever a task is finished an event is delivered to

supernode with task size and rank. The scheduler then traverses the

tree and make proper adjustment to reflect the correct task size.

40



Chapter 5

Experimental Evaluation

This  chapter  evaluates  functionality  and  performance  of  space

bounded scheduler. The first section discusses and tests functionality

on  a  string  of  tests  and  benchmarks.  The  second  section  tests

performance of the scheduler on a Intel Xeon E5-2650L processor with

24 cores.  

5.1 Functionality Evaluation

Automation testing framework like Junit can be be really helpful in the

course of development cycle. We will need some testing framework in

c++ or UPCxx[17] in our case. We instead tested all our functionality

manually  and  including  automation  testing  for  the  project  can  be

considered for future work. As mentioned before, we have three core

functionality and each of them should work as expected. 

The first functionality is to discover hardware topology and populate

our  tree  data  structure  with  the  size,  number  of  child  and  pointer

information.  The  library  used  to  extract  the  information(hwloc[12])

provides a command called ‘lstopo’ which gives a visual representation

of the tree data structure as seen in figure 5.2. Using this information,

we can test and make sure that our first functionality is correct.   

The scheduling algorithm is the heart of what we are trying to achieve.

To  test  this  functionality  we  need  to  test  the  behaviour  in  certain
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scenarios. We discuss one such scenario for the cpu with following

architecture:

Figure 5.1 - Xeon E5-2650L Architecture
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Figure 5.2  lstopo Output

We expect the rank to be changed to a core shared with the second L3

cache in case where first L3 cache can no longer hold the task. We

wrote a simple program with each task size just large enough to be

held by L3 cache and tested and verified this behaviour.  

#include <upcxx.h>

#include <iostream>

#define TIME() gasnett_ticks_to_us(gasnett_ticks_now())

int number =5000000;

using namespace UPCxx;

void test(){

int sum =0;

int *arr = new int[number];

printf("rank == %d\n",myrank()); 

for(int i=0;i<number;i++){

arr[i] = i; 

}

int sw = 1; 

for(int i=0;i<number;i++){

if(sw == 1){

sum += arr[number-1-i] ;

}else{

sum += arr[i] ;

} 

sw = 1-sw;

}
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std::cout << "sum = \n"<<sum;

} 

int main (int argc, char **argv)

{

  upcxx::init(&argc, &argv);

  if(myrank() == 0){ 

 int P = 2;

int n = number*P; 

async_wait();

double start_time = TIME();

std::cout <<"start time  ="<<start_time; 

int size =  0; 

for(int i =0; i< P; i++){

event * ev = new event;

 int var_size = sizeof(int);

ev->task_size = number*var_size; 

size = ev->task_size;

async(i,ev)(test); 

}

async_wait();

std::cout <<"end time  ="<<TIME()-start_time<<" size = "<<size;

 }

UPCxx::finalize();

return 0;

}

5.2 Performance Evaluation

We were unable to observe any kind of performance gain in any of the

benchmarks  we  tried.  We  are  missing  one  crucial  step  in  our

implementation  that  can  be  the  primary  reason  for  this  behaviour.
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Although we are  changing the  rank during  scheduling  according  to

space  bounded  scheduling  algorithm,  this  does  not  mean  that  we

actually schedule on the core we desired to run the thread on. UPCxx

can assign ranks to core in a random manner, and all this means when

we schedule a task on some rank, we are not sure which core it is

going to run. We still do not have a good solution to this problem. But

hopefully  after  this  problem is  solved we will  be able to  see some

performance gain in memory intensive benchmarks.  

We performed a series of test on standard algorithm and programs

intended  to  create  scenarios  where  it  will  benefit  from  DUPC

scheduler.

5.2.1 SPMV Performance Test

Sparse  Matrix  vector  multiplication(SPMV)  is  a  upcxx  benchmark

which  uses  async  to  perform  computation.  The  program  can  be

considered memory intensive if we create a matric large enough so

that  it  can  take  advantage  of  DUPC  scheduler.  We  set  up  a  test

environment  which  uses  24  cores  on  aforementioned  cpu  with

following results.
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The x-coordinate shows number of of rows and number of columns

times  1000  in  a  matrix  and  y-coordinate  represents  time  in

milliseconds.  We  did  not  expect  any  performance  gains  and  the

program actually performs better without the scheduler which can be

due to  scheduling overhead but  can not  be said with certainty.  We

expect scheduling overhead to be small as we are traversing a small

tree without any complex computation.   

5.2.2 Test Program for DUPC 

We created a simple program to create scenarios where it can actually

take  advantage  of  DUPC and  test  functionality.  The  program does

nothing interesting, it creates an array of a predetermined size. A large

array  makes the  program memory  intensive  and  ideal  for  our  test.

 After a series of test, it shows the following result. 
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The x-coordinate represents number of elements in array times 1000

and  y  axis  represent  time  in  milliseconds.The  program does  show

slight  improvement  in  two  of  the  three  scenarios.  But  there  is  no

continuous trend which concretes our finding. As we did not expect any

improvement  in  first  place,  all  we  can  say  that  the  mean  of  the

execution time of the programs in two scenarios will  approach each

other when the experiment is performed enough number of times.
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Chapter 6

Conclusion

In  this  thesis  we  introduce  data-centric  approach  to  UPCxx[17],

inspired by space bounded scheduler. The scheduler determines the

best possible rank for the task based on the amount of available space

in memory hierarchy, given the task size is determined. We were able

to evaluate the functionality but did not saw any performance gain.  

The  functionality  evaluation  showed  that  the  scheduler  works  as

expected and shows potential for performance gain as we aimed for.

While the algorithm for finding the correct core is correct, the currently

implementation of  DUPC cannot  differentiate  between the core and

rank assigned by UPCxx[17]. This is the primary reason, we are not

able to see any performance gain in memory intensive task. 

We  can  conclude  that,  the  current  implementation  of  DUPC  has

potential    but   limited  to  functionality  and  will  potentially  show

performance gain with required changes in future.
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Chapter 7

Future Work

The current implementation of space bounded scheduler has a number

of  areas  for  improvement.  We  present  two  major  areas  for

improvement  in  future.  The  implementation  lacks  the  ability  to

differentiate  between  a  rank  and  a  core.  Apart  from  this,  future

implementation should focus on making the scheduler more developer

friendly.  

7.1 Differentiating core from rank 

Our scheduler is not able to differentiate between a core and a rank.

Even though we are able to change the rank based on space bounded

scheduling algorithm, we are unable to place the task on the core we

would have wanted. We expect to see some performance gains once

we have added this feature to our implementation, which has already

been shown in previous work.

7.2 Developer Friendly Implementation

The library should not add extra burden on developer and must remain

user/developer friendly. For instance our implementation requires the

developer to provide task size for our algorithm to work. The future

implementation might be able to figure out the task size on its own.

This does sound challenging and there is no easy way to do this. We
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did have a look at Dynamorio[19] to achieve the same without having

the understanding of the approach.     

52



References

[1] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers

as memory hierarchies. In Programming Models for Massively Parallel

Computers, 1993. Proceedings, pages 116–123, Sep 1993. 

[2]  Guy  E.  Blelloch,  Jeremy  T.  Fineman,  Phillip  B.  Gibbons,  and

Harsha Vardhan Simhadri. Scheduling irregular parallel computations

on  hierarchical  caches.  In  Proceedings  of  the  Twenty-third  Annual

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA

’11, pages 355–366, New York, NY, USA, 2011. ACM. 

[3]  D Bonachea and J Jeong.  Gasnet:  A portable high-performance

communication  layer  for  global  address-space  languages.  CS258

Parallel Computer Architecture . . . , pages 1–27, 2002. 

[4] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick,

Eugene  Brooks,  Karen  Warren,  Lawrence  Livermore,  and  National

Laboratory. Introduction to upc and language specification introduction

to upc and language specification introduction to upc and language

speci- fication. 2000. 

[5] Rezaul A. Chowdhury, Francesco Silvestri, Brandon Blakeley, and

Vijaya Ramachandran. Oblivious algorithms for multicores and network

of processors. In Proceedings of the 24th IEEE International Parallel &

Distributed Processing Symposium, pages 1–12, April 2010. 

[6] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem,

and Wolfgang De Meuter. Partitioned global address space languages.

ACM Comput. Surv., 47(4):62:1–62:27, May 2015. 

53



[7] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon

Leem, Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex

Aiken, William J. Dally, and Pat Hanrahan. Sequoia: Programming the

memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. 

[8]  Karl  Feind.  Shared Memory Access (  SHMEM )  Routines.  Cray

User Group, pages 303–308, 1995. 

[9] Vivek Kumar, Yili Zheng, Vincent Cav´e, Zoran Budimli´c, and Vivek

Sarkar. Habaneroupc++: A compiler-free pgas library. In Proceedings

of  the  8th  International  Conference  on  Partitioned  Global  Address

Space Programming Models, PGAS ’14, pages 5:1–5:10, New York,

NY, USA, 2014. ACM. 

[10]  Ewing  L.  Lusk  and  Katherine  A.  Yelick.  Languages  for  high-

productivity  computing:  The  darpa  hpcs  language  project.  Parallel

Processing Letters, 17(1):89–102, 2007. 

[11] Robert W. Numrich and John Reid. Co-array fortran for parallel

programming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998. 

[12] Open MPI project. Portable Hardware Locality hwloc. https://www.

open-mpi.org/projects/hwloc/, 2016. 

[13]  Jean-No¨el  Quintin  and  Fr´ed´eric  Wagner.  Hierarchical  work-

stealing. In Proceedings of the 16th International Euro-Par Conference

on  Parallel  Processing:  Part  I,  EuroPar’10,  pages  217–229,  Berlin,

Heidelberg, 2010. Springer-Verlag. 

[14] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman,

Phillip  B.  Gibbons,  and  Aapo  Kyrola.  Experimental  analysis  of

spacebounded  schedulers.  In  Proceedings  of  the  26th  ACM

Symposium on Parallelism in Algorithms and Architectures, SPAA ’14,

pages 30–41, New York, NY, USA, 2014. ACM. 

54



[15] Berkeley UPC. Berkeley UPC unified parallel c. http://upc.lbl.gov,

2016. 

[16] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and

Klaus Erik  Schauser.  Active messages:  A mechanism for  integrated

communication and computation. In Proceedings of the 19th Annual

International Symposium on Computer Architecture, ISCA ’92, pages

256–266, New York, NY, USA, 1992. ACM. 

[17] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and

Katherine Yelick. Upc++: A pgas extension for c++. In Proceedings of

the 2014 IEEE 28th International Parallel and Distributed Processing

Symposium,  IPDPS ’14,  pages  1105–1114,  Washington,  DC,  USA,

2014. IEEE Computer Society.

[18] GASNet, Global Address Space Networking, https://gasnet.lbl.gov,

2017

[19] Dynamorio, Runtime Code manipulation system and support code 

transformation, http://www.dynamorio.org 

[20] PGAS architecture,

https://mohamedfahmed.wordpress.com/2010/05/06/partitioned-global-

address-space-pgas/ 

55

https://gasnet.lbl.gov/
https://gasnet.lbl.gov/

	Introduction
	1.1 Problem Definition
	1.2 Method and Approach

	1.3 Outline

	Background
	2.1 Introduction to  PGAS
	2.2 Introduction to UPCxx
	2.3 UPCxx  programming constructs
	2.3.1 Shared variables
	2.3.2 Global pointers
	2.3.3 Dynamic memory management
	2.3.4 Bulk Data transfer functions
	2.3.5 Memory Consistency model and Synchronization
	2.3.6 Remote Function Invocation

	2.4 Experimental Analysis of space bounded scheduler
	2.4.1 Scheduler Properties
	2.4.2 Scheduler Implementation
	2.4.3 Promising results


	2.5 Habanero UPCxx

	Design  and Analysis
	3.1 Overview
	3.2 High Level Architecture
	3.2.1 CORE Api
	3.2.2 Extended Api

	3.3 Discovering memory hierarchy
	3.4 Scheduling Algorithm

	Implementation
	4.1 Async task
	4.2 Active messages
	4.3 Core Affinity
	4.4 Discovering hardware topology
	4.5 Tree Creation
	4.6 Task Size
	4.7 The Scheduler

	Experimental Evaluation
	5.1 Functionality Evaluation
	5.2 Performance Evaluation
	5.2.1 SPMV Performance Test
	5.2.2 Test Program for DUPC


	Conclusion
	Future Work
	7.1 Differentiating core from rank
	7.2 Developer Friendly Implementation


