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Abstract

With the accelerated advances in sequencing technology the last decade, the
field of metagenomics has progressed immensely. Sampling and sequencing
of metagenomic data is now prevalent, and publicly available data sets from
mundane soil and water environments to exotic niche habitats such as geother-
mal hot springs are readily available through sequence data repositories such
as the European Nucleotide Archive. Meanwhile, the computational resource
requirements for a complete and comprehensive analysis of metagenomic data
have escalated dramatically, due to a tremendous increase in data set sizes.
To analyze and make sense of these samples, researchers can choose to em-
ploy public resources for metagenomic analysis. However, most of the available
public resources provide generic analyses and are not suited for applications
such as bioprospecting or samples from complex habitats such as the marine
domain.

In this thesis, we introduce a metagenomic analysis pipeline coined META-
pipe. With META-pipe, we aim to supply a public analysis resource catered for
the marine domain, with an emphasis on analysis of full-length genes. META-
pipe offers pre-processing, assembly, taxonomic classification and functional
analysis of metagenomic sequence data. The pipeline has gone through sev-
eral iterations, both in terms of functionality and implementation. In Paper
1 we describe the initial version of META-pipe, including biological function-
ality, implementation details and integration with identity provider services,
distributed storage, distributed computation and the Galaxy workflow manager.
We evaluate the performance of META-pipe through two separate use cases, as
presented in Paper 2 and Paper 3. These use cases demonstrate the usability
of META-pipe and gave us an opportunity to refine and enhance the pipeline
through evaluation of biological results and computational performance charac-
teristics. In summary, this dissertation gives an overview of common strategies
for metagenomic analysis in a pipeline context. It discusses the development of
META-pipe through refinement and presents the current version. The pipeline
is now a deliverable to the ELIXIR infrastructure, hence future versions of
META-pipe will continue to improve and expand both in functionality and pub-
lic usage, providing a sustainable resource for metagenomic analysis in years
to come.
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Introduction

1.1 Metagenomics

Studies of microbial communities can be traced back as far as 1676, when An-
tonie van Leeuwenhoek, coined "The Father of microbiology" first described
micro organisms in oral cavities [1]. In the following 300 years, studies of micro-
bial communities were mostly based on phenotypic traits, growth experiments
and selection. In the late 19th century, efforts were made by Robert Koch to
count and visualize microorganisms using cultivation, and he is still renowned
for his achievements in identifying the specific causative agents of tuberculosis,
cholera, and anthrax [2]. Later, significant improvements in microscopy and
staining techniques such as Gram-staining [3] became available and slowly
propelled the field of microbiology forward. At the time, it was conspicuous
that there was a discrepancy between the amount of organisms identifiable
through the use of microscopes and the amount actually procured in culture.
With the ideas and work of Sergei Winogradsky, it soon became evident that
most microorganisms need special environmental growth conditions to thrive
[4]. Cultivation-based methods can only isolate a fraction of the microbial di-
versity present within a given environmental sample [5, 6]. After Carl Woese
proposed the use of ribosomal RNA genes as marker genes for taxonomic clas-
sification in 1977 [7], and Sanger automated sequencing was introduced the
same year [8], environmental profiling of microorganism diversity based on
rRNA genes became the defacto standard for classification of microorgansims.
Suddenly, the concept of microbial ecology, a study of microorganisms and
their environmental roles and habitats gave hints towards a previously hidden
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diversity of microscopic life.

In the last two decades, the field metagenomics, stemming from microbiol-
ogy, ecology and genomics has slowly emerged and proven its importance. As
it is multidisciplinary, metagenomics as a term is prone to varying definitions,
but briefly metagenomics is the study of genetic material sampled directly from
the environment. The birth of metagenomics as a field is most commonly ref-
erenced by the publication of a 1998 article Jo Handelsman et al. [9], where
they cloned environmental DNA and explored the biosynthetic machinery of
the collective genomes of soil microflora. The term "metagenomics" was intro-
duced for the very first time in this publication and references the idea that
a collection of genes sequenced from the environment can be analyzed using
similar principles as when analyzing a single genome. Later on, shotgun se-
quencing, which is arguably one of the corner stone technologies in terms of
rapid progression of the field was introduced and utilized [10, 11]. The intro-
duction of the metagenomic approach, coupled with this leap in sequencing
technology revolutionized microbial research and offered scientist a lens to
view the microbial world in a completely new way.

Today, metagenomics offers vast possibilities of sample analyses (A sim-
plified typical overview is depicted in Figure 1.1, which is described in detail
in sections 1.2 and 1.3). Although the development of novel approaches and
methodology in metagenomics has accelerated dramatically since its introduc-
tion, most research can still be summed up in three questions, "Who is there?",
"What are they doing" and "Who is doing what?". The first question addresses
taxonomic classification, the identification and quantification of organisms in
a sample. Traditionally, environmental profiling of sample diversity was solely
based on rRNA genes due to its high degree of conservation between species,
but with the advances in sequencing technology, novel approaches to answer
this question has emerged. Taxonomic classification of species in a metage-
nomic sample can now be inferred not only from marker genes based on rRNA,
but also using clade-specific marker genes, binning of sequences or mapping
to references through assembly [12]. This is possible as experimental design
and sequencing strategies in metagenomic projects are slowly moving away
from the standard amplicon approach, to shotgun sequencing of all available
DNA within a sample (often referred to as whole genome sequencing for single
genomes, or WGS). With shotgun sequencing, access to the complete functional
gene composition of whole microbial communities is granted, paving way for
a myriad of novel functional analysis methods which aims to answer the ques-
tion, "What are they doing?". Through assembly, fragments of genetic sequences
are reconstructed to contigs, continuous stretches of genomic DNA from repre-
sented species in the sample. This allows for prediction of full-length genes and
non-coding features, operon analyses, pathway analyses, protein family diver-
sities and countless other types of functional annotation. The third question,
"Who is doing what?", involves combining taxonomic and functional analyses,
which can give evidence of genomic linkages between function and phylogeny,
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and evolutionary profiles of community function through biomarker discovery
[13, 14]. Additionally, conclusions of grander scales can be made by compari-
son to publicly available samples and their metadata from repositories like the
European Nucleotide Archive (ENA) [15]. Alternative related approaches to
standard metagenomic methodology has started to surface recently. Examples
include metatranscriptomics (transcriptomics on metagenomic data), the anal-
ysis of the total expression of genes in a community [16]. Also, metaproteomics
(proteomics on metagenomic data) has been utilized to determine the relative
abundances of proteins in a metagenomic sample [17]. Lastly, metagenomics
in it self provides an invaluable resource through bioprospecting, where the
aim is to discover novel enzymes or other bioactive compounds which can have
huge impacts in biotechnological applications [18].

Metagenomic
sample

. - ;
P L [ Sequencing ] What are they doing?

Taxonomic *
classification

Functional analysis
Quality control

Assembly
Gene prediction
Functional annotation

Marker gene analysis
Binning
Assembly

Who is doing what?

Comparative
metagenomics

Metadata correlations
Biomarker detection

Figure 1.1: The common steps involved in a typical metagenomic analysis workflow.

1.1.1 Applications of metagenomics

Most of the activity in the field of metagenomics has so far been done in a
research context, however this research is obviously a driver for novel applica-
tions of metagenomics. In medicine, projects such as The Human Microbiome
Project (HMP) [19] has revealed that the microflora present in human gut and
intestines has a huge impact on health, both directly through dysbiosis [20]
and as a fingerprint of other diseases or afflictions [21]. Recently, inflammatory
bowel diseases such as Crohn’s and ulcerative colitis, cirrhosis of the liver and
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colorectal cancer has been shown to be predictable using supervised machine
learning [22], which illustrates how metagenomics has enormous potential
in diagnosis. However, so far most practical applications of metagenomics in
medical diagnosis consists of identifying known pathogenic organisms through
sequencing of gut microflora. The process of bioprospecting, where one tries to
discover and possibly commercialize novel bioactive compounds from biologi-
cal resources such as metagenomic samples, has also provided some new an-
tibiotics, including beta-lactamases [23], Fasamycin and Violacein [24]. Other
compounds screened from metagenomic samples are enzymes such as cellulose
[25, 26] and xylanase [27, 28], involved in the conversion of biomass into bio-
fuel by subsequent fermentation into ethanol. Such biofuels has been adopted
by a wide range of vehicles in public transportation in recent years. Another
area of application is bioremediation, where metagenomic approaches are used
in treatment of oil spills. Using chemical surfactants, petroleum hydrocarbons
are made soluble by emulsification and can be easily degraded by microbes.
However, these chemical surfactants have been proven to be toxic to the envi-
ronment [29]. An environmentally friendly alternative with low toxicity and
high biodegradability are biosurfactants [30]. Efforts have been made to de-
velop screening methods for biosurfactant producing microorganisms from
metagenomic samples [31]. By employing these methods, novel genes involved
in biosurfactant production can be identified and hence accelerate the devel-
opment of bioremediation technologies.

1.1.2 Large-scale projects and outcomes

Even though metagenomics as a field is arguably still in its birth fase, funding
within the field has started to increase and large-scale projects has started to
emerge. Such large-scale projects not only provide novel insights and break-
through discoveries on their own, but also help to steer research activity in
a field with seemingly endless possibilities. Publicly available data, software
resources, tools and standards developed and released in tandem with such
grand collaborations are also highly beneficial for medium and small-scale
projects. Because of the multidisciplinary nature of metagenomics and its ap-
parent grand challenges like the immense complexity of microbial communities
and geographical scale of sampling, these large-scale projects are especially im-
portant to support valid generalizations and "proof of concepts", which are not
possible to achieve from small single-investigator projects. An early example
from the field of genomics that emphasizes this concept is the Human Genome
Project (HGP)[32] which launched in 1990. In 2003, they closed the gaps in
the sequenced human genome and released a high-quality publicly available
sequenced genome, along with freely available tools for researchers to analyse
their data. Since 2006, when the first next-generation sequencers was commer-
cialized, terrabase-scale metagenomic sequencing projects have emerged. An
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illustrative, but non-exhaustive list includes the projects:

* Global Ocean Sampling Expedition (GOS) [11, 33, 34]

* Metagenomics of the Human Intestinal Tract (MetaHIT) [35]
* The Human Microbiome Project (HMP) [19]

* TARA Oceans [36]

* Malaspina [37]

e MetaSoil [38]

* The JGI Great Prairie Grand Challenge pilot study [39]

Projects such as MetaHIT and HMP have greatly accelerated science to-
wards understanding the gut microbiome in relation to human health. In HMP,
the aim is to study the complexity of human-associated microbial communities
using not only metagenomic approaches, but also transcriptomic, proteomic
and metabolomic approaches. This way, multiple levels of data will provide in-
sight into how the microbiome and the human host interact to support health
or to trigger disease. HMP consists of six different initiatives and is associated
with over 500 publications, as well as providing a myriad of tools, methods
and reference databases for the scientific community. The project MetaHIT has
a similar objective: to establish associations between the genes of the human
intestinal microbiota and health and disease. It involves 13 partners from 8
different countries and lasted from 2008 until 2012 with a funding estimate set
to 21 million euros. With a focus on obesity and inflammatory bowel diseases,
several publications and other important resources such as reference genomes,
novel methodology [40] and innovative tools [41] are all outcomes attributed to
this large-scale project during its 4 year life span. Large-scale circumnavigation
projects such as Tara Oceans, Malaspina and GOS aims to asses genetic diversity
in marine microbial communities, and provide invaluable resources in terms
of publicly available sequence data. The Tara Oceans project also has a green
agenda, focusing their efforts on understanding human effects on the environ-
ment, such as impact of plastic debris in the environment and effects of global
warming. Soil directed projects such as MetaSoil and the Great Prairie Grand
Challenge pilot study aim to determine the impact of land management (such
as tillage and fertilization) on soil microbial communities, including cycling of
carbon and nitrogen.

1.1.3 Novel challenges in metagenomic analysis

In recent years, the amount of sequencing data produced in the field of metage-
nomics has increased exponentially. This fact introduces a new and somewhat
unexpected set of challenges. Firstly, with sequencing machines yielding up
to terrabyte size datasets per run, storage and archiving of data has become
increasingly expensive. Sequencing yield has now surpassed Kryder’s Law [42],
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a postulate that hard disk space doubles annually. In fact, the cost of sequencing
a base is now cheaper than storing a byte on a hard disk [43]. Surprisingly,
storing metagenomic samples in freezers and sequencing them when needed
might become a more feasible economical solution at some point. Secondly,
the increase in data size demands an equal increase in computation resources.
Traditionally, tools and software for analyzing both genomic and metagenomic
data were run on laptops and workstations, single machines capable of han-
dling the amount of data with ease. Today, with some exceptions, a complete
metagenomic analysis is typically run on cluster computers with significantly
more resources in terms of computation and memory, such as EMP [44] and
MG-RAST [45] (described in detail in sections 1.4.1 and 1.4.2, respectively).
Thirdly, tools and libraries developed for analysis and handling of sequencdata
are rapidly made obsolete due to increasing data amounts [46]. As an example,
the libraries Bioperl [47] and Biopython [48] are no longer able to handle the
tremendous amounts of sequences generated by next-generation sequencing
technologies, and have been replaced by libraries such as HTSeq [49]. Assem-
bly tools such as MEGAHIT need hundreds of gigabytes of memory to assembly
a single sample [50], amounts of memory which are not common in high-end
laptops and workstations. Even non-redundant databases such as Uniprot are
growing exponentially [51], making utilization of such resources more time
consuming in terms of computation, but also more comprehensive in an anal-
ysis context. Recently, a focus on making resources available in the cloud to
provide a more flexible solution to some of these problems have been embraced
by the community and providers of computation-as-a-service platforms have
emerged [43].

1.1.4 Specific challenges in marine metagenomics

The most essential factor in attaining a comprehensive analysis of a metage-
nomic sample is the quality and composition of reference data. Through large-
scale projects such as HMP and MetaHIT, microorganisms from habitats such
as the human gut and intestinal tract are readily represented in reference
databases. However, due to the complexity, diversity and general neglection
of the marine domain, marine metagenomic reference data is severely insuffi-
cient. This causes serious data biases in existing generic reference databases,
effectively over-representing well studied organisms and generating a skewed
representation of the database. The fact that less than 0.1% of all microbes in
the oceans today has been discovered highlights the severity of this issue [52].
In fact, no substantial reference databases explicitly for the marine domain of
metagenomics currently exist [53], making specific annotation and analysis of
marine samples a serious challenge. Additionally, due to the diversity and com-
plexity of the marine environment, assembly of marine metagenomic samples
are also especially difficult. This is discussed in detail in section 1.2.2.
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1.2 Production of metagenomic sequence data

Before any bioinformatic analysis can be done on in a metagenomic project,
several task must be performed in advance in order to attain sequence data
from metagenomic samples. Producing sequence data typically involves exper-
imental design, sample processing, sequencing and notation of metadata. This
section describes these steps in detail in a successive manner.

1.2.1 Sample collection, preparation and metadata

In a metagenomics project, the first step is experimental design (Figure 1.2).
Most importantly, this task should be guided by the research question at hand,
so that ideal sequencing technologies, libraries and protocols for the given
project are utilized [54]. Also, any technical, operational or cost based restric-
tions should be readily avoided, so that the statistical significance of the ana-
lyzed results are not undermined in any way [55]. Tools such as Metastats [56]
have been developed to focus on this particular aspect of comparative analysis.
Sample collection is the second step in a metagenomics project. The sample
can come from anywhere there is microbial life, which has lately expanded in
terms of extreme environments, such as low oxygen [57], alkalinity [58], acid-
ity [5s9] and extreme temperature [60, 61]. Ideally, the sample should contain
DNA representing the isolated microbial community as a whole, meaning the
complexity, abundance and diversity of organisms should be properly reflected
through subsequent analysis of a sample. However, sample processing is cru-
cial and introduces potential biases. Depending on the origin of the sample,
different protocols are used to ensure a favorable yield of DNA [62, 63]. DNA
extraction from metagenomic samples generally consists of three steps, frac-
tionation, lysis and purification [64]. If the sample is host associated, sample
fractionation can be used to remove potential host DNA within the sample,
especially if the host genome is very large and potentially overwhelming in
terms of DNA yield [65]. In some cases, fractionation of certain parts of an
environmental sample is necessary to study distinct taxonomical divisions, like
separating bacteria from communities with macroalgae [66]. To isolate the
DNA within a sample, different types of cell lysis methods can be utilized and
combined, which are generally divided into thermal, mechanical, chemical and
enzymatic methods. In thermal and mechanical lysis, the physical force gener-
ated from for example bead-beating or sonification destroys cell walls and shear
DNA into fragments, which is ideal for library construction. With chemical and
enzymatic lysis, more subtle ways of DNA isolation are achieved, like dissolving
cell membranes with sodium dodecyl sulfate (SDS) or sample digestion with
various enzymes. Lastly, purification of the sample is needed to remove any con-
taminants which might interfere with any subsequent steps like quantification
of DNA, enymatic reactions or sequencing [64]. In soil samples, humic acid is
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a particular nuisance with similar physiochemical properties as DNA, causing
problems in subsequent steps of library preparation [67]. In the end, acquiring
the total amount of DNA from a metagenomic sample is not possible because
of the extreme microbial diversity and low abundance of certain organisms.
Up to fifty percent losses of DNA should be accounted for in this stage alone
[68].

Workflow

@(perimental desigm
'

Data

Sample collection > Metadata
Sample fractionation Data storage
DNA extraction Sequence data

' yd

\DNA sequencing/

Figure 1.2: The main steps in production of sequence data from a metagenomic sample

With recovering samples from the environment, additional information in
the form of metadata and contextual data is also acquired, which in earlier
years of metagenomics was not very well taken care of. Metadata are the de-
scriptors of what, how, when and where your sample was taken from, while
contextual data describes the environmental conditions. Today, it is common
practice to archive recovered samples in repositories like ENA [15], National
Center for Biotechnology Information (NCBI) [69] and DNA data bank of Japan
(DDBJ) [70], which provides not only a permanent storage of sequence data
but also rich metadata information submitted by the user. Controlled vocab-
ularies like EnvO (The Environment Ontology) [71] and MIXS [72] governed
by The Genomic Standards Consortium (GSC) have been introduced to handle
the description of metagenomic samples in a uniform way. This way, the re-
search community as a whole can benefit from publicly available data through
metastudies and comparative analyses.



1.2 / PRODUCTION OF METAGENOMIC SEQUENCE DATA "

1.2.2 Sequencing

In order to do any kind of bioinformatic analysis on a metagenomic sample, it
needs to be sequenced to produce sequence data from genetic material present
in the sample. In 1977, Applied biosystems commercialized the first DNA se-
quencing method, coined Sanger sequencing [8, 73], a sequencing method
based on polymerase chain reaction (PCR) yielding minimal amounts of se-
quence information. Today, next generation sequencing technology from com-
panies such as 454 Life Sciences and Illumina are extensively applied to metage-
nomic samples, and can generate terrabytes of information from one sequencing
run. This information is produced in the form of reads, fragments of DNA from
species present in a metagenomic sample. Even though sequencing technol-
ogy has made exceptional advances in recent years, the available technologies
thus far are not perfect. Sequencers based on 454 pyrosequencing technology
typically struggle with sequencing errors, especially DNA homopolymers [74]
and have a relatively low output of under 1 gigabyte of sequence information.
However, 454 sequencers generate relatively long reads (up to 1000 base pairs),
which are advantageous in assembly and subsequent functional annotation. In
comparison, Illumina based sequencers offer a substantially higher output of
up to 1 terrabyte per run and lower sequencing costs, but with shorter reads
(typically in the range of 100 to 300 base pairs). These reads have shown a
tendency to have have high errors rates at the tail end [75]. However, all Illu-
mina systems are capable of paired-end sequencing, which yields two reads per
DNA insert, one from the forward and one from the reverse template strand
with a known distance between them. This strategy is particularly useful for
handling DNA with genomic rearrangements and repetitive sequence elements,
as the positional information between the two reads helps in alignment to a
reference or extending contig lengths in de novo assembly [76, 77, 78]. Newer,
less extensively tested technologies with ground breaking properties have also
started to emerge lately. Pacific Biosciences offers a sequencing technology
coined "circular consensus sequencing" (CCS), which can achieve read lengths
of several thousand base pairs. This is especially useful in assembly, annotation
and functional assignment, as well as extending contig lengths in hybrid assem-
blies [79]. Using nanopore technology, Oxford Nanopore is developing portable
solutions such as the MinION, capable of detection and analysis of pathogens in-
field [80]. They are even developing a sequencer called the SmidgION, which
operates as an in-field accessory to a smart-phone.

In addition to sequencing technologies there are also different variations
in approaches, depending on the application or research question at hand. In
metagenomics, two of the most widely used approaches are amplicon sequenc-
ing and shotgun sequencing (WGS) (Shown in Figure 1.3). With amplicon se-
quencing, the goal is usually to uncover the species present in a metagenomic
sample through a taxonomic classification. The sequencing target is the marker
gene 16S rRNA, which has become the de facto standard for taxonomic anal-
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ysis of prokaryotic diversity due to its inherent conservation between species.
Parts of the 16S rRNA gene is sequenced using primers covering one or more
of the variable regions within the gene using PCR. Using this method, only
sequences stemming from the 16S rRNA gene of all organisms present within
a sample will be sequenced. Reducing the target template to only this locus
produces a deeper coverage than for example shotgun sequencing, meaning it
is generally less costly and samples can be multiplexed (multiple samples per
sequencing run, separated using barcode sequences). However, this method
has some proven biases. The unspecific primers used to amplify the 16S rRNA
gene might not adhere to all present strains with equal affinity, resulting in a
distorted representation of the actual diversity of the sample. Primer affinity
can be checked using tools such as TestPrime [81].

Metagenomic sample @ Genomic DNA\
O @) O O 1 DNA template
T Primers
O O O O 3 Region of interest

I Reads
E‘:j Consensus /
Amplicon sequencing Shotgun sequencing
[ I I ] [ ]
[ I I ] [ ]
[ 1 1 ] [ ]
PCR Fragmentation
amplification Sequencing
Sequencing (paired-end)

Figure 1.3: A simplified comparison of the two sequencing apporaches: Amplicon se-
quencing and shotgun sequencing. Amplicon sequencing targets a partic-
ular region of interest, usually part of the 16S rRNA gene for prokaryotic
taxonomy analysis. With shotgun sequencing, random fragments of DNA
from all species are produced, which is built into longer contigs (consensus)

With shotgun sequencing, random fragments of DNA from all species in
a sample are produced [82, 83]. This offers not only a means for analyzing
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sample diversity, but also the sequences of coding genes and other forms of non-
coding DNA, which yields additional functional knowledge about the microbial
community as a whole. Since this approach targets all DNA present in a sample,
and not just a specific gene or locus such as in amplicon sequencing, a larger
volume of data is needed to achieve a viable coverage of the sample. This
is a particular problem in metagenomic assembly, where reads are built or
reconstructed into longer segments of DNA called contigs. The diversity and
complexity of a metagenomic sample implies that not all genomes present will
be represented by reads, making this reconstruction especially challenging [84].
A naive way to tackle this problem is to use a sequencer with especially high
output capacity, but since the distribution of abundance in the sample remains
the same, normalization of reads should be employed afterwards [85]. Paired
end libraries can also be used to help facilitate the joining of contigs more
easily, as the distance between read pairs are known (as shown in Figure 1.3).
However, even though sequencing technology has progressed tremendously in
recent years, most sequencers can still only scratch the surface of the actual
DNA available in a complex metagenomic sample using a shotgun sequencing
approach.

1.3 Pipeline analysis of metagenomic sequence
data

An efficient way to solve some of the novel challenges in recent metagenomics
projects is to use pipelines backed by substantial computational resources.
These pipelines represent automatic or semi-automatic work flows that pro-
cess a sample from raw data to a complete taxonomical and functional analysis
of a metagenomic sample. This section will give an overview of the most com-
mon steps involved in a metagenomic analysis pipeline in a successive order,
as well as describing popular tools involved in each step. The focus of this
step-by-step overview is shotgun sequencing specific, however some steps are
applicable to amplicon data as well, such as sections 1.3.1 and 1.3.3.

1.3.1 Quality control

An important first step before starting any analysis is to assess the output qual-
ity of the data from a sequencing run. Removal or trimming of low quality
reads is vital to produce analysis results with minimal biases stemming from
sequencing errors. Depending on the sequencing technology used, particular
biases or patterns of errors intrinsic to the sequencing technology used need to
be considered and evaluated carefully [86]. Omitting this step will have nega-
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tive effects in characterizing the microbial community present in the sample
and reconstructing genomic DNA in the process of assembly [86, 87]. As an
assembly is often the basis for a functional analysis of a sample, an insufficient
assembly causes an incomplete assessment of functionality. Quality filtering is
also important from a computational perspective. Too much low quality input
in assembly increases processing time and memory requirements [88].

Tool name Type Description Reference

AmpliconNoise Denoising Reduction of errors from amplicon | [89]
sequence data

BBTools QC-filtering Toolkit for sequence data. Avail- | -

able at http://jgi.doe.gov/data-
and-tools/bbtools/

DeconSeq Host contamina- | Removal of host sequencing reads | [90]
tion from host-associated samples
FastQC QC-filtering, Quality filtering with a graphical | [91]
evaluation user interface for easy assessment
Fastx-Toolkit QC-filtering Collection of commandline tools | [92]
for short read preprocessing
PRINSEQ QC-filtering Preprocessing of genomic and | [93]
metagenomic sequence data
Trimmomatic QC-filtering Trimming of Illumina sequence | [94]
data

Table 1.1: A list of common software used in evaluation and filtering of raw sequencing
data

To evaluate and trim reads from next-generation sequencing (NGS) data,
several programs are available (mentioned alternatives are referenced and
listed in Table 1.1). Collectively, they provide calculated statistics such as num-
ber of reads, over-representation of reads, length, quality profiles and more.
Programs such as FastQC, Fastx-Toolkit, PRINSEQ and Trimmomatic are generic
QC-tools offering filtration, trimming and removal of low quality sequencing
reads. Some of them can also remove platform-specific artifacts, like adapter
sequences. In an automatic pipeline context, setting generic parameters for
such tools can be challenging, as no sample has the exact same quality char-
acteristics. Evaluation of QC results should ideally be manually examined to
find the optimal trade off between average sequence quality and discarded se-
quence data. However, this requires specific user-competence and represents a
manual intervention not ideal in an automatic pipeline. Other more situational
types of quality control programs are also available. DeconSeq can remove host
contamination using a reference sequence, which is often necessary in host-
associated samples with reference sequences available. The software package
BBTools includes normalization to optimize distribution of sequencing reads,
which can decrease memory and computation resources needed in subsequent
analyses drastically, depending on the diversity and complexity of the sample.
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With amplicon sequencing, the same generic QC-filtering applies, however ad-
ditional processing is often required. Depending on the sequencing technology
used, the sequence data might need a certain extent of denoising to reduce
intrinsic errors stemming from sequencing errors. This can be done with soft-
ware such as AmpliconNoise. However, the effects of this process in terms of
sample richness, diversity and evenness depending on which algorithms are
used can vary greatly [95].

1.3.2 Assembly

In an assembly, QC-filtered reads are built into long stretches of DNA called
contigs, exploiting the inherent overlap of reads stemming from the sequencing
process. This is done to gain access to full length genes and operons, which
can provide valuable functional information about the community as a whole.
When assembling single genomes, the dataset consists of only a single organ-
ism, which is a task that has been thoroughly studied and effective algorithms
have been developed. However, assembly of metagenomic data is not as trivial.
This section introduces common strategies and tools available in metagenomic
assembly (referenced and listed in Table 1.2). Some of the introduced tools
are designed for genomic assembly, but can be used for metagenomic assembly
with special care.

In a metagenomics project, assembly is especially difficult due to the diver-
sity and abundance of organisms in the sample. Firstly, a metagenomic sample
represents a distribution of abundance between organisms, meaning abundant
organisms will be represented with sufficient sequence data coverage, while
less abundant organisms are effectively impossible to assemble. Secondly, some
species may contain homologous genes or other sequencing artifacts repre-
senting a consensus sequence between them, which typically causes spurious
and chimeric contigs [104]. Additionally, since the abundance and diversity of
organisms in a metagenomic sample are vast compared to a genomic sample,
the memory footprint using metagenomic assemblers can reach hundreds of
giga bytes, an amount not suited for a common workstation or laptop. In fact,
sequence assembly has been proven to be NP-hard, a class of computational
problems which can not be solved in polynomial time [105]. Several approaches
to tackle these challenges have been employed, such as binning by sequencing
depth, effectively categorizing reads by abundance as seen with Meta-IDBA and
MetaVelvet. However, assembly yield is inevitably bound to sample coverage,
complexity and abundance of organisms.

When assembling metagenomic data, two distinct routes can be taken: De
novo assembly and reference based assembly. Reference based assembly in-
volves mapping metagenomic reads to a collection of known references, hereby
achieving a more precise assembly and species or genus specific taxonomic in-
formation on contigs in the process. However, this approach needs an extensive
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Tool name Type Description Reference

Artemis Visualization Sequence annotation and visual- | [96]
ization tool

Celera Assembler Consensus and variant detection | [97]
using whole genome sequencing
datasets

MEGAHIT Assembler Fast and memory efficient de novo | [50]
assembly of metagenomic data

Meta-IDBA Assembler De novo assembly of metagenomic | [98]
data using partitioning and cre-
ation of consensus sequences

MetAMOS Assembly Metagenomic assembly and analy- | [99]

(pipeline) sis pipline
MetaQUAST Quality evalua- | Evaluation tool for metagenomics | [100]
tion assemblies

MetaVelvet Assembler De novo assembly of metagenomic | [101]
data using coverage decomposed
graphs

MIRA Assembler Multi-pass sequence assembler | [101]
and mapper

Ray Meta Assembler Scalable de novo metagenomic as- | [102]
sembly

TIGR Assembler Greedy assembler [103]

Table 1.2: A list of common tools used in assembly

reference database tailored for the specific habitat of the sample at hand. If the
reference database is insufficient, or the sample is from an especially complex
habitat, any reads belonging to unrepresented references will not be assem-
bled. The algorithms employed are generally faster and more memory-efficient,
making this approach viable for standard computers. Examples of tools able to
perform this type of assembly are MIRA and MetAMOS.

With de novo assembly, no reference sequences are used, and overlapping
reads are built into contigs without any supporting knowledge. The algorithms
utilized in this process can be divided into three distinct types, greedy as-
semblers, overlap assemblers and De Bruijn-graph assemblers. These types
have different strengths in terms of memory usage, processing time and preci-
sion. Greedy assemblers are generally simple implementations which iteratively
merges contigs through maximum overlap, and is effective when assembling
data with no repeats. An example of such an assembler is TIGR. Overlap as-
semblers uses a pairwise overlap approach, which tackles error prone reads
well, but is not optimal with high coverage datasets as the pairwise computa-
tion becomes strenuous. Noteworthy overlap assemblers include Celera, which
was used to reconstruct the human genome [106] and the Arachne assembler.
De Bruijn graph assemblers are generally considered state-of-the-art and uses
kmers, fragments of input reads of a set length to construct graphs. Contigs are
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reconstructed by analyzing "walks", routes through the constructed graph based
on kmer count which decides which contigs to keep and discard. Assemblers
that utilize De Bruijn graphs for metagenomic assembly include Meta-IDBA,
MEGAHIT and MetaVelvet. However, if a dataset is very complex or contains
a high proportion of sequencing errors, this graph will grow out of proportion
and require extensive amounts of memory. One way around this caveat is to
distribute graph construction, a functionality provided with the metagenome
assembler Ray Meta. This way memory requirements and computation time
can be mitigated between multiple computers in a cluster environment.

When an assembly of metagenomic data is completed, it is often neces-
sary to evaluate the performance of the applied tool and parameters set. Most
assemblers offer simple statistics such as N5o (weighted median contig size),
total contigs, largest contigs, percentage of bases assembled etc., however this
is not sufficient information to properly validate an assembly. Some of these
values are also repeatedly misunderstood in a metagenomic context. As an
example, the Nso measurement is a rather meaningless value as one does not
know the correct size of the combined genomes. To assess an assembly in a
more rigorous mannetr, tools such MetaQUAST can be utilized. MetaQUAST
aligns assembled contigs to reference genomes and outputs a detailed overview
of coverage and mis-assemblies relative to the provided references. This way, if
a sufficient reference dataset exists, a thorough assessment of the assembly can
be achieved. Furthermore, assemblies can be quantified and evaluated using
visualization tools such as Artemis. This sequence viewer allows for in-depth
analysis of coverage information in a per base context. This allows for iden-
tification of specific gaps or assembly errors, but is tedious for longer contig
segments and should be utilized only for specific loci of interest.

1.3.3 Taxonomic classification

When performing a taxonomic classification, the aim is to characterize and
quantify the microbial community. This is vital to uncover the richness and
abundance of organisms present, and answers the question "Who is there?" for
a given sample. Depending on the type dataset analyzed, this assessment can
be quantified using three distinct approaches, namely marker gene analysis,
binning or assembly (Figure 1.4). These approaches are not mutually exclusive,
and combinations of approaches are implemented in various publicly available
tools able to perform this task. In this section, an individual explanation of these
approaches as well as common tools and databases utilized is described. Any
tools or databases mentioned in this section are summarized and referenced
in Table 1.3

The traditional and most extensively adopted way of assessing taxonomic di-
versity is using marker genes. This strategy involves comparing sequenced reads
against databases with taxonomically informative marker genes to identify ho-
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Tool name Type Description Reference
LCAClassifier Marker genes Taxonomic classificatoin using | [107]
the lowest common ancestor
algorithm
Greengenes Database 16S rRNA gene database [108]
MetaPhlAn Marker genes Taxonomic classification of mi- | [109]
crobial communities using clade-
specific markers
PhyloPithia Binning, Phy- | Phylogenetic classification of DNA | [110]
logeny fragments
Phymm Binning, Phy- | Phylogenetic classification using | [111,
logeny Markov models 112]
QIIME Binning, Marker | Pipeline for microbiome analysis of | [113]
genes metagenomic data
SortMeRNA rRNA prediction | Prediction, mapping and OTU pick- | [114]
ing of rRNA sequences
RDP Database Bacterial, archaeal and fungal | [115]
rRNA sequence database
rRNASelector rRNA prediction | Prediction of rRNA sequences in | [116]
metagenomic data
Silva Database Small and large subunit rRNA se- | [117]
quence database

Table 1.3: A list of common tools and databases used in taxonomic classification

mologous matches. Most commonly, marker genes are represented by rRNA
sequences due to their inherent conservation between species. For prokaryotic
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assignment, the 16S rRNA subunit is commonly used, however many databases
include 18S rRNA for eukaryotic assignment, as well as their large subunit coun-
terparts (23S/28S). State-of-the-art databases commonly used for homologous
comparison of rRNA includes Silva, Greengenes and the Ribosomal Database
Project (RDP). For amplicon datasets this strategy is relatively straight for-
ward as they consist of only rRNA sequences, but rRNA sequences can also be
predicted and extracted in whole genome sequencing datasets using software
such as rRNASelector and SortMerRNA. The resulting set of extracted rRNA
sequences can be analyzed in a similar manner, albeit with special care as they
are more fragmented due to the random nature of whole genome sequenc-
ing reads. The most common method for taxonomic assignment is the Lowest
Common Ancestor (LCA) method. With this method, a read with multiple ho-
mologous database hits is assigned to the taxa which is the lowest common
ancestor to the acquired hits (descendants) in a hierarchical graph context,
given a set of stringent parameters. This way the method is relatively accurate,
but lacks resolution at strain and family-level taxa [107], such as can be seen
in LCAClassifier. Marker genes can also be represented by clade-specific (genes
only common to a monophylitic group of taxa) protein coding genes, such as
with MetaPhlAn, but this requires whole genome sequencing datasets with pro-
tein coding genes. Common for most tools using this approach is an effective
and computationally efficient classification, as databases are relatively small.
However, it assumes that the fraction of sequences with homologous hits to
marker genes reflects the total diversity within the sample. Depending on the
coverage of the database used, and the environment the sample represents,
this might not hold true [118].

With binning the aim is to assign sequences into groups, either by shared
characteristics (such as homology or GC-content) or by comparison to refer-
ence data. The binning approach is often a precursor to other approaches, such
as marker gene analysis or assembly reference comparison, effectively sorting
sequences before taxonomic assignment. Sorting sequences this way provides
a number of benefits. Firstly, it reduces the complexity of input data, so that
subsequent analyses are generally less computationally expensive and can be
executed on individual bins or sets. Secondly, it provides the ability to discover
novel strains in metagenomic data otherwise difficult to identify due to lack
of reference data [119]. A popular tool utilizing this technique is QIIME. Se-
quenced reads are binned into OTUs (operational taxonomic units) based on
identity, representing provisional groups of unknown taxa which are subse-
quently taxonomically assigned using a reference database. The tools Phymm
and PhyloPithia both use compositional binning (oligonucleotide frequency
and length) to produce an overview of phylogenetic linages and discover novel
unknown organisms, respectively. However, the binning process also introduces
some caveats. As reads are effectively represented as bins, annotation or classi-
fication of a bin does not necessarily reflect the true annotation or classification
of an individual read, depending on the specific parameters used in the binning
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process.

A taxonomic classification is also obtainable using assembled sequences
(Described in section 1.3.2). Contigs produced from assembly can be quantified
by tracking coverage, meaning to count reads aligning to each specific contig.
This way, annotated contigs representing individual strains can be quantified, ef-
fectively producing a profile of taxonomic diversity and abundance. Tools such
as MetaVelvet and Meta-IDBA (listed in table 1.2) generate sub graphs in their
effort to separate the microbial community into groups, which can be treated as
a representation of genome-specific divisions. Caveats discussed in section 1.3.2
also applies in taxonomic classification. Any spurious or chimeric contigs pro-
duced in assembly will naturally effect the precision of taxonomic classification
using this approach. Also, as an assembly is only viable for relatively abundant
organisms in a sample, low coverage strains will not be identified.

1.3.4 Gene prediction

Following assembly, predicting genes or other features from genomic contigs
is usually a precursor to a functional analysis. These reconstructed stretches
of DNA will most likely contain genes which can be predicted and extracted
using metagenomic gene prediction tools. This step is imperative as a set of
coding genes from a metagenomic sample naturally reflects the profile of its
collective biological functions. In this section, common tools and strategies
used in metagenomic gene prediction will be introduced. Any gene prediction
tools covered in this section are listed in Table 1.4.

Assembly is not necessarily a prerequisite for gene prediction; genes can be
predicted directly from raw reads as can be achieved with FragGeneScan. This
tool also incorporates sequencing platform specific error models, increasing the
accuracy of genes predicted from raw reads. However this will produce mostly
fragmented genes depending on the sequencing technology and length of reads,
which is not ideal in a functional analysis context [135]. A set of fragmented
genes will produce an overview of functionality based on fragments, but is not
sufficient if the aim is to mine for novel full-length proteins or enzymes in a
bioprospecting context. Longer contigs (upwards of 500 bp) will have higher
chances of containing non-truncated full length genes, hence the quality of
assembly is an important factor in this step. Gene prediction in longer frag-
ments of DNA is generally easier to implement, and fewer genes are missed by
gene prediction tools [136]. A number of tools specially developed to provide
de novo gene prediction in metagenomic sequence data has been introduced,
including MetaGeneAnnotator, MetaGeneMark and Orphelia. Collectively, they
all use models that are trained using sequence properties such as GC-content,
codon usage and length to optimize prediction and discriminate coding an
non-coding stretches from a DNA template. As these tools do not rely on any
reference databases or alignment algorithms, they are also relatively fast com-
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Name Type Application Reference
BLAST Annotation tool Basic Local Alignment Search Tool | [120]
FragGeneScan Gene prediction | Gene prediction in fragmented | [121]
short reads

FROMP Gene prediction | Fragment recuitment using | [122]
metabolic pathways

GO Ontology A comprehensive, computational
model of biological systems

HMMer Algorithm Hidden Markov Model search and | [123]
alignment tool

InterPro Database Functional analysis of proteins and | [124]
protein families

InterProScan Annotation tool Annotation tool that integrates | [125]
with Interpro

KEGG Ontology Database resource for annotation | [126]
of functions and utilities in biolog-
ical systems

MetaGene Anno- | Gene prediction | Gene-finding program for prokary- | [127]

tator otic and phage sequences

MetaGeneMark | Gene prediction | Gene  prediction  exploiting | [110]
oligonucleotide frequencies and
nucleotide composition

MetaPath Annotation tool identification of differentially | [128]
abundant metabolic pathways in
metagenomic datasets

NCBI Databases The National Center for Biotech- | [129]
nology Information

Orphelia Gene prediction | Metagenomic gene prediction tool | [130]

Pfam Database Collection of protein families, rep- | [131,
resented by sequence alignments | 132]

PRIAM Annotation tool | Enzyme-specific = profiles  for | [133]
metabolic pathway prediction

Uniprot Database Universal protein resource catalog | [134, 51]

Table 1.4: A list of common tools and databases used in gene prediction and functional

analysis

pared to other approaches. Other approaches include identifying genes through
alignment to reference sequences or binning (fragment recruiment) which was
utilized in the analysis of metagenomic data from the Global Ocean Sampling
Expedition [33] and in the metabolic pathway profiling tool FROMP.

1.3.5 Functional analysis

Using a set of protein coding genes predicted by a metagenomic gene predic-
tion tool, the functional diversity can be quantified by functional annotation
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(Figure 1.5). This annotation is the basis for a functional analysis, which an-
swers the question "What are they doing?" for a given sample. A lot of resources
and algorithms are available to annotate metagenomic sequence data and en-
rich the description of each specific gene predicted in a metagenomic sample
(listed and referenced in table 1.4 and described in the next paragraphs). Since
this step relies heavily on alignment algorithms and relatively big databases,
it represents a considerable computational effort in terms of processing and
storage. A complete functional analysis is best performed on a distributed com-
puter cluster or cloud environment in order to finish in a reasonable amount
of time.

Functional annotation

Assembled
contigs Gene prediction
| — | ——
| — )
[ T —» o —f ] —> % __» Functional
= [— analysis
e Genes Annotated

genes

Databases

Figure 1.5: Functional analysis workflow

Databases used in functional annotation generally come in two types: se-
quence databases and HMM (Hidden Markov Model) databases. Sequence
databases consist of multiple sequence entries which provide specific hits for a
query sequence that is closely related to sequences in the database. Databases
suitable for metagenomic data are mostly non-redundant, however the defini-
tion of redundancy varies between different database providers. As an exam-
ple, Uniprot (Universal Protein Resource) consists of three different databases,
UniprotKB ("KnowledgeBase", which integrates TrTEMBL and Swiss-prot), Uni-
parc (Archive) and UniRef (Reference clusters). UniprotKB contains one record
for all 100% identical full-length sequences in one species, while UniRef con-
tains one record for all 100% identical sequences regardless of species. These
variations of Uniprot databases are used extensively in metagenomic analysis
as they represent a comprehensive resource in terms of protein annotation.
However, the growth of uniprot is exponential [51] and consists of over 70
million entries as of 2017, which poses a problem when used for sequence sim-
ilarity searches. As these databases are typically queried by BLAST-programs
(Basic Local Alignment Search Tool), all query sequences are compared to all
sequences in the database, which represents a substantial and exponentially
growing computational effort as datasets and databases increase in size. A
similar major resource for sequence analysis is NCBI, providing not only se-
quence databases, but also additional resources such as literature search en-
gines and software. In a metagenomic functional analysis context, the most
relevant database is Protein, which consists of sequences from several external
sources and provides biological structure and function determination. Other
relevant databases under the NCBI umbrella relevant to metagenomic analy-
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sis are RefSeq for reference sequence analysis and GenBank which provides
an extensive nucleotide archive incorporating genes, genomes, protein and
transcripts from several sources.

HMM databases consists of profiles built from seeds, aligned homologous se-
quences that represent a related entity, for example a protein family (Pfam) or
a class of enzymes (PRIAM). Compared to sequence databases, HMM databases
generally identifies more distantly related relationships, as the profile is a
probabilistic model built from seed sequences from divergent sources. This
type of database is commonly queried by the tool HMMer, which also offers
database formatting from plain sequence data. One of the most extensively
used HMMer-based databases in a metagenomic context is Pfam. With Pfam,
protein sequences from predicted genes are classified into protein families,
which represents groups of evolutionarily related protein sequences. Pfam is
also included in InterPro, a collection of 14 databases incorporated into a single
searchable resource. InterPro provides functional annotation and classification
using these integrated databases, and equips the specialized search tool Inter-
ProScan for easy integration with InterPro.

When predicted genes are annotated, further mapping to descriptive on-
tologies which can summarize and clarify the annotation in a comprehensive
manner should be performed. Many of these ontologies are available, most
commonly used are the Kyoto Encyclopedia of Genes and Genomes (KEGG)
for metabolic pathway analysis and Gene Ontology (GO) mappings to describe
functional relationships within a sample. Several tools are available to recon-
struct metabolic pathways from metagenomic data, such as MetaPath. MetaP-
ath uses statistic methods and prior pathway knowledge to identify differen-
tially abundant pathways present in a sample. The functional annotation tool
PRIAM can also map enzyme annotations from predicted genes to KEGG identi-
fiers automatically. A characterization of the overall metabolic pathway within
a sample is important to fully understand its complete enzymatic capabilities
and synergies between species. The more functional descriptive ontology GO
aims to define concepts of gene function through classes, such as metabolic
function, biological process and cellular components. Various slimmed versions
of this ontology is available to reduce the vocabulary and simplify the func-
tional description, such as metagenomic slim for metagenomic data. Together,
metabolic and functional ontologies like these serve as a basis for a functional
analysis of a metagenomic sample.

1.3.6 Comparative analysis and visualization

One of the central challenges in the study of metagenomic data is making
sense of differences between samples from different microbial communities. A
comparative analysis involves finding genes, organisms, pathways and other
elements that consistently explain these differences coined biomarkers, and
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present or visualize them in a comprehensive manner. In taxonomic classi-
fication, the terms alpha, beta and gamma diversity are used to explain the
observed differences between taxonomic profiles of samples. These terms were
introduced by Whittaker in 1960 [137], who proposed the idea that gamma
diversity, the total species diversity of an ecosystem was defined by alpha and
beta diversity. Alpha diversity refers to the mean diversity of microorganisms
at a specific site or habitat (local species pool), while beta diversity defines
the differentiation among these habitats. These terms are often used in tan-
dem with tools for comparing taxonomic classifications, such as QIIME (listed
in table 1.3). The biomarker discovery tool LEfSe [14] uses genomic features
such as pathways, genes and taxonomic information to characterize the differ-
ences between samples on both taxonomic and functional levels. However, in
a pipeline context, rigorous comparative analysis between samples has long
been neglected, with a focus solely on overviews of taxonomy and function,
but the newer versions of both EMP and MG-RAST pipelines has started incor-
porating tools for comparison (described in sections 1.4.1 and 1.4.2). A number
of tools and exist to visualize metagenomic data. The interactive visualization
tool KronaTools [138] uses HTML5 and JavaScript to create dynamic pie charts
viewable in a web context, and supports a number of bioinformatics related
data formats out of the box. This tool is used extensively in recent publica-
tions [139, 140, 141] as well as in the web user interface of EMP for displaying
taxonomic classifications, as it offers snapshots of publication-ready SVG-files
out of the box as seen in Figure 1.4. Elvis [142] is another interactive visual-
ization tool for metagenomic assemblies. It offers the capability to correlate
meta data with attributes of assembly, such as GC-content, contig length and
relative abundance. With this interactive solution, the quality and attributes of
metagenomic assembly can be studied in real time and hypothesis generation
and testing can be greatly accelerated.

1.4 Established pipelines
1.4.1 EMP - European Bioinformatics Institute

The EBI Metagenomics Portal (EMP) is an online resource for metagenomics
analysis [44]. Through a state-of-the-art pipeline users of this resource can have
their metagenomics samples analyzed in exchange for making their analysis
results and raw sequence data publicly available. EMP accepts both metage-
nomics and metatranscriptomics data and have seen rapid growth over the
years, representing one of the largest freely available resources for metage-
nomic analysis today. As of 1st of January 2017, EMP has analyzed 792 publicly
available projects totaling over 50.000 samples. The pipeline has undergone
several updates and changes through the years, and now includes a more com-
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Figure 1.6: Visualization of a taxonomic classification of a marine metagenomic
dataset by KronaTools

prehensive and easy to use website with web based tools for functional compar-
ison of samples within a study [143]. EMP is coupled with ENA, which handles
metadata and sequence daya submission via the ENA Webin tool. The EMP
pipeline offers quality filtering and both taxonomic classification using QIIME
and functional analysis using FragGeneScan and InterProScan (described in
in detail in section 1.3). When samples are processed, users can access their
analyses through the EBI Metagenomics web portal and browse taxonomy, func-
tional annotation and download results. EMP represents a major resource for
metagenomic analysis and has expanded considerably in recent years, both in
terms of data sets analyzed and pipeline development and capacity.

1.4.2 MG-RAST - Argonne National Laboratory

MG-RAST [45], similarly to EMB, is another major metagenomic data analysis
resource. The fully automated pipeline offers processing, analyses, sharing and
dissemination of metagenomic data. With over 200.000 publicly available sam-
ples, users can download sequence data and corresponding metadata from a
rich diversity of biomes and locations around the world. MG-RAST can process
shotgun and amplicon metagenomes, as well as metatransciptomes via upload
to the site itself, script-based submission or RESTful API. The pipeline was
recently updated to version 4.0 [144], and now offers quality control, protein
prediction, clustering and similarity-based annotation, effectively producing
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both taxonomic profiles and functional analyses of metagenomic data. The
web interface allows for comparison using statistical methods based on KEGG
and Clusters of Orthologous Groups (COG) on multiple levels of resolution, as
well as meta data incorporation in sample comparison. MG-RAST is a bonafide
effort to centralize metagenomic resources in one place and standardize anal-
yses.



Aims of the study

Main objectives

The main objective of the presented work was to develop a state-of-the-art
metagenomic analysis pipeline. As the field of metagenomics has seen an ex-
treme progression through the rapid development of sequencing technology;,
analysis is no longer possible on standard laptops and workstations. A com-
plete and comprehensive metagenomic analysis requires an extensive amount
of computational resources and carefully selected tools running sucessively in
the form of a pipeline, where each tool performs a distinct task necessary in a
metagenomic analysis workflow.

The pipeline should:

1. Include necessary components for a thorough rigorous analysis, namely
preprocessing, assembly, taxonomic classification and functional analysis.

2. Scale to contemporary datasets, efficiently utilizing distributed computer
clusters for parallel computation.

3. Be publicly available as a resource for external users.

4. Undergo rigorous performance and quality evaluations through biologi-
cal use cases using metagenomic sequence data.

27






Included papers

This chapter gives an overview and a short description of the included papers
in this thesis and my own contribtuions to each paper.
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Results and Discussion

The presented work is based on the implementation and application of a metage-
nomic analysis pipeline coined META-pipe. The pipeline is developed at the
Center for Bioinformatics at UiT - Arctic University of Norway through collabo-
rative effort from several present and previous members of our team!. META-
pipe represents a corner stone in deliverables to projects such as ELIXIR [146]
and NeLS (Norwegian e-infrastructure for Life Science) [147] and is continu-
ally enhanced and maintained to fit the focus of our core interests. The initial
period of this project was used to remodel and develop META-pipe from its
previous genome centric analysis focus to a bonafide metagenomic pipeline.
Subsequently, the pipeline was applied as an analysis tool for metagenomic
data in two different use cases. This chapter is divided into two parts. Section
4.1.1 summarizes and discusses the development of META-pipe through all its
iterations and discusses functionality, integration with a distributed computer
cluster and caveats as presented in Paper 1 and Paper 2. Section 4.2 discusses
the results and outcomes of two specific uses cases:

1. A pilot study focused on analysis comparison and interoperability assess-
ment with the EMP pipeline [44, 143] offered as a public analysis resource
by EBI Metagenomics as presented in Paper 2.

1. Members involved in this collaboration through various contributions are: Tim Kahlke, Inge
Alexander Raknes, Edvard Pedersen, Espen Mikal Robertsen, Giacomo Tartari, Aleksandr
Agofonof, Erik Kjeerner-Semb, Martin Ernstsen, Erik Hjerde, Lars Ailo Bongo and Nils Peder
Willassen.
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2. The prototype implementation of an automated metadata curation ap-
proach using artificial neural nets as presented in Paper 3

Both uses cases demonstrate the application of META-pipe on metagenomic
data sets and evaluates its functionality in different contexts.

4.1 META-pipe

META-pipe is based on the now obsolete GePan framework [148] for annotation
of complete genomes originally developed by Tim Kahlke. The initial motivation
behind META-pipe was to implement a pipeline suited for bioprospecting from
full-length novel genes. Hence, in contrast to many other publicly available
metagenomic pipelines such as EMP and MG-RAST, META-pipe targets its anal-
ysis on assembled metagenomic contigs. We have slowly refined the focus of the
pipeline towards the marine domain, and marine specific databases are under
development to support this endeavor. META-pipe can be accessed through
Galaxy [149] (described in section 4.1.3 for users with FEIDE login credentials,
and as a standalone web-portal currently in development. The standalone web-
portal is part of a complete reimplementation of META-pipe implemented in
Scala (unpublished) with Apache Spark [150] as cluster-computing framework
(described in section 4.1.4).

4.1.1 Development of META-pipe

Implementation of the first version of META-pipe consisted largely of evalua-
tion and incorporation of new tools suited for metagenomic analysis, as well as
addressing scalability challenges stemming from the sheer increase in average
data set sizes. As an example, the UniProtKB [51] databases described in Paper
1 have now outgrown their usability in a metagenomic sequence alignment
context, simply because homology searches demand too much computational
resources and are not feasible even on a large distributed system. As a result,
UniProtKB was exchanged with the smaller UniRefso clustered version, which
offers less detailed functional annotation but only at a fraction of the run-
time. Additionally, GePan consisted of some intermediate modules for splitting,
handling and exporting of intermediate files which did not scale to 1000-fold
increased dataset sizes, and had to be reimplemented to reduce unnecessary
computation time overhead (discussed in Paper 1). These modules were not
geared towards the 1000-fold increase in data size a metagenomic data set
represents compared to a genome, and have been replaced. A metagenomic
pipeline needs to scale with available computational resources to be able to
handle the ever increasing data set sizes the field of metagenomics produces.
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However, the hardest challenge to overcome was metagenomic assembly. The
initial version utilized Mira [151], a sophisticated assembler meant for genomic
data, which translates to poor metagenomic assemblies and extremely high
memory usage pr. run (upwards of 120 GB for medium sized data sets). As
a result, this tool was replaced with Ray Meta [102] to capitalize on its dis-
tributed assembly strategy via use of MPI (Message Passing Interface) between
distributed nodes. However, as described in Paper 1 this tool does not deliver
what it promises in terms of scalability, which prompted an evaluation of sev-
eral other candidates capable of distributed assembly. None of these delivered
what they promised, further provoking the need for novel assemblers capable
of handling metagenomic data in an efficient and timely manner. We settled on
MEGAHIT [50], a non-distributed, but state-of-the-art assembly tool published
in 2015 which through our experience produces high yield, high quality contigs
using tolerable amounts of memory.

4.1.2 Overview of the current version

Reads _Eﬁggf)q ______________________

SeqPrep Tool
[ org e

Trim / QC

rRNASelector*

rRNA prediction /
extraction

Assembly

Contigs

16S rRNA

LCA-Classifier
Classification
SilvaMod

KronaTools

MetaGeneAnnotator

Gene prediction

Visualization

Annotation

Annotated
genes

E.C. HMM profiles
Export

Genbank, fasta, Annotation InterProScan5

Figure 4.1: An overview of tools and databases currently included in META-pipe

Annotation

The current version of the pipeline differs slightly from the version pre-
sented i Paper 1, and now consists of state-of-the-art tools for quality control,
assembly, taxonomic classification and functional analysis 4.1. These differences
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are the result of continuous evaluation and benchmarking of the performance
of tools, both in context of computational resources and biological relevance
and quality. The first step is preprocessing, which involves merging, trimming,
rRNA prediction and assembly. With Illumina data sets, the first step is to merge
overlapping paired-end reads to obtain a better basis for assembly (discussed
in detail in section 4.2.1 and Paper 2). The trimming and quality check is per-
formed by Trimmomatic [94], to trim 5’-ends and discard low quality reads. An
in-house reimplementation of rRNASelector [116] is utilized to predict and trim
rRNA fragments used in taxonomic classification, as the original version did
not support programmatic submission in a pipeline context. 5S, 16S and 23S
rRNA sequences are also removed prior to assembly to reduce the amount of
chimeric and spurious contigs caused by these especially conserved sequences
(discussed in detail in section 4.2.1 and Paper 2). Assembly is performed using
MEGAHIT [50].

Predicted 16S rRNA sequences are queried towards the manually curated
SilvaMod database (part of LCAClassifier) using megablast. This database is
specially tailored for the classification tool LCAClassifier [107], which utilizes
the Lowest Common Ancestor (LCA) algorithm to classify rRNA sequences and
assign taxonomy. The output assignment is visualized using KronaTools [138],
an interactive web-based pie chart that allows in-depth browsing and analysis
of the LCAClassifier output. The taxonomic classification module of the pipeline
has not been changed since its introduction, as it still performs exceptionally
well compared to other alternatives as presented in Paper 2. However, we have
made a necessary alteration to the functional analysis module. As discussed pre-
viously, the UniprotKB database has outgrown its use as a sequence alignment
database, and is too costly to use. We changed it with UniRefso0, a clustered
reference protein sequence database only a fraction of the size of the complete
UniprotKB, translating to faster computation times with only marginally less
detailed annotation. We feel that this switch was necessary as metagenomic
datasets will only continue to grow in the future. The gene prediction tool Meta-
GeneAnnotator [127], and the annotation tools PRIAM [133] and InterproScan
[125] are still present in the current version.

The initial implementation of META-pipe supports embl, tsvand a METAREP-
specific output formats, but is now deprecated (discussed in section 4.1.4). The
recent reimplementation of META-pipe implemented in Scala (unpublished)
outputs only genbank formatted files so far, however more output formats are
planned to allow for more flexible post-processing by users. META-pipe in its
current form offers no tools for comparison, however an in-house modified
version of METAREP [152] offering extended functionality is locally available
at our institute. This open sourced tool enables viewing, querying, browsing
and comparing of metagenomic data sets, and has a dedicated output format
in META-pipe. Our modified version grants access to blast-formatted databases
on the backend, which allows effective retrieval and download of sequences of
interest.
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4.1.3 Galaxy and distributed computer cluster integration

META-pipe has been publicly available through the web-based analysis platform
Galaxy for several years now, exclusively for users with Felles Elektronisk IDEn-
titet (FEIDE) login credentials or users associated with NeLS (Figure 4.2). This
platform was chosen as a standard in the NeLS infrastructure and provides
integration with external storage, sequencing and computational resources
such as the supercomputer Stallo, localized at UiT - The Arctic University of
Norway.

Galaxy web interface

Feide Available pipeli
(authentication) o an\:jalo?he?vl\)llgr(le(fllr:)ivss Norstore
T META pipe NelLS Norwegian
User access storage «—— sequencing
(internet) Galaxy NeLS \ centers
files __files European
Stallo Nucleotide
Execute supercomputer ﬂ

Figure 4.2: META-pipe integration with galaxy and associated storage, computation
and sequencing resources as described in Paper 1.

However, this integration revealed several challenges and limitations of the
initial implementation, and is the main reason we decided to fully re-implement
the META-pipe work flow source code. The initial version of META-pipe imple-
mented in Perl was designed for small homogeneous computer clusters where
deployment assumed superuser access to the file system, specific queuing sys-
tems and direct submission as its own work flow manager. This non-flexible
implementation presented several challenges in the integration process with
Galaxy (presented in Paper 1). Firstly, Galaxy assumes a tool runs and finishes,
which is reflected in its user interface by yellow and green boxes, respectively.
The initial implementation used a wrapper script to submit bash-scripts to the
queue, which did not fit with this scheme, and made it impossible to reflect
whether a job was done or not. This caveat was fixed by an additional ad-hoc
python script to check the status of jobs in the queue, basically wrapping the
wrapper script, and adding unnecessary complexity and instability to the sys-
tem. Secondly, Galaxy needs the Pulsar service (part of the Galaxy Project) to
execute META-pipe tools in parallel on Stallo via a message broker (RabbitMQ
[153]), a combination which has added additional instability. Providing the
distributed assembly tool Ray Meta through Galaxy was also impossible for
similar reasons.

The initial implementation also had some more native limitations and de-
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sign flaws, regardless of Galaxy and Stallo integration. The way parallel jobs
was submitted, it introduced unnecessary overhead in queue time as batches of
tasks had to wait for the slowest member to finish before the next batch could
start (depicted in Figure 4.3). The initial assumption was that the tasks within
these batches would finish more or less simultaneously due to an equal split of
input data, however this does not necessarily hold true. This became even more
apparent on Stallo as nodes are shared between multiple users and utilized
hardware is possibly non-homogeneous, which can cause straggler nodes (as
shown in Figure 10 in Paper 1). This issue is addressed in the re-implemented
version of META-pipe by submitting Spark workers to the Stallo queue, con-
tinuously executing parallel tasks as resources become available. The initial
implementation also provided minimal amounts of logging, making debugging
and troubleshooting especially time consuming.

Parallel tasks Parallel tasks

Sequential oo Sequential
[ | }oee--- I

Execution time

Figure 4.3: Depiction of parallel task implementation overhead. Idle CPU-time marked
is in dashed lines.

4.1.4 Future work

The current version of the pipeline is a reimplementation in the functional pro-
gramming language Scala. In addition to a complete redesign of the underlying
framework, this version also provides a standalone web user interface separate
from Galaxy, where users can upload and run their analyses. We felt this was
necessary to circumvent the mentioned limitations and caveats of the initial
version. This allows for added flexibility and less maintenance based on pre-
vious experiences, both in terms of the current production system and future
integrations and deployment on external computing infrastructures. The initial
version of META-pipe has been subject to deployment on the Embassy Cloud
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[154] (part of the work performed in Paper 2, but not published), which proved
a significant headache in terms of intergration. However, the redesigned version
has been successfully integrated with the Finnish CSC (IT Center For Science)
cPouta cloud infrastructure, using an automatic deployment script based on
Ansible Playbooks [155]. To provide much needed resources for the marine
domain, an effort to establish databases specific to the marine environment
has been initiated through the ELIXIR infrastructure (discussed in Paper 2).
In this context, META-pipe will provide the analysis of novel samples included
in the MarCat database, a marine metagenomic sequence and meta data re-
source database, including an extensive collection of samples from global-scale
projects such as Tara Oceans [36].

4.2 Use cases

4.2.1 Interoperability assessment with the EMP pipeline
and pilot studies of marine datasets

Through the ELIXIR infrastructure, we launched a pilot project with the aim
to investigate the need to establish dedicated data resources and harmonized
metagenomics pipelines for the marine domain. This project enveloped several
tasks, but the main focus was to assess and evaluate the EMP-pipeline and META-
pipe together, to investigate possible points of interoperability and differences
in analysis of data. This was a good opportunity to benchmark some of the
included tools in META-pipe and provide an in-depth overview of strengths and
weaknesses through comparison with EMP Firstly, we analysed the biological
results from four selected samples, two marine datasets from the Barents sea
and two gut samples from Norwegian moose and sea urchin, produced by the
two pipelines independently. Through comparison, the main findings can be
attributed to two distinct causes, differences in methodology and differences
in the general performance of the included tools. While META-pipe performs
assembly of sequence data, EMP does analysis on raw reads. This fact causes
significant differences in functional analysis. Through an in-depth analysis
of functional analysis, we discovered that the functional fingerprint from the
pipelines differ both quantitatively and qualitatively. We believe that these
differences stem mainly from the fact that an assembly effectively sets a cut-off
on the portion of organisms analysed based on relative abundance (Figure 4.4).
Organisms with low relative abundance does not meet the coverage criteria
for assembly into contigs with our soo bp minimum contig cut-off, an are
thus excluded from the functional analysis in META-pipe. Any genes present
in these excluded organisms will not get predicted and annotated, causing a
quantitative and qualitative difference in output as seen in Figure 5 in Paper
2. Comparing taxonomic classifications, we experienced that the results were
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more comparable than the output from the functional analysis. However, the
performance of tools vary depending on the origin of samples and the resolution
at various taxonomic levels. For marine samples, META-pipe produces a richer
classification and also includes eukaryotic organisms through classification of
mitochondrial rRNA, but for gut and intestinal samples EMP is seemingly a
better option.

Portion of dataset analysed by
META-pipe after assembly, and by
EMP on raw reads

Portion of dataset exclusively
analysed by EMP on raw reads

Abundance of organisms

Coverage threshold

Y

Diversity of organisms

Figure 4.4: Given an unequal abundance distribution of strains in a sample, only
strains with sufficient sequence information are assembled, effectively ex-
cluding parts of the functional fingerprint of a sample

Secondly, we decided to evaluate the performance of included tools in META-
pipe based on the in-depth analysis of the biological results produced. Some of
the subsequent changes to the pipeline were directly adopted from the EMP
workflow, such as merging of paired-end reads. We believe that since roughly
two thirds of reads overlap, merging them will result in a better basis for both
assembly and rRNA prediction as input reads will be longer. We have already
run some performance evaluations comparing merged and un-merged input
to assembly using MEGAHIT (unpublished), showing that merging produces
better assemblies with lower computation time and memory footprint. We also
decided to adopt Trimmomatic as a quality filtering tool, as it confers to all
our needs regarding functionality and performance. The final change to our
pipeline based on this evaluation was the introduction of rRNA filtering be-
fore assembly. As discussed in Paper 2 (Table 1), eliminating rRNA reduces
mismatches in assembled contigs and produces a more correct basis for gene
prediction and functional annotation.

The project also had a focus on gap analysis, an effort to investigate the
actions needed to develop sustainable resources for the marine domain. One of
the significant outcomes of this analysis was the initiative to establish databases
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specific to the marine domain. In evaluation of metagenomic assemblies for
the Barents sea samples in this project, we used an in-house marine reference
database consisting of 337 manually curated strains. This reference database
has now grown and is the first out of three marine specific databases, MarRef,
MarDB and MarCat, respectively. These databases are now parts of a deliverable
to the ELIXIR infrastructure as an independent project. While MarRef will serve
as a complete marine reference database, MarDB will contain all marine strains
publicly available and MarCat will serve as a gene catalogue, incorporating
genetic information from substantial projects such as Tara Oceans and Global
Ocean Sampling Expedition. With manually curated metadata and publicly
available sequence data through blast databases, these resources will provide
a much needed asset for marine research in years to come.

4.2.2 Automatic metadata curation using machine
learning

As experienced through the establishment of the previously mentioned marine
specific Mar-databases, manual curation of metadata is a tedious task and re-
quires excessive amounts of man-hours to maintain. In this project (Paper
3), we applied artificial neural nets (ANN), a sub-division of machine learn-
ing in an effort to automate metadata submission for users. While curation
of reference databases need manual attention to ensure the highest possible
quality of metadata, user submitted metadata for novel metagenomic samples
can be automated to a certain extent. When uploading metagenomic samples
to publicly available analysis resources such as EMP and MG-RAST [45, 144],
users are required to submit accommodating metadata and contextual data.
From a user perspective, submitting metadata and contextual data compliant
with for example the MIxS-standards is a dreary assignment, and causes some
submitters to leave out vital sample information in the process. In an effort to
alleviate this burden, and consequently enrich and quality-assure submitted
metadata, we wanted to prototype a suggestive tool for meta data submis-
sion. The tool uses an ANN trained with datasets from multiple environments,
making the model able to predict the source of origin for a new submitted
sample based on its taxonomic classification. This way, we can make a tool
that suggests possible metadata for users, which we believe lowers the thresh-
old for submitting fulfilling and consistent information. Naturally, this would
imply processing some of the sample before metadata submission as we need
its taxonomic classification before being able to utilize this novel application.
The standard operating procedure on portals such as EMP and MG-RAST is
to submit metadata before processing of samples are begun, however since
taxonomic classification requires relatively small amounts of processing, we do
not see this as a problem.

Using publicly available datasets from MG-RAST we were able to acquire
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88,4 % accuracy in prediction of source environment on novel samples from
our prototype model. However, as discussed in Paper 3, our prototype has
some limitations. The accompanying metadata downloaded from MG-RAST
struggles with the same impediment as we ultimately want to fix, namely a
lack of complete metadata annotation. As some of the training sets are wrong-
fully annotated, they will effectively lower the accuracy of our trained model.
Also, training sets are not stratified, meaning there is an unequal distribution
of training sets from different possible environments, as we wanted to see how
this model would perform with no manual curation involved. The reasoning be-
hind this was that once a user submits a novel sample with complete metadata
annotation, it will automatically get included as a training set, effectively in-
creasing accuracy as more data is added to the model. These caveats are easily
fixed in a potential production system by manually curating and distributing
training sets, a task that will require a lot less effort once the Mar-Databases are
complete. With processed samples and metadata from the MarCat database
(described in section 4.2.1) we will have a manually curated starting point to
produce a stratified and completely annotated training set for metadata sug-
gestion in a production system. This application is thought implemented in the
META-pipe user portal to aid in metadata submission, offering an easier and
less strenuous user experience.

4.3 Concluding remarks

Analysis of metagenomic sequence data represents a continuously escalating
challenge in terms of computational resource utilization and implementation
of efficient algorithms. With META-pipe, we have implemented an automatic
analysis pipeline for metagenomic data with a focus on the marine domain
and full-length genes. While other big actors such as EMP and MG-RAST serve
as more generic alternatives, processing thousands of diverse samples each
year, we opt to specialize our analysis with specific databases and tools suited
for marine data sets. As presented in Paper 1 and discussed in this thesis,
development of an analysis resource such as META-pipe requires not only an
initial implementation, but testing and refinement through well designed use
cases with important biological and computational aspects in mind. The use
cases described in Paper 2 and Paper 3 not only serve as a demonstration of
pipeline functionality, but also suggest possible improvements to the pipeline
through rigorous evaluation of biological results. The current version of META-
pipe implements several improvements stemming from the work performed
in Paper 2 and the metadata user application discussed in Paper 3 is due to
be implemented in the new version of META-pipe soon. We are confident that
the new version will address and fix the mentioned caveats and limitations
described in Paper 1, and that future versions of META-pipe will continue to
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improve and expand, both in functionality and public usage.
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