
Faculty of Science and Technology / Department of Computer Science
Distributed Media Versioning—
Michael J. Murphy
Master’s Thesis in Computer Science [INF-3990] – May 2017





Abstract
It is still strangely difficult to backup and synchronize data. Cloud com-

puting solves the problem by centralizing everything and letting some-

one else handle the backups. But what about situations with low con-

nectivity or sensitive data?

For this, software developers have an interesting distributed, decen-

tralized, and partition-tolerant data storage system right at their fin-

gertips: distributed version control.

Inspired by distributed version control, we have researched and de-

veloped a prototype for a scalable high-availability system called Dis-

tributed Media Versioning (DMV). DMV expands Git’s data model to allow

files to be broken into more digestible chunks via a rolling hash. DMV

will also allow data to be sharded according to data locality needs, slic-

ing the data set in space (subset of data with full history), time (subset

of history for full data set), or both. DMV repositories will be able to

read and to update any subset of the data that they have locally, and

then synchronize with other repositories in an ad-hoc network.

We have performed experiments to probe the scalability limits of exist-

ing version control systems, specifically what happens as file sizes grow

ever larger or as the number of files grow. We found that processing

files whole limits maximum file size to what can fit in RAM, and that

storing millions of objects loose as files with hash-based names incurs

disk space overhead and write speed penalties. We have observed a

system needing 24 s to store a 6.8KiB file.

We conclude that the key to storing large files is the break them into

many small chunks, and that the key to storing many chunks is to ag-

gregate them into pack files. And though the current DMV prototype

does only the former, we have a clear path forward as we continue our

work.

iii





Acknowledgements
I would like to thank my advisor, Otto J. Anshus, for his guidance, en-

couragement, and invaluable feedback, Ken Arne Jensen for finding

free computers to run experiments on, and Jan Fuglesteg for guid-

ing me through administrative matters, answering the quotidian ques-

tions of a thirty-something who had forgotten much of what he knew

about how universities work.

I would also like to thank Rolf Ole Jenssen and Coleman McFarland for

their feedback on early drafts, and Sergiusz Michalik and Lars Dalheim

for their friendship and encouragement.

Thank you to my former supervisor, Pierce Hanley, who taught me

most of what I know about programming and who was always fun to

argue with.

Moving to the arctic was my dream, and computer science is my pas-

sion. Thank you to the University of Tromsø for giving me the opportu-

nity to pursue both at the same time.

Finally, I would like to thank Katrine Mellem for interrupting me during

a lunchtime discussion about US elections.

“I live in DC, so ——”

“No! You live in Tromsø!”

That quip stands as the single most welcoming thing a local has ever

said to me, and it marks the moment I started feeling like I truly had a

place here.

Takk.

v





Contents
Abstract iii
Acknowledgements v
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 CAP Theorem and the Importance of Availability . . . . . . 3

1.2 Version Control, Git, and the DAG . . . . . . . . . . . . . . 4

1.2.1 How Data is Stored in Git . . . . . . . . . . . . . . . 5

1.2.2 The Power of the DAG . . . . . . . . . . . . . . . . . 7

2 Idea: Distributed Media Versioning (DMV) 11
2.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 What’s in a Name? . . . . . . . . . . . . . . . . . . . . . . . 14

3 DMV Architecture 17
4 DMV Design 21
4.1 DMV’s DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Working with an Incomplete DAG . . . . . . . . . . . . . . . 23

5 DMV Implementation 27
5.1 Command Line Control, Explicit operations . . . . . . . . . 27

5.2 Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Working Directory and Object Store . . . . . . . . . . . . . 29

5.4 Chunking Algorithm . . . . . . . . . . . . . . . . . . . . . . 29

vii



viii CONTENTS

6 VCS Scaling Experiments 31
6.1 Version Control Systems Evaluated . . . . . . . . . . . . . 31

6.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Automation and Measurement . . . . . . . . . . . . . . . . 33

6.4 Experiment Platform . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Results: File Size . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5.1 File Size Limits . . . . . . . . . . . . . . . . . . . . . . 37

6.5.2 Time for File-Size Initial Commit . . . . . . . . . . . 41

6.5.3 Time for File-Size Update Commit . . . . . . . . . . 43

6.5.4 CPU Usage During File-Size Commits . . . . . . . . 45

6.5.5 Repository Size after File-Size Update Commit . . . 49

6.6 Results: Number of Files . . . . . . . . . . . . . . . . . . . . 51

6.6.1 File Quantity Limits . . . . . . . . . . . . . . . . . . . 51

6.6.2 Time for Number-of-Files Initial Commit . . . . . . 53

6.6.3 Time for Number-of-Files Update Commit . . . . . 55

6.6.4 CPU Usage During Number-of-Files Commits . . . 57

6.6.5 Time for Number-of-Files Status Check . . . . . . . 59

6.6.6 Repository Size after Number-of-Files Update

Commit . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Performance Tuning Experiments 63
7.1 Object Store Directory Layout . . . . . . . . . . . . . . . . . 63

7.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.4 Object Directory Layouts in Action . . . . . . . . . . 70

7.2 Linux I/O Scheduler . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Chunk Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.3 Window Reset Bug . . . . . . . . . . . . . . . . . . . 74

7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.5 Chunk Sizes in Action . . . . . . . . . . . . . . . . . 78

8 Discussion 81
8.1 Data Granularity and Storage Schemes . . . . . . . . . . . 81

8.2 Subtleties of the Rolling Hash . . . . . . . . . . . . . . . . . 83

8.3 DMV Prototype development . . . . . . . . . . . . . . . . . 84

8.4 Aggregating Data about a Sharded DAG . . . . . . . . . . . 84

8.5 Potential Applications of DMV . . . . . . . . . . . . . . . . . 86

8.6 What DMV should not do . . . . . . . . . . . . . . . . . . . 86



CONTENTS ix

9 Related Works 89
9.1 Distributed storage and synchronization systems . . . . . 89

9.2 De-duplicating Storage and Backup . . . . . . . . . . . . . 92

10 Conclusion and Summary of Contributions 95
11 Future Work 97
Glossary 99
Bibliography 103



x CONTENTS



List of Figures
1.1 A simple file hierarchy represented by Git tree and blob

objects and their SHA-1 hash IDs . . . . . . . . . . . . . . . 6

1.2 A simple Git DAG with three commits . . . . . . . . . . . . 8

1.3 Git DAG Object Types . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Repositories, object stores, and working directories . . . . 17

3.2 Repositories in an ad-hoc network . . . . . . . . . . . . . . 18

4.1 A simple DMV DAG with three commits . . . . . . . . . . . 22

4.2 DMV DAG Object Types . . . . . . . . . . . . . . . . . . . . 22

4.3 A DMV DAG, sliced in different dimensions . . . . . . . . . 24

4.4 Speculative DMV ls output showing remote files . . . . . . 24

5.1 DMV help output, listing subcommands . . . . . . . . . . . 28

5.2 Example object file name . . . . . . . . . . . . . . . . . . . 29

6.1 Wall-clock time to commit one large file to a fresh repos-

itory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Wall-clock time to commit one updated large file . . . . . 42

6.3 CPU utilization while committing one large file to a fresh

repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 CPU utilization while committing changes to one large file 44

6.5 Total repository size after committing, updating, and com-

mitting again . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.6 Wall-clock time to commitmany 1KiB files to a fresh repos-

itory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7 Wall-clock time to commit many updated files . . . . . . . 54

6.8 CPU utilizationwhile committingmany 1KiB files to a fresh

repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.9 CPU utilization while committing many 1KiB files after

one of every 16 files has been updated . . . . . . . . . . . 56

xi



xii LIST OF FIGURES

6.10 Real time required to check the status of many files after

update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.11 Total repository size after committing, updating, and com-

mitting again . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 DMV output showing varying object write times . . . . . . 64

7.2 Number of Files vs. number of directories filling a disk . . 66

7.3 Unusually high write times . . . . . . . . . . . . . . . . . . 69

7.4 Time to commit one large file, with different object direc-

tory schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5 Time for DMV prototype to commit an increasing num-

ber of 1KiB files to a fresh repository, by I/O scheduler . . 73

7.6 Mean chunk size . . . . . . . . . . . . . . . . . . . . . . . . 76

7.7 Mean chunk size, with reset bug . . . . . . . . . . . . . . . 76

7.8 Chunk sizes in action . . . . . . . . . . . . . . . . . . . . . . 79

8.1 DMV branching and merging functionality . . . . . . . . . 85



List of Tables
6.1 Version control systems evaluated and their versions . . . 34

6.2 Experiment computer specifications . . . . . . . . . . . . . 34

6.3 Observations as file size increases . . . . . . . . . . . . . . 39

6.4 Effective size limits for VCSs evaluated . . . . . . . . . . . . 39

6.5 Selected CPU usage data for copy operation . . . . . . . . 47

6.6 Bup initial commit times with unusually high variance . . 53

7.1 Sample object store directory variations . . . . . . . . . . 64

7.2 Top-ten longest writes . . . . . . . . . . . . . . . . . . . . . 69

7.3 Chunk sizes for a window size of 4096 . . . . . . . . . . . . 75

7.4 DMV versions examined with different rolling hash con-

figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiii



xiv LIST OF TABLES



Chapter 1
Introduction
It is still strangely difficult to keep backups and synchronize data. Many

of us have several computers, perhaps a laptop, a phone, and a work

computer, and we would like to synchronize data between them. We

want to keep aWord document synchronized between home andwork.

We want to put new music on our phones, and pull photos off of cam-

era SD cards. We have backups on removable drives, but we don’t

remember when it was that we last did a backup, or what is new since

then. We have these sets of files that tend to fragment themselves

across our devices, and we lose track of what is where.

Cloud computing promises to centralize and safeguard our data, keep-

ing it all in one place and taking care of the backups for us. Google

Drive gives us a shared document that many people can edit in real

time. Spotify offers endless music streams. Instagram lets us save

and share photos. Dropbox gives us a centralized cloud filesystem.

But many of these solutions are specialized applications for specific

media, which can limit their general usefulness. Most require con-

stant network connectivity, making them ill-suited for intermittent or

high-latency connections. And all require entrusting your data to a

third-party service, which raises concerns about privacy and storage

longevity.

Why can’t we simply track the files we have across the devices we

have?

Software developers have an excellent system for backup and sync

right at their fingertips: distributed version control systems (DVCSs), such

as Git and Mercurial. Version control systems (VCSs) track all changes

1



2 CHAPTER 1. INTRODUCTION

to a collection of files, allowing collaborators to work independently

and then synchronize and share their work. Additionally, in a DVCS,

every collaborator has a full copy of the project’s history. That redun-

dancy not only allows collaborators to work offline, but it also func-

tions as a backup. Linus Torvalds, the creator of Linux and Git, once

famously joked that he doesn’t keep backups, he simply publishes his

work on the internet and lets others copy it [41].

DVCSs are designed primarily to store program source code: plain text

files in the range of tens of kilobytes. Checking in larger binary files

such as images, sound, or video affects performance. Actions that re-

quire copying data in and out of the system slow from hundredths of

a second to full seconds or minutes. And since a DVCS keeps every

version of every file in every repository, forever, the disk space needs

compound.

This has lead to a conventional wisdom that binary files should never

be stored in version control, inspiring blog posts with titles such as

“Don’t ever commit binary files to Git! Or what to do if you do” [44],

even as the modern software development practice of continuous de-

livery was commanding teams to “keep absolutely everything in ver-

sion control.” [17, p.33]

Every single artifact related to the creation of your software

should be under version control. Developers should use

it for source code, of course, but also for tests, database

scripts, build and deployment scripts, documentation, libraries

and configuration files for your application, your compiler

and collection of tools, and so on — so that a new member

of your team can start working from scratch. [17, p.33]

What if we could generalize the distributed version control concept

to store a wider variety of file sizes, from kilobyte text files to multi-

gigabyte videos? In addition, what if we relaxed the assumption that

every replica contain the complete history, and allowed each replica to

choose what subsets of the files and the history to store, according to

the replica’s capacity and need? The answer could be a new abstrac-

tion for tracking a data set and its history as a cohesive whole, even

when it is physically spread over many different nodes.



1.1. CAP THEOREM AND THE IMPORTANCE OF AVAILABILITY 3

1.1 CAP Theoremand the Importance of Avail-ability
Traditional databases that operated on one powerful server could fo-

cus on data integrity and the ACID guarantees: atomicity, consistency,

durability, and isolation [35, Chapter 1]. As demand increased, the server

would be scaled up, beefing up the server hardware with more disk

space, more RAM, andmore and faster CPUs [35, Chapter 4]. But there

is a limit to scaling up the hardware of a single machine, and as data

kept growing, a newwave of systems appeared that scaled out to many

commodity servers, distributed systems [35, Chapter 4].

Spreading data across different computers creates new problems of

synchronization. How does one ensure that replicated data is updated

correctly on all replicas? How can separate machines agree on the or-

der of updates?

Distributed systems are ruled by the CAP-theorem [14], which states

that a system cannot be completely consistent (C), available (A), and

tolerant of network partitions (P) all at the same time. When communi-

cation between replicas breaks down and they cannot all acknowledge

an operation, the system is faced with “the partition decision: block the

operation and thus decrease availability, or proceed and thus risk in-

consistency.” [3]

Much research is aimed at improving consistency. Vector clocks [20]

and consensus algorithms such as Paxos [21, 43] make sure the same

updates are applied in the same order on all replicas even, if a mi-

nority of nodes cannot respond. There are also data types are clev-

erly designed to be commutative, so that the resulting data will be the

same regardless of the order in which updates are applied [37]. But in

general, when systems cannot communicate, the CAP theorem cannot

be avoided [15], and the system is still faced with the partition deci-

sion.

Amazon’s Dynamo [11] was a pioneer in relaxing consistency guaran-

tees to ensure availability. Dynamo is a key-value store that can accept

updates to a value even if not all replicas respond. This can lead to

inconsistencies, but for a global e-commerce website like Amazon, any

outage represents lost revenue and so availability is paramount. Dy-

namo’s answer to the partition decision is to always proceed.



4 CHAPTER 1. INTRODUCTION

Whenmultiple Dynamo replicas receive updates to the same value and

the order of those updates cannot be determined, Dynamo keeps the

different versions of the value and presents them together during a

read. That way, the higher-level application that is using Dynamo as a

data store can resolve the conflict and write a new, reconciled value.

Dynamo recognizes the end-to-end argument [36] that conflicting up-

dates cannot be resolved generally by a storage platform or network

protocol. Resolution is dependent on the structure of the data and on

the needs of the application using it.

Thoughmaybe not designed with the CAP theorem explicitly in mind, a

DVCS is in fact a small-scale distributed system that takes the availability-

first approach to the extreme. Rather than a set of connected nodes

that may occasionally lose contact in a network partition, a DVCS’s

repositories are self-contained and offline by default. They allow writes

to local data at any time, and only connect to other repositories inter-

mittently by user command to exchange updates. Concurrent updates

are not only allowed but embraced as different branches of develop-

ment. A DVCS can track many different branches at the same time,

and conflicting branches can be combined and resolved by the user in

amerge operation.

The distributed version control concept may have something to teach

larger-scale systems about availability.

1.2 Version Control, Git, and the DAG
The first version control systems were source code managers (SCMs) cre-

ated as a way to efficiently store different versions of a source code

files by encoding them as a series of deltas [34]. CVS introduced a col-

laborative client-server model [34, 6]. Subversion kept the client-server

model but began focusing on the versions of the whole collection of

files together, rather than on individual files [34, 30]. Doing so made

branching easier, and branching quickly became a key feature for col-

laborative work.

BitKeeper, a commercial SCM, pioneered the distributed version con-

trol concept by giving each developer a local copy of the whole repos-

itory, allowing local writes, and then making it easy to push the local

changes to a central server [34, 10]. This feature was so important



1.2. VERSION CONTROL, GIT, AND THE DAG 5

that Linus Torvalds, the creator of Linux, adopted BitKeeper as the

main source code manager for the Linux kernel, despite the licens-

ing concerns of using a proprietary tool to develop an open-source

project. When the licensing trouble came to a head and BitKeeper was

no longer an option, Torvalds, unsatisfied with all other SCMs available

at the time, wrote his own: Git. [34, 10]

The ability to always write locally separates concerns such as handling

security from the underlying problem of storing the data — reposi-

tories are private by default unless they are specifically hosted on a

public server; any user can write to their own repositories; and any ad-

hoc group of users can exchange updates. Each developer can decide

what updates they want to incorporate into their particular repository,

and the group of developers can decide which repositories and which

versions are official and what is to be included into official releases.

These are human questions that groups of collaborators can solve by

arranging their networks and policies how they see fit, enabled by the

tool rather than constrained by it. As Torvalds put it:

The big thing about distributed source control is that it makes

one of the main issues with SCMs go away — the politics

around “who can make changes.” BK [BitKeeper] showed

that you can avoid that by just giving everybody their own

source repository. [10]

Since Git’s release, it has quickly become the dominant VCS in use [1],

making distributed version control the dominant paradigm for source

code management.

1.2.1 How Data is Stored in Git
One of the key aspects of Git is that all data — files, directories, and

history — is stored according to its content; it is content addressable

storage.

When Git stores a file, it creates a blob (binary large object) by copying

the file’s content and prepending a short header. Git then calculates

the SHA-1 hash of the blob, and stores the blob in an object store, using

the SHA-1 hash as the blob’s ID. To store a directory, Git creates a tree

object that maps filenames to SHA-1 blob IDs for each file in the direc-

tory. This tree object is also stored in the object store with its SHA-1



6 CHAPTER 1. INTRODUCTION

hash as its ID. Tree objects can refer not only to blobs, but to other

trees, representing subdirectories.

Thus, a file hierarchy in a given state is represented by a hash tree,

with tree objects as nodes and blobs as leaves, and the entire state

can be referred to by a single hash ID, that of the top-level tree object.

A simple example is shown in Figure 1.1.

Tree
1a7af81

Blob
a44a571

sub_file_b.txt

Blob
609d3ea

sub_file_a.txt

Tree
c6520ad

subdirectory

Blob
8ab686e

hello.txt

Figure 1.1: A simple file hierarchy represented by Git tree

and blob objects and their SHA-1 hash IDs

Git then links different file hierarchy states with commit objects. A com-

mit object includes a hash ID for a tree, representing the state of the

file hierarchy, and one or more hash IDs of parent commits, represent-

ing the previous states that this one was built from. Like with blobs

and trees, the commit object is also hashed and stored with the hash

as its ID.

The resulting data structure is a directed graph: new commits point to

previous commits, and each commit points to a tree that represents

the state of the file set at the time. This graph is also append-only:

objects are immutable and are referenced by cryptographic hash of

their content, which includes the hashes of all objects that they depend

on. So new objects can only refer to existing objects, which makes the

graph acyclic. Storing history in this way will naturally de-duplicate un-

changed files and directories, because the resulting blobs and trees will

be identical in content and thus have the same hash ID. This directed,

acyclic graph structure is referred to as a DAG.

A DAG can be uniquely identified by the hash IDs of those commits

which do not yet have child commits to refer to them. Such commits



1.2. VERSION CONTROL, GIT, AND THE DAG 7

are the heads of each current branch of development. A simple exam-

ple with one head and three commits is shown in Figure 1.2.

A Git repository, then, is a collection of the blob, tree, and commit ob-

jects that make up the file set’s history, stored by hash ID in the ob-

ject store, with references (refs) to the commits at the head of each

branch [40]. These object types and their relationships are shown in

Figure 1.3.

1.2.2 The Power of the DAG
Such a DAG has many properties that make it useful for distributed

collaborative work and for long-term data storage.

De-duplication As noted above, unchanged and duplicate files are
naturally de-duplicated by the DAG’s content-addressing: if two

files are identical, they will have the same hash and thus be the

same blob.

Distributability and Availability Because the DAG is immutable and
append-only, it can be replicated simply by copying all of its ob-

jects. Any replica can make its own updates by appending to the

DAG. Rather than have a centralized notion of a “current” version,

development in Git naturally diverges into different branches, as

different users with their own replica of the DAG make changes.

Branches created on one replica can be synchronized to another

simply by comparing sets of objects and transferring new ob-

jects that that the other does not have. Branches are reconciled

with a merge operation, creating a new commit that incorporates

changes from both branches.

Atomicity The DAG’s append-only nature makes commits atomic. Ob-
jects are added to the object store frst, and then once all neces-

sary objects are stored, the ref can be updated to point to the

new commit object. The ref is the size of the hash digest (in Git’s

case, 160 bytes for an SHA-1 hash), so it can be updated atomi-
cally. If the ref is updated, the commit was successful. The objects

themselves do not have to be added to the object store atomically

because their presence does not change the existing DAG. An in-

terrupted object transfer may leave orphaned objects in the ob-

ject store, but it cannot corrupt previously-written data, nor can



8 CHAPTER 1. INTRODUCTION

refs/heads/master

Commit 5c2d94c
Add new file

Commit 7db2bfd
Update greeting

Tree
af3e025

Commit 7d80797
Initial commit

Tree
c6520ad

Tree
802fc45

Tree
1a7af81

subdirectory

Blob
362cd1d

hello.txt

Blob
6fe1565

new_file.txt subdirectory

Blob
8ab686e

hello.txtsubdirectoryhello.txt

Blob
609d3ea

sub_file_a.txt

Blob
a44a571

sub_file_b.txt

Figure 1.2: A simple Git DAG with three commits

Blob

Tree

 file

 subdirectory

Commit

 directory state

 parent commit

Ref

 current commit

Figure 1.3: Git DAG Object Types



1.2. VERSION CONTROL, GIT, AND THE DAG 9

it leave the repository in an inconsistent state. Orphaned objects

can be swept up during a garbage-collection phase, walking the

DAG and marking all objects that are reachable from the current

refs.

Verifiability Perhaps most importantly, since objects are identified by
a cryptographic hash, data integrity can be verified at any time by

re-computing an object’s hash and comparing it to its ID. Corrupt

objects can be replaced with an intact copy from another replica.

The main weakness of Git’s DAG is that blobs and files are one and the

same. This makes the file the unit of de-duplication, which can lead

to inefficient storage of larger files. Git gets around this by packing

objects during its garbage-collection phase, storing similar objects as

bases and deltas behind the scenes. But this is an optimization.

Calculating deltas during this packing phase requires loading the ob-

jects into memory, and so it can cause an out-of-memory error if an

object is too large to fit into available RAM. Because Git stores files

whole in blobs, it cannot pack objects that are larger than available

RAM.

If the DAG operated at a granularity smaller than the file, it could be-

come even more powerful. It could naturally de-duplicate chunks of

files the way that Git already de-duplicates whole files, and it could en-

sure that all objects fit into RAM for packing or other operations.

This sub-file granularity and de-duplication is the core idea behind our

new data storage system, Distributed Media Versioning.



10 CHAPTER 1. INTRODUCTION



Chapter 2
Idea: Distributed MediaVersioning (DMV)
Distributed Media Versioning (DMV) is our new distributed data storage

platform. The core idea is relatively simple — store data in a Git-like

DAG, but make the following changes:

1. Store data at a finer granularity than the file

2. Allow nodes to store only a portion of the DAG as a whole

Doing so allows a data set to be replicated or sharded across many

nodes according to the capacity of nodes and the needs of local users.

The focus is on data locality: tracking what data is where, presenting

that information to the user, and making it easy to transfer data to

other nodes as desired. The ultimate goal is to create a new abstrac-

tion, of many devices, one data item in varying states of synchroniza-

tion.

2.1 Characteristics
General storage
DMV is a generalized storage platform that places no restriction on file

types. Its data model is a classic hierarchical filesystem, but with his-

tory. Applications on each node can read and write to the files via the

11



12 CHAPTER 2. IDEA: DISTRIBUTED MEDIA VERSIONING (DMV)

filesystem as normal. DMV is dogmatic about the end-to-end argu-

ment [36], realizing that it cannot anticipate all the needs of end users

and applications. So it aims to be as general and neutral as possible,

focusing on the core task of storage and tracking, and providing a plat-

form for other applications to build on.

Inspired by version control
DMV is inspired by distributed version control systems. Its core data

structure is a DAG, based on Git’s but modified to store a wider range

of file sizes. The key difference is that large files are broken into smaller

chunks (around 19KiB), which is what ensures that no single object is
too large for memory or disk. Breaking files into chunks also allows

the data structure to naturally de-duplicate parts of files that do not

change. For example, if a large media file has its metadata block up-

dated, only the chunk containing the updated metadata is new. The

other chunks will simply be reused.

Scalability
DMV can store a wide variety of file sizes and file quantities. Current

VCSs load entire files into memory to calculate deltas, which limits the

maximum size of files they can store to what can fit into RAM. Addition-

ally, they create separate files for each input file, leading to disk-space

overhead and write-speed slowdowns as the number of files on one

filesystem increases. DMV successfully avoids the file-size limitation,

but as currently described and implemented, it does succumb to the

number-of-files limitations. However, we know of an effective method

to avoid the number-of-files limitations in the future. These limitations

are explored experimentally in chapter 6.

Additionally, the stored data set can also be sharded, so that the data

set as a whole can scale to sizes too large to fit on any one computer

in the network.



2.1. CHARACTERISTICS 13

Versatility
DMV will be able to run on a wide range of hardware. The current

prototype runs on Linux PCs, but it is designed with an eye towards

running on low-powered and mobile devices such as mobile phones

or sensor networks.

Configurable sharding
The DAG structure tracks the data set in three dimensions:

1. The set of files themselves

2. The history of the files

3. The parallel branches of development in the history

Traditional DVCSs tend to assume that each repository has the full his-

tory of all files, though not every branch of development. In contrast,

each DMV node will store a subset of the data, sharded along any of

those dimensions, configurable by the user. A node could keep the

full history of only a small subset of files, or only the most recent few

versions of the full set of files, or only a few branches, or any combina-

tion.

Availability
Like in a DVCS, the DAG structure records all history of the data set

and allows many different branches of development to exist in paral-

lel. This allows high availability. Any node can always make updates

autonomously, without coordinating with other nodes. Reconciliation

of conflicting writes happens later — via explicit, user-driven merging.

DMV will only require a connection to another node during explicit syn-

chronize operations, and so it should be well-suited for applications

with intermittent or high-latency connectivity.

Data integrity
Because the DAG is append-only, and DAG objects are addressed by a

cryptographic hash of their contents, this allows DMV to verify stored



14 CHAPTER 2. IDEA: DISTRIBUTED MEDIA VERSIONING (DMV)

objects and detect corrupted data. Corrupted objects can be replaced

by retrieving an intact copy from another replica.

DMV should never lose data accidentally. However, because DMV tol-

erates an incomplete DAG, objects can be deliberately deleted from all

nodes to save space or to redact sensitive information.

2.2 Security Model
The DAG’s append-only nature and cryptographic content addressing

provide protection from tampering. As long as the complete DAG is

available, its integrity can be verified. Allowing an incomplete DAG

does introduce an opening for tampering, because not all objects are

available to verify, but we ignore such a possibility for now. Because

DMV is primarily meant to allow individuals or organizations to man-

age their own data on their own hardware, we assume that all nodes

will be under the user’s control, and that users will only accept addi-

tions to their DAG from trusted collaborators. This defers questions of

security to the systems and networks that are running the DMV nodes.

Data can be kept private by keeping all DMV nodes on a private net-

work. Though DMV’s checksums can be checked to detect tampering,

DMV itself has no way to detect unauthorized reads. We also do not

consider byzantine failures or guard against malicious nodes at this

time.

2.3 What’s in a Name?
We chose the name Distributed Media Versioning because it is a con-

cise way to describe the system, emphasizing its distributed nature, its

roots in version control, and its goal of storing a wide range of media

rather than just source code. The acronym DMVmakes for a short and

easy-to-type base command for command line control, in the grand

tradition of cvs, svn, git, and hg. And though inmany places the acronym

is associated with a Department of Motor Vehicles, it does not seem to

have any prior conflicting uses in the computing domain.1 It is also a

1Possibly because of negative associations with the Department of Motor Vehicles



2.3. WHAT’S IN A NAME? 15

nod to the author’s home town of Washington DC, where the Washing-

tonmetropolitan area is sometimes referred to as “The DMV” as it spills

out of the District of Columbia and into Maryland and Virgina.



16 CHAPTER 2. IDEA: DISTRIBUTED MEDIA VERSIONING (DMV)



Chapter 3
DMV Architecture
Each DMV node may have one or more repositories, each consisting of

a content-addressable object store for immutable DAG objects and a

working directory for active file editing (Figure 3.1). Repositories that

are used only for storage may omit the working directory, similar to a

Git bare repository.

Repository 0

Repository 1

Repository 2

Object Store

Object Store

 push/pull

Object Store

 push/pull

Working
Directory

 check-in/out

 push/pull

Working
Directory

 check-in/out

Figure 3.1: Repositories, object stores, and working

directories

17



18 CHAPTER 3. DMV ARCHITECTURE

Each repository is autonomous, storing a portion of the DAG, and able

to add to it at any time. However, it can transfer DAG objects to and

from other repositories, and it can cache data about what DAG ob-

jects are available at a remote repository. Thus, DMV forms an ad-hoc,

unstructured network of repositories, and each repository can inform

the user about what data is available where. Repositories may exist on

separate computers or coexist on the same computer. Some reposito-

ries may be on removable storage and accessed only when that stor-

age is connected.

Together, the repositories hold the entire data set — or the portion of

the data set that has not been intentionally deleted— in varying states

of sharding and replication. An example ad-hoc network of reposito-

ries is shown in Figure 3.2.

Repository 0
90% of data set

Repository 4
60% of data set

Repository 1
40% of data set

Repository 3
30% of data set

Repository 2
20% of data set

Repository 5
10% of data set

Figure 3.2: Repositories in an ad-hoc network

DMV assumes that each repository will connect to a human-scale num-

ber of other repositories, maybe tens or hundreds. DMV does not dic-

tate network structure. The user or a higher-level application may de-

termine the network topology andworkflow according to their needs.

DMV operates as a command-line utility, performing disk operations

and acting as a client to remote repositories according to explicit user

commands. The command-line utility is built as a thin shell around

a library, so that applications can use it as well. An optional server



19

component will listen for incoming connections from the command-

line utility.



20 CHAPTER 3. DMV ARCHITECTURE



Chapter 4
DMV Design
4.1 DMV’s DAG
DMV’s data set and its history are represented as a DAG (directed acyclic

graph, see subsection 1.2.1), and the rest of the design flows from that.

DMV’s DAG is based on Git’s, but it adds a new object type, the chun-

ked blob, which represents a blob that has been broken into several

smaller chunks. An example DMV DAG is shown in Figure 4.1.

The object types that make up the DMV DAG are as follows:

Blob As with Git, a blob simply holds binary data.
Chunked blob Unlike with Git, larger blobs in DMV are broken into

chunks. Each chunked blob is an index of the blobs (or other

chunked blobs) that make up the larger blob. A file that is stored

in the system may be represented by a blob (if it is only one

chunk) or a chunked blob.

Tree As with Git, a directory that is stored in the system is represented
by a tree object. The tree refers to the blob, chunked blob, or

tree that represents each file or subdirectory, along with meta-

data such as the filename.

Commit As with Git, a commit represents a given state of the data
set. It refers to the tree that represents the top-level directory of

the data set at that state, along with metadata such as author,

date, and description. It also refers to the previous commit (or

commits) that represented the previous state of the data set.

21



22 CHAPTER 4. DMV DESIGN

master

Commit a7162b2
Change greeting

Commit af5b5fa
Initial commit

Tree
9cfa574

Commit 178bf76
Overwrite part of data.bin

Tree
8a2e031

Tree
5da23fd

Chunked Blob
69a63de

data.bin

Blob
16e1eef

hello.txt

Chunked Blob
cab3c1f

data.bin hello.txtdata.bin

Blob
05c8417

hello.txt

Blob
d9451f7

0000000000

Blob
59f918c

000001088a

Blob
b83f849

0000000000000001088a

Figure 4.1: A simple DMV DAG with three commits

Blob

Tree

 file

 subdirectory

Chunked Blob

 file

Commit

 directory state

 parent commit

Ref

 current commit

 chunk

 chunk

Figure 4.2: DMV DAG Object Types



4.2. WORKING WITH AN INCOMPLETE DAG 23

Ref As with Git, a ref is a reference to a particular commit. A ref might
represent the current state of a branch of development, or a par-

ticular state to save for later (a tag).

The DAG begins with refs. Each repository has a list of refs that lead

into the DAG. Each ref refers to a commit. Each commit refers to a

tree that represents the state at the time of committing, plus one or

more parent commits. A tree refers to the blob, chunked blob, or tree

that makes up each entry in the directory. A chunked blob can refer to

other chunked blobs or to blobs. And finally, the blobs are the leaves

of the graph. These relationships are illustrated in Figure 4.2.

Files are split into chunks using a rolling hash algorithm such as Rabin-

Karp fingerprinting [19]. This splits the files into chunks by content

rather than position, so that identical chunks within files (and espe-

cially different versions of the same file) will be found and stored as

identical objects, regardless of their position within the file. This way,

identical chunks will be naturally de-duplicated by the DAG, and only

the changed portions of files need to be stored as new objects.

4.2 Working with an Incomplete DAG
The DAG stores the full history of a data set, and it can be sliced to

partition the data in space and time.

Partial history of full data set Keep a subset of commits, plus all trees,
blobs, and chunked blobs reachable from them (Figure 4.3a).

Full history of part of data set Keep all commits, but keep only the
trees, blobs, and chunked blobs for certain paths (Figure 4.3b).

Full history of metadata Keep all commits and trees, but omit blobs
and chunked blobs (Figure 4.3c).

A DMV repository may use any combination of these slicing techniques

to keep only those objects needed at that location, and new commits

can still be added to a partial DAG. A repository that stores only part

of the data set can create new commits that represent changes to that

portion of the data set by assuming that everything else remains un-

changed. Even a metadata-only repository could create new commits

that represent renames and reorganization of the same files.



24 CHAPTER 4. DMV DESIGN

master

Commit a7162b2
Change greeting

Commit af5b5fa
Initial commit

Tree
9cfa574

Commit 178bf76
Overwrite part of data.bin

Tree
8a2e031

Tree
5da23fd

Chunked Blob
69a63de

data.bin

Blob
16e1eef

hello.txt

Chunked Blob
cab3c1f

data.bin hello.txtdata.bin

Blob
05c8417

hello.txt

Blob
d9451f7

0000000000

Blob
59f918c

000001088a

Blob
b83f849

0000000000000001088a

(a) Partial history of full data set

master

Commit a7162b2
Change greeting

Commit af5b5fa
Initial commit

Tree
9cfa574

Commit 178bf76
Overwrite part of data.bin

Tree
8a2e031

Tree
5da23fd

Chunked Blob
69a63de

data.bin

Blob
16e1eef

hello.txt

Chunked Blob
cab3c1f

data.bin hello.txtdata.bin

Blob
05c8417

hello.txt

Blob
d9451f7

0000000000

Blob
59f918c

000001088a

Blob
b83f849

0000000000000001088a

(b) Full history of part of data set

master

Commit a7162b2
Change greeting

Commit af5b5fa
Initial commit

Tree
9cfa574

Commit 178bf76
Overwrite part of data.bin

Tree
8a2e031

Tree
5da23fd

Chunked Blob
69a63de

data.bin

Blob
16e1eef

hello.txt

Chunked Blob
cab3c1f

data.bin hello.txtdata.bin

Blob
05c8417

hello.txt

Blob
d9451f7

0000000000

Blob
59f918c

000001088a

Blob
b83f849

0000000000000001088a

(c) Full history of metadata

Figure 4.3: A DMV DAG, sliced in different dimensions

Figure 4.4: Speculative DMV ls output showing remote files

−rw−r−−r−− 1 user user 121306 Oct 21 18:28 loca l f i l e x

−rw−r−−r−− 1 user user 25475 Oct 21 17:52 100ms f i l e y

−rw−r−−r−− 1 user user 32031 Oct 21 17:52 20min f i l e z

−rw−r−−r−− 1 user user 74968 Oct 18 17:12 missing f i l e x x

−rw−r−−r−− 1 user user 83977 Sep 22 21:23 unknown f i l e y y



4.2. WORKING WITH AN INCOMPLETE DAG 25

So the DAG can be spread across many repositories, sliced according

to what is needed at each location. Repositories will keep a record of

what objects exist at their neighbors, along with statistics about latency

when connecting to those repositories. This will allow them to estimate

how long it would take to transfer a file that is not currently present on

the system.

Though we did not have time to implement this feature, we are envi-

sioning an enhanced ls command output that shows these estimates,

as illustrated in Figure 4.4.



26 CHAPTER 4. DMV DESIGN



Chapter 5
DMV Implementation
We have written a DMV prototype as a proof-of-concept. The DMV pro-

totype is written in the Rust programming language and it runs from

the Unix command line, with the executable built as a thin wrapper

around a library, so that it can be used by other applications.

The DMV prototype was developed with Rust stable versions 1.15 and

1.16 on Debian Linux 8.6 (“Jessie”). The current DMV prototype stands

at 7592 lines of Rust code (6565 excluding comments). Source code is
available alongside this dissertation inMunin, the University of Tromsø’s

open research archive (http://munin.uit.no), and continued work can

be found via the author’s website (http://dmv.sleepymurph.com/).

5.1 Command Line Control, Explicit operations
Like with familiar DVCSs, file changes in DMV are explicitly committed

by user command. Synchronization is an explicit command as well.

Applications built on DMV may add daemons to automatically commit

and sync, but DMV focuses only on providing the commands.

DMV is used from the command line and includes familiar subcom-

mands such as branch, commit, and checkout (Figure 5.1).

27

http://munin.uit.no
http://dmv.sleepymurph.com/


28 CHAPTER 5. DMV IMPLEMENTATION

Figure 5.1: DMV help output, listing subcommands

dmv 0.1 .0 ( df7b9bd ) ( debug )

Mike Murphy <dmv@sleepymurph .com>
A dis t r ibuted version−control system for media f i l e s

USAGE :

dmv [SUBCOMMAND]

FLAGS :

−h , −−help Pr in ts help information

−V , −−version Pr in ts version information

SUBCOMMANDS:

branch show/update branch information

cache−status show cache status of a f i l e

checkout check out another rev is ion

commit commit current f i l e s to the repository

extract−object extract a f i l e or tree

fsck ve r i f y repository i n t e g r i t y

hash−object store a f i l e or d i rectory in the object store

help Pr in ts th i s message or the help of the given subcommand( s )

i n i t i n i t i a l i z e repository

log show commit h is tory

ls−f i l e s l i s t f i l e s

merge combine rev is ions

merge−base f ind common ancestor

parents show current parent commits

show−object pr in t information about an object

show−re f show refs

status show status of f i l e s



5.2. RUST 29

5.2 Rust
The implementation language, Rust, is a new C-like systems language

that uses a sophisticated type system to guaranteememory safety [24].

Rust’s memory safety checking prevents many common bugs, includ-

ing data races in concurrent code, buffer overflows, access to uninitial-

ized or freed memory.

Rust is also a compiled language with an ability to create libraries with

C-compatible ABIs. Compiling to machine code should make it easier

to port DMV to low-powered devices, and a C-compatible ABI will allow

client applications that use the DMV library to be written in nearly any

language.

5.3 Working Directory and Object Store
The DMV prototype stores its objects as regular files on the file sys-

tem, using the same structure that Git does. The object store is in a

hidden directory inside of the working directory (.dmv/objects). Objects

are stored using their SHA-1 hash as their filename, with the first two

hex digits removed to create a directory name (Figure 5.2). This leads

to 256 subdirectories, each holding roughly 1/256th of all the objects
stored. We experimented with other schemes to divide the objects

(section 7.1), but we found that other schemes tended to create too

many subdirectories, exhausting the filesystem’s available inodes be-

fore using the available disk space.

Figure 5.2: Example object file name

Object SHA-1 hash c6e2f43ddee3c00041cdae8fedc3bd6961e61f69

Object file name .dmv/objects/c6/e2f43ddee3c00041cdae8fedc3bd6961e61f69

5.4 Chunking Algorithm
Files are broken into chunks using the same rolling hash algorithm

used by Gzip and Rsyncrypto [38] to respectively compress and en-

crypt files by chunks so that the result is “rsyncable”— a remote copy of



30 CHAPTER 5. DMV IMPLEMENTATION

the compressed or encrypted file can be updated by transferring only

those chunks that have changed. This algorithm uses Rsync’s rolling

checksum [42], creating a chunk boundary when the Rsync rolling hash

is equal to 0.

The algorithm keeps a sumof the previous 8192 bytes of input data, and
creates a chunk boundary when that sum is evenly divisible by 4096.
These parameters are arbitrary and can be adjusted. Let w denote the
window size, the number of previous bytes summed, and let d denote
the divisor of the modulus operation. Also, let Pn denote the rolling

hash sum for position n of the input stream. Then a chunk boundary
is where

Pn =

(
n∑

i=n−w

Pi

)
mod d = 0 (5.1)

In experiments with our implementation of this rolling hash algorithm

(section 7.3), Rsyncrypto’s parameters with a window size of 8192B and
a divisor of 4096 yielded a mean chunk size of 4.1KiB with a standard
deviation of 4.6KiB. We adjusted the parameters for DMV to a window
size of 32KiB and a divisor of 16Ki, which yielded a mean chunk size
of 18.7KiB with a standard deviation of 22.0KiB. These larger chunk
sizes resulted in faster commit times for large files in our experiments

(section 7.3).



Chapter 6
VCS Scaling Experiments
We performed experiments to probe the limits of existing version con-

trol systems, to see how they would cope with file sizes and numbers of

files in ranges beyond what would be expected in a source code tree.

We wanted to see how long it would take for each VCS to store that

amount of data, how much disk space it used, and what CPU utiliza-

tion was like during storage. And since the purpose of a VCS is to track

changes, we also wanted to measure those samemetrics when a small

subset of that data was modified and then committed again.

We conducted two major experiments. In order to measure the effect

of file size, we would commit a single file of increasing size to each tar-

get VCS. And to measure the effect of numbers of files, we would com-

mit increasing number of small (1KiB) files to each target VCS.

6.1 Version Control Systems Evaluated
We ran each experiment using five different VCSs:

Git Themost popular DVCSs, and one of themain inspirations of DMV.
See subsection 1.2.1 for details about Git and how it stores data.

Mercurial A DVCSs that models data and history in the same manner
as Git, but stores it differently. Rather than storing by hash object

ID in an object store, Mercurial creates a filelog for each input file,

storing its different versions as a base version followed by a series

of deltas [27, Chapter 4].

31



32 CHAPTER 6. VCS SCALING EXPERIMENTS

Bup A backup system that uses Git’s data model and pack file for-

mat. Like DMV, Bup breaks files into chunks using a rolling hash,

reusing Git’s tree object as a chunked blob index1. Unlike Git, it

writes to the pack file format directly, without Git’s separate com-

mit and pack steps, andwithout bothering to calculate deltas [29].

See section 8.1 and section 9.2 for more discussion about Bup

and its similarities and differences to DMV.

DMV Our prototype system.
Copy A control for the experiment, a dummy VCS that simply copied

the input files into another directory using the standard Unix cp

command.

The exact version of each VCS used in the experiments is listed in Ta-

ble 6.1. DMV versions are referenced by commit ID in the DMV source’s

Git repository.

6.2 Procedure
For each experiment, the procedure for a single trial was as follows:

1. Create an empty repository of the target VCS in a temporary di-

rectory

2. Generate target data to store, either a single file of the target size,

or the target number of 1KiB files

3. Commit the target data to the repository, measuring wall-clock

time to commit

4. Verify that the first commit exists in the repository, and if there

was any kind of error, run the repository’s integrity check opera-

tion

5. Measure the total repository size

6. Overwrite a fraction of each target file

7. (Number-of-files experiment only) Run the VCS’s status command

that lists what files have changed, and measure the wall-clock

1Git can read a repository written by Bup, but it will see the large file as a directory

full of smaller chunk files.



6.3. AUTOMATION AND MEASUREMENT 33

time that it takes to complete

8. Commit again, measuring wall-clock time to commit

9. Verify that the second commit exists in the repository, and if there

was any kind of error, run the repository’s integrity check opera-

tion

10. Measure the total repository size again

11. (File-size experiment only) Run Git’s garbage collector (git fsck) to

pack objects, then measure total repository size again

12. Delete temporary directory and all trial files

We increased file sizes exponentially by powers of two from 1B up to
128GiB, adding an additional step at 1.5 times the base size at each
order of magnitude. For example, starting at 1MiB, we would run
trails with 1MiB, 1.5MiB, 2MiB, 3MiB, 4MiB, 6MiB, 8MiB, 12MiB, and
so on.

We increased numbers of files exponentially by powers of ten from one

file to ten million files, adding additional steps at 2.5, 5, and 7.5 times
the base number at each order of magnitude. For example, starting at

100 files we would run trials with 100, 250, 500, 750, 1000, 2500, 5000, 7500,
10 000, and so on.

Input data files consisted of pseudorandom bytes taken from the oper-

ating system’s pseudorandomnumber generator (/dev/urandom on Linux).

When updating data files for the second commit, we would overwrite

a single contiguous section of each file with new pseudorandom bytes.

We would start one-quarter of the way into the file, and overwrite

1/1024th of the file’s size (or 1 byte if the file was smaller than 1024KiB).
So a 1MiB file would have 1KiB overwritten, a 1GiB file would have
1MiB overwritten, and so on.

6.3 Automation and Measurement
The trials were run via a Python script that would set up, run, and clean

up each trial in a loop, covering the full range of sizes or numbers for a

given VCS. The script wouldmeasure the wall-clock time duration taken

by each commit command and collect CPU utilization metrics. It would



34 CHAPTER 6. VCS SCALING EXPERIMENTS

Table 6.1: Version control systems evaluated and their

versions

VCS Version

Git 2.1.4

Mercurial 3.1.2

Bup debian/0.25-1

DMV c9baf3a

Copy (GNU cp) 8.23

Table 6.2: Experiment computer specifications

Hardware

Vendor Hewlett Packard

CPU Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz

RAM 8GiB
Hard disk ATA model ST3250318AS

Operating system

Operating system Debian 8.6 (“Jessie”)

Kernel Linux 3.16.0

Filesystem

Test partition 197GiB LVM partition
Filesystem ext4

Block size 4KiB
I/O scheduler cfq (unless otherwise noted)

DMV compilation

Rust compiler version 1.15 stable or 1.16 stable

Rust compiler flags --release



6.4. EXPERIMENT PLATFORM 35

also terminate any individual VCS operation that ran longer than five

and a half hours. After commit and verification, the script would also

measure repository size.

The script measured the wall-clock time duration for each commit by

checking the system time (time.time() in Python) just before and just

after using Python’s subprocess module to execute the necessary VCS

command. CPU utilization was measured by sampling the CPU status

lines provided in Linux’s /proc/stat information. The status lines show

a cumulative count of CPU ticks (1/100th of a second) that the CPU has
spent in user mode, system mode, idle, and waiting for I/O [22]. Like

with the timemeasurements, the script samples CPU utilization before

and after executing a VCS command, and then subtracts to get the

number of time slices spent in each state during execution. We then

compare the relative number of time slices in each state to get an idea

of whether the operation is CPU-bound or I/O-bound.

The script measures repository size using the standard Unix disk usage

command (du) and measures the size of the trial’s entire temporary

directory, which includes the generated input data itself along with the

VCS’s storage.

Finally, the script would delete the test directories by reformatting the

partition. It ensured that the filesystem would be completely reset

for each trial. Also, at the larger numbers of files, deleting recursively

could take hours, much longer than it took to create the files and longer

than it took to run the trial. Reformatting was much faster.

Experiment scripts used and raw result data collected are available

alongside this dissertation in Munin (http://munin.uit.no) and can

also be found via the author’s website (http://dmv.sleepymurph.com/).

6.4 Experiment Platform
We ran the trials on four dedicated computers with no other load. Each

was a typical office desktop with a 3.16GHz 64-bit dual-core processor
and 8GiB of RAM, running Debian version 8.6 (“Jessie”). Each computer
had one normal SATA hard disk (spinning platter, not solid-state), and

trials were conducted on a dedicated 197GiB LVM partition formatted
with the ext4 filesystem. All came from the same manufacturer with

http://munin.uit.no
http://dmv.sleepymurph.com/


36 CHAPTER 6. VCS SCALING EXPERIMENTS

the same specifications and were, for practical purposes, identical. Ad-

ditional details can be found in Table 6.2.

We ran every trial four times, once on each of the experiment com-

puters, and took the mean and standard deviation of each time and

disk space measurement. However, because the experiment comput-

ers are practically identical, there was little real variation.



6.5. RESULTS: FILE SIZE 37

6.5 Results: File Size
6.5.1 File Size Limits
Both Git and Mercurial had limits to the size of file they could store

successfully.

With a 2GiB file, Mercurial’s commit operation would exit with an error
code and message, saying “up to 6442 MB of RAM may be required to

manage this file,” and the commit would not be stored. However, the

repository would be left in a consistent empty state. The atomicity of

the commit operation held. All commits of files 2GiB and larger would
be rejected in a similar manner.

Git’s behavior was more erratic. Starting with a file 12GiB and larger,
Git’s commit operation would exit with an error code, reporting a fatal

out-of-memory error saying that malloc failed to allocate 12GiB. How-
ever, the commit would be successfully stored— no consistency errors

in the repository were reported by git fsck. Starting at 24GiB, the com-
mit operation would report the same error and the commit would still

be written, but then the git fsck integrity check itself would also exit

with an error code.

However, the error that git fsck reported in its output was a malloc er-

ror very similar to the “fatal” error from the commit operation, and it

did not report any actual integrity errors in the repository.

So to check the commit, we extracted the 24GiB file from the reposi-
tory and compared it. It was the same as the original. So the commit

was intact. We also deliberately corrupted the Git pack file that stored

the 24GiB file by overwriting one 1MiB block at an offset of 22GiB with
new pseudorandom data. When we ran the fsck command again with

the corrupted repository, it reported the integrity error, but it did not

report the malloc error that it did before.

The git fsck command found the integrity error surprisingly quickly,

reporting the error and exiting instantaneously (from the user’s per-

spective), whereas it had taken 7min to complete before. So it does
not seem to have hashed the whole file again to find the error. We

took care to preserve the modification time for the pack file when we

corrupted it, so we are not sure how Git detected the error so quickly.

Perhaps our corruption overwrote some internal indexing structure of



38 CHAPTER 6. VCS SCALING EXPERIMENTS

the pack file along with the file data. More investigation would be nec-

essary to know for sure.

We continued the experiment under the assumption that Git’s errors

were a false alarm, and allowed the trials to continue at even larger

sizes.

The DMV prototype was able to store a file up to 64GiB in size, but
time became a limiting factor as file size increased. At 96GiB, our ex-
periment script timed out and terminated the commit after five and a

half hours. This sluggishness is due to the way DMV stores chunks

of the file as individual files on the filesystem, turning the problem

of storing one large file into the problem of storing many small files.

Storing many small files in this way incurs filesystem overhead, as we

discovered in the results of the number-of-files experiment (subsec-

tion 6.6.2), and later performedmore experiments to examine in detail

(chapter 7).

Our experiment environment itself limited the largest file stored by any

VCS to 96GiB. Any larger and it was simply impossible to store a second
copy of the file on our 197GiB test partition. Bup was able to store a
96GiB file with no errors in just under two hours. Git could also store
such a large file, but one must ignore the false-alarm “fatal” errors be-

ing reported by the user interface.

These findings are summarized in Table 6.3 and Table 6.4.



6.5. RESULTS: FILE SIZE 39

Table 6.3: Observations as file size increases

Size Observation

1.5GiB Largest successful commit with Mercurial

2GiB Mercurial commit rejected

8GiB Largest successful commit with Git

12GiB Git false-alarm errors begin, but commit still intact

16GiB Largest successful Git fsck command

24GiB Git false-alarm errors begin during fsck, but commit still intact

64GiB Largest successful DMV commit

96GiB DMV timeout after 5.5 h
96GiB Last successful commit with Bup (and Git, ignoring false-alarm errors)

128GiB All fail due to size of test partition

Table 6.4: Effective size limits for VCSs evaluated

VCS Effective limit

Git Commit intact at all sizes, UI reports errors at 12GiB and larger
Mercurial Commit rejected at 2GiB and larger
Bup Successful commits at all sizes tried, up to 96GiB
DMV Successful commits up to 64GiB, timeout at 5.5 h during 96GiB trial



40 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.1: Wall-clock time to commit one large file to a

fresh repository

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms

100ms

1s

1m

1h

1kiB 1MiB 1GiB 128GiB

(a) Logarithmic Scale

Git
Mercurial

Bup
DMV
Copy

0.0s

0.2s

0.4s

0.6s

0.8s

1.0s

256kiB 512kiB 768kiB 1MiB

(b) Sub-megabyte-scale

0.0s

0.5s

1.0s

1.5s

2.0s

2MiB 4MiB 6MiB 8MiB 10MiB

(c) Megabytes-scale

0m

2m

4m

6m

8m

10m

1GiB 2GiB 3GiB 4GiB

(d) Gigabytes-scale

0m

60m

120m

180m

240m

300m

360m

32GiB 64GiB 96GiB

(e) Largest scales measured



6.5. RESULTS: FILE SIZE 41

6.5.2 Time for File-Size Initial Commit
Figure 6.1 shows the wall-clock time required for the initial commit,

adding a single file of the given size to a fresh repository. Over all,

the trend is clear and unsurprising: commit time increases with file

size. It increases linearly for Git, Mercurial, and Bup. DMV’s commit

times increase in a more parabolic fashion, which is most apparent in

Figure 6.1e.

At file sizes below around 2MiB (Figure 6.1a and b), commit times are
dominated by overhead — around 5ms for Git, 100ms for Mercurial,
180ms for DMV, and 900ms for Bup, vs only 2ms for the copy.

Bup, after starting with the highest overhead, goes on to have the

fastest initial commit of all the systems evaluated for large files. It takes

the lead at 2GiB, where Mercurial drops out (Figure 6.1d). To commit
the 2GiB file, Git’s average time is 91.1 s, Bup’s is 89.1 s, and DMV’s is
90.8 s. All of these are a factor of around ten times slower than the di-
rect copy at 9.1 s. The differences get more pronounced as the file sizes
continue to increase. At 64GiB, Git’s average time is 110min, Bup’s is
72min, DMV’s is 298min. The average 64GiB copy takes 35min.

DMV’s parabolic increase is due to the way it breaks the large file into

chunks and stores objects as individual files on the filesystem. While

it is reading one large file, it is writing many small files, which incurs

filesystem overhead. So its performance characteristic for storing a

large file is closer to that of storing many files (section 6.6). Bup also

breaks the file into many chunks, but it avoids the filesystem overhead

by recombining the chunks into pack files. We investigate the filesys-

tem overhead further in chapter 7.

Bup’s commit times behave strangely in that there are places where

Bup is actually faster than it was with a smaller file. This is most ap-

parent in the slow downward slope of Figure 6.1b and the zig-zag of

Figure 6.1c. Git also has a point where the time decreases, taking 393 s
(SD 0.76 s) to commit a 4GiB file and only 361 s (SD 3.90 s) to commit
an 8GiB file. Even more interestingly, these decreases are consistent
across the four trials on separate hardware. We do not know what

might be causing this.



42 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.2: Wall-clock time to commit one updated large file

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

X axis shows the total size of the file. The updated portion was

1/1024 th of the total file size.

10ms

100ms

1s

1m

1h

1kiB 1MiB 1GiB 128GiB

(a) Logarithmic Scale

Git
Mercurial

Bup
DMV
Copy

0.0s

0.2s

0.4s

0.6s

0.8s

1.0s

256kiB 512kiB 768kiB 1MiB

(b) Sub-megabyte-scale

0.0s

0.5s

1.0s

1.5s

2.0s

2MiB 4MiB 6MiB 8MiB 10MiB

(c) Megabytes-scale

0m

2m

4m

6m

8m

10m

1GiB 2GiB 3GiB 4GiB

(d) Gigabytes-scale

0m

60m

120m

180m

240m

300m

360m

32GiB 64GiB 96GiB

(e) Largest scales measured



6.5. RESULTS: FILE SIZE 43

6.5.3 Time for File-Size Update Commit
Figure 6.2 shows the wall-clock time required for the second commit,

after updating 1/1024th of the file. Ideally this operation should be

faster than the first commit, because the system should only be storing

the changed portion of the file. Indeed this is the case for Mercurial,

Bup, and DMV, which do store only the changed portion. Git, however,

copies the entire updated file into its repository as a new object, and

so its commit time is virtually identical. The same is true of the copy

control, though for sizes smaller than 8GiB it is still faster than all the
other systems.

As with the initial commit, Bup gets faster as file size increases at cer-

tain points, with the same gradual downward slope in the sub-megabyte

and low megabyte-ranges, leading to a prominent jump up then fall

back down that occurs just outside the range of Figure 6.2c. The jump

comes at a slightly larger size with this update commit, at 8, 12, 16, and
24MiB, as opposed to 4, 6, 8, and 12MiB in the initial commit. It can still
be seen in miniature in Figure 6.2a.

The fact that there is still a drop — but at a larger size — suggests that

the decrease is related to the amount of data written to the disk, since

Bup breaks the file into chunks and only writes the updated chunks.

Git also shows a commit time decrease between 4GiB (518 s with SD
11.1 s) and 8GiB (429 s with SD 4.0 s) just as it did with the initial commit.
Unlike Bup, its decrease is not shifted to higher file sizes, which is an-

other hint that the decrease has something to do with the amount of

data written, since Git writes the whole file again, rather than just the

updated portion.



44 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.3: CPU utilization while committing one large file to

a fresh repository

(a) Git

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(b) Mercurial

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(c) Bup

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(d) DMV

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(e) Copy

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

user
system
iowait

Figure 6.4: CPU utilization while committing changes to one

large file

(a) Git

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(b) Mercurial

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(c) Bup

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(d) DMV

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

(e) Copy

0%
50%

100%

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB

user
system
iowait



6.5. RESULTS: FILE SIZE 45

6.5.4 CPU Usage During File-Size Commits
Figure 6.3 shows CPU usage during the initial commit, and Figure 6.4

shows CPU usage during the update commit. “User” indicates user-

space computation, “system” indicates kernel-space computation, and

“iowait” indicates that the CPU was waiting on an I/O operation.

We expected the commit operations to be I/O bound, and that seems

to be the case. It certainly is with DMV and with the copy, especially at

file sizes 1GiB and larger. However, there is also a significant amount
of user-space work going on in all of the version-control systems, such

as hashing the data and, in Mercurial’s case, calculating deltas. The low

I/O wait activity in Git, Mercurial, and Bup is surprising. It is possible

that the commit is actually CPU bound in those systems, but seems

more likely that the implementations are multi-threaded and use non-

blocking I/O calls, allowing the CPU to do useful work instead of sitting

in the I/O wait state.

DMV’s high I/O wait is probably primarily due to the filesystem over-

head that is slowing down its commit times, but the current single-

threaded implementation might also be contributing, and the proto-

type might benefit from having separate threads to load data, hash it,

and write it to dish.

There is a small peak in the DMV I/O wait percentage for the first

commit (Figure 6.3d), peaking at 386MiB with 337 ticks (SD 13.8 ticks),
then falling at 512MiB to 89 ticks (SD 49.2 ticks), and then rising again at
768MiB to 972 ticks (SD 54.3 ticks). We are not sure what is causing this.
We also do not know why the DMV I/O wait during the update commit

actually decreases between 1GiB and 32GiB (Figure 6.4d).

The copy operation shows an erratic amount of system activity at low

sizes, which is surprising since the copy operation is almost pure I/O.

This is a result of how the data was collected rather than any unex-

pected behavior in the copy operation. At sizes below about 10MiB,
the copy operation is faster than the /proc/stat ticks used to CPU mea-

sure activity (1/100th of a second [22]). At such small intervals, most
measurements will yield zero ticks, though one of the states will occa-

sionally measure one tick (see Table 6.5). Then, when the graph nor-

malizes the total usage to a percentage, 1 system tick out of 1 total ticks
makes 100%, so the graph will jump from 0% 100%, or somewhere in
between depending on howmany of the four trials measured one tick.



46 CHAPTER 6. VCS SCALING EXPERIMENTS

It isn’t until around 48MiB that the measurement includes enough CPU
ticks to yield useful percentages, which is where we see the graph start

to stabilize.



6.5. RESULTS: FILE SIZE 47

Table 6.5: Selected CPU usage data for copy operation

Size User System Idle Iowait

4.0MiB 0 0 0 0

6.0MiB 0 0 1 0

8.0MiB 0 1 1 0

12.0MiB 1 1 2 0

16.0MiB 0 2 2 0

24.0MiB 1 3 3 0

32.0MiB 0 3 4 0

48.0MiB 0 5 5 0

64.0MiB 0 7 6 0

96.0MiB 0 10 10 0



48 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.5: Total repository size after committing, updating,

and committing again

Subfigure (a) shows repository size on a logarithmic scale, while

subfigure (b) shows the ratio of total repository size to input data size.

1kiB
32kiB
1MiB

32MiB
1GiB

32GiB
1TiB

1kiB 1MiB 1GiB 1TiBS
to

ra
g
e
 (

lo
g

 s
ca

le
)

File Size (log scale)

(a) Total Disk Space Used

Git (two commits)
Mercurial (two commits)

Bup (two commits)
DMV (two commits)
Copy (two commits)

Git (garbage collected)

0x
1x
2x
3x
4x
5x

1kiB 32kiB 1MiB 32MiB 1GiB 32GiB 1TiB

S
to

ra
g
e
 r

a
ti

o

File Size (log scale)

(b) Ratio of Total Disk Space Used to File Size



6.5. RESULTS: FILE SIZE 49

6.5.5 Repository Size after File-Size Update Commit
Figure 6.5 shows the total repository size after the update commit, in-

cluding the original file. This is after committing, updating 1/1024th of
the file, and committing again.

The stored data overtakes the initial repository overhead after a file

size of around 1MiB, and the repository size for all systems converges
to about twice the size of the file. This is to be expected, since each

measurement includes the original file, the first copy of the file, and

the updated 1/1024th. The exception is Git, which stores the entire
updated file during the update commit, leading to a total disk space

usage of three times the file size. However, Git has a separate garbage

collection stage where it cleans up the repository and aggregates sim-

ilar objects together in pack files. The post-garbage collection size for

Git is shown as a separate line on the graph. This post-GC size con-

verges to double the original file size, but then jumps to three times at

a file size of 1.5GiB. This suggests that the pack step is failing silently
at 1.5GiB and larger. This is probably related to the way Mercurial’s
commits begin failing at 2GiB and larger. Both operations are trying
to load multiple versions of the file into memory to calculate deltas for

packing.



50 CHAPTER 6. VCS SCALING EXPERIMENTS



6.6. RESULTS: NUMBER OF FILES 51

6.6 Results: Number of Files
6.6.1 File Quantity Limits
Git, Mercurial, DMV, and the copy operation all failed when trying to

store 7.5million files ormore, reporting that the disk was full. However,
the disk was not actually out of space — it was out of inodes.

Unix filesystems, ext4 included, store file and directory metadata in a

data structure called an inode, which reside in a fixed-length table [33].

When all of the inodes in the table are allocated, the filesystem cannot

store any more files or directories.

Git, Mercurial, DMV, and the copy all create one file in their object

stores for each input file. So to store 7.5 million files, they will cre-
ate 7.5million more, resulting in 15million files on the filesystem, plus
directories. However, the 197GiB experiment partition has 13 107 200
total inodes, so storing 15million files is impossible.

Bup is able to store more files because it does not write a separate

object file for each input file. Bup aggregates its DAG objects into pack

files, writing several large files insteadmany small files. As such, it does

not exhaust the disk’s inodes, and can continue until the experiment

itself exhausts the system’s inodes when it tries to go up from 10million
files to the next step and run a trial with 25million files.



52 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.6: Wall-clock time to commit many 1KiB files to a

fresh repository

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms

100ms

1s

1m

1h

1 10 100 1k 10k100k 1M 10M

(a) Logarithmic Scale

Git
Mercurial

Bup
DMV
Copy

0.0s

0.5s

1.0s

1.5s

2.0s

200 400 600 800 1k

(b) Hundreds of Files

0.0s

1.0s

2.0s

3.0s

4.0s

5.0s

6.0s

7.0s

2k 4k 6k 8k 10k

(c) Thousands of Files

0m

5m

10m

15m

20m

200k 400k 600k 800k 1M

(d) Hundreds of Thousands of Files

0m

60m

120m

180m

240m

300m

360m

2M 4M 6M 8M 10M

(e) Millions of Files



6.6. RESULTS: NUMBER OF FILES 53

6.6.2 Time for Number-of-Files Initial Commit
Figure 6.6 shows the time required for the initial commit, storing all

files into a fresh empty repository. Here we see the commit times for

Git and DMV increasing quadratically with the number of files, while

Mercurial, Bup, and the copy increase linearly.

We saw in the file-size commit times (subsection 6.5.2) that DMV’s time

increased quadratically, and we suspected that was because it was

creating many small files and incurring filesystem overhead. This ef-

fect would explain why both Git and DMV do so poorly here while Bup

would fare much better. But why then would Mercurial and the copy

also have a linear increase instead of an quadratic one?

The difference is the naming schemes of stored files. Git and DMV

name each object file according to the SHA-1 hash of the object’s con-

tents, while Mercurial, like the copy, uses the original input file’s name.

This means that Git and DMV write files in a random order with re-

spect to their names, jumping between different object store subdirec-

tories, while Mercurial and the copy can write files in the order they

read them, one subdirectory at a time. The filesystem is most likely

optimized for that kind of sequential write.

At 500, 750, and 1000 files (Figure 6.6b), Bup’s commit times have an
unusually high variance compared to the other systems and the other

experiments. At those file counts, the standard deviations for Bup’s

commit times are 18.3%, 29.6%, 28.3% of the means, respectively (see
Table 6.6), whereas the mean of the other such standard deviation per-

centages is only 6.1%. We are not sure what is causing this.

Table 6.6: Bup initial commit times with unusually high

variance

Num. files Mean time (s) SD (s) SD as % of mean

500 0.965 0.177 18.3

750 1.199 0.355 29.6

1000 1.407 0.398 28.3



54 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.7: Wall-clock time to commit many updated files

X axis shows the total number of files. 1 out of every 16 files was

updated.

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms

100ms

1s

1m

1h

1 10 100 1k 10k100k 1M 10M

(a) Logarithmic Scale

Git
Mercurial

Bup
DMV
Copy

0.0s

0.5s

1.0s

1.5s

2.0s

200 400 600 800 1k

(b) Hundreds of Files

0.0s

1.0s

2.0s

3.0s

4.0s

5.0s

6.0s

7.0s

2k 4k 6k 8k 10k

(c) Thousands of Files

0m

5m

10m

15m

20m

200k 400k 600k 800k 1M

(d) Hundreds of Thousands of Files

0m

60m

120m

180m

240m

300m

360m

2M 4M 6M 8M 10M

(e) Millions of Files



6.6. RESULTS: NUMBER OF FILES 55

6.6.3 Time for Number-of-Files Update Commit
Figure 6.7 shows the wall-clock time required for the second commit,

after updating 1 out of every 16 files. As with the file-size experiment
(subsection 6.5.3), storing only the updated files is faster, and in this

case the difference is more pronounced. This is because every system

understands the file as a unit of data, and can naturally separate the

changed and files from the unchanged files.

The exception is the copy operation, which blindly copies all files again.

This is why it is actually slower than the other systems at some points.

It would be interesting to run this experiment with Rsync as well (sec-

tion 9.1), to get a baseline for comparing and copying only the files that

have changed.

Here all commit times appear to increase linearly with respect to num-

ber of files, except for Git, which shows some quadratic growth as the

number of files gets into the millions.

Bup does not exhibit the interesting variance here that it did in the

initial commit. All standard deviations are small enough that the error

bars are barely discernible on the graph.



56 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.8: CPU utilization while committing many 1KiB files

to a fresh repository

(a) Git

0%
50%

100%

100 1k 10k 100k 1M 10M

(b) Mercurial

0%
50%

100%

100 1k 10k 100k 1M 10M

(c) Bup

0%
50%

100%

100 1k 10k 100k 1M 10M

(d) DMV

0%
50%

100%

100 1k 10k 100k 1M 10M

(e) Copy

0%
50%

100%

100 1k 10k 100k 1M 10M

user
system
iowait

Figure 6.9: CPU utilization while committing many 1KiB files

after one of every 16 files has been updated

(a) Git

0%
50%

100%

100 1k 10k 100k 1M 10M

(b) Mercurial

0%
50%

100%

100 1k 10k 100k 1M 10M

(c) Bup

0%
50%

100%

100 1k 10k 100k 1M 10M

(d) DMV

0%
50%

100%

100 1k 10k 100k 1M 10M

(e) Copy

0%
50%

100%

100 1k 10k 100k 1M 10M

user
system
iowait



6.6. RESULTS: NUMBER OF FILES 57

6.6.4 CPUUsage During Number-of-Files Commits
Figure 6.8 shows CPU utilization during the initial commit and Figure 6.8

shows CPU utilization during the update commit.

With the initial commit, Git, DMV, and the copy spend more time wait-

ing on I/O than Bup or Mercurial, and they also spend more time in

system mode. In the case of the copy, this is probably because the

operation is almost pure I/O. In the case of Git and DMV, this is more

evidence to suggest that writing files with effectively random names in-

curs more filesystem overhead than writing sequentially, as Mercurial

does, or appending to large files, as Bup does. We can see that Bup

and Mercurial both spend more time processing in user mode than

waiting for I/O.

With the update commit, Mercurial loses its sequential write advan-

tage, since it has to seek to the filelog that corresponds to the current

input file and append to it. And so we see much more I/O wait with

Mercurial. Bup continues to simply append objects to its pack files as

always, and so it retains a low I/O wait profile.

Interestingly, Mercurial’s and DMV’s I/O wait in the update commit has

a gradual rise starting around 100 thousand files, while Git’s is a sud-

den rise starting just before 100 thousand files. The copy is some-

where in between. We are not sure why that is, since DMV has much

more in common with Git than with Mercurial in terms of disk usage

patterns.

Git, DMV, and the copy all decrease in I/Owait from 1million to 5million
files. And Mercurial also shows a slight decrease from 2.5 million to 5
million files. Again, we are not sure what would be causing that.



58 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.10: Real time required to check the status of many

files after update

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

Copy not shown because it has no status-check operation.

10ms

100ms

1s

1m

1h

1 10 100 1k 10k100k 1M 10M

(a) Logarithmic Scale

Git
Mercurial

Bup
DMV

0.0s

0.5s

1.0s

1.5s

2.0s

2.5s

200 400 600 800 1k

(b) Hundreds of Files

0.0s

1.0s

2.0s

3.0s

4.0s

2k 4k 6k 8k 10k

(c) Thousands of Files

0m

1m

2m

3m

4m

200k 400k 600k 800k 1M

(d) Hundreds of Thousands of Files

0m

10m

20m

30m

40m

50m

60m

2M 4M 6M 8M 10M

(e) Millions of Files



6.6. RESULTS: NUMBER OF FILES 59

6.6.5 Time for Number-of-Files Status Check
With the number-of-files experiment, we also timed how long it would

take each VCS to run its status command and check which files had

changed. Figure 6.10 shows the time required to check the status of all

files just after updating them.

DMV and Mercurial seem to slow quadratically with number of files.

Bup seems to have a general overhead of 2 s, jumping to 3 s at 7500
files, but after that increasing linearly.

Git has an interesting drop where it actually gets faster from 500 000 to
750 000 files, dropping from a mean of 32.145 s to 30.210 s. However, the
measurement at 500 000 files has a high standard deviation, 10.623 s,
compared to only 4.705 s at 750 000 files. The four measurements at
500 000 files are 20.330 s, 23.638 s, 38.251 s and 46.362 s. So it is the two
unusually high measurements that are pulling the average up, but we

do not know why those measurements are especially high.



60 CHAPTER 6. VCS SCALING EXPERIMENTS

Figure 6.11: Total repository size after committing,

updating, and committing again

Subfigure (a) shows repository size on a logarithmic scale, while

subfigure (b) shows the ratio of total repository size to input data size.

1kiB
32kiB
1MiB

32MiB
1GiB

32GiB

10 1k 100k 10MS
to

ra
g
e
 (

lo
g

 s
ca

le
)

Number of files (log scale)

(a) Total Disk Space Used

Git (two commits)
Mercurial (two commits)

Bup (two commits)
DMV (two commits)
Copy (two commits)

2x
4x
6x
8x

10x
12x
14x

1 10 100 1k 10k 100k 1M 10M

S
to

ra
g
e
 r

a
ti

o

Number of files (log scale)

(b) Ratio of Total Disk Space Used to File Size



6.6. RESULTS: NUMBER OF FILES 61

6.6.6 Repository Size after Number-of-Files UpdateCommit
Figure 6.11 shows the total repository size after the update commit,

including the original files. This is after committing once, changing a

single byte in every sixteenth file, and committing again.

Git, Mercurial, DMV, and the copy all converge to using just over 8 times
the theoretical size of the data set, while Bup is closer to 5 times. This
has to do with the block size of the filesystem. The underlying filesys-

tem uses a 4KiB block size, so each 1KiB file uses one 4KiB block. So
the input data itself takes 4 times its theoretical size. So each will end
up with 4 times for the input files, plus 4 times for the copied files, plus
some overhead. So a storage ratio of just over 8 is to be expected for
those systems that store objects as individual files.

Naturally the copy would have the least overhead, with a ratio of 8.043
at 5million files. This shows that the directory hierarchy of the input
files itself probably adds around 0.021 times, or 2.1%. Mercurial has
the second lowest overhead, with a storage ratio of 8.186. This makes
sense because, while Mercurial creates a filelog for each input files, it

reuses filelogs to store the updates versions, so it does not create any

new files during the second commit.

Git and DMV have similar, higher ratios because they do create new

object files for each new version of each input file. At 5million files Git’s
ratio is 8.478 and DMV’s is 8.538. It would be interesting to see Git’s

ratio after garbage collection and packing, but unfortunately we did

not run Git’s garbage collection as part of this experiment as we did

in the file-size experiment. We assume the results would be similar to

Bup’s.

Bup uses significantly less disk space, with a ratio of 5.374 at 5 million
files. And since the input files themselves account for just over 4 times
the theoretical size, we can see that Bup is storing the data in a form

that is much closer to its theoretical size, taking just under 1.374 times
the space.



62 CHAPTER 6. VCS SCALING EXPERIMENTS



Chapter 7
Performance TuningExperiments
After noticing DMV’s long commit times, we tried tuning certain DMV

parameters in an attempt to speed it up. We re-ran the file-size and

many-files experiments on DMV several times, varying first the object

store directory layout, then Linux I/O scheduler, and finally chunk size.

We also ran new, more targeted experiments to investigate the effects

of directory layout and chunk size.

7.1 Object Store Directory Layout
During initial runs of the many-files experiment (chapter 6), we would

often notice the disk being reported as full even though the total bytes

used was less than the capacity of the disk partition. This had to do

with how each system stores its objects as files on the filesystem and

how it organizes them into directories. Each file and directory on a

Unix filesystem requires one inode, of which the filesystem has only

a finite number. A storage scheme that allocates too many files or

directories will exhaust the filesystem’s available inodes before it uses

all the available disk space.

We also noticed that average write speed would slow down as the op-

eration progressed. The progress meter we added to DMV’s commit

operation would show a rate of 30MiB s to 40MiB s at the beginning of
an operation but slow to less than 300KiB by the end of a long one. We

63



64 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

Figure 7.1: DMV output showing varying object write times

Not shown: many objects written in under 10ms, which are logged at
TRACE level.

DEBUG: prototype : : ob ject s tore : store blob 23a74606 −−
28.3 KiB stored in 0.062s ( 454.3 KiB / s )

WARN: prototype : : ob ject s tore : store blob ff2942d6 −−
6.8 KiB stored in 24.735s ( 281 bytes / s )

DEBUG: prototype : : ob ject s tore : store blob 415dba44 −−
16.9 KiB stored in 0.223s ( 75.5 KiB / s )

WARN: prototype : : ob ject s tore : store blob 9e810318 −−
15.2 KiB stored in 24.132s ( 644 bytes / s )

Hashing : 1.5 GiB / 1.5 GiB 100.0% 199.6s 7.7 MiB/ s done

Table 7.1: Sample object store directory variations

Hex digits Depth Example

0 0 03d37679d1fab86e5286decd6cd2a94efcfe083f

1 1 7/9332ca7ce9163f78e3c115a2173bd8fd853d286

1 3 6/8/c/40e64f3e74e6ebefdcf2f5f30fb8da004792c

2 1 9f/4ec22c3e0289b29eefefe4728dece14e67e6ac

2 2 dd/52/bcccff156a179cdac0793ef049039372d8a1

3 1 cc5/199084d70f7c5ba325a240e1927579ee24bb1

3 4 472/e98/e88/0b1/c5905065c70cbe806361d32f6429

4 3 1ed2/bd51/01fe/5b23763e8c76852739f59201280f



7.1. OBJECT STORE DIRECTORY LAYOUT 65

added log output to print the write times for individual objects, and we

discovered that while most objects would be written in milliseconds,

occasionally a single object write would take multiple seconds or tens

of seconds, even though there was no appreciable difference in size

between the objects (Figure 7.1).

DMV stores its objects as individual files in an object store directory,

in the same manner as Git. The object’s SHA-1 hash is used as its file

name, except that the first two hex digits are removed and used as a

subdirectory (also described in section 5.3). Our prototype originally

took the first four hex digits to create two levels of subdirectories, un-

der the assumption that we would store more objects than Git and

need to spread them out with more subdirectories. That original pro-

totype was showing this odd behavior, and it stored files much more

slowly than Git. We suspected that the number of subdirectories could

be at fault, so we experimented with different subdirectory schemes

to see their effects.

7.1.1 Procedure
To measure the effects of different object storage schemes, we per-

formed a new experiment wherein we created a new 100MiB partition
on one of the dedicated experiment computers, and then generated a

series of pseudorandom files of 4KiB each until the disk was reported
full.

For each file, we would give it a pseudorandom name that resembled

an SHA-1 hash, and store it according to the object storage scheme

under test. We increased a counter each time we created a file, and

another each time we created a new directory. If storing the file re-

quired creating several subdirectories to get to the proper depth, we

would count each subdirectory. We also checked the number of files

already in the target directory before writing, timed the write, and used

the Unix df utility to measure free disk space in bytes and the number

of free inodes.

The directory schemes we evaluated were all variations of the basic

scheme of taking leading hex digits of the SHA-1 hash to form directo-

ries. We varied the number of directories taken (depth) and the num-

ber of hex digits per directory (see Table 7.1 for examples). We tried

depths from 0 to 6 and digits per directory from 0 to 16, discarding



66 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

combinations that did not make sense, such as combinations involv-

ing 0 and another number (which would all simply be undivided), or
those that required more than the 40 hex digits of a 160-byte SHA-1
hash.

7.1.2 Environment
Like the many-files experiment, this was automated as a Python script

and run on one of the dedicated computers used for that experiment

(specs shown in Table 6.2). However, rather than spending hours to fill

the 197GiB partition used for the other experiments, this experiment
used a new 100MiB LVM partition.

Figure 7.2: Number of Files vs. number of directories filling

a disk

The number of files and directories present when the disk reported

that it was full under the given directory scheme, shown by number of

hex digits per directory (the different plots) and levels of depth (x axis)

0 
5k

10k
15k
20k
25k

0 1 2 3 4 5 6 7 8 9 10

(a) 1 hex digit per dir

files dirs

0 
5k

10k
15k
20k
25k

0 1 2 3 4 5 6 7 8 9 10

(b) 2 hex digits per dir

files dirs

0 
5k

10k
15k
20k
25k

0 1 2 3 4 5 6 7 8 9 10

(c) 3 hex digits per dir

files dirs

0 
5k

10k
15k
20k
25k

0 1 2 3 4 5 6 7 8 9

(d) 4 hex digits per dir

files dirs



7.1. OBJECT STORE DIRECTORY LAYOUT 67

7.1.3 Results
Out of Inodes
Figure 7.2 shows how quickly directories overtake files as subdirectory

nesting goes deeper. Presented visually, the connection between files

and directories becomes obvious. The maximum number of files plus

directories is constant and limited by the number of inodes on the

filesystem, which on the 100MiB test partition is 25 688. However, the
number of directories created increases exponentially with both the

number of hex digits per directory and then again by directory depth.

This can be expressed mathematically.

Let h denote the number of hex digits per subdirectory and let n de-
note the subdirectory depth. Then the total number of directories cre-

ated by the scheme, d is given by

d =
n∑

i=1

(
16h
)i

. (7.1)

The directories are not created all at once, only when a file that should

be placed in that directory is stored. But because files are named ac-

cording to a uniformly distributed hash function, no particular direc-

tory will be favored and the number of directories will trend towards

d.

Let o denote the number of inodes available on the filesystem, and let
f denote the number of files that can be stored on the filesystemwhen
the directory scheme creates d directories. Then,

f = o− d , (7.2)

And therefore,

f = o−
n∑

i=1

(
16h
)i

. (7.3)

So we can see that DMV’s original scheme, with two hex digits per di-

rectory and a depth of two, would yield 65 792 subdirectories, which by
itself is more than 2.5 times the total number of inodes available on



68 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

the 100MiB test partition. So of course it ran out of inodes long before
running out of disk space (in terms of blocks).

Long Write Times
From there, we turn our attention to the mysterious, intermittent long

write times. In the experiment, across all directory schemes, there

were 315 601 total writes. Of those, 312 813 (99.1%) completed in 1ms
or less. The others are plotted in Figure 7.3, and data about the top

ten longest writes is listed in Table 7.2. The spikes in the graph ap-

pear as curves radiating out from zero files and zero directories. Each

curve represents a cluster of directory schemes that filled up the disk

in the same pattern, corresponding more to subdirectory depth than

to number of hex digits per subdirectory.

No single directory scheme stands out as worse than the others, though

longer writes seem correlated with having more directories and hav-

ing more inodes already used (shown by distance from origin). The

scheme with the fewest and shortest long writes is the one that has no

subdirectories at all (shown by the short green spikes along the files

axis). So we conclude that there is no penalty for storing many thou-

sands of files in one directory.

The two longest writes are clustered together near the center of the

plot, near 11 000 files and 14 000 directories. Both occur in the directory
scheme with 1 hex digit and a depth of 4. The longest was 2.306 s at
10 699 files and 13 997 directories (96.2% of inodes used), and the sec-
ond was 2.180 s at 11 025 files and 14 289 directories (98.6% of inodes
used).

Write times seem to follow a power law distribution. The two peaks are

the only two writes out of 315 601 total that took longer than 2 s. Five
took longer than 1.5 s (including the two over 2 s). Sixteen are longer
than 1 s, 155 are longer than 0.5 s, 340 are longer than 0.1 s, and 1381 are
longer than 0.01 s. The vast majority (312 813, 99.1%) completed in 1ms
or less.

The long writes appear to be spaced apart somewhat regularly. This

suggests that they are caused by upkeep that the filesystem has to do

periodically, and that there is no obvious way to avoid them, at least

not while storing many small files. Aggregating objects into pack files



7.1. OBJECT STORE DIRECTORY LAYOUT 69

Figure 7.3: Unusually high write times

4KiB files that took 1ms or longer to write, plotted according to the
number of files and directories on the disk already, and colored by

subdirectory depth.

Not shown: The 99.1% of writes that were faster than 1ms.

 0  5000  10000  15000  20000  25000

 0

 5000

 10000

 15000

 20000

 25000
0.0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

W
ri

te
 t

im
e

depth=9
depth=8
depth=7
depth=6
depth=5
depth=4
depth=3
depth=2
depth=1
depth=0

Total number of files

Total num
ber of directories

W
ri

te
 t

im
e

Table 7.2: Top-ten longest writes

Time (s) Digits Depth Files Dirs Files in dir % inodes used

2.306 1 4 10699 13997 1 96.2

2.180 1 4 11025 14289 1 98.6

1.775 3 1 16321 4008 5 79.2

1.654 1 5 5834 14755 1 80.2

1.646 3 2 10831 14635 1 99.2

1.466 1 5 5389 13790 1 74.7

1.456 2 3 8393 16550 1 97.1

1.443 4 2 7823 15225 1 89.8

1.434 1 5 5922 14949 1 81.3

1.379 1 6 5302 18885 1 94.2



70 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

would be a better strategy, as we saw when Bup was consistently the

fastest VCS in the file-size and number-of-files experiments.

7.1.4 Object Directory Layouts in Action
We tuned the DMV prototype and re-ran the full file-size experiments

(chapter 6) with two different directory schemes. First, with an early

DMV version (fb2f43d) that used 2 hex digits per directory and a depth
of 2, and then also with the reference DMV prototype (c9baf3a, as
noted in Table 6.1) that used 2 hex digits per directory and a depth of 1.
Figure 7.4 shows the initial commit times for both prototype versions,

plus Bup for comparison.

As with the other runs of this experiment, the commit time for files

under about 6MiB is dominated by overhead. The depth-2 version of
DMV has less overhead than the depth-1 version, and especially so at
sizes up to 8KiB, where the depth-2 version completes its commit in
under 5ms, rivaling the sub-millisecond write times for the 4KiB files in
the targeted experiment.

Figure 7.4: Time to commit one large file, with different

object directory schemes

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms
100ms

1s

1m

1h

1kiB 1MiB 1GiB 128GiB

(a) Logarithmic Scale

DMV (h=2,n=2)
DMV (h=2,n=1)

Bup

0m
2m
4m
6m
8m

10m
12m
14m

1GiB 2GiB 3GiB

(b) Megabytes-scale

0m
60m

120m
180m
240m
300m
360m

32GiB 64GiB 96GiB

(c) Largest scales measured



7.1. OBJECT STORE DIRECTORY LAYOUT 71

At up to 6MiB, the depth-2 version has a consistent commit time of
103ms to 104mswhile the depth-1 version has a consistent commit time
of 201ms to 202ms. This difference might be caused by additional work
that we did on DMV between running the experiments on the depth-

2 version and switching to depth-1, including refactoring and adding
some statistics collecting code to the verify (fsck) procedure. None

of this should have impacted commit times directly, but it may have

caused changes to the DMV executable’s size or layout that made it

take longer to load from disk and start up.

From 8MiB to 384MiB there is no noticeable difference between the
two versions of DMV, but at 512MiB and above, the commit results in
enough chunk files that the directory layout starts to make a differ-

ence. The slight trend we noticed in Figure 7.3 for more directories to

result in more long write times seems to have a more pronounced ef-

fect, and the depth-2 version starts to lag behind depth-1. At 768MiB,
the depth-1 version of DMV finally starts to lag behind Bup.

At 768MiB and above, the commit times for both versions of DMV in-
crease linearly with file size. They appear to have the same slope, with

the depth-1 version shifted down. Bup, though also increasing linearly,
does so with a flatter slope. This is further evidence to suggest that ag-

gregating objects into pack files is not only less wasteful of disk space

but also faster as the number of objects grows into the millions.



72 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

7.2 Linux I/O Scheduler
Since the anticipatory I/O scheduler was removed in version 2.6.33 [5],

the Linux kernel has included three different I/O schedulers to choose

from [32]:

Completely Fair Queueing The cfq scheduler is the default I/O sched-
uler as of Linux 2.6.18 [4]. It creates a separate queue for each

process and handles requests in a round, preventing any one pro-

cess from dominating I/O.

Deadline The deadline scheduler tries to set hard limits on wait time

for scheduled I/O operations.

No-op The noop scheduler does as little as possible, passing requests

directly to the device for it to manage. So this is the null bench-

mark for this experiment.

We were curious if the choice of scheduler would have any effect on

performance. In particular, we aimed to document if it might reduce

the long write times we were seeing. So we ran extra trials of the

VCS scaling experiments using the DMV prototype (reference version

c9baf3a) and different I/O schedulers.

The results of running the many-files experiment with different sched-

ulers are shown in Figure 7.5. The I/O scheduler used made little dif-

ference. At 100 000 files, the average initial commit times were 19.666 s
for CFQ, 19.708 s for deadline, and 19.598 s for no-op. The difference
between each pair is less than any of the standard deviations at that

number of files: 0.674 s, 0.3153 s, and 0.447 s, respectively.

In retrospect, these results are not surprising. The I/O scheduler deals

mainly with juggling I/O access between different processes on the

system, but the current DMV prototype is a single process. A multi-

threaded ormulti-process version of the prototype could give the sched-

uler something to work with.



7.2. LINUX I/O SCHEDULER 73

Figure 7.5: Time for DMV prototype to commit an increasing

number of 1KiB files to a fresh repository, by I/O scheduler

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms
100ms

1s

1m

1h

1 10 100 1k 10k100k 1M 10M

(a) Logarithmic Scale

cfq
deadline

noop

0m
60m

120m
180m
240m
300m
360m

1M 2M 3M 4M 5M

(b) Millions of Files

210m

240m

270m

300m

330m

4.0M 4.5M 5.0M

(c) 4-5 Million Files



74 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

7.3 Chunk Size
The algorithm used to divide files into chunks (described in section 5.4)

involves moving a window across the data, and setting a chunk bound-

ary where the sum of the bytes in that window is evenly divisible by a

given number. We ran a new experiment to determine the effects of

these two parameters on chunk size.

7.3.1 Procedure
For each combination of window size and divisor, we would run the

rolling hash algorithm on a stream of pseudorandom bytes until it had

identified 100 chunks. Then we would compute themean and standard
deviation of the chunk sizes.

We used window sizes in powers of two from 128B (27) to 128KiB (217),
and divisors in powers of two from 256 (28) to 128Ki (217).

The pseudorandom number generator used was an xorshift RNG [23].

The experiment itself was automated as a unit test in the DMV proto-

type’s Rust code.

7.3.2 Environment
Because this experiment measures only the output of calculations, the

environment in which it is run should make no difference in the out-

come. In fact, if the xorshift RNG is given the same initial seed value,

the resulting random byte stream will be identical, which will lead to

an identical sequence of chunks, which will lead to an identical aver-

age chunk size. This experiment is deterministic.

7.3.3 Window Reset Bug
During development, we noticed an error in the DMV rolling hash im-

plementation: it would reset the window after every chunk. DMV’s

rolling hash implementation waits until the window is full before mark-

ing any chunks, so resetting the window after each chunk would force



7.3. CHUNK SIZE 75

Table 7.3: Chunk sizes for a window size of 4096

Mean Std.

Divisor As des. w/reset Diff As des. w/reset Diff

256 300.8 4363.7 -4062.9 476.3 218.1 258.2

512 583.9 4622.9 -4039.0 718.9 512.6 206.3

1024 1069.1 5185.6 -4116.5 1176.7 1003.7 173.0

2048 1932.0 6242.9 -4310.9 2072.1 2179.4 -107.3

4096 4255.8 8629.8 -4374.0 5499.7 5449.4 50.3

8192 8324.8 13735.5 -5410.7 9506.4 9793.4 -287.0

16384 13304.2 20639.0 -7334.8 13263.2 16862.1 -3598.9

32768 13304.2 20639.0 -7334.8 13263.2 16862.1 -3598.9

it to fill again before marking the next chunk. This effectively created

a minimum chunk size, the window size. We ran the experiment both

with and without the bug to see how it would affect chunk size.

7.3.4 Results
Figure 7.6 shows the mean chunk sizes with the algorithm as designed,

and Figure 7.7 shows themwith the window reset bug. Table 7.3 shows

specific values for a window size of 4096, both as designed (“as des.”)

and with the reset bug (“w/reset”).

Increasingwith divisor The overall trend is for chunk size to increase

with both window size and divisor. As designed, though, the effect of

the window size is much smaller, and the chunk size varies much more

with the divisor. We did not perform a rigorous mathematical analysis

of the algorithm, but this makes intuitive sense. The larger the divisor,

the fewer numbers divide by it evenly, and so there is a lower probabil-

ity that a given byte will push the sum to an evenmultiple. With a larger

window, each bytes contribution to the sum is smaller, and that does

have some effect on the probability, but the effect is less obvious.

Also, the first chunk must always be at least the size of the window,

because the window has to fill before a chunk boundary can be trig-

gered. Each value is the mean of 100 chunk sizes, and the first must

be larger than the window. After the window is filled, the probability



76 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

Figure 7.6: Mean chunk size

1B

4B

16B

64B

256B

1kiB

4kiB

16kiB

64kiB

256 512 1ki 2ki 4ki 8ki 16ki
32ki

64ki
128ki

C
h
u
n
k 

si
ze

 (
lo

g
 s

ca
le

)

Window size (log scale)

Divisor
256
512

1ki
2ki

4ki
8ki

16ki
32ki

Figure 7.7: Mean chunk size, with reset bug

128B

256B

512B

1kiB

2kiB

4kiB

8kiB

16kiB

32kiB

64kiB

128kiB

256kiB

256 512 1ki 2ki 4ki 8ki 16ki
32ki

64ki
128ki

C
h
u
n
k 

si
ze

 (
lo

g
 s

ca
le

)

Window size (log scale)

Divisor
256
512

1ki
2ki

4ki
8ki

16ki
32ki



7.3. CHUNK SIZE 77

of triggering a chunk is the same, so the first chunk is w bytes larger
than it would otherwise be. This would in turn increase the mean by
w
100
.

The standard deviation similarly tracks the divisor, with less effect from

the window size. Interestingly, the standard deviation is often larger

than the mean. So the chunk sizes are varying wildly. This also makes

sense. Once the window is full, any byte could potentially trigger a

chunk.

The greater effect of window size is that it sets the limit for the small-

est pieces of identical content that can be identified. A common 1KiB
string will be lost inside a 4KiB window. Chunks may be smaller than
the window, but that indicates that the common data string started

inside of the previous chunk. So for more effective de-duplication, it

is probably better to set a smaller window size and then modify the

divisor to tune the desired chunk size.

Reset bug makes every chunk a first chunk With the reset bug,

standard deviations are similar to those without it, but mean chunk

size is much larger. Interestingly, if one compares the mean chunk

size with the reset to the mean chunk size without it for the same win-

dow size and divisor, it is often larger by an amount close to the win-

dow size itself. This also makes sense. The reset makes every chunk a

first chunk, which is w bytes larger than it would otherwise be. So the
window-reset bug’s effect was to shift the mean chunk size up by the

window size.

Flat tops There is another interesting effect in cases with small win-

dow sizes and large divisors. At some point, increasing the divisor has

nomore effect. A doubled divisor will yield exactly the same chunk size.

This phenomenon can be seen in Table 7.3 where the values are iden-

tical for divisors of 16 384 and 32 768, and in Figure 7.6 and Figure 7.7,
where the left-most histogram clusters flatten out on their right sides.

This has to do with the fact that the divisors are powers of two, and

that the same pseudorandom stream is used for every trial. When the

divisor doubles, half of the values that would trigger chunk boundaries

disappear, but half of them are exactly the same. For those trials, it just

so happens that the first 100 chunk boundary trigger values that the al-



78 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS

gorithm encounters in the byte stream are the ones that the divisors

have in common.

7.3.5 Chunk Sizes in Action
We also ran the file-size experiments (chapter 6) with DMV versions

that used four different rolling hash configurations. The reference

DMV version used in other experiments (c9baf3a) had a window size of

4KiB and a divisor of 16Ki, chosen arbitrarily. It also has the window-
reset bug. Later, in order to get a larger chunk size, we increased the

window size to 32KiB but left the divisor the same (version b134cca).
It was after that that we discovered the window-reset bug and fixed

it. We then re-ran the file-size experiments with both window sizes

with the bug fixed (4KiB in version a660730, 32KiB in version 3e599e3).
These versions and their mean chunk sizes are listed in Table 7.4, and

the results are shown in Figure 7.8.

The file-size experiments are sensitive to chunk size because chunk

size determines the number of chunk objects, and the number of ob-

jects on the disk affects write speed. Larger chunks leads to fewer

objects which leads to less files and less filesystem overhead, as we

found in the object-directory-layout experiment (section 7.1).

The version with a 4KiB window and no reset bug has the smallest
mean chunk size at 13.0KiB and it is clearly the slowest. Next, the 4KiB
window with reset and the 32KiB window without reset have similar
mean chunk sizes at 20.1KiB and 18.7KiB respectively, and they have
similar times. Finally, the 32KiB window with reset has the largest
mean chunk size at 52.5KiB and it is clearly the fastest. However, we
assume that as file sizes got even larger that it would also succumb to

the many-files problem.

This is further evidence of the importance of aggregating objects into

pack files. If files are packed, the number of objects becomes less of

a concern, and then so does chunk size. The effects of chunk size

then would be more subtle, smaller chunk sizes would let data be de-

duplicated with a finer granularity, better compressing the data. How-

ever, the smaller chunks would incur some overhead by way of larger

chunked blob objects — because there would be more chunks to in-

dex. We would have to perform additional experiments that used real-

world data to examine that trade-off.



7.3. CHUNK SIZE 79

Figure 7.8: Chunk sizes in action

Subfigure (a) shows the full range on a logarithmic scale, while the

others are linear-scale for specific ranges and include error bars.

10ms
100ms

1s

1m

1h

1kiB 1MiB 1GiB 128GiB

(a) Logarithmic Scale

w=4KiB, reset
w=32KiB, reset

w=4KiB, no reset
w=32KiB, no reset

0m

1m

2m

3m

4m

1GiB 2GiB 3GiB

(b) Megabytes-scale

0m
60m

120m
180m
240m
300m
360m

32GiB 64GiB 96GiB

(c) Largest scales measured

Table 7.4: DMV versions examined with different rolling

hash configurations

Version Window size Divisor Window reset Mean Std.

c9baf3a 4KiB 16Ki Yes 20.1KiB 16.5KiB
b134cca 32KiB 16Ki Yes 52.5KiB 21.2KiB
a660730 4KiB 16Ki No 13.0KiB 13.0KiB
3e599e3 32KiB 16Ki No 18.7KiB 22.0KiB

The “Mean” and “Std.” columns show the mean chunk size and its

standard deviation for that configuration, as reported by the

rolling-hash experiment (Figure 7.6).



80 CHAPTER 7. PERFORMANCE TUNING EXPERIMENTS



Chapter 8
Discussion
8.1 Data Granularity and Storage Schemes
All four of the systems we examined in detail — Git, Mercurial, Bup,

and DMV — model data and its history with a similar directed acyclic

graph. The major difference is the granularity at which they work with

data, and how they store it.

Both Git and Mercurial take the file as the basic unit of data granular-

ity, though they approach storage differently. Git stores files whole as

blobs during commit, storing them and other objects as files in object

directories (as we experimented with in section 7.1). Later, an optional

packing phase will compact objects together into pack files, where sim-

ilar objects are stored as deltas against a base revision [8, Section 10.4].

Mercurial stores each file’s different revisions as deltas against a base

revision in a filelog structure [27, Chapter 4]. This is Mercurial’s primary

storage format, and it is constructed during commit.

By using files as the basic unit of storage, and storing files as deltas

against a base revision, both Git and Mercurial will at some point load

an entire file into memory in order to compare it to another version.

This limits themaximum file size that the system can work with to what

can fit into RAM. In Mercurial’s case, the error message that appears

when attempting to commit a 2GiB file warns that 6GiBwill be required
to manage it. And because it has to calculate deltas in order to store a

file at all, Mercurial simply cannot work with any file that it can’t fit into

memory three times over. This is why Mercurial could not store files

81



82 CHAPTER 8. DISCUSSION

larger than 1.5GiB in the file-size experiments (subsection 6.5.1).

Because Git’s delta calculation happens behind-the-scenes in a sec-

ondary phase, it can still manage to commit files larger than available

RAM, but it prints errors as the other operations fail. The two-phase

approach also requires extra disk space and processing power. If a

large file is changed, then both revisions will be written in full, taking

twice the disk space. Then a separate operation will have to reread

both blobs in full to calculate deltas and pack the objects.

Both DMV and Bup avoid these pitfalls by operating with a finer gran-

ularity, using a rolling hash to divide files into chunks by their content.

It is the chunks and their indexes that must fit into memory, not the

entire file. And then since chunks are only a few kilobytes and chunk

indexes are hierarchical, file size becomes theoretically unlimited. Di-

viding into chunks by rolling hash also makes delta compression un-

necessary, because identical chunks in different files or file revisions

will naturally de-duplicate. At this point, it is the method of object stor-

age that becomes the bottleneck.

The current DMV prototype stores objects loose as files on the filesys-

tem. This proves to be wasteful of disk space, taking up whole filesys-

tem blocks with tiny objects and taking up inodes with subdirectories.

Also, naming the object files by their SHA-1 hash effectively makes the

filenames random, which causes dramatic write slowdowns compared

to writing sequentially, as we saw in the number-of-files and object-

directory-layout experiments (sections 6.6.2 and 7.1.3). Dividing into

chunks solves the problem of storing large files by turning it into the

problem of storing many files.

Bup’s storage strategy is the best of both worlds. It first divides files

into chunks, but then re-packs objects together into pack files. In fact,

Bup uses Git’s pack file format1, but it writes it directly without the sep-

arate compacting phase, andwithout bothering to calculate deltas [29].

This makes efficient use of disk space, and allows the pack files to be

written sequentially, minimizing disk seeks. This is why Bup was clearly

the fastest of the systems evaluated in both the file-size and number-

of-files experiments (sections 6.5.2 and 6.6.2).

So we see that the key to handling large files is to break them into

1Git has no notion of chunks, but Bup reuses Git’s tree objects as chunk indices.

Git can read a repository written by Bup, but it will see a large file as a directory full

of small chunk files.



8.2. SUBTLETIES OF THE ROLLING HASH 83

many smaller files, and the key to storing many small files is to com-

bine them into larger files. The magic is in the combination, where files

and revisions of files are broken into chunks by content, so that iden-

tical chunks are naturally de-duplicated in storage. That is what gives

significant disk space savings over simply zipping up snapshots of the

data.

So the next step for DMV will be to start aggregating objects.

8.2 Subtleties of the Rolling Hash
The rolling hash is the key to providing smaller granularity, because it is

what identifies common byte strings within files. We saw in our chunk-

size experiment (subsection 7.3.4), that smaller chunks lead to slower

writes, but the effect was due to the number of files. Aggregating ob-

jects into pack files will alleviate that concern, so we can examine the

subtler effects of chunk size.

First is the overhead of indexing the chunks. In DMV, we have the chun-

ked blob objects, which keep a 168-byte record for every chunk: 160
bytes for the chunk’s SHA-1 object ID, 4 for the chunk’s offset within
the file, and 4 for the chunk’s size2. With an average chunk size of 4KiB,
a 1GiB file would be broken into 262 144 chunks, which would require
42MiB of chunk records. The blob header for each chunk would con-
tribute some overhead as well. DMV’s object header is currently only

8 bytes, but that still makes 2MiB of additional overhead. Then there
is metadata overhead in whatever scheme we use to store or pack the

objects. Some overhead is inevitable, and 44MiB per GiB of data is
probably perfectly acceptable, but it is something to consider.

The less direct, but ultimately greater effect of chunk size is that it is the

granularity of de-duplication. Smaller chunk sizes should lead to more

de-duplication: small changes will lead to smaller changed chunks and

2

Chunk size is actually redundant in the chunk index record, since it can be com-

puted by comparing the chunk offset to the offset of the following chunk, or, in the

case of the last chunk in the file, the total file size. We could eliminate it and save

1MiB of overhead per GiB of data.



84 CHAPTER 8. DISCUSSION

less new data to store. However, the utility of this de-duplication de-

pends on how much redundancy is in the data, including:

• The degree of similarity between files in the data set

• How often the files are updated

• How much of the file is changed with each update

We hypothesize that most common media formats used by individual

users (images, music, video, etc.) would have very little redundancy,

and rarely be edited. Though some may update the internal metadata

of their music files. The project files of popular professional software

(Photoshop, ProTools, Avid, etc.) might be edited more frequently and

benefit more from the de-duplication. We will need to perform addi-

tional experiments using real-world data to measure actual space sav-

ings.

8.3 DMV Prototype development
Unfortunately, the current DMV prototype does not yet include any of

the planned networking features. However, basic local version control

functionality is working, and the system can be used to store data, keep

history, and retrieve old versions. Branching and rudimentary merging

functionality are implemented as well (Figure 8.1).

Also, as a proof-of-concept for sharding the DAG, the DMV prototype is

able to check out a subdirectory of the dataset to the working directory

and commit changes to it. This demonstrates the ability to keep, and

add to, a full history of part of the dataset, as described in section 4.2

and illustrated in Figure 4.3b.

8.4 Aggregating Data about a ShardedDAG
Though not implemented in the DMV prototype, we would like a DMV

node to be able to aggregate data about what DAG objects are avail-

able at its neighbors and throughout the network. The data could be

analyzed to givemetrics about the data set in several dimensions:



8.4. AGGREGATING DATA ABOUT A SHARDED DAG 85

Figure 8.1: DMV branching and merging functionality

(a) Actual output of DMV status command during merge

On branch master

P0 : a76e9d0f Add new f i l e

P1 : a129ae17 Rename image

a another new fi le . t x t

a melon−cat . jpg
a new f i le . t x t

(b) Actual output of DMV log command after merge

∗ 04178597 (HEAD, master ) Merge branch unstable

| \
∗ | a129ae17 ( unstable ) Rename image

∗ | 7bd4d7e8 Add something
| ∗ a76e9d0f Add new f i l e

| ∗ f20aacd6 Remove image
| /
∗ cd214c6d Update greet ing
∗ 7ef1b670 I n i t i a l commit

Coverage of data set How much of the data set is available locally or
in neighboring nodes?

Coverage of data history How much of the data set’s history is avail-
able locally or in neighboring nodes?

Divergence of versions How many different branches has this data
been forked into, and how different are they?

Number of replicas Howmany times is the data replicated across neigh-
boring nodes? Is any data in danger of being permanently lost?

Availability of or distance to replicas Of the replicas available, how
available are they? What is the bandwidth of the connection to

the neighboring nodes? What is the latency?

Such data could be useful for monitoring the health of the data set,

alerting the user to shards of data that risk being lost without further

replication.



86 CHAPTER 8. DISCUSSION

8.5 Potential Applications of DMV
As a general distributed storage platform, DMV could have awide range

of potential applications:

Private data storage Individual users might use DMV to maintain a

collection of important documents, photos, and media on their

own devices, making it easier to keep up-to-date backups and to

synchronize between computers, mobile devices, and removable

drives without giving their data to a third-party cloud service.

Large-file version control Professional users that work with files too
large for traditional version control, such as graphic designers,

audio engineers, or video editors, might finally be able to adopt a

version-control workflow.

Long-term data archiving Corporate or government users might use
it to maintain large archives of data with full revision history.

Low-connectivity networks Far-flung networks with high-latency or
rare connectivity, such as remote wildlife sensors or Mars rovers,

could use it to manage and synchronize data.

8.6 What DMV should not do
Wewant to focus on the problem of storing file history and synchroniz-

ing files between replicas. We should be careful not to expand across

the wrong abstraction boundaries or to try to do too much. In particu-

lar:

We do not want to reinvent the filesystem DMV should place and up-

date files on the filesystem for applications to use normally, or

offer a virtual filesystem as a view into a specific revision. Appli-

cations such as editors should not have to be rewritten to use our

system.

We want to keep it simple We hope that DMV could eventually be
used as a piece of infrastructure on which to build useful applica-

tions. It should not incorporate functionality that would better be

left to an application.



8.6. WHAT DMV SHOULD NOT DO 87

We do not want to deal with media metadata and categorization
Metadata and categorization is best left to the applications that

produce and consume those media formats. We will merely pro-

vide the storage.

However, knowledge of media formats might be used for behind-

the-scenes optimization, such as setting chunk boundaries at nat-

ural boundaries in the file.



88 CHAPTER 8. DISCUSSION



Chapter 9
Related Works
9.1 Distributed storage and synchronizationsystems
Camlistore Camlistore [13] is an open-source project to create a pri-

vate long-term data storage system for personal users. It allows stor-

age of diverse types of data and it synchronizes betweenmultiple repli-

cas of the data store. However, it eschews normal filesystems and cre-

ates its own schemas to store various media.

Dat Data Dat [26] is an open-source project for publishing and shar-

ing scientific data sets for research. This project has a lot of overlap

with ours, and several of the core ideas are similar, including break-

ing files into smaller chunks, and tracking changes via a Git-like DAG.

However, their focus is different. The Dat team is concentrating on

publishing research data, and making that specific task as simple as

possible for non-technical researchers who might not be familiar with

version control. By contrast, our project operates at a lower level of

abstraction, offering the full power of version control in a very general

way, exposing and illuminating the complexities rather than trying to

hide them or automate them away.

Where Dat focuses on publishing on the open internet, we focus on

ad-hoc networks and data that may be private. Where Dat has com-

ponents for automating peer discovery and consensus, we work at a

89



90 CHAPTER 9. RELATED WORKS

lower level, trying to perfect and generalize the storage aspect first.

Dat seems to assume that data sets will be small enough to fit on a

typical disk on a workstation, while we want to scale even larger.

We hope that our system could be used as a base to build some-

thing like Dat, but we intend for DMV to be more general than the Dat

core.

Eyo Eyo [39] is system for storing personal media and synchronizing

it between devices. It utilizes a Git-like content-addressed object store

behind the scenes, but it works more like a networked filesystem than

version control. It focuses on organizing media by metadata, which

requires agreement on metadata formats, and it requires applications

to be rewritten to access files via Eyo rather than the filesystem, both of

which are thorny and ambitious problems. We focus purely on storage

and synchronization.

Git-Annex and Git-Media Git-annex [16] and Git-media [7] are open-

source projects that extend Git with special handling for larger files.

Both store information about the larger files in the normal Git repos-

itory and then store the files themselves in a separate location. Git-

media stores all the larger files in a separate data store which may

be remote. Git-annex is more flexible. Annex files may be spread

across several different remote repository clones or data stores, and

Git-annex has features for tracking the locations of annex files in dif-

ferent remote repositories and moving them from one repository to

another. These tracking and distribution features are very similar to

our goals. However, Git-annex is not quite as flexible as we aim for

with DMV. It considers the large files atomic units, and it does not break

them into smaller chunks for de-duplication. Also, becausemetadata is

processed by Git, it has the same limitations that Git does. All reposito-

ries must have all metadata, and performance suffers when metadata

is too large to fit into RAM.

IPFS: The Interplanetary Filesystem IPFS [2] is an open-source pro-

ject to create a global content-addressed filesystem. By its global na-

ture, all files are stored publicly, in a global network of nodes with

global addressing. IPFS should be an excellent resource for storing



9.1. DISTRIBUTED STORAGE AND SYNCHRONIZATION SYSTEMS 91

published information, but we want DMV to work with private data

sets. We want individuals and organizations to be able manage their

own data stores privately on their own hardware.

It should be noted that IPFS does have support for storing private ob-

jects by way of object-level encryption. However, this seems wasteful

of disk space, since small changes in the plain text of a file would com-

pletely change the ciphertext, leaving no way to compress the redun-

dancy.

Kademlia Kademlia [25] is an advanced distributed hash table sys-

tem that updates its network topology information as part of normal

lookups. Its focus is on efficient routing between nodes, while we are

focusing first on storage.

Rsync Rsync [42] is a utility that synchronizes files across a low-band-

width network link by using a rolling hash to find similar parts of the

file, and then transfer only those portions of the file that have changed.

Its rolling hash algorithm is the inspiration for the chunk-splitting algo-

rithms used by Rsyncrypto [38], Bup [29], and DMV (section 5.4). As

a utility, Rsync focuses exclusively on synchronizing files. It does not

track history or the relation between files.

Rsync coauthor Andrew Tridgell is also indirectly responsible for the

development of Git. His work to reverse-engineer the BitKeeper pro-

tocol is what caused BitMover to revoke the special free BitKeeper li-

cense for Linux kernel developers, which is what led Linus Torvalds to

develop his own SCM [10].

Rsyncrypto Rsyncrypto [38] is an encryption system that uses a roll-

ing hash to encrypt files by chunks, so that the encrypted files are still

“rsync-able.” Normally, a goal of an encryption algorithm is to have

small changes in the input lead to a completely different ciphertext.

This is good for security, but it negates the advantages of rsync— if the

entire file is different, there are no advantages to be had in transferring

only the changed parts when synchronizing files. Rsync uses a rolling

hash to break the file into chunks and encrypt the chunks separately,

so that a small change in the input will only change the ciphertext for



92 CHAPTER 9. RELATED WORKS

the chunk that contains it, and so rsync can transfer only the chunk

that changes.

Rsyncrypto’s uses the same rolling hash algorithm as Rsync [38, 42],

setting chunk boundaries where the checksum is zero. DMV uses this

same chunking algorithm (see section 5.4).

9.2 De-duplicating Storage and Backup
Boar Boar [12] is an open-source project to create a version control

system for large binary files. It is one of the main inspirations for our

project. It stores file versions in a content-addressed way, and provides

de-duplication for large files that only change in small pieces, and it

can truncate history to reclaim disk space. However, Boar retreats to

the centralized version control paradigm, with a central repository that

working directories must connect to in order to check files in or out.

We want to provide the advantages of Boar in a flexible distributed

version control model. Boar also has practical limitations on repository

size and number of files. repositories are assumed to fit on one disk

volume, and file metadata is assumed to fit into Ram. DMV tries to

avoid both of those limitations.

Bup Bup [28] is an open-source file backup system that is based on

Git’s repository format. It does many of the things that DMV does: it

breaks files into chunks by rolling hash, and it has considerations for

metadata that is larger than RAM. Bup is one of the systems we evalu-

ated along with Git and Mercurial (chapter 6), and we determined that

Bup’s manner of storing chunks is ideal for the next step for DMV (sec-

tion 8.1). However, though Bup is built on version control, it is locked

into a backup-based workflow. History is linear and based on clock

time of backup. And it assumes that the whole data set and the whole

repository can fit onto one filesystem. DMV is built to be more general

and versatile.

Time Machine Time Machine [9] is a backup utility from Apple, in-

cluded in Mac OS X Leopard, that makes frequent automated file hier-

archy backups, using filesystem hard links to de-duplicate unchanged



9.2. DE-DUPLICATING STORAGE AND BACKUP 93

files [31]. This de-duplication allows it to store many different backup

versions. TimeMachine’s functionality can bemimicked by using Rsync

with the --link-dest option, which also hard-links unchanged files dur-

ing a recursive sync [18].



94 CHAPTER 9. RELATED WORKS



Chapter 10
Conclusion and Summary ofContributions
In this dissertation, we have examined the cryptographic directed acyclic

graph (DAG) as a data structure for data storage, and the ways that it

can be sliced to shard data across nodes in a distributed system, ac-

cording to what data is needed locally at each location.

We have performed experiments to probe the scalability limits of ex-

isting DAG-based distributed version control systems. We have shown

that the maximum size of file that Git and Mercurial can store is limited

by the amount of available memory in the system. We conclude that

this is because those systems calculate deltas of files to de-duplicate

data, and they load the entire file into memory in order to do so.

We have also rediscovered the limits of the Unix filesystem for storing

many small files. We saw that writing files smaller than the filesys-

tem block size incurs storage overhead, that splitting files among too

many subdirectories takes inodes that are needed to store files, and

that jumping between directories when writing files incurs write-speed

penalties.

We have shown that any VCS that stores objects as individual files on

the filesystem will encounter these filesystem limitations as they try

to scale in terms of number of files. A VCS that also breaks files into

chunks will turn the problem of storing large files into the problem of

storing many files, again encountering these limitations. However, the

limitations can be avoided by aggregating objects into pack files as Bup

does.

95



96 CHAPTER 10. CONCLUSION AND SUMMARY OF CONTRIBUTIONS

We have performed experiments on the rolling hash algorithm used

for chunking, and we have determined that adjusting the divisor has

the most direct effect on chunk size. Larger divisors result in smaller

chunks. And we have shown that adjusting window size has a lesser

effect on chunk size, but we reason that smaller window sizes will be

able to find smaller common chunks in the code.

And finally, we have described the idea, architecture, design, and im-

plementation of a distributed data storage system we call Distributed

Media Versioning (DMV) that expands on the distributed version control

concept to store larger and more diverse data sets, with a high degree

of control over data locality, and an availability to write updates for

any data held locally. Though time constraints prevented us from im-

plementing the network features we had planned, the DMV prototype

has enough functionality to be experimented on against existing dis-

tributed version control systems and to demonstrate the addition of

new commits to a partial DAG.



Chapter 11
Future Work
The primary goal of DMV is to be a general low-level storage platform

for storing and tracking a data set across many nodes. The next step

(after packing objects) would be to complete the networking features

of the prototype so that it can actually be used in real-life applica-

tions.

Applications could potentially layer additional technologies on top of

DMV to create interesting systems. For example, a gossip protocol

could spread information about object availability on remote data stores

that are not directly connected, allowing data to be spread and trans-

fered across far-flung networks. To focus on usability, daemons could

automatically commit changes and sync with other nodes, shielding

users from the complexity of branching where possible and trying to

present a coherent current state of the data set. An important opti-

mization would be to create a virtual filesystem that is a view into a

tree in the DMV repository. A virtual filesystem could be used as the

working directory, eliminating the wasted disk space of having a sec-

ond writable copy of all files, and it would eliminate the copying of

those files back into the immutable data store on commit. Such a vir-

tual filesystemwould alsomake it much easier to write an auto-commit

daemon, since writes would have to go through the filesystem.

We look forward to continuing to work on and expand the system.

The DMV project is open source, and development continues online

at http://dmv.sleepymurph.com/ .

97

http://dmv.sleepymurph.com/


98 CHAPTER 11. FUTURE WORK



Glossary
ABI Application binary interface, the public interface between a sys-

tem library and a client application. 29

ACID Atomicity, consistency, durability, and isolation, the guarantees
of a traditional database commit. 3

blob Binary large object, a sequence of unstructured binary data. In
Git and DMV, a DAG object holding file data. 5–7, 9, 21, 23, 81, 82,

see DAG

branch In a version control system, separate concurrent lines of up-

date history. 4, 7, see head & merge

CAP-theorem The fundamental theorem of distributed systems, that

no system can simultaneously be consistent (C), available (A), and

tolerant of network partitions (P). 3, see partition decision

chunked blob In DMV, a DAG object that is an index of blobs that

make up a larger blob. 21, 23, 32, 78, 83, see DAG & blob

commit In version control, the operation for storing a particular ver-
sion of the data. Also, the resulting DAG object that represents

that version in the history. 6, 7, 21, 23, 27, 31–33, 35, 37, 38, 41,

43, 45, 49, 53, 55, 57, 63, 72, 81, 82, 96, 97, see DAG

content addressable storage Storage that stores immutable objects
named by a hash of their content, which naturally de-duplicates

identical objects. 5, 7, 17

DAG Directed acyclic graph, the type of graph data structure used to
represent history inmany distributed version control systems. Di-

rected meaning all the edges have a direction, from one node to

99



100 Glossary

another, and acyclic meaning that there are no cycles, no paths

that revisit any node. 6, 7, 9, 11–14, 17, 18, 21, 23, 25, 84, 89, 95,

96, see blob, chunked blob, tree, commit & ref

divisor In a rolling hash algorithm, the divisor in the modulus oper-
ation. A chunk boundary is created when the sum of the bytes

in the window, modulo this divisor, is equal to zero. 30, 96, see

rolling hash & window size

DMV Distributed Media Versioning, the new distributed data storage
platform described and introduced in this dissertation. iii, 9, 11–

14, 17, 18, 21, 23, 27, 29, 31, 32, 38, 41, 43, 57, 59, 61, 63, 65, 67,

72, 74, 81–84, 86, 90–92, 96, 97, 108

DVCS Distributed version control system, such as Git, where individual
repositories can operate independently without having to con-

nect to a central repository. iii, 1, 2, 4, 5, 12, 13, 27, 31, 95, 96, see

VCS

end-to-end argument When designing a communications system, the
idea that there is certain functionality that can only be imple-

mented correctly by the higher-level application at the endpoints

of the communication, and so it is futile for the communication

system to try to provide that functionality itself. 4, 12

filelog Mercurial’s file format that stores different versions of the same
file as a base version followed by a series of delta. 31, 57, 61, 81

head In a version control system, themost recent revision in a branch.

7, see branch

inode A data structure in a Unix filesystem that stores file metadata.
Each filesystem has a fixed number of inodes, which limits the

total number of files and directories the filesystem can hold. 29,

51, 63, 65, 67, 68, 82, 95

merge In a version control system, an operation that combines two

branches and reconciles conflicting changes. 4, 7, see branch

object store Content-addressable storage for DAG objects. 5, 7, 17,
29, 31, 51, 53, 65, 90, see DAG



Glossary 101

pack file An object store file format that aggregates many objects in
one file. 9, 32, 37, 41, 49, 51, 57, 61, 68, 71, 78, 81–83, 95, 97, see

object store

partition decision The dilemma faced by a distributed system during
a network partition: to decrease availability or risk inconsistency.

3, see CAP-theorem

ref A reference to a commit object in the DAG. 7, 9, 23, see DAG
repository A location where data is stored in a version control system.

Early systems would have a central repository that clients would

check out from. In distributed version control, every client is a

separate repository. iii, 2, 4, 5, 7, 9, 17, 18, 23, 25, 32, 33, 35, 37,

41, 43, 49, 53, 61, 90, 92

RNG random number generator. 74
rolling hash A hash checksum that operates over a moving window of

data in a byte stream that can be used to find repeating patterns.

iii, 23, 29, 30, 32, 74, 78, 82, 83, 91, 92, see window size & divisor

SCM Source code manager, a version control system that is designed

primarily to store source code. 4, 5, 91, see VCS

tree In Git and DMV, a DAG object representing a particular state of a

file hierarchy. 5–7, 21, 23, 32, 82, 97, see DAG

VCS Version control system, a program that stores many versions of
a file or set of files, commonly used to track changes to source

code. 1, 4, 5, 12, 31–33, 35, 38, 59, 70, 92, 95, see SCM

window size In a rolling hash algorithm, the number of previous bytes

used in the rolling sum. 30, 77, 96, see rolling hash & divisor

working directory A directory where files that are tracked by a ver-
sion control system are actively worked on and edited. 17, 29



102 Glossary



Bibliography
[1] BARUA, A., THOMAS, S. W., and HASSAN, A. E. “What are developers

talking about? An analysis of topics and trends in Stack Over-

flow”. In: Empirical Software Engineering 19.3 (2014), pp. 619–654.

ISSN: 1573-7616. DOI: 10.1007/s10664-012-9231-y. URL: http:

//dx.doi.org/10.1007/s10664-012-9231-y (cit. on p. 5).

[2] BENET, J. et al. IPFS: The Interplanetary Filesystem. GitHub. 2014.

URL: https://github.com/ipfs/ipfs (cit. on p. 90).

[3] BREWER, E. “CAP twelve years later: How the ‘rules’ have changed”.

In: Computer 45.2 (Feb. 2012), pp. 23–29. ISSN: 0018-9162. DOI:

10.1109/MC.2012.37 (cit. on p. 3).

[4] CALLE JA, D. et al. Linux 2.6.18 Release Notes. Kernel Newbies Wiki.

URL: https : / / kernelnewbies . org / Linux _ 2 _ 6 _ 18 (visited on

Apr. 26, 2017) (cit. on p. 72).

[5] CALLE JA, D. et al. Linux 2.6.33 Release Notes. Kernel Newbies Wiki.

URL: https : / / kernelnewbies . org / Linux _ 2 _ 6 _ 33 (visited on

Apr. 26, 2017) (cit. on p. 72).

[6] CEDERQVIST, P., PESCH, R., et al. Version management with CVS. Net-

work Theory Ltd., 2002. URL: https://ftp.gnu.org/non-gnu/cvs/

source/stable/1.11.22/cederqvist-1.11.22.pdf (visited on

May 11, 2017) (cit. on p. 4).

[7] CHACON, S., LEBEDEV, A., et al. git-media. URL: https://github.

com/alebedev/git-media (cit. on p. 90).

[8] CHACON, S. and STRAUB, B. Pro Git. 2nd. Berkely, CA, USA: Apress,

2014. ISBN: 1484200772, 9781484200773. URL: https://git-scm.

com/book/en/v2 (visited on Apr. 27, 2017) (cit. on p. 81).

[9] CISLER, P. et al. System for electronic backup. US Patent App. 11/499,848.

2008. URL: https://www.google.com/patents/US20080034004 (cit.

on p. 92).

[10] CLOER, J. 10 Years of Git: An Interview with Git Createor Linus Tor-

valds. Linux.com. Apr. 6, 2015. URL: https://www.linux.com/

103

http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/s10664-012-9231-y
https://github.com/ipfs/ipfs
http://dx.doi.org/10.1109/MC.2012.37
https://kernelnewbies.org/Linux_2_6_18
https://kernelnewbies.org/Linux_2_6_33
https://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.22/cederqvist-1.11.22.pdf
https://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.22/cederqvist-1.11.22.pdf
https://github.com/alebedev/git-media
https://github.com/alebedev/git-media
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://www.google.com/patents/US20080034004
https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds
https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds
https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds


104 BIBLIOGRAPHY

blog/10-years-git-interview-git-creator-linus-torvalds

(visited on May 2, 2017) (cit. on pp. 4, 5, 91).

[11] DECANDIA, G. et al. “Dynamo: Amazon’s Highly Available Key-value

Store”. In: Proceedings of Twenty-first ACM SIGOPS Symposium on

Operating Systems Principles. SOSP ’07. Stevenson, Washington,

USA: ACM, 2007, pp. 205–220. ISBN: 978-1-59593-591-5. DOI: 10.

1145/1294261.1294281. URL: http://doi.acm.org/10.1145/

1294261.1294281 (cit. on p. 3).

[12] EKBERG, M. et al. Boar. URL: http://www.boarvcs.org/ (cit. on

p. 92).

[13] FITZPATRICK, B. et al. Camlistore is your personal storage system for

life. URL: https://camlistore.org/ (cit. on p. 89).

[14] FOX, A. and BREWER, E. A. “Harvest, yield, and scalable tolerant

systems”. In: Proceedings of the Seventh Workshop on Hot Topics in

Operating Systems. 1999, pp. 174–178. DOI: 10.1109/HOTOS.1999.

798396 (cit. on p. 3).

[15] GILBERT, S. and LYNCH, N. “Brewer’s Conjecture and the Feasibil-

ity of Consistent, Available, Partition-tolerant Web Services”. In:

SIGACT News 33.2 (June 2002), pp. 51–59. ISSN: 0163-5700. DOI:

10.1145/564585.564601. URL: http://doi.acm.org/10.1145/

564585.564601 (cit. on p. 3).

[16] HESS, J. et al. git-annex. 2015. URL: http://git-annex.branchable.

com/ (cit. on p. 90).

[17] HUMBLE, J. and FARLEY, D. Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation (Adobe

Reader). Pearson Education, 2010 (cit. on p. 2).

[18] JAKL, M. Time Machine for every Unix out there. Blog. Nov. 2007.

URL: https://blog.interlinked.org/tutorials/rsync_time_

machine.html (visited on May 12, 2017) (cit. on p. 93).

[19] KARP, R. M. and RABIN, M. O. “Efficient randomized pattern-matching

algorithms”. In: IBM Journal of Research and Development 31.2 (1987),

pp. 249–260. ISSN: 0018-8646. DOI: 10.1147/rd.312.0249 (cit. on

p. 23).

[20] LAMPORT, L. “Time, Clocks, and the Ordering of Events in a Dis-

tributed System”. In: Commun. ACM 21.7 (July 1978), pp. 558–565.

ISSN: 0001-0782. DOI: 10.1145/359545.359563. URL: http://doi.

acm.org/10.1145/359545.359563 (cit. on p. 3).

[21] LAMPORT, L. et al. “Paxos made simple”. In: ACM Sigact News 32.4

(2001), pp. 18–25. URL: http : / / www . cs . utexas . edu / users /

lorenzo/corsi/cs380d/past/03F/notes/paxos-simple.pdf (vis-

ited on May 1, 2017) (cit. on p. 3).

https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds
https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds
https://www.linux.com/blog/10-years-git-interview-git-creator-linus-torvalds
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://www.boarvcs.org/
https://camlistore.org/
http://dx.doi.org/10.1109/HOTOS.1999.798396
http://dx.doi.org/10.1109/HOTOS.1999.798396
http://dx.doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://git-annex.branchable.com/
http://git-annex.branchable.com/
https://blog.interlinked.org/tutorials/rsync_time_machine.html
https://blog.interlinked.org/tutorials/rsync_time_machine.html
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://www.cs.utexas.edu/users/lorenzo/corsi/cs380d/past/03F/notes/paxos-simple.pdf
http://www.cs.utexas.edu/users/lorenzo/corsi/cs380d/past/03F/notes/paxos-simple.pdf


BIBLIOGRAPHY 105

[22] Manual page for proc. Linuxman-pages project. man proc. URL: http:

//man7.org/linux/man- pages/man5/proc.5.html (visited on

May 11, 2017) (cit. on pp. 35, 45).

[23] MARSAGLIA, G. et al. “Xorshift RNGs”. In: Journal of Statistical Soft-

ware 8.14 (2003), pp. 1–6 (cit. on p. 74).

[24] MATSAKIS, N. D. and KLOCK II, F. S. “The Rust Language”. In: Pro-

ceedings of the 2014 ACM SIGAda Annual Conference on High In-

tegrity Language Technology. HILT ’14. Portland, Oregon, USA: ACM,

2014, pp. 103–104. ISBN: 978-1-4503-3217-0. DOI: 10.1145/2663171.

2663188. URL: http://doi.acm.org/10.1145/2663171.2663188 (cit.

on p. 29).

[25] MAYMOUNKOV, P. and MAZIÈRES, D. “Kademlia: A Peer-to-Peer In-

formation System Based on the XOR Metric”. In: Peer-to-Peer Sys-

tems: First InternationalWorkshop, IPTPS 2002 Cambridge, MA, USA,

March 7–8, 2002 Revised Papers. Ed. by DRUSCHEL, P., KAASHOEK, F.,

and ROWSTRON, A. Berlin, Heidelberg: Springer Berlin Heidelberg,

2002, pp. 53–65. ISBN: 978-3-540-45748-0. DOI: 10.1007/3-540-

45748-8_5. URL: http://dx.doi.org/10.1007/3-540-45748-8_5

(cit. on p. 91).

[26] OGDEN, M., BUUS, M., MCKELVEY, K., et al. Dat Data. URL: http:

//dat-data.com/ (cit. on p. 89).

[27] O’SULLIVAN, B. Mercurial: The Definitive Guide. O’Reilly Media, Inc.,

2009. ISBN: 0596800673, 9780596800673. URL: http://hgbook.

red-bean.com/ (cit. on pp. 31, 81).

[28] PENNARUN, A., BROWNING, R., et al. Bup, it backs things up. URL:

https://bup.github.io/ (visited on Apr. 26, 2017) (cit. on p. 92).

[29] PENNARUN, A., BROWNING, R., et al. The Crazy Hacker’s Crazy Guide

to Bup Craziness. “DESIGN” document in Bup source code. URL:

https://github.com/bup/bup/blob/master/DESIGN (visited on

Apr. 26, 2017) (cit. on pp. 32, 82, 91).

[30] PILATO, C. M., COLLINS-SUSSMAN, B., and FITZPATRICK, B. Version

control with subversion. “ O’Reilly Media, Inc.”, 2008. URL: http:

//svnbook.red-bean.com/ (visited on May 11, 2017) (cit. on p. 4).

[31] POND, J.How TimeMachineWorks its Magic. Website. Aug. 31, 2013.

URL: http://pondini.org/TM/Works.html (visited on May 12,

2017) (cit. on p. 93).

[32] PRATT, S. and HEGER, D. A. “Workload dependent performance

evaluation of the Linux 2.6 I/O schedulers”. In: 2004 Linux Sym-

posium. 2004. URL: https://www.kernel.org/doc/ols/2004/

ols2004v2-pages-139-162.pdf (visited on Apr. 26, 2017) (cit. on

p. 72).

http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
http://dx.doi.org/10.1145/2663171.2663188
http://dx.doi.org/10.1145/2663171.2663188
http://doi.acm.org/10.1145/2663171.2663188
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dat-data.com/
http://dat-data.com/
http://hgbook.red-bean.com/
http://hgbook.red-bean.com/
https://bup.github.io/
https://github.com/bup/bup/blob/master/DESIGN
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://pondini.org/TM/Works.html
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-139-162.pdf
https://www.kernel.org/doc/ols/2004/ols2004v2-pages-139-162.pdf


106 BIBLIOGRAPHY

[33] RITCHIE, O. M. and THOMPSON, K. “The UNIX time-sharing system”.

In: The Bell System Technical Journal 57.6 (1978), pp. 1905–1929.

ISSN: 0005-8580. DOI: 10.1002/j.1538-7305.1978.tb02136.x (cit.

on p. 51).

[34] RUPARELIA, N. B. “The History of Version Control”. In: SIGSOFT Softw.

Eng. Notes 35.1 (Jan. 2010), pp. 5–9. ISSN: 0163-5948. DOI: 10 .

1145/1668862.1668876. URL: http://doi.acm.org/10.1145/

1668862.1668876 (cit. on pp. 4, 5).

[35] SADALAGE, P. J. and FOWLER, M. NoSQL distilled: a brief guide to the

emerging world of polyglot persistence. Pearson Education, 2012

(cit. on p. 3).

[36] SALTZER, J. H., REED, D. P., and CLARK, D. D. “End-to-end Arguments

in System Design”. In: ACM Trans. Comput. Syst. 2.4 (Nov. 1984),

pp. 277–288. ISSN: 0734-2071. DOI: 10.1145/357401.357402. URL:

http://doi.acm.org/10.1145/357401.357402 (cit. on pp. 4, 12).

[37] SHAPIRO, M. and PREGUIÇA, N. Designing a commutative replicated

data type. Research Report RR-6320. INRIA, 2007. URL: https://

hal.inria.fr/inria-00177693 (cit. on p. 3).

[38] SHEMESH, S. Rsyncrypto algorithm. Rsyncrypto home page. URL:

https://rsyncrypto.lingnu.com/index.php/Algorithm (visited

on Apr. 17, 2017) (cit. on pp. 29, 91, 92).

[39] STRAUSS, J. et al. “Eyo: Device-transparent Personal Storage”. In:

Proceedings of the 2011 USENIX Conference on USENIX Annual Tech-

nical Conference. USENIXATC’11. Portland, OR: USENIX Associa-

tion, 2011, pp. 35–35. URL: http://dl.acm.org/citation.cfm?id=

2002181.2002216 (cit. on p. 90).

[40] TORVALDS, L.Git - the stupid content tracker. Git source code README

file. From the initial commit of Git’s source code into Git itself (re-

vision e83c516). Apr. 8, 2005. URL: https://github.com/git/

git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README

(visited on Apr. 25, 2017) (cit. on p. 7).

[41] TORVALDS, L. V2.0.8. Linux Kernel Mailing List. July 1996. URL: http:

//www.webcitation.org/6P8EBZqQX (visited on Apr. 7, 2017) (cit.

on p. 2).

[42] TRIDGELL, A. and MACKERRAS, P. The rsync algorithm. Tech. rep.

Australian National University, 1996. URL: http://hdl.handle.

net/1885/40765 (visited on May 12, 2017) (cit. on pp. 30, 91, 92).

[43] VAN RENESSE, R. and ALTINBUKEN, D. “PaxosMadeModerately Com-

plex”. In: ACM Comput. Surv. 47.3 (Feb. 2015), 42:1–42:36. ISSN:

0360-0300. DOI: 10.1145/2673577. URL: http://doi.acm.org/10.

1145/2673577 (cit. on p. 3).

http://dx.doi.org/10.1002/j.1538-7305.1978.tb02136.x
http://dx.doi.org/10.1145/1668862.1668876
http://dx.doi.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
http://dx.doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
https://hal.inria.fr/inria-00177693
https://hal.inria.fr/inria-00177693
https://rsyncrypto.lingnu.com/index.php/Algorithm
http://dl.acm.org/citation.cfm?id=2002181.2002216
http://dl.acm.org/citation.cfm?id=2002181.2002216
https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
https://github.com/git/git/blob/e83c5163316f89bfbde7d9ab23ca2e25604af290/README
http://www.webcitation.org/6P8EBZqQX
http://www.webcitation.org/6P8EBZqQX
http://hdl.handle.net/1885/40765
http://hdl.handle.net/1885/40765
http://dx.doi.org/10.1145/2673577
http://doi.acm.org/10.1145/2673577
http://doi.acm.org/10.1145/2673577


BIBLIOGRAPHY 107

[44] WINSLOW, R. Don’t ever commit binary files to Git! Or what to do if

you do. The Blog of Robin. June 11, 2013. URL: https://robinwinslow.

uk/2013/06/11/dont-ever-commit-binary-files-to-git/ (vis-

ited on May 11, 2017) (cit. on p. 2).

https://robinwinslow.uk/2013/06/11/dont-ever-commit-binary-files-to-git/
https://robinwinslow.uk/2013/06/11/dont-ever-commit-binary-files-to-git/


Typeset by LATEX.

This document, DMV source code, and other relatedmaterials are archived

in Munin, the University of Tromsø’s open research archive:

http://munin.uit.no

Active source repositories for the DMV project, this document, and

other related related materials can be found via the author’s website:

http://dmv.sleepymurph.com/

This document generated 2017-05-15 from revision 7a2ca58 of the dmv-

publications repository.

This work is licensed under the Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

or send a letter to

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://munin.uit.no
http://dmv.sleepymurph.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

	Title Page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 CAP Theorem and the Importance of Availability
	1.2 Version Control, Git, and the DAG
	1.2.1 How Data is Stored in Git
	1.2.2 The Power of the DAG


	2 Idea: Distributed Media Versioning (DMV)
	2.1 Characteristics
	2.2 Security Model
	2.3 What's in a Name?

	3 DMV Architecture
	4 DMV Design
	4.1 DMV's DAG
	4.2 Working with an Incomplete DAG

	5 DMV Implementation
	5.1 Command Line Control, Explicit operations
	5.2 Rust
	5.3 Working Directory and Object Store
	5.4 Chunking Algorithm

	6 VCS Scaling Experiments
	6.1 Version Control Systems Evaluated
	6.2 Procedure
	6.3 Automation and Measurement
	6.4 Experiment Platform
	6.5 Results: File Size
	6.5.1 File Size Limits
	6.5.2 Time for File-Size Initial Commit
	6.5.3 Time for File-Size Update Commit
	6.5.4 CPU Usage During File-Size Commits
	6.5.5 Repository Size after File-Size Update Commit

	6.6 Results: Number of Files
	6.6.1 File Quantity Limits
	6.6.2 Time for Number-of-Files Initial Commit
	6.6.3 Time for Number-of-Files Update Commit
	6.6.4 CPU Usage During Number-of-Files Commits
	6.6.5 Time for Number-of-Files Status Check
	6.6.6 Repository Size after Number-of-Files Update Commit


	7 Performance Tuning Experiments
	7.1 Object Store Directory Layout
	7.1.1 Procedure
	7.1.2 Environment
	7.1.3 Results
	7.1.4 Object Directory Layouts in Action

	7.2 Linux I/O Scheduler
	7.3 Chunk Size
	7.3.1 Procedure
	7.3.2 Environment
	7.3.3 Window Reset Bug
	7.3.4 Results
	7.3.5 Chunk Sizes in Action


	8 Discussion
	8.1 Data Granularity and Storage Schemes
	8.2 Subtleties of the Rolling Hash
	8.3 DMV Prototype development
	8.4 Aggregating Data about a Sharded DAG
	8.5 Potential Applications of DMV
	8.6 What DMV should not do

	9 Related Works
	9.1 Distributed storage and synchronization systems
	9.2 De-duplicating Storage and Backup

	10 Conclusion and Summary of Contributions
	11 Future Work
	Glossary
	Bibliography

