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SUMMARY 
Lung cancer is the leading cancer killer worldwide and non-small cell lung cancer (NSCLC) is the 

predominant subtype of lung cancer. The immune system plays an important role in cancer 

development. Immune-related markers expressed in the tumor microenvironment of resection 

specimens predict prognosis in many cancers, and may be potential targets for therapy.  

We aimed to characterize the expression of selected-immune related markers in different 

cohorts of surgically resected NSCLC patients and relate their expression to prognosis. We 

constructed tissue microarrays and evaluated marker expression by immunohistochemistry.  

In 55 patients treated with postoperative radiotherapy, increased expression of the T-cell 

markers CD4 and CD8 indicated was associated with a markedly improved disease-spesific survival.  

We investigated the expression of the chemokines CXCR6 and CXCL16 in 335 NSCLC patients, 

and showed that lower CXCL16 expression by cells in the tumor stroma and in cancer cells was 

associated with worse disease-specific survival. In cell-based assays, we found that silencing CXCL16 

expression in lung cancer cells increased proliferation.  

We have previously identified stromal CD8 expression as a promising prognostic marker in 

NSCLC. Using a training cohort (n = 155) and three validation cohorts (n = 169, n = 295, n = 178), we 

found that increased stromal CD8 expression was consistently associated with improved survival. 

When the cohorts where combined, stromal CD8 was significantly associated with disease-specific 

and overall survival for all pathological stages, and may therefore be a good candidate marker for an 

NSCLC Immunoscore.  

Lastly, we investigated the expression of the immune checkpoint LAG-3 in both primary 

NSCLC tumors (n = 553) and their metastatic lymph nodes (n = 143). We found that increased 

expression of LAG-3 on tumor-infiltrating lymphocytes in both primary tumors and metastatic lymph 

nodes was associated with improved disease-specific survival.  

Based on our present findings, we believe that evaluating immune-related markers can have 

an important prognostic utility in NSCLC. Validation of these findings in adequately powered 

prospective trials will be crucial for their potential clinical implementation. 
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1. INTRODUCTION 

1.1 Lung cancer 

1.1.1 Epidemiology 

Lung cancer is the most common cancer world-wide as well as the leading cause of cancer related 

mortality, causing approximately 1.6 million deaths in 2012 1. Estimations of cancer mortality in 2030 

indicate that it will remain the number one cancer killer also in the foreseeable future 2. In Norway, 

1198 men and 960 women died of lung cancer in 2014, representing 20.5% and 18.7% of all cancer 

deaths, respectively. It is estimated that lung cancer resulted in a loss of 32 691 life years in Norway 

in 2012, approximately as many years as colon, breast and prostate cancer combined 3.  

In men, lung cancer was the second most common cancer diagnosed in Norway 2015 (1564 new 

cases) after prostate cancer, while it for women was the third most common cancer (1471 new case) 

after breast and colon cancer 4. While the incidence rates for lung cancer in men peaked in the early 

1990s, the rates for women are still increasing. In the last five-year period, the rate of lung cancer for 

women in Norway was 10% higher than the previous period. In men the rate has declined slightly 

(Figure 1). 

 

Figure 1: Trends in incidence and mortality rates and 5-year relative survival proportions (adapted from Cancer in Norway 

2015 - Cancer incidence, mortality, survival and prevalence in Norway, 2016, Cancer Registry of Norway) 
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The main causative agent of lung cancer is smoking, and the difference in incidence rates between 

the sexes reflects historical differences in smoking patterns, with widespread smoking in women 

becoming common decades after it became common in men (Figure 2) 5.  

 

Figure 2: Proportion of smokers among men and women living in Norway in the period 1927 – 2007 (three-year averages). 

(Adapted from Lund, KE, Lund M, and Bryhni A, Tobacco consumption among men and women 1927-2007. Tidsskr Nor 

Laegeforen, 2009).    

The incidence of lung cancer increases by age, with a median age at diagnosis of 71 years; 

approximately 70% of all new cases of lung cancer is diagnosed in patients 65 years or older 6. The 

mortality rate of lung cancer closely follows the incidence rate, reflecting the fact that most patients 

diagnosed with lung cancer ultimately succumb to the disease.  

The relative 5-year lung cancer overall survival (OS) for men in Norway was 14.4% between 2011 and 

2015, an increase of 8.1 percentage points from the period 1976-1980 (6.1 % OS). Similarly, the 5-

year relative OS for women was 20.9 % between 2011 and 2015, an increase of 9.7 percentage points 

from 1976-1980 (11.2 % OS).   

1.1.2 Etiology 

The link between smoking and lung cancer is one of the most thoroughly documented causal 

relationships in modern medicine 7. The incidence of lung cancer closely follows the smoking 

epidemic, with a latency of around 20 to 30 years 8. The risk of developing lung cancer increases in 

relation to the amount of cigarettes smoked daily and the number of spent years smoking 7. 

Approximately 85% of all cases of lung cancer are caused by smoking 9. However, if regarded as a 

separate cancer, lung cancer in never smokers would rank as the seventh most common cause of 
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cancer deaths worldwide 10. In addition to smoking, known or suspected causes of lung cancer 

include exposure to radon, asbestos, indoor and outdoor pollution as well as genetic factors 10-13.  

1.1.3 Histopathology 

Lung cancer is divided into two major categories, small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC), comprising approximately 10-15 % and 85-90 % of all lung cancer respectively 14. 

NSCLC is further divided into three main histological types: squamous cell carcinoma (SCC), 

adenocarcinoma (ADC) and large cell carcinoma (LCC) 15, with ADC and SCC the predominant types. 

SCC typically arises from bronchial epithelium in the larger proximal bronchi, though it can also occur 

more peripherally 16, whereas ADC commonly arise peripherally 17. Immunohistochemistry may aide 

the pathologic classification of lung cancer, ADC is typically positive for the markers TTF-1/CK7, while 

SCC display positivity for p64/p40 and CK5/6. The diagnosis of LCC is reserved for NSCLC tumors 

without histological or immunohistological characteristics of ADC or SCC and now accounts for 

approximately 3 % of all lung cancer cases, though historically its rates have been higher 17. The most 

recent edition of the World Health Organization (WHO) classification of lung tumors was published in 

2015 18. Important changes from the previous 2004 editions include an increased emphasis on the 

use of immunohistochemistry on resection specimens and inclusion of a new classification for 

adenocarcinomas. 

The relative frequencies of NSCLC subtypes has changed during the latest decades, with the 

incidence of SCC falling and that of ADC rising, currently making ADC the most common form of 

NSCLC 19. Increasing use of filter cigarettes, deeper inhalation, as well as changes to the relative 

proportions of different carcinogens in cigarette smoke has been suggested as possible causes for 

this change 20,21.  

Historically the most important demarcation in lung cancer is that between NSCLC and SCLC, as they 

differ markedly in growth rate, ability to metastasize and sensitivity to chemotherapy 22. However, 

the last decade has seen a renewed emphasis on histology within the NSLSC group, as therapies such 

as the anti-folate agent pemetrexed and the angiogenesis inhibitor bevacizumab are only effective 

for non-SCC tumors 23,24.   

1.1.4 Molecular genetics 

While driver-mutations such as KRAS have long been recognized in NSCLC 25, the revolution in 

sequencing technology during the last decades has allowed for the large scale identification of new 

driver mutations and potential targets for therapy. In 2004, pivotal studies showed that response to 

the tyrosine kinase inhibitor gefitinib was dependent on activating mutations in the EGFR gene 26,27. 

Since then, the complex and highly heterogeneous genetic landscape of lung cancer has been 
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investigated through large scale sequencing studies 28,29. In ADCs, many of the identified mutations 

are current or potential targets for therapy, such as EGFR, MET, ROS1, ALK, HER2 and BRAF. In 

contrast, alterations in FGFR1/2/3, DDR2 and PI3K have been identified as potentially targetable in 

SCC 30. Interestingly, sequencing in SCC identified inactivating mutations in the HLA-A gene in a 

subset of patients, suggesting a direct role for somatic mutation in helping cancers avoid immune 

destruction 29.   

1.1.5 Prevention 

While smoking cessation and prevention remains the most important approach to reduce the 

mortality of lung cancer, screening is an attractive strategy. In 2014 the results of the US National 

Lung Screening Trial (NLST) were published, showing a 20 % reduction in lung cancer deaths and a 6% 

decrease in death of all causes with low-dose thoracic Computed Tomography (CT) 31. Consequently, 

numerous US clinical guidelines now recommended yearly CT screening for individuals at high risk (≥ 

30 pack-years, age 55 – 75 years) 32,33. Several large European screening trials are due to be 

completed in the coming years, and most European countries including Norway are awaiting these 

result before deciding to implement a national lung cancer screening program 34,35.  

Chemoprevention, which entails using dietary or pharmacologic interventions to prevent cancer, has 

been investigated in large randomized trials based on the epidemiological link between high 

vegetable consumption and reduced risk for lung cancer 36. However, results have been disappointing 

and no form of chemoprevention is currently recommended for lung cancer 37.    

1.1.6 Diagnosis and staging 

Approximately one fourth of patients with lung cancer are asymptomatic at the time of diagnosis and 

are diagnosed incidentally. However, most patients display symptoms related to the primary tumor 

or local or distant metastasis and are likely to have more advanced disease 38.  

The diagnostic work-up of lung cancer routinely includes chest x-ray, as well as a CT of the thorax and 

the upper abdomen 35. If a suspected malignant tumor is detected a biopsy or cytological sample is 

needed for diagnosis. This can be obtained by either bronchoscopy, with CT-guidance, or by 

endobronchial or endoesophageal ultrasound. When indicated, mediastinoscopy, mediastinotomy, 

thoracoscopy or thoracentesis may be performed. A Positron emission tomography (PET) scan 

combined with CT is today recommended for most patients considered for surgical treatment or 

stereotactic radiotherapy to delineate the extent of mediastinal disease and possible distant 

metastasis. The performed diagnostic investigations determine the clinical stage, which in turn 

guides the choice of treatment. NSCLC is staged according to the TNM (Tumor, lymph Node, 

Metastasis) Classification of Malignant Tumours published by the Union for International Cancer 
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Control (UICC) 39. The 7th UICC TNM edition was implemented in 2010, and is based on a 

retrospective database of 67,725 NSCLC patients collected by the International Association for the 

Study of Lung Cancer (IASLC) 40. The 8th edition of the TNM classification was published in 2016 41, 

and its enactment began January 2017. This new TNM classification is based on a new database of 

more than 77,156 lung cancer cases compiled by the IASLC 42. While no changes have been made to 

the N-descriptors, new size cut points at 1 and 4 cm have been introduced for the T-category (Table 

1). The introduction of new T-categories has led to the introduction of new stage groupings, with 

stage IA now further sub-classified to IA1, IA2, IA3 based on tumor size (when N0 and M0). A new 

stage (IIIC) has been introduced for the most advanced local disease categories (i.e. T3/T4, N3, and 

M0). Stage IV disease is now divided into IVA and IVB based on location and number of metastases 43.  
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Table 1: Stage groupings according to the eight edition of the TNM classification of lung cancer. 
Adapted from Goldstraw, P., et al., The IASLC Lung Cancer Staging Project: Proposals for Revision of 
the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung 
Cancer. Journal of Thoracic Oncology, 2016 43 

Stage Sub-
stage  

T Category N Category M 
Category 

5-year OS 
IASCL 201643 

Occult 
carcinoma 

 TX Primary tumor not 
assessed , or proven only 
by cells or imaging 

N0 No regional lymph node 
metastasis 

M0 No 
distant 
metastasis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Stage 0  Tis Carcinoma in situ N0  
Stage I IA1 T1a(mi) Minimally 

invasive 
adenocarcinomaa 

N0 90 

T1a Tumor ≤1 cm N0 
IA2 T1b Tumor >1 cm ≤2 cm N0 85 
IA3 T1c Tumor >2 cm ≤3 cm N0 80 
IB T2a Tumor >3 cm ≤4 cmb N0 73 

Stage II IIA T2b Tumor >4 cm ≤5 cmb  N0 65 
IIB T1a-c N1e  56 

T2a N1 
T2b N1 
T3 Tumor >5 cm ≤7 cmc  N0 

Stage III IIIA T1a-c N2f  41 
T2a-b N2 
T3 N1 
T4 Tumor >7 cmd  N0 
T4 N1 

IIIB 
 
 
 

T1a-c N3g 24 
T2a-b N3 
T3 N2 
T4 N2 

IIIC T3 N3 12 
T4 N3 

Stage IV IVA Any T Any N M1ah   

 Any T Any N M1bi  
IVB Any T Any N M1cj   

a: Solitary adenocarcinoma, ≤ 3cm with a predominately lepidic pattern and ≤ 5mm invasion in any one focus.  
b: or tumor with any of the following features: Involves main bronchus regardless of distance from the carina but without 
involvement of the carina; invades visceral pleura; associated with atelectasis or obstructive pneumonitis that extends to 
the hilar region, involving part or all of the lung.  
c: or associated with separate tumor nodule(s) in the same lobe as the primary tumor or directly invades any of the 
following structures: chest wall (including the parietal pleura and superior sulcus tumors), phrenic nerve, parietal 
pericardium. 
d: or associated with separate tumor nodule(s) in a different ipsilateral lobe than that of the primary tumor or invades any 
of the following structures: diaphragm, mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, esophagus, 
vertebral body, and carina. 
e: Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including 
involvement by direct extension. 
f: Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s). 
g: Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph 
node. 
h: Separate tumor nodule(s) in a contralateral lobe; tumor with pleural or pericardial nodule(s) or malignant pleural or 
pericardial effusion. 
i: Single extrathoracic metastasis. 
j: Multiple extrathoracic metastases in one or more organs. 
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1.1.7 Treatment 

Surgery is the main modality for the curative treatment of NSCLC. For selected patients, radiotherapy 

alone or in conjunction with chemotherapy or surgery can be curative. However, only approximately 

30% of all NSCLC patients are candidates for curative treatment as most are diagnosed at an 

advanced stage or have co-morbidities that preclude definitive treatment 35.   

1.1.7.1 Curative  

Patients with stage I NSCLC are commonly treated with surgery alone, while radiotherapy may be 

used for those who are inoperable. For patients in stage II adjuvant chemotherapy is administered 

post surgery. The preferred adjuvant regimen in Norway is four cycles of cisplatin and vinorelbine 35. 

Inoperable patients in stage II can receive radiotherapy, which can be supplemented with 

chemotherapy. Radiotherapy is increasingly given stereotactically if feasible (tumor size <6 cm), as 

treatment time and toxicity is reduced compared to conventional fractionation 35. For operable stage 

I patients, comparable results have been reported for stereotactic radiotherapy compared to surgery, 

though more evidence is needed to confirm these findings 44,45. For operable stage III patients with 

N0 or N1 disease the recommended treatment is surgery with adjuvant chemotherapy, post-

operative radiotherapy is recommended in current Norwegian guidlines when the surgical margins 

are not free or if N2 disease is detected during surgery. Inoperable stage III patients are considered 

for potentially curative radiotherapy, which may be given concomitantly with chemotherapy. For 

stage III patients with negative prognostic factors (e.g. ECOG 2 ≥, weight loss, high age) treatment 

with curative treatment may not be feasible and only palliative treatment is offered 35. Neoadjuvant 

chemotherapy and radiotherapy is not recommended in the standard treatment of NSCLC, however 

it is an option for the potentially curative treatment of tumors in the superior sulcus (i.e. Pancoast-

tumor) 46.      

1.1.6.2 Advanced disease 

Most NSCLC patients present with advanced disease and are not candidates for curative treatment. 

For advanced disease, chemotherapy has been the mainstay of treatment, commonly given over 3-4 

courses in the form of doublet of a platinum agent and vinorelbine, gemcitabine, pemetrexed (non 

SCC only) or docetaxel. The recommended doublet in Norwegian guidelines is carboplatin and 

vinorelibine, based on favorable toxicity profile and cost-effectiveness. For patients receiving a 

doublet containing pemetrexed, maintenance therapy has been shown to improve overall survival 

and is currently recommended in Norwegian guidelines 35.  While the angiogenesis inhibitor 

bevacizumab is recommended in addition to chemotherapy in patients with non-SCC in US and 

European treatment guidelines 24, current Norwegian guidelines recommend against its use based on 

the limited effects seen on survival in the AVAIL-trail 47. On average, chemotherapy in advanced 
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NSCLC translates to a 1-year survival gain of 9% and a 1.5 month increase in median survival, in 

addition to improved quality of life 48.   

Approximately 10% of Norwegian NSCLC patients with ADC are EGFR positive and are recommended 

a Tyrosine kinase inhibitor (TKI) as first line of therapy 35. For patients harboring the ALK 

translocation, the TKI crizitonib is recommended in the first line 14. Despite impressive response 

rates, resistance invariably develops in patients receiving targeted therapy and the majority relapse 

within 12 months 14,49. For EGFR+ patients with the T790 resistance mutation (49%–60% of patients), 

the third generation TKI osimertinib is recommended as second line treatment 14. Similarly, the 

potent second generation ALK-inhibitor alectinib is recommended after progression for patients 

previously treated with crizitonib 14. 

Recently, immunotherapy has shown efficacy in advanced NSCLC in form of inhibitors of the immune 

checkpoints Programmed cell death protein 1 (PD-1) and Programmed death-ligand 1 (PD-L1). The 

PD1 inhibitors nivolumab and pembrolizumab are currently recommended for the second line 

treatment of advanced NSCLC, based on improved overall survival, response rate and tolerability 

compared to single agent docetaxel 14. Notably, some patients exhibit durable responses and long 

term remissions 50. The use of assays to quantify PD-L1 expression on tumor tissue can enable the 

selection of patients who are more likely to respond, and a positive assay result is a requirement for 

treatment with pembrolizumab. However, these assays are controversial as some patients with 

negative assay results may respond to treatment, and their utility has not been uniform across all 

clinical trials 50. Both nivolumab and pembrolizumab are currently approved for advanced NSCLC in 

Norway 51. Recently, pembrolizumab has also been approved for the first line treatment of NSCLC by 

the FDA, based on a landmark trial were PDL1+ positive patients treated with pembrolizumab had 

longer progression-free and overall survival compared to those treated with conventional platinum-

based chemotherapy 52. A multitude of further studies are being conducted on PD1/PDL1 as 

inhibitors as single agents as well in combination with other immunotherapies (e.g. CTLA-4 inhibitors 

and LAG-3 inhibitors), chemotherapies or radiotherapy for the treatment NSCLC 50.    

In the palliative setting, radiotherapy is an important treatment option for reduction of symptoms 

related to thoracic disease, which is also used in the palliative treatment of bone and brain 

metastasis. For patients with central airway obstruction, endoscopic interventions are increasingly 

utilized as they provide more rapid symptom relief than conventional radiotherapy and 

chemotherapy 35.   
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1.2 Tumor stroma 

While activating mutations in cancer cells are the driving force of cancer development, different cells 

and molecules in the tumor’s microenvironment (tumor stroma) are increasingly recognized as 

crucial contributors to tumor growth, development and metastasis 53. The tumor stroma consists of 

non-malignant cells such as fibroblasts, adaptive and innate immune cells, blood vessels with 

endothelial cells and pericytes, and the extracellular matrix consisting of proteins and proteoglycans 
54 (Figure 3). Cancer cells can produce growth factors that modulate normal stromal cells and induce 

a cancer-promoting microenvironment. Fibroblasts in the tumor stroma (cancer associated 

fibroblasts, CAFs) can stimulate tumor growth, invasion, angiogenesis and metastasis 30. The 

formation of new blood and lymphatic vessels allows for influx of innate and adaptive immune cells. 

As discussed below, the immune cells in the tumor microenvironment can both stimulate and 

hamper cancer development through multiple mechanisms and mediators.       

 

  

 

Figure 3. The lung cancer microenvironment. The lung cancer microenvironment has an important role in determining 

characteristic of a malignant lung tumor. Blood vessels can by formed by recruitment of endothelial via factors such as PDGF 

and VEGF. As vessels are formed, numerous immune cells infiltrate the tumor microenvironment. Reprinted by permission 

from Macmillan Publishers Ltd: Nature Reviews Cancer, 30, copyright 2014.  
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1.3 The immune system and cancer 

The immune system plays a dual role in the development and progression of cancer 55. Immune cells 

may aid and stimulate cancer growth, but also inhibit cancer progression by initiating and sustaining 

an anti-tumor response. In the 2010 update to the seminal paper “Hallmarks of Cancer”, Hanahan 

and Weinberg recognized evading immune destruction as an emerging hallmark of cancer, while 

tumor-promoting inflammation was recognized as an enabling characteristic of cancer development 
56.  Although the immune system can and sometimes does inhibit cancer formation, it is obvious that 

the immune response often is not sufficient to halt cancer growth and spread. Reactivating or 

boosting the intrinsic tumor-suppressing capabilities of the immune system is the basis of various 

current and prospective treatments of cancer 57.     

1.3.1 Inflammation  

A putative connection between cancer and inflammation has been recognized since Rudolf Virchow 

in 1863 observed that cancer often develops in tissues exposed to chronic inflammation 58. It is now 

accepted that innate immune cells can play a significant part in cancer development through tumor 

promoting inflammation 56. Inflammation releases bioactive molecules to the tumor 

microenvironment. These include growth factors which stimulate proliferative signaling, survival 

factors inhibiting cell death, angiogenic factors as well as enzymes that can modify the extracellular 

matrix to promote invasion and metastasis 56. Additionally, chronic inflammation perpetuated by 

innate immune cells may contribute to  a mutagenic microenvironment conductive to malignant 

transformation 59.  Tobacco smoke contains various carcinogens that directly promote cancer 

development. However, tobacco smoke has also been shown to indirectly promote lung cancer 

development through induction of inflammation in mice 60. Chronic obstructive pulmonary disease 

(COPD), which is associated with chronic inflammation of the airways, is an independent risk factor 

for lung cancer 61. In experimental models, lung cancer cells can promote tumor progression and 

metastasis by activating macrophages that generate an inflammatory microenvironment 62,63.  

1.3.2 Immunoediting 

The dual role of the immune system in cancer is encapsulated in the concept of immunoediting; a 

continual process where the immune system both protects against and stimulates tumor 

development. As delineated by Schreiber and colleagues, immunoediting involves three phases: 

elimination, equilibrium and escape 64. In the elimination phase cells and mediators from innate and 

adaptive immune cells work in concert to eliminate a tumor before it becomes clinically evident. This 

phase is analogous to the older concept of immunosurveillance 64. If the immune system does not 
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successfully eradicate the tumor an equilibrium may develop, where the immune system keeps the 

tumor in check and prevents net outgrowth. In this phase the tumor can become functionally 

dormant and remain clinically undetected 65 . Finally, the tumor cells may escape dormancy and 

develop into clinically manifest disease. Various mechanisms may contribute to tumor escape 

including reduced immune recognition, increased resistance or survival (through genetic or 

epigenetic changes), or the development of an immunosuppressive microenvironment 66-68.  

1.3.3 The anti-tumor immune response 

While innate immune cells can support cancer formation through tumor-promoting inflammation, 

they can also contribute to tumor control directly or indirectly by activating adaptive immunity 69 . 

Direct innate mediators include NK-cells and NK-T-cells, while dendritic cells are important to the 

activation of T-cells, who in turn are central effectors of the adaptive anti-tumor immune response 69. 

The prototypical T-cell mediated immune response begins at the tumor site 70. Here, antigen-

presenting cells (APCs, e.g. dendritic cells) take up tumor associated antigens (TAA) and process 

them. To promote immunity rather than tolerance a maturation signal is needed for APCs, such as 

pro-inflammatory cytokines or factors released form necrotic tumor cells 71. APCs then migrate to 

tumor draining lymph in order to prime T-cells, though evidence suggests this might occur also locally 

in the tumor stroma in tertiary lymphoid structures (TLS) 72. APCs then present processed antigens on 

MHC molecules to T-cells, which may result in priming and activation of an effector T-cell response. 

The effector T-cells may then traffic back to the tumor to specifically recognize and kill cancer cells 70. 

However, multiple mechanisms exist for tumors to inhibit and ultimately avoid immune destruction 
70.  

1.3.4 Immune suppression and tumor escape 

Reduced immune recognition may be the result of the ongoing immune response against a tumor. 

Evidence from studies in mice show that T-cells that recognize TAA on cancer cells may contribute to 

the selection and expansion of antigen negative cancer cells who are not recognized by the immune 

system, leading to tumor escape 67,68. Additionally, components of the antigen processing machinery 

(e.g TAP 1/2 and MHC molecules) is frequently downregulated in lung cancer, inhibiting the 

recognition of tumor cells by T-cells 73. While this down-regulation frequently occurs through 

epigenetic mechanisms, it can also occur through mutation73.    

Epidemiological evidence supports a role for the immune system in inhibiting lung cancer 

tumorigenesis. After adjustment for smoking, the risk of lung cancer is increased 2 to 4-fold for HIV+ 

positive patients 74. In a meta-analysis, patients who were immune suppressed because of organ 

transplantation and patients with HIV/AIDS had an increased risk of NSCLC 75.  
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Cancer cells can secrete factors that inhibit adaptive and innate immune cells, and create an 

immunosuppressive microenvironment conductive to tumor escape 64. Release of cytokines such as 

GM-CSF, IK-1B, VEGF and PGE2 stimulate expansion and proliferation of myeloid-derived suppressor 

cells (MDSCs). In NSCLC, MDSCs are implicated in suppression of CD8+ effector T cells, and increasing 

levels of MDSCs in patient plasma has been associated with reduced response to chemotherapy 76.  

Regulatory T-cells (Tregs) inhibit effector T-cell functions and are important for maintenance of 

tolerance against self-antigens, limiting immune responses and preventing auto-immunity 64. In 

cancer, Tregs are implicated in suppression of anti-tumor immune responses. The induction of Tregs 

can be supported by cytokines (e.g TGF-β) in the tumor microenvironment produced by tumor cells 
77. In murine models of NSCLC, Tregs can inhibit anti-tumor T-cell responses 78  and support cancer 

development 79.     

The expression and up-regulation of various immune checkpoints can contribute to suppression of T-

cell function 80. T-cell maturation and activity is regulated by interactions between different co-

stimulatory and co-inhibiting receptors and ligands 81. The negative immune regulators (immune 

checkpoints) are essential for self-tolerance under normal physiological conditions and limit tissue 

damage during inflammation 80. Cytotoxic T lymphocyte antigen 4 (CTLA-4) is the prototypical 

immune checkpoint receptor and serves to regulate the amplitude of T-cell activation and mediating 

the immune suppressive function of Tregs 81. In addition to CTLA-4, several other immune 

checkpoints have been characterized such as programmed cell death protein 1 (PD-1), lymphocyte 

activation gene 3 (LAG-3), T cell immunoglulin domain and mucin domain 3 (TIM-3) and T cell 

immunoglobulin and ITIM domain (TIGIT) 82.  Seminal studies in mice showed that inhibiting CTLA-4 

by blocking antibodies could induce antitumor immunity and tumor regression 83,84. This has led to 

the clinical development and approval of CTLA-4 inhibitors for the treatment of cancer 85.  Similarly, 

inhibition of the immune checkpoint PD1 and its ligand PDL-1 has shown efficacy in multiple solid 

cancers, including NSCLC 86,87.  

1.3.6 Chemokines 

Chemokines are chemotactic cytokines who are central in regulating the migration and positioning of 

leucocytes under both physiological and pathological conditions 88. The differential expression of 

chemokine receptors on leucocytes allow for recruitment of specific cell types under particular 

physiological conditions. Chemokines are important regulators of the development of T-cells in the 

thymus, and for the normal development of B-cells, monocytes, macrophages, neutrophils and NK 

cells in the bone marrow 88.  In addition to their role in immunity, chemokines are involved in 

embryonic development, wound healing, angiogenesis and cancer 89.  
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Chemokines play a complex and multifaceted role in cancer development. By recruiting immune cells 

to the tumor microenvironment, chemokines can contribute to an anti-tumor immune response 90. 

For example, the chemokine CXCR3 is central for recruitment of NK-cells and effector T-cells to 

tumors 91,92. Other chemokines, such as CCL19, CCL21 and CXCL13 can contribute to formation of TLS, 

which are associated with improved survival in NSCLC 72.  However, chemokines can also stimulate 

tumor progression, angiogenesis and metastasis 93. Cancer cells and stromal cells can secrete 

chemokines (e.g. CCL2 and CCL5)  that attract MDSCS who in turn promote a tumor suppressive 

microenvironment 94. In breast cancer, the chemokine CCL2 can attract inflammatory monocytes 

expressing the receptor CCR2 who further develop into macrophages that promote metastasis to the 

lung or bone 95. Various chemokines have been suggested to play a part in the development and 

progression of NSCLC 96. In particular, the chemokine CXCR4 and its receptor CXCL12 have been 

shown to stimulate invasiveness and metastatic potential of NSCLC cells, and the over-expression of 

CXCR4 in tumor specimens is to linked poor survival 97,98.  

1.3.7 Infiltrating immune cells in NSCLC 

Infiltration of leucocytes from both the innate and adaptive immune system is a common finding in 

most cancers, including NSCLC 99. A diverse range of immune cells may be found in cancer, including 

macrophages, mast cells, dendritic cells, NK-cells, B-cells and T-cells. These immune cells can in turn 

be divided into subsets based on the differential expression of various surface markers and 

receptors. Among T-cells, subsets include T-helper cells (e.g. TH1, TH2, TH17), Tregs, T follicular helper 

cells and cytotoxic T-cells (CD8+ T cells). Infiltrating immune cells may be located in the tumor core, 

the invasive margin, in TLS or in the tumor stroma 100. Together, the type, density and location of 

immune cells within a tumor define  the “immune contexture” 101. This immune contexture is shaped 

by a complex interplay between tumor cells, immune cells, stromal cells and chemokines and 

cytokines in the tumor microenvironment.  For many human cancers, there exists a strong 

association between components of the immune contexture and clinical outcome 102. In particular, a 

strong infiltrate of TILs has been associated with an improved clinical outcome in cancers such as 

melanoma, colon, head and neck, breast, bladder, urothelial, ovarian and lung cancer 100.   

Infiltrating immune cells in NSCLC include T-cells, B-cells, NK-cells, dendritic cells, macrophages, 

neutrophils and macrophages.  As previously mentioned, immune cells in NSCLC can be organized in 

TLS. These are composed of a B-cell follicle with follicular helper T-cells, macrophages, follicular 

dendritic cells and a T-cell area with mature dendritic cells. In NSCLC, a positive correlation has been 

observed between high densities of TLS, mature dendritic cells and improved survival 103. In a recent 

meta-analysis of TILs in NSCLC, high levels of CD8+ T-cells in stromal and epithelial compartments 

were associated with improved overall survival 104. In contrast, FOXP3+ T cells (Tregs) were 
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associated with a worse outcome. However, significant heterogeneity existed between studies 

concerning cutoffs, location of the immune infiltrate (i.e. invasive margin or central tumor), sample 

size and follow-up.   

1.3.8 Immunoscore – supplementing the TNM 

The TNM classification guides clinical decision making and is the predominant prognostic factor in 

NSCLC 105. The tumor profile, i.e. the histopathological-, molecular-, hormonal- and genetic 

characteristics of a tumor, can supplement the TNM classification. In NSCLC, some factors (e.g. EGFR 

mutation, PD-L1 expression, histology) predicts response to therapy, whereas patient-related factors 

such as age, sex and performance status informs about prognosis and may guide treatment 35. 

Nevertheless, patient outcomes can vary significantly within each stage, highlighting the need for 

new prognostic factors to complement the TNM staging.  

In colorectal cancer, as in NSCLC, numerous studies have shown that quantifying the in situ immune 

infiltrate in resection specimens predict patient outcome and supplement the TNM 106,107.  Galon and 

colleagues have led efforts to translate these findings into the clinic by means of a standardized 

immune cell score, termed immunoscore. The immunoscore is based on quantification of CD3+ and 

CD8+ T-cells in two compartments of resection specimens (central tumor and invasive margin) by an 

image analysis workstation 108. The colon cancer immunoscore was recently validated in a 

retrospective study led by an international consortium, and showed significantly longer time to 

relapse for patients with a high Immunoscore in both the training set and in independent validation 

sets compared to patients with a low score 109. It has been suggested that the implementation of the 

Immunoscore can lead to a new classification of cancer, termed TNM-I (TNM-Immune) 108. However, 

it is worth noting that that the Immunoscore cannot be incorporated directly into the TNM, as the 

TNM by definition is an anatomic description of the extent of disease. Consequently, no molecular 

factor or marker may improve it 110. Nevertheless, quantifying immune markers in an immunoscore is 

an attractive strategy for supplementing the TNM, and may allow for improved prognostic 

stratification and support for treatment decisions in NSCLC111.  
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1.4 Immune-related markers in different patient groups 

There exists a multitude of immunological markers of potential biological and clinical relevance in 

NSCLC; however, it is beyond the scope of this thesis to cover them all in depth. Below, aspects of 

selected immunological markers and patients groups of particular relevance to this thesis are 

presented.    

1.4.1 The in situ immune infiltrate in patients treated with adjuvant radiotherapy.  

The rationale for adjuvant postoperative radiotherapy (PORT) in NSCLC is reduced local recurrence 

and improved survival. However, a recent Cochrane review showed an adverse effect on survival by 

PORT in completely resected NSCLC 112, though many of the included trials used technology and 

dosages not relevant to current clinical practice 113 . Retrospective data from the US National Cancer 

Database supports the use of PORT in NSCLC patients with N2 disease 113, as is also recommended in 

current Norwegian guidelines 35. Evidence also supports the use of PORT in patients with positive 

margins after surgical resection 114. Radiotherapy exerts its main effects by directly damaging tumor 

cells. However, evidence suggests that radiotherapy also contributes to systemic antitumor immunity 
115. Additionally, radiotherapy and immunotherapy can have synergistic effects in cancer treatment 
115. Different adaptive and innate immune markers have been shown to have prognostic impact in 

NSCLC 116,117, however their impact on survival in patients treated with radiotherapy remains unclear.  

 

1.4.2 The chemokines CXCL16 and its receptor CXCR6 

CXCL16 is a transmembrane chemokine and the only known ligand in for the receptor CXCR6 118. 

While soluble CXCL16 can stimulate the recruitment and adhesion of cells expressing CXCR6 119, it can 

also act as a scavenger receptor for oxidized low-density lipoprotein 120. In addition to their role in 

leukocyte recruitment, evidence suggests that CXCL16 and CXCR6 play diverse roles in cancer. These 

markers have been linked to tumor promoting inflammation 121 and angiogenesis 122, but also to 

recruitment of leucocytes to tumors 123. Accordingly, disparate results exist for the impact of CXCL16 

and CXCR6 on prognosis, with their expression linked to both reduced 121 and improved 124 survival in 

different cancers.   

 

1.4.3 Stromal CD8  

CD8+ T cells play a central role in clearing viral, protozoan and bacterial pathogens 125. They also have 

an essential role in antitumor immunity 71. Effector CD8+ T-cells can hamper cancer development 

through direct killing of cancer cells and by releasing cytokines (e.g. IFN-γ) that inhibit tumor growth 
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126. It has also been suggested that CD8+ T-cells can contribute tumor regression by exerting their 

cytotoxicity in the tumor stroma 126 . The importance of CD8+ T cells in cancer is reflected by the 

multiple existing and proposed therapeutic strategies for increasing the level and quality of CD8+ T-

cell responses 70,127. Additionally, with an exception for renal cancer, increasing levels of CD8+ T-cells 

in resection specimens are linked to improved prognosis in the majority of human cancers 102. We 

have previously analyzed expression of CD8 in 335 NSCLC specimens, and found that increased levels 

of CD8+ cells in the stromal compartment of tumors were independently associated with improved 

survival 116.  

 

1.4.4 LAG-3 

The lymphocyte activation gene (LAG-3), originally identified in T-cells, can also be expressed by NK 

cells, B-cells and plasmacytoid dendritic cells.  As an immune checkpoint molecule, LAG-3 has a role 

in the negative regulation of T-cell expansion and function 82. Studies in mice suggest LAG-3 acts 

synergistically with PD-1 to prevent autoimmunity 128. Dual expression of PD-1 and LAG-3 on TILs has 

been noted in pre-clinical cancer models, and dual inhibition of PD-1 and LAG-3 can lead to improved 

anti-tumor T-cell responses 82. Stage I trials utilizing LAG-3 blocking antibodies for the treatment of 

cancer are currently underway in NSCLC and other solid malignancies 129. Few large-scale studies 

have examined the prognostic impact of LAG-3 in resection specimens. In NSCLC, LAG-3 has been 

correlated with a worse prognosis in univariate survival analysis in one study of 139 resected 

patients; however, this finding did not remain significant in multivariate analysis 130.   
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1.5 Tissue microarray 

Tissue microarrays (TMAs) enable the simultaneous investigation of a large number of tissue 

specimens on a single histological slide. Battifora introduced the concept of a multitumor tissue block 

(the “sausage block”) in 1986, further refining the method in 1990 (the “checkerboard tissue block”) 
131,132. In 1998, Kononen et al. published the first modern TMA study, presenting a rapid and 

reproducible method for producing quality TMAs 133. Since then, TMA technology has seen 

widespread adoption and has become a standard instrument in tissue based research 134. TMAs are 

commonly constructed from minute tissue cores from formalin fixed and paraffin-embedded tumor 

specimens (donor blocks). The tissue cores are then transferred to a recipient block according to a 

fixed matrix, allowing for reliable allocation of clinical and pathological data to the individual tissue 

“cores” on the histological slide 134. TMAs may also be constructed from other sources such as frozen 

tissues, cell lines or needle biopsies 135. Methods such as immunohistochemistry and various forms of 

in situ hybridization are utilized on TMAs to investigate biomarkers at the DNA, RNA or protein level. 

Depending on the utilized tissue and associated clinical data, applications of TMAs in cancer research 

include the investigation of prevalence and cellular localization of molecular alterations and the 

investigation of biomarkers and their relation to tumor stages, patient prognosis or response to 

therapy 134.   
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1.6 Immunohistochemistry 

Immunohistochemistry (IHC) is an important tool for the detection of specific antigens on tissue 

sections which is widely adopted in medical research and diagnostics 136. Invented in the 1940s, 

today there are numerous protocols for IHC applications and assays 137. The general IHC assay 

involves using a primary antibody capable of specifically binding epitopes of a given antigen. A 

secondary reporter-coupled antibody specific for the primary antibody is then added. Finally, the 

addition of a substrate that reacts with the reporter molecule results in a colored precipitate, 

allowing for visualization of the antigen-antibody-complex.  Alternatively, the primary antibody may 

be conjugated to a reporter molecule directly, though this may cause reduced sensitivity 136.  An 

advantage when using IHC on TMAs is that the various parts of the experiment such as antigen 

retrieval, temperature, incubation times, washing procedure, and reagent concentration are 

standardized and not subject to inter-batch variability.  

1.6.1 Antibodies  
Selection of an appropriate antibody is an important step when conducting any IHC based study 138. 

Primary antibodies are of two major types: polyclonal or monoclonal. Polyclonal antibodies are 

generated by immunizing animals (e.g. rabbits or goats) resulting in a mixture of antibodies capable 

of binding different epitopes of the chosen antigen. This in turn leads to higher sensitivity for 

detection a given antigen, though the risk of cross-reactivity may increase. Monoclonal antibodies 

are generated from hybridomas made by immortalizing a single B-cell clone by fusing it to a myeloma 

cell line. As they are made from a single B-cell clone, monoclonal antibodies recognize a single 

epitope of the antigen. Accordingly, monoclonal antibodies have a reduced risk of cross-reactivity. 

However, the binding affinity of a monoclonal antibody is dependent on the conformation of a single 

epitope, which may be altered by experimental factors such as temperature, pH and fixation 139.  

Consequently, monoclonal are more likely to work only in optimal experimental conditions, and the 

risk of false negative assay results are higher. Their monospecificity can also be an important 

advantage, making it easier to examine changes in phosphorylation states, molecular conformation 

and protein-protein interactions 139. Another advantage of monoclonal antibodies is that once a 

hybridoma has been constructed, antibodies can be continuously generated with high lot-to-lot 

consistency. Polyclonal antibodies generated from different animals may differ with regards to which 

epitopes they recognize and their avidity may change over time.  
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2. AIMS OF THE THESIS 

The aims of this thesis were to explore the expression of selected immune-related markers in 

different groups of NSCLC patients on TMAs, thereby illuminating their role and prognostic impact in 

NSCLC. Specifically, we aimed to: 

- Explore the prognostic impact of adaptive and innate immune markers in patients treated 

with postoperative radiotherapy. 

- Investigate the prognostic impact of the chemokines CXCR6 and CXCL16, and their relation to 

other immune markers.  

- Validate stromal CD8 as a prognostic marker in resected NSCLC. 

- Explore the prognostic impact of LAG-3 in primary tumors and metastatic lymph nodes, and 

its potential for inclusion in an NSCLC immunoscore.   
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3. MATERIALS AND METHODS 

3.1 Patient cohorts 

Our original cohort (paper 2 and 3) consist of consecutive NSCLC patients who underwent radical 

resection for clinical stage I-IIIA NSCLC at the University Hospital of North Norway (UNN), Tromsø, 

Norway and Nordland Hospital (NH), Bodø, Norway from 1990 through 2005 (n = 335). In paper 1, 

only patients who received postoperative radiotherapy (n = 55) were included for analysis.  The 

original cohort was expanded in 2013 to include patients resected from 2005 through 2011 (n = 219). 

The patient material was simultaneously expanded to include lymph nodes for the 172 patients with 

lymph node metastasis; adequate paraffin-embedded tissue specimens were available for 143 of the 

patients. For all patients, formalin-fixed and paraffin-embedded tissue blocks were obtained from 

the pathological departments of the respective hospitals. Clinical patient data were registered from 

hospital databases.  

Papers 1, 2 and 3 include follow up data as of January 2011. For paper 4, follow up data as of Oct. 1 

2013 is included. For papers 1, 2 and 3 the pathological staging was done according to the 7th edition 

of the UICC TNM classification, the tumors collected before 2010 were reviewed and restaged from 

the previous 6th UICC TNM classification. For the papers 1, 2 and 3, histological grading and subtyping 

was done according to the 2004 World Health Organization guidelines (WHO) 140. For paper 3, 

bronchialveolar carcinomas (BAC) ≤ 3 cm were reclassified as adenocarcinoma in situ (AIS), without 

new assessment of the tumors, on the basis of the 2011 IASLC classification of lung adenocarcinoma 
141. For paper 4, staging for all patients was updated to conform to the recently implemented 8th UICC 

TNM classification, resulting in 21 patients being staged as IIIB. Additionally, two pathologist re-

reviewed all histological slides and performed subtyping according to the new 2015 WHO guidelines, 

utilizing immunohistochemistry when appropriate.  

A total of 633 stage I-IIIA∗ NSCLC patients resected between 1990 to 2011 were potentially eligible 

for inclusion in our cohort (paper 4). Exclusion criteria were preoperative chemotherapy or 

radiotherapy (n = 15), other malignancy within 5 years prior to NSCLC diagnosis (n = 39) or 

inadequate paraffin-embedded surgical specimens (n = 26). In paper 3, patients with BAC ≤ 3 cm 

were also excluded (n = 11), in papers 1-2 the BACs were included in the adenocarcinomas. However, 

following the histological re-review to conform to the 2015 WHO guidelines it was revealed that the 

11 previously excluded BACs ≤ 3 cm in our cohort, presumed to represent adenocarcinoma in situ, 

                                                           
 

∗ According to the 7th UICC TNM classification.   
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were in fact invasive carcinomas. Consequently, these patients were re-included in the cohort for 

paper 4.   

Our current database (as of Dec 31, 2016) consists of 553 patients (335 from original cohort, 218 

from the expansion).  In paper 3, two additional cohorts of stage I-IIIA NSCLC were included for 

validation:  these were from Oslo University Hospital, the Norwegian Radium Hospital (OUS), Oslo, 

Norway (n = 295), and Odense University Hospital (OUH), Odense, Denmark (n = 178).  



32 
 

3.2 TMA construction 

All included samples were subject to careful histological review by an experienced pathologist. The 

most representative paraffin blocks were selected, and two areas of neoplastic epithelial cells and 

two from tumor stroma were marked on hematoxylin and eosin (H&E) slides to guide sampling for 

the recipient TMA blocks. A tissue-arraying instrument (MTA-1, Beecher Instruments, Silver Springs, 

USA) was utilized to construct the TMAs.  To perform the assembly, the recipient block was placed in 

a holder. Using the marked H&E slide as a guide, the donor block was punched to a retrieve 0.6 mm 

cylindrical tissue core, before a stylet guide the extrusion of the tissue core into the recipient block. 

From each primary tumor two cores of neoplastic epithelium and two of tumor stroma were 

included. Two cores were included from one suitable metastatic lymph from the patients with lymph 

node metastasis. In addition, normal tissue distant from the primary tumor was included in the TMAs 

to serve as controls for tissue staining. Fifteen TMA blocks were constructed, twelve of primary 

tumor and three of metastatic lymph nodes.  From these blocks, 4-μm sections were cut with Micron 

microtome (HM355s), with individual slides containing up to 288 separate tissue cores. The TMA 

construction in the Danish 142 and Oslo 143 cohorts was mostly similar, however a core size of 1 mm 

was used. For the Oslo cohort the number of cores per patient included was variable (minimum three 

cores), in the Danish cohort two cores from the central tumor and two from the invasive margin 

were included.      

3.3 IHC procedure 
For paper 1, antigen retrieval was performed by placing the specimens in 0.01 m citrate buffer at pH 

6.0 and exposing them to repeated (2) microwave heating of 10 min at 450 W. The slides were 

incubated with antibodies in the Ventatna Benchmark, XT automated slide stainer. Endogenous 

peroxidase was blocked using the Dako EnVision+ System-Horseradish Peroxidase [diaminobenzidine 

(DAB)] kit (Dako, Glostrup, Denmark). The DAB kit was used to visualize the antigens by application of 

liquid diaminobenzidine and substrate-chromogen, yielding a brown reaction product at the reaction 

site.  

For paper 2, Endogenous peroxidase was blocked by incubation in 3% hydrogen peroxidase for 10 

minutes. Sections were blocked in 5% goat or rabbit serum for 1 hour before overnight incubation 

with the primary antibodies at 4ºC. The primary antibodies were visualized by adding a secondary 

biotin-conjugated antibody followed by an Avidin/Biodin/Peroxidase complex (Vectastain ABC Elite-

kit, Vectastain) and substrate (Vector NovaRed, Vectastain).  

For paper 3, endogenous peroxidase activity was quenched using 3% hydrogen peroxide in all 

cohorts. In the Norwegian cohorts, the Ventana Benchmark, XT automated slide stainer was used for 



33 
 

immunohistochemistry (IHC). The slides were baked for 60°C overnight, deparaffinized, and 

submitted to heat-induced epitope retrieval. Cell conditioning-1 protocol (CC1 Mild) for 30 minutes 

at 95°C epitope retrieval was used for Tromsø/Bodø cohorts and CC1 Standard for 60 minutes at 95°C 

for the Oslo cohort. After application of primary antibody the slides were incubated for 32 minutes at 

36°C, followed by washing in buffer and visualization. Visualization was done with the Iview DAB 

Detection Kit for Tromsø/Bodø cohorts and the ultraview DAB Detection Kit for the Oslo cohort. In 

the Danish cohort, the Ventana Benchmark, Ultra automated slide stainer was utilized. Slides were 

baked at 75°C for 4 minutes, deparaffinized in EZ Prep, and submitted to heat-induced epitope 

retrieval. CC1 Mild for 36 minutes at pH 8.5 and 99°C was used. The primary antibody was applied 

and the slides were incubated for 32 minutes at 36°C, followed by washing in buffer and visualization 

using the OptiView DAB Detection Kit. For all cohorts 3,3′-diaminobenzidine was used as the 

chromogen. To validate the different IHC procedures, additional TMA slides from the Danish cohort 

were stained with the procedure used for the Oslo cohort.  

For paper 4, staining was performed with the Ventana Discovery-ULTRA autostainer. Antigen 

retrieval was done with Ventana Ultra Cell conditioning for 40 minutes a t95°C. Sections were 

incubated antibody for 44 min at 36°C. The secondary antibody (UltraMap anti-rabbit HRP, #760-

4315, Ventana) was loaded for 20 minutes, followed by 8 minutes of HQ-HRP amplification. 

Visualization was done with the discovery purple kit (#760-229, Ventana) with 32 min incubation. 

Counterstaining was performed using hematoxylin II (#790-2208, Ventana) for 28 minutes and then 

with a bluing reagent (#760-2037, Ventana) for 4 minutes.    

3.3.1 Antibodies 
The antibodies used in paper 1 were subject to validation by the manufacturer for IHC analysis on 

paraffin-embedded sections. In paper 2, we validated the antibodies by western blots combined with 

siRNA knockdown. For paper 3, well validated CD8 antibodies that are in routine clinical use were 

utilized. For paper 4, validation was performed with western blots of overexpressed cell lysate. For all 

antibodies, we chose positive tissue controls according to the manufacturers’ recommendation. 

Negative reagent control was done by replacing the primary antibody with an antibody diluent. Only 

antibodies validated and recommended by the manufacturer for IHC analysis on paraffin-embedded 

material were used for the papers presented in this thesis (Table 1).  
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Table 1. Antibodies  
Antibody Vendor Clone Host species and clonality Primary antibody titer  
Paper 1 
CD1a Ventana (Roche) JMP Mouse monoclonal  Prediluted 
CD3 Ventana (Roche) PS1 Mouse monoclonal Prediluted 
CD4 Novacastra 1F6 Mouse monoclonal 1:5 
CD8 Ventana (Roche) 1A5 Mouse monoclonal Prediluted 
CD20 Ventana (Roche) L26 Mouse monoclonal Prediluted 
CD56 Ventana (Roche) 123C3.D5 Mouse monoclonal Prediluted 
CD68 Ventana (Roche) KP1 Mouse monoclonal Prediluted 
CD117 Ventana (Roche) 9.7 Mouse monoclonal Prediluted 
CD138 Ventana (Roche) B-A38 Mouse monoclonal Prediluted 
M-CSF Santa Cruz biotechnology polyclonal Rabbit polyclonal 1:25 
CSF-1R Santa Cruz biotechnology polyclonal Rabbit polyclonal 1:5 
Paper 2 
CXCL16 Abcam polyclonal Rabbit polyclonal 1:100 
CXCR6 Abcam polyclonal Goat polyclonal 1:100 
Paper 3     
CD8a  Ventana (Roche) 1A5 Mouse monoclonal Prediluted 
CD8b Roche SP57 Rabbit monoclonal Prediluted 
CD8c Dako C8/144B  Prediluted 
Paper 4  
LAG-3 Cell Signaling D2G4O Rabbit monoclonal 1:50 
a Used in the UNN (Tromsø) and NH (Bodø) cohorts.  
b Used in the OUS (Oslo) cohort and for the second staining of the OUH (Odense, Denmark) cohort. 
c Used for the first staining of the OUH (Odense, Denmark) cohort.  
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3.4 Scoring 
In the present studies, the biomarkers examined have been scored on a four-tiered ordinal scale, 

representing the intensity or density of staining. For density arbitrary cutoffs of 1%, 5%, 25% or 50% 

for each cell/compartment were chosen as these percentages are simple to follow. For intensity, 

were applicable, the following scale of staining was used 0=absent, 1=weak, 2=intermediate, 

3=strong. Depending on the marker and its pattern of expression, staining was assessed in the tumor 

epithelium (cancer cells), the tumor stroma adjacent to tumor epithelium, or in the immune cells 

localized to the intraepithelial compartment (enclosed by tumor epithelial cells).  

For all papers, the stained sections were scored independently by two scorers. For papers 1 and 2, 

the scorers were experienced pathologists. For paper 4, scoring was performed by two experienced 

microbiologists under supervision of an experienced pathologist. For paper 3 scoring was performed 

by two experienced pathologists in the Norwegian cohorts, and one pathologist and one oncologist 

in the Danish cohort. Additionally, as previously mentioned, the Danish cohort was reevaluated and 

scored by the same pathologist as in the Norwegian Oslo cohort for validation of the scoring 

procedure.       

In paper 1, most of the examined immune cell markers showed homogenous staining intensity and 

were accordingly scored according to density (percentage of positive cells compared to the total 

amount of nucleated cells) in the tumor epithelial (T) and stromal (S) tissue compartments and 

dichotomized to low and high expression. For the following markers, the percentage of stained cells 

in the respective compartments determining high expression are given in parenthesis: CD1a (S ≥1%, T 

≥1%), CD3 (S >50%, T ≥1%), CD4 (S ≥25%, S ≥5%), CD8 (S >50%, T >5%), CD20 (S ≥1%, T ≥1%), CD68 (S 

≥25%, T ≥1%), CD138 (S >25%, T >5%). CD56 expression was rare in both tumor and stromal 

compartment and was scored only as present (high) or absent (low). Similarly, CD117 was only 

scored as present or absent, but only in the stromal compartment. CD138 was also expressed in the 

tumor cells were it was scored according to intensity, high expression was defined as a score >1. M-

CSF and CSF-1R were scored according to intensity in the tumor cells, with high expression defined as 

a score ≥1.5 for both M-CSF and CSF-1R. In the stromal compartment, the intensity score was added 

to density score before dichotomization. The cell density score of the stroma was defined as the ratio 

of positive cells compared to the surface area of the extracellular matrix: 1 = low density (<25% 

cell/matrix ratio); 2 = intermediate density (25–50%) and 3 = high density (>50%). High expression 

was >3.5 for M-CSF and >3 for CSF-1R.  

In paper 2, density was assessed for stromal CXCL16 and tumor cell CXCR6 and scored in the 

following manner 0 = no cells showing positivity, 1 = less than 25 % positivity, 2 = 25-50 % positivity, 

and 3 = 50-100 % positivity. This score was added to the intensity score. High tumor cell CXCR6 was 
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defined as a score ≥5.5, high stromal cell CXCL16 was defined as a score ≥3. CXCL16 in tumor cells 

was scored according to intensity only, with a high score defined as ≥2.5. 

In paper 3, the Tromsø cohort was used as a training set, with the following scoring cutoffs for 

stromal CD8 density: 0-5% = 0, 5-25% = 1, 25-50% = 2 and > 50% = 3. Only two patients in the training 

set had an average or maximum of 0, consequently score 0 and 1 were merged. The following cutoffs 

were therefore examined in validation sets: Low density: ≤ 25%; intermediate density: >25% ≤ 50%; 

high density: > 50%.     

In paper 4, LAG-3 expression on immune cells was assessed in the stromal and intraepithelial 

compartments in primary tumors. In the metastatic lymph nodes, the intraepithelial and 

extraepithelial were scored. In the intraepithelial compartments the number of intraepithelial LAG-3 

+ cells were counted in each core and scored according to the following scale: 0 = absent, 1 = 1-9, 2 = 

10-50, 3 = >50. In stromal and extraepithelial compartments LAG-3 was scored according to the 

percentage of immune cells displaying positivity: 0 = absent, 1 = 1-24%, 2 = 25 -50%, 3 = > 50%. A 

high score was defined as mean core score of > 0 for intraepithelial compartments, and >0.5 for 

stromal and extraepithelial compartments.                  

3.5 Cutoff determination 
Mean values for the duplicate stromal and tumor tissue cores were calculated and used to determine 

cutoffs for dichotomization in papers 1,2 and 4. For markers that were scored according to density 

and intensity, the mean values were summed before dichotomization. In paper 3, the maximum 

score for each patient was used, as it resulted in the optimal significant prognostic impact. For all the 

paper in this thesis cutoff were selected using a minimum p-value approach; i.e. dichotomizing 

makers based on the lowest value of the log-rank test statistic. The cutoff chosen is thus the one 

which best differentiates the two groups according to disease-specific survival (DSS).   
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3.6 Statistical methods 
Statistical analyses were performed using using the statistical package IBM SPSS, versions 20-24. 

(IBM Corp., Armonk, NY, USA) and Rstudio 1.0.44 (RStudio: Integrated Development for R. RStudio, 

Inc., Boston, MA, USA) with the libraries “survival” 144, “ggplot2” 145 and “survminer” 146. Two sided P-

values < 0.05 were considered statistically significant.  We used DSS, defined as the time from 

surgery to death of lung cancer, as the primary endpoint. Additionally, OS, defined as time from 

surgery to death of any cause, and disease-free survival (DFS), defined as time from surgery to first 

lung cancer recurrence, were examined as secondary endpoints. Correlations between molecular 

markers were calculated using Spearman’s rank correlation analysis. Relationships between 

clinicopathological variables and molecular marker expressions were assessed with the χ2 or Fischer 

exact test. The Kaplan-Meier method was utilized in univariate survival analysis of clinicopathological 

variables and molecular markers. Statistical significance of differences between survival curves was 

assessed with the log-rank test. For multivariate analysis the Cox Proportional Hazards model was 

used utilizing the backward conditional method for model fitting. Probability for stepwise entry and 

removal set at 0.05 and 0.10, respectively. Significant variables from univariate analysis were entered 

into the multivariate model.    

The original sample size calculations performed for this study indicated that 300 subject were 

needed to achieve a power of 80% at an alpha of 5% (PASS 2002, Number Cruncher Statistical 

Systems, Kaysville, Utah, USA). This calculation used DSS as the primary endpoint, presumed that a 

50% increase in hazard from a given marker represented a clinically significant effect, that the 5-year 

DSS of NSCLC is approximately 60% and that the frequency of the given marker was 35% 147.   
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3.7 RNA interference and proliferation assay  
In paper 2, we used siRNA technology to study the effects of CXCL16 expression on cell proliferation. 

RNA interference (RNAi) is a conserved biological response to double-stranded RNA which inhibits 

gene expression, typically by causing destruction of specific mRNAs. Small interfering RNA (siRNA) 

are the main effectors of RNAi, and synthetic siRNA can be constructed to knock down the 

expression of a specific gene 148. The commercial NSCLC cell lines utilized were NCI-H460 (Large cell 

carcinoma) and A549 cells (adenocarcinoma). To monitor the effect of the siRNA we employed the 

xCelligence RTCA DP system (Roche). By measuring impedance thru micro-electrodes on the bottom 

of tissue culture plates, the system allows for real time assessment of cell numbers and doubling 

time.     

3.7.1 Assay procedure 
The detailed experimental procedures for the siRNA experiments, including cell culture conditions 

and reagents, are described in paper 2. In short, the cells were typsinized briefly for detachment, 

before resuspension in growth media and counting. They were then seeded as duplicates into E-

plates, which were incubated in room temperature for 1 hour before transfer to the xCelligence 

instrument. Six hours post seeding the siRNA transfection mix was added, and after further 4 hours 

replaced with regular growth media. The cell index (the unit of the cell-sensor impendance) was 

measured every 15 minutes for the first 4 hours of the experiment, subsequent measurements were 

taken every 30 minutes.    

3.8 Ethics 
Study approval was obtained from the respective regional ethical committees (Tromsø and Bodø: 

protocol ID: 2011/2503; Oslo: protocol ID 2009/1904; Denmark: protocol ID: 20080018). 
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4. MAIN RESULTS  

4.1 Patient characteristics  
Table 2 gives an overview of the clinicopatological characteristics of the different patient cohorts 
examined in this thesis. Detailed tables for the separate cohorts and the influence of 
clinicopathological variables on survival are presented in the respective papers.  

Table 2. Clinicopathological characteristics for the separate cohorts examined in each paper (1-4) 
 Paper 1 Paper 2 

 
Paper 3, 
training 
cohort 

Paper 3, 
validation 
cohort  

Paper 3, 
validation 
cohort. 

Paper 3, 
validation 
cohort 

Paper 4 
 

Hospital UNN + NH UNN + NH UNN NH OUS OUH UNN + NH 

Number of patients 55 335 155 169 295 178 553 

Time of inclusion 1990–2005 1990–2005 1990–2005 1990–2005 2006–2011 1992–1999 1990–2010 

Median age 65 (39–76) 67 (28–85)  67 (39–85) 67 (28–82) 67 (39–84) 64 (39-82) 67 (28–85)  

Last follow–up Jan 2011 Jan 2011 Jan 2011 Jan 2011 March 
2014 

Jan 2010 Oct 2013 

Median follow–up 
of survivors 
(months) 

113  
(73–197) 

105  
(72–234) 

111  
(6–222) 

103  
(73–234.0) 

52  
(35–99) 

162  
(121– 211) 

86  
(34–267) 

Median DSS 
(months) 

44 190 121 190 NR 116 190 

Median DFS 
(months) 

44 119 80 178 87 92 68 

Median OS 
(months) 

24 45 47 42 79 50 47 

5-year DSS (%) 44 58 57 58 69 57 58 
5-year DFS (%) 46 55 51 57 61 53 52 
5-year OS (%) 33 44 45 42 60 47 45 
Hospitals (city, country): UNN = University hospital of North Norway (Tromsø, Norway); NH = Nordland Hospital (Bodø, Norway); 
OUS = Oslo University Hospital (Oslo, Norway); OUH Odense University Hospital (Odense, Denmark).  
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4.2 Paper 1 

Radiotherapy may stimulate the anti-tumor immune response and radiotherapy and immunotherapy 

can have synergistic effects. We explored the prognostic significance of different immune cell 

markers in a subgroup of NSCLC (N=55) patients treated with postoperative radiotherapy (PORT). 

 4.2.1 Univariate analysis 

Tumor epithelial and stromal expression of CD1a+, CD3+, CD4+, CD8+, CD20+, CD56+, CD68+, 

CD117+ and CD138+ cells, as well as M-CSF and CSF-1R, was assessed by immunohistochemistry. 

High expression of CD4 (P <0.001) and CD1a (P=0.025) were significantly associated with an improved 

DSS. A combined high stromal expression of CD4 and CD8 was also a positive factor for DSS (P 

<0.001).   

4.2.2 Multivariate analyses 

Compared to patients with a combined high stromal CD4 and CD8 expression, the patients with a 

combined low CD4 and CD8 expression had a hazard ratio of 21.2 (95% CI: 4.5 - 120.4, P < 0.001), 

while the other CD4/CD8 combinations had a hazard ratio of 1.8 (95% CI: 0.4-8.4, P = 0.430). Low 

stromal CD1a expression had a hazard ratio of 2.5 (95% CI: 0.97 – 6.2, P = 0.058) compared to high 

expression.   
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4.3 Paper 2∗ 

The chemokine CXCL16 and its receptor CXCR6 are expressed on a variety of immune cells, and has 

been significantly correlated with prognosis in various cancers. We explored their 

immunohistochemical expression and prognostic impact in a cohort of 335 NSCLC patients. The 

utilized antibodies were validated by western blots and siRNA knockdown. We examined the effects 

of CXCL16 on cell proliferation by performing siRNA mediated knockdown in two NSCLC cell lines.  

4.3.1 Expression and correlations 

CXCL16 was expressed both in stromal and cancer cells, whereas CXCR6 expression was only 

detected in cancer cells. The stromal cells displaying positivity for CXCL16 were fibroblasts, 

endothelial cells, macrophages and plasma cells. There were no significant correlations between 

CXCL16 or CXCR6 and innate (CD68m CD56, CD1a) or adaptive (CD4, CD8, CD3, CD20) immunological 

markers. Stromal and cancer cell CXCL16 correlated significantly (r = 0.368, P <0.01), whereas the 

expressions of CXCR6 and CXCL16 in cancer cells did not.  

4.3.2 Univariate analysis 

High expression of CXCL16 in stromal cells was associated with improved DSS (P = 0.016). 

Additionally, the combination of high stromal CXCL16 and high cancer cell CXCL16 was associated 

with an improved DSS (P = 0.016). Neither cancer cell CXCL16 nor CXCR6 had significant association 

with DSS in univariate analyses.   

4.3.3 Multivariate analysis 

Stromal CXCL16 and the co-expression variable of stromal and cancer cell CXCL16 were entered into 

two separate multivariate analyses, together with significant clinicopathological variables. In the first 

model, high expression of stromal CXCL16 was an independent positive prognosticator (HR: 0.55; 

95% CI: 0.35 -0.87, P = 0.011). Similarly, combined high expression of CXCL16 in cancer and stromal 

cells was an independent prognostic factor for an improved DSS (HR: 0.42; 95% CI: 0.20-0.88, P = 

0.022), when compared to combined low expression.  

4.3.4 Cell proliferation 

Utilizing the xCELLigence platform, we observed that knockdown of CXCL16 with siRNA caused 

increased proliferation compared to the negative scrambled control (P < 0.001). Similar effects were 

observed in two different NSCLC cell lines: A549 and NCI-H460.  

                                                           
 

∗ Table 2 and Table 3 for this paper contain some errors, as the first author erroneously supplied an early draft 
of these tables to the journal editorial office. The correct versions of the tables are appended at the end of 
paper 2.  
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4.4 Paper 3 

Evidence suggest that in situ immune cell infiltrates can be prognostic in many cancers, including 

NSCLC. We have previously investigated various immune cell markers in NSCLC, with stromal CD8 + 

tumor infiltrating lymphocytes (TILs) as the most promising markers 116. Hence, we aimed to validate 

the prognostic impact of stromal CD8 TILs in four different cohorts from Norway and Denmark, 

compromising a total of 797 NSCLC patients.    

4.4.1 Univariate analysis 

In the total material, stromal CD8+ density had significant prognostic impact using three different 

endpoints: DFS (P < 0.001), DSS (P < 0.001), and OS (P < 0.001). The corresponding 5-year survival 

rates for high, intermediate and low score were 68%, 59%, and 43% for DFS; 74%, 63%, and 49% for 

DSS; and 61%, 50%, and 41% for OS. For each separate cohort, the prognostic impact using DSS as 

the endpoint was as follows: Tromsø (P = 0.004), Bodø (P = 0.242), Oslo (P = 0.295), and Odense (P = 

0.009). Using DSS as the endpoint, CD8+ density had significant prognostic impact in all subgroups 

when stratified by histology and pathological stage. In the Danish cohort, analysis of CD8+ density 

was also stratified by the location of the tissue cores (central tumor versus the invasive margin). With 

DSS as the endpoint, the prognostic impact of stromal CD8+ density was highly significant at the 

invasive margin (P = 0.008) but not in the central tumor (P = 0.67).   

4.4.2 Multivariate analysis 

Pathologic stage, tumor differentiation, and stromal CD8+ density were independent prognostic 

factors for all endpoints.  With DSS as endpoint, HR was 1.48 (95% CI: 1.05 – 2.09, P = 0.026) for 

intermediate and 2.31 (95% CI: 1.61 – 3.31, P = 0.001) for low, when compared to the reference of 

high stromal CD8 + density (P <0.001 overall significance as a prognostic factor).   
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4.5 Paper 4 

LAG-3 is in immune checkpoint molecule involved in the negative regulation of T-cell responses. We 

sought to investigate the prognostic impact of LAG-3 in resection specimens from 553 NSCLC primary 

tumors and 143 metastatic lymph nodes and asses potential for inclusion in NSCLC Immunoscore.  

4.5.1 Expression and correlations 

LAG-3 displayed a homogenous membranous/diffuse cytoplasmic staining, and its expression was 

confined to tumor-infiltrating lymphocytes (TILs).  The expression of LAG-3 in stromal and 

intraepithelial compartments was significantly correlated (r=0.63, P<0.001), as was the expression in 

intraepithelial and extraepithelial compartments in the metastatic lymph nodes (r=0.60, P<0.001). 

LAG-3 expression was strongly correlated to multiple immune cell markers including CD8, CD3, CD4 

and PD-1.  

4.5.2 Univariate analysis 

Expression of LAG-3 in intraepithelial (P=0.003) and stromal (P<0.001) compartments in primary 

tumors was associated with an improved DSS. In the metastatic lymph nodes, expression of LAG-3 in 

the intraepithelial and extraepithelial compartments was associated with improved DSS. Neither 

intraepithelial nor stromal LAG-3 in primary tumors had significant prognostic impact across all 

pathological stages, and combining their expression with other immunological markers did not 

improve patient stratification according to DSS.  

4.5.3 Multivariate analysis 

In a multivariate model were stromal and intraepithelial LAG-3 were assessed with stromal CD8, 

intraepithelial CD45RO, stromal PD-1+tumor PDL-1 and clinicopathological variables, stromal LAG-3 

remained an independent predictor of improved DSS (HR 0.59, 95%CI 0.43-0.82, P=0.002). Both 

intraepithelial (HR 0.61, 95% CI 0.38-0.99, P=0.049) and extraepithelial (HR 0.54, 95% CI 0.29-0.70, 

P<0.001) LAG-3 in the metastatic lymph nodes were associated with an improved DSS in multivariate 

models.     
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5. DISCUSSION 

5.1 Methodological considerations 

5.1.1 Patient cohorts 

A strength of this thesis is that the included patients in our primary cohort compromises 

approximately 90% of all operated NSCLC patients in our region during the inclusion period, reducing 

the risk of selection bias. Patients who received neoadjuvant treatment or were diagnosed with a 

separate malignancy within 5-years of lung cancer diagnosis were excluded. This was done as 

neoadjuvant therapy may affect the lung cancer microenvironment (e.g. attract immune cells), 

similarly a previous malignancy may affect the response to a new primary malignancy.  

Our results may potentially be confounded by the long inclusion time, as there have been changes in 

post-surgical treatment over time, notably with the introduction of adjuvant chemotherapy in 2005. 

Additionally, our database lacks information on how clinical staging has been performed. As the 

clinical staging improves (e.g. because of PET-scans), there is a risk of stage migration. Consequently, 

the survival may improve as more cases of advanced (i.e. inoperable) disease is recognized as 

advanced rather than limited disease, and therefore not included in the dataset 149.    

We chose DSS as our primary endpoint in this study. Many patients with lung cancer are elderly and 

suffer co-morbidities; consequently, they may die of other causes than lung cancer. We believe DSS 

may be more relevant endpoint than OS when investigating a novel prognostic marker. This way, we 

may more specifically relate marker expression to the underlying biology of the disease. There exists 

a risk that using DSS as an endpoint may result in some misclassifications, however, we critically 

reviewed all cases according to patient files. We also examined DFS was as an endpoint, but as this 

was a retrospective study and the follow-up of the patients was not standardized, DFS estimates are 

potentially less accurate. The retrospective nature of this study has also limited our ability to collect a 

detailed smoking history for the patients. For the same reason, we were unable to explore the 

influence of relevant and interesting comorbidities such as COPD and autoimmune diseases.  

5.1.2 Histopathology and staging 

The histological and pathological classification of NSCLC in constantly evolving. Accordingly, we have 

updated our database during the course of this study as changes were implemented. Thus, paper 4 

differs from the other papers with regards to histology and TNM classification. While this makes 

direct comparisons between the studies somewhat more difficult, we nevertheless believe it is 

important to use the classifications that reflect the current scientific consensus.  A weakness of our 
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database is that it lacks information on key driver mutations (e.g. EGFR, KRAS, ALK), which could be 

highly relevant in relation to both patient prognosis and marker expressions.  

5.1.3 TMA: Advantages and disadvantages 

TMAs have several advantages when compared to conventional histological slides. If not using TMAs, 

histologic sections would have to be cut individually from potentially hundreds of separate paraffin 

blocks. These sections then would need to be stained in multiple successive procedures, before being 

subject to evaluation by a pathologist to identify areas of tumor and asses the level of staining. When 

investigating multiple markers, this time consuming process must be fully repeated. In contrast, after 

construction, TMAs facilitate the rapid analysis of multiple markers using only one slide from each 

TMA block per investigated marker. As the tissue cores included in a TMA are selected by an 

experienced pathologist, scoring of a stained biomarker can often reliably be done by a non-

pathologist 135. The limited number of sections needed for staining has an important advantage in 

reducing experimental variability, as all cases and controls can be stained under the same 

experimental conditions. TMAs also have the obvious benefit of preserving original tissue, as only 

small cores are used from each donor block, amplifying the number of assays that can be performed 

per archived sample by up to a thousandfold 135. Additionally, TMAs facilitates the sharing of samples 

between research laboratories.  

Ever since the introduction of TMA technology, concerns have been raised about the small diameter 

of the tissue cores. Tissues, and especially tumors, are commonly heterogeneous and different parts 

and cells of a tumor may display significant genetic differences which can be difficult to recognize on 

0.6 mm tissue spots 150. Nevertheless, it should be noted that conventional whole sections have 

similar issues regarding representativity; for a tumor with a diameter measured in centimeters a 

conventional tissue section will only ever represent a fraction of the total tumor volume 151. While 

some information may be lost when using TMAs compared to whole sections, the sampling error is 

diluted when a large cohort is analyzed 135.  A number of studies have validated the TMA method by 

reproducing well recognized associations between biomarker expression and patient prognosis 151-153.  

In NSCLC, acceptable agreement has been demonstrated between whole sections and TMA when 

comparing well characterized markers in tumor cells 154-156. While two 0.6 mm tissue cores often 

adequately represent whole sections, the concordance between whole sections and TMAs may vary 

between different markers and tissues 135,142.  
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Table 3. Advantages and disadvantages on TMAs 

 

Advantages Disadvantages 

Time saving, high-throughput method  TMA construction can be challenging and 

requires  technical expertise  

Increased utilization of limited tissue resources  Validity may be reduced for heterogeneously 

expressed biomarkers 

Reduced experimental variability  Loss of tissue cores on cut sections may 

reduce statistical power  

Scoring by non-pathologists feasible   Tumor content may change through the 

length of a tissue core 

Ease of sharing with other laboratories Not validated for individual diagnosis 

Decreased experimental costs and assay volume  

 

5.1.4 Immunohistochemistry 
Adequate fixation is a prerequisite for optimal staining results by IHC. Since this study is 

retrospective, variations in fixation times and other preanalytic factors over time and between the 

different hospitals may have influenced our results. Additionally, there is a concern that long-term 

storage may affect antigenicity even of adequately fixated tissues 157. However, even 60-year 

paraffin-embedded specimens have been shown to retain their antigenicity for commonly used 

diagnostic markers 158,159. Reassuringly, we have not seen significant differences in staining intensities 

and distributions between older and newer samples for our examined markers. In paper 3, the 

staining distribution for the four hospitals was largely similar.  

5.1.5 Cutoff selection and scoring 

For most biomarkers (including those examined in this thesis) a common reference standard for 

scoring is lacking, leaving the method of scoring and cutoff determination at the choice of the 

investigators, which in turn can make comparing results from different studies challenging 160. While 

numerous different scoring strategies for IHC exist (e.g. Allred, IRS and H-score), none of them have 

been validated for the markers covered in this thesis.  We examined all markers using a semi-

quantitative approach similar to what we have used in previous studies 116,161. This method is simple, 

pragmatic, and time-efficient, and facilitates comparisons with our previously investigated markers. 

In the papers presented in this thesis, we have chosen cutoffs by a minimum p-value approach. As 

our approach has been explorative and hypothesis generating, we consider this approach is 
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appropriate. A danger of choosing an optimal cutoff it that it increases the risk of false positive 

results (type 1 error) 162. Choosing the mean or median as a cutoff reduces this risk, however it may 

not be the cutoff that best describes the underlying biology of the marker, which may result in false 

negative results (type 2 error).  Regardless of the choice of cutoff, replication of results in an 

independent cohort is necessary for validation of a putative prognostic marker. In paper 3, we were 

able to investigate one of our markers in this manner, using a part of our initial cohort (the UNN, 

Tromsø cohort) as a training set for cutoff determination and then examining this predefined cutoff 

in three validation sets.  
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5.2 Discussion of main results 

5.2.1 The in situ immune infiltrate in patients treated with adjuvant radiotherapy.  

In this study, we evaluated a number of innate and adaptive immune markers in NSCLC patients 

treated with PORT, and found that a combined low density of CD4 and CD8 in the stromal 

compartment was associated with a dismal DSS.  Both increased CD4 and CD8 have previously been 

shown to be linked to improved prognosis in NSCLC 116,163, though to our knowledge, no other studies 

have examined their prognostic impact in NSCLC patients treated with PORT.   

This study has several limitations, the most important being the low sample size. Therefore, the 

obtained results must be interpreted with caution, as a limited number of events contribute to the 

observed hazard ratios. Additionally, some patients in this study received PORT for N1 disease, which 

is now known to adversely affect prognosis 112. Norwegian guidelines currently recommend PORT for 

patients with tumor-positive resection margins and those with N2 disease 35. However, the use of 

PORT in N2 disease remains controversial and will be clarified by ongoing clinical trials 112.  

In head and neck cancer, a retrospective study of 101 patients undergoing definitive 

chemoradiotherapy, high levels of intraepithelial CD3 and stromal CD8 cells were found to be 

indicative of improved survival 164. It is not possible to tell if the improved survival seen in patients 

with increased T-cell infiltrates represent an increased sensitivity to radiotherapy. However, multiple 

pre-clinical studies show a close connection between the immune system and the effects of 

radiotherapy. Studies in mice have shown that effective ablative radiotherapy is at least partly 

dependent on T-cells 165.  Tumor cell death induced by radiotherapy causes release of multiple 

molecules in the tumor microenvironment, which in turn can lead to activation of dendritic cells and 

priming of effector T-cells 166. Radiotherapy can also enhance the diversity of the T-cell receptors 

expressed by intratumoral T-cells 167.  While radiotherapy can induce T-cell responses, it can also 

stimulate recruitment of immunosuppressive macrophages 168. Indeed, the immunosuppressive 

microenvironment present in most cancers may mask pro-immunogenic effects of radiotherapy 169. It 

is therefore tempting to speculate that an increased adaptive immune infiltrate represents a less 

immunosuppressive tumor microenvironment more receptive to radiotherapy. Combining 

radiotherapy with various forms of immunotherapy has shown efficacy in multiple pre-clinical 

models of cancer 115. Multiple clinical trials evaluating the effect of combining these treatment 

modalities are currently underway in NSCLC 170 .   

Multiple studies have shown that an increased infiltration of TILs (CD8+ cells in particular) are 

associated with improved outcomes in NSCLC 116,171. Stereotactic radiotherapy is increasingly used as 

a curative treatment modality in inoperable early stage NSCLC 172. Because of the noted link between 
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radiotherapy and immune responses, it has recently been suggested that the prognostic impact of 

the immune infiltrate should be considered also in patients treated with stereotactic radiotherapy 
173. In light of the results presented in our study, we suggest that this evaluation should also be 

carried out in future trials of PORT in NSCLC.  

5.2.1 CXCL16 and CXCR6 
This study demonstrated that high expression of stromal CXCL16 was an independent positive 

prognosticator (HR: 0.55; 95% CI: 0.35 -0.87, P = 0.011), as was the combined expression CXCL16 in 

cancer and stromal cells (HR: 0.42; 95% CI: 0.20 -0.88, P = 0.022). Our results were supported in cell 

experiments, where knockdown of CXCL16 with siRNA caused increased proliferation. 

While CXCR6 and CXCL16 expression has been observed in many human cancers, only a limited 

number of studies have investigated their impact on prognosis. Of these studies, none include 

independent validation cohorts, making it difficult to reach firm conclusions regarding outcome. 

However, results indicate that CXCR6 and CXCL16 has disparate impacts on survival in different 

malignancies, reflecting the multifaceted roles of these chemokines in cancer biology. In colorectal 

cancer, high levels of CXCL16 in tumor tissues have been correlated with a worse prognosis 123. This 

was linked to increasing levels of infiltrating lymphocytes CD4+ and CD8+ lymphocytes 123. However, 

in our cohort we found no correlation between CXCL16 or CXCR6 and markers of lymphocytes and 

other immune cells. In gastric cancer, nuclear CXCL16 expression was linked to improved survival in 

univariate analysis 174. In renal cancer, a study of 104 resection specimens found increased CXCL16 

expression to be correlated with improved survival 124. Using siRNA to silence CXCL16 expression, 

reduced migration of renal cancer cell lines was noted. Normal lung and renal tissue both 

constitutively express CXCL16. Thus, loss of or aberrant CXCL16 expression may play a role in cancer 

development in these tissues, however, this remains to be confirmed experimentally. Experimental 

evidence also suggests other mechanisms for an anti-tumor effect of CXCL16 and CXCR6 in cancer 

development. In CXCR6 knockout mice, liver metastasis from Lewis lung carcinoma cells was 

increased compared to wild-type mice 175. Similarly, liver metastasis increased in wild-type mice 

treated with an anti-CXCL16 antibody 175 .  

Increased expression of CXCL16 and CXCR6 in prostate cancer 176 and CXCR6 121 in liver cancer has 

been linked to poor prognosis. Notably, our research group has analyzed CXCR6 and CXCL16 

expression in prostate cancer, utilizing the same antibodies and TMA technology as in the present 

NSCLC study. In a multivariate analysis of 535 patients, increased levels of CXCL16 and CXCR6 were 

independent predictors for clinical failure in multivariate analysis 176. Pre-clinical evidence in prostate 

cancer models support this finding, where the CXCL16-CXCR6 axis has be linked to increased cancer 

cell invasiveness and bone metastasis 122,177.  
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To our knowledge, ours is the only study that has investigated the prognostic impact of CXCL16 and 

CXCR6 in NSCLC. However, other studies have also noted their expression in NSCLC resection 

specimens. Hu and colleagues analyzed CXCR6 expression in 33 NSCLC patients and found both 

CXCR6 and CXCL16 to be expressed in the majority of the examined tissues 178.  In cell line studies, 

they found that soluble CXCL16 or conditioned medium from NSCLC cell lines could improve the in 

vitro viability and invasiveness of NSCLC cell lines. Similar results shown by Mir and colleagues 179, 

may suggest that CXCL16 has different effects in NSCLC depending on whether it exists in soluble or 

transmembrane form. In ovarian cancer, elevated CXCL16 in patient serum was found to be an 

independent predictor of poor survival 180. While elevated serum CXCL16 has been noted in NSCLC 

patients compared to normal controls 179, the prognostic impact of this finding in NSCLC remains to 

be elucidated.  

5.3.1 Stromal CD8 
In our analysis of stromal CD8 in 797 NSCLC patients, we found that stromal CD8+ TIL density was a 

strong independent prognostic factor for DFS, DSS and OS for the patient material analyzed as a 

whole. While the prognostic impact was not statistically significant for all endpoints in all cohorts, we 

consistently observed a clear trend for improved survival for higher levels of stromal CD8.  

A major strength of this study is the large sample size. Additionally, the examined cutoffs were 

predetermined for the validation cohorts. When the TMA slides from Denmark were stained and 

reevaluated with the same IHC procedure as that used in the Oslo cohort, we found a significant 

correlation with the original staining scores and a similar impact on survival. Thus, the different 

staining procedures appear to have little impact on our results, furthermore the scoring of stromal 

CD8 is reproducible between different scorers. The different diameters used for the tissue cores in 

the different TMAs (0.6mm vs 1mm) may be a weakness in this study. However, we observed similar 

trends relating to survival regardless of core diameter.  

The prognostic impact of TILs has been investigated in numerous retrospective studies in NSCLC, the 

majority of these studies have also analyzed the impact of CD8+ T-cells specifically 100. In a 2015 

meta-analysis (where this study was included), both intraepithelial (cancer nest) and stromal CD8 

infiltration was associated with improved overall survival in NSCLC 104. However, stromal CD8 has 

previously been found to have the strongest prognostic impact in our cohort 116, and we therefore 

chose to analyze it further in the present study. In the Danish cohort, the positive prognostic impact 

of stromal CD8 was restricted to tissue cores taken from the tumor invasive margin. Unfortunately, 

we were unable to explore this finding in the other cohorts, as the sample location for the tissue 

cores was not recorded when these TMAs were constructed. However, the cores in the Norwegian 

cohorts are a mix of cores from the central tumor and tumor periphery. Hence, we assume that for 
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most patients a core from the invasive margin is in fact present, though the exact frequency is 

unknown. This may in turn contribute to explaining why the maximum CD8 density (not the mean) 

for each patient had the most significant impact on survival. 

Stromal CD8 seems to be a promising prognostic marker in NSCLC, as it has significant prognostic 

impact within each TNM stage, is reproducible, and is simply and readily detectable in patient 

samples. However, in order to be translated into the clinic, numerous issues must be addressed. 

While TMAs are an important research tool for biomarker discovery in large cohorts, their suitability 

for individual patient diagnostics remain unknown. Further, the best and most accurate method for 

quantification of immune cells (including CD8+ cells) in the tumor microenvironment in NSCLC 

remains unknown. Though CD8 has been associated with prognosis in numerous studies, significant 

heterogeneity exists between studies with regards to sampling (TMA vs whole sections, tumor nest 

vs stroma) and quantification (absolute count vs percentages, small vs. larger field views). A recent 

analysis investigated CD8 sampling strategies in 23 NSCLC resection specimens, comparing eight 

different sampling strategies to an absolute, automated CD8 count in whole sections 181. They found 

significant correlations between all eight sampling strategies and whole tumor counts; however, the 

most concordant results were derived from random sampling of 20 % of the tumor, a simulated core 

biopsy, or from sampling the tumor center. They found CD8 infiltration to be associated with survival 

when sampling the tumor center (p = 0.038), but not the invasive margin (p > 0.2) which contrasts 

with our findings in the Danish cohort. However, this study supports that estimation of CD8 in small 

samples (such as biopsies) allow for reasonably accurate estimates of CD8 counts in whole sections, 

though the sample size (n =23) of this study is small. Thus, the estimation of stromal CD8 might be 

feasible also for patients with unresectable NSCLC, though the prognostic impact in this patient 

group remains unknown.   

The scoring performed in our present study is subjective. The use of a three-tiered scale may be 

unsuitable in clinical practice, and a two-tiered scale will be considered in future studies. An 

approach incorporating digital pathology may allow for a CD8 enumeration that is more objective 

than manual scoring. Schalper and colleagues, who identified CD8+ TILs as an independent 

prognostic marker in NSCLC by multiplexed quantitative fluorescence, have shown the feasibility of 

such an approach on TMAs 182. 

In addition to stromal and intraepithelial CD8, multiple other immunological markers have potential 

for inclusion in an NSCLC immunoscore to supplement the TNM. A recent large trial incorporating a 

discovery set (one trial, 824 patients) and a validation set (three trials, 984 patients) found that 

increased TIL intensity  as evaluated by morhoplogical criteria on H&E sections was significantly 
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associated with prognosis 171. Similar results have been observed  our cohort of 553 NSCLC patients 

(M. Khanehkenari, personal communication). However, analyzing specific TIL subsets (such as CD8 

and CD45RO) and tumor compartments may enhance the prognostic value of TIL analysis in NSCLC.  

5.3.2 LAG-3 
In our cohort of 553 NSCLC patients, we found LAG-3 expression on TILs in both primary tumors and 

metastatic lymph nodes to be independently associated with improved survival.  

To our knowledge, this is the first study to investigate the prognostic impact of LAG-3 expression in 

metastatic lymph nodes. Interestingly, we found a significant prognostic impact of LAG-3 expression 

both in the intraepithelial and extraepithelial compartments. The impact of LAG-3 expression in the 

extraepithelial compartments was stronger and more significant than for the intraepithelial 

compartment, presumably because of some of examined cores lacked sufficient malignant 

epithelium and consequently not scored for intraepithelial LAG-3. A strength of our findings is the 

fact that the same cutoffs as previously established in the primary tumors could be successfully 

employed in the metastatic lymph nodes.  

A limited number of studies have examined the prognostic impact of LAG-3 expression in resection 

specimens using immunohistochemistry. In renal cancer, increased LAG-3 expression at the invasive 

tumor margin in a group of patients with increased CD8 infiltration (n=40) was associated with 

shorter overall survival 183. In head and neck cancer, increased LAG-3 expression on TILs was 

negatively associated with survival in a subgroup analysis of 78 patients without lymph node 

metastasis 184. However, a larger study of 402 patients found LAG-3 expression to be associated with 

improved survival, although this finding was not statistically significant 185.  In a NSCLC retrospective 

study of 139 patients, increased LAG-3+ TILs were associated with a worse prognosis in univariate 

analysis, however, this finding was not significant in the multivariate analysis 130. Similar to what we 

observed in our cohort, this study found LAG-3 expression on TILs in resection specimens. However, 

their results concerning outcome contrasts with ours. The longer follow-up and sample size in our 

study, in addition to methodological differences between the studies, may contribute to explaining 

this discrepancy.  

Immune checkpoints such as LAG-3 and PD-1 appear to negatively regulate T-cell responses, however 

expression of immune checkpoints on TILs do not necessarily correlate with an adverse prognosis in 

cancer. In early stage NSCLC, analyses of TILs from 87 resection specimens have shown that TILs 

expressing LAG-3 and other immune checkpoint molecules display a recently activated phenotype 

and remain functional 186. In melanoma, expression of LAG-3 together with other immune 

checkpoints has been shown to identify tumor-reactive and mutation specific T-cells 187. Thus, we 
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hypothesize that LAG-3 expression in resection specimens represents patients who have an ongoing 

immune response to tumors. Apparently, this immune response has been insufficient, as the tumor 

has been able to grow to a size necessitating its surgical removal.   

We do not consider LAG-3 expression in primary tumors to be a good candidate for an NSCLC 

Immunoscore, as it lacked prognostic impact in all pathological stages and did not improve patient 

stratification when combined with other candidate markers. However, LAG-3 in metastatic lymph 

nodes should be explored in future studies, as it prognostic impact was evident in both the 

intraepithelial and extraepithelial compartments. Future studies should also consider the influence of 

LAG-3 expression in different TIL subsets, as well as the expression of putative LAG-3 ligands LSECTIN 

and Galectin-3.   
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6. CONCLUSIONS 

This thesis includes four different studies of immune-related markers in NSCLC. While the patient 

groups and markers differ between these studies, the aims and methods are similar; we attempt to 

characterize a part of the immunological landscape in NSCLC and its relation to prognosis. In the first 

study, we present analyses of multiple adaptive and innate immune markers in resected NSCLC 

treated with radiotherapy, and find increased CD4/CD8 expression to be associated with a markedly 

improved DSS. While the sample size is small, these results are intriguing in light of the increasing 

evidence of radiotherapy influencing immune responses. As there is no current molecular marker to 

predict response and prognosis in relation to radiotherapy in NSCLC, it would be interesting to 

explore this relation further. This could be done in patients who receive PORT, but also in those 

treated with stereotactic radiotherapy.   

Cytokines and chemokines contribute to shaping the tumor microenvironment and the immune 

contexture. In paper two, we characterized, for the first time, the expression and prognostic impact 

of the chemokine pair CXCR6 and CXCL16 in NSCLC. While neither chemokine had a significant 

correlation with other investigated markers, loss of CXCL16 expression was associated with a worse 

prognosis, which suggests it may have some role in NSCLC development. In this study, we were also 

able to expand our tissue-based findings with cell proliferation assays. Exploring the mechanisms 

behind tissue based findings is an important, though complex, part of expanding our knowledge on 

the pathophysiology of NSCLC and the immune system’s role in in its development.  

In the fourth study, we explored the prognostic impact of LAG-3, a novel target of immunotherapy in 

NSCLC. We were also able to include analysis of metastatic lymph nodes and to show that even for 

patients with apparently more aggressive disease (i.e. confirmed lymph node metastasis), expression 

of LAG-3 can identify patients with improved prognosis.  While our findings of improved survival with 

LAG-3 expression may seem counterintuitive, we suggest that its expression suggest an active, yet 

insufficient, immune response to tumors. Indeed, the argument can be made that any patient who 

requires surgery for a malignant tumor has been through an insufficient immune response. However, 

for some patients the immune response may be sufficient to halt metastatic spread and local 

recurrence following surgery. Nevertheless, any prognostically favorable immune infiltrate could be a 

secondary phenomenon, i.e. that it represents an underlying tumor biology that by itself is less 

aggressive and less likely to metastasize. Regardless of the mechanisms behind the prognostic impact 

of the immune contexture in NSCLC, characterizing its components has a potentially important 

prognostic utility.   
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In contrast to the explorative approach in the other studies in this thesis, the third study aimed to 

validate stromal CD8 as a prognostic marker in several NSCLC cohorts. Using cohorts from four 

different hospitals, we saw a consistent impact of stromal CD8 with regard to survival for all survival 

endpoints. Strikingly, stromal CD8 had significant prognostic impact across all pathological stages in 

the total patient material, and was independently associate with an improved prognosis in 

multivariate analysis. Thus, we suggest stromal CD8 to be a promising candidate marker for an NSCLC 

immunoscore. A prospective trial has now been initiated in order to validate an immunoscore for 

NSCLC, with stromal CD8 as one of the included markers. If successfully validated for a prognostic 

impact, future trials may also consider the predictive value of a NSCLC immunoscore. Conceivably, 

this could improve the patient selection for adjuvant treatment, ultimately improving survival for 

NSCLC patients.  
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