

 Department of Satellite Engineering

FPGA-based Tracking System for GNSS Receivers

—
Anil Manandhar
Master thesis in Satellite Engineering, June 2017

Title: FPGA-based Tracking System for Date: June 6, 2017
GNSS Receivers Classification: Open

Pages: 66
Author: Anil Manandhar Attachments: 5

Department: Faculty of Engineering Science and Technology

Course: SHO6300, Master thesis -M-ST

Supervisor: Associate Professor Dr. Tuan-Vu Cao

Principal: UiT The Artic University of Norway,
Campus Narvik

Principal Contact: Associate Professor Dr. Tuan-Vu Cao

Keywords: Tracking system, GNSS receivers, code tracking loop, carrier tracking loop, code
alignment, carrier signal alignment, FPGA-based tracking algorithm

i

Acknowledgements

Firstly, I would like to express my special thanks of gratitude to my supervisor, Associate
Professor Dr. Tuan-Vu Cao for providing me a golden opportunity to do this project “FPGA-
based tracking system for GNSS receivers”. His lectures on embedded systems paved
the pathway for my research and VHDL programming. It is because of his continuous guid-
ance and supervision that this project could operate smoothly. I am immensely grateful for
his availability despite his time constraints. Undoubtedly, this project would have been in-
complete without his support.

I would also like to thank my advisor Mr. Tor-Aleksander Johansen for his wonderful feedback
and comments, which only improved my writing in thesis.

Lastly, I would like to thank my friends and family for supporting me spiritually throughout
writing this thesis. They were the source of inspiration and motivation.

Anil Manandhar

ii

Abstract

This report presents the design and simulation of code and carrier tracking system for a GNSS
receiver. The GNSS receiver processes the signal sent by satellites in space. These signal con-
tain carrier wave signal, ranging code and navigation data in encrypted form. To demodulate
the navigation data, the processing block should accurately track the phase of incoming code
and the frequency of incoming carrier wave signal.

In code tracking loop, a DLL is used where three replicas of incoming PRN code namely
early PRN, prompt PRN and late PRN are generated and correlated with the incoming sig-
nal. The result of these correlators is a numerical value that determines how the replica codes
correlate with the incoming PRN code. Based on correlation value, a code loop discriminator
decides in which direction the phase of PRN code is to be shifted. Then a perfectly aligned
PRN code is generated by the local code generator.

In carrier tracking loop, a PLL is used where a local carrier wave signal is multiplied with the
incoming signal to wipe off carrier signal and PRN code of the incoming signal. The output
after multiplication is sent to the carrier loop discriminator to determine the carrier phase
error which is filtered out by a carrier loop filter. Then the output from the filter is used as
feedback to a NCO that generates a perfectly aligned carrier wave signal.

The other half of this report deals with the VHDL programming of the tracking subsys-
tems that can be synthesized in a FPGA kit. It should be noted that all subsystems of a
tracking block cannot be hardware synthesized. A VHDL program and a testbench program
for the subsystem that can be hardware synthesized is coded and tested in ISIM. The imple-
mentation of FPGA-based tracking algorithm is verified with use of an oscilloscope. Finally,
a design for FPGA-based tracking system for GNSS receivers is proposed.

iii

List of abbreviations

GNSS Global Navigation Satellite System
GPS Global Positioning System
SIS Signal In Space
ASIC Application Specific Integrated Circuits
PVT Position, Velocity and Time
FPGA Field Programmable Gate Array
LEO Low Earth Orbit
UHF Ultra High Frequency
ITU International Telecommunication Union
C/A Coarse Acquisition
P-Code Precision Code
PPS Picture Parameter Set
SPS Sequence Parameter Set
BPSK Binary Phase Shift Keying
LFSR Linear Feedback Shift Register
NCO Numerically Controlled Oscillator
I2C Inter-IC
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
USART Universal Synchronous/Asynchronous Receiver/Transmitter

iv

Contents

Acknowledgements ii

Abstract iii

List of abbreviations iv

1 Introduction 1
1.1 Background study . 1

1.1.1 GNSS receiver . 1
1.1.2 Tracking system in GNSS receivers . 3

1.2 Previous works in tracking system for GNSS receivers 4
1.2.1 Coherent spread spectrum systems . 4
1.2.2 GNSS code and carrier tracking in the presence of multipath 4
1.2.3 High performance code and carrier tracking architecture 4
1.2.4 Implementation of code and carrier tracking stage on a FPGA 4

1.3 Thesis outline . 5
1.3.1 Problem statement and motivation . 5
1.3.2 Thesis objectives . 5

2 Code and Carrier Tracking 6
2.1 GPS signal characteristics . 6

2.1.1 Carrier wave signal . 8
2.1.2 Navigation data . 9
2.1.3 Ranging code - P-code and C/A code 9

2.2 Doppler frequency shift . 12
2.3 Code tracking . 12
2.4 Carrier tracking . 16

3 Tracking Algorithm Implementation and Simulation Using Simulink Tool-
box 22
3.1 Simulation of GPS signal . 22

3.1.1 Simulation of PRN sequence for satellite id #1 23
3.1.2 Simulation of navigation data . 24
3.1.3 Simulation of carrier wave signal . 24
3.1.4 Simulation of output from modulo-2 sum 25
3.1.5 Simulation of L1 signal . 26

v

3.2 Code tracking . 26
3.2.1 Simulation of early, prompt and late PRN code 27
3.2.2 Design of a code loop discriminator . 28
3.2.3 Programming a code phase alignment block that makes decision on code

phase shift . 29
3.2.4 Simulation of code tracking system for GNSS receiver in simulink toolbox 30

3.3 Carrier tracking . 31
3.3.1 Design of a carrier loop discriminator 31
3.3.2 Design of a carrier loop filter . 32
3.3.3 Simulation of local carrier wave . 33
3.3.4 Simulation of carrier tracking system for GNSS receiver in simulink

toolbox . 34

4 Implementation of FPGA-based Tracking Algorithm 35
4.1 RTL schematic design of a PRN code generator 36
4.2 Coding and verification of VHDL program . 38

4.2.1 Verification of VHDL program for early PRN code 38
4.2.2 Verification of VHDL program for prompt PRN code 38
4.2.3 Verification of VHDL program for late PRN code 39

4.3 FPGA implementation and verification . 40

5 Conclusion and Future Works 43
5.1 Discussion and conclusion . 43
5.2 Recommendations for future works . 43

Bibliography 45

Appendices 47

A Simulation Models as Designed in Simulink 47

B MATLAB and VHDL codes 52
B.1 MATLAB code for correcting code phase alignment 52
B.2 MATLAB code for calculating coefficients C1 and C2 52
B.3 VHDL code for early PRN . 53
B.4 VHDL code for prompt PRN . 54
B.5 VHDL code for late PRN . 56
B.6 Testbench for PRN . 58
B.7 VHDL code for prompt PRN with use of clock divider 59
B.8 Implementation constraints file for PRN . 61

C Datasheet and Technical Details of Hardwares 62
C.1 Pin details of FPGA kit, Spartan 3E-100 CP132 62
C.2 Technical details of GSM receiver module, A2235-H 63
C.3 Technical details of microcontroller, STM32F030F4P6 64
C.4 Technical details of signal generator, HM8135 65
C.5 Implementaion of DLL on FPGA kit, XAPP 132 66

vi

List of Figures

1.1 General block digram of a typical GNSS receiver 2
1.2 General block digram of a tracking system in GNSS receiver 3

2.1 Block diagram to generate GPS signals - L1 and L2 6
2.2 A simplified GPS L1 modulator configuration 7
2.3 C/A code, navigation data, output from modulo-2 sum, carrier signal and final

GPS signal . 8
2.4 C/A code architecture . 10
2.5 Basic block diagram of code tracking loop . 13
2.6 Comparison between the three outputs from the correlators, example A 13
2.7 Comparison between the three outputs from the correlators, example B 14
2.8 DLL code tracking block diagram with six correlators 14
2.9 A complete block diagram of a code tracking loop 16
2.10 Block diagram of basic PLL carrier tracking loop 17
2.11 Block diagram of carrier tracking loop . 17
2.12 Performance of different Costas loop discriminators 19
2.13 Second Order PLL . 19
2.14 Block diagram of code and carrier tracking loop 21

3.1 Simulation result of PRN sequence in 1 ms . 23
3.2 Simulation result of PRN sequence showing first 100 bits 23
3.3 Simulation result of navigation data . 24
3.4 Simulation result of carrier wave signal output in 1 ms 24
3.5 Simulation result of carrier wave signal output - magnified 25
3.6 Simulation result of exclusive-or between PRN sequence and navigation data . 25
3.7 Simulation result of L1 signal . 26
3.8 Simulation result of L1 signal at 5 MHz . 26
3.9 Simulation result of early PRN code from a local code generator 27
3.10 Simulation result of prompt PRN code from a local code generator 27
3.11 Simulation result of late PRN code from a local code generator 28
3.12 Simulation results of code phase errors obtained by using algorithms explained

in equation 3.1 and equation 3.2 . 29
3.13 Flowchart of code phase alignment correction 29
3.14 Simulation result of difference between incoming PRN code and locally

generated PRN code . 30

vii

3.15 Simulation comparison between incoming PRN code and locally generated PRN
code . 31

3.16 Simulation result of carrier phase error from carrier loop discriminator 32
3.17 Simulation outputs from NCO showing both sine and cosine waves 33
3.18 Simulation results of comparison between incoming carrier signal and local

carrier signal . 34

4.1 Top level view of hardware design of a tracking system 35
4.2 RTL schematic design of a PRN code generator 37
4.3 Results of simulation of early PRN in ISIM toolbox 38
4.4 Results of simulation of early PRN in simulink toolbox 38
4.5 Results of simulation of prompt PRN in ISIM toolbox 39
4.6 Results of simulation of prompt PRN in simulink toolbox 39
4.7 Results of simulation of late PRN in ISIM tooblox 39
4.8 Results of simulation of late PRN in simulink toolbox 40
4.9 Implementation of code generator in FPGA focusing clock frequency and peak-

to-peak voltage . 41
4.10 Implementation of code generator in FPGA focusing delay, ∆X 41

5.1 Top level design of a FPGA-based tracking system for GNSS receivers with
specific hardwares mentioned . 44

A.1 A simplified GPS model . 47
A.2 A PRN sequence generator model . 47
A.3 Configuration parameter for G1 register . 48
A.4 Configuration parameter for G2 register . 48
A.5 Model to generate navigation data . 49
A.6 Model to generate carrier wave . 49
A.7 Model to generate early, prompt and late PRN codes 49
A.8 Implementation of code phase discriminator for equation 3.2 50
A.9 Details of integrator and dump . 50
A.10 A complete model for code and carrier tracking 51

viii

List of Tables

2.1 Frequency summary for signals L1 and L2 . 8
2.2 C/A code phase assignments for respective satellite 11
2.3 Different types of discriminator . 15
2.4 Costas loop discriminator types . 18

3.1 Input parameters to the carrier loop filter . 33

ix

Chapter 1

Introduction

1.1 Background study

GNSS (Global Navigation Satellite System) has increased in popularity over the past decade,
perhaps due to the rapid development and wide use of consumer products based on GNSS. In
the present context, we cannot even imagine an electronic device (such as cell phone, laptop
and tablet) or an automobile not being equipped with a GPS (Global Positioning System).
Currently, GPS is the GNSS, primarily used by both military and civilians. However, the
services that are provided to the civilian users are limited compared to the military users.
Some of the areas of GNSS application are:

• Personal navigation

• Aviation applications

• Automotive applications

• Marine applications

• Geodesy and surveying

• Space applications

In this project, the main concern of GNSS is in the field of space applications. The GNSS
receiver in the terrestrial environment is sophisticated with unlimited resources such that
hardware and software components can be altered whenever it is required. However, the
resources in space environment is limited because of which alteration in hardware and software
is challenging. Power consumption, performance, reliability, size, weight and radiation in space
are some of the constraints needed to be considered while designing a GNSS receiver.

1.1.1 GNSS receiver

A GNSS receiver is a system that processes the signal sent by the satellites in space or simply,
it processes the Signal In Space (SIS) to determine user’s position, velocity and time.

The satellites are in continuous motion. So the receiver has to make sure that the signals

1

CHAPTER 1. INTRODUCTION

emitting from the satellites are continuously tracked and monitored. The receiver monitors
the propagation time of the incoming signals traveling through space. A technique called
“pseudorange” is used to make a rough estimation of true range between a satellite and a
user. This computed value has to go through a number of phenomena before it can be inter-
preted as a precise measurement of the true distance.

The basic block diagram of a typical GNSS receiver is shown in figure 1.1 extracted from
(Re & Ruggieri 2007). A typical GNSS receiver consists of an antenna fed into a series of
ASIC (Application Specific Integrated Circuits) components controlled by a processor. The
received signal has to go through a number of processes such as signal acquisition, signal
tracking, synchronizing navigation data and decoding navigation data before delivering the
final results - PVT (Position, Velocity and Time).

Figure 1.1: General block digram of a typical GNSS Rreceiver (Re & Ruggieri 2007)

The GNSS receiver can be classified into hardware based receiver, software based receiver and
FPGA (Field Programmable Gate Array) based receiver.

Hardware based receiver

Traditionally, the GNSS receivers are ASIC receivers or simply hardware receivers. These are
designed to perform certain categories of applications. They have high functionality in terms
of performance and power consumption (Guruprasad 2015). However, the major drawback
of this system is that the design cannot be modified easily because ASIC is a specialized
chip designed for specific purposes. When new algorithms are needed to be implemented, the
modifications would require a re-fabrication of the receiver which eventually increases cost
and time. This has led to the development of software based receiver.

Software based receiver

A software based receiver uses a central processing unit that processes the signal coming from
the satellites. The goal of a software receiver is to make the design as simple as possible by

2

CHAPTER 1. INTRODUCTION

using softwares instead of hardware components for digital signal processing. This has resulted
in decreased size, low power consumption, low cost and high flexibility. The downside of this
technology is that a central processor still has to perform all digital signal processing tasks
usually performed by digital correlators (Gleason & Gebre-Egziabher 2009). This increases
processing load in the processor which eventually lowers the performance of the receiver. This
has led to the development of FPGA based receiver.

FPGA based receiver

In a FPGA based receiver, a highly flexible FPGA kit is used. The FPGA based receivers have
grown popularity over the last decade, primarily due to the high circuit density achievable on
a relatively small programmable chip. Furthermore, this system can be developed at a very
low cost. Here, the power consumption is very low and the performance is very high unlike
software based receiver which is slow. However, designing a receiver based on FPGA is very
complex.

1.1.2 Tracking system in GNSS receivers

The basic block diagram of a tracking system in GNSS receiver (Johansson, et al. 1998) is
shown in figure 1.2. A tracking system in GNSS receiver plays a very important role in
demodulating a navigation data from an incoming signal. An incoming signal can be a GPS
(L1, L2, L5), GLONASS (L1, L2), GALILEO (E1A-E1C, E5a, E5b, AltBOC, E6) or BeiDou
(B1, B2, B3). A tracking system consists of two main parts - code tracking loop and carrier
tracking loop. To successfully track the navigation data coming from the satellites, a tracking
system has to properly track the code phase and the carrier phase.

Figure 1.2: General block digram of a tracking system in GNSS receiver (Johansson et al. 1998)

3

CHAPTER 1. INTRODUCTION

A Doppler frequency shift is a one of the reason that the code phase and the carrier phase
get misaligned. So, a code tracking loop functions in such a way that the incoming code is
properly aligned with the local code. Similarly, a carrier tracking loop functions in such a
way that the incoming carrier signal is properly aligned with the local carrier signal. Once
the code and carrier signals are properly tracked, the demodulation of navigation data can be
performed.

1.2 Previous works in tracking system for GNSS receivers

Many researches were carried out related to code and carrier tracking system for GNSS
receivers. Only major works in tracking system for GNSS receivers are discussed in this
section. The list begins with a traditional tracking system for GNSS receivers and ends with
a modern FPGA-based tracking system for GNSS receivers.

1.2.1 Coherent spread spectrum systems

This book by (Holmes 1982), mainly focused on coherent carrier demodulation technique
for synchronization of direct sequence spread spectrum. This method could only be implied
when the local carrier wave is perfectly aligned with the incoming carrier wave. Thus, the
performance of this system was very poor whenever the carrier signals were misaligned. This
led to the development of new methods and techniques for code and carrier tracking.

1.2.2 GNSS code and carrier tracking in the presence of multipath

Multipath is one of the error source in differential GNSS positioning. According to (Brodin
& Daly 1997), for short delay multipath signals, carrier multipath error was a major problem.
The author made a thorough investigation on the performance of several coherent and non-
coherent discriminators concerning the multipath, where he found that mean code errors
produced by “non-coherent early minus late power discriminator” were greater than those of
“coherent discriminator” and “dot product discriminator”. Thus, the author concluded that
“the early minus late power discriminator” should be practiced for better performance.

1.2.3 High performance code and carrier tracking architecture

The work presented in the paper (Weill 2010) resulted in a new architecture with improved
performance over conventional tracking methods. His work was based on (Brodin &
Daly 1997) and used a central processing unit that had to perform all the digital signal
processing tasks. A reduced position and velocity errors, reduced tracking thresholds, reduced
search space size and reduced number of satellites required were some benefits from his work.
A use of processing unit would make the design simple but it would also increase load in the
processor which would eventually affect the performance of receiver.

1.2.4 Implementation of code and carrier tracking stage on a FPGA

FPGA provides flexibility for both developer and designer to make changes in the system
without configuring the hardware blocks. This paper (Kappen & Noll 2006) focused on a
reconfigurable GNSS receiver. It meant that making changes in the software could easily

4

CHAPTER 1. INTRODUCTION

alter the performance of the receiver. Furthermore, this system could be developed at a
much lower cost. The author also claimed that designing the system in a FPGA was one the
toughest task as all of the subsystems concerning the GNSS receiver could not be hardware
synthesized.

1.3 Thesis outline

1.3.1 Problem statement and motivation

GNSS receivers hold many promising applications for LEO (Low Earth Orbit) satellites.
GNSS receivers are mostly focused in determining users position, velocity and time. This
goal can only be achieved if the carrier wave signal frequency and code phase are accurately
tracked.

A hardware based tracking system for GNSS receiver has a better performance but it lacks
flexibility. Modification in algorithms require re-fabrication of the receiver resulting in extra
cost and time. A software based tracking system for GNSS receiver is flexible but the use of
processor in digital signal processing tasks increase processing load which eventually lowers
the performance of the receiver. Thus, a FPGA based tracking system for GNSS receiver
is required. A FPGA based tracking system is highly flexible such that new algorithms can
be easily implemented by making changes in the program. Some other advantages of FPGA
based tracking system is that the manufacturing cost is very low with high performance.

1.3.2 Thesis objectives

The main objective of this thesis is to design and simulate a tracking system for GNSS re-
ceiver in a simulation environment using tools such as simulink. There are many algorithms
to be followed for the design. The best and the most effective of them must be chosen. These
algorithms are discussed in chapter 2.

The other task of this thesis is to redesign the subsystems of the tracking system for GNSS
receiver such that they can be synthesized in a FPGA kit. It should also be noted that all of
the subsystems involved in the receiver cannot be synthesized in a FPGA. Only the ones that
can be hardware synthesized shall be implemented. Finally, the design needs to be tested and
verified.

Some other additional tasks are to understand the GNSS receivers, understand signal tracking
algorithm for GNSS receivers and propose a design of tracking system for GNSS receiver in
satellite applications.

5

Chapter 2

Code and Carrier Tracking

Based on figure 1.2 from chapter 1, a thorough discussion on GPS signal characteristics,
Doppler frequency shift, code tracking algorithms and carrier tracking algorithms are made
in this chapter.

2.1 GPS signal characteristics

GPS satellites transmit microwave signals. The GPS receiver antenna either on or near the
Earth’s surface respond to these received signals by determining users position, velocity and
time. The GPS signals are broadcasted on three frequencies - L1, L2 and L5.

Figure 2.1: Block diagram to generate GPS signals - L1 and L2 (Borre, et al. 2007)

6

CHAPTER 2. CODE AND CARRIER TRACKING

An illustration of GPS signal generation for L1 signal and L2 signal are shown in figure 2.1.

To generate a L1 signal, P-code (Precision code) and navigation data are multiplied together,
followed by a BPSK (Binary Phase Shift Keying) modulation with incoming carrier signal.
Then a second multiplication is performed between C/A (Coarse/Acquisition) and navigation
data, followed by a BPSK modulation with incoming 90o phase-shifted carrier signal. Finally,
the two results from BPSK modulators are summed up to obtain the L1 signal of frequency
1575.42 MHz.

Now, to generate a L2 signal, a multiplication is carried out between P-code and navigation
data. The result of multiplication and carrier wave signal are modulated by BPSK technique
to get a L2 signal of frequency 1227.6 MHz.

This project focuses on L1 signal tracking for GNSS receivers. Thus, figure 2.1 is simpli-
fied into figure 2.2 (Johansson et al. 1998). A common frequency, fo=10.23 MHz signal is
used to generate a L1 carrier signal of fL1=1575.42 MHz. The modulo-2 sum in the figure
represents the exclusive-or operation, denoted by ⊕. The modulo-2 sum outputs a signal with
values {0,1}. Then this result (from modulo-2 sum) and the carrier signal is modulated by
Binary Phase Shift Keying (BPSK) to get a L1 signal with values {-1,1}. In other words, in
BPSK modulation, signal with values {0,1} are mapped into {-1,1} (Borre et al. 2007). One
good reason to choose BPSK over other modulation techniques is that retrieving the original
bits in receiver is much easier. The chipping rate of the C/A code is 1.023 MHz while the bit
rate for the navigation data is at a much slower rate of 50 Hz.

Figure 2.2: A simplified GPS L1 modulator configuration (Johansson et al. 1998)

The L1 signal is defined by

Li(ω1t) = A[CAi(t)⊕Di(t)]sin(ω1t) (2.1)

where,
Li = signal from ith satellite
ω1 = frequency for L1, in radians

7

CHAPTER 2. CODE AND CARRIER TRACKING

i = satellite id number
A = amplitude of the signal
CAi = C/A code for ith satellite
D = navigation message/data for ith satellite

Figure 2.3: C/A code, navigation data, output from modulo-2 sum, carrier signal and final
GPS signal (Borre et al. 2007)

The GPS signal carries a navigation data or a message signal in an encrypted format. It
also consists of a carrier wave signal and a ranging code. The signal behavior of C/A code,
navigation data, output from modulo-2 sum, carrier signal and GPS signal can be seen in
figure 2.3.

2.1.1 Carrier wave signal

The summary for signal L1 and signal L2 frequencies are listed in table 2.1. This table also

Table 2.1: Frequency summary for signals L1 and L2

Signal designation L1 L2

carrier frequency, fo = 10.23
MHz

154fo = 1575.42 MHz 120fo = 1227.60 MHz

PRN code chipping rates, Ro

= 10.23 MHz
P-code = Ro = 10.23 MHz
and C/A = Ro/10 = 1.023
MHz

P-code = Ro = 10.23 MHz
and C/A = Ro/10 = 1.023
MHz

Navigation data rate 50 Hz 50 Hz

8

CHAPTER 2. CODE AND CARRIER TRACKING

summarizes frequency of carrier signal, PRN code chipping rate and navigation data rate for
signals L1 and L2 respectively.

2.1.2 Navigation data

The navigation data is a 50 Hz signal which is the final output of GNSS receiver. According
to (Tysowski 2009), the navigation data has three major parts - A, B and C. Part A holds
GPS date, time and satellite’s health condition. Part B holds orbital information, also called
ephemeris data that provides the means for monitoring the satellite’s position. Part C holds
all other vital indications regarding the satellite, also called almanac.

2.1.3 Ranging code - P-code and C/A code

The P-code has a length of 2.35*1014 chip. The L2 carrier is frequency modulated by P-code
while the L1 carrier is modulated with both P-code and C/A code. Unfortunately, P-code
is accessible only for PPS (Picture Parameter Set) users whereas C/A code is available for
SPS (Sequence Parameter Set) users (Johansson et al. 1998). Therefore, we will only focus
on C/A code throughout this report.

C/A codes for each satellite is unique. These codes are also referred to as Gold codes or
PRN sequences as described by (Gold 1967).

The architecture of a C/A code generator is shown in figure 2.4 as from (Gold & Dixon 1998).
Two 10-bit Linear Feedback Shift Registers (LFSR) - G1 and G2 generate a sequence of max-
imum length of N = (2n - 1) = (210 - 1) = (1024 - 1) = 1023 bits. This sequence repeats every
1 ms (period, T = 1 ms), contributing to a nominal chipping rate of 1.023 MHz. Then the
two resulting 1023 bits long codes are fed into modulo-2 sum to generate 1023 bits long C/A
code. Initially, both G1 and G2 are all set to ones as all-zero state is illegal. The polynomial
that describes the G1 and the G2 registers are usually in the form of

G = (1 + xi) (2.2)

where xi represents the output from the ith cell of the corresponding shift register.

The polynomial describing the G1 register is given by

G1 = 1 + x3 + x10 (2.3)

which means the output from cell 3 and cell 10 are fed into a modulo-2 sum. Then the output
from this modulo-2 sum is sent as a feedback into the cell 1.

Similarly, the polynomial that describes G2 register is given by

G2 = 1 + x2 + x3 + x6 + x8 + x9 + x10 (2.4)

9

CHAPTER 2. CODE AND CARRIER TRACKING

Here, outputs from cell 2, cell 3, cell 6, cell 8, cell 9 and cell 10 are fed back into a modulo-2
sum. Then the output from modulo-2 sum is sent as a feedback into the cell 1.

Figure 2.4: C/A code architecture (Gold & Dixon 1998)

Now, to generate the satellite specific C/A code, an exclusive-or is applied between the output
from G1 register and the delayed version of output from G2 register. For delayed version of
G2 register, an exclusive-or is applied between the two selected states, also called the selected
phases. The phase selection in G2 for each satellite is illustrated in table 2.2, derived from
(Klobuchar 1987).

10

CHAPTER 2. CODE AND CARRIER TRACKING

Table 2.2: C/A code phase assignments for respective satellite (Klobuchar 1987)

Satellite ID GPS PRN signal
number

Code phase selection
G2

Code delay
chips

1 1 2 ⊕ 6 5
2 2 3 ⊕ 7 6
3 3 4 ⊕ 8 7
4 4 5 ⊕ 9 8
5 5 1 ⊕ 9 17
6 6 2 ⊕ 10 18
7 7 1 ⊕ 8 139
8 8 2 ⊕ 9 140
9 9 3 ⊕ 10 141
10 10 2 ⊕ 3 251
11 11 3 ⊕ 4 252
12 12 5 ⊕ 6 254
13 13 6 ⊕ 7 255
14 14 7 ⊕ 8 256
15 15 8 ⊕ 9 257
16 16 9 ⊕ 10 258
17 17 1 ⊕ 4 469
18 18 2 ⊕ 5 470
19 19 3 ⊕ 6 471
20 20 4 ⊕ 7 472
21 21 5 ⊕ 8 473
22 22 6 ⊕ 9 474
23 23 1 ⊕ 3 509
24 24 4 ⊕ 6 512
25 25 5 ⊕ 7 513
26 26 6 ⊕ 8 514
27 27 7 ⊕ 9 515
28 28 8 ⊕ 10 516
29 29 1 ⊕ 6 859
30 30 2 ⊕ 7 860
31 31 3 ⊕ 8 861
32 32 4 ⊕ 9 862
33* 33 5 ⊕ 10 863
34* 34 4 ⊕ 10** 950**
35* 35 1 ⊕ 7 947
36* 36 2 ⊕ 8 948
37* 37 4 ⊕ 10** 950**

*Through satellite 33 to 37, the PRN codes are reserved for other uses as ground transmitter
**C/A codes for 34 and 37 are identical

11

CHAPTER 2. CODE AND CARRIER TRACKING

Correlation properties of C/A code

For modulation, gold codes are used because of their correlation properties (Parkinson 1996).
The two main important correlation properties of the gold codes are

• Nearly no cross correlation:
For C/A codes Ci and Ck for satellites i and k, the cross correlation is defined by

rik(m) =
1022∑
l=0

Ci(l)Ck(l +m) ≈ 0, for all m (2.5)

• Nearly no correlation except for zero lag:
All C/A codes are nearly uncorrelated with each other, except for zero lag. So it makes
easy to find out even when similar codes are perfectly aligned. For C/A codes Ck for
satellite k, the autocorrelation property is defined by

rkk(m) =
1022∑
l=0

Ck(l)Ck(l +m) ≈ 0, for |m| ≥ 1 (2.6)

For more details on correlation properties, read through (Parkinson 1996)

2.2 Doppler frequency shift

The satellites and the receivers are in continuous motion. This causes a shift in Doppler
frequency. It affects both acquisition and tracking of the GPS signal. The maximum Doppler
frequency shift for a stationary receiver antenna is at around ±5 KHz whereas for a moving
receiver antenna, the maximum Doppler frequency shift is ±10 KHz (Johansson et al. 1998).
If deviation in frequency is not corrected, GPS receiver will eventually lose track of the satel-
lite and no data will be received.

The misalignment between the incoming codes and the locally generated codes are caused
due to the Doppler frequency shift. The frequency of the carrier signal for L1 is fc = 1575.42
MHz while the nominal chipping rate of C/A code is only fCA = 1.023 MHz. This means fCA

is fc/fCA = 1540 times smaller than fc. Therefore, Doppler frequency shift has a small affect
on the C/A code which is about ±10 KHz/1540 = ±6.5 Hz for a moving GPS receiver. Like-
wise, for a stationary GPS receiver, the Doppler frequency shift is only about ±5 KHz/1540
= ±3.2 Hz (Borre et al. 2007).

2.3 Code tracking

One problem in the receiver end while GPS signal tracking is to maintain the phase of local
PRN aligned with the phase of incoming PRN. Because of the Doppler frequency shift, the
phase of PRN received and the phase of locally generated PRN gets misaligned throughout
the receiving process. The solution to this problem is to use a DLL (Delay Locked Loop) as
seen from chapter 1, figure 1.2. In this method, three replicas of PRN codes - early PRN,
prompt PRN and late PRN codes are generated and correlated with the incoming signal.

12

CHAPTER 2. CODE AND CARRIER TRACKING

The basic block diagram of code tracking loop can be seen in figure 2.5. In this figure, the
local oscillator generates a perfectly aligned replica of carrier signal. Here, the incoming signal
is multiplied with the local carrier signal and then with replicas of PRN codes. The results of
multiplication are integrated and dumped to obtain the correlation values. The result of these
correlators is a numerical value which tells how the replica codes correlate with the incoming
code.

Figure 2.5: Basic block diagram of code tracking loop (Borre et al. 2007)

Based on the outputs of correlators - IE , IP and IL, we determine if the phase of PRN code
is needed to be shifted to right or left (Peterson & Ziemer 1985). The example A in figure
2.6 and the example B in figure 2.7 give a clear understanding on how this method works. In
example A, the late PRN code has the highest correlation with the PRN code in the incoming
signal. Therefore, the code phase must be decreased, in other words, the code must be shifted
to the right. Similarly, in example B, the prompt PRN code has the highest correlation with

Figure 2.6: Comparison between the three outputs from the correlators, example A (Borre
et al. 2007)

13

CHAPTER 2. CODE AND CARRIER TRACKING

the PRN code in the incoming signal. Here, the local code is perfectly aligned with the
incoming code i.e. shifting is not required.

Figure 2.7: Comparison between the three outputs from the correlators, example B (Borre
et al. 2007)

The block diagram in figure 2.5 is useful only in the optimal case i.e. when frequency and
phase of the carrier signal is properly locked. However, this is never true in the real condition.
Due to the Doppler frequency shift and other noises in the channel, a code phase error is

Figure 2.8: DLL code tracking block diagram with six correlators (Johansson et al. 1998)

14

CHAPTER 2. CODE AND CARRIER TRACKING

experienced in the incoming code. Hence, a more sophisticated design with six correlators
like in figure 2.8 (Johansson et al. 1998) is required. This system is independent of the phase
of local code. If the incoming code and the local code are perfectly aligned, all energy will
be transferred in the in-phase arm. But if these signals are not aligned, then energy gets
distributed between the in-phase arm and the quadrature arm. The upper half of figure 2.8
is called the in-phase arm while the bottom half is called the quadrature arm. The signal I is
also known as in-phase signal whereas the signal Q is known as quadrature signal. Here, the
signal Q is multiplied with three code replicas which are integrated and dumped. The final
output of six correlators are IE , IP , IL, QE , QP and QL.

Once the outputs from six correlators are obtained, they are sent to code loop discrimi-
nator. The code loop discriminator is based on some algorithm as explained in table 2.3.
The output of this discriminator is a control signal that allows the PRN code generator to
either shift the phase to right or left. If the codes are perfectly aligned, the discriminator feed-
backs a control signal that allows the PRN code generator not to shift the phase of PRN code.

The table 2.3 consists of one coherent discriminator while the rest are non-coherent dis-
criminators.

Table 2.3: Different types of discriminator (Borre et al. 2007)

Type Discriminator, D

Coherent D = IE − IL

Early minus late power D = (I2E +Q2
E)− (I2L +Q2

L)

Normalized early minus late power D =
(I2E +Q2

E)− (I2L +Q2
L)

(I2E +Q2
E) + (I2L +Q2

L)

Dot products D = IP (IE − IL) +QP (QE −QL)

• Coherent discriminator:
The coherent discriminator is the simplest of all discriminators. This method does not
require the quadrature arm. This method can be implied only when the local carrier
signal is perfectly aligned with the incoming carrier signal.

• Early minus late power (Non coherent discriminator):
The response of this type of discriminator is almost the same as that of coherent
discriminator within ±1

2 nominal chipping rate of C/A code.

• Normalized early minus late power (Non coherent discriminator):
This method is the best of the rest of discriminators. The response of this discriminator

15

CHAPTER 2. CODE AND CARRIER TRACKING

is independent of the performance of PLL (Phase Locked Loop) as it invokes both in-
phase arm and quadrature arm. Furthermore, this helps the DLL to maintain track of
the signal even when the chip error is larger than ±1

2 nominal chipping rate of C/A
code. Thus, for simulation, the normalized early minus late power - a non coherent
discriminator is considered.

• Dot product (Non coherent discriminator):
This method is the only discriminator that uses all outputs from the six correlators.

The further extension of figure 2.8 with an inclusion of code loop discriminator is illustrated
in figure 2.9. This figure represents a complete block diagram for a code tracking loop.

Figure 2.9: A complete block diagram of a code tracking loop (Johansson et al. 1998)

2.4 Carrier tracking

The other problem in tracking is to keep track phase and frequency of carrier signal. The
change in carrier frequency makes the receiver to lose track of the satellites. Based on figure
1.2 from chapter 1, a PLL or FLL (Frequency Locked Loop) is used to track a carrier signal.

The basic form of PLL carrier tracking loop is shown in figure 2.10 as presented in (Borre
et al. 2007). The incoming signal is first multiplied with the replica of incoming carrier signal

16

CHAPTER 2. CODE AND CARRIER TRACKING

and then with the local PRN code. This process is performed to wipe off carrier signal and
PRN code of the incoming signal. The output after the multiplication is sent to carrier loop
discriminator to determine the carrier phase error. This phase error is filtered out by carrier
loop filter. Finally, the output from the carrier loop filter is used as a feedback to a car-
rier generator or NCO (Numerically Controlled Oscillator) that produces a perfectly aligned
carrier wave signal as compared with the incoming carrier wave signal.

Figure 2.10: Block diagram of basic PLL carrier tracking loop (Borre et al. 2007)

Figure 2.10 represents a basic form for tracking the carrier wave signal. This system is sensitive
to 180◦ phase shifts. The solution to this problem is an extension version of figure 2.10 which
is illustrated in figure 2.11. This figure uses Costas loop (Borre et al. 2007).

Figure 2.11: Block diagram of carrier tracking loop

17

CHAPTER 2. CODE AND CARRIER TRACKING

The multiplication in the in-phase arm returns the following equation

Dk(n)cos(ωIFn)cos(ωIFn+ ϕ) =
1

2
Dk(n)cos(ϕ) +

1

2
Dk(n)cos(2ωIFn+ ϕ) (2.7)

where,
Dk Data from kth satellite
ωIF Incoming signal Frequency (IF) in radians
ϕ Phase difference between the phase of incoming signal and phase of local replica

Similarly, the result after product in quadrature arm returns

Dk(n)sin(ωIFn)sin(ωIFn+ ϕ) =
1

2
Dk(n)sin(ϕ) +

1

2
Dk(n)sin(2ωIFn+ ϕ) (2.8)

These resulted signals from in-phase arm and quadrature arm are filtered out by a LPF (Low
Pass Filter) to get the following two signals.

Ik =
1

2
Dkcos(ϕ) (2.9)

Qk =
1

2
Dksin(ϕ) (2.10)

Further calculation to get ϕ can be done as

Qk

Ik
=

1
2D

ksin(ϕ)
1
2D

kcos(ϕ)
= tan(ϕ) (2.11)

ϕ = arctan

(
Qk

Ik

)
(2.12)

The equation 2.12 gives a clear idea that the phase error can be minimized if the correlation
in the quadrature arm is minimized. Some other discriminator can be seen in table 2.4.
The output for type 1 discriminator is proportional to sin(ϕ) while the output for type 2
discriminator is proportional to sin(2ϕ).

Table 2.4: Costas loop discriminator types (Kaplan & Hegarty 2005)

Type Discriminator

1. D = sign(Ik)Qk

2. D = IkQk

3. D = arctan

(
Qk

Ik

)

18

CHAPTER 2. CODE AND CARRIER TRACKING

The performance of the three discriminators mentioned in table 2.4 is presented in figure 2.12.
From this figure, it can be clearly understood that discriminator outputs are zero whenever the
phase error is −180o, 0o and +180o. Thus, the Costas loop is insensitive to the ±180o phase
shifts in case of a navigation bit transition (Kaplan & Hegarty 2005). The most preferable
method for computing is the third method mentioned in table 2.4 which is also applied in
simulation. Unfortunately, this method consumes the most time.

Figure 2.12: Performance of different Costas loop discriminators (Kaplan & Hegarty 2005)

Figure 2.13: Second Order PLL (Chung, et al. 1993)

After computing the phase error using the discriminator, it is filtered out by a carrier loop
filter. To design a carrier loop filter, a second order PLL is used as in figure 2.13. According
to (Chung et al. 1993), the transfer function of a linearized analog PLL is given by

H(s) =
KdF (s)N(s)

1 +KdF (s)N(s)
(2.13)

where,
Kd gain of phase discriminator

19

CHAPTER 2. CODE AND CARRIER TRACKING

F (s) transfer function of filter defined as
1

s

τ2s+ 1

τ1

N(s) transfer function of NCO defined as
Ko

s

Substituting the values of F (s) and N(s) in equation 2.13 and considering natural frequency

ωn =

√
KoKd

τ1
and damping ratio ζ =

τ2ωn

2
, we get the following equation.

H(s) =
2ζωns+ ω2

n

s2 + sζωns+ ω2
n

(2.14)

The equation 2.14 is still in analog form. To convert this into digital form, bilinear transfor-
mation is applied which yields another equation (Borre et al. 2007)

H1(z) =
(4ζωnT + (ωnT)2) + 2(ωnT)2z−1 + ((ωnT)2 − 4ζωnT)z−2

(4 + 4ζωnT + (ωnT)2) + (2(ωnT)2 − 8)z−1 + (4− 4ζωnT + (ωnT)2)z−2
(2.15)

Now, the digital form of transfer function of filter and NCO are given by

F (z) =
(C1 + C2)− C1z

−1

1− z−1
(2.16)

N(z) =
Koz

−1

1− z−1
(2.17)

The digital form of equation 2.13 can be presented as

H(z) =
KdF (z)N(z)

1 +KdF (z)N(z)
(2.18)

Substituting equation 2.16 and equation 2.17 in equation 2.18, we get

H2(z) =
KoKd(C1 + C2)z

−1 −KoKdC1z
−2

1 + (KoKd(C1 + C2)− 2)z−1 + (1−KoKdC1)z−2
(2.19)

From equation 2.15 and 2.19, we obtain the values of coefficients - C1 and C2 as

C1 =
1

KoKd

8ζωnT

4 + 4ζωnT + (ωnT)2
(2.20)

C2 =
1

KoKd

4(ωnT)2

4 + 4ζωn + (ωnT)2
(2.21)

where natural frequency ωn is given by

ωn =
8ζBL

4ζ2 + 1
(2.22)

where BL is the noise bandwidth in the loop. Altering the values of damping ratio ζ and

20

CHAPTER 2. CODE AND CARRIER TRACKING

natural frequency ωn also alter the response time of digital carrier loop filter.

Finally, a complete block diagram of code and carrier tracking loop for GNSS receiver is
illustrated in figure 2.14. Here, the integrator acts like a LPF with a stop band frequency of
1 KHz and the high frequencies are filtered out. Therefore, the LPF can be left out without
much trouble. This final figure will be the basis for all designs in simulation.

Figure 2.14: Block diagram of code and carrier tracking loop (Borre et al. 2007)

21

Chapter 3

Tracking Algorithm Implementation
and Simulation Using Simulink
Toolbox

The tracking algorithm discussed in chapter 2 is implemented and simulated using simulink
toolbox. The simulink models designed in MATLAB are attached in appendix A.

The first section focuses on simulation of GPS L1 signal based on figure 2.2 from chapter
2. It includes simulation of PRN sequence for satellite id #1, navigation data, carrier wave
signal, results of modulo-2 sum between PRN sequence and navigation data. Then the simu-
lation result for GPS L1 signal is presented with some discussion.

The second section focuses on implementation and simulation of code tracking algorithm
based on figure 2.14. First, we generate three replicas of incoming PRN code. Then a code
phase discriminator is designed followed by a code phase alignment program. Finally, we
verify the code tracking algorithm by comparing the phase of replica PRN with the phase of
incoming PRN.

The third section focuses on implementation and simulation of carrier tracking algorithm
based on figure 2.14. First, a carrier loop discriminator is designed followed by a design of
carrier loop filter. Then we look at the locally generated carrier wave signal and verify the
carrier tracking algorithm by comparing the phase of local carrier signal with the phase of
incoming carrier signal.

3.1 Simulation of GPS signal

In this project, a real GPS data was not available. So, a random signal with a sequence of 1’s
and 0’s is considered to be a navigation data and is used for generating a L1 signal, sampled
at 5 MHz. Based on figure 2.2 from chapter 2, a simulation model was designed. The simulink
design can be referred in appendix A, figure A.1. To generate a L1 signal, the following steps
are followed:

22

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

• Generate PRN code, generate navigation data and generate carrier wave signal.

• Perform an exclusive-or between PRN sequence and navigation data.

• Perform BPSK modulation between the carrier wave signal and the result from exclusive-
or between PRN sequence and navigation data.

• Generate L1 signal.

3.1.1 Simulation of PRN sequence for satellite id #1

For PRN sequence simulation, the polynomials G1 and G2 as described in chapter 2, section
2.1.3 are applied. Neither a real GPS signal nor a satellite id are available. Thus, we choose
satellite id #1 (as from chapter 2, table 2.2) such that an exclusive-or is performed between
cell 2 and cell 6 in register G2. The code phase selection for other satellites are also described
in chapter 2, table 2.2. The configuration parameter blocks for registers G1 and G2 are
presented in appendix A, figure A.3 and appendix A, figure A.4 respectively.

Figure 3.1: Simulation result of PRN sequence in 1 ms

Figure 3.2: Simulation result of PRN sequence showing first 100 bits

Now, we model a PRN sequence generator. The PRN sequence generator found in simulink
library is used to generate the sequence. This model is presented in appendix A, figure A.2.

23

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

The results of simulation for 1 ms can be seen in figure 3.1. This figure consists of a sequence
of 1023 bits in 1 ms such that its nominal chipping rate equals 1.023 MHz. This sequence of
1’s and 0’s is repeated every 1 ms. The first 100 bits of a PRN sequence for satellite id #1
can be seen in figure 3.2.

3.1.2 Simulation of navigation data

To generate a navigation data of 50 Hz, we use the PRN sequence generator. This time, the
polynomials G1 and G2 are randomly defined as a navigation data with a random sequence
of 1’s and 0’s is required. The result from this model (presented in appendix A, figure A.5)
generates a sequence of 1’s and 0’s as shown in figure 3.3. For every 0.1 second, 5 bits of data
is generated. Thus, for every 1 second, 5 bits ∗ 10 = 50 bits are generated resulting in 50 Hz
frequency for the navigation data.

Figure 3.3: Simulation result of navigation data (5 bits of data is generated in every 0.1
seconds leading to generation of 50 bits in every 1 second)

3.1.3 Simulation of carrier wave signal

Figure 3.4: Simulation result of carrier wave signal output in 1 ms

24

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

The carrier wave of L1 signal has a frequency of 1575.42 MHz (chapter 2, table 2.1). This
signal is generated using a NCO block. The simulink model to generate the carrier wave is
presented in appendix A, figure A.6. Using this model, a carrier wave signal is generated. The
simulation result is illustrated in figure 3.4. Even though, a simulation is run for only 1 ms, a
clear picture of a carrier wave cannot be seen. Thus, for a better picture, a magnified version
of figure 3.4 is presented in figure 3.5. From this picture, we clearly see that the carrier wave
signal resembles a sine wave.

Figure 3.5: Simulation result of carrier wave signal output - magnified

3.1.4 Simulation of output from modulo-2 sum

Until now, we have generated a PRN sequence, a navigation data and a carrier wave signal in
simulink toolbox. An exclusive-or is applied between a PRN sequence and a navigation data.
The simulation result of modulo-2 sum or exclusive-or is illustrated in figure 3.6. When the
values of PRN sequence and navigation data are same, the exclusive-or outputs “0” and when
the values of PRN sequence and navigation data are different, the exclusive-or outputs “1”.
The final simulation result from a modulo-2 sum is a sequence of signal with values ranging
between 0 and 1.

Figure 3.6: Simulation result of exclusive-or between PRN sequence and navigation data

25

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

3.1.5 Simulation of L1 signal

Now, a BPSK modulation is applied between the carrier wave signal and the results of modulo-
2 sum to obtain the L1 signal. The simulink model to generate L1 signal is presented in
appendix A, figure A.1. This model is completely based on the block diagram presented in
chapter 2, figure 2.2. From figure 3.6, we see that the result of exclusive-or are mapped into
values {0,1}. After BPSK modulation with carrier wave signal, a L1 signal is generated with
values {-1,1}. Thus, we conclude that a BPSK modulation maps a signal with values {0,1}
into {-1,1}. The final simulation result of L1 signal can be seen in figure 3.7 which is similar
to the one in figure 2.3 from chapter 2. A more detailed figure of L1 signal can be seen in
figure 3.8 where the signal is sampled at 5 MHz.

Figure 3.7: Simulation result of L1 signal

Figure 3.8: Simulation result of L1 signal at 5 MHz

3.2 Code tracking

The simulation design of code tracking loop is based on figure 2.14 from chapter 2. The phase
of incoming PRN code and the phase of locally generated PRN code gets misaligned because
of the Doppler frequency shift. A DLL is used to solve this problem.

26

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

In this method, the following steps are followed:

• Multiply incoming signal and local carrier wave. This result is again multiplied with
three replicas of PRN code - early, prompt and late PRN codes. Then a correlation
value is obtained.

• Based on correlation values, a decision is made whether to shift the PRN code to right
or left. With proper phase shifting in the code generator, a perfectly aligned PRN
sequence is generated.

3.2.1 Simulation of early, prompt and late PRN code

The nominal chipping rate of a PRN sequence is 1023 bits per milliseconds i.e. it has a
frequency of 1.023 MHz. The three replicas of incoming PRN codes are generated locally.
These three replicas are equally spaced by ±1

2 a nominal chipping rate of a PRN code. It
means that each PRN replica is spaced by ±511 bits. A simulink model (attached in appendix
A, figure A.7) is designed based on figure 2.14 from chapter 2. The early PRN is delayed by
1022 bits and thus, it starts after 0.999 ms ≈ 1 ms. The simulation result of an early PRN

Figure 3.9: Simulation result of early PRN code from a local code generator

Figure 3.10: Simulation result of prompt PRN code from a local code generator

27

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

code is shown in figure 3.9. The prompt PRN is generated without any delays and thus, it
starts from 0 s. The simulation result of a locally generated prompt PRN is shown in figure
3.10. The late PRN is delayed by 511 bits and thus, it starts after 499.5 ms ≈ 0.5 ms. The
simulation result of a locally generated late PRN is shown in figure 3.11. Hence, an equally
spaced three replicas of PRN code are generated with a frequency of 1.023 MHz.

Figure 3.11: Simulation result of late PRN code from a local code generator

3.2.2 Design of a code loop discriminator

As explained in chapter 2, section 2.3 - the outputs from the six correlators are sent to the
code loop discriminator to calculate the code phase error. The algorithm for code loop dis-
criminator is based on “normalized early minus late power discriminator”, also explained in
chapter 2, table 2.3. This algorithm is shown in equation 3.1.

D =
(I2E +Q2

E)− (I2L +Q2
L)

(I2E +Q2
E) + (I2L +Q2

L)
(3.1)

An alternative to “early minus late power discriminator” is shown in equation 3.2 defined by
(Johansson et al. 1998). Both algorithms expressed in equation 3.1 and equation 3.2 have a
similar performance.

D =

√
I2E +Q2

E

I2L +Q2
L

(3.2)

The phase error obtained by using both algorithms is presented in figure 3.12. The code
phase error waveform clearly shows that the performance from both algorithms are exactly
the same. The only difference is the guideline. For equation 3.1, “amplitude = 0” on the
Y-axis is the guideline to maintain the phase of PRN code. For equation 3.2, “amplitude
= 1” on the Y-axis is the guideline to maintain the phase of PRN code. So either of the
algorithm can be used for simulation. In this project, equation 3.2 is followed to calculate the
code phase error. With every iteration, a code phase error is calculated. This error is used as
a feedback to the “code phase alignment correction block” (as shown in appendix A, figure
A.8) to make necessary phase shift in PRN codes.

28

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

Figure 3.12: Simulation results of code phase errors obtained by using algorithms explained
in equation 3.1 and equation 3.2

3.2.3 Programming a code phase alignment block that makes decision on
code phase shift

Previously, the code phase error was calculated using the code loop discriminator. This code
phase error is used as a feedback to the code phase alignment correction block. This block is

Figure 3.13: Flowchart of code phase alignment correction (Johansson et al. 1998)

29

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

designed using user-defined MATLAB function. This function is based on a flowchart shown
in figure 3.13 in the previous page. The output of this function is a control line that allows
the PRN code generator to either make a phase shift or not make a phase shift. If the value
of code phase error is greater than 1.5, a control line is decreased by 1 and allows the local
code generator to make a phase shift to the left. If the value of code phase error is lesser than
0.8, a control line is increased by 1 and allows the local code generator to make a phase shift
to the right. If none of these conditions meet, then the local code generator does not make
any changes in the phase of PRN code. The MATLAB code for this user-defined function is
attached in appendix B, section B.1.

3.2.4 Simulation of code tracking system for GNSS receiver in simulink
toolbox

To verify a code tracking system, we compare an incoming PRN code with a locally generated
PRN and see if these are perfectly aligned or not. Furthermore, we look at the code phase
error (output from code loop discriminator) at a specific time elapsed and then compare in-
coming PRN code with locally generated PRN code.

Since, the PRN code has a very high frequency of 1.023 MHz. Comparing it with our naked
eyes is a difficult task. So, a better solution is to take a difference between an incoming PRN
code and a local PRN signal. When the result of subtraction becomes zero, we assume that
the incoming PRN code and local PRN code are perfectly aligned, otherwise they are not.

Figure 3.14: Simulation result of difference between incoming PRN code and locally generated
PRN code (The codes are almost perfectly aligned except at t = 2.4 ms)

The simulation result of subtraction between an incoming PRN sequence and a local PRN
sequence is shown in figure 3.14. This figure suggests that the incoming PRN code and the
local PRN code are almost aligned perfectly except at time elapsed, t = 2.4 ms. The simula-
tion result of incoming PRN and local PRN is shown in figure 3.15. The big box in this figure
at t = 2.4 ms focuses where the phases are misaligned. This happens when the DLL cannot
lock the phase of incoming PRN signal. The DLL technique that we use in this project is one
of the best but also one of the slowest. Only after t = 2.423 ms, the DLL locks the phase of
the incoming PRN signal. The complete simulation model for code tracking is presented in
appendix A, figure A.10.

30

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

Figure 3.15: Simulation comparison between incoming PRN code and locally generated PRN
code

3.3 Carrier tracking

This is the final task of tracking system where the incoming carrier signal is tracked such that
phase and frequency of the local carrier wave is same as that of the incoming carrier signal.
For tracking the phase of incoming carrier wave signal, a PLL is applied (explained in chapter
2, section 2.4).

In carrier wave tracking, we follow the following steps:

• First, the incoming signal is multiplied with the local carrier wave and then with the
replica of incoming PRN code. This is performed to wipe off carrier signal and PRN
code of the incoming signal. The result is a correlation value.

• The output of the correlators is sent to the carrier loop discriminator to determine the
carrier phase error which is filtered out by the carrier loop filter.

• Finally, the the output from carrier filter is used as a feedback to the NCO that generates
a perfectly aligned carrier wave signal as compared with the incoming carrier wave signal.

3.3.1 Design of a carrier loop discriminator

The simulink model for the Costas loop (based on chapter 2, figure 2.14) can be seen in ap-
pendix A, figure A.10. In the Costas loop, an integrator and dump is used instead of a LPF.
The integrator integrates over one PRN code period and performs just like a LPF with a stop
band frequency of 1 KHz. The detailed model for integrator and dump used in simulink can
be seen in appendix A, figure A.9.

To calculate the correlation, we only require the results of multiplication from prompt PRN
code which are IP and QP . Once the correlation values are obtained, they are sent to the
carrier loop discriminator to determine the carrier phase error.

As from chapter 2, section 2.4 - the carrier phase error is given by

ϕ = arctan

(
QP

IP

)
(3.3)

31

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

Based on this equation, a carrier phase discriminator is designed which outputs the carrier
phase error. The output from the carrier phase discriminator is shown in figure 3.16. With
every iteration, a carrier phase error is obtained. Then it is filtered out by a carrier loop filter.

Figure 3.16: Simulation result of carrier phase error from carrier loop discriminator

3.3.2 Design of a carrier loop filter

The proper design of a carrier loop filter is very important. If a carrier loop filter is not
properly designed, the PLL will not lock the phase of the incoming carrier wave. This results
in misalignment between incoming carrier wave and local carrier wave. Thus, a carrier loop
filter needs to be designed in a proper way.

As from chapter 2, section 2.4 - we have the following list of equations (from equation 3.4 to
equation 3.8). The digital form of transfer function of a carrier loop filter and a NCO is given
by

F (z) =
(C1 + C2)− C1z

−1

1− z−1
(3.4)

N(z) =
Koz

−1

1− z−1
(3.5)

where Ko is a gain of NCO. The coefficients - C1 and C2 are given by

C1 =
1

KoKd

8ζωnT

4 + 4ζωnT + (ωnT)2
(3.6)

C2 =
1

KoKd

4(ωnT)2

4 + 4ζωn + (ωnT)2
(3.7)

where Kd is a carrier discriminator gain and ωn is a natural frequency in radians

Again, natural frequency ωn is given by

ωn =
8ζBL

4ζ2 + 1
(3.8)

32

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

where ζ is the damping ratio and BL is the noise bandwidth in the loop.

To design a carrier loop filter, we require coefficients - C1 and C2. A carrier loop filter is
designed in such a way that, only the damping ratio, ζ and the noise bandwidth, BL are
taken as input parameters. The program automatically calculates the coefficients - C1 and
C2. The table 3.1 shows the values for the input parameters used in the simulation. The
values for BL and ζ are based on “hit and trial” method. With the values mentioned in table
3.1, the PLL works out just fine. The MATLAB code to calculate coefficients - C1 and C2 is
attached in appendix B, section B.2.

Table 3.1: Input parameters to the carrier loop filter

Parameters Description

ζ = 0.7 Damping ratio

BL = 50 Hz Bandwidth

KoKd = 400π
Ko is NCO gain
Kd is discriminator gain

T =
1

1000
s Sampling time

3.3.3 Simulation of local carrier wave

The output of carrier loop filter is used as a feedback to adjust the parameters for the NCO
such that it finally, generates the exact replica of an incoming carrier signal. The NCO can
generate both sine and cosine wave. The simulation outputs can be seen in figure 3.17. The
carrier wave generated by local NCO (sine) is fed into the in-phase arm and the 90o phase
shifted carrier wave (cosine) is fed into the quadrature arm. These can be seen in appendix
A, figure A.10.

Figure 3.17: Simulation outputs from NCO showing both sine and cosine waves

33

CHAPTER 3. TRACKING ALGORITHM IMPLEMENTATION AND SIMULATION
USING SIMULINK TOOLBOX

3.3.4 Simulation of carrier tracking system for GNSS receiver in simulink
toolbox

To verify the carrier tracking system, we compare the incoming carrier wave signal with
locally generated carrier wave signal. The simulation result of the incoming carrier wave and
the locally generated carrier wave is illustrated in figure 3.18. From this figure, we can clearly
see that the phase of incoming carrier wave and the phase of local carrier wave generated by
a NCO is same. It means that the carrier wave filter is designed properly and the PLL is able
to lock the phase of incoming carrier wave. Thus, we conclude that the local carrier wave is
perfectly aligned with the incoming carrier wave . The simulink model for the carrier tracking
loop is presented in appendix A, figure A.10.

Figure 3.18: Simulation results of comparison between incoming carrier signal and local carrier
signal

34

Chapter 4

Implementation of FPGA-based
Tracking Algorithm

In this chapter, we look at the design of tracking system in a hardware level. The top level
view of hardware design of a tracking system can be seen in figure 4.1 which is based on figure
2.14 from chapter 2.

Figure 4.1: Top level view of hardware design of a tracking system

The project is limited with hardware resources. The only available piece of hardware is a
FPGA kit, Spartan 3E-100 CP132. So, we look at the subsystems of tracking system that
can be implemented on this kit. A tracking system consists of two major subsystems: carrier
tracking loop and code tracking loop.

35

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

The carrier tracking loop is designed using PLL. It consists of Costas loop, carrier loop
discriminator, carrier loop filter and local carrier generator. These can be seen in figure 4.1.
The carrier loop discriminator is a user-defined function which cannot be synthesized on a
provided FPGA kit. Similarly, Costas loop, local carrier generator and carrier loop filter
cannot be synthesized.

The code tracking loop is designed using DLL. It consists of Costas loop, code loop dis-
criminator and code generator. These can be seen in figure 4.1. The Costas loop is designed
using integrator and dump which performs like a LPF with a band stop frequency of 1 KHz.
This filter cannot be synthesized on a provided FPGA kit. The code loop discriminator is a
user-defined function that decides when and in which direction to shift the phase of code. So,
the only remaining part is a PRN code generator which can be programmed in VHDL and
implemented on a provided FPGA kit.

In short, the only major part that can be programmed in VHDL and implemented on a
FPGA kit, Spartan 3E-100 CP132 is a PRN code generator.

To implement a PRN code generator on a FPGA, the following steps are followed:

• Design a PRN code generator in Register-Transfer Level (RTL).

• Code a VHDL program for a code generator.

• Code a testbench program for a code generator.

• Compare simulation results in ISIM toolbox and simulink toolbox to verify the VHDL
program.

• Program FPGA and check results in oscilloscope.

4.1 RTL schematic design of a PRN code generator

Based on theory from chapter 2, section 2.1.3, a Register-Transfer Level (RTL) schematic
design of prompt PRN is designed which can be seen in figure 4.2. Both G1 and G2 registers
use 10 flipflops and generate a sequence of 210 − 1 = 1023 bits. For G1 register, the outputs
from cell 3 and cell 10 are fed into an exclusive-or. Then the output from exclusive-or is used
as a feedback into the cell 1. For G2, the outputs from cell 2, cell 3, cell 6, cell 8, cell 9 and
cell 10 are fed into an exclusive-or. Then the output from exclusive-or is used as a feedback
into the cell 1. Finally, an exclusive-or is applied between the output from G1 register and a
delayed version of output from G2 register. Since, we choose satellite id #1 (as from table 2.2,
chapter 2), an exclusive-or is applied between cell 2 and cell 6. Based on the RTL schematic
design, a VHDL program is coded for a code generator.

36

C
H

A
P

T
E

R
4
.

IM
P

L
E

M
E

N
T

A
T

IO
N

O
F

F
P

G
A

-B
A

S
E

D
T

R
A

C
K

IN
G

A
L

G
O

R
IT

H
M

Figure 4.2: RTL schematic design of a PRN code generator

37

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

4.2 Coding and verification of VHDL program

The PRN code generator in a code tracking loop has three outputs - early PRN, prompt
PRN and late PRN. Before simulation, a VHDL programs for early, prompt and late PRN
are coded. These VHDL programs are attached in appendix B - section B.3, section B.4 and
section B.5 respectively. Then a testbench program is coded followed by a simulation in ISIM.
The testbench program is well documented in appendix B, section B.6. The same testbench
program is used to simulate early, prompt and late PRN.

4.2.1 Verification of VHDL program for early PRN code

A simulation is carried out in ISIM toolbox to verify the VHDL program for early PRN. The
VHDL program for the early PRN is attached in appendix B, section B.3. The results of
simulation in ISIM toolbox and results of simulation in simulink toolbox for early PRN are
shown in figure 4.3 and figure 4.4 respectively. The final pn signal in figure 4.3 defines the
early PRN. The results from figure 4.3 and figure 4.4 clearly show that the early PRN takes
off after 0.999 ms ≈ 1 ms which verify that the VHDL program and the testbench program
(attached in appendix B, section B.6) for the early PRN are working.

Figure 4.3: Results of simulation of early PRN in ISIM toolbox

Figure 4.4: Results of simulation of early PRN in simulink toolbox

4.2.2 Verification of VHDL program for prompt PRN code

A simulation is carried out in ISIM toolbox to verify the VHDL program for prompt PRN.
The VHDL program for the early PRN is attached in appendix B, section B.4. The results

38

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

of simulation of prompt PRN in ISIM toolbox can be seen in the figure 4.5. Now, the result
of simulation in ISIM toolbox is compared with the results of simulation in simulink toolbox
(in figure 4.6). The final pn signal in figure 4.5 defines the prompt PRN. This final pn signal
and the signal shown in figure 4.6 are exactly the same. Both sequences start from 0 s. These
results verify that the program coded in VHDL for prompt PRN code is correct. It also proves
that the testbench program (appendix B, section B.6) for the prompt PRN is correct.

Figure 4.5: Results of simulation of prompt PRN in ISIM toolbox

Figure 4.6: Results of simulation of prompt PRN in simulink toolbox

4.2.3 Verification of VHDL program for late PRN code

A simulation is carried out in ISIM toolbox to verify the VHDL program for late PRN. The

Figure 4.7: Results of simulation of late PRN in ISIM toolbox

39

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

VHDL program for the early PRN is attached in appendix B, section B.5. Now, a simulation
is carried out in ISIM toolbox to test the late PRN. The results of simulation in ISIM toolbox
and simulink toolbox for late PRN are illustrated in figure 4.7 and figure 4.8 respectively.
The final pn signal in figure 4.7 defines the late PRN sequence. It is clear that the late PRN
begins after 1

2 a nominal chipping rate of prompt PRN which is 0.499 ms ≈ 0.5 ms. Both
these simulation results in ISIM toolbox and simulink toolbox are similar. Thus, we conclude
that the program coded in VHDL and the testbench program for late PRN are correct.

Figure 4.8: Results of simulation of late PRN in simulink toolbox

In summary, the VHDL program to generate early, prompt and late PRN codes were
successfully verified by simulating in ISIM toolbox and comparing those results with
simulation results in simulink toolbox.

4.3 FPGA implementation and verification

The FPGA kit, Spartan 3E-100 CP132 is used in this project to verify implementation of
FPGA-based tracking algorithm. The pin details of this kit is attached in appendix C.

To verify VHDL programs that generate early, prompt and late PRN codes; VHDL pro-
grams without a use of clock divider function were coded. However, a clock divider must be
used for implementation on FPGA because the clock frequency (= 25 MHz) in FPGA kit is
different than that of the project requirement (= 1.023 MHz).

The Spartan 3E-100 CP132 FPGA kit is facilitated with oscillators of frequency 25 MHz,
50 MHz and 100 MHz. For implementation, we choose 25 MHz oscillator pinned at “C8”.
The PRN code is driven by a clock frequency of 1.023 MHz. To achieve a nearest clock fre-
quency of 1.023 MHz, a clock divider function with N = 5 is selected such that the new clock
frequency becomes 25 MHz/24= 1.5625 MHz. The VHDL code for prompt PRN with the use
of clock divider function is attached in appendix B, section B.7.

Now, to verify the implementation of FPGA-based tracking algorithm, a bit file is gener-
ated which is attached in appendix B, section B.8. The FPGA kit is programmed with this
bit file. The clock signal is locked at pin “B8”, the reset signal is locked at pin “G12”, the

40

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

clock enable signal is locked at pin “L3” and the final pn signal is locked at pin “M5”. To
achieve a waveform in oscilloscope, a probe is connected to pin “M5” and “GND”. The results
as seen in oscilloscope is shown in figure 4.9 and 4.10.

Figure 4.9: Implementation of code generator in FPGA focusing clock frequency and peak-
to-peak voltage

Figure 4.10: Implementation of code generator in FPGA focusing delay, ∆X

41

CHAPTER 4. IMPLEMENTATION OF FPGA-BASED TRACKING ALGORITHM

Figure 4.9 shows a PRN code being generated by a FPGA kit. This figure focuses mainly on
the delays in the signal. In hardware, an exact PRN signal cannot be achieved as compared
to the signal achieved in simulation. Here, the value of ∆X = 260 ns i.e. the bit transition
time from 1 to 0 is 260 ns. This figure also gives information on amplitude which is defined
by ∆Y = 2.050 V.

Figure 4.10 focuses on the frequency of signal. In theory, a clock divider function with N
= 4 should be used to achieve a new clock frequency of 1.5625 MHz. But in practical case,
the frequency of the clock fluctuates with time. Therefore, the signal frequency as shown in
the figure is only 1.04 MHz at the time when we freeze the oscilloscope.

Furthermore, the results in oscilloscope resembles the simulation results (figure 4.5) in ISIM
toolbox and simulation results (figure 4.6) in simulink toolbox. This resemblance verifies the
implementation of tracking system for GNSS receiver on FPGA kit.

In summary, the PRN code generator was successfully simulated in ISIM toolbox. The re-
sults of comparison between simulation results in ISIM toolbox and simulink toolbox for early,
prompt and late PRN verified the VHDL programs that generate early, prompt and late PRN.
Then, the code generator was implemented on FPGA kit namely Spartan 3E-100 CP132. Fi-
nally, the implementation on FPGA was verified using an oscilloscope. Unfortunately, with
lack of hardware resources, the only tracking algorithm that could be implemented on FPGA
kit was the PRN code generator. Implementation of other tracking subsystems was left for
future works (chapter 5).

42

Chapter 5

Conclusion and Future Works

5.1 Discussion and conclusion

The tracking system for GNSS receiver was designed and simulated successfully in the simulink
toolbox. It consists of two major subsystems: code tracking loop and carrier tracking loop.

The code tracking loop was designed using DLL. The DLL was designed using Costas loop,
code loop discriminator and local code generator. A non-coherent, early minus late power
discriminator was applied that allowed a local code generator to produce a perfectly aligned
code. This theory was applied in simulink toolbox and was successfully verified.

The carrier tracking loop was designed using PLL. The PLL was designed using Costas loop,
carrier loop discriminator, carrier loop filter and local carrier wave generator. The discrimi-
nator outputs a carrier phase error filtered by a carrier loop filter. The feedback from filter
to NCO allows the NCO to produce a perfectly aligned carrier wave signal. This theory was
applied in simulink toolbox and was successfully verified.

The other half of the report dealt with VHDL programming and testing of code genera-
tor on a FPGA kit (Spartan 3E-100 CP132). The project lacked hardware resources. So,
the only option for testing was simulating the VHDL program in ISIM toolbox. The simula-
tion results in simulink and ISIM were compared. To verify the implementation of tracking
algorithm on FPGA, an oscilloscope was used. The final results were very satisfying.

5.2 Recommendations for future works

This project can still be taken into another level. The project was limited with hardware
resources. So, I would recommend specific hardwares that can be used for future work.

• For a GPS receiver module, MAESTRO A2235H can be used. The operating frequency
of this receiver module is 1.575 GHz with an accuracy of 2.5 m. This module can
be interfaced by I2C (Inter-IC), SPI (Serial Peripheral Interface) or UART (Universal
Asynchronous Receiver/Transmitter). The technical details of A2235H is attached in
appendix C, section C.5.

43

CHAPTER 5. CONCLUSION AND FUTURE WORKS

• The Costas loop can be designed and implemented on FPGA if a more powerful FPGA
kit was available. A XAPP 132 FPGA kit can be used to implement a DLL. A standard
implementation of DLL in XAPP 132 can be seen in appendix C, section ??.

• For code loop discriminator and carrier loop discriminator, I would recommend a
microcontroller STM32F030F4P6TR. It is a 32 bit microcontroller with 20 pins. This
module is embedded with I2C , SPI and USART (Universal Synchronous/Asynchronous
Receiver/Transmitter) interfaces. The technical details of STM32F030F4P6TR is
attached in appendix C.

• A carrier loop filter is a LPF and can be designed using passive components.

• For a local carrier generator, RF signal generator HM8135 can be used. This device is
very expensive and can be found at a price of NOK 34257.00 as from (farnell, 2017). The
device can generate a signal of frequencies ranging from 1 Hz to 3 GHz. The technical
details of HM8135 is attached in appendix C.

Based on the modules/hardwares mentioned above, I would like to propose a top level design
of a FPGA-based tracking system for GNSS receivers with specific hardwares mentioned. The
design proposal can be seen in figure 5.1 which can be a base for future works in FPGA-based
tracking system for GNSS receivers.

Figure 5.1: Top level design of a FPGA-based tracking system for GNSS receivers with specific
hardwares mentioned

44

Bibliography

K. Borre, et al. (2007). A software-defined GPS and Galileo receiver: a single-frequency
approach. Springer Science & Business Media.

G. Brodin & P. Daly (1997). ‘GNSS code and carrier tracking in the presence of multipath’.
International journal of satellite communications 15(1):25–34.

B.-Y. Chung, et al. (1993). ‘Performance analysis of an all-digital BPSK direct-sequence
spread-spectrum IF receiver architecture’. IEEE Journal on Selected Areas in Communi-
cations 11(7):1096–1107.

S. Gleason & D. Gebre-Egziabher (2009). ‘Gnss navigation: Estimating position, velocity,
and time’. GNSS Applications and Methods (Scot Gleason and Demoz Gebre-Egziabher,
eds.), Artech House, Norwood, MA pp. 55–86.

R. Gold (1967). ‘Optimal binary sequences for spread spectrum multiplexing (Corresp.)’.
IEEE Transactions on Information Theory 13(4):619–621.

R. Gold & R. C. Dixon (1998). ‘Method for generating and encoding signals for spread
spectrum communication’. US Patent 5,724,383.

S. Guruprasad (2015). FPGA-Based Software GNSS Receiver Design for Satellite Applica-
tions. Ph.D. thesis, YORK UNIVERSITY TORONTO.

J. K. Holmes (1982). ‘Coherent spread spectrum systems’. New York, Wiley-Interscience,
1982. 636 p. 1.

F. Johansson, et al. (1998). ‘GPS satellite signal acquisition and tracking’. Undergraduate
projects .

E. Kaplan & C. Hegarty (2005). Understanding GPS: principles and applications. Artech
house.

G. Kappen & T. G. Noll (2006). ‘Application specific instruction processor based imple-
mentation of a GNSS receiver on an FPGA’. In Proceedings of the conference on Design,
automation and test in Europe: Designers’ forum, pp. 58–63. European Design and Au-
tomation Association.

J. A. Klobuchar (1987). ‘Ionospheric time-delay algorithm for single-frequency GPS users’.
IEEE Transactions on aerospace and electronic systems (3):325–331.

45

BIBLIOGRAPHY

B. W. Parkinson (1996). Progress in astronautics and aeronautics: Global positioning system:
Theory and applications, vol. 2. Aiaa.

R. L. Peterson & R. E. Ziemer (1985). ‘Digital Communications and Spread Spectrum System’
.

E. Re & M. Ruggieri (2007). Satellite communications and navigation systems. Springer
Science & Business Media.

P. K. Tysowski (2009). ‘Method of downloading ephemeris data based on user activity’. US
Patent 7,633,438.

L. R. Weill (2010). ‘A high performance code and carrier tracking architecture for ground-
based mobile GNSS receivers’. In 23rd International Technical Meeting of the Satellite
Division of the Institute of Navigation 2010 (ION GNSS 2010).

46

Appendix A

Simulation Models as Designed in
Simulink

Figure A.1: A simplified GPS model

Figure A.2: A PRN sequence generator model

47

APPENDIX A. SIMULATION MODELS AS DESIGNED IN SIMULINK

Figure A.3: Configuration parameter for G1 register

Figure A.4: Configuration parameter for G2 register

48

APPENDIX A. SIMULATION MODELS AS DESIGNED IN SIMULINK

Figure A.5: Model to generate navigation data

Figure A.6: Model to generate carrier wave

Figure A.7: Model to generate early, prompt and late PRN codes

49

APPENDIX A. SIMULATION MODELS AS DESIGNED IN SIMULINK

Figure A.8: Implementation of code phase discriminator for equation 3.2

Figure A.9: Details of integrator and dump

50

A
P

P
E

N
D

IX
A

.
S

IM
U

L
A

T
IO

N
M

O
D

E
L

S
A

S
D

E
S

IG
N

E
D

IN
S

IM
U

L
IN

K

Figure A.10: A complete model for code and carrier tracking

51

Appendix B

MATLAB and VHDL codes

B.1 MATLAB code for correcting code phase alignment

function ctrl = fcn(d)

ctrl = 0;
if d > 1.5

ctrl = ctrl - 1; % to be shifted to the left
elseif d < 0.8

ctrl = ctrl + 1; % to be shifted to the right
else

ctrl = ctrl + 0; % do not make any change
end

B.2 MATLAB code for calculating coefficients C1 and C2

function [num, den]= fcn(Bl, damp)

wn = 8*Bl*damp/(4*damp*damp+1);
dT = 1e-3;
k = 400*pi;
c1 = 1/k*8*damp*wn*dT/(4+4*damp*wn*dT+wn*wn*dT*dT);
c2 = 1/k*4*wn*wn*dT*dT/(4+4*damp*wn*dT+wn*wn*dT*dT);

num = [c1+c2 -c1];
den = [1 -1];

52

APPENDIX B. MATLAB AND VHDL CODES

B.3 VHDL code for early PRN

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.NUMERIC STD.ALL;
USE WORK.HDL PRN 001 PKG.ALL;

ENTITY HDL prn 001 IS
PORT(clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
final pn : OUT std logic
);

END HDL prn 001;

ARCHITECTURE rtl OF HDL prn 001 IS
- - Signals

SIGNAL enb : std logic;
PN Sequence Generator 1 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
PN Sequence Generator 2 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
SIGNAL pn reg : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out : std logic;
SIGNAL pn xorout : std logic;
SIGNAL pn newvalue : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL pn reg 1 : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out 1 : std logic;
SIGNAL pn xorout 1 : std logic;
SIGNAL pn newvalue 1 : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted 1 : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL A : std logic;

BEGIN
enb <= clk enable;
pn newvalue(0) <= pn reg;
pn xorout <= pn newvalue(0)(0) XOR pn newvalue(0)(3);
pn value shifted <= pn newvalue(0)(9 DOWNTO 1);
pn newvalue(1) <= pn xorout & pn value shifted;
pn out <= pn newvalue(0)(0);

PN generation temp process1 : PROCESS (clk, reset)
BEGIN

IF reset = ’1’ THEN
pn reg <= to unsigned(1023, 10);

ELSIF clk’event AND clk = ’1’ THEN
IF enb = ’1’ THEN

53

APPENDIX B. MATLAB AND VHDL CODES

pn reg <= pn newvalue(1);
END IF;

END IF;
END PROCESS PN generation temp process1;

PN Sequence Generator 1 out1 <= resize(”0” & pn out, 8);

pn newvalue 1(0) <= pn reg 1;
pn xorout 1<= pn newvalue 1(0)(0) XOR pn newvalue 1(0)(2) XOR pn newvalue 1(0)(3)

XOR pn newvalue 1(0)(8);
pn value shifted 1 <= pn newvalue 1(0)(9 DOWNTO 1);
pn newvalue 1(1) <= pn xorout 1 & pn value shifted 1;
pn out 1 <= pn newvalue 1(0)(2) XOR pn newvalue 1(0)(6);

PN generation temp process2 : PROCESS (clk, reset)
BEGIN

IF reset = ’1’ THEN
pn reg 1 <= to unsigned(1023, 10);

ELSIF clk’event AND clk = ’1’ THEN
IF enb = ’1’ THEN

pn reg 1 <= pn newvalue 1(1);
END IF;

END IF;
END PROCESS PN generation temp process2;

PN Sequence Generator 2 out1 <= resize(”0” & pn out 1, 8);
A <= pn out XOR pn out 1;
final pn <= transport A after 2*511*977.517 ns;
END rtl;

B.4 VHDL code for prompt PRN

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.NUMERIC STD.ALL;
USE WORK.HDL PRN 001 PKG.ALL;

ENTITY HDL prn 001 IS
PORT(clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
final pn : OUT std logic
);

END HDL prn 001;

54

APPENDIX B. MATLAB AND VHDL CODES

ARCHITECTURE rtl OF HDL prn 001 IS
- - Signals

SIGNAL enb : std logic;
PN Sequence Generator 1 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
PN Sequence Generator 2 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
SIGNAL pn reg : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out : std logic;
SIGNAL pn xorout : std logic;
SIGNAL pn newvalue : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL pn reg 1 : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out 1 : std logic;
SIGNAL pn xorout 1 : std logic;
SIGNAL pn newvalue 1 : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted 1 : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL A : std logic;

BEGIN
enb <= clk enable;
pn newvalue(0) <= pn reg;
pn xorout <= pn newvalue(0)(0) XOR pn newvalue(0)(3);
pn value shifted <= pn newvalue(0)(9 DOWNTO 1);
pn newvalue(1) <= pn xorout & pn value shifted;
pn out <= pn newvalue(0)(0);

PN generation temp process1 : PROCESS (clk, reset)
BEGIN

IF reset = ’1’ THEN
pn reg <= to unsigned(1023, 10);

ELSIF clk’event AND clk = ’1’ THEN
IF enb = ’1’ THEN

pn reg <= pn newvalue(1);
END IF;

END IF;
END PROCESS PN generation temp process1;

PN Sequence Generator 1 out1 <= resize(”0” & pn out, 8);

pn newvalue 1(0) <= pn reg 1;
pn xorout 1<= pn newvalue 1(0)(0) XOR pn newvalue 1(0)(2) XOR pn newvalue 1(0)(3)

XOR pn newvalue 1(0)(8);
pn value shifted 1 <= pn newvalue 1(0)(9 DOWNTO 1);
pn newvalue 1(1) <= pn xorout 1 & pn value shifted 1;
pn out 1 <= pn newvalue 1(0)(2) XOR pn newvalue 1(0)(6);

PN generation temp process2 : PROCESS (clk, reset)

55

APPENDIX B. MATLAB AND VHDL CODES

BEGIN
IF reset = ’1’ THEN

pn reg 1 <= to unsigned(1023, 10);
ELSIF clk’event AND clk = ’1’ THEN

IF enb = ’1’ THEN
pn reg 1 <= pn newvalue 1(1);

END IF;
END IF;

END PROCESS PN generation temp process2;

PN Sequence Generator 2 out1 <= resize(”0” & pn out 1, 8);
A <= pn out XOR pn out 1;
final pn <= A;
END rtl;

B.5 VHDL code for late PRN

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.NUMERIC STD.ALL;
USE WORK.HDL PRN 001 PKG.ALL;

ENTITY HDL prn 001 IS
PORT(clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
final pn : OUT std logic
);

END HDL prn 001;

ARCHITECTURE rtl OF HDL prn 001 IS
- - Signals

SIGNAL enb : std logic;
PN Sequence Generator 1 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
PN Sequence Generator 2 out1 : OUT unsigned(7 DOWNTO 0); - - uint8
SIGNAL pn reg : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out : std logic;
SIGNAL pn xorout : std logic;
SIGNAL pn newvalue : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL pn reg 1 : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out 1 : std logic;
SIGNAL pn xorout 1 : std logic;
SIGNAL pn newvalue 1 : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted 1 : unsigned(8 DOWNTO 0); - - ufix9 E1

56

APPENDIX B. MATLAB AND VHDL CODES

SIGNAL A : std logic;

BEGIN
enb <= clk enable;
pn newvalue(0) <= pn reg;
pn xorout <= pn newvalue(0)(0) XOR pn newvalue(0)(3);
pn value shifted <= pn newvalue(0)(9 DOWNTO 1);
pn newvalue(1) <= pn xorout & pn value shifted;
pn out <= pn newvalue(0)(0);

PN generation temp process1 : PROCESS (clk, reset)
BEGIN

IF reset = ’1’ THEN
pn reg <= to unsigned(1023, 10);

ELSIF clk’event AND clk = ’1’ THEN
IF enb = ’1’ THEN

pn reg <= pn newvalue(1);
END IF;

END IF;
END PROCESS PN generation temp process1;

PN Sequence Generator 1 out1 <= resize(”0” & pn out, 8);

pn newvalue 1(0) <= pn reg 1;
pn xorout 1<= pn newvalue 1(0)(0) XOR pn newvalue 1(0)(2) XOR pn newvalue 1(0)(3)

XOR pn newvalue 1(0)(8);
pn value shifted 1 <= pn newvalue 1(0)(9 DOWNTO 1);
pn newvalue 1(1) <= pn xorout 1 & pn value shifted 1;
pn out 1 <= pn newvalue 1(0)(2) XOR pn newvalue 1(0)(6);

PN generation temp process2 : PROCESS (clk, reset)
BEGIN

IF reset = ’1’ THEN
pn reg 1 <= to unsigned(1023, 10);

ELSIF clk’event AND clk = ’1’ THEN
IF enb = ’1’ THEN

pn reg 1 <= pn newvalue 1(1);
END IF;

END IF;
END PROCESS PN generation temp process2;

PN Sequence Generator 2 out1 <= resize(”0” & pn out 1, 8);
A <= pn out XOR pn out 1;
final pn <= transport A after 511*977.517 ns;
END rtl;

57

APPENDIX B. MATLAB AND VHDL CODES

B.6 Testbench for PRN

LIBRARY ieee;
USE ieee.std logic 1164.ALL;
USE ieee.numeric std.ALL;

ENTITY HDL prn 001 tb IS
END HDL prn 001 tb;

ARCHITECTURE behavior OF HDL prn 001 tb IS
- - Component Declaration for the Unit Under Test (UUT)
COMPONENT HDL prn 001
PORT(

clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
final pn : OUT std logic
);

END COMPONENT;

- - Inputs
signal clk : std logic := ’0’;
signal reset : std logic := ’1’;
signal clk enable : std logic := ’0’;
signal final pn : std logic := ’0’;

- - Clock period definitions
constant clk period : time := 977.517 ns;
constant clk enable period : time := 977.517 ns;

BEGIN
- - Instantiate the Unit Under Test (UUT)
uut: HDL prn 001 PORT MAP (

clk => clk,
reset => reset,
clk enable => clk enable,
final pn => final pn
);

- - Clock process definitions
clk process :process
begin

clk <= ’1’;
wait for clk period/2;
clk <= ’0’;
wait for clk period/2;

58

APPENDIX B. MATLAB AND VHDL CODES

end process;

clk enable process :process
begin
clk enable <= ’1’;
wait;
end process;

- - Stimulus process
stim proc: process
begin
reset <= not(reset);
wait;
end process;
END;

B.7 VHDL code for prompt PRN with use of clock divider

LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
USE IEEE.NUMERIC STD.ALL;
USE IEEE.STD LOGIC UNSIGNED.ALL;
USE WORK.HDL PRN 001 PKG.ALL;

ENTITY HDL prn 001 IS
PORT(clk : IN std logic;

reset : IN std logic;
clk enable : IN std logic;
final pn : OUT std logic
);

END HDL prn 001;

ARCHITECTURE rtl OF HDL prn 001 IS
- - Signals
SIGNAL enb : std logic;
SIGNAL PN Sequence Generator 1 out1 : unsigned(7 DOWNTO 0); - - uint8
SIGNAL PN Sequence Generator 2 out1 : unsigned(7 DOWNTO 0); - - uint8
SIGNAL pn reg : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out : std logic;
SIGNAL pn xorout : std logic;
SIGNAL pn newvalue : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL pn reg 1 : unsigned(9 DOWNTO 0); - - ufix10
SIGNAL pn out 1 : std logic;
SIGNAL pn xorout 1 : std logic;

59

APPENDIX B. MATLAB AND VHDL CODES

SIGNAL pn newvalue 1 : vector of unsigned10(0 TO 1); - - ufix10 [2]
SIGNAL pn value shifted 1 : unsigned(8 DOWNTO 0); - - ufix9 E1
SIGNAL A : std logic;
SIGNAL slow clk : std logic;
SIGNAL clk divider : std logic vector(3 DOWNTO 0) := (OTHERS => ’0’);

BEGIN
clk division : process (clk, clk divider)
begin

if (clk = ‘1’ and clk’event) then
clk divider <= clk divider +1;

end if;
slow clk <= clk divider(3);

end process clk division;

enb <= clk enable;
pn newvalue(0) <= pn reg;
pn xorout <= pn newvalue(0)(0) XOR pn newvalue(0)(3);
pn value shifted <= pn newvalue(0)(9 DOWNTO 1);
pn newvalue(1) <= pn xorout & pn value shifted;
pn out <= pn newvalue(0)(0);

PN generation temp process1 : PROCESS (slow clk, reset)
BEGIN

IF reset = ‘1’ THEN
pn reg <= to unsigned(1023, 10);

ELSIF slow clk’event AND slow clk = ‘1’ THEN
IF enb = ‘1’ THEN

pn reg <= pn newvalue(1);
END IF;

END IF;
END PROCESS PN generation temp process1;
PN Sequence Generator 1 out1 <= resize(“0” & pn out, 8);

pn newvalue 1(0) <= pn reg 1;
pn xorout 1 <= pn newvalue 1(0)(0) XOR pn newvalue 1(0)(2) XOR pn newvalue 1(0)(3)
XOR pn newvalue 1(0)(6) XOR pn newvalue 1(0)(8) XOR pn newvalue 1(0)(9);
pn value shifted 1 <= pn newvalue 1(0)(9 DOWNTO 1);
pn newvalue 1(1) <= pn xorout 1 & pn value shifted 1;
pn out 1 <= pn newvalue 1(0)(2) XOR pn newvalue 1(0)(6);

PN generation temp process2 : PROCESS (slow clk, reset)
BEGIN

IF reset = ‘1’ THEN
pn reg 1 <= to unsigned(1023, 10);

ELSIF slow clk’event AND slow clk = ‘1’ THEN

60

APPENDIX B. MATLAB AND VHDL CODES

IF enb = ‘1’ THEN
pn reg 1 <= pn newvalue 1(1);

END IF;
END IF;

END PROCESS PN generation temp process2;

PN Sequence Generator 2 out1 <= resize(“0” & pn out 1, 8);
A <= pn out XOR pn out 1;
final pn <= A;

END rtl;

B.8 Implementation constraints file for PRN

NET “clk” LOC = “B8”;
NET “reset” LOC = “G12”;
NET “clk enable” LOC = “L3”;
NET “final pn” LOC = “M5”;

61

Appendix C

Datasheet and Technical Details of
Hardwares

C.1 Pin details of FPGA kit, Spartan 3E-100 CP132

62

APPENDIX C. DATASHEET AND TECHNICAL DETAILS OF HARDWARES

C.2 Technical details of GSM receiver module, A2235-H

63

APPENDIX C. DATASHEET AND TECHNICAL DETAILS OF HARDWARES

C.3 Technical details of microcontroller, STM32F030F4P6

64

APPENDIX C. DATASHEET AND TECHNICAL DETAILS OF HARDWARES

C.4 Technical details of signal generator, HM8135

65

APPENDIX C. DATASHEET AND TECHNICAL DETAILS OF HARDWARES

C.5 Implementaion of DLL on FPGA kit, XAPP 132

66

	Acknowledgements
	Abstract
	List of abbreviations
	Introduction
	Background study
	GNSS receiver
	Tracking system in GNSS receivers

	Previous works in tracking system for GNSS receivers
	Coherent spread spectrum systems
	GNSS code and carrier tracking in the presence of multipath
	High performance code and carrier tracking architecture
	Implementation of code and carrier tracking stage on a FPGA

	Thesis outline
	Problem statement and motivation
	Thesis objectives

	Code and Carrier Tracking
	GPS signal characteristics
	Carrier wave signal
	Navigation data
	Ranging code - P-code and C/A code

	Doppler frequency shift
	Code tracking
	Carrier tracking

	Tracking Algorithm Implementation and Simulation Using Simulink Toolbox
	Simulation of GPS signal
	Simulation of PRN sequence for satellite id #1
	Simulation of navigation data
	Simulation of carrier wave signal
	Simulation of output from modulo-2 sum
	Simulation of L1 signal

	Code tracking
	Simulation of early, prompt and late PRN code
	Design of a code loop discriminator
	Programming a code phase alignment block that makes decision on code phase shift
	Simulation of code tracking system for GNSS receiver in simulink toolbox

	Carrier tracking
	Design of a carrier loop discriminator
	Design of a carrier loop filter
	Simulation of local carrier wave
	Simulation of carrier tracking system for GNSS receiver in simulink toolbox

	Implementation of FPGA-based Tracking Algorithm
	RTL schematic design of a PRN code generator
	Coding and verification of VHDL program
	Verification of VHDL program for early PRN code
	Verification of VHDL program for prompt PRN code
	Verification of VHDL program for late PRN code

	FPGA implementation and verification

	Conclusion and Future Works
	Discussion and conclusion
	Recommendations for future works

	Bibliography
	Appendices
	Simulation Models as Designed in Simulink
	MATLAB and VHDL codes
	MATLAB code for correcting code phase alignment
	MATLAB code for calculating coefficients C1 and C2
	VHDL code for early PRN
	VHDL code for prompt PRN
	VHDL code for late PRN
	Testbench for PRN
	VHDL code for prompt PRN with use of clock divider
	Implementation constraints file for PRN

	Datasheet and Technical Details of Hardwares
	Pin details of FPGA kit, Spartan 3E-100 CP132
	Technical details of GSM receiver module, A2235-H
	Technical details of microcontroller, STM32F030F4P6
	Technical details of signal generator, HM8135
	Implementaion of DLL on FPGA kit, XAPP 132

