
INF-3981

Master’s Thesis in Computer Science

Collecting and Distributing Sensor Data

using the

Argos middleware platform

Mats Mortensen

June, 2007

Faculty of Science

Department of Computer Science
University of Tromsø

Abstract

Applications that adapt to environmental and situational changes are difficult

to build because computers cannot capture, represent or process context infor-

mation as easily as human beings. Nevertheless, context information is very

valuable because it allows applications to be made more user-friendly, flexible,

and adaptable. This realization has spawned a multitude of research efforts to

simplify development of context-sensitive applications. A result of one of these

research efforts is the Argos middleware platform, which is an application server

created specifically for personal applications that can adapt to changes in their

environment.

Applications that rely on context information must often collect this informa-

tion from external measurement devices, commonly known as sensors. These

devices respond directly to physical stimulus to produce meaningful information

about their surroundings. Typical examples are sensors that produce location,

temperature or motion information, but they can also, for instance, be devices

that monitors the physical condition of a person. The goal of this thesis has been

to design, develop and evaluate functionality for the Argos middleware platform

that makes it easier for Argos applications to collect and use sensor measurements.

The functionality has been developed in collaboration with the National Cen-

ter for Telemedicine (NST) who wants to use Argos for monitoring patients.

They intend to develop a system that can give patients semi-automatic feedback

and advice on how to maintain and improve their lifestyle. To do this they want

to use personal sensors that monitor attributes relevant to a patient’s condition.

The functionality developed in this thesis has provided a starting point for NST

to develop their system and contributed lots of technical information that will

prove useful for their project.

iii

Acknowledgments

This thesis marks the end of 5 years of studying computer science at the Uni-

versity of Tromsø. A fantastic university in every aspect, but especially nice

because of the atmosphere created by the students that study here. I honestly do

not think I would have completed my education if it had not been for my fellow

student friends who not only have provided indispensable technical discussions

and support, but also contributed with much needed non-computer related dis-

tractions.

I would like to thank my supervisors, Anders Andersen and Arne Munch-Ellingsen,

for their encouragement, ideas and support when writing this thesis. Last but

not least, I want to give a thanks to my family for putting up with me through

periods of great stress and give a special thanks to my brother for giving me a

ride from the university on numerous occasions this semester.

v

Contents

Contents i

Acronyms v

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 2

1.3 Interpretation . 2

1.4 Method and Approach . 3

1.5 National Center for Telemedicine (NST) 5

1.6 NST’s relation to this thesis . 6

1.7 Outline . 6

2 Related Work 9

2.1 Background . 9

2.2 Bridging the sensor gap . 11

2.3 Describing sensors and sensor data 12

2.3.1 XML . 13

2.3.2 The Resource Description Language (RDF) 13

2.4 Sensor Description Languages . 14

2.4.1 SensorML . 15

2.4.2 TinyML . 18

2.5 Limitations of Handheld devices 18

2.5.1 Limitations . 19

2.5.2 Distributing sensor data . 20

2.6 Summary . 21

i

ii CONTENTS

3 Requirements 23

3.1 System Goals . 23

3.2 Functional Requirements . 24

3.2.1 The Sensor Configuration Tool 25

3.2.2 The Argos Sensor Service 31

3.2.3 The Mobile Sensor Framework (MSF) 36

3.3 Non-Functional Requirements . 37

3.3.1 Run-time qualities . 37

3.3.2 Development-time qualities 38

3.4 Summary . 39

4 Technology 41

4.1 Overview . 41

4.2 Application servers . 41

4.3 The Argos Middleware Platform 43

4.4 Argos System Services . 44

4.4.1 Hibernate System Service 44

4.4.2 SMS System Service . 44

4.4.3 Web Service System Service 44

4.4.4 The TCP/IP System Service 45

4.4.5 JMX Connectors . 45

4.5 XML technologies . 45

4.5.1 XML Schemas . 45

4.5.2 XML Bindings . 47

4.6 Summary . 50

5 Design 51

5.1 Overview . 51

5.2 High level architecture . 51

5.3 Identifying common sensor functionality 52

5.3.1 Describing sensor functionality 54

5.3.2 Sensor Protocol Plugins . 54

5.4 The Sensor Configuration Tool . 55

5.4.1 Overview . 55

5.4.2 Managing Sensor Profiles 55

5.4.3 Managing Sensor Configurations 56

5.4.4 Deploying Sensor Configurations 56

5.4.5 Putting the pieces together 57

5.5 The Argos Sensor System Service 58

5.5.1 Sensor Profiles . 58

5.5.2 Sensor Configurations . 58

5.5.3 Receiving Sensor Data . 59

iii

5.6 The Mobile Sensor Framework . 59

5.7 Summary . 60

6 Implementation 61

6.1 Environment and programming language 61

6.2 System Overview . 62

6.3 Distributing sensor data . 63

6.4 The Sensor Data Format . 64

6.4.1 The EMTAC CRUX II Wireless GPS Sensor 64

6.4.2 The Davis Weather Station 66

6.4.3 NST Step Sensor . 67

6.5 System Components . 67

6.5.1 The Sensor Configuration Tool 68

6.5.2 The Argos Sensor Service 72

6.5.3 The Mobile Sensor Framework 73

6.6 Summary . 75

7 Testing 77

7.1 Conformance Testing . 77

7.1.1 The Sensor Configuration Tool 77

7.1.2 The Argos Sensor Service 81

7.1.3 The Mobile Sensor Framework 82

7.2 A GPS monitoring application . 83

7.2.1 NMEA Sentences . 83

7.2.2 EMTAC GPS Sensor Protocol Plugin 83

7.2.3 The completed GPS monitoring application 84

7.3 Summary . 85

8 Evaluation 87

8.1 Argos . 87

8.2 Functional Evaluation . 88

8.2.1 System Limitations . 88

8.2.2 Missing functionality . 89

8.2.3 Sensor Configuration Tool 89

8.2.4 Argos Sensor Framework 90

8.2.5 Mobile Sensor Framework 90

8.2.6 Comparison with Related Systems 92

8.3 Non-Functional Evaluation . 93

8.3.1 Flexibility . 93

8.3.2 Loose-coupling and interoperability 93

8.3.3 Extensibility . 94

8.4 Future Work . 94

iv CONTENTS

8.4.1 Transformations . 95

8.4.2 Discovery . 95

8.4.3 Monitoring . 95

8.5 Summary . 96

9 Conclusion 97

Bibliography 99

A Appendix A 103

B Appendix B 107

C Appendix C 109

D Appendix D 113

Acronyms

APMS A Personal Middleware System

RUP Rational Unified Process

NST National Center for Telemedicine

COLD Chronic Obstructive Lung Disease

RDF Resource Description Language

XML eXtensive Markup Language

WSN Wireless Sensor Network

SCT Sensor Configuration Tool

ASS Argos Sensor Service

MSF Mobile Sensor Framework

DBMS Database Management System

JEE Java Enterprise Edition

SOA Service Oriented Architecture

ORM Object-Relational Mapping

HBM Hibernate Mapping File

JMX Java Management Extensions

JAXB Java Architecture for XML Binding

WM5 Windows Mobile 5.0

NMEA National Marine Electronics Association

GGA Global Positioning System Fix Data
v

List of Figures

2.1 The Bluetooth protocol stack . 10

2.2 Davis Weather Station . 16

3.1 Sensor Configuration Tool - Connect to Argos Use-case Diagram . . . 25

3.2 Sensor Configuration Tool - Sensor Profiles Use-case diagram 26

3.3 Sensor Configuration Tool - Sensor Configurations Use-case Diagram 29

3.4 Interaction with the Sensor Configuration Tool 32

3.5 Interaction with the Mobile Sensor Framework 33

3.6 Interaction with Argos applications . 34

3.7 Interaction with the Argos Sensor Service and device applications . . . 36

5.1 High level architecture of the system 52

5.2 Tier architecture of the system . 53

5.3 Overview of the Sensor Configuration Tool 55

5.4 Managing sensor profiles with the Sensor Configuration Tool 56

5.5 Managing sensor configurations with the Sensor Configuration Tool . . 56

5.6 Deploying sensor configurations with the Sensor Configuration Tool . 57

5.7 A complete overview of the Sensor Configuration Tool 57

5.8 Storing sensor profiles . 58

5.9 Deploying Sensor Configurations . 59

5.10 Receiving and distributing sensor data 59

5.11 Getting sensor configurations and sensor protocol plugins 60

6.1 Overview of information flow in the system 62

6.2 The Mobile Sensor Framework communication abstraction 74

6.3 Sensor Connection . 75

7.1 The Argos GPS Monitoring Application 85

A.1 A visualization of the sensor packet XML schema 103

A.2 A visualization of the sensor profile XML schema 104

vii

viii LIST OF FIGURES

A.3 A visualization of the sensor configuration XML schema 105

C.1 The main window of the Sensor Configuration Tool 109

C.2 Editing a sensor profile . 110

C.3 Configuring a new sensor configuration 110

C.4 Adding a sensor protocol plugin to a sensor profile 111

D.1 GGA Sentence Fields . 113

Chapter 1

Introduction

1.1 Background

One of greatest challenges for future computing is to create applications that are

able to detect and respond to changes in their environments. Such changes are

often related to the context of given situations, but could also be simple condition

changes that should trigger an application response. Humans constantly make

use of situational information by deducing and interpreting information available

to us from our different senses. This information is then used to generate the ap-

propriately response or reaction to any given situation. Computers, however, do

not have general way of collecting such information. They must instead rely on

specialized measurement equipment that can respond directly to physical stimu-

lus.

Tiny sensor devices that responds to heat, light, sound, pressure, motion, flow, etc

are rapidly making inroads into automotive, medical, industrial, and aerospace

applications in addition to a multitude of consumer electronics. The motivation

behind the sensor usage can be traced to rising concerns for safety, convenience,

entertainment, and effiency factors [3]. In many cases the sensor readings are

only useful for embedded devices performing pre-defined tasks, but there are also

many cases where such readings would be useful for cellphones or general pur-

pose computers. A cellphone application could, for instance, benefit from current

location and activity information. This information could be collected using a

GPS sensor attached to a cellphone while a remote server could provide an activ-

ity service based on GPS coordinates. If a person with such a cellphone visited

the cinema he could automatically be presented with information about movies,

schedules, ticket purchase and related material.

1

2 CHAPTER 1. INTRODUCTION

However, integrating sensors with cellphones and passing sensor data on to remote

sources is not a trivial task. Most types of sensors have their own proprietary data

format that must be interpreted and there exists a number of different hardware

protocols to communicate with them. These problems are usually dealt with ev-

ery time a sensor application is developed, which increases the development time

and limits code reuse.

The scenario with the cellphone and GPS sensor demonstrates that in many cases

sensors will be directly connected to handheld devices that pass sensor data on to

remote server-side applications. Server-side applications will just be interested in

getting the sensor data and does not want to worry about sensor communication

protocols or data formats. Similarly, there might be applications on a handheld

device that are just interested in sensor data and not how to actually retrieve

it from a sensor. These two scenarios forms the basis for what this thesis will

attempt to solve.

1.2 Problem Definition

The primary goal for this thesis is to develop a system to simplify development

of sensor applications on the Argos middleware platform[10]. It is assumed that

such applications either run on a computer directly connected to a sensor or on a

computer that receives sensor data from a remote resource. In the latter case it is

assumed that the remote resource is a handheld device that is directly connected

to one or more sensors.

This thesis will mainly focus on the last scenario and the system will be de-

veloped to extend the functionality of the Argos middleware platform.

The primary goals for this thesis can be summarized as follows:

• Create a sensor framework for handheld devices that takes care of accessing,

retrieving and distributing sensor measurements.

• Create a sensor framework for the Argos middleware platform that can

receive sensor data from handheld devices and offer it to Argos applications.

1.3 Interpretation

To simplify development of the server-side applications different types of mid-

dleware platforms are often used. Middleware or application servers can provide

easy to use communication-, persistence-, and data abstractions that takes away

much of the complexity regular applications are faced with. Creating a similar

1.4. METHOD AND APPROACH 3

abstraction for accessing sensors can make it easier both to receive sensor data

from external sources and providing this data to applications running on the

middleware. This thesis will attempt to develop a sensor framework for the Ar-

gos1 middleware platform. Argos is a very lightweight application server that is

primarily created for context-sensitive applications that want to collect measure-

ment data from remote locations. The sensor framework developed in this thesis

will extend this notion by giving applications a simpler way to retrieve, use and

possibly store sensor data.

It is considered unlikely that sensors will be connected directly to the computer

running Argos. This assumption simplifies the Argos sensor framework because

it will not need to worry about providing abstractions for directly accessing sen-

sors. However, if it does not get the data from a sensor directly it will get it from

another computer or a handheld device. This thesis will, for reasons described

later, assume that only handheld devices will be directly connected to sensors.

The system to be developed must somehow interact with these devices to collect

sensor data and provide this information to Argos applications.

The complete system will hopefully provide new perspectives on how to cre-

ate software abstractions for accessing sensor data but will also investigate the

benefits and potential drawbacks of the newly redesigned Argos. Among its new

features is a micro architecture that allows developers to create system function-

ality that is completely independent from the core features of the middleware.

The system developed in this thesis will use this architecture to extend Argos

with a sensor framework Argos applications can use to receive sensor information.

The software developed in this thesis is not intended to be production qual-

ity, but rather a prototype that can give new perspectives on how to simplify

access to sensor systems. Although it is strictly research, it is conceivable that

some of the functionality developed will be used and modified to be used for other

projects. For this reason it is important that the functionality developed is as

generic and component based as possible.

1.4 Method and Approach

This thesis will attempt to follow an agile software development pattern called

Scrum as described in [12]. Agile software development evolved in the mid 90s

as a reaction to established methodologies like the Waterfall Model2 and Ratio-

nal Unified Process (RUP)3. These methodologies were criticized for being too

1In version 2 of middleware previously known as ”APMS” the name was changed to ”Argos”.
2http://en.wikipedia.org/wiki/Waterfall model
3http://en.wikipedia.org/wiki/Rational Unified Process

4 CHAPTER 1. INTRODUCTION

bureaucratic because they comprise of very strict project guidelines and often

produce a lot of documentation. Agile methods, like Scrum, on the other hand,

have a more people oriented approach and emphasize real-time, face-to-face com-

munication over written documents.

The Waterfall Model, RUP and similar methods are development processes that

all follow a workflow that generally involves the following phases:

• Analysis

• Design

• Implementation

• Testing

RUP distinguishes itself from the Waterfall Model by being iterative. This means

that the workflow involving analysis, design, implementation and testing is ap-

plied multiple times before a project is completed. The Waterfall Model, on the

other hand, is sequential and the workflow is only applied once. RUP and even

the Waterfall Model have produced many successful applications, but they of-

ten fail to factor in that system requirements can change quickly in response to

customer needs. Scrum and other agile methods have realized this and tries to

welcome and adapt to change by being more ”lightweight” and less dependent on

documentation.

Agile development with Scrum is team based and evolves generally around two

different backlogs. The product backlog contains a prioritized list of all high level

product requirements and entries are added as the project proceeds. Practically

anyone can add entries to the product backlog, but it typically comes from the

users or stakeholders of the system. Scrum teams work in iterations called Sprints

that typically last 2-4 weeks depending on the size of the project. They acquire

a number of tasks from the product backlog that forms the sprint backlog. The

sprint backlog will contain the tasks from the product backlog that they think

they will be able to finish within the sprint timeframe.

The Scrum teams are managed by a Scrum Master that enforces the Scrum

development rules and helps the teams make project decisions. Before a sprint is

initiated, the scrum team and the Scrum Master have a sprint meeting where the

master helps the team decide which tasks should be completed for the sprint. Dur-

ing a sprint the Scrum Master participates in daily meetings called Daily Scrums

with the team where each team member reports their progress. This meeting

is intended to discover and solve small development obstacles that impedes the

1.5. NATIONAL CENTER FOR TELEMEDICINE (NST) 5

sprint progress. When the sprint is completed the team has another meeting with

their Scrum Master called a Sprint Review where the team presents the work they

have accomplished. This meeting can include other developers, management peo-

ple and stakeholders, but it is coordinated by the Scrum Master. The project

reaches its final stage, Closure, when there are no more requirements or tasks left

in the product backlog. When Closure has been reached the final preparations

for product release are started and no more features are to be added to the system.

Although this thesis will be developed according to the Scrum principles, the

development process will be somewhat altered to accommodate that this is an

individual project. Agile development with Scrum is really designed for larger

project with teams of people working together, but the development philosophy

will probably also prove advantageous for this thesis.

This thesis will have the following Scrum development details:

• Scrum Master: Arne Munch-Ellingsen (Cosupervisor)

• Sprint timeframe: 2 weeks

• Daily Scrums: Every Wednesday and Friday

1.5 National Center for Telemedicine (NST)

The National Center for Telemedicine (NST)4 are working on a project to help

certain patients improve their health by giving them lifestyle advice. It is a

fact that many chronic illnesses can be ameliorated, postponed or avoided by

just minor changes to patients day-to-day behavior. Typical examples of such

diseases are Type II Diabetes, Chronic Obstructive Lung Disease (COLD) and

obesity. However, NST realize that it is notoriously difficult for people to main-

tain permanent lifestyle changes. As pointed out in [23] lifestyle changes cannot

be sustained by simple 20 minute consultations. They need to be continuously

promoted, which is a very time consuming and difficult process.

In order to alleviate this problem, NST wants to develop a system that can give

patients semi-automatic feedback and advice on how to maintain and improve

their lifestyle. Personal sensors that monitor attributes relevant to a patient’s

condition can be used to predict a patient’s health status and to formulate ad-

vice on how a patient can maintain a healthier way of living. This way patients

can receive constant information about their health status in addition to sugges-

tions on how they can improve their life.

4http://www.telemed.no/

6 CHAPTER 1. INTRODUCTION

1.6 NST’s relation to this thesis

NST wants to use the Argos middleware platform to develop a prototype applica-

tion that gathers sensor data from cell phones. They envision that in the future

a patient can be equipped with a cell phone that interacts with various types

of sensors related to the patient’s lifestyle. The purpose of this prototype is to

illuminate problems related to sensors and collection of sensor data.

This thesis will make two important assumptions based on the NST applica-

tion usage scenario that will greatly influence the developed system. It will be

assumed that:

1. In most cases the sensor will be directly connected to a handheld device

that will pass data on to Argos

2. In most cases both Argos and the handheld device will be controlled by the

same actor(s).

1.7 Outline

The thesis consists of the following chapters:

Chapter 1 - Introduction

Chapter 2 - Related Work

This chapter presents research and development on communicating with

sensors and describing sensor data formats. It also contains a brief overview

of limitations related to using mobile devices.

Chapter 3 - Requirements

This chapter presents the requirements for the system that has been devel-

oped as part of this thesis.

Chapter 4 - Technology

This chapter presents a number of different technologies that have had an

impact on the developed system.

Chapter 5 - Design

This chapter presents the design of the system and its related components.

Chapter 6 - Implementation

This chapter describes how the system was implemented, which technologies

were used and other technical considerations.

1.7. OUTLINE 7

Chapter 7 - Experimentation

This chapter presents a demonstration application that uses the system and

provides details on how the system should be used.

Chapter 8 - Evaluation

This chapter gives an evaluation of the system based on the requirements

specified. It also presents a summary of its advantages and limitations and

suggests how it can be improved in future work.

Chapter 9 - Conclusion

This chapter concludes the thesis and the achievements made based on the

problem definition given in chapter 1.

Chapter 2

Related Work

This chapter will present research and existing systems that are relevant for this

thesis. Much of this previous work focus on how to describe sensor systems

and sensor data (or just data) in interoperable formats that allow easy sharing,

exchange and processing of this type of information. The results of these research

efforts will be presented and discussed in the light of the goals set by this thesis.

2.1 Background

Sensor systems can generally be regarded as information resources that produce

some kind of data. A sensor is usually thought of as a simple device that responds

to stimulus, such as heat, light or pressure, while sensor systems can comprise of

multiple sensors. An example of the latter could be the Davis Weather Station

II1, which is a measurement instrument that is comprised of a multitude of sen-

sors that measure temperature, wind speed and direction, barometric pressure,

humidity and other weather related information.

Measurement instruments and sensors are usually resource constrained devices

that have limited connectivity making them dependent on base stations close by

to deliver their data. The base stations can be online computers or other resource

rich devices that can publish sensor data on independent web sites, store them

in sensor stores[19] or send them to a centralized place for processing.

In order to collect data from a sensor a computer or device must communicate

with it in a certain way. The typical wireless communication technologies used

1http://www.davisnet.com/weather/products/weather product.asp?pnum=07440CS

9

10 CHAPTER 2. RELATED WORK

are Infrared2, Bluetooth3 and Wireless LAN, but a number of other technologies

like ZigBee4, Wibree5 or Wireless USB are possible alternatives. Especially one

of the flavors (Certified Wireless USB6, WirelessUSB7) of wireless USB is proba-

bly going to be popular in the future. Each of these communication technologies

have their own strengths and weaknesses, making it possible for sensor manufac-

tureres to choose the one most appropriate for their sensor.

However, one of the problems that makes sensors complicated to work with is that

these communication technologies can use a number of different data exchange

protocols. For instance, a device that supports WLAN connectivity can use

TCP/IP or UDP to transfer its sensor data while a bluetooth or infrared device

may use emulated rs-2328 serial ports or maybe OBEX9. A complete overview of

the bluetooth protocols is given by figure 2.1. It shows the whole bluetooth pro-

tocol stack where the RFCOMM layer provides the rs-232 serial port emulation.

Applications

RFCOMM

OBEX

TCP/IP

PPP

AT

TCS SDP

L2CAP

HCI

Link Manager

Baseband

Bluetooth Radio

Figure 2.1: The Bluetooth protocol stack

Such a large number of different communication technologies combined with dif-

ferent data exchange protocols makes it difficult to create a framework that can

2http://www.irda.org/
3http://www.bluetooth.com
4http://www.zigbee.org
5http://www.wibree.com/
6http://www.usb.org/developers/wusb/
7http://www.cypress.com/portal/server.pt?space=CommunityPage&control=SetCommunity&CommunityID=209&PageID=215&gid=14&fid=65&catego
8http://www.camiresearch.com/Data Com Basics/RS232 standard.html
9http://dev.zuckschwerdt.org/openobex/

2.2. BRIDGING THE SENSOR GAP 11

be used to provide uniform access any sensor. The strategy that probably will be

adopted by this thesis is to try to support a subset of the most commonly used

protocols and technologies.

2.2 Bridging the sensor gap

One of the primary goals for this thesis is to bridge the gap between sensors and

applications that want to use the data they provide. The lack of sensor data and

communication standards makes it difficult to develop applications that want to

use sensor data, but does not want the complications concerned with sensor in-

teraction. The main problem with sensor interaction is that sensor devices are

produced by a large number of different companies that usually define their own

protocols and data formats. That is, they design data protocols that work on top

of protocols like tcp/ip or rs-232. The use of proprietary formats forces develop-

ers to reinvent the wheel more than necessary and severly limits general purpose

sensor tools from being developed.

One way this situation could be improved is to find standard ways to describe

how to communicate with sensors and standard ways to describe sensor data

formats. [11] suggests a way to do this by defining a generic XML format that

describes both the hardware protocol used to communicate with a sensor and the

protocol structure of the sensor data. An example of this format can be seen in

listing 2.1.

<input id="xbow adxl202 evaluation board">

<rs232 port="/dev /ttyS0" baudrate ="38400" buffsize ="4"

databits ="8" stopbits ="1" parity ="no">

<poll wait="1500" command ="G"/>

<packet >

<channel id="0" name="AccX" bits="16" sign="unsigned "

format ="integer "/>

<channel id="1" name="AccY" bits="16" sign="unsigned "

format ="integer "/>

</packet >

</rs232 >

<inputcolumn id="0" channel ="0" name="AccX" bits="14" sign="unsigned "

format ="integer "/>

<inputcolumn id="1" channel ="1" name="AccY" bits="14" sign="unsigned "

format ="integer "/>

</input >

Listing 2.1: CommonSense ToolKit XML data format

The XML format illustrated by listing 2.1 contains three different sections that

describes the communication protocol used (rs232), the packet format of the sen-

sor data (packet) and a list of inputcolumns that describes data that should be

12 CHAPTER 2. RELATED WORK

retained for further processing. The authors of this format also created a graph-

ical tool to simplify the process of creating such sensor profiles.

The motivation for the authors of this sensor format was to find a way to deal with

sensors in a uniform way. The format was developed as part of the CommonSense

ToolKit10 that aims to assist in the communication, abstraction, visualisation,

and processing of sensor data. However, even though the paper fails to mention

it, they seem to make some strong assumptions about sensor communication. The

XML examples they provide appear to assume that a sensor will only send data

packets in a binary data format and fails to describe any further sensor protocol

interaction. More complex sensor systems might require additional interaction

in order to setup connections, starting/stopping data transfers and dealing with

partial packet receivals. An example of such a sensor system is the CoaguChek

XS described in [1] used by NST. It measures INR values indicating the intensity

of anticoagulation in patients blood. The measured values are used for dosage

adjustments of Warfarin, which is a drug that prevents the blood from clotting.

The CoaguChek XS employs a complex sensor protocol that has:

• Special control characters for initiating and terminating connections

• Different modes/states for data exchange and command exchange

• Data that is split into data frames that may be further split into multiple

data blocks

• Data frames that must be acknowledged/deacknowledged with special re-

sponse characters.

The protocol used by the CoaguCheck XS would be impossible to describe in the

format defined by the creators of the CommonSense ToolKit. Unless the devel-

opers of the CommonSense ToolKit somehow feed their applications additional

information on how to communicate with sensors the XML format they propose

will only work for a very limited number of sensors.

2.3 Describing sensors and sensor data

The work done by the developers of the CommonSense ToolKit focused on defin-

ing an XML format to describe how to communicate and interpret data from

specific types of sensors, but it is also interesting how sensor data can be mod-

eled after its collected. There exists a few different technologies that can be

suitable for this task even though it is not certain that it is possible or desireable

to create a format that can describe any type of sensor data.

10http://cstk.sourceforge.net/

2.3. DESCRIBING SENSORS AND SENSOR DATA 13

2.3.1 XML

One way to describe collected sensor data is by creating a generic XML format

that any type of sensor data can be described in. The advantage of this approach

is that XML is an interoperable format that is supported nearly everywhere al-

lowing sensor data to easily be shared across different systems and programming

languages. Furthermore, since XML is so popular there exists an abundance of

tools to manipulate XML structured information. This is especially useful when a

format is described by an XML schema since many programming languages have

tools that can map XML to objects in a programming language automatically.

There are also a number of reasons why XML might not be suitable for de-

scribing sensor data. The native sensor data formats are usually very compact

in order to use up as little space as possible, but an XML format will necessarily

be very verbose (because of the tags). If the sensor data is collected and used in

a resource constrained environment, like on a handheld device, the extra space

overhead might matter. As described by [7] using XML instead of an equivalent

binary representation can often cause up to sixteen- to seventeen-fold increase in

size. While [15] suggests that the average is around 400% larger. This, of course,

depends on factors like length of the tags and the structure of the document.

XML also demands more processing power to be interpreted than a compact pro-

prietary sensor data format. This might also be an issue on a device with limited

resources.

Finally, XML lacks good ways to describe relationships and semantics which

might limit its usefulness when compared to ontology languages.

2.3.2 The Resource Description Language (RDF)

The Resource Description Language (RDF) is a ontology language that lever-

ages a simple and flexible data model to describe objects and their properties as

described in [16]. RDF can be thought of as a way to decompose any type of

knowledge into small, structured pieces of data that can include semantic infor-

mation about those pieces. Since RDF data is well structured (actually a graph)

it is easy for computers to reason about or query the data. Originally RDF was

based on XML, but can now be expressed in a number of different syntaxes.

RDF was created to describe any type of information and might therefore be

a good choice for describing sensor data. Since it can be expressed in XML it

14 CHAPTER 2. RELATED WORK

retains most of XML’s positive and negative sides, but is more suitable for de-

scribing data relationships, semantics and makes it easier to make queries about

the data. However, RDF would not provide a generic way to describe sensor data.

It is an ontology language and consequently is designed for describing ontologies.

An ontology is basically a specifically designed vocabulary for describing domain

specific information. In the case of sensors, you might, for instance, create a

specific vocabulary for each type of sensor and use that vocabulary to describe

the sensor data for that sensor type.

The real power of RDF can be discovered by using multiple vocabularies to

describe information because it enables computers to reason about that informa-

tion. A good example might be a vocabulary that defines the units celcius and

fahrenheit typically used by temperature sensors. It is important to realize that

these units are not exclusive to temperature sensors, but might show up in tons of

situations regarding temperature (like weather reports). In this example it would

be a good idea to define a standard vocabulary that provided definitions (using

URIs) for celcius and fahrenheit. If data regarding temperature from two differ-

ent, independent sensors was described in RDF using this vocabulary a computer

program could ”know” that the two sources were referring to the same type of

data. Or if one was using celcius and the other fahrenheit it would know the

difference and could convert one to the other before any comparison was made!

These types of standard vocabularies can be created for ANY type of domain and

by sharing vocabularies computers can suddenly start to make sense of unrelated

data in ways that were previously not possible.

Even though RDF seems like a promising language for describing information

it is still in its infancy and only one piece of the puzzle. It would involve a lot

of work to define ontologies for every sensor type and in order for RDF to really

become useful, standard vocabularies needs to be defined for various types of

information (like temperature). Unfortunately not many such standard vocabu-

laries have been defined although some are under development11. For this reason

RDF has not been widely adopted (yet!) to describe information.

2.4 Sensor Description Languages

Sensor description languages are languages that try to describe and capture in-

formation regarding the different aspects of sensor systems. In the context of this

thesis this work is interesting because we want to investigate ways to describe

sensors and sensor data.

11http://www.w3.org/2003/01/geo/

2.4. SENSOR DESCRIPTION LANGUAGES 15

2.4.1 SensorML

The biggest research effort in this area has been done by The Open Geospatical

Consortium (OpenGIS), which is developing a standard called SensorML[6]. On

their website OpenGIS have specified the following goals for SensorML.

• Discovery of sensor, sensor systems, and processes

• On-demand processing of Observations

• Lineage of Observations

• Support for tasking, observation, and alert services

• Plug-N-Play, auto-configuring, and automous sensor networks

• Archiving of Sensor Parameters

However, SensorML is currently nothing more than an unfinished XML based

specification that provides a generic data model to describe sensors and sensor

systems. It uses GML[2], a language also created by OpenGIS, to describe the

geospatical properties of sensors. A sensorML description of a sensor system can

contain the following:

• Identification information like manufacturer, name, model, etc

• What specific sensors (called detectors) the system is made up of

• What physical entities the system measures

• What accuracy it can achieve

• Other types of metadata that describe its capabilities or characteristics

Additionally, the specification allows a sensor system description to contain pro-

cess chains that can transform measurements into more useful information. Typ-

ically a process chain could apply a well known formula (like the formula for

calculating the wind-chill factor12) and thus produce another useful measurement.

A tutorial on how to describe the Davis Weather Station is provided by the

SensorML website13. Figure 2.2 illustrates what sensor components the weather

station is made up of and what type of data each sensor provides.

12http://en.wikipedia.org/wiki/Wind chill
13http://vast.uah.edu/joomla/index.php?option=com content&task=view&id=25&Itemid=50

16 CHAPTER 2. RELATED WORK

Figure 2.2: Davis Weather Station

The system as a whole is described by a comprehensive metadata section that

includes identification, classification and capabilities of the system. The identifi-

cation part for the Davis Weather Station can be seen in listing 2.2.

<identification>

<IdentifierList>

<identifier name="longName ">

<Term qualifier ="urn:ogc:def:identifier:longName ">

Davis Weather Monitor II Station

</Term>

</identifier >

<identifier name="shortName ">

<Term qualifier ="urn:ogc:def:identifier:shortName ">

Davis Weather Station

</Term>

</identifier >

<identifier name="modelNumber ">

<Term qualifier ="urn:ogc:def:identifier:modelNumber ">

7440

</Term>

</identifier >

<identifier name="manufacturer">

<Term qualifier ="urn:ogc:def:identifier:manufacturer ">

Davis Instruments

</Term>

</identifier >

</ IdentifierList>

</ identification>

Listing 2.2: Identification metadata

Similar identification metadata is provided for each detector, but is less detailed.

Each detector also has its own input/output section that can describe one scalar

2.4. SENSOR DESCRIPTION LANGUAGES 17

input and one scalar output. Usually detectors only measure a phenomena and

do not need any input in which case the input is modeled as identical to the

output. The input/output metadata for the temperature sensor that is part of

the Davis Weather Station is illustrated in figure 2.3.

As can be seen from figure 2.3 each input/output is described by a scalar pa-

rameter element (<quantity>) that uses URIs to define the type and unit of the

data. SensorML attempts to provide a library of URIs to define common phe-

nomenon data types and units. This ensures that anyone using SensorML will

use and expect the same type of input/output values. Unfortunately it does not

seem to exist any documentation on this URI library, except from what can be

found in the XML schemas and examples.

<inputs >

<InputList >

<input name="temperature ">

<swe:Quantity definition =" urn:ogc:def:phenomenon:temperature "

uom="urn:ogc:def:unit:celsius "/>

</input >

</InputList >

</inputs >

<outputs >

<OutputList >

<output name="measuredTemperature ">

<swe:Quantity definition =" urn:ogc:def:phenomenon:temperature "

uom="urn:ogc:def:unit:celsius "/>

</output >

</OutputList >

</outputs >

Listing 2.3: Detector input/output metadata

Although SensorML provides a good and rich data model for expressing sensor

meta information it has a few limitations. First of all the specification is fairly

complex and consists of thirteen different XML schemas that define the various

elements it is made up of. Secondly, there are very few, if any, tools that can

assist in using SensorML. Combined with scarce documentation that consists of

little more than one tutorial and a few demonstration XML documents it would

be difficult and time consuming to base a project upon it. This problem is likely

to disappear when the product becomes more mature, but currently this makes

SensorML unsuitable for most projects.

Another limitation of SensorML is the choice of XML as its foundation. While

XML has a well defined syntax, it lacks a good way to describe semantics and

relationships. According to [9] this will limit the potential for reuse and interoper-

18 CHAPTER 2. RELATED WORK

ability of SensorML profiles since the profiles cannot share a common vocabulary.

It is puzzling why OpenGIS did not decide to use a ontology language like RDF

or OWL14 instead of XML, but research efforts like [9] have realized this limita-

tion and done research on building ontologies on top of SensorML.

The final limitation of SensorML is that it does not define any standard format

for the actual sensor data. Perhaps this never was their intention, but according

to this paper[19] this is one of their future goals.

SensorML is not released yet for general use. The specification available for

download is a pre-release that according to their website is subject to change.

2.4.2 TinyML

TinyML[18] is another sensor description language that focuses exclusively on

embedded wireless sensor networks (WSN)[8]. It uses many of the same ideas as

SensorML, but is much more lightweight and was designed to overcome some of

SensorML’s deficiencies.

Originally the creators of TinyML realized that in the future we will access and

exchange data from multiple sensor networks that are not necessarily compatible

with each other. This realization resulted in an XML based language that pro-

vides a universal interface for interacting with sensor networks. TinyML explores

two-way interaction between users and sensor networks as well as interaction be-

tween the sensor networks themselves.

The basic components of TinyML are sensors, platforms and sensor fields. The

platform represents a physical device that has a processor, energy source and

radio capability. Each platform typically has a collection of sensors where each

sensor describes a specific sensor and its properties. A sensor network is described

by a sensor field, which is a collection of platforms.

While TinyML employs some nice concepts it is primarily created for sensor

networks, which makes it difficult to adapt to other sensor systems. Further-

more, it does not have any examples or implementations available, but provides

useful research information regarding sensor systems.

2.5 Limitations of Handheld devices

The problem description in chapter 1 assumes that in most cases sensors will be

directly connected to handheld devices like cellphones. Since people usually keep

14http://www.w3.org/TR/owl-features/

2.5. LIMITATIONS OF HANDHELD DEVICES 19

their cellphones close it is also likely that the cellphones will be in close proximity

to personal sensors, for instance sensors that monitors patients. This is how NST

intends to use sensors and like mentioned in 1.6 they also want an easy way for

sensor data collected by handheld devices to be transmitted to Argos applications.

This section will describe some limitations regarding cellphones that may affect

how sensor data collection should be performed.

2.5.1 Limitations

Typically when you develop applications for handheld devices you have to take

into consideration that such devices have limited resources and features. Some

of these limitations, as described by [21] and [24], include:

• Limited computing power (such as processor speed, memory size and disk

capacity)

• Short battery life

• Low-bandwidth connectivity and reliability

• Limited display features

Our area of concern involves the collection and distribution of sensor data in

which case the most important limitations of handheld devices will be the lim-

ited connectivity and computing power available. Potentially a cellphone can

collect sensor data from multiple sensors and processing this information may

require a lot of computing power, especially if the collection frequency is high.

Furthermore, if this information should be transmitted to a remote server the

bandwidth of a GPRS[13] (160 kbit/s) or even EDGE[13] (384 kbit/s) internet

connection might be a limiting factor. The cost of sending the data might also

be an issue because many internet providers charge mobile devices by the byte.

For instance, the norwegian telecommunications company Telenor15 charge users

kr 20,- pr. MB up to a maximum of 50 kr a day16 for using their mobile wireless

network.

These issues must be taken into consideration when deciding how a mobile de-

vice should represent and distribute sensor data. The representation may end

up being a choice between the efficiency of a proprietary protocol and the decou-

pledness of an XML type protocol. The disadvantage of XML in this case is the

cost of parsing and the extra size it will add to the sensor data as discussed in

15http://www.telenor.no
16http://telenormobil.no/priser/tjenester/gprs/

20 CHAPTER 2. RELATED WORK

2.3.1. One way of reducing the overhead caused by XML is by using compression

techniques as described in [7], but this has the drawback of using more computing

resources on the device.

In the NST usage scenario limitations like connectivity and computing power

are of less importance because sensors monitoring patients will generate small

amounts of data that do not need to be sent frequently. However, the system

developed in this thesis will try to be as general as possible and consequently all

limitations are taken into consideration.

2.5.2 Distributing sensor data

In our problem scenario it must be possible for handheld devices to distribute

collected sensor data to remote receivers. This can be accomplished by either

using push-based approach where the device sends data to a receiver at regular

intervals or using a pull-based approach where the server polls the device for data

when it needs it.

Pull-based approach

Using a pull-based approach is appealing because receiving sensor applications

might not need sensor data all the time, but only in certain situations. This

approach can thus greatly reduce the communication to applications wanting to

receive sensor data and to the sensors themselves. Less communication would

also mean reduced processing and increased battery life for the device. However,

using a pull-based approach for communicating data is difficult with handheld

devices. The main problem is that mobile devices are not always connected to

the internet and when they are they do not have a static IP as described in [4].

This greatly reduces the usefulness of a pull-based approach because the only

way to poll the device would be by using SMS messages. SMS is not only very

slow, but is also expensive from a financial point of view.

Push-based approach

A push-based approach is more desireable if the extra communication is not an

issue. This is because the only assumptions that have to be made is that:

i The device knows the address of the receiver

ii The receiver offers a mechanism for receiving data

The best solution will depend on a sensor application’s usage pattern. If the

application only needs sensor data occasionally and sporadically it would be best

to pull the data otherwise if the pattern is more regular and frequent it would be

better to push the data.

2.6. SUMMARY 21

2.6 Summary

This chapter has primarily focused on illuminating various aspects of describing

sensors and sensor data, but has also discussed limitations and problems related

to connecting handheld devices to sensors and using them to collect and distribute

sensor data. It is clear that little research has been done regarding generic archi-

tectures for describing sensors and sensor data, but efforts like SensorML seems

to be promising for the future.

Chapter 3

Requirements

This chapter presents the different parts of the system that needs to be designed

along with the requirements they must fulfill. The requirements are based on the

problem definition given in chapter 1. A more complete design of the system will

be given in chapter 5.

3.1 System Goals

The main goal for this thesis is to create a system that can simplify the devel-

opment of Argos applications that use sensor measurements. User applications

running on Argos should be able to receive and use sensor data without having

to concern themselves with how or where this data was collected. Furthermore,

it is also the intention to create a system that makes it easier to develop and

configure applications that access sensors directly.

It is assumed that sensors will be connected to handheld devices that in turn

will pass data on to Argos. This is the scenario described by NST and in section

1.6 of the introduction chapter it was also assumed that the software on both the

Argos and the handheld device is controlled by the same actors.

Based on these assumptions and the usage scenario outlined by NST the fol-

lowing system components will be developed:

• A tool for creating sensor configurations and sensor profiles

• A Sensor System Service for Argos

• A sensor framework for handheld devices

23

24 CHAPTER 3. REQUIREMENTS

The first component will be a independent GUI application that interacts with

the Argos Sensor Service to make it easy to create sensor profiles and sensor con-

figurations. A sensor profile will describe a particular type of sensor and contain

information on how sensor measurements can be extracted. Sensor configura-

tions will be based on or linked to specific sensor profiles and will specify all

configuration options related to the collection of sensor data from actual sensors.

This information can include how to connect to sensors, how often and where to

send sensor data, etc. Devices connected directly to sensors will use the sensor

configurations to perform the actual sensor interaction and data extraction.

The Argos Sensor Service will be responsible for managing sensor profiles and

sensor configurations created by the sensor configuration/profile tool. It will also

provide ways to receive sensor data from handheld devices so that this informa-

tion can be distributed to Argos applications.

Finally, a small sensor framework/library will be developed for handheld devices

that are directly connected to sensors. This framework will simplify sensor inter-

action by using sensor configurations created by the sensor configuration/profile

tool. It will also be responsible for distributing collected sensor data to the Argos

Sensor Service and other potential recipients.

The requirements for this system will be split into three sections, one for each of

the system components just described. For the remainder of this thesis the tool

for creating sensor configurations and profiles will be referred to as the Sensor

Configuration Tool. The sensor system service for Argos will be referred to as

the Argos Sensor Service and the sensor framework for handheld devices will be

named the Mobile Sensor Framework.

3.2 Functional Requirements

Functional requirements specify the technical details of a system’s behavior. A

common way to capture such requirements is through building use-cases that

describe interactions between the system and external actors [5]. An actor is

a role that is played either by a person or by some other entity. Actors may

be end-users of the system, other services that interact with the system or even

different parts of a large system.

Each system component is presented in its own section accompanied with the

relevant use-case diagrams. With each use-case diagram follows tables that de-

scribe each individual use-case. To distinguish between the different parts of the

system each of the separately developed system components will have its own ID.

3.2. FUNCTIONAL REQUIREMENTS 25

The ID given is incremented for each use-case described. For instance, the Sen-

sor Configuration Tool’s first use-case is given the ID SCT-100 in the table. To

differentiate between the importance of the different requirements the keywords

could, should, and shall are used.

3.2.1 The Sensor Configuration Tool

The sensor configuration tool is likely to have two different types of actors; Users

that create sensor profiles and users that create and use sensor configurations.

However, these tasks are not entirely separate and it will often be the case that

the same user plays both roles.

Common to them both is that they need to connect to the Argos, which is de-

scribed by use-case diagram 3.1.

Figure 3.1: Sensor Configuration Tool - Connect to Argos Use-case Diagram

Use case T-1: Connect To Argos

Requirement ID Description

SCT-100 The Sensor Configuration Tool shall provide a way

for a user to connect to a remote Argos that runs the

Argos Sensor Service.

SCT-101 When successfully connected to a remote Argos, the

Sensor Configuration Tool shall retrieve and display

available sensor profiles that the Argos Sensor Service

has stored.

26 CHAPTER 3. REQUIREMENTS

Sensor profiles

For each sensor type it will be possible to create a sensor profile that describes the

characteristics of that particular type of sensor. The use-case diagram 3.2 listed

in this section displays the use-cases related to creating and managing sensor

profiles using the Sensor Configuration Tool. The tables in this section presents

the requirements for each of these use-cases.

Figure 3.2: Sensor Configuration Tool - Sensor Profiles Use-case diagram

3.2. FUNCTIONAL REQUIREMENTS 27

Use case T-2: Create Sensor Profile

Requirement ID Description

SCT-102 The Sensor Configuration Tool shall provide a way for

the user to create a new sensor profile.

SCT-103 A Sensor Profile shall minimally consist of:

• A sensor identification as specified by use-case

T-6

• A number of sensor options as specified by use-

case T-7

• One or more sensor interaction descriptions as

specified by use-case T-8

SCT-104 When created, a sensor profile shall be persistently

stored at the remote Argos that the user is connected

to.

SCT-105 The Sensor Configuration Tool shall ensure that the

sensor type is unique among the already existing pro-

files.

Use case T-3: Edit Sensor Profile

Requirement ID Description

SCT-106 The Sensor Configuration Tool shall allow a user to

edit an existing sensor profile.

SCT-107 When a profile has been edited the remote Argos Sen-

sor Service shall update its persistent version of the

profile.

Use case T-4: Delete Sensor Profile

Requirement ID Description

SCT-108 The Sensor Configuration Tool shall allow a user to

delete an existing sensor profile.

SCT-109 After a profile has been deleted the remote Argos shall

delete its persistent version of the profile.

28 CHAPTER 3. REQUIREMENTS

Use case T-5: View Sensor Profile

Requirement ID Description

SCT-110 The Sensor Configuration Tool shall allow a user to

view an existing sensor profile.

SCT-111 The view shall present the user with an overview of

the items the profile consists of.

Use case T-6: Specify Sensor Identification

Requirement ID Description

SCT-112 The Sensor Configuration Tool shall allow a user to

specify a set of strings that will make up the sensor

identification when creating a sensor profile.

SCT-113 The set of strings shall uniquely identify a sensor pro-

file.

Use case T-7: Configure Sensor Options

Requirement ID Description

SCT-114 The Sensor Configuration Tool shall allow a user to

specify a number of sensor options when creating a

sensor profile. The options will be specific options

available to the type of sensor the profile describes.

3.2. FUNCTIONAL REQUIREMENTS 29

Use case T-8: Configure Sensor Interaction Descriptions

Requirement ID Description

SCT-115 The Sensor Configuration Tool shall allow a user to

add a number of sensor interaction descriptions when

creating a sensor profile.

SCT-116 A sensor interaction description shall provide the in-

formation necessary to extract and interpret the mea-

surements the sensor provides. If it is possible to de-

scribe this information in a interoperable format only

one such description needs to be added.

SCT-117 The Sensor Configuration Tool shall ensure that

no duplicate sensor interaction descriptions can be

added.

Sensor Configurations

The use-case diagram 3.3 in this section displays the use-cases related to creating

sensor configurations using the Sensor Configuration Tool. The tables in section

presents the requirements for each of these use-cases.

Figure 3.3: Sensor Configuration Tool - Sensor Configurations Use-case Diagram

30 CHAPTER 3. REQUIREMENTS

Use case T-9: Create Sensor Configuration

Requirement ID Description

SCT-118 The Sensor Configuration Tool shall allow users to

create sensor configurations.

SCT-119 Before a user is allowed to create a new configuration

he/she must select an available sensor profile to base

the configuration on.

SCT-120 The configuration shall minimally consist of:

• A name for the configuration.

• A name for the sensor that is unique to the de-

vice connected to the sensor

• A sensor profile

• A start/stop status

• Zero or more sensor options.

Use case T-10: Edit Sensor Configuration

Requirement ID Description

SCT-121 The Sensor Configuration Tool shall provide a way for

the user to edit an existing sensor configuration.

Use case T-11: Delete Sensor Configuration

Requirement ID Description

SCT-122 The Sensor Configuration Tool shall provide a way for

the user to delete an existing sensor configuration.

Use case T-12: Save Sensor Configuration

3.2. FUNCTIONAL REQUIREMENTS 31

Requirement ID Description

SCT-123 The Sensor Configuration Tool should provide a way

for the user to save an existing sensor configuration

to be used independently of the Sensor Configuration

Tool.

Use case T-13: Configure Sensor Profile Options

Requirement ID Description

SCT-124 The sensor configuration shall enable the user to con-

figure options specific to the sensor type. These op-

tions will depend on what options are specified by the

sensor profile the configuration is based on.

SCT-125 When a sensor profile is updated with new sensor spe-

cific options, these options shall become available in

all sensor configurations that use this sensor profile.

Use case T-14: Deploy Configuration

Requirement ID Description

SCT-126 The Sensor Configuration Tool shall make it possible

for a user to deploy a new sensor configuration.

3.2.2 The Argos Sensor Service

The Argos Sensor Service will interact with the Sensor Configuration Tool, user

applications running within Argos and with devices that provide sensor data.

Consequently these systems will be the actors in the use-cases presented in this

section. The main responsibilities of the Argos Sensor Service will be to:

• Store sensor profiles persistently

• Store sensor configurations persistently

• Hand out sensor configurations to the Mobile Sensor Framework

• Receive sensor data from devices running the Mobile Sensor Framework

• Distribute received sensor data to Argos applications

The requirements for the Argos Sensor Service are abbreviated ASS.

32 CHAPTER 3. REQUIREMENTS

Interaction with the Sensor Configuration Tool

Use-case diagram 3.4 illustrates how the Argos Sensor Service interacts with the

Sensor Configuration Tool.

Figure 3.4: Interaction with the Sensor Configuration Tool

Use case A-1: Retrieve Sensor Profiles

Requirement ID Description

ASS-100 The Argos Sensor Service shall hand out all stored

sensor profiles when requested by the Sensor Config-

uration Tool

Use case A-2: Save/Update/Delete Sensor Profiles

Requirement ID Description

ASS-101 The Argos Sensor Service shall provide a way for the

Sensor Configuration Tool to save, update and delete

sensor profiles.

ASS-102 The Argos Sensor Service shall check that new sensor

profiles have a unique sensor identification and reject

non-unique sensor profiles.

3.2. FUNCTIONAL REQUIREMENTS 33

Use case A-3: Deploy Configuration

Requirement ID Description

ASS-103 The Argos Sensor Service shall provide a way for the

Sensor Configuration Tool to deploy a sensor config-

uration.

ASS-104 When the Argos Sensor Service receives a deployed

sensor configuration it shall notify the device the con-

figuration belongs to that a new or modified sensor

configuration is available.

ASS-105 When the Argos Sensor Service receives a deployed

sensor configuration it shall notify Argos applications

that a new or modified sensor configuration is avail-

able.

Use case A-4: Store Sensor Configuration

Requirement ID Description

ASS-106 The Argos Sensor Service shall store sensor configu-

rations received from the Sensor Configuration Tool

ASS-107 The Argos Sensor Service shall generate an ID for

each stored configuration that is unique within the

Argos Sensor Service.

Interaction with the Mobile Sensor Framework

Use-case diagram 3.5 illustrates how the Argos Sensor Service interacts with the

Mobile Sensor Framework.

Figure 3.5: Interaction with the Mobile Sensor Framework

34 CHAPTER 3. REQUIREMENTS

Use case A-5: Get Sensor Configuration

Requirement ID Description

ASS-108 The Argos Sensor Service shall provide a way for the

Mobile Sensor Framework to retrieve sensor configu-

rations.

ASS-109 Configurations shall be identified by the unique IDs

generated by the Argos Sensor Service upon their cre-

ation.

Use case A-6: Deliver Sensor Data

Requirement ID Description

ASS-110 The Argos Sensor Service shall provide services that

allow the Mobile Sensor Framework to deliver sensor

data.

Interaction with Argos applications

The Argos Sensor Service will also interact with applications running within Ar-

gos. Argos applications should be able to register to receive sensor data and

be able to subscribe for notifications concerning sensor configurations being de-

ployed. The use-case diagram 3.6 illustrates these interaction scenarios.

Figure 3.6: Interaction with Argos applications

3.2. FUNCTIONAL REQUIREMENTS 35

Use case A-7: Receive Configuration Deployment Notifications

Requirement ID Description

ASS-111 The Argos Sensor Service shall provide a way for Ar-

gos user applications to register to receive notifica-

tions when a new sensor configuration is deployed.

ASS-112 The notification shall at least contain the following

information:

• The unique ID assigned to the sensor

• The name of the sensor

• The sensor profile identification

• The status of the sensor (If it is active/passive)

Use case A-8: Receive sensor data

Requirement ID Description

ASS-113 The Argos Sensor Service shall provide a way for Ar-

gos user applications to register to receive sensor data

from a deployed sensor. Argos applications shall sup-

ply the unique ID of the sensor configuration when

they register.

Use case A-9: Deploy Sensor Configuration

Requirement ID Description

ASS-114 The Argos Sensor Service shall provide a way for Ar-

gos user applications to deploy a sensor configuration.

ASS-115 The sensor configuration shall have the same format

as the configuration produced by Sensor Configura-

tion Tool.

36 CHAPTER 3. REQUIREMENTS

Use case A-10: Get sensor configuration

Requirement ID Description

ASS-116 The Argos Sensor Service shall provide a way for Ar-

gos applications to retrieve sensor configurations for

sensors that have been deployed. To do this the ap-

plications must supply the unique ID of the configu-

ration.

Use case A-11: Get sensor profile

Requirement ID Description

ASS-117 The Argos Sensor Service shall provide a way for Ar-

gos applications to retrieve sensor profile information.

To do this applications must supply the unique sensor

profile identification.

3.2.3 The Mobile Sensor Framework (MSF)

The mobile Sensor Framework runs on a handheld device and is the framework/li-

brary used to extract measurements from sensors. The framework will interact

with the Argos Sensor Service and potentially other mobile applications running

on the device to get configurations and to deliver sensor data.

The use-case diagram in figure 3.7 illustrates how the Argos Sensor Service and

applications that uses the Mobile Sensor Framework interacts with the Mobile

Sensor Framework. The requirements for the Mobile Sensor Framework will be

abbreviated MSF.

Figure 3.7: Interaction with the Argos Sensor Service and device applications

3.3. NON-FUNCTIONAL REQUIREMENTS 37

Use case M-1: Send configuration

Requirement ID Description

MSF-100 The Mobile Sensor Framework shall be able to receive

sensor configurations from the Argos Sensor Service.

MSF-101 The Mobile Sensor Framework shall be able to receive

sensor configurations from applications using the Mo-

bile Sensor Framework on handheld devices.

Use case M-2: Receive Sensor Data

Requirement ID Description

MSF-102 The Mobile Sensor Framework shall be able to dis-

tribute sensor data to the Argos Sensor Service.

MSF-103 The Mobile Sensor Framework should be able to dis-

tribute sensor data to the applications using the Mo-

bile Sensor Framework on the handheld device.

MSF-104 The sensor data shall be distributed in intervals spec-

ified by the sensor configuration.

MSF-105 The Mobile Sensor Framework should be able to re-

ceive sensor data from multiple sensors simultane-

ously

3.3 Non-Functional Requirements

Non-functional requirements comprise of requirements related to the operation,

quality and constraints of a system. Stakeholders might, for instance, want cer-

tain properties or characteristics in a system that is not tied to specific function-

ality.

It is often useful to distinguish between non-functional requirements related to

the operation of a system and non-functional requirements related to the devel-

opment qualities of a system. The former can be referred to as run-time qualities

while the latter can be labeled development-time qualities[14].

3.3.1 Run-time qualities

The run-time requirements of a system specifies certain operational qualities that

the system should satisfy according to stakeholders. These operational qualities

38 CHAPTER 3. REQUIREMENTS

can include, but are not limited to[14]:

• Usability

• Configurability

• Correctness, reliability, availability

• Quality of Service (QoS)

• Safety

• Scalability

The system presented in this thesis does not have any run-time requirements.

The reason is that the run-time requirements applicable to this system have no

value in a research setting and are more appropriate for production systems.

3.3.2 Development-time qualities

The development-time qualities of a system relates to architecture and design

goals that will make it easier to maintain, extend and modify the system in the

future. Development-time qualities can include[14]:

• Localizability (The ability to support regional differences)

• Modifiability (The ability to modify a system)

• Extensibility (The ability to extend a system with new functionality)

• Composability (Relates to the modularity of a system)

• Reuseability (The ability to reuse parts of the system)

• Interoperability (The ability to run, communicate or cooperate with differ-

ent platforms)

Development-time qualities are important to the system developed in this thesis.

Although it is just a prototype, achieving a high degree of extensibility and

interoperability will enable the system to more easily be used in settings involving

different platforms and will make it easier to maintain and develop in the future.

The requirements defined for extensibility and interoperability are listed in the

following two tables.

3.4. SUMMARY 39

Extensibility

Requirement ID Description

NFR-100 The Mobile Sensor Framework shall be extendible

with new protocols for communicating with sensors.

NFR-101 The Mobile Sensor Framework should be designed to

easily accommodate changes to the sensor configura-

tion format.

NFR-102 The sensor configuration format shall be able to in-

corporate new options with minimal changes to the

system components that use it.

Interoperability

Requirement ID Description

NFR-103 The sensor configuration format shall use a standard-

ized, interoperable format that can be interpreted by

multiple platforms.

NFR-104 A generic, interoperable format shall be defined for

describing sensor data.

NFR-105 The Mobile Sensor Framework shall distribute sensor

data using the format from requirement NFR-104.

NFR-106 The format for describing sensor profiles shall use a

standardized, interoperable format that can be inter-

preted by multiple platforms.

NFR-107 The Mobile Sensor Framework and Argos Sensor Ser-

vice shall be interoperable and loosely coupled. This

means that they should not have any interrelated de-

pendencies and should not depend on what specific

programming language or architecture the other com-

ponent is implemented in.

3.4 Summary

This chapter has presented the functional and non-functional requirements of the

different parts of the system. These requirements will serve as guidelines for the

design and implementation of the system in addition to being the standard that

the completed system is measured against.

Chapter 4

Technology

This chapter will describe different technologies that are either used by or oth-

erwise have had an impact on this thesis. It will focus on relevant information

concerning the problems these technologies are meant to solve and will briefly

mention other alternatives that exist.

4.1 Overview

The problems intended to be solved in this thesis are strongly linked to interoper-

able technologies for describing information and tools that can simplify develop-

ment. Many of the technologies presented will be linked to the Argos middleware

platform, which plays a key role in the problem definition outlined in chapter

1. Consequently, the start of this chapter will provide details about Argos and

similar systems.

4.2 Application servers

Software development has changed rapidly in the last few decades giving us the

ability to steadily create more complicated systems. This process has been pos-

sible because the tools for creating software are gradually becoming more sophis-

ticated. Programming languages constitute our main tool for development and

it is obvious that the high level languages of today are an order of magnitude

more productive than older languages. Just imagine creating one of today’s huge

Java systems using a programming language like Pascal1, it would not be possible!

However, it is not just programming languages that have improved development

1http://pascal-central.com/

41

42 CHAPTER 4. TECHNOLOGY

productivity. Application Servers is a relatively new software concept that aim to

enable rapid application development and deployment by providing easy access

to commonly used technologies and services. There exists many2 definitions of

exactly what an application server is, but the definition given by IONA3 to de-

scribe their Orbix E2A Application Server seems to capture the most important

characteristics. It defines an application server to be:

A software platform that provides the services and infrastructure required to de-

velop and deploy middle-tier applications

Middle-tier applications perform business logic and typically reside between slim

clients and back-end storage facilities. Some of the features commonly provided

by application servers include web servers, DBMS solutions, support for dis-

tributed objects (DCOM, CORBA), transaction systems and various ways to do

connectivity. However, the features supported varies greatly depending on the

type of application server and the market segment it is created for.

Some of the advantages of using an application server include:

• Separation of concerns

Makes it easier to create systems that separate business logic, presentation

logic and data storage.

• Centralized configuration All technologies provided by an application

server can usually be configured once to work for all applications.

• Security The application server can provide basic security layers for its

services in order to reduce the security responsibility of applications.

The Java platform has had great success with its Java Enterprise Edition (JEE)

application servers. Sun, the company that created Java, designed a specifica-

tion called the Java Enterprise Edition that vendors follow when they implement

JEE application servers. This enables different application servers that follow

the JEE specification to be compatible with each other. In theory this enables

applications written for one platform to run on any other JEE compliant plat-

form[17]. WebLogic Server (BEA), JBoss (Red Hat) and WebSphere (IBM) are

all commercial application servers that follow the JEE specification.

2http://news.com.com/2100-1001-214783.html?legacy=cnet
3http://www.iona.com/support/docs/e2a/asp/5.1/platform/manage/glossary.html

4.3. THE ARGOS MIDDLEWARE PLATFORM 43

4.3 The Argos Middleware Platform

The Argos4 middleware platform[10] is a personal application server that is specif-

ically designed for context sensitive applications. It is implemented in Java, but

does not follow the JEE specification. JEE compliance was never an issue be-

cause it does not have the same target audience as JEE application servers. A

JEE product, is, as the name implies, targeted at the enterprise while the Argos

is intended to be a small, personal and flexible application server.

Argos allows you to easily create and deploy software components and bind them

together into services. A ”service” created for Argos represents software that

provides functionality to an end-user in the same way as a regular application

would. A personal service oriented middleware like Argos makes it easier to

include context awareness and reasoning in applications since support for bind-

ing persistence is part of the support offered to services deployed in the container.

The Argos application server employs a Service Oriented Architecture (SOA).

Although many different definitions of SOA exist, SOA is often defined to be an

architectural style whose goal is to achieve loose coupling among the interacting

software components. Argos achieves such an architecture by separating its core

functionality into independently managed software modules. Functionality such

as service distribution, inference, transactions, persistence, and remote bindings

should not be regarded as features that are needed by everyone. Instead, this

functionality should be regarded as add-on services that can be deployed when

necessary. This design philosophy makes each system component completely in-

dependent from the rest of the system and makes it much easier to customize

Argos with only the functionality that is needed.

Out of the box Argos only provides an environment to deploy and manage ser-

vices. There exists two types of services; user services and system services. Regu-

lar applications are built as user services while system services provide additional

functionality to other user- or system services. Some of the system services that

are currently available for Argos provide support for bindings, transactions and

persistence, which makes applications that need this type of functionality faster

and more reliable to develop. The beauty of this architecture is that applications

can just pick the functionality they need from available system services and use

them in any way they want to extend their own functionality.

4In version 2 of middleware previously known as ”APMS” the name was changed to ”Argos”.

44 CHAPTER 4. TECHNOLOGY

4.4 Argos System Services

Several system services have been developed for Argos that can simplify the de-

velopment of user applications or other system services. In this section a selected

number of services that have an impact on this thesis will be presented.

4.4.1 Hibernate System Service

Hibernate5 is a high performance Object-Relational Mapping (ORM) solution for

Java that is wrapped in a Argos system service. It provides a partial solution to

the impedance mismatch problem6 associated with storing objects in a relational

database. ORM tools do not store anything themselves. Instead they map ob-

jects from a specific programming language automatically to tables in databases.

Hibernate supports a number of different databases, but the only database cur-

rently supported in Argos is Apache Derby7.

In order for Hibernate to be able to store Java objects persistently in a database

the developers must describe how their objects should be persisted by using either

annotations or hibernate mapping files. A hibernate mapping file (.hbm.xml) is

a XML file that tells Hibernate what table and which columns it should use to

store a Java object. It can also contain fairly advanced configuration options on

how Hibernate should treat interconnected objects.

Hibernate is an excellent tool when everything works, but unfortunately, due

to the lack of good documentation, it is difficult to get the mapping files right.

Having to learn how to create mapping files is the biggest disadvantage to using

Hibernate especially considering that most developers can use any SQL database

without having to learn anything extra.

4.4.2 SMS System Service

The SMS service makes it possible to send and receive SMS messages if you have

access to the Telenor Mobile CPA Proxy8. It is limited to receive messages only

from phones that have a Telenor mobile subscription.

4.4.3 Web Service System Service

Argos has its own WS service that provides easy access to using and exposing

Web Services using either SOAP or XML-RPC. This service is based on Apache

5http://www.hibernate.org/
6http://www.oracle.com/technology/products/ias/toplink/doc/10131/main/ html/undtl002.htm
7http://db.apache.org/derby/
8http://cpa.telenor.no/cpa/

4.5. XML TECHNOLOGIES 45

AXIS9 that provides a Java implementation of SOAP. Argos services can expose

web methods by using a set of annotations supplied by the service.

4.4.4 The TCP/IP System Service

The Argos TCP/IP service provides a tcp/ip communication abstraction for Ar-

gos user applications and system services. It utilizes a scalable architecture based

on the Java Non-Blocking IO libraries10 in order to provide a high performance

connectivity framework that can support numerous simultaneous tcp/ip connec-

tions. The service is primarily suited for Argos services that need server func-

tionality, but it also provides tcp/ip client connectivity.

The Argos TCP/IP service provides a single threaded non-blocking IO solution

that can be used by all Argos services. It allows Argos services to register tcp/ip

servers on different ports and create tcp/ip client connections to remote servers.

When a tcp/ip connection is established the Argos service is given a stream ab-

straction representing the connection. It allows the Argos service to read data

(blocking), write data (non-blocking) or close the connection.

4.4.5 JMX Connectors

One of the core technologies in Argos is the Java Management Extensions (JMX)11.

JMX provides a simple and standard way to monitor and manage Java applica-

tions both locally and remotely. A big advantage for Argos services is that Argos

utilizes JMX to enable any service to expose interfaces to remote applications by

using simple annotations. By using JMX connectors remote clients can connect

to Argos and use the exposed methods just like they were local methods.

4.5 XML technologies

XML ended up being the technology of choice for defining many of the inter-

operable data formats used in this thesis. The pros/cons of xml was previously

discussed in section 2.3.1. This section will focus more on specific XML technolo-

gies and the benefits they provide.

4.5.1 XML Schemas

The basic principle of XML Schemas is to define constraints and rules for how

XML documents shall be structured. XML Schemas are themselves specified in

XML which makes them as interoperable as the XML documents they describe.

9http://ws.apache.org/axis/
10http://java.sun.com/j2se/1.4.2/docs/guide/nio/
11java.sun.com/products/JavaManagement/

46 CHAPTER 4. TECHNOLOGY

All XML documents, including XML schemas, must abide to the XML syntax.

Proper XML documents are referred to as being well formed12 if the syntax is

correct. This is checked by the XML parser for all XML documents and is not the

XML schema’s responsibility. XML documents that are well formed and abides

to all other constraints, like those introduced by XML Schemas, are considered

valid. XML schemas defines constraints and rules that go beyond the XML syn-

tax. They can define exactly what elements and attributes that must be used by

a document, how many times elements should occur, ordering of elements, etc.

They can even define the data type of individual elements by using a standard-

ized set of data types that is part of the W3C XML Schema specification13.

What makes XML Schemas useful is that they can constitute a contract be-

tween one or more parties for how data should be described in XML. As long as

the XML schema does not change the parties that exchange data can be certain

that the data received will be in the correct format and use the right data types.

This reduces the amount of extra error handling significantly since validity can

be automatically checked by the XML parser. Furthermore, XML Schemas can

be designed to easily be extendible, flexible and modular with respect to changes.

This can be accomplished14 by using encapsulation, inheritance, and polymor-

phism techniques known from object-oriented programming languages when you

first design your schema.

When creating XML Schemas it is useful to know certain design strategies to

create more decoupled and reusable schemas. There are currently three design

patterns that define different levels of granularity concerning the components a

schema is made up of:

• Russian Doll

• Salami Slice

• Venetian Blind

Russian Doll is the least extensible design where you do not reuse any types,

but wrap all necessary components within each other and just redefine any dupli-

cate types. Salami Slice is more extensible because you define elements separately

and reference these when more complex elements are composed of other elements.

This design allows for more granularity than Russian Doll because elements can

be reused. Venetian Blind is the most extensible design because it allows reuse of

both elements and types. All types and elements are defined in the global scope

12http://www.informit.com/articles/article.asp?p=102160&redir=1&rl=1
13http://www.w3.org/XML/Schema
14http://www-128.ibm.com/developerworks/library/x-flexschema/

4.5. XML TECHNOLOGIES 47

so that these can be used for defining new elements or types. An example of the

Venetian Blind design can be seen in listing 4.1.

<xs:simpleType name="Title">

<xs:restriction base="xs:string "/>

</ xs:simpleType>

<xs:simpleType name="Name">

<xs:restriction base="xs:string ">

<xs:minLength value="1"/>

</ xs:restriction>

</ xs:simpleType>

<xs:complexType name="Book">

<xs:sequence >

<xs:element name="Title " type="Title "/>

<xs:element name="Author " type="Name"/>

</xs:sequence >

</ xs:complexType>

Listing 4.1: Venetian Blind Example

It may seem like the Venetian Blind design pattern is best because it allows the

most extensibility, but this is not always the case. Usually a developer will try

to find a good mix between these patterns. If you always reuse all your types

and elements it might end up being cumbersome to change them in the future.

This can happen if you reuse components that are identical when you create the

schema, but that may become different when later changes are incorporated.

4.5.2 XML Bindings

XML Binding tools are tools that can map XML to and from objects in a specific

programming language. By using such a tool developers do not have to work

with XML directly, instead they can just deal with the objects produced by the

mapping tool in their favorite programming language. The tools usually create

classes for a specific programming language by using an XML schema. The cre-

ated classes can then hold all the information from XML documents that are

constrained by the schema. Most XML Binding tools rely on XML schemas to

do the mapping automatically, but some tools allow you to map the XML to your

own classes.

However, one of the problems associated with mapping an XML schema to classes

in a programming language is that the classes cannot capture all the constraints

specified by a schema. This limitation forces developers to add manual checks

for the constraints and relationships that get lost in the mapping process. Fur-

thermore, optional elements and attributes often specified in XML schemas are

48 CHAPTER 4. TECHNOLOGY

difficult to deal with in an object-oriented environment. The different XML Bind-

ing tools all have different ways of solving these problems.

For Java there exists a number of different XML Binding tools that each have

their own strengths and weaknesses. Some of the popular ones are JAXB15, Cas-

tor16 and XMLBeans17. Microsoft provides only one tool for .NET called the

Schema Definition Tool (XSD.exe)18 that maps an XML schema to C# classes.

JAXB

JAXB is the reference implementation of Sun’s Java API for XML Binding spec-

ification. It provides a simple way to generate Java classes from an XML schema

by using a command-line tool. One of JAXB’s strengths is that it allows users to

customize various aspects of the generated data binding. These customizations

can either be applied though annotations in the schema document or by the use

of an external binding declaration document that is passed to the command-line

tool. The customizations include19:

• Options for controlling the names of generated classes and properties

• A way to specify an existing implementation class to be used by the binding

• Options that allow (limited) control over the validation handling and the

serializers/deserializers used for marshalling and unmarshalling

Microsoft Schema Definition Tool

The Microsoft Schema Definition Tool also uses a command-line tool (XSD.exe)

for generating C# classes based on an XML schema. While it does not provide all

the customization capabilities as JAXB it is considerably simpler to use the cus-

tomizations that is provided. It does not rely on any annotations in the schema

or external binding declaration documents, instead it has all options easily avail-

able in the command-line tool.

However, the Schema Definition Tool has some more serious flaws. For one thing

it bases the class names directly on the element names stated in XML schemas.

Since it is common to start XML element names with lowercase letters this will

cause the Schema Definition Tool to generate classes that also start with lower-

case letters. There is no workaround for this except changing your XML element

15https://jaxb.dev.java.net/
16http://www.castor.org/
17http://xmlbeans.apache.org/
18http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx
19http://www-128.ibm.com/developerworks/library/x-databdopt/

4.5. XML TECHNOLOGIES 49

names to start with uppercase letters. While this is issue is annoying, a big-

ger problem is that the Schema Definition Tool does not support all data types

specified in the XML Schema specification. For instance, JAXB supports the

<xs:duration> data type for XML elements. This complex data type specifies a

duration in time using a format defined by the XML Schema specification. JAXB

maps this data type to a Java class specifically designed for time periods, but

the Schema Definition Tool just maps it to a C# String. A consequence of this

is that you have to check what data types are supported before you use the tool

and find workarounds for those data types that are not supported.

HyperJAXB

HyperJAXB20 is not a XML binding tool, but a tool that can be used in con-

junction with JAXB to automatically create hibernate mapping files (.hbm.xml)

for JAXB objects. This means that JAXB objects can, with very little effort, be

stored persistently in a database through Hibernate. Considering that the most

difficult part of Hibernate is to get the mapping files right, a tool that generates

them automatically (even just for JAXB classes) would be very practical.

Furthermore, HyperJAXB is very useful in scenarios where you:

• Work with XML documents that are tied to an XML schema

• Use JAXB to work with those documents

• Have an XML schema that is likely to change

In situations where the XML schema is likely to change you want a system

that can easily adapt to that change. If you use HyperJAXB together with

JAXB you can run a single script to generate both updated JAXB class files and

hibernate mapping files to enable the JAXB objects to be stored using Hibernate.

Although HyperJAXB have some very nice features it also has some big limi-

tations. The biggest is that the only version that works properly is written for

JAXB 1.0 and Hibernate 2.0. JAXB is currently in version 2.0 and Hibernate in

version 3.0 and it is not worth downgrading just to use this functionality. A new

version is being developed to support the latest Hibernate and JAXB versions,

but it is still in its infancy and not ready for use.

20https://hyperjaxb.dev.java.net/

50 CHAPTER 4. TECHNOLOGY

4.6 Summary

This chapter has described a number of different tools and technologies that have

played crucial roles in this thesis. Most importantly it has given an introduction

to the Argos middleware platform and outlined what features it provides. The

following chapters will refer to this chapter when describing how the technologies

are actually used.

Chapter 5

Design

This chapter will present the design for the various system components based on

the requirements that were determined in the requirements chapter.

5.1 Overview

The requirements from chapter 3 divided the system into three main components;

The Sensor Configuration Tool, The Argos Sensor Service and the Mobile Sensor

Framework. This chapter will give a high level overview on how these components

relate to each other and present a detailed architecture for each of them.

5.2 High level architecture

This thesis will develop functionality for the Argos middleware platform that was

described in section 4.3 of the technology chapter. The Sensor Service created

in this thesis is developed as a Argos system service. It will provide functional-

ity that allows Argos applications to more easily access sensors and sensor data.

Figure 5.1 attempts to illustrate how the Argos middleware platform is designed

and how the Argos Sensor Service will fit in as a new system service. The illustra-

tion also shows other system services that the Argos Sensor Service will use and

depend on. Outside of Argos the Sensor Configuration Tool and Mobile Sensor

Framework are displayed as large boxes that interact with the Sensor Service.

The boxes with red borders contain functionality that will be developed in this

thesis.

The Mobile Sensor Framework should provide reusable functionality for interact-

ing with sensors and provide ways to distribute sensor data to the Argos Sensor

51

52 CHAPTER 5. DESIGN

User applications

Sensor App

System Services

Persistence

Sensor Service

Derby DatabaseHibernate Service

Argos Microkernel

Persistence

Sensor App

Sensor App

 Mobile
 Sensor
Framework

 Sensor
Configuration
 Tool

Communication

WS Service

TCP/IP Service

Figure 5.1: High level architecture of the system

Service. To accomplish this it will need configuration information on how to in-

teract with specific sensors and how to communicate with Argos. Much of this

information will change depending on the sensor that is used and must therefore

be provided by people with the proper technical knowledge. The Sensor Config-

uration Tool will simplify the collection of this information by providing an easy

to use GUI to fill out the necessary data. The tool should be able to produce a

configuration in the correct format and allow a user to deploy the configuration

to a device running the Mobile Sensor Framework. The Argos Sensor Framework

should take care of the details concerning the deployment of configurations and

provide ways to receive sensor data from devices that interact with sensors.

By separating the GUI from the Argos System Service functionality and using

the Hibernate system service provided by Argos to store data, the sensor system

created for this thesis employs a three-tier architecture as illustrated by figure 5.2.

The main advantages of using such an architecture includes increased flexibility,

maintainability and reuseability as described by [20].

5.3 Identifying common sensor functionality

One of the oldest and most productive development strategies have been to iden-

tify and extract commonly used functionality in order to create reusable and

5.3. IDENTIFYING COMMON SENSOR FUNCTIONALITY 53

Presentation tier

This tier contains the user interface for
the system. Its main function is to give the
user a easy way to create and deploy
sensor configurations.

Logic tier
The logic tier contains the core functionality
needed to realize the functions provided by
the user interface. It coordinates the system,
makes logical decisions and interacts with
the data tier to store information.

Data tier
This layer provides functionality for persisting
and retrieving information from permanent
storage. It simplifies persistence of data by
providing a easy to use database abstraction.

Processing

Database

 Sensor
Configuration

 Tool

Argos
Sensor
Service

Hibernate
 Service

> Deploy configuration

Figure 5.2: Tier architecture of the system

reliable software libraries. In this thesis this approach has been applied to de-

velop functionality that is common to applications that interact with sensors and

use sensor data. In a scenario where two applications are developed from scratch

to collect sensor data from two different types of sensors, some of the function-

ality would most likely be fairly similar. They might, for instance, use the same

technologies for communication, they might both convert the native data format

of the sensor to their own format or they might both want to send the data to

a remote location for processing. Hence it would be a good idea to extract this

functionality into some sort of library to enable future sensor applications to be

developed faster and more reliably.

While a library containing common functionality for accessing sensors would al-

low sensor applications to reuse a lot of functionality it is possible to extend

on this idea to accomplish more. What if the library could be run as a stand

alone application and dynamically accept ”descriptions” that enabled it to talk

to and extract information from any type of sensor? It would not be necessary

to develop a whole new application to access a new type of sensor. As long as a

device or computer ran this ”library” or framework as a application it could be

reconfigured dynamically to access and distribute data from any sensor to remote

locations. This is the general idea behind the Mobile Sensor Framework, which

will be described later in this chapter.

54 CHAPTER 5. DESIGN

5.3.1 Describing sensor functionality

The problem with creating such a stand alone application/library is describing

the functionality that is specific to each sensor type. Typically this information

is related to how to communicate with a sensor and how to convert its native

data format into a more generic format as was discussed in 2.2 and in 2.3.

In an ideal world this information should be described in a interoperable format

so that it could be reused across different programming languages and platforms.

The library itself would still have to be developed for different platforms, but the

information regarding each sensor type would only have to be described once.

However, as discussed in 2.2, it is not trivial to capture such information in an

interoperable format. To achieve complete interoperability across platforms and

programming languages you are pretty much forced to describe information in

some kind of markup language1. Using a markup language means that a standard

format for describing this type of information has to be defined. Unfortunately

due to the diverseness of sensors it would be extremely complicated to define a

format that could capture this information for any sensor.

The alternative, which is adopted by this thesis, is to specify this information

as modules in a specific programming language. This approach has the obvious

drawback of having to redevelop the modules if other programming platforms are

to be used, but it will ensure, without a doubt, that it is possible to describe

the information for any type of sensor. Furthermore, it might enable future

researchers to analyze programming modules for several sensors to attempt to

discover if this information indeed can be mapped to a markup language instead.

5.3.2 Sensor Protocol Plugins

In the requirements chapter use-case T-8 stated that a sensor profile must contain

one or more sensor interaction descriptions. A sensor interaction description was

defined to provide the information necessary to extract and interpret the mea-

surements the sensor provides. The purpose of these descriptions is to capture

the information specific to different types sensors, as discussed in the previous

two sections.

Since it was decided in section 5.3.1 that this information should be specified

as modules in a programming language they will be referred to as Sensor Proto-

col Plugins for the rest of this thesis.

1http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=103711&pageNumber=1

5.4. THE SENSOR CONFIGURATION TOOL 55

5.4 The Sensor Configuration Tool

5.4.1 Overview

The Sensor Configuration Tool will, in combination with the Argos Sensor Ser-

vice, provide functionality for creating sensor profiles and sensor configurations.

As seen in figure 5.1 this tool will run independently of Argos and will only

provide the user interface for interacting with the Argos Sensor Service. These

system components could easily be merged into a single application/service run-

ning within Argos, but there exists several good reasons for why developing them

as separate applications is a good idea. The number one reason is that it gives

a good separation of functionality. The user interface should only be concerned

with collecting sensor profile and configuration information from a user while

persistence and deployment is taken care of by the Argos Sensor Service. This

design will also allow the Sensor Configuration Tool to access the Argos Sensor

Service remotely since it would not be any more difficult than interacting locally.

Interacting remotely will be much slower than locally, but this will not be an

issue since only small amounts of information needs to be exchanged.

Figure 5.3 shows a very high level overview of how the Sensor Configuration Tool

is designed. When a user starts the tool he must connect it to a Argos that is

running the Argos Sensor Service. The Argos may be running locally or remotely,

it should not matter as far as the Sensor Configuration Tool is concerned.

Figure 5.3: Overview of the Sensor Configuration Tool

5.4.2 Managing Sensor Profiles

The activity diagram in figure 5.4 illustrates in more detail what should happen

after the Sensor Configuration Tool is connected to the Argos Sensor Service.

When connected, the Sensor Configuration Tool should fetch any existing sensor

profiles from the Argos Sensor Service and display these to the user. Afterwards

the user should be allowed to add new profiles or view, edit or delete selected

profiles.

56 CHAPTER 5. DESIGN

Figure 5.4: Managing sensor profiles with the Sensor Configuration Tool

Figure 5.5: Managing sensor configurations with the Sensor Configuration Tool

5.4.3 Managing Sensor Configurations

After a user has selected a sensor profile it will be possible to create and select

sensor configurations. Figure 5.5 illustrates how sensor configurations are to be

administered. When a sensor profile is selected all sensor configurations that

belong to this profile should be displayed to the user. The user will then be given

the option to create a new sensor configuration based on a selected sensor profile

or he can select an already existing configuration to edit, save, deploy or delete.

Upon deployment sensor configurations will be passed on to the Argos Sensor

Service. It will store the configuration and deliver it to the device specified by

the Sensor Configuration Tool. The Sensor Configuration Tool will also make

it possible to save any (deployed or not) configuration to a local file. This will

enable the user to deploy the configuration manually if he or she wishes.

5.4.4 Deploying Sensor Configurations

Deploying a sensor configuration by using the Sensor Configuration Tool will

make it collect all necessary information from the user interface and generate

a configuration file in an interoperable format. The Sensor Configuration Tool

should also verify that the format of the produced configuration is correct. Finally

the configuration file will be delivered to the Argos Sensor Service, which will take

5.4. THE SENSOR CONFIGURATION TOOL 57

care of deploying the configuration to the device that is connected to the sensor

in question. These activities are illustrated in figure 5.6.

Figure 5.6: Deploying sensor configurations with the Sensor Configuration Tool

5.4.5 Putting the pieces together

The previous sections presented the design for the Sensor Configuration Tool by

dividing the user interface into smaller, more manageable components. Figure 5.7,

in this section, shows how these pieces fit together in a more complete diagram.

Figure 5.7: A complete overview of the Sensor Configuration Tool

58 CHAPTER 5. DESIGN

5.5 The Argos Sensor System Service

5.5.1 Sensor Profiles

The Argos Sensor Service should act as a repository for sensor profiles. This

means that Sensor Profiles created by the Sensor Configuration Tool should be

permanently stored (until deleted) by the Argos Sensor Service. When the Sensor

Configuration Tool first connects to the Sensor Service it will fetch all the profiles

that are stored and display these to the user. The user can then choose to create

a sensor configuration based on one of the fetched profiles.

Figure 5.8 shows a simple activity diagram showing a sensor profile being re-

ceived and stored by the Argos Sensor Service. When receiving a sensor profile

it also receives one or more sensor protocol plugins belonging to the profile. As

explained previously in section 5.3.2 these plugins represent modules in specific

programming languages that ”knows” how to communicate and extract informa-

tion from a sensor.

Figure 5.8: Storing sensor profiles

5.5.2 Sensor Configurations

One of the primary functions of the Argos Sensor Service is to deploy sensor

configurations. Figure 5.9 illustrates the deployment of a sensor configuration by

expanding on the chain of events that were shown in section 5.4.4. As shown

in the illustration the Argos Sensor Service first receives a configuration from

the Sensor Configuration Tool and stores it locally. Then it notifies Argos user

applications and the device connected to the sensor that a new or modified con-

figuration is available. When the configuration is stored the Argos Sensor Service

should also generate a unique ID to assign to the configuration. This ID should

be propagated to the user applications and the device when they are notified.

The device receiving the notification should be running the Mobile Sensor Frame-

work and should afterwards contact the Argos Sensor Service to get the actual

configuration. More details about this will be given in the design of the Mobile

Sensor Framework.

5.6. THE MOBILE SENSOR FRAMEWORK 59

Figure 5.9: Deploying Sensor Configurations

5.5.3 Receiving Sensor Data

The Argos Sensor Service is intended to receive sensor data collected by devices

that are directly connected to sensors and distribute this information to Argos

user applications. This functionality is illustrated by figure 5.10. Argos user

applications should register with the Argos Sensor Service in order to receive

sensor data from a particular sensor.

Figure 5.10: Receiving and distributing sensor data

5.6 The Mobile Sensor Framework

The Mobile Sensor Framework is a library/application that should provide com-

mon functionality to interact with sensors. It is an attempt to realize the ideas

that were discussed in section 5.3. Similar to the functionality talked about in

that section, the Mobile Sensor Framework should act as both a library and as a

stand alone application.

The main idea is that this framework can be given sensor protocol plugins that

allows it to interact with- and collect data from any type of sensor. Further-

more, the framework should provide ways to distribute the collected sensor data

to remote receivers such as a remotely running Argos Sensor Service. In order

to connect to- and extract data from a specific sensor the framework needs more

information than just a sensor protocol plugin. It needs all configuration details

on how to connect to the sensor and information related to how and where the

sensor data should be distributed. All this information should be provided by

sensor configurations created by the Sensor Configuration Tool.

Figure 5.11 illustrates a device running the Mobile Sensor Framework getting

a sensor configuration and sensor protocol plugin from the Argos Sensor Service.

60 CHAPTER 5. DESIGN

Figure 5.11: Getting sensor configurations and sensor protocol plugins

Since this is a framework for mobile devices there is no way to send the configu-

ration or the protocol plugin directly to the device. This problem was discussed

previously in section 2.5 about handheld devices. Instead an SMS notification

must be sent to the device that lets it know how it can retrieve the sensor con-

figuration. The configuration should then contain information on how the device

can retrieve the sensor protocol plugin.

However, as illustrated by the figure, it should also be possible for the Mobile

Sensor Framework to receive a sensor configuration directly. As just described

this is not possible remotely, which means that a configuration must be delivered

to the Mobile Sensor Framework locally. This can happen when another mobile

application uses the Mobile Sensor Framework as a library. The mobile appli-

cation may want to give the Mobile Sensor Framework a sensor configuration it

already is in the possession of.

5.7 Summary

This chapter has focused on the design and operation of the Sensor Configura-

tion Tool, Argos Sensor Service and the Mobile Sensor Framework. An attentive

reader might have noticed that no details have been provided yet about what

information sensor configurations and sensor profiles actually contain. This in-

formation will be described in depth in the next chapter.

Chapter 6

Implementation

This chapter will describe the implementation details of the completed system.

Before each system component is outlined the implementation environment and

technologies used will be presented.

6.1 Environment and programming language

The Argos middleware platform along with all its user- and system services is

implemented in Java. Since the Argos Sensor Service is a system service it ob-

viously needs to use the same language. A different language could potentially

be picked for implementing the Sensor Configuration Tool. However, as we will

also see later in this chapter, communication is likely to be far easier between

two applications that are implemented in the same programming language. For

this reason the Sensor Configuration Tool is also developed in Java.

The Mobile Sensor Framework is intended to be run on some sort of handheld,

mobile device. The only requirement for the device is that it must support Blue-

tooth and IR and that it can access the Internet. Bluetooth and IR are required

for interacting with the demonstration sensors that are available.

It is possible to implement the Mobile Sensor Framework using any of the many

different mobile platforms available, but J2ME1, the limited edition of Java for

such devices, seems like the obvious choice. The advantage of J2ME is that ap-

plications can run on the wide range of devices that supports Java and in our

case it probably makes communication easier since the rest of our architecture

uses Java. Despite these advantages J2ME was not picked for implementation.

1http://java.sun.com/javame/index.jsp

61

62 CHAPTER 6. IMPLEMENTATION

Instead Microsoft’s Windows Mobile 5.0 (WM5) platform was chosen using the

.NET Compact Framework programming language.

The primary reason for using WM5 was that NST uses this platform and that

cell phones with WM5, as a result, was readily available. Also, since requirement

NFR-106 states that the Mobile Sensor Framework and Argos Sensor Service

should be loosely coupled, implementing these components using different plat-

forms will demonstrate that our system indeed complies with this requirement.

6.2 System Overview

 4. Deploy
 configuration

2. Select sensor profile

5. Notify about new/modified configuration (SMS)

User

 3. Fill out sensor configuration

 7. Get sensor protocol plugin (WebService)

6. Get sensor configuration (WebService)

Sensor

8. Establish connection
 to sensor

9. Sensor
 data

10. Sensor data

Argos Microkernel

J
M
X

Sensor Service
Mobile
device

 Sensor Configuration Tooll
 (Application)

 1. Sensor
 Profiles

Figure 6.1: Overview of information flow in the system

Figure 6.1 illustrates of how the different system components communicate with

each other. The Sensor Configuration Tool interacts with the Argos Sensor Ser-

vice using JMX. As described in section 4.4.5 JMX enables services to expose

methods through JMX to remote clients. JMX uses RMI underneath, but hides

most of the details of how the remote procedure calls are performed.

The Sensor Service running in Argos uses SMS messages to notify mobile de-

vices of new or changed sensor configurations. Mobile devices that receive a SMS

notification use a Web Service exposed by the Argos Sensor Service to get the

sensor configuration associated with the notification. The retrieved configuration

will specify a sensor protocol plugin that the mobile device needs to communi-

cate with the sensor. If the mobile device has not previously retrieved the sensor

protocol plugin, it will get it by using another Web Service exposed by the Argos

Sensor Service.

When the mobile device has both the sensor configuration and the sensor protocol

plugin it will decide based on the configuration what to do next. The configura-

tion will specify if the sensor data should be collected right away and how often

it should be collected. If the sensor should be contacted immediately the Mobile

Sensor Framework running on the device will spawn a new thread that will be

6.3. DISTRIBUTING SENSOR DATA 63

responsible for collecting the sensor data at the intervals specified. The thread

will use the sensor protocol plugin to do the actual sensor interaction and data

extraction. Every time new sensor data has been collected, the data is converted

to a standard sensor format specified by the Argos Sensor Service. The details

of this format will be given later in this chapter. When data from the sensor

has been extracted and converted to the appropriate format the Mobile Sensor

Framework will deliver it to the Argos Sensor Service.

6.3 Distributing sensor data

Section 2.5.2 in chapter 2 discussed how sensor data could be distributed from

handheld devices to remote receivers. The benefits and drawbacks of push- and

pull-based approaches were compared, but an approach for this system was not

chosen. During the initial phases of development supporting both approaches

was considered, but it was realized early on that this would involve too much

work. In the end the push-based approach was adopted. The reason was mainly

because of the limitations associated with polling handheld devices, but it would

also require less work to implement than a pull-based approach.

In order for a handheld device to push data to a receiver, the receiver must

provide a service that can accept the data. The service could typically be either

a Web Service or a tcp/ip server. A Web Service would be the easiest approach

since a Web Service is fairly easy to set up both at the client side and server

side and receiving data would not require any additional processing. However,

the ease of use has a performance penalty as described by [22]. The reason for

this penalty is mainly that Web Services use SOAP2, which is a XML based,

interoperable protocol for exchanging messages over a computer network. Since

SOAP wraps messages in its own XML format it will add both space overhead

and parsing overhead to a Web Service call. Like discussed in 2.3.1 the size over-

head is likely to be on average around 400%. For handheld devices Web Services

also require significant computational resources which will contribute to reducing

battery life and might affect the responsiveness of other applications.

The alternative is to use raw tcp/ip sockets. Web Services also uses tcp/ip

underneath, but has protocol layers like HTTP and SOAP on top of it. Us-

ing raw sockets gives you great flexibility and performance at the cost of having

to create your own protocol. However, it is relatively simple to create a tcp/ip

protocol to just send packets consisting of XML formatted sensor data, although

not as simple as just calling a Web Service. If you do not need the extra perfor-

mance you would use a Web Service because it would give you the added benefit

2http://www.w3.org/TR/soap12-part0/

64 CHAPTER 6. IMPLEMENTATION

of interoperability, but if the device or platform makes using Web Services diffi-

cult/impossible then tcp/ip sockets would be the way to go. Since Argos provides

an easy to use tcp/ip service it was decided to support both approaches.

6.4 The Sensor Data Format

The design chapter in section 5.3.1 briefly mentioned that the native data for-

mat of a sensor should, at some point, be converted into a more generic format.

When measurements are extracted from a sensor the data is usually contained in

a compact proprietary format defined by whoever manufactured the sensor. Sec-

tion 2.3 discussed different technologies that could be used for creating a format

to generically describe sensor data. It also mentions that due to the diversity of

sensors it might not even be possible to define such a format.

Nevertheless, based on this discussion a decision was made to try to define a

XML format that could describe sensor data as generically as possible. This

XML format is defined by the sensor packet XML schema illustrated in figure

A.1 in appendix A. When data is collected from sensors by the Mobile Sensor

Framework, it will convert the data into this format before it is sent to the Argos

Sensor Service and/or other receivers.

The format defined is based on the measurements produced by a very limited

number of sensors. A larger number of sensors should have been investigated,

but it was just not possible due to the limited time available. The sensors that

were used include:

• The EMTAC CRUXII Wireless GPS Sensor3

• The Davis Weather Station

• A custom step sensor created by NST

6.4.1 The EMTAC CRUX II Wireless GPS Sensor

The EMTAC GPS Sensor is a wireless GPS receiver that broadcasts position

measurements using bluetooth. Although the most useful information it provides

is latitude and longitude readings, it also produces a number of other measure-

ments as defined by the NMEA standard. The NMEA 0183 standard4 is defined

by the National Marine Electronics Association (NMEA)5 and is a proprietary

data specification for communication between marine electronic devices such as

3http://www.emtac.com/support/cruxsupport.html
4http://www.nmea.org/pub/0183/
5www.nmea.org/

6.4. THE SENSOR DATA FORMAT 65

depth finders, navigation instruments, and GPS receivers. In addition to hard-

ware protocol specifications the NMEA standard defines a number of different

sentences that each has its own unique interpretation. The sentences describe all

kinds of information related to marine environments and some of them describe

GPS related data.

Since the NMEA 0183 standard is proprietary it is not available for free. It

can be purchased from the NMEA association, but this costs several hundred

dollars. Fortunately there exists many web sites6,7 that provide unofficial expla-

nations on which NMEA sentences exist and how to interpret them. These web

sites contained enough information to figure out which sentences the EMTAC

GPS Sensor supports and how they should be deciphered. The NMEA sentences

broadcasted by the EMTAC GPS Sensor are:

• GGA - Global Positioning System Fix Data

• GSA - GPS Dilution Of Precision (DOP) and Active Satellites

• GSV - GPS Satellites in View, Elevation and Azimuth

• RMC - Recommended Minimum Specific GPS/TRANSIT Data

Each of these sentences contain multiple pieces of information. For instance, the

GGA sentence contains fifteen different fields, some of the which are:

• Sentence Identifier

• Time

• Latitude

• Longitude

• Fix Quality (0=Invalid, 1=GPS fix, 2=DGPS fix)

• Number of satellites in use

• Altitude

• Time since last DGPS update

The generic XML sensor data format must be able to describe all information

contained in the different NMEA sentences. It must also be able to describe

multiple sentences in a single document. The EMTAC GPS Sensor has the most

complex and diverse measurements of the three sensors even though it is a rela-

tively simple sensor. For this reason the generic sensor format was first created

6http://www.gpsinformation.org/dale/nmea.htm
7http://www.kh-gps.de/nmea-faq.htm

66 CHAPTER 6. IMPLEMENTATION

to describe the measurements of the EMTAC GPS Sensor and later retrofitted

to work with the other sensors. Figure 6.1 shows a excerpt from the finished

XML sensor data format describing the GGA NMEA sentence information. The

complete example can be found in appendixA.

<?xml version ="1.0 "?>

<sensorPacket id="21323423 " date="2007 -02 -15 " time="12:04:10 ">

<instrument name="GGA ">

<measurement name="Time" unit="time" value="170834 "/>

<measurementGroup name="Latitude ">

<measurement name="Degrees " unit="degrees " value="41"/>

<measurement name="Minutes " unit="minutes " value="24"/>

<measurement name="Seconds " unit="seconds " value="54"/>

<measurement name="Direction " unit="direction " value="north"/>

</ measurementGroup>

<measurementGroup name="Longitude ">

<measurement name="Degrees " unit="degrees " value="81"/>

<measurement name="Minutes " unit="minutes " value="51"/>

<measurement name="Seconds " unit="seconds " value="41"/>

<measurement name="Direction " unit="direction " value="west"/>

</ measurementGroup>

</instrument >

</ sensorPacket>

Listing 6.1: EMTAC GPS XML Data format Example

6.4.2 The Davis Weather Station

The Davis Weather Station was previously used as an example in section 2.4.1

about SensorML. Figure 2.2 in that section also gave a high level overview of the

measurements the station provides. The reason this sensor system was used is

that the SensorML web site provides a full SensorML profile describing the sta-

tion. This profile contains all information concerning the Davis Weather Station

including details regarding its measurements. Listing B.2in appendix B shows

the measurement information given by the profile.

Our completed XML sensor data format can describe the measurements pro-

vided by the station according to how they are specified by the SensorML profile.

Figure 6.2 shows a excerpt from an example description using our XML format.

The complete example can be found in appendix B.

6.5. SYSTEM COMPONENTS 67

<?xml version ="1.0 "?>

<sensorPacket id="21323423 " date="2007 -02 -15 " time="12 :04:10 ">

<instrument name=" weatherMeasurements">

<measurement name="Time" unit="iso8601 " value ="20071231 T235959 "/>

<measurement name="Temperature " unit="celcius " value="59"/>

<measurement name="BarometricPressure" unit="bar " value="120 "/>

<measurement name="WindSpeed " unit="meterPerSecond" value ="25"/>

<measurement name="WindDirection" unit="degree " value="180 "/>

<measurement name="RainFall " unit="meter" value="10"/>

</instrument >

</ sensorPacket>

Listing 6.2: Weather Station XML Data Format Example

The example shows that the data format for the Davis Weather Station is eas-

ier to represent than that from the EMTAC GPS Sensor. However, based on

the definition of the data format given by the SensorML profile it is also ap-

parent that there exists many ways to map the format given by the profile to

our format. Ideally it should be just one way to do the mapping, but this is a

limitation of creating such a generic format. For this prototype the main concern

is that the measurements can be represented without losing information. Note

that even though the SensorML profile also provides phenomenon definitions this

information is not necessary for describing the sensor data.

6.4.3 NST Step Sensor

The NST Step Sensor was mainly included because NST might want to further

develop the prototype system created in this thesis. It is a very simple sensor

that provides a single Step measurement. Listing 6.3 shows how this data can be

described in our generic sensor data format.

<?xml version ="1.0 "?>

<sensorPacket id="21323423 " date="2007 -02 -15 " time="12 :04:10 ">

<instrument name="StepSensor ">

<measurement name="Steps " unit="step" value="2560"/>

</instrument >

</ sensorPacket>

Listing 6.3: NST Step Sensor Data Format Example

6.5 System Components

This section will outline the implementation details of the various system com-

ponents. Due to the size and complexity of the system only the most important

68 CHAPTER 6. IMPLEMENTATION

aspects of each component will be described.

6.5.1 The Sensor Configuration Tool

The Sensor Configuration Tool allows users to create sensor profiles and sensor

configurations by interacting with the Argos Sensor Service. The tool is developed

as an independent Java Swing application, but is only intended to be a user

interface for the Argos Sensor Service. Its basic operation is to collect data from

the GUI, map this information to the sensor configuration data format or the

sensor profile data format and send it to the Argos Sensor Service for further

processing.

Representing sensor profiles and configurations

A Sensor profile contains information specific to a sensor type while a sensor

configuration contain information on how to communicate with a real sensor.

Profiles and configurations are created by the Sensor Configuration Tool, stored

and deployed by the Argos Sensor Service and used by the Mobile Sensor Frame-

work. In order for this information to be shared across different programming

languages and platforms XML was adopted to provide a common, interoperable

formats.

Two separate XML schemas were created for defining the details on how the sen-

sor profile and sensor configuration information should be represented in XML.

Chapter 4 discussed the benefits of such schemas and also presented how XML

schemas should be designed. A combination of the Salami Slice and Venetian

Blind design patterns were used to separate most of the information into com-

ponents that can easily be altered or completely replaced if the schemas need to

be changed in the future. Chapter 4 also presented XML Binding tools to auto-

matically map schemas to objects in different programming languages. Mapping

schemas to objects not only makes it easier to work with the XML, but it also

makes it easier to change the formats later since updated objects can be recreated

instantly. To make it as easy as possible to change the different XML formats used

by the system automatic scripts were created to generate all necessary classes.

The scripts use JAXB and the Microsoft Schema Definition Tool described in

chapter 4 to generate both Java and C# classes with the click of a button. As

long as changes to the schemas are not major the generated classes can just be

inserted directly into each application and relatively minor corrections need to

be made.

A visual representation of the sensor configuration schema and the sensor profile

schema can be found in appendix A.

6.5. SYSTEM COMPONENTS 69

Creating a sensor profile

Sensor profiles are created using the Sensor Configuration Tool GUI and stored

by the Argos Sensor Service. A sensor profile contains the following items:

• A sensor type identification

• One or more instruments

• Zero or more of sensor options

• One or more sensor protocol plugins

The sensor type identification is used to specify which type of sensor the profile is

for and will uniquely identify a sensor profile in our system. The scheme adopted

is partly based on how SensorML identifies sensors and consists of the following

fields:

• The fully qualified name of the sensor

• The sensor type

• The sensor model

• The sensor manufacturer

The name, model and manufacturer fields are taken directly from the SensorML

specification. The type was added to make it possible for Argos applications to

filter/select which sensor they want to collect data from based on its type. Note

that functionality for doing filtering was never implemented, but remains possible

to be added in the future.

A sensor profile has one or more instruments that must be added through the

GUI. This information is intended to describe how sensor data from the sensor

is mapped to the generic sensor packet format described in 6.4. Developers of

sensor protocol plugins will use this information to do the proper mapping after

collecting sensor data, which will enable developers of Argos applications to just

look at the sensor profile to see how to interpret the sensor data.

A sensor profile can have zero or more sensor options that are related to the

type of sensor the profile describes. Due to time constraints a sensor option in

this prototype consist only of a name, but in the future it should also specify the

type and unit of data. The sensor options in a profile are used to determine what

information a sensor configuration shall contain. That is, a configuration based

on a specific sensor profile will allow users to assign values to the sensor options

70 CHAPTER 6. IMPLEMENTATION

defined by that profile.

Last, but not least, a sensor profile must contain one or more sensor protocol

plugins. The purpose of a sensor protocol plugin was described in section 5.3.2.

It is basically a module in a programming language that provides the functionality

necessary for the Mobile Sensor Framework to connect to and collect measure-

ments from a specific type of sensor. A protocol plugin added to a sensor profile

should obviously contain the functionality necessary to access the type of sensor

the profile describes. The Mobile Sensor Framework developed in this thesis uses

the .NET Compact Framework, consequently protocol plugins must be developed

for this platform. A protocol plugin written in C#for the .NET Compact Frame-

work consists of a .dll library file that must be added to a sensor profile through

the GUI. Sensor profiles allows several protocol plugins in different programming

languages to be added in order to work with Mobile Sensor Frameworks developed

for other platforms.

Creating a sensor configuration

Sensor configurations contain all configuration information the Mobile Sensor

Framework needs to communicate and collect sensor data from specific sensors.

When creating a configuration using the Sensor Configuration Tool some addi-

tional information is also specified that is only used by the Argos Sensor Service.

A sensor configuration is based on a specific sensor profile that must be selected in

the user interface before the configuration can be created. Sensor configurations

produced by the Sensor Configuration Tool contains the following items:

• A name (Just for naming the configuration)

• A name for the sensor that is unique to the Mobile Sensor Framework

• A sensor profile

• A start/stop status

• An remote binding

• Sensor options

• A frequency specifying how often sensor data should be retrieved

The name given to the sensor is used by the Mobile Sensor Framework to dis-

tinguish between multiple sensors that might be connected. It is also the sensor

name used in the sensor data packets that are sent from the Mobile Sensor Frame-

work to the Argos Sensor Service. The configuration will be linked to a specific

6.5. SYSTEM COMPONENTS 71

sensor profile by accommodating the sensor profile identification specified in the

previous section. The Mobile Sensor Framework uses this information to retrieve

the sensor profile and sensor protocol plugin from the Argos Sensor Service after

it has received the configuration.

The start/stop status specifies if sensor data should be collected or not. If a

sensor configuration was issued to start collecting sensor data a second configu-

ration can be issued to stop the collection.

The configuration must contain a remote binding that specifies where and how

sensor data should be delivered. In configurations created by the Sensor Config-

uration Tool the destination is always the computer the tool is connected to, but

with relatively minor changes the data could be sent to a completely different lo-

cation. The Sensor Configuration Tool allows users to choose between delivering

the data using a Web Service or a tcp/ip server. A fixed Web Service address

is specified for the prototype, which means that servers intending to receive sen-

sor data using a Web Service must follow these conventions. The only options

that must be specified in the configuration is the ip/host address of the receiving

server and the port if a tcp/ip server is used. For simplicity the Sensor Config-

uration Tool does not allow the user to specify the ip/host address, instead it

just uses the address entered by the user to connect the tool to the Argos Sensor

Service. This address must be globally reachable since it is the device running

the Mobile Sensor Framework that will use it to remotely connect to the Argos

Sensor Service. Consequently the Sensor Configuration Tool only allows valid

global IP/host addresses to be used when connecting.

The sensor options available to a sensor configuration is specified by the sen-

sor profile as described in the previous section. In the Sensor Configuration Tool

any values can be entered for the available options and it is up to the user to insert

correct information. The sensor options is used by the Mobile Sensor Framework

to configure the sensor before it starts collecting sensor data.

The last sensor configuration option specifies how fast data should be retrieved

from a sensor. This information is specified as days, hours, minutes and seconds.

The Mobile Sensor Framework converts this information into milliseconds and

causes the thread assigned to retrieve sensor data to sleep for the specified inter-

val between data retrievals. This means that if all fields are zero sensor data will

be retrieved and distributed as quickly as possible.

The Sensor Configuration Tool also requires the user to specify additional infor-

mation that is used by the Argos Sensor Service to deploy sensor configurations.

72 CHAPTER 6. IMPLEMENTATION

This information includes:

• How the Argos Sensor Service shall notify a device or computer about a

new or modified configuration.

• Optional meta information describing the sensor

Currently the only notification method offered is SMS. This is because SMS

messages are the only way handheld devices can be notified about something.

However, if a version of the Mobile Sensor Framework was developed for regular

computers a different notification mechanism would also be offered.

Optional meta information can be entered to allow the Argos Sensor Service to

offer this information to Argos applications. In this prototype this information

is limited to the owner of the sensor and the location of the sensor. For future

development a more extensible approach should probably be implemented.

6.5.2 The Argos Sensor Service

The Argos Sensor Service takes care of storing and deploying sensor profiles and

configurations. It is also responsible for receiving sensor data from the Mobile

Sensor Framework and distributing this data to Argos applications that have

registered to receive it. The Argos Sensor Service relies on the Argos Hibernate

service discussed in section 4.4.1 to persistently store the profile and configura-

tion XML documents. To simplify storage HyperJAXB discussed in section 4.5.2

was briefly considered to automatically generate hibernate mapping files for the

JAXB objects used by the Argos Sensor Service. This would have been the easi-

est and most elegant approach to storing the XML documents, but unfortunately

HyperJAXB could not be used due to reasons described in 4.5.2. The approach

that was chosen instead was to store the XML documents as byte arrays directly

in the database using Hibernate. This solution is not very elegant because it

uses more storage space than necessary and really defeats the purpose of using

Hibernate. However, it has the important advantage that changes to the XML

schemas do not require any changes to how they are stored. This benefit greatly

outweighs the drawbacks since the small number of documents to be handled

makes storage space a non-issue.

To communicate with the Mobile Sensor Framework the Argos Sensor Service

exposes three predefined Web Services. Predefined, in this case, means that their

entry point and parameters should not change except for the host address. This

allows the Mobile Sensor Framework to communicate by only knowing the host

address of the computer running the Argos Sensor Service. The exposed Web

Services are listed in figure 6.5.2.

6.5. SYSTEM COMPONENTS 73

Entrypoint Method

http://ADDR:8080/axis/services/!!SensorService getSensorConfiguration(String id);

http://ADDR:8080/axis/services/!!SensorProfileService getSensorProtocolPlugin(String

name, String type, String model,

String manufacturer, String pluginid);

http://ADDR:8080/axis/services/!!SensorService deliverData(byte[] packetData);

Like discussed in section 6.3 the Argos Sensor Service can receive sensor data

both using an exposed Web Service and using the TCP/IP Service described in

section 4.4.4. The port of the tcp server is specified in the sensor configuration,

which makes it unnecessary to lock the implementation to a specific port. After

the data is received the Argos Sensor Service interprets the XML and distributes

the data to Argos applications that have registered to receive it.

6.5.3 The Mobile Sensor Framework

The Mobile Sensor Framework is implemented using the .NET Compact Frame-

work for Windows Mobile 5.0 devices. Its main purpose is to simplify extraction

of sensor data by using pluggable modules called sensor protocol plugins. Sensor

protocol plugins are retrieved from the Argos Sensor Service along with config-

urations that describe operational parameters. Configurations are represented

by XML documents that can be created by the Sensor Configuration Tool and

sensor protocol plugins are .NET Compact Framework library files (.dll).

Since the Mobile Sensor Framework is running on a cell phone it can only be

contacted using SMS. The Argos Sensor Service sends out special SMS messages

when new or modified sensor configurations are available. The Mobile Sensor

Framework uses a SMS handler to listen for these messages in order to intercept

them before they are delivered to the user of the phone. The messages use a com-

pact XML format that easily can be distinguished from other types of messages.

An example of such a message can be seen in listing 6.4.

<?xml version ="1.0 " encoding ="UTF -8" standalone ="yes "?>

<announce id="12" ip="129.242.13.176" xmlns ="sensorAnnouncement -1.0"/>

Listing 6.4: SMS notification

The SMS notification messages contain two pieces of information; An id that

identifies the sensor configuration to be retrieved and the ip address of a com-

puter running Argos. It is assumed that the Argos is running the Argos Sensor

Service. As seen in figure 6.5.2 the Argos Sensor Service exposes a Web Service

74 CHAPTER 6. IMPLEMENTATION

that the Mobile Sensor Framework can use to retrieve the configuration. The

Web Service must be supplied with the id from the notification in order to return

the correct configuration.

The configuration specifies a sensor protocol plugin that can be used to collect

data from the sensor. This plugin can be retrieved by using another Web Service

exposed by the Argos Sensor Service. When the plugin, which more specifically

is a .NET Compact Framework library file, has been retrieved it will be loaded

dynamically by the Mobile Sensor Framework. An unfortunate limitation of the

.NET Compact Framework is that library files cannot be unloaded or reloaded

in any way. This means that plugins will only be fetched and loaded once while

the Mobile Sensor Framework is running. Although hot deployment of plugins

would be a nice feature, especially for testing, it is not very likely that you would

want to change your plugin implementation and redeploy it while the Mobile

Sensor Framework is running. Nonetheless, since this functionality is supported

in the non-restricted version of the .NET Framework it is likely that the Compact

Framework will support it sometime in the future.

The Mobile Sensor Framework provides two important pieces of functionality

to sensor protocol plugins. First of all it provides a communication abstraction

that allows plugins to interact with sensors without knowing or caring about

how information is actually exchanged. That is, the plugins do not know if the

sensor communication is done using bluetooth, IR or another type of protocol.

Secondly, it provides functionality for delivering sensor data to its destination

without plugins knowing or caring about where or how the data is sent.

Figure 6.2: The Mobile Sensor Framework communication abstraction

The class diagram in figure 6.2 shows some of the interfaces that the sensor

communication abstraction is made up of. Implementations of different com-

munication protocols like bluetooth and IR must implement either the Sensor-

ClientBinding or SensorServerBinding interface. In many cases there will be two

6.6. SUMMARY 75

implementations for each protocol; one for the server interface and one for the

client interface. This distinction is necessary since it is not known who will ini-

tiate the connection; the handheld device or the sensor. Sensor protocol plugins

will only work with instances of the client or server interface and are oblivious to

the underlying protocol implementation. In order to communicate with a sensor

they must register an object that implements the ConnectionHandler interface

with the client/server binding object. After a connection is established the plu-

gins receive a SensorConnection object that can be used to send and receive

data. This SensorConnection interface, which is shown in figure 6.3 must be

implemented by all communication protocols available to protocol plugins.

Figure 6.3: Sensor Connection

The Mobile Sensor Framework also provides functionality for distributing sensor

data to remote receivers. Sensor protocol plugins use this functionality to deliver

their measurement information every time they collect new data. Each sensor

configuration specify how and where the sensor data should be delivered. This

information is hidden from the sensor protocol plugins and is only used by the

core of the Mobile Sensor Framework. Since the Argos Sensor Service can receive

sensor data using either a Web Service or using a tcp/ip server the Mobile Sensor

Framework has been implemented to support both of these methods.

6.6 Summary

This chapter has presented the implementation of a prototype system to col-

lect and distribute sensor data to Argos applications. The implemented system

consists of three main components that cooperate with each other. The Sensor

Configuration Tool is a Java swing GUI application that enables users to cre-

ate sensor configurations and sensor profiles. This tool interacts with the Argos

Sensor Service, a system service in Argos, to store and deploy created sensor

configurations and profiles. The Argos Sensor Service can deploy sensor configu-

rations to handheld devices that are running the Mobile Sensor Framework. The

Mobile Sensor Framework is implemented in the .NET Compact Framework and

uses pluggable program modules, called sensor protocol plugins, received from

the Argos Sensor Service to contact and collect sensor data from sensors. It also

76 CHAPTER 6. IMPLEMENTATION

takes care of sending the collected data to the Argos Sensor Service in order for

this data to be distributed to Argos applications.

Chapter 7

Testing

The test chapter consists of two main sections. The first section will review the

implementation to determine if the system functionality satisfies the requirements

specified in chapter 3. The second section will demonstrate that the system works

as intended by showing how an application developed for Argos can collect sensor

data using the Argos Sensor Service.

7.1 Conformance Testing

The conformance testing was performed to check that different parts of the func-

tionality works as expected. This testing was accomplished by observing the

system components behavior when utilizing the use cases specified in the require-

ments chapter. The demonstration application that is described in the second

main section also served as the basis for many of the tests that were performed.

In these cases it is merely described how the demonstration application was used

to test the functionality in question.

7.1.1 The Sensor Configuration Tool

Use case T-1: Connect To Argos

The requirements for this use-case specifies that the Sensor Configuration should

allow a user to connect to a remotely running Argos and retrieve and display

available sensor profiles that the Argos Sensor Service running on this Argos

has stored. This use-case was tested by running the Argos Sensor Service on a

Argos with a fixed number of sensor profiles and connecting to it with the Sensor

Configuration Tool from a remote computer. In addition to the regular scenario

a number of potential error situations were tested:

77

78 CHAPTER 7. TESTING

• Having zero sensor profiles in the Argos Sensor Service

• Inserting the wrong Argos address in connection settings of the Sensor

Configuration Tool

• Terminating the connected Argos

All these situations were properly handled. The only exception is terminating the

connected Argos which can still cause some minor glitches in the user interface.

However, if the remote Argos is terminated the user of the Sensor Configuration

Tool will be notified and can choose to reconnect.

Use case T-2: Create Sensor Profile

The Sensor Configuration Tool shall allow users to create new sensor profiles. The

requirements for this use-case specifies that the sensor profile should be unique,

that it should contain some mandatory items and that the profile shall be stored

at the remote Argos that the tool is connected to. To test this use-case the Sensor

Configuration Tool was connected to a remote Argos running the Argos Sensor

Service and a new profile was created. The Sensor Configuration Tool allows

all the mandatory items specified by requirement SCT-103 to be part of a new

sensor profile. Uniqueness is based on the sensor profile identification fields and

was tested by adding another profile with the same fields as the first one. This

causes the Sensor Configuration Tool to notify the user that non-unique sensor

profiles cannot be created. To test that the sensor profile was properly stored at

the remote Argos the Sensor Configuration Tool was terminated, reopened and

reconnected to the Argos. The reconnection caused the Sensor Configuration

Tool to receive all stored sensor profiles and it could be observed that the newly

created profile indeed was received. Consequently it must have been stored by

the Argos Sensor Service.

Use case T-3: Edit Sensor Profile

The Sensor Configuration Tool shall allow users to edit existing sensor profiles.

When edited the requirements specify that the Argos Sensor Service the tool is

connected to shall update its persistent version of the profile. To test this func-

tionality the tool was connected to a remote Argos running the Argos Sensor

Service and an already existing profile was edited. To ensure that the Argos

Sensor Service indeed had updated its persistent version of the profile the Sensor

Configuration Tool was terminated, reopened and reconnected to the Argos. The

reconnection caused the Sensor Configuration Tool to receive all stored sensor

profiles and it could be observed that the edited profile had been properly up-

dated.

7.1. CONFORMANCE TESTING 79

Furthermore it was tested that sensor protocol plugins that were readded to

a sensor profile were properly updated. A sensor profile must contain one or

more sensor protocol plugins and when editing a profile you can delete a plugin

to add a new plugin or to update the exiting plugin. To test that this actually

worked as expected a sensor configuration was created based on the profile in

question. Afterwards the configuration was deployed two times using the Sensor

Configuration Tool to a mobile device. The first time the unedited version of

the sensor profile was used and the second time the edited version was used. On

the mobile device it was verified (by printing to screen) that the received sensor

protocol plugin indeed had changed appropriately.

Use case T-4: Delete Sensor Profile

The Sensor Configuration Tool shall allow users to delete existing sensor profiles.

When deleted the Argos Sensor Service the tool is connected to shall delete its

persistent version of the profile. To test this use-case the tool was connected to

a remote Argos running the Argos Sensor Service and an already existing profile

was deleted. To ensure that the profile was actually deleted by the Argos Sensor

Service the Sensor Configuration Tool was terminated, reopened and reconnected

to Argos. The reconnection caused the Sensor Configuration Tool to receive all

stored sensor profiles and it could be observed that the deleted profile was not

among the received profiles.

Use case T-5: View Sensor Profile

The Sensor Configuration Tool shall allow users to view an existing profile. This

use-case could be tested by just selecting a profile and clicking on the view button

in the user interface. It worked as expected.

Use case T-6: Specify Sensor Identification

This functionality was tested when testing the creation of new sensor profiles. A

sensor profile is identified by a fixed number of strings and the Sensor Configu-

ration Tool makes sure that only unique profiles can be created.

Use case T-7: Configure Sensor Options

This functionality was tested when testing the creation of new sensor profiles.

A sensor profile can contain a number of sensor options that specifies available

configuration preferences for specific type of sensor. The Sensor Configuration

Tool allows a profile to contain zero or more sensor options.

80 CHAPTER 7. TESTING

Use case T-8: Configure Sensor Interaction Descriptions

The Sensor Configuration Tool shall allows a user to add a number of sensor in-

teraction descriptions to a sensor profile when the profile is created. The require-

ments for this use-case specify that sensor interaction descriptions shall provide

the information necessary to extract and interpret the measurements the sensor

provides. The sensor interaction descriptions ended up being called sensor pro-

tocol plugins as described in section 5.3.2 of chapter 5. The Sensor Configuration

Tool allows zero or more sensor protocol plugins to be added to a sensor profile

when the profile is created or edited. The actual adding functionality was tested

when testing the creation of sensor profiles. Requirement SCT-117 specifies that

no duplicate sensor protocol plugins can be added to a profile. A sensor protocol

plugin is identified by its filename and when testing the creation of sensor profiles

is was tested that a plugin with the same filename as an already added plugin

could not be added.

Use case T-9, T-10, T-11: Create, Edit and Delete Sensor Configurations

These use-cases were relatively simple to test because the sensor configuration

are not stored anywhere (as far as the Sensor Configuration Tool is concerned).

Testing was performed by using the Sensor Configuration Tool GUI to create a

new sensor configuration, editing it and afterwards deleting it. From the user

interface it was obvious that this functionality worked as expected.

Use case T-12: Save Sensor Configuration

This use-case specifies that the Sensor Configuration Tool shall allow users to save

sensor configurations that can be used outside the Sensor Configuration Tool.

This functionality was implemented so that users can save sensor configurations

as an XML file from the Sensor Configuration Tool. To test this feature a sensor

configuration was created and afterwards saved as an XML file. It works as

intended and the resulting XML file is verified by the Sensor Configuration Tool

against an XML schema to be certain the format is correct.

Use case T-13: Configure Sensor Profile Options

When creating a sensor configuration the configuration can contain sensor options

that may have been specified in the sensor profile the configuration is based

on. The requirements for the use-case specifies that when the sensor options

in a sensor profile changes all sensor configurations that use this profile shall

be updated accordingly. This functionality was tested by trying to change the

sensor options in a profile that was used by an existing sensor configuration.

When an option was removed from the profile the option disappeared from the

sensor configuration that used the profile. Similarly, when an option was added to

7.1. CONFORMANCE TESTING 81

the profile the option appeared in the sensor configuration that used the profile.

This was the expected result.

Use case T-14: Deploy Configuration

This use-case specifies that the Sensor Configuration Tool shall allow a user to

deploy a sensor configuration to a mobile device. The Sensor Configuration Tool

user interface has a deploy button that can be pushed when a sensor configuration

is selected to deploy the configuration. When a configuration is deployed it is

sent to the Argos Sensor Service, which notifies the device using the selected

notification method (which is currently only SMS). The device then retrieves the

configuration using a web service, retrieves the sensor protocol plugin specified

by the configuration using a different web service and starts collecting sensor

data using the plugin (unless otherwise specified by the configuration). The

deployment functionality was tested by seeing if a mobile device would receive

the configuration when deployed from the tool. All actions were logged to see

if everything was performed correctly and it was verified that the mobile device

received the configuration and the sensor protocol plugin.

7.1.2 The Argos Sensor Service

Many of the use-cases with accompanying requirements for the Argos Sensor Ser-

vice has been tested when testing the Sensor Configuration Tool. Consequently

all these use-cases have been left out in this section.

Use case A-6: Deliver Sensor Data

This use-case specifies that the Argos Sensor Service must provide a service that

allows the Mobile Sensor Framework to deliver data to it. The Argos Sensor

Service provides both a web service and a tcp/ip server to accomplish this task. To

test this functionality sensor data was collected from a real sensor and distributed

to the Argos Sensor Service. The test was performed using the GPS monitoring

application described later in section 7.2. Using this application it was verified

that sensor data could be properly delivered using both services.

Use case A-7: Receive Configuration Deployment Notifications

This use-case specifies that the Argos Sensor Service must make it possible for

Argos applications to listen for configuration deployment notifications. That is,

be notified when a configuration is deployed. The notification contains all the

mandatory information specified in requirement ASS-112. Testing this function-

ality was done using the GPS monitoring application described later in section

7.2. The monitoring application is an Argos application that can receive GPS

82 CHAPTER 7. TESTING

sensor data using the Argos Sensor Service. By letting this application register

itself with the Argos Sensor Service to receive deployment notifications and de-

ploying test configurations from the Sensor Configuration Tool it was possible to

test that this functionality works as intended.

Use case A-8: Receive sensor data

This use-case specifies that the Argos Sensor Service must make it possible for

Argos applications to register to receive sensor data from a sensor referenced

by a deployed sensor configuration. When they register they must supply the

unique ID of the sensor configuration. The ID can be obtained when an Argos

application receives a configuration deployment notification. This use-case was

tested by using the GPS monitoring application described later in section 7.2 and

it worked as expected.

Use case A-10, A-11: Getting sensor configurations and profiles

These use-cases specify that the Argos Sensor Service must make it possible for

Argos application to retrieve sensor configurations and profiles for sensors that

have been deployed. Both these use-cases was tested by using the GPS monitoring

application described later in section 7.2. The functionality worked as expected.

7.1.3 The Mobile Sensor Framework

Similar to the Argos Sensor Service, many of the use-cases for the Mobile Sensor

Service have been tested when testing the Sensor Configuration Tool. Further-

more, the requirements related to other mobile applications using the Mobile

Sensor Service have been left out because there was no time to properly test

them. However, these requirements also have a lower importance as they have

been marked as should be implemented.

Use case M-2: Receive Sensor Data

This use-case specifies that the Mobile Sensor Framework shall be able to dis-

tribute sensor data to the Argos Sensor Service and that it should also be able to

distribute it to mobile applications running on the device. The latter requirement

has not been tested, but the former has been tested using the GPS monitoring

application described later in section 7.2. This test also tested requirement MSF-

104 which specified that the Mobile Sensor Framework shall properly constrain

sensor data to be distributed in intervals as specified by sensor configurations.

The last requirement for this use-case specifies that the Mobile Sensor Frame-

work should be able to receive sensor data from multiple sensors simultaneously.

Unfortunately this requirement could not be satisfied because of an unresolved

bug.

7.2. A GPS MONITORING APPLICATION 83

7.2 A GPS monitoring application

The system developed in this thesis aims to make it easier to develop Argos

applications that use measurements collected from remote sensors. To show that

this is true a demonstration application was developed that uses the Argos Sensor

Service to collect sensor measurements from the EMTAC CRUX II Wireless GPS

Sensor that was described in section 6.4.1. The application developed is only

supposed to receive and display the collected GPS location information.

7.2.1 NMEA Sentences

Like previously described, the EMTAC GPS Sensor is a bluetooth device that

broadcasts a number of different NMEA sentences containing GPS information.

The most important one of these sentences is the Global Positioning System Fix

Data (GGA) sentence, which contains the latitude and longitude readings. The

GGA NMEA sentence broadcasted looks like this:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

and the sentence has the following format:

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh

The different fields of the sentence is described by table D in appendix D.

In order for the demonstration application to receive GPS data from the Argos

Sensor Service a sensor configuration for this sensor has to be created using the

Sensor Configuration Tool. However, to be able to create a sensor configuration a

sensor profile for the EMTAC GPS sensor first had to be defined. Filling out the

necessary fields to create a EMTAC GPS Sensor profile is quickly accomplished

using the Sensor Configuration Tool, but the profile also needs to be linked to a

sensor protocol plugin that can interpret the GGA NMEA sentences broadcasted

by the device.

7.2.2 EMTAC GPS Sensor Protocol Plugin

The sensor protocol plugin developed for the EMTAC GPS Sensor is responsible

for parsing GGA NMEA sentences received from the sensor and converting each

reading into an XML packet using the generic packet format defined in section

6.4. An example of such a packet can be seen in listing 6.1. A small code excerpt

shown in listing 7.1 from the EMTAC GPS protocol plugin gives an overview of

how the plugin interacts with the sensor.

84 CHAPTER 7. TESTING

public void getData (){

/∗ Get data from sensor ∗/

while (! terminate){

/∗ Read one character from stream ∗/

connection . receive (buf , 0 , buf . Length) ;

/∗ I f s t a r t o f NMEA sentence ∗/

if (buf [0] == ’$’){

start = true ;

}

if (start){

/∗ I f not reached end of NMEA sentence ∗/

if (buf [0] != ’\r’)

s += Encoding . ASCII . GetString (buf , 0 , buf . Length) ;

else{

parseNmeaSentence (s , type) ;

break ;

}

}

}

}

Listing 7.1: How the EMTAC GPS Sensor protocol plugin communicates

As seen in listing 7.1 the protocol plugin communicates using the stream ab-

straction provided by the Mobile Sensor Framework. The actual communication

protocol used is specified by the sensor configuration and may be different even

for sensors having the same sensor profile. The EMTAC GPS sensor we are using

can only use bluetooth, which means ’bluetooth’ must be selected as the sensor

communication protocol in the sensor configuration.

The loop seen in listing 7.1 terminates when the plugin has received a complete

NMEA sentence or if a timeout occurs. The Mobile Sensor Framework decides

based on the sensor configuration how often this function should be called. Even

though sensor protocol plugins run in their own threads, the threads are com-

pletely managed by the Mobile Sensor Framework who decides when and how

often they should run.

7.2.3 The completed GPS monitoring application

The completed GPS monitoring application registers itself with the Argos Sen-

sor Service to receive sensor packets from the EMTAC GPS Sensor. The sensor

packets are represented by regular java objects because the Argos Sensor Service

takes care of converting the XML to the corresponding JAXB objects. Although

the GGA sensor packet contains many different fields the Argos GPS monitoring

7.3. SUMMARY 85

application only extracts the GPS location information. This information is dis-

played in a simple GUI as seen in figure 7.1.

Figure 7.1: The Argos GPS Monitoring Application

Developing an Argos application to get the GPS sensor data without using the

Sensor Configuration Tool, the Argos Sensor Service or the Mobile Sensor Frame-

work would involve reinventing a lot of the functionality they already provide.

You would, for instance, have to develop a mobile application that can interact

with the EMTAC GPS Sensor using bluetooth and create functionality for send-

ing the received information back to Argos. You would likely also have to create

your own format to represent the information. Using the system created in this

thesis all these problems are taken care of. Even though a sensor protocol plugin

must be developed to interact with the EMTAC GPS Sensor it can be created

with very little effort. This is especially true since it does not require you to know

anything about bluetooth.

7.3 Summary

The tests outlined in this chapter have demonstrated that most of the require-

ments specified for the system were fulfilled and that the functionality works

as expected. Furthermore, the GPS monitoring application that was developed

has demonstrated that the system can be used with real sensors and real mobile

devices.

Chapter 8

Evaluation

This chapter will evaluate the completed system in respect to the requirements

specified in chapter 3 and determine if it satisfies the goals specified in the thesis

problem definition. Furthermore, Argos will be evaluated in terms of how it was

to use and develop functionality for.

8.1 Argos

The functionality developed in this thesis is specifically created for the Argos mid-

dleware platform. It is intended to simplify sensor data extraction so that Argos

applications can receive and use sensor measurements with minimal amount of

work. To extend Argos with this functionality a sensor system service was devel-

oped that can be plugged into the platform by applications that need it.

Developing Argos System Services is much like developing regular Argos applica-

tions. The only real difference is how they are loaded by the Argos Core and that

they can subscribe to Argos Core events. The events lets a system service know

what services and/or components are loaded, started and stopped. In previous

Argos versions all the system functionality was tightly coupled with the Argos

Core and you could not easily add new functionality. By having such a simple

programming model it is very easy to learn both how to create Argos applications

and how to extend the Argos functionality.

The biggest problem with developing functionality for Argos in this thesis was

that the new pluggable system service architecture was being developed simul-

taneously. It took quite a while before the implementation was stable enough

to be used and a lot of time was spent finding and correcting bugs that resided

in this Argos functionality. On the bright side the close contact with the Argos

87

88 CHAPTER 8. EVALUATION

developer lead to a better understanding on how it was supposed to be used and

also probably resolved bugs quicker than if they had been discovered when he

was unavailable. This cooperation also probably made the Argos System Service

functionality more robust since many of the errors encountered would not have

been found through regular testing.

Among the advantages of the pluggable system service architecture is that it al-

lows independent developers to create system services that easily can be shared.

One example is the SMS Service, which was listed in section 4.4.2 in chapter 4.

This system service was developed by a fellow student for his master thesis and

was reused in the system developed for this thesis without any modifications.

Hopefully the system service developed in this thesis will be as useful to future

Argos developers.

8.2 Functional Evaluation

The functional evaluation of the system will be based on the requirements spec-

ified in chapter 3. However, due to the large number of requirements it will be

focused on the requirements that were not supported, if any.

8.2.1 System Limitations

Due to the experimental nature of the system developed in this thesis there is

naturally a few limitations to its use. One of the biggest is probably that no

interoperable way was found to describe generically how to do sensor interaction

and data extraction. During the project inception it was believed that it would

be possible to describe this interaction in an XML-type of language that could

be reused across different platforms. This would have allowed sensor protocol

plugins to be developed once to be run on Mobile Sensor Frameworks written

for different, incompatible mobile device platforms. Unfortunately the XML ap-

proach was dropped because it did not seem possible to create a format that

would be compatible with all types of sensors.

A different limitation or challenge is how users should share sensor profiles with

each other in order for them to be reused. In this thesis Argos acts as a cen-

tral repository for sensor profiles, but if everyone is running their own repository

reuse will be limited since everyone will have use their own profile library. This

is a difficult problem that it seems only standards can solve. While everyone

should probably have their own repository server, they must have some way to

find and add new sensor profiles and protocol plugins provided by others. If a

standardized sensor profile format and API for sensor protocol plugins was de-

fined it is possible to envision that companies developing sensors could provide

8.2. FUNCTIONAL EVALUATION 89

sensor profiles and protocol plugins to customers. To create such a standard and

get companies to agree to support it is an entirely different matter.

The last limitation is related to the sensor communication protocol abstraction

that the Mobile Sensor Framework provides to sensor protocol plugins. The ab-

straction was created to hide the real protocol used to interact with sensors by

providing a standard communication API. However, since only a bluetooth im-

plementation was developed it is possible that adding new protocols will require

modifications to how the abstraction is implemented. The API should not de-

pend on any bluetooth specific functionality, but it cannot be guaranteed to be

completely independent before more protocols are added.

8.2.2 Missing functionality

Some pieces of functionality got left out simply because there was not enough

time to implement them. Most of these features were expected to make it into

the final system, but were discarded because other features were considered more

important. Users using the Sensor Configuration Tool will probably miss the

ability to save sensor configurations in such a way that they will be available

next time they open the program. This feature was not left out because it is not

useful, but because it was not vital functionality to demonstrate the usefulness of

the whole system. At some point in the development process it was also planned

to support both push and pull strategies to receive sensor data from the Mobile

Sensor Framework. This plan was dropped in favor for just arguing why it would

be best to support a push approach. A pull approach could still prove useful and

can potentially be added in the future. Finally, the Mobile Sensor Framework

does not take into consideration that the handheld device can be turned off and

back on. This means that it will not remember sensor configurations it has

received and restart its sensor interaction and distribution of sensor data. This

functionality would be essential in order for this framework to be used in a real

setting, but requires more planning and development.

8.2.3 Sensor Configuration Tool

The main purpose for the Sensor Configuration Tool is to provide a user in-

terface to create sensor profiles and configurations. From user input it creates

corresponding configuration and profile XML documents that conform to XML

schemas provided by the Argos Sensor Framework. It satisfies all requirements

specified for it in the requirements chapter, but the functionality it provides still

have some minor flaws that was not fixed. The flaws are mostly cosmetic in

that they only effect how the user interface works. It is, for instance, possible to

90 CHAPTER 8. EVALUATION

lockup the user interface so the application must be restarted, but these errors

were deemed unimportant for the system as a whole.

8.2.4 Argos Sensor Framework

The Argos Sensor Framework ended up being the least complex of the system

components developed. However, it is possible to look at the Sensor Configuration

Tool and the Argos Sensor Framework as a single application where the former

provides the view/presentation and the latter provides the logic/control. The

Argos Sensor Framework’s second purpose is to interact with the Mobile Sensor

Framework in order to receive sensor data from remote sensor distribute this

data to registered Argos applications. Furthermore it acts as a mediator for

providing sensor configurations and sensor protocol plugins to the Mobile Sensor

Framework. It notifies devices running the Mobile Sensor Framework when new

or modified sensor configurations are received and exposes web services that can

be used to retrieve configurations. This system component fulfills the second

primary goal stated in the thesis problem definition in chapter 1 and conforms

to all requirements specified.

8.2.5 Mobile Sensor Framework

The Mobile Sensor Framework fulfills the first primary goal stated in the thesis

problem definition. It stated that a sensor framework should be developed for

handheld devices that takes care of accessing, retrieving and distributing sensor

data. The Mobile Sensor Framework is merely a library that does not do anything

useful by itself. It contains generic functionality for accessing sensors and provides

an environment for running sensor protocol plugins. Sensor protocol plugins are

small programs that contain only sensor specific functionality. They can take ad-

vantage of the generic functionality provided by the Mobile Sensor Framework to

easily collect and distribute sensor data. Since most of the complex functionality

is provided by the Mobile Sensor Framework the sensor protocol plugins can be

very compact. Their size will, however, depend on the complexity of the sensor

they are written for. A sensor that has many measurements and a complicated

interaction protocol will mean that the sensor protocol plugin must contain more

logic to interact with it.

The features provided by the Mobile Sensor Framework is intended to capture

all generic functionality needed by sensor protocol plugins. This means that the

plugins:

• Do not need to contain logic to save or keep track of configuration settings

• Do not need to contain logic to connect to sensors

8.2. FUNCTIONAL EVALUATION 91

• Can use a uniform way to interact with all sensors (hides protocols like

bluetooth, IR, WLAN, etc)

• Does not have to worry about how often or when they should get sensor

data

• Do not need to know how or where the sensor data should be sent after

collected

The Mobile Sensor Framework takes care of retrieving sensor configurations from

the Argos Sensor Service without the sensor protocol plugins having to know

or care about it. The sensor protocol plugins receive configuration objects from

the Mobile Sensor Framework that contain all the configuration parameters they

need when they are initialized. This way they do not need to save configuration

settings or know that the settings are actually described in an XML document.

Among the features provided by the Mobile Sensor Framework the sensor com-

munication abstraction is the most time saving when developing sensor protocol

plugins. It provides a uniform API for sensor protocol plugins to connect to and

interact with sensors effectively hiding protocols like bluetooth or IR. All con-

figuration parameters related to the communication protocol are extracted from

the sensor configuration before any settings are given to the plugins. When the

plugins are initialized they just receive a binding object that has been preconfig-

ured with the settings from the sensor configuration. The binding object exposes

part of the communication abstraction API and allows a sensor protocol plugin

to immediately start interacting with a sensor without specifying any more in-

formation.

Sensor protocol plugins are scheduled by the Mobile Sensor Framework. This

means that the framework decides when and how often they should run. Devel-

opers must take this into consideration when developing plugins to avoid using

blocking operations. Information on how often a plugin should run is specified

in the sensor configuration and is only available to the Mobile Sensor Frame-

work. It can be debated if it makes the plugins easier to develop since they must

use non-blocking operations, but it ensures that the scheduling functionality is

practically free of any bugs that otherwise could have been introduced by plugins.

The last piece of generic functionality provided by the Mobile Sensor Frame-

work is sensor data distribution. Sensor protocol plugins need to assemble XML

sensor packets that are appropriate for the sensor data they collect, but can oth-

erwise just use the functionality provided by the Mobile Sensor Framework to

distribute the data to remote receivers. This further simplifies the plugins and

allows them to use an efficient delivery solution with minimum amount of fuzz.

92 CHAPTER 8. EVALUATION

The Mobile Sensor Framework satisfies most of the requirements specified for

it in chapter 3, but requirement MSF-105 was not supported. This requirement

indicates that the Mobile Sensor Framework should be able to run multiple sensor

protocol plugins simultaneously to receive and distribute sensor data from multi-

ple sensors. The Mobile Sensor Framework was developed with the intention to

have this feature, but an unresolved bug caused it not to function properly. The

upside is that once the bug gets resolved the Mobile Sensor Framework satisfies

all requirements that were specified.

8.2.6 Comparison with Related Systems

The CommonSense ToolKit

In section 2.2 of the related work chapter it was described how the CommonSense

ToolKit tries to deal with sensor interaction in a uniform fashion. This system

uses a single XML document to specify both communication protocol settings

and the sensor data format. However, as described in related work, the Com-

monSense ToolKit seems to assume that sensors will provide sensor data in a

binary format and does not describe any further sensor protocol interaction. The

system developed in this thesis recognizes these limitations and does not assume

that a sensor will provide a binary protocol in order to work with as many sen-

sors as possible. In our system a module in a specific programming language is

used instead of an XML document to describe sensor interaction. This approach

effectively sacrifices interoperability in order to support more sensors. The ben-

efit of this approach can be demonstrated with the EMTAC GPS Sensor. The

CommonSense ToolKit would not be able to communicate with this sensor even

though the sensor does provide a binary protocol. The reason is that the binary

protocol specifications are not publicly available. The system developed in this

thesis can use the ascii format instead which it is possible to interpret because it

follows the NMEA standard.

SensorML

SensorML was discussed in the related work chapter as a way to describe dif-

ferent types of sensors. It is basically a XML language specification that is

created specifically for the sensor domain and relates to how sensor profiles are

specified in this thesis. SensorML does not describe any information associated

with protocols or data formats, but provides for instance all details concerning

the measurements a sensor can supply. The system created in this thesis bor-

rowed some of the concepts for describing sensor profiles from SensorML, but is

otherwise very simple in comparison. One advantage of SensorML, which this

system lacks, is standardized measurement units and phenomenon descriptions.

8.3. NON-FUNCTIONAL EVALUATION 93

SensorML provides a large number of URIs to reference common units and phe-

nomenons. This allows different types of sensors to have SensorML profiles where

this type of information can be compared. Such information would be very useful

if Argos applications are going to reason about sensor data collected from differ-

ent sensor sources. In the future it would be an advantage to incorporate these

units and phenomenon descriptions into the sensor profile format defined for this

system.

8.3 Non-Functional Evaluation

The non-functional evaluation will concentrate on the non-functional require-

ments specified in chapter 3. The focus will mainly be on the systems flexibility,

extensibility and interoperability.

8.3.1 Flexibility

Although flexibility is not specifically mentioned in any of the requirements for

the system, the system is very flexible in how it can be used. This flexibility is

mostly related to how sensor configurations can be deployed and created. The

primary way to create and deploy sensor configurations is through using the Sen-

sor Configuration Tool, but it is not the only way. Sensor configurations can be

bundled with and deployed by Argos applications that contact the Argos Sensor

Framework directly. The configurations themselves can be created manually by

hand, but it is recommended to create them by using the Sensor Configuration

Tool. The Mobile Sensor Framework primarily receives sensor configurations from

the Argos Sensor Service, but it can also receive them from applications using

the framework on the mobile devices. When receiving it from an application on

the device it is assumed that the application has a sensor configuration bundled

when it is installed.

8.3.2 Loose-coupling and interoperability

The three main system components developed are loosely-coupled in most re-

spects. The Sensor Configuration Tool represents the user interface for the Argos

Sensor Service, but is contained in a separate independent GUI application. This

makes the GUI functionality loosely-coupled from the logic and can be easily

replaced. A new GUI application could be developed that uses the API that the

Argos Sensor Service provides to change the user interface appearance completely.

However, these two system components communicate using JMX, which is based

on RMI. This choice of communication ties these components to Java platform,

which means that it would not be so easy to replace one of these components

with a component created for a different platform. However, in this case the

94 CHAPTER 8. EVALUATION

simplified communication of JMX outweighs the benefits of having interoperable

system components.

The Argos Sensor Service and the Mobile Sensor Framework are loosely-coupled

and almost completely interoperable. There is nothing that makes the Argos Sen-

sor Service and the Mobile Sensor Framework dependent on each other and all

information is contained in XML documents and exchanged using Web Services.

This satisfies requirement NFR-107 from the non-functional requirements section.

The only exception is sending and receiving sensor data using tcp/ip. However,

since tcp/ip is available on all platforms and the protocol used is very simple, it

would take very little effort to replicate it in any programming language in a few

lines of code. Interoperability is an important requirement for these components

because there exists a number of different mobile platforms that could run the

Mobile Sensor Framework. Developing the Mobile Sensor Framework another one

of these platforms should not require any changes to the Argos Sensor Service.

8.3.3 Extensibility

The extensibility requirements specified in chapter 3 tries to ensure that it will be

easy to accommodate changes to the system in the future. Such changes are likely

to affect sensor configurations and sensor profiles since new types of sensors might

reveal limitations in the current formats. For this reason the system components

have been developed to depend as little as possible on the current formats so that

they can be changed with minimal effort. The XML formats themselves have also

been created using very extensible design patterns in order for changes to affect

as few parts of the system as possible. Only the Sensor Configuration Tool is

relatively tightly-coupled with the sensor profile and configuration formats. The

reason is simply that it is a tool for creating documents that use those formats,

which made it difficult to make them independent of each other.

One motivation for creating a communication abstraction for the Mobile Sensor

Framework was to make sure that it can be extended with new sensor commu-

nication protocols without requiring changes to existing sensor protocol plugins.

The plugins just continue to use the same API while a different communication

protocol can be used underneath without their knowledge. Although the Mobile

Sensor Framework currently only supports bluetooth, Infrared communication

can be added with only minor changes to the framework.

8.4 Future Work

The system created in this thesis has numerous opportunities for future improve-

ment, but some of these opportunities really depend on how you want to use the

8.4. FUTURE WORK 95

system. This section provides some ideas to how the system can be improved

both on a small and a large scale.

On a small scale there are many changes that can be made. Sensor configu-

rations that have been previously created should be available when reopening

the Sensor Configuration Tool. This feature was listed as missing functionality

and did not get implemented due to time constraints. The Mobile Sensor Frame-

work can provide additional features to sensor protocol plugins. One such feature

could be encryption of sensor data. NST would probably welcome such a feature

because patient data is considered very confidential and should not be transmit-

ted insecurely. The Mobile Sensor Framework could also be extended with more

connection protocols to be able to interact with, for instance, sensors that use IR

for communication.

8.4.1 Transformations

One of the larger scale improvements is to let the Argos Sensor Service transform

received sensor data into RDF data and have an option to store it in a RDF

triplet repository like Sesame1. An RDF vocabulary could be created for each

sensor profile through the Sensor Configuration Tool with additional information

on how the transformation should be accomplished. This would benefit Argos

applications by giving them a much better way to query sensor data since the

RDF data can contain structured semantic information.

8.4.2 Discovery

The Sensor Configuration Tool does not currently provide any help with discover-

ing sensors. For some types of communication protocols, like bluetooth, it would

be possible to let the user of the Sensor Configuration Tool choose the sensor

to use based on a list of discovered sensors. Such a feature would be relatively

easy to implement using bluetooth since the list would just consist of discovered

bluetooth devices. Additional options for filtering could also be provided.

8.4.3 Monitoring

It is possible to extend the functionality provided by the Sensor Configuration

Tool far beyond what it is currently capable of. Instead of using it as just a

configuration tool, it could be transformed into a complete configuration and

monitoring tool for all devices and sensors associated with a Argos Sensor Service.

Currently you can create sensor configurations for multiple sensors, but there is

no indication if these sensors are connected to the same device. It would be

1http://www.openrdf.org/

96 CHAPTER 8. EVALUATION

better to have device configurations where each device can have multiple sensor

configurations. The tool could then provide information on the status of devices

and sensors based on feedback received by the Argos Sensor Service from the

Mobile Sensor Framework. It would be possible to reconfigure both sensors and

devices remotely to change their behavior and automatic notification mechanisms

can be setup to react to status changes. From these ideas it is easy to imagine the

Sensor Configuration Tool as more of a general purpose monitoring tool for mobile

devices that can control more than just sensors. However this again depends on

what type of functionality that is desired.

8.5 Summary

This chapter has provided an evaluation of the system developed in this thesis.

The evaluation has tried to unveil both the advantages and disadvantages of

the final system and shown how the different requirements specified have been

fulfilled. Additionally ideas for future work has been provided that can be used

for future development.

Chapter 9

Conclusion

This thesis has designed and implemented a system to simplify sensor data ex-

traction for applications running on the Argos middleware platform. Many ap-

plications, especially context-sensitive ones, rely on measurements collected from

remote sensors in order to accomplish their goals. Such applications are usu-

ally just interested in the actual measurement data and do not want to concern

themselves with the complexities of sensor data formats, communication proto-

cols and configuration settings. However, due to the lack of tools to simplify

sensor interaction most applications choose to reinvent the wheel by developing

all functionality needed themselves. This approach works, but increases devel-

opment time and misses the great benefits that can be reaped from robust and

reusable software libraries.

The system developed in this thesis solves these problems by providing a Sen-

sor Service to Argos applications that hides the details of how sensor data is

collected. Based on the problem scenario defined by NST a mobile application

framework was developed to do the actual sensor interaction. Its purpose is to

collect sensor data from sensors and send this data to Argos. One of the most

difficult problems to solve was how this framework should work with all types of

sensors when sensors have sensor specific issues that cannot be solved by a generic

library. The solution was to separate common sensor functionality from function-

ality tied to each individual sensor. This was accomplished by allowing the mobile

sensor framework to be extended with tiny application plugins containing sensor

specific functionality. These plugins can be loaded on-the-fly to access new sen-

sors without any modifications. To maximize reuse the system shares all sensor

plugins within a single Argos so that they can be reused by any Argos application.

Although the system developed makes it easier for Argos applications to receive

97

98 CHAPTER 9. CONCLUSION

sensor data it has plenty of room for improvement. Its main limitation is that the

sensor plugins are tied to the programming language of the framework. Ideally

they should be described in a interoperable markup language like XML which

could be interpreted by the framework, but due to the large differences between

sensors it did not seem possible to create such a markup language format.

The system created in this thesis is only a prototype used to illuminate issues

related to sensor interaction and data extraction. Some of its features may not

be suitable for production systems, but are still valuable in a research setting.

NST has decided to continue development of this system to create a more com-

prehensive prototype that is even more tailored to their own goals and usage

scenarios.

Bibliography

[1] Software development kit for coaguchek xs. Technical report, Roche Diagnostics,

2005. http://www.coaguchek.se. [cited at p. 12]

[2] Opengis geography markup language(gml) implementation specification, 2007.

http://www.opengeospatial.org/standards/gml. [cited at p. 15]

[3] Roger Allan. The future of sensors. ELECTRONIC DESIGN, 2004.

http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=8326.

[cited at p. 1]

[4] Trevor Armstrong, Cristiana Amza, Olivier Trescases, and Eyal de Lara. Efficient

and transparent dynamic content updates for mobile clients. MobiSys ’06, 2006.

[cited at p. 20]

[5] I. Jacobson Booch, G. and J. Rumbaugh. The Unified Modeling Language User

Guide. Addison-Wesley, 1999. [cited at p. 24]

[6] Mike Botts and Alexandre Robin. Opengis sensor model language (sensorml) im-

plementation specification. Technical report, The Open Geospatical Consortium

(OpenGIS), 2007. http://vast.uah.edu/SensorML/. [cited at p. 15]

[7] M. Cokus and D. Winkowski. Xml sizing and compression study for military wireless

data. Proceedings of the XML 2002 Conference, 2002. [cited at p. 13, 20]

[8] Mani Srivastava David Culler, Deborah Estrin. Overview of wireless sensor networks.

IEEE Computer, 2004. [cited at p. 18]

[9] Omoju A. Thomas David J. Russomanno, Cartik R. Kothari. Building a sensor on-

tology: A practical approach leveraging iso and ogc models. The 2005 International

Conference on Artificial Intelligence, 2005. [cited at p. 17, 18]

[10] Dan Peder Eriksen. Design and implementation of the second generation of apms

middleware, 2006. University of Tromsø, Norway. [cited at p. 2, 43]

[11] Van Laerhoven K., Berchtold M., and Gellersen H.-W. Accessing and abstracting

sensor data for pervasive prototyping and development, 2005. [cited at p. 11]

[12] Mike Beedle Ken Schwaber. Agile Software Development with Scrum. Prentice Hall,

2002. [cited at p. 3]

99

http://www.coaguchek.se
http://www.opengeospatial.org/standards/gml
http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=8326
http://vast.uah.edu/SensorML/

100 BIBLIOGRAPHY

[13] V. Kumar. Wireless communications - beyond 3g. 2001. [cited at p. 19]

[14] Ruth Malan and Dana Bredemeyern. Defining non-functional re-

quirements. Technical report, BREDEMEYER CONSULTING, 2001.

http://www.bredemeyer.com/pdf_files/NonFunctReq.PDF. [cited at p. 37,

38]

[15] A. Mani and A. Nagarajan. Understanding quality of service for web ser-

vices. http://www-106.ibm.com/developerworks/library/ws-quality.html.

[cited at p. 13]

[16] Frank Manola and Eric Miller. Rdf primer. Technical report, World Wide Web

Consortium (W3C), 2004. http://www.w3.org/TR/rdf-primer/. [cited at p. 13]

[17] Sun MicroSystems. Jave enterprise edition faq.

http://java.sun.com/javaee/overview/faq/javaee_faq.jsp. [cited at p. 42]

[18] William T.C Kramer Nathan Ota. Tinyml: Meta-data for wireless networks. 2003.

[cited at p. 18]

[19] Sasank Reddy. Project report: Sensor data stream protocol. Association for Com-

puting Machinery (ACM), 2006. [cited at p. 9, 18]

[20] Darleen Sadoski and Santiago Comella-Dorda. Three tier software archi-

tectures. Technical report, Carnegie Mellon: Software Engineering Insti-

tute, 2000. http://www.sei.cmu.edu/str/descriptions/threetier_body.html.

[cited at p. 52]

[21] M. Satyanarayanan. Fundamental challenges in mobile computing. Principles of

Distributed Computing (PODC ’96), 1996. [cited at p. 19]

[22] M. Tian, T. Voigta, T. Naumowicz, H. Ritter, and J. Schiller. Performance consider-

ations for mobile web services. Elsevier Computer Comm. J., 27, 2004. [cited at p. 63]

[23] Cecilie Daae Tor Claudi, John G. Cooper. Er diabetesbehandling for vanskelig

for allmennpraktikeren alene? Tidsskrift for Den Norske Lgeforening, 2000.

http://www.tidsskriftet.no/pls/lts/PA_LT.VisSeksjon?vp_SEKS_ID=17616.

[cited at p. 5]

[24] Sitalakshmiy Venkatraman. Mobile computing models are they meeting the mobile

computing challenges? Association for Computing Machinery New Zealand Bulletin,

2005. [cited at p. 19]

http://www.bredemeyer.com/pdf_files/NonFunctReq.PDF
http://www-106.ibm.com/developerworks/library/ws-quality.html
http://www.w3.org/TR/rdf-primer/
http://java.sun.com/javaee/overview/faq/javaee_faq.jsp
http://www.sei.cmu.edu/str/descriptions/threetier_body.html
http://www.tidsskriftet.no/pls/lts/PA_LT.VisSeksjon?vp_SEKS_ID=17616

Appendices

101

Appendix A

Appendix A

Appendix A contains visualizations of the three different XML schemas that have

been developed in this thesis. These schemas define the structure of XML pack-

ets, sensor configurations and sensor profiles.

Figure A.1: A visualization of the sensor packet XML schema

103

104 APPENDIX A. APPENDIX A

Figure A.2: A visualization of the sensor profile XML schema

105

Figure A.3: A visualization of the sensor configuration XML schema

Appendix B

Appendix B

Appendix B contains complete versions of different XML examples that have

been shown in the Implementation chapter.

<?xml version="1.0"?>

<sensorPacket id="21323423 " date="2007-02-15 " time="12:04:10"

xmlns="http://argos.cs.uit.no/sensors/packet -1.0">

<instrument name="GGA">

<measurement name ="Time " unit="time " value="170834"/>

<measurement name ="FixQuality " unit="int" value="1"/>

<measurement name ="Satellites " unit="int" value="05"/>

<measurement name ="HDOP " unit="double" value="1.5"/>

<measurement name ="Altitude " unit="meters" value="1"/>

<measurement name ="GeoidHeight " unit="meters" value=" -34.0"/>

<measurementGroup name="Latitude">

<measurement name="Degrees" unit="degrees" value="41"/>

<measurement name="Minutes" unit="minutes" value="24"/>

<measurement name="Seconds" unit="seconds" value="54"/>

<measurement name="Direction " unit="direction " value="north"/>

</measurementGroup >

<measurementGroup name="Longitude ">

<measurement name="Degrees" unit="degrees" value="81"/>

<measurement name="Minutes" unit="minutes" value="51"/>

<measurement name="Seconds" unit="seconds" value="41"/>

<measurement name="Direction " unit="direction " value="west "/>

</measurementGroup >

</instrument >

<instrument name="GSV">

. . .

</instrument >

</sensorPacket >

Listing B.1:]Generic Sensor Data Format Example [EMTAC GPS Sensor]

107

108 APPENDIX B. APPENDIX B

<outputs >

<OutputList >

<output name ="weatherMeasurements">

<swe:DataGroup >

<swe:component name="time ">

<swe:Time

definition ="urn:ogc:def:phenomenon:time"

uom="urn:ogc:def:unit:iso8601"/>

</swe:component >

<swe:component name="temperature ">

<swe:Quantity

definition ="urn:ogc:def:phenomenon:temperature"

uom="urn:ogc:def:unit:celsius"/>

</swe:component >

−

<swe:component name="barometricPressure ">

<swe:Quantity

definition ="urn:ogc:def:phenomenon:pressure"

uom="urn:ogc:def:unit:bar"/>

</swe:component >

−

<swe:component name="windSpeed ">

<swe:Quantity

definition ="urn:ogc:def:phenomenon:windSpeed"

uom="urn:ogc:def:unit:meterPerSecond"/>

</swe:component >

−

<swe:component name="windDirection ">

<swe:Quantity

definition ="urn:ogc:def:phenomenon:windDirection"

uom="urn:ogc:def:unit:degree"/>

</swe:component >

−

<swe:component name="rainFall ">

<swe:Quantity

definition ="urn:ogc:def:phenomenon:rainfall"

uom="urn:ogc:def:unit:meter"/>

</swe:component >

</swe:DataGroup >

</output >

</OutputList >

</outputs >

Listing B.2:]Davis Weather Station Measurements [SensorML]

Appendix C

Appendix C

Appendix C contains screen shots taken of the Sensor Configuration Tool. Only

the most important parts of the user interface have been included. It shows how

the main screen looks along with how sensor configurations and profiles are cre-

ated and edited.

Figure C.1: The main window of the Sensor Configuration Tool

109

110 APPENDIX C. APPENDIX C

Figure C.2: Editing a sensor profile

Figure C.3: Configuring a new sensor configuration

111

Figure C.4: Adding a sensor protocol plugin to a sensor profile

Appendix D

Appendix D

Appendix C contains more complete information on the GGA NMEA sentence

interpreted by the GPS monitoring application described in 7.2 of chapter 7.

Field Description

01 Sentence Identifier

02 Time (UTC) of Position

03 Latitude

04 Latitude Direction (north or south)

05 Longitude

06 Longitude Direction (east or west)

07 GPS quality indicator (0=Invalid, 1=GPS fix, 2=DGPS fix)

08 Number of satellites in use

09 Horizontal Dilution of Position (HDOP)

10 Antenna altitude above/below mean sea level

11 Meters (Antenna height unit)

12 Height of geoid above WGS84 ellipsoid

13 Meters (Units of geoidal separation)

13 Age in seconds since last update from diff. reference station

14 DGPS station ID

15 Checksum

Figure D.1: GGA Sentence Fields

113

CD-ROM

The CD-ROM contains this PDF document, all source files and everything need to get the

system up and running. More specifically it contains the following items:

Thesis.pdf

This document.

Argos

This folder contains a compiled version of Argos that has been confirmed to work with

the Argos Sensor Service.

BangBang SensorFramework

This folder contains the Argos Sensor Service as a Eclipse project.

SensorFrameworkDemonstrator

This folder contains the demonstration Argos application as a Eclipse project. It receives

GPS measurements from the EMTAC GPS Sensor.

SensorConfigurationTool

This folder contains the Sensor Configuration Tool Eclipse project that can be used to

create new sensor profiles and configurations.

SCTPlugins

This folder contains a plugin Eclipse project that extend the functionality of the Sensor

Configuration Tool. If new notification mechanisms or sensor communication protocols

are needed new plugins can be created in this project.

SensorXML

This folder contains the SensorXML Eclipse project. This project contains XML related

functionality that is shared between most of the other projects.

MobileSensorFramework

This folder contains the Mobile Sensor Framework as a Visual Studio project. It also

includes two Sensor Protocol plugin examples. One for the EMTAC GPS Sensor and one

for a preliminary version of the NST Step Sensor.

Readme.txt

Consult this readme file for more detailed information.

115

	Contents
	Acronyms
	List of Figures
	Introduction
	Background
	Problem Definition
	Interpretation
	Method and Approach
	National Center for Telemedicine (NST)
	NST's relation to this thesis
	Outline

	Related Work
	Background
	Bridging the sensor gap
	Describing sensors and sensor data
	XML
	The Resource Description Language (RDF)

	Sensor Description Languages
	SensorML
	TinyML

	Limitations of Handheld devices
	Limitations
	Distributing sensor data

	Summary

	Requirements
	System Goals
	Functional Requirements
	The Sensor Configuration Tool
	The Argos Sensor Service
	The Mobile Sensor Framework (MSF)

	Non-Functional Requirements
	Run-time qualities
	Development-time qualities

	Summary

	Technology
	Overview
	Application servers
	The Argos Middleware Platform
	Argos System Services
	Hibernate System Service
	SMS System Service
	Web Service System Service
	The TCP/IP System Service
	JMX Connectors

	XML technologies
	XML Schemas
	XML Bindings

	Summary

	Design
	Overview
	High level architecture
	Identifying common sensor functionality
	Describing sensor functionality
	Sensor Protocol Plugins

	The Sensor Configuration Tool
	Overview
	Managing Sensor Profiles
	Managing Sensor Configurations
	Deploying Sensor Configurations
	Putting the pieces together

	The Argos Sensor System Service
	Sensor Profiles
	Sensor Configurations
	Receiving Sensor Data

	The Mobile Sensor Framework
	Summary

	Implementation
	Environment and programming language
	System Overview
	Distributing sensor data
	The Sensor Data Format
	The EMTAC CRUX II Wireless GPS Sensor
	The Davis Weather Station
	NST Step Sensor

	System Components
	The Sensor Configuration Tool
	The Argos Sensor Service
	The Mobile Sensor Framework

	Summary

	Testing
	Conformance Testing
	The Sensor Configuration Tool
	The Argos Sensor Service
	The Mobile Sensor Framework

	A GPS monitoring application
	NMEA Sentences
	EMTAC GPS Sensor Protocol Plugin
	The completed GPS monitoring application

	Summary

	Evaluation
	Argos
	Functional Evaluation
	System Limitations
	Missing functionality
	Sensor Configuration Tool
	Argos Sensor Framework
	Mobile Sensor Framework
	Comparison with Related Systems

	Non-Functional Evaluation
	Flexibility
	Loose-coupling and interoperability
	Extensibility

	Future Work
	Transformations
	Discovery
	Monitoring

	Summary

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

