
 

Department of Industrial Engineering 

Master Thesis Part II-Pre study Report  

Field data processing techniques  

Faculty of Technology 

Ivan Balachin 

Master’s thesis in SHO6266, Second of June 2017 



  

III 

 

 

Title: Field data processing techniques 

 

 

Date:31.01.2017 

 

Classification: 

 

Author(s):Ivan Balachin 

 

Number of Pages: 

 

Number of Attachments:1 

 

Subject Name: 

                       Master Thesis - Pre Study Report  

Subject Code: 

                     SHO6266 

Faculty: 

                        Technology 

Master Program: 

                        Industrial Engineering 

Supervisor: Geanette Polanco Pinerez 

 

Co-supervisor: Hu Qin 

 

 

External Organization/Company: Chongqing University ,China 

 

External Organization’s/Company’s  Liaison:  

 

Keywords (max 10): basic statistics, summary statistics, graphical displays of data, 

regression analysis, cold weather effects on power lines. 

 

 

 

Abstract (max 150 words): 

This paper is written in order to give overview of basic statistical concepts, summary 

statistics, graphical displays of data, regression analysis. This background will be used for 

finding regressions between environmental factors and electrical, mechanical response 

variables of experiment. Experimental data taken from  overhead transmission line facility 

at Xuefeng Mountain belonged to Chongqing University, China. 

 

 

 

 



  

IV 

 

 

Table of Contents 

Symbols .................................................................................................................................. 1 

Abbreviations ......................................................................................................................... 2 

1 Introduction ........................................................................................................................ 3 

2 Scope .................................................................................................................................. 3 

3 Statistics in Engineering and science ................................................................................. 3 

3.1 Basic statistical concepts .................................................................................................. 5 

4 Statistical methods ............................................................................................................ 10 

4.1 Descriptive statistics. ...................................................................................................... 11 

4.1.1 Robust summary statistics. ...................................................................................... 12 

5.Graphical displays of data ..................................................................................................... 15 

5.1 Raw data display methods .............................................................................................. 16 

5.2 Tabulating and displaying of distributions ..................................................................... 17 

5.3 Graphics for process control and improvement ............................................................. 21 

5.4 Graphical Comparison of distributions .......................................................................... 25 

5.4.1 Comparison by using box plots ............................................................................... 26 

5.4.2 Comparison of two sample distributions using Quantile plot ................................. 29 

5.4.3 Comparison with a reference distribution ............................................................... 31 

5 Regression and correlation analysis ................................................................................. 34 

5.1 Regression analysis technique ................................................................................... 34 

5.2 Linear Regression analysis ........................................................................................ 35 

5.3 Confidence Intervals in Regression Analysis ............................................................ 37 

5.4 Correlation analysis ................................................................................................... 38 

Problem definition for thesis phase number 2 .......................................................................... 40 



  

V 

 

References ............................................................................................................................ 41 

Attachment 1 ............................................................................................................................ 42 

 

List of Tables 

Table 1 Role of statistics in experimentation ......................................................................... 4 

Table 2 Denotation of parameters in Population and Sample for standard deviation ...... 6 

Table 3 Determination of sample median ............................................................................ 12 

Table 4 Steps for calculation of MAD .................................................................................. 13 

Table 5 Steps for calculating ................................................................................................. 15 

Table 6 Box plot construction steps ...................................................................................... 20 

Table 7  Random variation determination ........................................................................... 22 

Table 8  Algorithm of building Shewhart control charts ................................................... 23 

Table 9 Algorithm of building CUSUM control charts ...................................................... 24 

Table 10 Factors of interest ................................................................................................... 26 

Table 11 Algorithm of building Quantile-quantile plot ...................................................... 31 

Table 12 Algorithm of making normal quantile-quantile plot ........................................... 33 

Table 13 Strategy of regression analysis .............................................................................. 35 

Table 14 Determination of confidence interval for linear regression ................................ 37 

Table 15 Test of hypothesis 𝝆 = 𝟎 with alternative 𝝆 > 𝟎 in the case of Two-Dimensional 

Normal Distribution ............................................................................................................... 39 

 

 

 

 



  

VI 

 

List of Figures 

Figure 1  Statistics in scientific investigations ....................................................................... 4 

Figure 2  Normal distribution of measurement values (Robert L. Mason, 1989) ................ 7 

Figure 3 Comparison of normal distributions ....................................................................... 8 

Figure 4  Model generalization loop ..................................................................................... 10 

Figure 5 m-estimator iterative procedure ............................................................................ 14 

Figure 6 Point plot .................................................................................................................. 16 

Figure 7 Sequence Plot ........................................................................................................... 17 

Figure 8 Histogram ................................................................................................................ 18 

Figure 9 Stem and leaf Plot ................................................................................................... 18 

Figure 10 Box plot .................................................................................................................. 19 

Figure 11 Quantiles plot ........................................................................................................ 20 

Figure 12 Pareto chart ........................................................................................................... 21 

Figure 13 Shewhart Plot ........................................................................................................ 23 

Figure 14 CUSUM Plot .......................................................................................................... 25 

Figure 15 Box plot of measurements (Robert L. Mason, 1989) ........................................... 26 

Figure 16 Average values versus number of repeat scans (Robert L. Mason, 1989) ......... 28 

Figure 17  Standard deviation  versus number of repeat scans (Robert L. Mason, 1989) 29 

Figure 18 Quantile-quantile plot for wear tiers of same brand ......................................... 30 

Figure 19 Quantile-quantile plot for wear tiers of different brand ................................... 30 

Figure 20 Normal distributions with means 50 and diff. standard deviations. ................ 32 

Figure 21 Normal quantile-quantile plot example 1 ........................................................... 33 

Figure 22 Normal quantile-quantile plot example 2 ........................................................... 34 

Figure 23 Examples of sample correlations from (Kreyszig) .............................................. 38 

 



  

II 

 

  



  

1 

 

Symbols 
𝑎 additive constant for linear line equation. 

𝐴2 constant for calculating of Shewhart control chart parameters. 

𝑏 multiplicative part of linear line equation. 

𝐵3,𝐷4 
 

constants for calculating of Shewhart control chart parameters. 

f data fraction.  

i index number of sample value. 

j index number of distance from straight line in y direction. 

k number of samples for average range method, average standard deviation and average 

moving range. 

K confidence interval constant. 

M sample median. 

𝑀𝑅̅̅̅̅̅ average moving range. 

n number of data points in sample. 

N number of data points in population. 

q sum of squared distances in developing of linear regression equation. 

𝑄1,𝑄2,𝑄3,𝑄4, quartiles. 

r correlation coefficient for sample.  

R range. 

𝑅̅ average range. 

S variance of sample. 

𝑆̅ average standard deviation.  

𝑆𝑥𝑦  covariance of samples x and y.  

𝑆𝐻𝑖  sum of high for cumulative sum plot.  

𝑆𝐿𝑖 sum low for cumulative sum plot. 

t turning constant fro m-estimate. 

𝑤𝑖  weights of sample.  

𝑦1… . 𝑦𝑛  initial sample values. 

𝑦̅ sample mean. 

𝑦𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 max, min values in a sample. 

𝛼 significance level of hypothesis. 

𝜇 mean in population.   

𝜇̂ mean estimator for population. 

𝜇̃ median for population.  

𝜎 std. Deviation fro population. 

𝜎̂ std. Deviation  estimator.  

𝜎𝑥𝑦 covariance of population X and Y . 

𝜎𝑥 variance of marginal distribution X. 

𝜎𝑦 variance of marginal distribution Y. 
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Abbreviations 
AMR average moving range 

CUSUM cumulative sum 

LCL lower control limit 

LOC location of median and quantile 

SPC statistical process control 

UCL upper control limit 
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1 Introduction 

Ice covering on overhead transmission lines can cause accidents such as, short-circuit, 

grounding, wire breakage, tower distraction or flashover (You-le Liu, 2008). This can lead to 

disturbances in electrical supply of consumers. In order to prevent these accidents icing 

monitoring on transmission lines is used. On line icing monitoring on transmission lines 

requires installing of monitoring devices. Xiang-jun Zenga, 2011, described methods of icing 

thickness monitoring based on reclouser transient travelling wave. In order to design 

transmission line should be collected some preliminary information like: electrical and 

geographical data. Geographical data including: maximum and minimum temperatures, 

maximum wind velocities with ice or without, radial thickness of ice expected on the 

conductors, existence of aggressive atmosphere’s (Farr, 1980).   Also it is important to collect 

and process data. Such databases are important for validation of experimental and theoretical 

simulations of the icing process (Poots, 1996). Also data is processed by using statistical 

principles.  

2 Scope 

The goals of the first phase of thesis are to give basic statistical concepts, definitions and fitting 

data techniques. Build the bases for the work of Phase II based on selected study case. 

 

3 Statistics in Engineering and science 

Role of statistics in engineering and science can not be overestimated. Quality and productivity 

are goals of industrial process (Robert L. Mason, 1989). Statistics used in monitoring of  product 

quality and ensure that products are in specification limits. Best products are initiated in 

academic and industrial research, this requires collection of data. Statistics is the science of 

problem solving in the presence of variability. 

For example statistics is used in studying of automobiles emissions, forces on pipes used in 

drilling oil wells, testing of commercial drugs, etc. All these processes involve some degree of 
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uncertainty. Figure 1 presents the relation of the different parameters involved when statistics 

in applied to science investigation. 

 

Figure 1  Statistics in scientific investigations 

Data is the product of experimental and observational studies. Data is collected from different 

sources, which include variation in measurements. Variation exists because of changing in 

ambient conditions, errors in instrument readings or other unknown causes. In order to ensure 

that an experiment provides useful information, three conditions of experimental design and 

experiment analysis need to be satisfied. 

First nature of data to be collected must be considered, what measurements to be taken and 

what factors might influence the variation of measurements. Secondary control limits should 

be selected, what variation is possible from known sources. And third feature is that a statistical 

analysis of experimental results, should allow to make conclusion how measurements and 

design factors are related. 

Table 1 summarizes the role of statistics in engineering and science experimentation. 

Table 1 Role of statistics in experimentation 

Phase of experiment Description phase 

Planning What is to be measured 

How large is likely variation 

What are the influential factors 
Design Control known source of variation 

Estimate size of the uncontrolled variation 

Investigate possible models 
Analysis Make  inference on design factors 

Make next designs 

Suggest more suitable models 

 

To guaranty a general understanding of the statistics, hereafter a definition of the object of 

study, samples, population and distributions, followed by the definition and description of the 
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more used, statistical methods, data graphical displays, regression and correlation analysis 

techniques. 

3.1 Basic statistical concepts 

The three bases for understanding statistical inference are: distinguishing samples from 

populations, relating sample statistics to population parameters, deterministic and empirical 

modelling (Robert L. Mason, 1989). 

First base is to distinguish samples from populations concept. Population is a group of possible 

items or units that determines an outcome of a well-defined experiment. Populations must be 

defined with respect to all known sources of variation in order to draw valid statistical 

inferences. Population can also represent processes. 

Meanwhile, sample is a group of observations taken from population or a process. The use of 

samples obeys to economical and time constraints. Connection between sample and population 

shown on figure  

 

Figur 1 Connection between sample and population  

Both, population and sample are related in the way that the sample must be a representative part 

of the population, so there is no need to evaluate the whole population and using the information 

of the sample it is possible to elaborate conclusion about the population. Process is a repeatable 

characteristic or measurement. Measurements on a population of units can exhibit statistical 

differences based on the characteristics of interest in the experiment, know as variable. 

Variables can be divided on two categories: response variables and factors. A response variable 

can be defined using a probability model as function of one or several factors plus unknown 

constants. Factors are controllable experimental variables that influence on the observed values 

of response variable. For example in the study of ice load on wires: tension and torsion 

depending on environmental factors: pressure, temperature and speed. Power losses as a 
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function of environmental factors. Second important question what is it parameters and 

statistics.  

Parameters are numerical characteristic of a population or a process. Statistics is a numerical 

characteristic that is computed from a sample of observations. 

Examples of parameters are mean weight of cottage cheese pack at one plant, hardness of steel, 

maximum wear of stainless-steel ball bearings subjected to a prescribed wear-testing technique. 

Parameters denoted by Greek letters: 𝜇 and 𝜎 for standard deviation. Standard deviation is a 

measure of variability of the observations in a population. Population parameters are often used 

for defining specification limits or tolerances for manufactured products. Greek letters denote 

parameters, Latin letters variables. Denotation of parameters can be summarised in Table 2 

from (Michael L. George, 2005). 

Table 2 Denotation of parameters in Population and Sample for standard deviation 

Description Population Sampling 

Number of data points N n 

Mean  𝜇 𝑋̅ 

Mean estimator 𝜇̂ 𝑋̅ 

Median 𝜇̃ 𝑋̃ 

Std.Deviation 𝜎 s 

Std.Devi.estimator 𝜎̂ s 

 

The most used is normal distribution that characterise populations and processes for many types 

of measurement. Likelihood of obtaining value represent the area under the curve and called 

density. For normal distribution needed mean 𝜇 and standard deviation in order completely 

specify probability model. The peak of the curve located above mean value 𝜇, because 

probability density is highest around the mean, this shown on Figure 2 . 
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Figure 2  Normal distribution of measurement values (Robert L. Mason, 1989) 

From normal distribution around 68% of measurement values lie between 𝜇 ± 𝜎, 95% between  

 𝜇 ± 2𝜎  and 99%, between  𝜇 ± 3𝜎. 

As was said statistics used sample values to estimate population parameters. For estimating 

mean of population used sample mean and population standard deviation can be obtained from 

standard deviation of sample. Several sample statistics can be used to estimate a population 

parameter.  

The laws of statistics also happens in sampling distribution. It means that number of values 

taken according probability model can be determined by model of original population by the 

sampling procedure. It leads to definition of a sample distribution. Sample distribution is a 

theoretical model that describes the probability of obtaining the possible values of a sample 

statistics. 

One of the most important quality of statistics is randomness. 

Simple random sample is when every group of items of size n has an equal chance of being 

selected as the sample. Also (Kreyszig) gives overview of sampling techniques like: random 

sample with or without releasement, systematic random samples, stratified random samples, 

cluster sampling. Stratified random samples are based on dividing population into groups or 

strata of similar units and selecting simple random samples from each strata. It helps to check 

required observation in several groups in the sample. 
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Cluster sampling is dividing population on groups of units in such way that leads to randomly 

sample clusters and sample observations in each clusters. It is used as  alternative to simple 

random sampling when process representing geographical location or lot of products.  

This methods of sampling helps to make inferences about a population, process or phenomenon 

based on the information contained in a representative sample or collection of observations to 

exact distribution. 

This proves one of the features of the normal model. Average from simple random sample of 

size n follow a normal probability model with the same population mean, but with a standard 

deviation that is reduced by a factor √𝑛. 

This feature shown on  Figure 3 , where the mean of  probability model is 𝜇 = 35.4 and 

standard deviation of 𝜎2 = 2.5 sample size 4 and for individual samples appropriate values: 𝜇 =

35.4 and 𝜎 =
𝜎2

√𝑛
=

2,5

√4
= 1.25.  

 

Figure 3 Comparison of normal distributions 

It is achievable that the distribution of the averages is more concentrated around the population 

mean than distributions of individual observations. 

It leads to conclusion that to obtain sample mean which is closer to population mean is easier 

than to obtain one observation which is close to population mean. 
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Third basic statistical concept is mathematical or statistical modelling. Models are common 

thing in engineering and physical sciences. Model is based on some knowledge about studying 

phenomenon. Experiments are conducted to prove or reject models. 

Models build in order to characterize one or more response variables, through relationship with 

one or more factors. Models can be mathematical and statistical. Mathematical is model derived 

from the theoretical or mechanical considerations, that is based on assumed ideal ( error-free 

relationships among the variables. 

Statistical model is model derived from data that subjected to various types of specification, 

observation and measurement errors. 

Example of a mathematical model is facture mechanics relation 𝑘𝐼𝐶 = 𝛾𝑆𝑎1/2 facture 

mechanism relation is based on theoretical foundations of fracture mechanics. Theoretical 

foundations were confirmed through extensive experimental testing. 

But in reality is not always possible to make a mathematical model for mechanism being 

studied. Empirical studies do not made under the idealized conditions like mathematical model. 

In this case statistical model is useful because it is include experimental error. Error can be 

additive or multiplicative. If to apply it to facture mechanics relation than it will take view like 

shown in formula (1), 

KIC = γSa1/2 + a  or   KIC = γSa
1/2 + e ( 1) 

In formula (1) presence of error shows that model has uncontrolled source of  variation. A 

mathematical model can be really proven with data. One of the best conclusions that 

experimental data is consistent with particular hypothesis model. Some typical mistakes when 

data collected over a very narrow range of variables. This make incorrect experimental data 

consistent with hypothesized model. 

That why it is important to make proper experimental design and test mathematical model with 

experiment. 

 Statistical model should be based on mathematical model: law or relationship, than to be 

separate. In other words this type of model generalization can evolve to a theoretical model that 

adequately describes the studied phenomenon. 

Block diagram of model generalization shown on Figure 4 
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Figure 4  Model generalization loop 

4 Statistical methods 

Statistical methods divided on two categories descriptive statistics and inferential statistics 

(L.Jaech, 1985). 

Descriptive statistics is some kind of data representation and it  includes statistical graphs, 

charts, tables and indices.  

Inferential statistics estimates behaviour of data sets based on behaviour of existing lower data 

set.  

Inferential statistics uses same techniques as descriptive for getting intermediate results from 

the basis statistical statements about larger population of data. 

This work will be  focused on inferential statistics. Most important methods of statistical 

inference are estimation of parameters, determination of confidence intervals, hypothesis 

testing (application of quality control and acceptance sampling) regression and correlation 

analysis (Kreyszig). 

Mathematical statistics makes conclusions about behaviour of populations by taking random 

variables, which are called samples, for example 20 parts from a total of 1000 part. Random 
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selection of the samples are required to obtain meaningful conclusions samples. Each of 1000 

parts must have equal chance to be sampled.  

Only than the sample mean 𝑥̅ be a good approximation of the population mean µ. Accuracy of 

approximation increase with increasing n.  

4.1 Descriptive statistics. 

According to Rober L. Mason, 1989 descriptive statistics is divided on traditional summary 

statistics and summary statistics that is less sensitive to outliners in the data it is also called as 

robust summary statistics.  

In traditional summary statistics sample mean is a value by which conclusions about typical 

behaviour of sample values and like following about behaviour of population values makes. 

Sample mean or average is a set of data values divided by number of observations,  

y̅ =
1

n
(y1 +⋯+ yn) 

( 2) 

where  𝑦1…𝑦𝑛- data values, n-number of observations. However, it is not reliable only to take 

into consideration only sample mean, spreading of values around mean is important also. 

Simplest measurement of spreading is taking into account maximum and minimum data values. 

This is made by parameter range 

R = (ymax − ymin) ( 3) 

Values spreading is measured by the sample standard deviation S, 

s = √
∑(yn − y̅)2

n − 1
 

( 4) 

, where (𝑦𝑛 − 𝑦̅)
2 squared deviations of sample values from mean. Deviations are squared 

because only amplitude value of the difference should be considered, square root is taken in 

order to get identical units with original observation. 

Standard deviation is a measure of typical data values variation around sample mean. This 

parameter often used as measure a precision of a measurement process. Standard deviation 

gives useful information when compares with standard value such as specification limit or with 
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values obtained from similar measurements. For example several data sets from similar 

measurements and standard deviations are compaired. From magnitudes of them can be 

obtained conclusions about differences in variability of the process, from which were obtained 

data sets. 

Traditional  summary statistics uses measures of the centre and spread of a data set. It is allow 

to get few key statistics, which makes easier to understand large data sets. Sample mean value 

and standard deviation are properties of interest in the data analysis. 

4.1.1 Robust summary statistics. 

This type of statistics less sensitive to presence of outliners in the data. Outliners in data can 

occur when errors in experiment are made, reading mistakes or occasional large or small data 

occurs. Descriptive statistic methods help to spread few extreme observations. 

In this field exists to alternative to sample mean as a measure of centre of data values: sample 

median and the m-estimator. 

Sample median is a number that divides ordered data values into two groups of equal size and 

determines as follows in Table 3 

Table 3 Determination of sample median 

Number of 

step 

Description of step 

1 Order the data from the smallest to the largest values, 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑛 

2 Determine the median as: 𝑀 = 𝑦(𝑞) if n is odd, where q= (n+1)/2 

Otherwise 𝑀 = (𝑦(𝑞) + 𝑦(𝑞+1))/2 if n is even, where q= n/2 

 

From steps in Table 3 it is achievable that only 50% of data used in determining sample median. 

Next method for determining centre of data set values is m-estimators. M-estimators are 

weighted averages of data values. For not extreme data values weights are equal to one and for 

extreme less than one. Formula for determining M-estimator is: 

m =∑wi yi/∑wi 
( 5) 

Where 𝑤𝑖 – weights of sample values determined by logical expression, 
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wi =

{
 
 

 
 −

tv

yi −m
 if yi < m < tv,

1  if  m − tv < yi < m+ tv,

+
tv

yi −m
if  m + tv < yi.

 

( 6) 

Where t is tuning constant and depends from how strong influence of extreme observations 

should be covered. Usually taken between 1.345 and 1.5. Robust measurement of experiment 

𝑣 is determined as an absolute median deviation (MAD). MAD determined by formula:  

MAD =
median(|yi −M|)

0,6745
 

( 7) 

 

After selecting t and v observation weights of values starting to be assigned. Algorithm for 

calculating MAD is given in Table 4 (Robert L. Mason, 1989). 

Table 4 Steps for calculation of MAD 

Number of 

step 

Description of step 

1 Determine the sample median M 

2 Calculate the deviations from the median, 𝑦𝑖 −𝑀 

3 Take the absolute values of the deviations 

4 Rewrite absolute values of the data from smallest to largest 

5 Find median of the ordered absolute values of the deviations, 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 −𝑀|) 
6 Divide 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 −𝑀|) by 0,6745 

 

After calculation of MAD m-estimator iterative procedure is summarised in Figure 4. 
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Figure 5 m-estimator iterative procedure 

M-estimates method can be used not only for calculating mean of sample but for identification 

of influential observations. This is achieved by given appropriate weight to the value 𝑤𝑖, 

weights  significantly less than 1 show extreme observations. 

Another method of measuring of data values spreading is quartiles. Advantage of them that they 

are usually unaffected by a few extreme measurements. Quartiles 𝑄1, 𝑄2 and 𝑄3 are numerical 

values that divide a sample of observations into groups so that each group on 25% less than 

each previous one. The second quartile 𝑄2 is the sample median M. After the quartiles selecting 

procedure calculates semi-interquartile range (SIQR). Steps in order to obtain SIQR described 

in Table 5. 
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Table 5 Steps for calculating 

Number of 

step 

Description of step 

1 Order the data values 𝑦(1) ≤ 𝑦(2) ≤….𝑦(𝑛) 

2 If n is odd then q=(n+1)/2 and if n is even then q=n/2.Then  𝑄2 = 𝑀 = 𝑦(𝑞) if  n is odd, (𝑦(𝑞) +

𝑦(𝑞+1) )/2 if n is even. 

3 If q is odd, then r=(q+1)/2, after  

𝑄1 = 𝑦(𝑟)and 𝑄3 = 𝑦(𝑛+1−𝑟) 

If q is even, then r=q/2, after  

𝑄1 =
𝑦(𝑟)+𝑦(𝑟+1)

2
 and 𝑄3 =

𝑦(𝑛+1−𝑟)+𝑦(𝑛−𝑟)

2
 

 

 

4 Calculate semi-interquartile range (SIQR) is SIQR=
𝑄3+𝑄1

2
 

 

Advantages of semi-interquartile range method in judging spreading of data around sample 

mean are: quick to compute in comparing with m-estimation and like m-estimation method less 

affected by extremes in the data than sample standard deviation method. 

Than less SIQR is than less spreader sample values. Weights for the m-estimate shows 

dispersion of observations around mean, than closer weight to one than it is less dispersed. This 

observations allows to get information about the factors which influenced on response of 

experiment. 

 

5.Graphical displays of data  

According to Robert L. Mason, 1989 graphical displays of data can be classified on: raw data 

displays, tabulation and graphical summaries, graphical displays used in statistical process 

control. 

If to look on outcome of experiments data gives information about response and factors of 

experiment. Raw data display methods makes easier understanding and presenting conclusions 

from experiment. 
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5.1 Raw data display methods 

Raw data display methods are: point plots, scatter plots and sequence plots. In point plots 

horizontal axis covering the range of data values, vertical axis shows frequency of data values 

repeating. This plots allows to see what data values repeated more often. By using only 

summary statistics: average and standard deviation, it is not possible to see repetition of data 

values, as shown in figure 6 (Robert L. Mason, 1989). 

 

Figure 6 Point plot 

For example two groups of values repeated more often than others, it means that distributions 

of them are different and need to be studied. 

Another important raw data display method is scatterplot. Scatterplot depicts horizontal and 

vertical axes that cover the ranges of the two variables and plot (𝑥𝑖, 𝑦𝑖) points for each 

experimental value. It is allows to see extreme values by visual inspection with upper control 

limits (UCL) and lower control limits (LCL). 

Another deviation of scatter plot is sequence plot. Sequence plot is a scatter plot where value 

numbers placed in chronological ordering. In sequence, plot line which connects two points 

should connect only successful point, no two points which is out of control limits. Sequence 

plot view shown on a Figure 7 (Robert L. Mason, 1989). 
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Figure 7 Sequence Plot 

All these plots can be modified by labelling of the points, this help to avoid increasing number 

of axis’s and graphs. Point plots are good for displaying a small or moderate size data values. 

Next graphical representation of data is tabulating and displaying of distributions.  

5.2 Tabulating and displaying of distributions 

A distribution is a measure of occurrence  data in a population, process or sample. Collection 

of data distributions is known as a histogram. They are very useful when large amount of a data 

should be proceed. Histograms are made by dividing the range of data on several intervals, 

counting the number of observations in each interval and making bar charts of the counts. 

Number of intervals varies between 8 and 20 depending from number of observations, view of 

histogram shown on a Figure 8 (Robert L. Mason, 1989). 
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Figure 8 Histogram 

 When sample size is large it can be useful to make relative-frequency histograms. Another plot 

that remind histogram is stem and leaf. It represents data range, distribution shape and density. 

View of steam and leaf histogram shown on Figure 9 (Robert L. Mason, 1989).  

 

Figure 9 Stem and leaf Plot 

Digits are divided into stems and leaves. Stems are leading digits and leaves are trailing digits. 

The depths of the steam is a represent repetition of values from the closer end of the data. 

Depth values shows medians quartiles. Number of leafs can show median value. Location of 

median and quartiles can be found by formula, 
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LOC = (n + 1)(
P

100
) 

( 8) 

Where p – percentage of data covering by quartile, n- number of data values which is the same 

as the number of leafs. For first quartile 𝑄1 data covering percentage is 25%, for second it is 

50%. Also, second quartile is median of data sample. For third quartile data covering percentage 

p equal 75%. 

In conclusion can be said that steam and leaf plot make data set compact depicted. It uses all 

advantages of histogram without missing data. Not all digits need to be illustrated. Allows to 

get fast median and quartiles using stem depth values. Lengths of stem gives impression about 

number of observation in row. Shape of steam and leaf plot depicts horizontal histogram by 

which can be made conclusion about type of distribution. 

Data from experiment can be represented by box plot, it provides big amount of information 

about data set. 

View of box plot (Robert L. Mason, 1989) is shown in Figure 10 . 

 

Figure 10 Box plot 

Summary of box plot construction is given in Table 6. 
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Table 6 Box plot construction steps 

Step Description 

1 Calculate the averages and quartiles of the data sets 

2 Calculate the semi-interquartile range, SIQR= (𝑄3-𝑄1)/2 

3 Draw a rectangle with upper and lower boundaries at the third and first quartile. 

4 Horizontal line identifying the median an x symbol depicts median 

5 Draw lines from the centre of each edge of the rectangle to extreme data positioned no more than 

3SIQR from each edge 

6 Plot points that lying after 3SIQR border. 

 

Quantile plots takes big part in data representing. These plots display distributional features of 

data set. They show easily repeated data. Then more dense data then more horizontal will be 

graph. Quantile plots allows to find median and all quantiles from the plot. View of Quantile 

plot (Robert L. Mason, 1989) is shown on Figure 11.  

 

Figure 11 Quantiles plot 

 

Very nice feature is that quantile can be interpolated by formula  

QI{f} = (1 − g)QI{fi} + gQI{fi+1} ( 9) 

Formula is valid for intervals of data fractions 𝑓 from (1/n+1) to n/(n+1).  
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5.3 Graphics for process control and improvement 

Managerial decisions are made from quality information obtained from process. Information 

from process data collected from it can be summarised by graphical and analytical statistical 

methods. 

In order to monitor factors that influence process very important tool is Pareto diagram, it shows 

problems according to their frequency from lowest to highest. Pareto principle says that three 

types of defects account over 90% of the visual defects, Pareto chart is shown on Figure 12 

(Robert L. Mason, 1989). 

 

Figure 12 Pareto chart 

According to this information manager should discuss and determine why main defects occur 

(determine factors) in order to arrange continuous procedure for monitoring of process control. 

For this purpose  control charts are used. Control charts also help to minimize overcontrol and 

undercontrol of process. 

Overcontrol of a process occurs when measurements are made too often and control charts will 

give information about temporary variations in a process. 

Undercontrol occurs when measurements are taken too seldom and process is not controlled in 

some period of time, as a result periods of off-target operation and increased product variability. 
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Control chart is sequence plot, with time on horizontal axis and control limits. Control chart is 

one of the main tools in statistical process control (SPC). 

SPC is techniques used to get status of a process characteristic according to target or aim value. 

Each control chart contain limits, this limits determined by common case variation or random 

variation. This type variation is determined by quality of machines, mechanism, tools and other 

factors. When it is present in a process, than it is predictable within specification limit around 

the target value. 

Common case variation or control limits obtained from past process data, which is collected 

and updated for example every 4 months or when significant changes in a process were made. 

Common requirements for monitoring control charts are: a sampling plan, a target value and 

forecasting of the random variability based on ranges or standard deviations. Sample plans are 

connected with simple random sample or systematic random sample. Methods for determining 

random variation described in Table 7. 

Table 7  Random variation determination 

Method Description 

Average-Range 

Method 
Observations for 𝑛 > 1, takes for samples at the i th time period (i=1,2,..k). For each sample 

calculates range 𝑅𝑖 and takes average: 

𝑅̅ =
𝑅1 + 𝑅2 +⋯+ 𝑅𝑘

𝑘
 

Average-

Standard 

Deviation 

Method 

Takes samples with 𝑛 > 1 observations and calculate 𝑆𝑖- sample standard deviation is: 

𝑆̅ =
𝑠1 + 𝑠2 +⋯+ 𝑠𝑘

𝑘
 

 

Average-

Moving range 

method 

In each sample takes only one measurement calculates moving range for the i th sample as:  
𝑀𝑅𝑖̅̅ ̅̅ ̅ = |𝑦𝑖 − 𝑦𝑖−1|   , i = 2,3….. k. 

  

𝐴𝑀𝑅 =
𝑀𝑅2 +𝑀𝑅3 +⋯+𝑀𝑅𝑘

𝑘 − 1
 

Determines estimated standard deviation 𝑆𝐴𝑀𝑅 =
𝐴𝑀𝑅

1.128
 

 

 

For having appropriate data, which measure random-variation satisfactorily rules should be 

satisfied data sampling should cover long-enough time intervals. Sample size should contain at 

least 30 and 40 samples over two-three months periods. 

Most common in industry are Shewhart and cumulative (CUSUM) charts. View of this type of 

charts shown on Figure 13. 
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Figure 13 Shewhart Plot 

 

Construction steps for Shewhart control chart is given in Table 8 constants can be found in 

(Robert L. Mason, 1989) Appendixes. 

Table 8  Algorithm of building Shewhart control charts 

Step  Description 

1 Take samples according to sample plan, each of k time periods 

2 Calculate means ranges and average moving range as described in Table 7 

3 Calculate UCL and LCL for averages using constants from (Robert L. Mason, 1989) table A2 of 

the Appendix   

If  𝑛 > 1: 𝐿𝐶𝐿 = 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐴2𝑅̅ , 𝑈𝐶𝐿 = 𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐴2𝑅̅ , 

𝑛 = 1: 𝐿𝐶𝐿 = 𝑡𝑎𝑟𝑔𝑒𝑡 − 3𝑆𝐴𝑀𝑅 , 𝑈𝐶𝐿 = 𝑡𝑎𝑟𝑔𝑒𝑡 + 3𝑆𝐴𝑀𝑅  . 

 

4 Upper and lower control limits for dispersion, using the constants in tables A2, A3 of the appendix 

: 

Range: 𝐿𝐶𝐿 = 𝐷3𝑅̅ , 𝑈𝐶𝐿 = 𝐷4𝑅̅ , 

S.D.:    𝐿𝐶𝐿 = 𝐵3𝑆̅ , = 𝐵4𝑆̅ . 
 

5 Plot, averages, or standard deviation charts on the both. If values outside control limits exists, the 

process should be studied on reasons of this. 

 

In Shewhart control charts average is used as a target value and centre line.  As alternative to 

average-standard deviation in Stewart chart can be used “pooled” estimation as the measure of 

random variation, described in formula (10) 



  

24 

 

sp = (
s1
2 + s2

2…+ sk
2

k
)

1/2

 

( 10) 

Appropriate appear and lower control limits then calculated as in formula (11) 

LCL = target −
3Sp

√n
  , UCL= target +

3Sp

√n
 

( 11) 

 

In comparing with standard deviation “root mean squared” standard deviation makes Shewhart 

control chart more sensitive to values out of control limits, in order to see this advantage 

observations in sample should be: 𝑛 > 5 , if 𝑛 < 5 then simpler to use average standard 

deviation in control chart. 

Like was said before if some data values goes out of control limits than process should be 

adjusted to return them back to target. 

Another more sensitive to little changes in a process  is a cumulative sum charts (CUSUM) 

charts. In this chart monitored characteristics is an average or dispersion of sample. Cumulative 

sum (CUSUM) control chart building steps described in Table 9 

Table 9 Algorithm of building CUSUM control charts 

Step Description 

1. Obtain n random samples 

2. Calculate sample average range using the 𝑦𝑖̅; 
For random variation chart calculate  𝑙𝑛 𝑆𝑖 ,for each sample and the moving range using the 𝑙𝑛 𝑆𝑖.   

3. Calculate the “Sum high” (SH) and “Sum low” (SL) statistics for the i th sample; where 𝑍𝑖  is 

interested characteristic (𝑦̅ 𝑜𝑟 𝑆𝑖). 
𝑆𝐻𝑖 = 𝑆𝐻𝑖−1 + [𝑍𝑖 − (𝑡𝑎𝑟𝑔𝑒𝑡 + 0.5𝑆𝐴𝑀𝑅)], 
𝑆𝐿𝑖 = 𝑆𝐿𝑖−1 + [(𝑡𝑎𝑟𝑔𝑒𝑡 − 0.5𝑆𝐴𝑀𝑅) − 𝑍𝑖], 
Note that  𝑆𝐻0 = 𝑆𝐿0 = 0 if at any time 𝑆𝐻𝑖  or 𝑆𝐿𝑖 is negative, it is set to zero. 

4. Calculate UCL and LCL: 

𝑆𝐻𝑖 > 4𝑆𝐴𝑀𝑅  𝑜𝑟 𝑆𝐿𝑖 > 4 𝑆𝐴𝑀𝑅   

If then investigation for case is conducted and appropriate correction in a process conducted, than 

reset cumulative sum. 

It can be making zero 𝑆𝐻𝑖  or 𝑆𝐿𝑖 consequence of correction actions will be seen in next sample 

observations. 

5. Plot max {𝑆𝐻𝑖 ; 𝑆𝐿𝑖} with labels H and L for sums and upper control limit at 4 𝑆𝐴𝑀𝑅. 

 

View of cumulative sum diagram shown on Figure 14 (Robert L. Mason, 1989).  
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Figure 14 CUSUM Plot 

 

The main feature of CUSUM control charts is that they show successive deviations of the 

process characteristics from point value - 𝑡𝑎𝑟𝑔𝑒𝑡 ± 0.5𝑆𝐴𝑀𝑅. Like was mentioned before 

difference in the Shewhart and the CUSUM charts is that last one is more sensitive to random 

variation. Also do not need to be updated because of reference point step and values after 

correction. Shewhart control charts are easier in construction than CUSUM, but needs updating 

of control limits. 

5.4 Graphical Comparison of distributions 

In this chapter will be raised up questions of: box plot comparison of two sample distributions, 

quantile plot comparison of two sample distributions, comparison of sample distribution with a 

theoretical reference. 

For analysing experimental results by graphs can be used box and quantile plots.  
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5.4.1 Comparison by using box plots 

Some times response from experiment has influence of several factors on output of experiment. 

It is difficult to separate influence of several factors on output of experiment. By another words 

response of experiment will be function of several factors. In this case comparative box plots 

will be very useful. In order to show application of box plots will be used example of Chemical 

measurements from an infrared scanning instrument from (Robert L. Mason, 1989) table 5.1.  

In this experiment instrument for measuring chemical properties of industrial liquids was tested. 

Were determined factors that are influence on measurements of chemical response by this 

device. This factors are summarised in Table 10, this factors are potential sources of variability. 

Table 10 Factors of interest  

Number  Factor 

1 Chemical concentration (32%,36%) 

2 Sample preparations (samples were prepared for each concentration) 

3 Amount of scans per observation 

4 Repeatable measurements for each sample mix 

 

From examination of table 5.1 from (Robert L. Mason, 1989) main conclusion that, than higher 

concentration of chemical than higher response of measurement value. Samples and amount of 

scans gives some variability, but not significant. Because of concentration effect and number 

of scans was made box plot which is shown on Figure 15 . 

 

Figure 15 Box plot of measurements (Robert L. Mason, 1989) 
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From graph can be seen fluctuation of data by size of box and that average value of scanning 

measurement not depend from repetition of scans. 

From graph achievable that for 32% and 36% concentration measurement groups average and 

median approximately same. 

In 36% concentration measurement group exist extreme observations for amount of scans 2 and 

16. 

For determining factors that influence on extreme values, ware made another two graphs. 

One graph it is dependence of average value from number of repeat scans Figure 16   other is 

graph of standard deviation from number of scans Figure 17.  First flashing values in sample 

for standard deviation of third value for number of repeated scans 2 and 4 for 36 % 

concentration.  

By checking plots on figures: Figure 16 and Figure 17  can be made conclusion that this 

extreme values are sudden and not connected with factors of experiment. It is proved by low 

variability  of average values for 2 and 4 number of  repeated scans on Figure 16, and low 

standard deviation on Figure 17. So, can be made conclusion that such extreme values are 

sudden and not because of factors from Table 10.  
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Figure 16 Average values versus number of repeat scans (Robert L. Mason, 1989) 

In conclusion can be said that: box plot is very useful for discovering information about the 

effect of experimental factors on response of instrument. 

It showed that device has good sensitivity in order to differ 32% concentration from 36% 

concentration. Average measurements for 32% concentration is closer than 36% concentration 

to mean. It means that precision is affected by concentration. 

Variation in the five measurements for 3 rd mix a for 2 and 4 scans significantly exceeds the 

variation  than in all other mixtures Figure 17. 
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Figure 17  Standard deviation  versus number of repeat scans (Robert L. Mason, 1989) 

However, checking average values for same numbers of repeated scans, can be made conclusion 

that such extreme values are sudden and not because of factors from Table 10. This is proved 

by low variability in average values for number of repeated scans. 

5.4.2 Comparison of two sample distributions using Quantile plot 

By plotting quantiles of one sample versus corresponding quantile of another sample  to 

quantiles distributions can be compared. If two sets of sample values obtained: set n with 𝑦𝑖  

and     𝑖 = 1,2…𝑛  and m with 𝑥𝑖,  𝑖 = 1,2…𝑚 , than two-sample quantile-quantile plot is graph 

of 𝑄𝑦 to 𝑄𝑥(𝑓) using same set of f –values. 

If m=n, sizes of samples equal than a plot will be from pairs of observations (𝑥(𝑖), 𝑦(𝑖)). Example 

of such plot shown on Figure 18 from (Robert L. Mason, 1989).  
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Figure 18 Quantile-quantile plot for wear tiers of same brand 

On Figure 18 shown tire wear of two tiers from one manufacturer. The line y=x fit them, except 

of one point. One point can be extreme because of unexpectedly sharp break by driver. 

A measurement of tire wear plot from two manufacturer given on Figure 19 (Robert L. Mason, 

1989). By dashed line denoted two tire brands line and by line y=x one brand tiers. 

 

Figure 19 Quantile-quantile plot for wear tiers of different brand 
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It is achievable that two distributions has same shape nut estimates of the center spread are 

different on 1.3 multiplicative factor. Quantile-quantile plot gives conclusion that two sample 

distributions has same shape, but differ by addition or multiplicative constants. It can be 

described by straight line equation, 

y(i) = a + bx(i) ( 12) 

For quartiles view equation can be rewrite by  

Qy{f} = a + bQ(x){f} ( 13) 

If two distributions do not have the same shape, then quantile-quantile plot is not a linear-line 

equation. If two data sets are not equal size, than data points of smaller sample plot versus 

bigger sample.  The procedure for  making quantile-quantile plots shown in a Table 11 from 

(Robert L. Mason, 1989). 

Table 11 Algorithm of building Quantile-quantile plot 

Step  Description 

1 Mark the smaller sample values by 𝑦(𝑛) and order then in: 𝑦(1) ≤ 𝑦(2) ≤. . . ≤ 𝑦(𝑛), order.  

Larger sample mark by: 𝑥(1) ≤ 𝑥(2) ≤. . . ≤ 𝑥(𝑚) 
 

2 Find interpolated quantile  𝑥 `(𝑓𝑖) for the data fraction n of smaller sample n, 

 𝑓𝑖 = 𝑖/𝑛; 

If  n=m,  𝑥 `(𝑓𝑖) = 𝑥(𝑖); 

If n<m, set h = (m + 1) 𝑓𝑖 , then 

 𝑥 `(𝑓𝑖) = (1 − 𝑔)𝑥(𝑘) + 𝑔𝑥(𝑘+1),where k is the integer portion of h, 

g = h − k. [𝐼𝑓 𝑘 ≥ 𝑚,  𝑥 `(𝑓𝑖) = 𝑥(𝑚). ] 

3 Plot 𝑄𝑦{𝑓𝑖} = 𝑦(𝑖), versus 𝑄𝑥{𝑓𝑖} =  𝑥 
`(𝑓𝑖)   ,  𝑖 = 1,2, … , 𝑛. 

 

In conclusion can be said that distribution quantile-quantile plots gives visual information about 

distribution character of two data sets, shifts in locations can be determined from coefficients 

of linear equation. Also quantile-quantile plots can be used for comparing observed distribution 

with a theoretical reference distribution. 

5.4.3 Comparison with a reference distribution 

Like was said before quantile plots can be used in comparing a sample distributions. Robert L. 

Mason, 1989 described method of  using quantile-quantile plot for comparing of it with 
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reference distribution. Than closer quantile-quantile plot to straight line, than closer sample 

distribution to reference distribution.  

Normal distribution has higher density around mean values and standard deviation σ shows 

spread of the values. Normal probability distribution described by density function: 

f(y) = √(2πσ2)
−1/2

exp{−(y − μ)2/2σ2} 
( 14) 

Where y is measurement value, 𝜇 – population or process mean, 𝜎 – population or process 

standard deviation. View of it shown on Figure 20 (Robert L. Mason, 1989). 

 

Figure 20 Normal distributions with means 50 and diff. standard deviations. 

With approximation that 𝜇 = 0 and 𝜎 = 1 normal quantile function has view: 

 

QSN{f} = 4,91 {f
0.14 − (1 − f)0.14} 

 

( 15) 

 

In order to obtain quantile plot for any mean 𝜇 and standard deviation 𝜎 can be used formula  
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QN{f} = μ +  σQSN{f} 

 

( 16) 

The algorithm of plotting a quantiles of sample observations against theoretical normal 

quantiles described in a table: 

 

Table 12 Algorithm of making normal quantile-quantile plot 

Description  Description  

1 Order data values: 𝑦(1) ≤ 𝑦(2) ≤. . . ≤ 𝑦(𝑛) 

2 Set 𝑄𝑦{𝑓} = 𝑦(𝑖), 𝑖 = 1,2, … , 𝑛 

3 Calculate 𝑄𝑆𝑁{𝑓} for 𝑓(𝑖) = (𝑖 − 3/8)/(𝑛 +
1

4
) which is 𝑄𝑆𝑁{𝑓} = 4,91[𝑓𝑖

0.14 − (1 − 𝑓𝑖)
0.14]  

4 Plot 𝑄𝑦{𝑓} against 𝑄𝑆𝑁{𝑓𝑖} 

If quantile depicted linearly than the data consistent with a normal distribution. 

 

As example let take Figure 21 (Robert L. Mason, 1989). 

 

 

Figure 21 Normal quantile-quantile plot example 1 

From first view can be made wrong conclusion that quantiles from sample consistent with a 

normal distribution, but it is not like this, it is three normal distributions for different types of 

cars. It contains two breaks in plot. 

Figure 22 shows  that quantiles of samples do not follow linearity like  a normal distribution. 
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Figure 22 Normal quantile-quantile plot example 2 

In conclusion can be said that similar procedure with normal quantile plot can be applied for 

other reference distributions. 

This method do not requires normal probability paper. 

5 Regression and correlation analysis 

From (Kreyszig) regression analysis is case when one of two variables can be considered as an 

ordinary X and another variable is random and interest is dependence Y from X. This analysis 

applied when X can be measured with low error. Examples of regression are dependence of 

blood pressure Y on the edge of a person X, gain of weight Y from daily ration of food X. 

In correlations, both quantities X and Y are random variables and the goal is to find relation 

between them. Examples of correlations are: X and Y wear of the cars front tyres, hardness of 

steel X in the centre and hardness Y near the edges of the plate. 

5.1 Regression analysis technique 

For quality regression model analysis exist different phases, they are described in (Robert L. 

Mason, 1989) they are: investigate, specify, estimate, asses, select (ISEAS). Summary of  

regression analysis given in Table 13 
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Table 13 Strategy of regression analysis 

Step Description 

Investigate Data searched for outliners ( negative values, decimal point in wrong position).This will decrease 

effect of outliners. Calculated summary statistics, plotted variables. 

Specify Format regression model( polynomial, linear, exponential). Graphs can help in it. Formulate initial 

model. Reexpressing variables if needed. 

Estimate Estimate model parameters using software, calculate statistics which summarise adequacy of the fit. 

Asses Check are assumptions correct. If model fit data can errors be considered as normal distributed with 

zero means and constant standard deviations.  

Select Select statistically  significant predictor variables. 

 

During investigation stage response variables gives not linear trend. It means that in Specify 

step we need to make appropriate regression model. Box and steam and leaf plot will give good 

information about outliners in a single variables. In assessment step for testing of normal 

distribution of errors uses: quantile-quantile plot. But graphical assessment not so precise like 

Sapiro-Wilk test for normality. It is used for sample sizes below fifty. If sample size higher than 

fifty than should be used Kolmogorov-Smirnov test and  Anderson-Darling test. 

 

5.2 Linear Regression analysis 

The sample regression line formula, 

 

y − y̅ =  k1(x − x̅) 

 

( 17)  

 

Where  𝑘1 regression coefficient of the sample and determined by, 

k1 = 
Sxy

Sx2
 

( 18)  

Where sample covariance’s 𝑆𝑥𝑦 and 𝑆𝑥
2 are given by 
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Sxy =
1

n − 1
 ∑(xj − x̅)

n

j=1

(yj − y̅) 

 

( 19)  

and 

 

Sx
2 =

1

n − 1
 ∑(xj − x̅)

2
n

j=1

=
1

n − 1
 [∑xj

2

n

j=1

−
1

n
(∑xj

n

j=1

)

2

] 

 

( 20)  

Formula (17) can be obtained by applying Least Square principle and assumption that x - values 

in sample are not equal to a straight-line equation: 

 

y =  k0 + k1x 

 

( 21)  

straight line must go through point such way that sum of squared distances should be minimum 

in vertical direction (Y). Like following the sum squares of distances is determined by, 

 

q =  ∑(yj − k0 − k1xj)
2

n

j=1

 

 

( 22)  

 Than by derivation (22) with respect to  𝑘0 and 𝑘1 and equalling derivatives to zero gives: 
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k0n + k1∑xj = ∑yj 

k0∑xj + k1∑xj
2 = ∑xjyj 

 

 

( 23)  

Dividing first equation of (23) by n and using formula of mean value got 𝑘0 = 𝑦̅ − 𝑘1𝑥̅ 

substituting it in (17) gives (18). By solving equation (23) with Cramer’s rule can be obtained 

formulas (18),(19),(20). 

5.3  Confidence Intervals in Regression Analysis 

From (Kreyszig) in order to get confidence interval for regression should be made assumptions 

about of distribution of random variable Y. For this assume that for each fixed x the random 

variable Y is normal with mean 𝜇(𝑥) = 𝑘0 + 𝑘1𝑥 and independence of sampling.  

Under this, assumptions can be obtained confidence interval for 𝑘1. Determination of it shown 

in Table 14. 

Table 14 Determination of confidence interval for linear regression  

Number of 

Step 

Description of step 

1 Choosing of a confidence level  𝛾 ( 95%,99%  or others) 

2 Determine the solution c of the equation 𝐹(𝑐) = 1/2(1 + 𝛾), from the table of the t-distribution with n-2 

degrees of freedom. 

3 Using a sample (𝑥1, 𝑦1), … . , (𝑥𝑛 , 𝑦𝑛) compute (𝑛 − 1) 𝑆𝑥
2 from (10)  (𝑛 − 1) 𝑆𝑥𝑦  from (9), 𝑘1 from (8) 

(𝑛 − 1)𝑠𝑦
2 = ∑𝑦𝑗

2 −
1

𝑛

𝑛

𝑗=1

(∑𝑦𝑗

𝑛

𝑗=1

)

2

 

 

and 

 

𝑞0 = (𝑛 − 1)(𝑠𝑦
2 − 𝑘1

2𝑦𝑠𝑥
2). 

 

 

4 
Compute 𝐾 =  √

𝑞0

(𝑛−2)(𝑛−1)𝑆𝑥
2

𝑐
. 

 

The confidence interval is 𝐶𝑂𝑁𝐹𝛾{𝑘1 − 𝑘 ≤ 𝑘1 ≤ 𝑘1 + 𝑘 } 
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5.4 Correlation analysis 

Like was said before correlation analysis is connected with the relation between X and Y in a 

two-dimensional random variable (X,Y). A sample consists of n ordered pairs of values (𝑥1, 𝑦1), 

(𝑥𝑛, 𝑦𝑛). The interrelation between x and y values in the sample is measured by the sample 

covariance Sxy or by the sample correlation coefficient: 

 

r =  
𝑆𝑥𝑦 

𝑆𝑥𝑆𝑦
 

( 24)  

Sx and Sy – given by formula (10) and (9), sample correlation coefficient Sxy (9). 

 

Sample correlation coefficient is positioned in interval −1 ≤ 𝑟 ≤ 1 , 𝑟 = ±1 if sample values 

lies on the straight line. Examples of samples with different correlation coefficient given on 

Figure 23. 

 

Figure 23 Examples of sample correlations from (Kreyszig) 

Than for population, correlation coefficient denoted by 𝜌 will be  
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ρ =  
𝜎xy 

𝜎x𝜎y
 

( 25)  

, where μ𝑥 = 𝐸(𝑋), μ𝑦 = 𝐸(𝑌), means of marginal distribution and σ𝑥 = 𝐸([𝑋 − μ𝑥]
2) and 

σ𝑦 = 𝐸 ([𝑋 − μ𝑦]
2
)  variances of the marginal distribution of  X and Y, σ𝑥σ𝑦 covariance of X 

and Y given by  

 

𝜎x𝜎y =  E([X − 𝜇x][Y − 𝜇y]) = E(XY) − E(X)E(Y) 

( 26)  

 

From theorem about correlation coefficient for population, the correlation coefficient 𝜌 

satisfies−1 ≤ 𝜌 ≤ 1, and 𝜌 = ±1 if and only if X and Y are linearly related, that is 𝑌 = 𝛾𝑋 +

𝛿, 𝑋 = 𝛾∗𝑌 + 𝜎∗.  

If  X and Y are uncorrelated than 𝜌 = 0. 

Another theorem says that: independent X and Y are uncorrelated and If (X,Y) is normal  then 

uncorrelated X and Y are independent. 

For testing of the Correlation Coefficient of population (Kreyszig) gives algorithm which 

contained several steps and described in Table 15. Where t is an observed value of random 

variable that has t distribution with n-2 degrees of freedom. 

Table 15 Test of hypothesis 𝝆 = 𝟎 with alternative 𝝆 > 𝟎 in the case of Two-Dimensional Normal Distribution 

Number of 

steps 

Description of step 

Step 1 Choose a significance level 𝛼 (5%, 1%) 

Step 2 Determine the solution c of the equation P(𝑇 ≤  𝑐)=1- 𝛼 

Step 3 Compute r from (14) using a sample (𝑥1, 𝑦1), … . , (𝑥𝑛 , 𝑦𝑛) 

Step 4 Compute  

𝑡 = 𝑟√ 
n − 2

1 − r2
 

If 𝑡 ≤  𝑐, accept the hypothesis others 𝑡 > 𝑐, reject hypothesis. 

 



  

40 

 

 

Problem definition for thesis phase number 2 

In part 2 of master Thetis will be applied regression analysis techniques to experimental data 

from overhead transmission line facility at Xuefeng Mountain belonged to Chongqing 

University, China. Regressions between environmental factors and electrical, mechanical 

response variables of experiment will be founded. Will be made appropriate graphical display 

of the data and developed regressions. Project Gantt chart shown in Attachment 1. 
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Attachment 1 

 

Figure 2 Project Gantt chart 

 

 

 

 


