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Abstract

Introduction

To compare the efficacy of silver in situ hybridization (SISH) and immunohistochemistry

(IHC) in detecting MET and IGF1R alterations and to investigate their prevalence and prog-

nostic significance. A possible correlation between MET receptor expression, MET gene

alterations and the two most frequent occurring EGFR gene mutations was also

investigated.

Materials and methods

Stage I to IIIA tumors from 326 patients with NSCLC were immunohistochemically tested for

protein expression of MET and IGF-1. Their cytoplasmic expression was compared with the

gene copy number of the MET and IGF1Rgenes by SISH in paraffin-embedded, formalin-

fixed material. Correlations were made with the immunohistochemical expression of two fre-

quent EGFR mutations and clinicopathological variables. Univariate and multivariate sur-

vival analyses was used to evaluate the prognostic efficacy of the tested markers.

Results

In univariate analyses, high cytoplasmic MET expression showed a significant negative

prognostic effect in adenocarcinoma patients (p = 0.026). MET gene to chromosome 7 ratio

was a significant positive prognostic marker (p = 0.005), probably only due to the highly neg-

ative prognostic significance of chromosome 7 polysomy (p = 0.002). High IGF1R gene

copy number was a negative prognostic marker for all NSCLC patients (p = 0.037). In the

multivariate analysis, polysomy of chromosome 7 in tumor cells correlated significantly and

independently with a poor prognosis (p = 0.011). In patients with adenocarcinoma, a high

cytoplasmic MET expression was an independent negative prognostic marker (p = 0.013).

In males a high IGF1R gene copy number to chromosome 15 count ratio was significantly

and independently correlated to a poor prognosis (p = 0.018).
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Conclusion

MET protein expression provides superior prognostic information compared with SISH.

Polysomy of chromosome 7 is an independent negative prognostic factor in NSCLC

patients. This finding has an important implication while examining genes located on chro-

mosome 7 by means of SISH. High IGF1R gene copy number to chromosome 15 count

ratio is an independent predictor of inferior survival in male patients with primary NSCLC.

Introduction

Lung cancer is the leading cause of cancer-related mortality in men and the second among

women worldwide.[1] With annually about 1.3 million new registered non-small cell lung can-

cer (NSCLC) cases, every effort should be made towards finding more personalized cancer

therapies[2].

MET (the hepatocyte growth factor receptor, HGFR, also known as c-Met, AUTS9; RCCP2;

DFNB97, and as mesenchymal-epithelial transition factor) is activated by its ligand HGF and

exerts broad biological effects associated with malignancy including cell proliferation, cell scat-

tering and migration, induction of cell polarity, and angiogenesis.[3] MET is reported to regulate

the morphogenesis of both epithelial and stromal cells [4], in addition to its role in the mesen-

chymal-epithelial transition of cells, and to play an essential role in tissue repair[5] (Fig 1).

MET has recently also gained ground as an important target in the treatment of malig-

nancy. Using the MET inhibitor onartuzumab plus erlotinib, an improved progression-free

survival (PFS) and a better overall survival (OS) was seen in immunohistochemically MET-

positive NSCLC patients, while a worse outcome was observed in MET-negative patients

treated with onartuzumab.[10] However, recent published results by Spigel et al [11]from the

III randomized trial of Onartuzumab plus Erlotinib versus Erlotinib trial failed to show similar

results. Other trials are still ongoing[6, 12].

Herein, we conducted a study investigating the prevalence and the prognostic role of MET in

NSCLC. We compared the expression of MET as detected by immunohistochemistry (IHC)

with its gene amplification by means of silver in situ hybridization (SISH). Due to observations

reporting MET activation and treatment resistance following anti EGFR treatment,[12, 13] we

aimed to immunohistochemically study the prevalence and possible correlation between MET

expression and two major forms of mutant EGFR; E746-A750deletion mutation of exon 19

(EGFRdel) and the single L858R deletion mutation of exon 21 (EGFRmut). In the light of studies

indicating IGF1R as a putative coactivator of MET (Fig 1), we investigated the prevalence and

the prognostic significance of IGF1R gene using SISH and the ligand IGF-1 using immunohis-

tochemistry. Finally, we investigated the correlation between polysomy of chromosome 7, on

which the MET gene is located, and disease-specific survival (DSS) in patients with NSCLC.

Materials and methods

Patients and clinical material

This retrospective study utilized primary tumor tissue from patients diagnosed with NSCLC

stage I–IIIA; the tissue was surgically resected at the University Hospital of Northern Norway

and Nordland Central Hospital between 1990 and 2004. Three hundred seventy-one patients

were registered from the hospitals’ databases. The following exclusion criteria were employed:

(1) radiotherapy or chemotherapy prior to surgery, (2) other malignancy within 5 years before
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Fig 1. Simplified schema of the MET signaling adaptors and mediators. Activation of the MET receptor by its ligand triggers tyrosines within

the multifunctional docking site to become phosphorylated and recruit signaling effectors, including the adaptor protein growth factor receptor-

MET, IGF-1, IGF1R and EGFR mutations prognosis in lung cancer
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the NSCLC diagnosis and (3) inadequate paraffin-embedded tissue blocks. Thirty-six patients

fell into these three categories (criteria 1: n = 10; criteria 2: n = 13; criteria 3: n = 13) and were

excluded from the study. Adjuvant chemotherapy had not yet been introduced as a therapeutic

option in Norway during this time span (1990–2004). In total, 335 patients with complete

medical records and adequate paraffin embedded tissue blocks were included in this study.

The tumors were subtyped and histologically graded according to the recent World Health

Organization (WHO) guidelines.[14] The patients were staged corresponding to the 7th edi-

tion of the UICC TNM classification, where 9 patients were regarded as having an in-situ dis-

ease regarding the new lung cancer classification resulting in a total of 326 patients eligible for

this study.[15] The Regional Committee for Medical and Health Research Ethics, as well as the

Norwegian Data Inspectorate, approved this study.

Microarray constructions

Two experienced pathologists (S.A.S. and K.A.S.) investigated all the lung cancer specimens

thoroughly. Tissue microarray (TMA) blocks were constructed using a tissue-array instrument

(Beecher Instruments, Silver Springs, MD, USA) as previously described [16].

Immunohistochemistry and silver in situ hybridization

The applied antibodies have been previously subjected to in-house validation by the manufac-

turer for IHC analysis of paraffin-embedded material. The antibodies used in this study were

as follows: Phospho-MET Receptor (1:160; rabbit monoclonal, clone D26; #3077; Cell Signal-

ing Technology,Danvers, MA, USA). EGF Receptor (E746-A750del Specific; 1:100; rabbit

monoclonal, clone D6B6; #2085; Cell Signaling Technology, Danvers, MA, USA). EGF Recep-

tor(L858R Mutant Specific; 1:100; rabbit monoclonal, clone 43B2; #3197; Cell Signaling Tech-

nology, Danvers, MA, USA).IGF1R gene and Chromosome 15 probe (prediluted by the

manufacturer; INFORM IGF1R DNP Probe: 800–4458 and INFORM Chromosome 15 DIG

Probe: 800–4459; Ventana Medical Systems, Illkirch, France). MET gene and chromosome 7

probe (prediluted by the manufacturer; INFORM MET DNA Probe: 800–4372; 05575311001

and INFORM Chromosome 7 Probe: 800–4342; 05278899001). IGF-I (1:100, rabbit poly-

clonal, clone H-70; #sc-9013; Santa Cruz Biotechnology incorporated, 10410 Finnell Street,

Dallas, Texas 75220, USA). The detailed methodology for immunohistochemistry and silver in
situ hybridization has been previously published[16, 17].

Scoring of immunohistochemistry (IHC) and silver in situ hybridization

(SISH)

The tissue cores were scored by light microscopy to determine the degree of cytoplasmic and

nuclear expression. Examples of various markers’ expressions are shown (Fig 2). Staining for

bound protein 2 (GRB2). The MET pathway is modulated by cell surface molecules, including the HER family (HER1, HER2 and HER3) and

IGF1R.MET can activate the effector molecule phosphatidylinositol 3-kinase (PI3K), and signals through the AKT/protein kinase B axis, which

activates the mammalian target of rapamycin (mTOR) axis stimulating cell growth and protein synthesis. Moreover, the activation of either

PI3K-AKT can activate NF-κB, which then can be released and stimulate gene transcription after being translocated to the nucleus.MET activation

can result in the down-stream activation of the RAS-MAPK pathway. The nucleotide exchanger protein Son of Sevenless (SOS) activates the rat

sarcoma viral oncogene homolog RAS by binding with the GRB2 (GRB2-SOS complex). This complex can activate the v-raf murine sarcoma viral

oncogene homolog B1 (RAF) kinases, which successively activate MAPK effector kinase (MEK), and finally results in the activation of the

mitogen-activated protein kinase (MAPK).Activation of MET cytoplasmic signalling cascades can additionally alter cell invasiveness, motility, and

cytoskeleton, mediated through the RAS-related protein 1 (RAP1), the focal adhesion complex (FAC) as well as integrin connections. MET can

additionally activate the downstream axis of the Signal transducer and activator of transcription 3 (STAT3) pathway. STAT3 can be activated

through phosphorylation after binding directly to MET resulting in dimerization and translocation to the nucleus and consequently mediating cell

proliferation, transformation, as well as tumorigenesis and invasion. [6–9].

https://doi.org/10.1371/journal.pone.0181527.g001
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MET and IGF1R genes resulted in signals as black dots on the corresponding chromosomes

for both genes, while centromeres of chromosome 7 and 15 were stained as red dots. Regard-

ing SISH scoring, uniform guidelines exist and were strictly followed for the interpretation of

gene and chromosome signals.[18]Even though these guidelines were developed for breast

cancer testing, we found similar staining results in NSCLC biopsies. Evaluation ofHER2sish is

reported in breast cancer as the ratio of the average number of HER2 gene copies to the average

number of chromosome 17 copies (HER2:chr17) per cell. Because no clear guidelines have

been established for measuring MET or IGF1Rgene amplification in NSCLC, we also sought to

determine whether the absolute number of MET and IGF1Rgene copies detected by SISH (i.e.,

the number of black dots observed in the nuclei of tumor cells) would add prognostic signifi-

cance beyond that established by the gene copy number to chromosome count ratio. From

each tumor, four cores were eligible for scoring. In each core, we counted genes and centro-

mere signals in 20 cells at least in two cores, where one core was taken from the central part of

the tumor and the other core was taken at the advancing edge of tumor. An overall average

was taken for both gene and centromere count. The other two cores included for the most

stromal tissue surrounding epithelial cells of NSCLC. Heterogeneity was not observed while

scoring immunostains. Regarding SISH, in cases of heterogeneity hot spots with the highest

gene or centromere count were scored. The number of gene copies was assessed according to

the manufacturer’s protocols for INFORMHER2 DNA. Briefly, a discrete dot was counted as a

single copy of MET, IGF1R, chromosome 7 or chromosome 15. Some nuclei showed multiple

discrete copies. Clusters of dots representing many copies of the targetgenes were also appar-

ent; a small cluster of multiple signals was counted as six copies and a large cluster was counted

as 12 copies.

Staining for MET, IGF-1, EGFRmut and EGFRdel resulted in a homogenous cytoplasmic

staining (Fig 2). Due to homogenous staining, there was no need to score the density of posi-

tive cells. Scoring the intensity of staining was considered as representative to measure the pro-

tein expression by immunohistochemical staining. Tissue sections for the two first mentioned

proteins were scored semi quantitatively for staining intensity in tumor epithelial cells as fol-

lows: 0 = negative, 1 = weak, 2 = intermediate, and 3 = strong. Regarding the immunohisto-

chemical expression for IGF-1 and MET, tumors showing intermediate or strong positivity

were regarded as the high expression group, while tumors with weak or negative staining were

regarded as the low expression group. When evaluating EGFRmut and EGFRdel, only clear

strong positive tumors where regarded as harboring gene mutations.

All of the anonymized samples were semi quantitatively and independently scored by

two experienced pathologists (S.A.S. and E.R). In the event of disagreement, the slides were

re-examined and a consensus was reached by the observers. When assessing one variable

for a given core, the observers were blinded to the scores of the other variables and the out-

come. The reproducibility of the IHC and SISH evaluation in randomly selected specimens

is high. The IHC and SISH scores from each observer were compared for interobserver reli-

ability using a 2-way random effects model with absolute agreement definition, yielding an

intra-class correlation coefficient (reliability coefficient) and Cohen’s kappa. There was an

excellent scoring agreement for two tested markers (MET SISH and EGFRdel) between the

pathologists, with an intra-class correlation coefficient of 0.91 (P < 0.001) for MET SISH

and 0.93 (P < 0.001) for EGFRdel.

Statistical analyses

The statistical analyses presented in this study were performed using the statistical package

IBM SPSS, version 24 (SPSS Inc., Chicago, IL, USA).Chi-square and Fisher’s exact test were

MET, IGF-1, IGF1R and EGFR mutations prognosis in lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0181527 July 25, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0181527


used to examine the correlation among different molecular markers and clinicopathological

factors. The r-values represent Spearman’s rank correlation coefficients. The Kaplan–Meier

method was used for drawing curves for univariate analysis of the association between marker

Fig 2. Expression of investigated markers in NSCLC tissues. A) High expression of MET in a patient suffering an adenocarcinoma. B) Tumor

tissue with a high chromosome 7 count on which the MET gene is located. C) Tumor tissue with high MET gene copy number count. D) Balanced

MET gene copy number to chromosome 7 count ratio. E) High IGF-1 IHC expression of a male patient with squamous cell carcinoma. F) Tumor

tissue in a male patient with a high IGF1R gene copy number to chromosome 15 count. G) Tumor tissue in a male patient with a balanced IGF1R

gene copy number to chromosome 15 count. H) An adenocarcinoma with positive IHC staining for the EGFR gene mutation E746-A750 deletion of

exon 19. I) An adenocarcinoma with positive IHC staining for the EGFR gene single L858R deletion mutation of exon 21.

https://doi.org/10.1371/journal.pone.0181527.g002
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expression and disease-specific survival (DSS). DSS was determined from the date of surgery

until the time of lung cancer death. Statistical significance between the survival curves was

assessed utilizing the log-rank test. Cut-offs were chosen by a minimal p-value approach, with

regard to the association between markers and survival endpoints. The survival curves were

terminated at 120 months as fewer than 10% of patients were at risk after this point. Statisti-

cally significant variables from the univariate analysis were included in the multivariate analy-

sis, applying the Cox proportional hazards model. The data were run in a backward stepwise

Cox regression with a probability for stepwise entry and a removal set at 0.05 and 0.10. The sig-

nificance level was set at a P-value less than 0.05.

Results

Clinicopathological variables

We retrospectively examined a non-selected group of NSCLC patients, which was examined in

previous works by our research group.[17]Clinical, demographic and histopathological vari-

ables are presented in Table 1.Of the 326 NSCLC patients, the majority were male (76%) and

nearly all (96%) were previous or present smokers. The median age was 67 years (range 28–85

years) and the median follow-up of survivors was 105 months (range 73–234 months). Histo-

logically subtypes presented as: (58.6%) 191 cases of squamous cell carcinoma (SCCs), (31.9%)

104 cases of adenocarcinomas (ACs) and (9.5%) 31 cases of large cell (anaplastic) carcinomas

(LCCs).Fifty-nine patients (18%) were administered adjuvant radiotherapy due to nodal

metastasis or non-radical surgical margins verified during surgery. The median follow-up of

the survivors was 105 months (range 73–234 months).

Biomarker expression and correlation in NSCLC tissue

Of 326 cases, all were immunohistochemically evaluable for the expression of MET and IGF-1,

while 295 were evaluable for the silver in situ hybridization analysis of the MET gene copy

number on chromosome 7, and 237 cases were eligible for the IGF1R gene copy number analy-

sis on chromosome 15.

For the immunohistochemical analysis of EGFRgene mutations, 313 cases were eligible for

EGFRmut, while 318 cases were eligible for the detection of the EGFRdel mutation.

MET, IGF-1, EGFRmut and EGFRdel showed a homogenous cytoplasmic staining pattern.

We found high (moderate to strong) cytoplasmic expression of MET and IGF-1 in 82.8%

and 6.1% of valid tumor samples, respectively. The reported prevalence of phosphorylated

MET in our material is consistent with results demonstrated by other investigators. [19–21].

However, a lower grade of prevalence has been observed by other reports [22–24]. Using vari-

ous methods to detect the prevalence of phosphorylated MET in FFPE tissue, Dua et al[25]

demonstrated that their c-MET FFPE assay could detect and quantify c-MET receptor levels in

FFPE tumor specimens, and that these measurements would correlate well with measurements

obtained by conventional methods.

A high chromosome 7 count, higher than 2 copies was found in 21.5% of valid tumor sam-

ples, while 6% of tumor samples showed polysomy, i.e. a chromosome 7 count higher than 3.

A MET gene to chromosome 7 ratio higher than 1 was observed in 7.1% of valid tumors, while

an IGF1R gene to chromosome 15 ratio higher than 1 was observed in 21.6% of valid tumors.

In the male cohort population, 6.1% of valid tumors showed an IGF1R gene to chromosome

15 ratio higher than 1, p = 0.015, while this was observed in 15.5% of all females with NSCLC,

p = 0.021. An EGFRdel mutated protein indicating a gene mutation was found in 6% of all valid

patients (5.8% of males and 6.6% of women) while 5.4% showed an EGFRmut mutated protein,

indicating a mutated gene (4.6% of males and 8% of women). Prevalence of investigated factors

MET, IGF-1, IGF1R and EGFR mutations prognosis in lung cancer
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Table 1. Prognostic clinicopathologic variables as predictors for disease-specific survival in 326 NSCLC patients (univariate analyses; log-rank

test).

Characteristic Patients (n) Patients (%) Median survival

(months)

5-Year survival (%) P

Age

� 65 years 151 46 98 65 0.44

> 65 years 175 54 NR 78

Sex

Female 78 24 190 63 0.20

Male 248 76 83 56

Smoking

Never 13 4 19 41 0.28

Current 210 64 NR 60

Former 103 32 84 54

Performance status

ECOG 0 189 58 NR 62 0.029

ECOG 1 119 36 69 53

ECOG 2 18 6 25 33

Weight loss

< 10% 294 90 127 58 0.79

> 10% 32 10 98 57

Histology

SCC 191 59 NR 66 0.013

AC 104 32 52 45

LCC 31 9 98 56

Differentiation

Low 138 42 47 47 < 0.001

Moderate 144 44 190 66

Well 44 14 NR 65

Surgical procedure

Lobectomy + Wedge* 238 73 190 61 0.004

Pneumonectomy 88 27 37 47

Pathological stage

I 203 62 190 69 < 0.001

II 91 28 41 43

IIIa 32 10 18 19

Tumor status

1 84 26 190 75 0.002

2 215 66 74 53

3 27 8 47 35

Nodal status

0 223 69 190 66 < 0.001

1 76 23 35 43

2 27 8 18 18

Surgical margins

Free 300 92 190 58 0.29

Not free 26 8 47 47

Vascular infiltration

No 275 84 190 58 < 0.001

Yes 51 16 27 32

NR, not reached

*Wedge, n = 10

Abbreviations: SCC, squamous cell carcinoma; AC, adenocarcinoma; LCC, large-cell carcinoma

https://doi.org/10.1371/journal.pone.0181527.t001
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is shown (Table 2).The above-mentioned markers did not correlate with age, gender, smoking,

WHO performance status, or vascular infiltration.

Univariate analysis

Results from the univariate analysis regarding the clinical variables and their impact on DSS

are presented in Table 2. T-stage (P<0.001), N-stage (P<0.001), pathological stage (P<0.001),

WHO performance status (p = 0.016), histology (P = 0.028), vascular infiltration (P = 0.001),

differentiation (p<0.001) and surgical procedure (p = 0.007) were significant prognosticators

for the total patient population.

High cytoplasmic MET expression showed a significant negative prognostic effect only in

patients with adenocarcinoma (p = 0.026), but not for the whole cohort (p = 0.411; Table 3 and

Fig 3).MET gen copy count to chromosome 7 ratio>1 was a significant positive prognostic

marker (p = 0.005). We sought to determine if different cut-off points for the MET gene/chro-

mosome 7 ratio would provide an additional prognostic significance. A MET gene/chromo-

some 7 ratio >1.5 (p = 0.21) did not show a prognostic significance. The same applies for a

MET gene/chromosome 7 ratio >2 (p = 0.43). However, the polysomy of chromosome 7

emerged as a highly specific (p = 0.002) negative prognosticator for all patients.IGF1Rgene

copy number was a highly negative prognostic marker for all NSCLC patients (p = 0.037), but

was even more significant in males (p = 0.015) than in females (p = 0.021).Finally, a high IGF-

1 expression showed a trend as a negative prognostic marker in males (p = 0.053) but not for

the whole cohort population. There was no significant correlation between DSS and tumor

epithelial cell expression of the EGFR gene mutations EGFRmut (p = 0.628) and EGFRdel

(p = 0.498).

Table 2. Prognostic Effect of MET, MET gene copy number, polysomy of chromosome 7, IGF1R gene copy number and IGF-1 Expression in

Tumor Epithelial Cells of primary NSCLC in 326 patients (univariate analysis; log-rank test).

Marker expression Patients (n) Patients (%) Median survival (months) 5-Year survival (%) P

MET cytoplasmic in adenocarcinoma 0.026

Low 19 18 NR 68

High 85 82 47 58

MET gene /chromosome 7 ratio 0.005

Low 21 7 35 36

High 274 93 190 59

Polysomy of chromosome 7 (>3 copies) 0.002

Low 280 94 190 60

High 18 6 37 11

IGF1R gene/chromosome 15 ratio 0.037

Low 217 92 190 61

High 20 8 37 40

IGF-1 cytoplasmic 0.053

Low 270 83 138 55

High 56 17 179 65

EGFR mutation (E764-A750del) 0.498

Present 19 6 127 58

Absent 299 94 NR 62

EGFR mutation (L858R) 0.628

Present 17 5 NR 60

Absent 269 95 127 58

https://doi.org/10.1371/journal.pone.0181527.t002
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Table 3. Results of Cox regression analysis summarizing significant independent prognostic factors for disease-specific survival.

Factor in all NSCLC patients Hazard Ratio 95% CI P

Chromosome 7 (copy number) 0.011*

Up to 3 chromosome copies 1.00

Higher than 3 chromosome copies 2.29 1.21–4.35 0.01

Tumor differentiation 0.001*

Well 1.00

Moderate 1.77 0.83–3.79 0.14

Poor 0.73 0.33–1.65 0.45

Performance status 0.001*

ECOG0 1.00

ECOG1 1.87 1.19–2.93 0.007

ECOG2 3.54 1.62–7.73 0.002

Pathological stage 0.0001*

I 1.00

II 1.77 1.1–2.85 0.019

IIIA 3.69 1.94–7.03 0.0001

Factor in patients with adenocarcinoma Hazard Ratio 95% CI P

MET cytoplasmic 0.013*

Low 1.00

High 2.85 1.25–6.50 0.013

Performance status 0.0001*

ECOG0 1.00

ECOG1 2.80 1.58–4.96 0.0001

ECOG2 16.22 4.32–60.94 0.0001

Pathological stage 0.0001*

I 1.00

II 5.42 2.90–10.15 0.0001

IIIA 2.13 0.09–5.09 0.09

Vascular infiltration 0.015*

Absent 1.00

Present 2.65 1.21–5.81 0.015

Factor in males with NSCLC Hazard Ratio 95% CI P

IGF1R gene/chromosome 15 ratio 0.018*

1 1.00

>1 2.67 1.18–6.00 0.018

Tumor differentiation 0.005*

Well 1.00

Moderate 1.41 0.58–3.41 0.451

Poor 0.57 0.22–1.49 0.247

Performance status 0.018*

ECOG0 1.00

ECOG1 2.07 1.24–3.46 0.005

ECOG2 1.72 0.70–4.20 0.236

Pathological stage 0.0001*

I 1.00

II 1.53 0.90–2.58 0.083

IIIA 4.93 2.24–10.84 0.114

Vascular infiltration 0.0001*

(Continued )
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Multivariate Cox proportional hazards analysis

Significant clinic pathological and molecular variables from the univariate analyses were

entered into the multivariate analysis. The statistically significant results are presented in

Table 3.

Polysomy of chromosome 7 in tumor cells correlated significantly and independently with

a poor prognosis (HR: 2.29; 95% CI: 1.21–4.35; p = 0.011). In patients with adenocarcinoma, a

high cytoplasmic MET expression was an independent negative prognostic factor (HR: 2.85;

95% CI: 1.25–6.50; p = 0.013). In males with NSCLC a high IGF1R gene copy number to chro-

mosome 15 count ratio higher than one, was significantly and independently correlated to a

poor prognosis (HR: 2.67; 95% CI: 1.18–6.00; p = 0.018). For the whole cohort, the histologic

subtypes did not reach a statistically prognostic significance, neither for the group of adenocar-

cinoma (p = 0.165), nor for the group of squamous cell carcinoma (p = 0.7) or for the large cell

carcinoma group (p = 0.466).

Discussion

The chief aim of our study was to investigate the prognostic role of MET expression and the

MET gene copy number gain in NSCLC. In addition to IHC we used SISH to investigate the

METgene. While, in the adenocarcinoma patient population, independent of other clinico-

pathological variables, a high cytoplasmic MET expression was a significant negative prognos-

ticator, as determined by IHC, a similar correlation was not found in patients with MET gene

copy number gain, i.e. the absolute MET gene copy number in tumor cells did not affect the

prognosis. Surprisingly, investigating the ratio of MET gene to chromosome 7, we found a

trend of better survival in patients with a higher ratio in the whole cohort in the univariate

analysis, but not in the multivariate analysis. However, a high MET gene to chromosome 7

ratio appeared to be a rather non-frequent event. We observed a MET gene to chromosome 7

ratio higher than 1 in 7.1% of our non-selected patients. This is in agreement with recent pub-

lished data by Noonan et al[26], where–using fluorescence in situ hybridization in lung adeno-

carcinoma- they observed a MET gene to chromosome 7 ratio of 1.8 or higher only in 4.5% of

adenocarcinoma patients. The rather confusing positive prognostic effect of a high MET gene

to chromosome 7 ratio led us to investigate a possible role of chromosome 7 polysomy in

NSCLC patients. Interestingly, we found a high chromosome 7 count, higher than three chro-

mosome copies as a highly independent negative prognostic factor for the whole cohort popu-

lation. We assumed that a dysfunction in the transcriptional or posttranscriptional controlling

mechanisms could partly explain the discrepancies between the IHC and SISH results; still we

wanted to explore other genes located on chromosome 7. Chromosome 7 is known to harbor

genes whose alteration my play an important role in multiple diseases as cystic fibrosis[27],

but also in tumorigenesis [28]with over than 1150 protein- coding genes, 605 of which have

been validated by transcript sequences.[29] Nevertheless, three genes; EGFR, MET, and BRAF
emerge as of special interest in NSCLC. Both MET and EGFR gene amplification are described

to have a critical predictive role in NSCLC. [30]BRAF appears to have a role as a predictive

Table 3. (Continued)

Factor in all NSCLC patients Hazard Ratio 95% CI P

Absent 1.00

Present 3.55 1.9–6.61 0.0001

* Overall significance as a prognostic factor

https://doi.org/10.1371/journal.pone.0181527.t003
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marker in patients with advanced melanoma disease [31, 32], with a rather limited therapeutic

effect followed by resistance development in NSCLC patients.[33] There are reports [34–36]

Fig 3. Kaplan–Meier curves of disease-specific survival. Survival curves according to (A) MET immunohistochemical expression in patients with

adenocarcinoma (B) Chromosome 7 copy number count in patients with NSCLC (C) IGF1R gene copy number to chromosome 15 ratio in NSCLC patients,

and (D) IGF-1 immunohistochemical expression in patients with NSCLC.

https://doi.org/10.1371/journal.pone.0181527.g003

MET, IGF-1, IGF1R and EGFR mutations prognosis in lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0181527 July 25, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0181527.g003
https://doi.org/10.1371/journal.pone.0181527


proposing a mechanism for MET and EGFR axis regulation mediated by miRNAs. Addition-

ally, MET protein activation has been associated with primary resistance to EGFR tyrosine

kinase inhibitor (TKI) therapy in NSCLC patients (Fig 1).[13, 37] These observations have ini-

tiated a scientific debate about novel bispecific EGFR/MET inhibitors to obtain better thera-

peutic results. [10, 38, 39]In the light of this, we sought to determine any correlation between

MET expression, MET gene copy number count (GCNC) and two of the most observed EGFR
gene mutations in NSCLC; EGFRmut and EGFRdel [40, 41]in untreated patients. A critical

issue in investigating EGFR mutations using immunohistochemistry was finding antibodies

with an acceptable sensitivity and specificity. The specificity of the used antibodies has been

certified by the manufacturer both by means of Western blot and flow cytometric analysis[42,

43] Additionally, Several groups[44–46] have concluded with an acceptable specificity and sen-

sitivity of the aforementioned antibodies. Brevet et al. [47] reported that IHC using the EGFR
L858R specific antibody showed a sensitivity of 95.2% and a specificity of 98.8%. They further

found that the EGFR exon 19 mutant specific antibody would detect 100% of 15-bp (base pair)

deletions with a high specificity, however, a significant lower sensitivity of about 48.6% in

non-15-bp exon 19 deletions was observed. According to the COSMIC database, Non 15-bp

exon 19 deletions account for about 35% of exon 19 deletions[48].

We did not find a statistic correlation between MET expression, MET GCNC and any of

the examined EGFR gene mutations. Further, none of the investigated EGFR mutations had a

prognostic significance, despite conflicting results by other groups[40, 49, 50].

The essential role of the HGF-MET cellular pathway has been further established following

observations on MET-null mutant mice embryos, with malformation of liver, placenta,[7]

melanocytes,[51] and testis.[52] Meanwhile, it has been observed that overexpression of MET

can have an oncogenic potential by itself and can induce hepatocellular carcinoma in liver cells

[53]. There is established evidence [54] that MET is sufficient for transformation of normal

human osteoblasts causing an osteosarcoma-like disease in vivo. Furthermore, dysregulation

of the HGF-MET pathway has been demonstrated in malignancies of epithelial cell origin, rep-

resented by carcinomas of the lung, mamma, hepatic cells, pancreas ovaries, papillary renal

carcinoma, papillary thyroid carcinoma, and carcinomas of the colorectal system.[6]Dysregu-

lation of the HGF-MET cellular axis may due to MET gene mutations, MET amplification,

chromosomal rearrangement, MET transcriptional upregulation or changes in the autocrine

or paracrine signaling. Several studies have investigated the prognostic role of the MET recep-

tor and the MET gene alteration in NSCLC. While some groups investigated a rather small

group of patients [55–57], other groups found a negative prognostic effect of high MET pro-

tein expression and MET gene copy number gain either independent of the histologic type

[58–63] or only in patients with adenocarcinoma[64] or squamous cell carcinoma[65].

Exploring both the MET protein expression and the MET GCNC in 140 NSCLC patients,

Dziadziuszko et al[66] concluded that neither was associated with prognosis. Meanwhile, Tran

et al[67] observed that MET overexpression and MET high (GCNC) occur in a low proportion

of primary NSCLCs and are associated with a good prognosis. Awad et al [68]reported MET

exon 14 mutations to occur in rather older patients and that they may represent a clinically

unique molecular subtype and a possible important therapeutical target in NSCLC. Prelimi-

nary findings from the PROFILE 1001 trial [69] show that crizotinib demonstrates a meaning-

ful antitumor activity in patients with NSCLC harboring MET exon 14 alterations. Similar

results were also recently published by Lu et al[70].

Recent studies have proposed a ligand-independent MET activation.[71, 72] Using prostate

cancer cell lines, Varkaris et al,[73] proposed a full but rather delayed activation of MET

through IGF1R (Fig 1). Consequently, we aimed to determine a possible correlation between

the MET receptor expression, MET GCNC, and the IGF-1 axis.
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MET receptor expression did not show a significant correlation with the MET GCNC

(p = 0,77), the IGF1R GCNC (p = 0.64) or IGF-1 expression (p = 0.31).

However, investigating the prognostic significance of IGF-1 expression in epithelial NSCLC

showed a trend towards worse survival. Furthermore, investigating the ratio of IGF1R GCNC

to chromosome 15, this ratio immerged as a highly significant and independent negative prog-

nostic indicator for disease specific survival in males, whereas it did not show prognostic influ-

ence in females. Gender differences in cancer tumorigenesis and survival are most likely

associated with different sex hormone effects on various genes. While there are promising pre-

liminary results among breast cancer and NSCLC patients treated with the IGF1R inhibitor

Dalotuzumab,[74] according to our results, the subgroup of male patients with NSCLC

appears to benefit the most of such a treatment. Promising preclinical trials investigating the

role of IGF1R as a therapeutical target has resulted in the initiating of clinical trials on patients

with multiple myeloma.[75]There are studies[76] suggesting IGF1R as a potential target in

NSCLC treatment. While Tsuata et al[77] and Capuzzo et al[78]reported that the IGF1R

expression did not represent a prognostic factor in resected NSCLC patients, other research

groups[79–81] have either found a negative prognostic significance of high IGF1R expression

or IGF1R GCNC.[82] However, future results of stratified treatment-trials among NSCLC

patients will be needed to fortify these results.

Our current prognostic findings as detected by SISH for IGF1R and by immunohistochem-

istry for MET have a relevant practical implementation. While IGF1R SISH analyses seems to

give additional information about the subgroup of NSCLC patients, who most likely would

benefit of an anti-IGF1R therapy regimen, the MET SISH analyses seem to be biased when

investigating the ratio of gene copy number to chromosome count due to the highly negative

prognostic significance of chromosome 7 polysomy, higher than 3 chromosome copies. Our

results would most probably apply to any SISH analysis investigating a gene to chromosome

ratio located on chromosome 7. Even thought our findings would apply to small subgroups of

patients, still finding therapeutic aid to these subgroups would be regarded as a significant step

towards personalized NSCLC treatment. Until this, every effort should be made to find more

specific and even more personalized potential molecular targets whose status in tumor samples

might impact therapeutic responses.
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