UiT Faculty of Science and Technology

THE ARCTIC Department of Computer Science

UNIVERSITY
OF NORWAY Internet of Things DDoS mitigation

Preventing DDoS attacks using learning algorithms on limited hardware

Peter Munch-Ellingsen
INF-3981 Master’s Thesis in Computer Science - October 2017

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
F11000TETrnenrrieieririileliiiilrieiel lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIGIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
IIIC!ca!IIIIIIIIIIIIIIIIIIIIII LI0T070 000000000 0000007000000 702qiqiqiqairenarqaerenenenireninenen

IIIIIIIIIIIIIIIIIIIII IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:
§~§
B
~
B
~
v
~
-
~
~
~
~
~
~y
~
-
~
~
~
-
~
-~
~
-
~
~
~
-~
~
-~
~
~
~
-
~
-~
~
g
~
-~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
“~

J
i 111 101 I l
odbaaraedbbbiaroiny I IMIMIINININIANINS Illllllllllllllllllllllll ll Illlllllll e

1

N
N
~
~
~
-
~
~
~
~
~
~
N
~
~
-y
S
~
~
~
~
N
S~
~
~
~
-~
L
~
~
~
~

AN RRR RN ANV llllllllllll 40
verbaarrrdiaiinoy I IIIMIMINMNMMIMINMIMIMNMIMMININnn llllll ” ll

RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllll aunnng

veaaaaaareair MMM IR llllllllllllllllllllllll winn
IRy I lllllllllllllllllllllll"
i Ill' l' {4 'llllllllllllllllllllllllll

qrraaaaaannnnnnnnnnnd
iy il

-

quraaananinininininen
AR RRaRaRaar 2NN 'lllll l'll'lllll ll'll'llllll'l 'lllll (4 lllll (A lllll llllllll'll lllllll'll"

[/

PO00000 J00 0000000000000 00000000000000000000000 0000000000000
AA0QRY 2000 00001
LY l""'""""""""""""""""'"'""'""'"'""'"""""""""""' LLLLLLILA
IAA00r 20000000000000000004. LLLLL] ANQR000000000 LLLLL] LILLL] 'l'l"""'l"
AL l'""""""""""""""""""""""""""""" """"" """' "

1AqNt 000000000000 0000000000000000000000000R0R0R0R0RARRRARARARARNRNRARARAGNRRRNRNNANAAS
LU """"""'"""""""""""""""""""""""""""""""""""

w l'""' " Serenany
17 J00000000000000000000000000R 000000000 RARARARARARARARRNNNARARARANNNARARARRINRARAGAIRNGNNNGAGNGNI
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

This thesis document was typeset using the UiT Thesis IATEX Template.
© 2017 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

To family and friends.

You are invaluable.

“The more constraints one imposes, the more one frees one’s self. And the
arbitrariness of the constraint serves only to obtain precision of execution.”
—Igor Stravinsky

Abstract

DDOS attacks are becoming more and more common, and threatens the current
infrastructure of the internet. Cheap new 10T devices have led to a lot of new
devices that are poorly secured and can easily be compromised and used
for such nefarious purposes. While there are many attempts at solving this
problem this thesis looks at a solution which could be applied to typical home
router. This would stop malicious traffic before even hitting the internet, as a
compliment to the greater effort.

10T devices typically have fairly simple traffic patterns during normal opera-
tions. The system tries to learn these patterns in order to block traffic which
would be outside of normal. A home router however is an extremely limited
device from a hardware perspective, so a balance has to be struck between
learning capability and resource consumption. This becomes especially appar-
ent when considering that most of the chips in home routers doesn’t even
support floating point operations, which are commonly used for various learn-
ing methods.

The proposed system, with the accompanying implementation, shows promis-
ing results throughout the testing suite while remaining very low in resource
consumption. However dealing with false negatives and implementing the
result in a QOS algorithm are still difficult questions. Over all however the
solution shows promise and by implementing something like this along with
other existing DDOS mitigation efforts a substantial dent can be made in the
viability of these attacks.

Acknowledgements

I would like to thank the University of Tromsg for the great study program they
offer, which have culminated in this thesis. My supervisor Anders Andersen for
his valuable feedback and guidance, and our student counsellor Jan Fuglesteg
without whom I would have missed key steps in the process of getting the
thesis approved.

I would also like to thank my family and friends, they have provided much
comfort and help both throughout the thesis writing and in general. I wouldn’t
be the same without them.

My father especially with his bluntness about the difficulty of this project and
his encouraging words "why did you choose something so hard?", it really set
the trouble I'd put myself into in perspective.

A huge thanks is also in order to the Nim community which has been very
helpful while learning the language before the thesis and while improving my
knowledge of it during the work.

Contents

Abstract
Acknowledgements
List of Figures

List of Tables

1 Introduction

1.1 Attacking theinternet

1.2 The new threat . .

1.3 Amplification and exploits
1.4 Current mitigation efforts

1.5 Problem statement
1.6 Limitations

2 Background and related work

2.1 Denial of Service .

2.1.1 Amplification

2.1.2 Distribution

2.1.3 Internet of Thingsdevices

2.2 Related work . . .

3 Architecture and Design

3.1 Hardware
3.2 Badness score . .

3.3 Testing methodology

3.4 Detecting change

3.4.1 Change in continuous values
3.4.2 Change indiscretevalues
3.5 Determining device category

3.6 Learning badness

4 Implementation

Vil

iii

ix

DD WWNN R

O O 00 00 N N

Vil CONTENTS

4.1 Random numbers and float simulation 17
4.2 Continuous values tracking 18
4.2.1 Minimum/Maximum tracking 19

4.2.2 Distance tracking 19

4.3 Discrete value tracking, 20
4.4 Whentochange 20

5 Testing 21
5.1 Classificationtesting 21
5.2 Systeminspection oL 25

6 Discussion 27
6.1 Tuningissues. 27
6.2 Retainingbadness 29
6.3 Implementation into QOS algorithms 30
6.4 The field of DDOS protection 31

7 Conclussion 33

Bibliography 37

List of Figures

5.1 Graph showing three sections, HEAD requests, a SYN flood,

and more HEAD requests 22
5.2 Graph showing three sections, a SYN flood, HEAD requests,

and another SYNflood 23
5.3 Graph showing three sections, SFTP data, a SYN flood, and

more SFTPdata 24
5.4 Graph showing three sections, a SYN flood, SFTP data, and

another SYNflood 24
5.5 Graph showing three sections, a SYN flood, RTSP data, and

another SYNflood 25

6.1 Graph showing three sections, a SYN flood, RTSP data, and
another SYN flood. With packet size tracking turned off . . . 28

List of Tables

4.1 Table showing how numbers and their probabilities match the
bitmasks

5.1 Table showing the various trackers and their memory require-

Xi

Introduction

Since its inception in the seventies the internet has remained surprisingly
unaltered. Our current internet backbone still runs on many of the same
systems that were developed by various research teams back when it was only
conceptualized to transfer data between large institutions. It has however come
a long way since then and it’s currently estimated that about 4 billion? people
today, approximately 45% of the worlds population, have access to the world-
wide web from their own home.[1] Most of these users are daily visitors[2] and
estimates for data rates range close to 100 Exobytes pr. month[3]. Safe to say
the internet is a crucial part of many peoples lives, with many individuals and
businesses being dependent on it for their daily activities. It is alarming then
that we’ve started to see more frequent and larger attacks on core infrastructure
that has the potential to seriously disrupt the internet as a whole. Back when
it was developed this was unlike anything they had ever imagined for their
simple information interchange system, and as such the internet is designed
more for open-ness than security, for better or for worse. But as the internet
has grown older there have of course been many revisions to mitigate some of
it’s initial downsides.

1. short-scale billion

2 CHAPTER 1 / INTRODUCTION

1.1 Attacking the internet

The internet capacities of even casual users have also grown exemplified by
broadband having recently been re-defined by the FCC to mean 25 Mbit/s
upload speed and 3 Mbit/s download speed (up from their earlier definition of
4/1). This is good for consumers but it also means that each user have a larger
than before potential for havoc. The most common and disruptive attack that
we see today is a so called Denial of Service (DOS) or it’s worse relative the
Distributed Denial of Service (DD0S). These attacks focus on creating so much
bogus traffic for a certain service that it is unable to serve it’s intended users,
thus denying service. Problematically for these services the traffic generated is
often masked as legitimate traffic which means that deciding what to throw
away and what to actually respond to can be quite difficult. DoS attacks are
nothing new, but the rise in DDoS attacks were many malicious units (often
without the users knowledge) work together is quite alarming. A recent attack
on DNS provider DynDNS has been reported to contain as many as 100,000
malicious nodes generating over a terabit of data per second[4]. While 100,000
nodes might seem much it is actually quite small in botnet terms but shows the
incredible attack strength such networks have, bringing down a large chunk
of the visible internet.

1.2 The new threat

And along with this large rise in domestic internet speeds and capacity there is
also a trend of new devices which are not as closely monitored as devices like
PCs and phones which interface directly with humans. While the definition
is still vague and quite broad these devices are referred to as Internet of
Things (10T) devices. What often defines such devices are that they are rather
autonomous, simple devices delivering a single service through the internet
for users. Examples of such devices are home entertainment systems, printers
(those connected to the internet), surveillance cameras, weather stations, home
automation systems, and even IP phones. The problem with these devices
are that they often have very lacking security, being connected to the open
internet, and having access to the aforementioned increased bandwidth. This
combination means that it’s easy for outside assailants to gain access to them
and use them for nefarious purposes. The recent Mirai botnet for example
gathers it’s nodes by simply trying a list of common username/password
combinations to log in to devices over things like telnet or SSH. Many of these
easy to target devices however have lacking computational power (but this
is also increasing) and store little personal information about users which

1.3 / AMPLIFICATION AND EXPLOITS 3

makes them quite uninteresting for the more traditional kinds of attacks.2 But
for internet disrupting attacks the only thing required is a strong connection
and a surprisingly low amount of computational power. IoT devices therefore
is a great source of attack power for such malicious intents, and the limited
user interaction means that devices can stay infected but undetected for very
long periods. The aforementioned Mirai for example even disappears after a
simple reboot, but since these kinds of devices are typically kept on they stay
infected.

1.3 Amplification and exploits

As previously noted these kinds of attacks can be very hard to distinguish from
regular traffic and thus hard to stop. To make matters worse the current IP
protocol doesn’t enforce actually supplying ones own IP as the sender address.
So even if one package is defined as bad there is no simple way of stopping
all traffic from that sender. This has been proposed in a 13 year old best
practice named BCP 38[5], but adoption has proven to be slow with most of
the internet still allowing traffic to originate from any IP. There is also a tried
and true method for amplifying a DoS attack (and by extension DDoS attacks)
by finding a service that generates a larger response than the request and
setting the sender as the node to attack. This will trick the service to replying
to the intended target of the attack with a response that is larger than what
the initial node had to use therefore amplifying the attack. One typical target
of such request are DNS services which can generate responses up to 60-70
times larger than the request. But many other options exists although some of
the worst offenders such as the NTP clock server monitoring feature generating
over 200 times the request size are being patched away. Amplification is one
of the things that would be impossible or at least considerably harder if BCP
38 was implemented across the board.

1.4 Current mitigation efforts

Along with BCP 38 there have been many efforts to not solve the problem on a
systems level but rather trying to sort and deal with the traffic. Providers like
Incapsulata and Cloudflare are implementing these solutions and providing
them as a service to online services. Typically they rely on some sort of

2. For more information about the possible attack vectors of machines under foreign control
see Brian Krebs diagram here: https://krebsonsecurity.com/2012/10/the-scrap-value-of-a-
hacked-pc-revisited/

4 CHAPTER 1 / INTRODUCTION

fingerprint or traffic pattern recognition to decide which traffic to let pass
through to the service and which traffic to stop. However they can only stop as
much traffic as they have resources to manage. This means that these mitigators
need to be able to handle the multi-terrabit traffic that can be sourced in a
DDoS attack. And this remains a constant arms race, with poorly secured IoT
devices and increased residential speed increases giving the botnet owners a
possible edge.

1.5 Problem statement

This thesis considers the problem of DDOS attacks from a new perspective and
is looking to implement a localized system wherein routers with connected
10T devices are able to detect anomalous traffic and stop these devices from
participating in a meaningful way to said attacks. This solution is based on the
premise that most such devices are not participating with the consent or even
knowledge of their principal owners and would not be allowed to take part in
malicious activities if those were given the choice.

Since the typical home router is fairly limited in their hardware it is important
that the detection is done in such a way that it consumes a minimal amount of
resources. These devices are seldom found with more than a couple megabytes
of memory and run with weak and less capable processors than are typically
found in other machines. This limits the kinds of algorithms that can be used for
the detection. Another important factor is to not substantially hinder normal
traffic, especially if the device is not performing malicious actions. Traffic should
be able to flow unhindered through the system.

1.6 Limitations

This thesis focuses on 10T devices. Partially because they have recently been
the main target of recruitment for DDOS botnets but also because they typically
have a much more predictable traffic pattern. No attempt have been done to
implement this for more organic traffic.

After having determined when traffic is considered bad or not it should be
stopped or otherwise limited by the router. This is not considered in this thesis
as it would heavily rely on how the existing Quality of Service (Q0S) algorithms
on the coordinating device worked.

In order to be able to perform controlled repeatable experiments it was impor-

1.6 / LIMITATIONS 5

tant to be able to control the perceived network traffic. Therefore the current
implementation is only written in such a way that it can consume captured
network traffic and not implemented on actual hardware. Part of this is also
linked with the above reason that it would have to be integrated with other
systems.

Background and related
work

2.1 Denial of Service

Denial of Service attacks have been around for a long while, and since their
inception around 1997 have grown to become one of the biggest threats online
today. While they typically don’t entail any loss of control over services, any
leak of sensitive data such as passwords, or destruction of data they still offer
the possibility for extortion, removing competition, or simply vandalism. Part of
the problem with such attacks is that they don’t target any specific vulnerability
making them hard to defend against. In fact most devices directly connected
to the internet are vulnerable to such attacks just by virtue of being connected.
The idea behind a DOS attack is that the malicious traffic generated should
make well-behaving accessors drop their connections and therefore not be
served by the server. There are many ways of doing this, one way is to use some
kind of vulnerability with the server to exhaust it’s resources. Maybe the most
infamous of such attacks is the so called Slowloris. The idea is simple, open
many requests spawning threads on the server, these requests will exhaust the
thread-pool of the server. All the connections are then kept alive by slowly
sending data over them, imitating a user on a slow network. This uses very
little resources on the attackers side, but exhausts all the resources the server
has to serve actual users. Another method of attack is simply to flood the target
with legitimate traffic, this means that the server is serving actual requests,

8 CHAPTER 2 / BACKGROUND AND RELATED WORK

but the sender of these attacks simply don’t care for the answer but limits
legitimate access.

2.1.1 Amplification

As previously mentioned, some flaws with how internet traffic is handled today
which makes the attackers able to amplify their attacks. This amplification
works by finding endpoints which responds with more and/or larger packets
than the initial request and then spoofing the sending address of requests
such that this response is not sent to whomever made the request but rather
towards the target of the attack. One of the most notorious such amplification
schemes uses NTP servers which exposes a debug command to get the last 600
time requests. These servers typically have strong connections as they serve an
important role in keeping time synchronized between machines. In fact this
kind of amplification represented 85% of DDOS attacks over 100 Gbps back
in 2014[6]. However since this kind of amplification depends on a particular
fault they are often patched within a fairly short period of time, and after just
a couple of months the amount of vulnerable servers were down 90%. These
attacks were made even easier by being able to be triggered over UDP which
doesn’t require a handshake. TCP on the other hand has a three-way handshake
which should make it more robust against such attacks but that does not seem
to be the case. During a scan of randomly selected IP addresses, also this in
2014, researchers was able to find TCP nodes that would amplify traffic by up
to 80,000x of the request size[7]. Some of these amplifications (although quite
a bit smaller), were even during the TCP handshake itself.

2.1.2 Distribution

Even while using amplification DOS attacks still have to rival the bandwidth
and capacity of their target server. And by using for example the large NTP
servers for amplification it isn’t hard to simply disallow traffic from such a
service should it be found to misbehave. So in order to be able to compete
against the large capacity of typical consumer-facing servers another approach
can be used. Instead of having a single attack node multiple attackers may
band together and attack simultaneously. This is something which might even
happen if a small server suddenly gains a lot of attention. The online community
Reddit is a perfect example of such accidental DDOS attacks as users are able
to share arbitrary links which may suddenly gather a lot of attention. It even
happens so often that the term "Reddit hug of death" has become widespread
on the site, referring to showing so much positive attention to a site that it
goes down. However gathering enough people with malicious intents to bring
down for example a DNS provider would be rather difficult, and organising

2.2 / RELATED WORK 9

the entire thing would be a feat in itself. The alternative is to gain access to
unsuspecting users systems and use those for these nefarious purposes. This
is typically achieved through a number of various exploits and vulnerabilities
of varying sophistication. A target ripe for the picking in this regard is, as
previously discussed 10T devices.

2.1.3 Internet of Things devices

While the term 10T is ambiguous and can refer to a few different concepts
what is meant by it in this context are devices which are connected to the
internet but have no human interaction controlling their network traffic. They
might be set up by a human to perform certain internet-related tasks, and
might be accessible over the internet by humans, but are in most regards not
dependent on human interaction to perform their function. There are several
things that makes these devices interesting to potential attackers. Since they
don’t require human interaction it also means that they are typically not very
supervised by humans. This makes a potential malicious take-over harder to
detect as it doesn’t necessarily interfere with it’s operation. 10T devices are
also seldom properly secured properly with many still using regular HTTP and
leaking credentials over unsecured connections[8]. The recent Mirai botnet
also grew rapidly and became quite large simply by testing a list of default
password/username combinations, leading to an attack which could easily
have been avoided had the devices been properly secured.

2.2 Related work

Trying to stop DDOS attacks is nothing new and there exists many proposed
solutions to this problem. Saied, Overill, and Radizk [9] show a proof-of-concept
design for an artificial neural network to detect DDOS traffic and cite other
papers showing similar solutions. Both CloudFlare [10] and Incapsula [11] also
have protection products which can be employed to stop a DDOS attack. Those
solutions however only offer taking the bulk of the requests and doing away
with them, something which is more about preventing the effect of a DDOS
and not stopping the attack in itself. Companies like BullGuard also offer more
consumer-facing products to amongst other things protect the less secure 10T
devices on your network from being hijacked in the first place[12].

Architecture and Design

The solution proposed in this thesis works a bit different than many typical
DDOS mitigation efforts. Instead of having the protection on the server side
or throughout the network it focuses on local prevention. Most 10T devices
participating today in DDOS attacks are not owned and operated by malicious
hosts, but rather hijacked by outside attackers. This opens the possibility
for setting up a system in which these devices would be kept under strict
supervision to determine if it’s misbehaving. To be able to separate devices this
thesis assumes the software is running in a scenario where it is uniquely able to
identify devices, for example as part of a home router. This would allow it to see
all traffic by a certain device, and have full control over it’s appearance online.
Most people however don’t need their routers to do much and the hardware
in such devices are often pretty limited, this poses an additional challenge
and limits what kind of solutions are possible. It is also important to interfere
minimally with regular traffic, and since this would be placed with people who
might be less technologically inclined operation should also be kept simple, or
better yet not require any human interaction. How such a system could work
is what is underlined in this section.

3.1 Hardware

Before going into how this system would work it is important to evaluate
the target platform. Most home routers today run on fairly modest hardware.

M

12 CHAPTER 3 / ARCHITECTURE AND DESIGN

When looking at the most popular custom router firmware DD-WRT they clas-
sify routers into categories mostly based on flash storage, their biggest version
"mega" only requiring 8MB. The devices typically have limited amounts of
Random Access Memory (RAM) as well ranging from 2-64MB, and processors
running at clock speeds of about 125-400 MHz. These processors also lack
hardware floating point capabilities which means that all floating point cal-
culations would need to be done in software for a punishing performance
penalty. Most learning algorithms today use floating point mathematics and
would therefore suffer a severe diminishing in performance when running on
this hardware.

The small amount of RAM means that each connected device should store
as little information as possible, while the processor clock speed limits the
amount of operations which would be acceptable to use for the learning. The
lack of hardware floating point also means that for an efficient implementation
the design would benefit from limiting the use to only integer and bit-wise
operations.

3.2 Badness score

Each managed device is assigned a badness score, this is a value that says
something about how much recent traffic has deviated from normal operation.
By applying this value in Qo0s algorithms the traffic a certain device can use
can be scaled depending on how well it behaves. When the device is not
misbehaving this value should be sufficiently low to allow all it’s traffic to
flow normally. When misbehaving it should increase and throttle the device,
potentially even cutting it off entirely. As mentioned in the limitations section
this implementation does not include any QoS algorithms and as such doesn’t
make any attempt at controlling the traffic based on the badness score. However
for a discussion on how the badness score should be used in such algorithms
there is mention of this in the discussion section.

There are many different approaches that could be taken to determine this
score, and some of the simplest might be to have a set of known bad traffic
patterns and match the current traffic against those. This would be similar to
how anti-virus has a list of fingerprints for known viruses that it then scans the
drive for. Such a system would rely on both keeping metrics for each device
and a good database of patterns to match against. Matching many patterns are
also problematic as it would require a lot of processing power. A bot could also
be programmed to avoid the most common patterns, something which might
limit its usability but would still allow it to defeat the check, this is especially
true if the patterns had to be very narrow to allow regular traffic through. So

3.3 / TESTING METHODOLOGY 13

short of simply rate-limiting anything that isn’t a human-operated device it
would be hard to make such a system robust enough.

The solution proposed here is to create a fairly basic but functional learning
algorithm that doesn’t keep logs of traffic history, but rather keeps aggregated
values for what kind of traffic is coming through. This system would tune a set
of parameters while data flowed through from the monitored device and if the
observed traffic went outside of these parameters flag the traffic as bad.

3.3 Testing methodology

As a proof of concept this system takes in capture files in the 1ibpcap format
created by tcpdump. This is a very simple packet capture format which closely
mimics how packages are actually transferred on the wire and offers the
minimum of information that should always be available for the router. This
approach was chosen as it would make running the tests much easier instead
of using live data from infected devices. In order to test the system a couple
different traffic patterns were established as a baseline that could be expected
for typical 10T devices.

Repeated request , a simple HEAD request sent to a server and an answer
received at a set interval. This is to mimic a simple system that regularly
fetches data from a server for display purposes or to remotely control
the device.

Streaming , a Real-Time Streaming Protocol (RTSP) stream continuously run-
ning. This is to mimic the common CCTV camera streaming it’s data.

Upload , Secure File Transfer Protocol (SFTP) upload excerpt of a single large
file. Not a particularly common case for 10T devices, but similar in traffic
amount to a DOS attack.

DDosS , for testing purposes a Transmission Control Protocol (TCP) SYN flood
was used. This is a pretty standard DOS attack that exploits the TCP
three-way handshake.

These patterns were captured using the readily available network protocol anal-
yser Wireshark!. The traffic was filtered to a specific IP as not to contaminate it
with background traffic from the capturing system. To allow capture files taken
on different days, and to mimic different IP addresses of the sender/receiver,

1. https://www.wireshark.org/

14 CHAPTER 3 / ARCHITECTURE AND DESIGN

the test running script incorporates a mechanism to stitch together and change
captures. They are stitched together with one continuous string of timestamps
based on their original time difference, and the IP of both the sender and
receiver can be changed to mimic sending to or receiving from a different host
than the capture was made against. This was done in a minimally obstructive
way to keep the captures as true to their original state as possible.

3.4 Detecting change

As previously mentioned the system tries to determine a badness score for
each device based on what normal traffic for a given device consists of. Most
10T devices have fairly simple and repeatable traffic patterns which makes
this easier. Since the hardware is limited, using neural networks or similar
systems would likely not be possible without severely limiting the amount of
devices it could keep track of. Therefore a simpler approach is taken, focusing
on keeping both memory and the amount of operations (especially floating
point operations) at a minimum. To achieve this a couple of relevant metrics
was chosen. The three things currently considered by this design are:

IP Address , to detect traffic going to never before visited hosts

Packet size , the normal traffic is not unlikely to have different package sizes
to an attack

Time between packets , change in velocity of packages is a good indicator of
a Dos attack

The latter two are continuous values which means that they are on a range and
can be compared by value, and not just for equality. IPs on the other hand are
entirely discrete and comparing one number to another doesn’t make much
sense.

3.4.1 Change in continuous values

Multiple approaches was tested to get good results for continuous values.
Originally the system was based on a min/max approach in which the minimum
and maximum values observed were compared to the current packet. The
minimum and maximum would tend towards each other so that the window
was always kept at it’s minimal size. This worked fine for the time between
packets, but was giving lots of false negatives when used on the packet size.
The issue turned out to be that when fed with very small packets (such as those

3.4 / DETECTING CHANGE 15

in HEAD requests and SYN floods) the amount to shrink by would tend to be
lower than zero, which was a problem without floating point mathematics. If it
was rounded to o there would be no change, and therefore the window could
stay too big. If it was rounded to 1 the change would be too large and cause
the window to collapse over valid data.

Changing floats for probability

Since the system is not really dependent on having the exact sub-integer
precision of its state values but rather on how slow or fast their progression were
a simple replacement was found. The solution to this was to use probabilities,
if for example we wanted to subtract 1/10th from a number we can subtract
one with a probability of 1/10. The probability to add exactly one over ten
iterations is not very high, but the probability to have added on average one over
many iterations of ten approaches 100%. There are many high-quality random
number generators out there, many of which don’t require many CPU cycles to
generate pseudo-random numbers. However the current implementation uses
a slightly different approach. Instead of generating random numbers a couple
of bits are taken from the current system time in it’s highest resolution. These
bits are AND-ed with an appropriate mask and the result is checked against a
target result, when it fulfils the target the value is incremented. As long as the
possible range of decimal values aren’t too great this is a sufficient amount of
randomness.

3.4.2 Change in discrete values

Discrete values offer a different challenge to continuous ones. The problem
here is that comparing minimum and maximums doesn’t make much sense.
For example comparing the IP address 129.242.219.53 to a very numerically
similar IP 128.243.217 .54 would yield a low difference, but is just as dissimilar
as any other IP address with all four fields changed. So in order to create a
difference that makes sense an IP mask system is used. The mask is created by
bitwise operations applied to pseudo-random bits which slowly, by applying
the same IP address, turns into a 1:1 mask for that IP. If more IP addresses are
applied over each other the mask will be an amalgamation of the addresses, but
yielding consistent differences to each of the IPs. These differences however
are continuous and can be passed through the same system as used for packed
sizes or the time between packages. The mask also deteriorates slightly with
each new package, such that any IP address that hasn’t been connected for a
long while will be removed from the mask. This system allows the device to
connect to many different IP addresses without having to store a large list of
them and checking through the list. If too many IP addresses are used then all

16 CHAPTER 3 / ARCHITECTURE AND DESIGN

traffic will simply be marked as good by this test.

3.5 Determining device category

All of this depends on the devices surveilled to have rather predictable traffic
patterns. More complex learning algorithms could potentially be used to handle
organic traffic but with such restricting hardware it’s probably not feasible to
implement without heavy performance penalties. And seeing how most of the
traffic in DDOS attacks originate from these devices it would likely make a
strong impact on their capabilities if widely implemented. But in addition to
being able to actually supervise the devices a system to detect which devices
to supervise also needs to be put in place, lest devices with organic traffic gets
a badness score which assumes non-organic traffic. Since this implementation
only deals with analysing the traffic this is not implemented in the code related
to this thesis. However one system which might work is to implement a Captive
Portal (cP) which redirects all traffic to a site which then requires some
user input to accept the device as an organic one. This should be sufficiently
complicated that a simple bot should not be able to pass the test. If no response
has been heard from the CP endpoint the mitigator can assume the device is a
simple 10T device and add it to it’s list of devices to watch. Logging in through
the router configuration portal should also allow devices to be changed from
one state to another. This might not be the most sophisticated of methods but
should work decently well to classify devices. And as most users have seen
these when using public hotspots they shouldn’t offer too big a challenge for
the less technologically inclined users.

3.6 Learning badness

Since this is a system which tries to learn traffic an important question arises.
When should new traffic be added to our measure of good traffic and when
should it be blocked from accessing the network? And along the same lines
how can we make sure that a possible attacker is not slowly re-learning our
measure for good and bad traffic to circumvent the penalties or trick the system
into penalizing good traffic. This is something which comes tightly coupled
with how the system would be integrated with existing Qos algorithms, and
therefore out of the scope, but it is discussed in more detail later in the discussion
chapter.

Implementation

As previously mentioned the system was implemented to run on a regular
workstation to aid in testing. The implementation is however written in such
a way that all the learning and checking is in its own separate module so that
it could be reused in different applications. An example of such applications
are the various test tools that was used during development, most notably the
program capable of stitching together various capture files and playing them
through the system. To enable code-reuse for an eventual implementation on
actual hardware the program was written in Nim! which compiles down to C
and can be used to target most, if not all, hardware C can run on.

4.1 Random numbers and float simulation

As mentioned in the previous chapter dealing with growing or shrinking a
number with a value smaller than one is important to the system. It was
mentioned how this is achieved through using random numbers. The current
implementation uses this when dividing a number by eight (implemented
as a right shift by three operation). This means that we have three bits of
information which gets discarded, so if our number is only in those three bits
the number becomes zero. There are only eight possible numbers that fulfil this
condition, and they are hard-coded into the implementation. By picking up to

1. https://nim-lang.org/

17

18 CHAPTER 4 / IMPLEMENTATION

Num. | Prob. | Mask Check
(¢ 0 0

1 1/8 Ob111 ==
2 1/4 | Obl1l ==
3 3/8 Ob11l and Obil1l1l ==
4 1/2 | Obl ==
5 5/8 | Ob111l and Obil ==
6 3/4 | Obl1 >0
7 7/8 | Obl11l >0

Table 4.1: Table showing how numbers and their probabilities match the bit-masks

three bits of "random" data from the end of the milli- or nanosecond resolution
clock and checking their value it is possible to achieve the probabilities we
need. This is illustrated in table 4.1. The first column contains all numbers
which would be truncated to zero by the right shift operation. The second
column contains the probability of adding a one for each number. In the third
column we find the mask or masks that are AND-ed with the time, and the
fourth column lists the operation to compare each result. Those marked with
== imply that the result should be equal to the mask, and those with >0 are
checked if they are higher than o. Checking if the result is equal to the mask is
the same as checking that all the bits are set, and checking if it is greater than
zero is the same as if any bit was set. If we assume that the lower three bits of
the clock is random it is easy to see how for example the compound probability
P(bit o is set) X P(bit 1 is set) X P(bit 2is set) = 1/2x 1/2x 1/2 = 1/8 is the
same as checking if the AND-ed mask is the same as the original (all bits have
to be set). Similarly looking at the the mask for the probability 7/8 we can see
that checking that one of the eight outcomes does not happen will generate the
wanted probability. This of course assumes that the last bits of the nanosecond
time-stamp are random, and that a possible attacker is not able to construct
packages that were processed at a specific time.

4.2 Continuous values tracking

There are two different kinds of continuous values tracked by this system,
packet size and distance between packets. Distance between packets is only
tracked when the connection is continuously transmitting, implemented here as
receiving packets within 50 times the largest packet gap. This is to differentiate
between the velocity of an actual transmission and breaks in transmission
altogether. In the HEAD request test for example a HEAD request is comprised
of multiple packets being sent with varying distance between them, and long

4.2 / CONTINUOUS VALUES TRACKING 19

breaks of inactivity of 30 seconds were no packets are sent. This would lead to
an overall average which would be very lenient in what it would accept.

4.2.1 Minimum/Maximum tracking

This is the first approach which was implemented, and is currently in use for
one of the two continuous values. It tries to keep track of the highest and lowest
value the system has seen thus far. Of course this would be wasted if a single
huge or tiny value was received, so for each packet it also tries to shrink the
series of accepted variables. However only shrinking the series would lead to a
lot of values ending up outside the range. For example if the system sent three
packets followed by one short the range would shrink from the bottom while
the large packets were received only to always invalidate the small packet. This
is solved by storing the amount of shrinkage that has taken place since the last
value that stretched the bound in each direction. When a packet arrives that
is out-of-bounds it is checked against this value and is not flagged as bad if it
is within the limit. During testing this system was the one that delivered the
most stable performance for the packet distance metric and is were it is still
used for now.

4.2.2 Distance tracking

While the minimum/maximum tracking worked fairly well for the packet
distance it was giving poor results for the packet size as will be shown in the
following testing chapter. To improve the results a second tracking method was
developed which instead of tracking the upper and lower bounds tracks just an
average and a deviation. This not only means less memory overhead for each
device, but also proved to give more stable results for both the packet size and
the IP deviation metrics. The tracking here works by increasing an average
value in the direction of the current packet size as well as shrinking or growing
a difference value thus creating a range around the average. Whether to grow
or shrink the difference is based on how close the packet size is to the average.
Anything less than half the difference away will shrink the difference, and
conversely anything that’s over half the difference will increase the difference.
The amount to change by is the aforementioned 8th of the distance which led to
the float simulation described above. Whenever the packet size hits completely
outside the this number is further divided by 2 without any float simulation
for a small change of 1/16th of the difference.

20 CHAPTER 4 / IMPLEMENTATION

4.3 Discrete value tracking

Discrete values offer a quite different challenge from continuous value when
it comes to tracking. The tracking here is based on comparing the difference
between one value and another based on their bit patterns instead of their
actual value. This means that the only data stored is a mask of the values the
same size as the value itself. So for an IP address this would be 32 bits as each
value in the IP is 8 bits each. However the difference of the comparison doesn’t
really suffice as it can be normally noise if more than one IP is present in the
sample. This is solved by passing the difference of the IP check through one
of the continuous value tracking methods. By doing this the system is able to
distinguish between a normally noisy sample and an actual badness.

In order to track a value the system sets one pseudo random bit from the input
value in the current mask. This pseudo random value can, as described earlier,
be gathered from any applicable source but in the current implementation it
is bits taken from the current time. After the mask is changed the old value is
compared with the new value and the difference (in bits) is returned. This is
the value that is passed through the continuous value check.

4.4 When to change

During the various iterations of this implementation the system would often
stagnate and freeze in a certain state. This was due to changes not being
applied when a bad value was detected, which became especially apparent
when the system was completely fresh and initialized to very unrealistic values.
The current implementation therefore tries to always make some change to the
internal state even for bad packets to ensure that such freezes won’t happen.
This means that given enough time the system will drift out of a potential
freeze and into a usable state.

Testing

As mentioned in the architecture and implementation chapters one of the
metrics to decide if traffic is bad or not is the change in IP addresses. The
system also checks only outbound traffic at the moment. This combination
meant that a small utility to change the IP addresses in a Packet CAPture
(pcap) file had to be written. To make the captures more pure and only
contain the data they were supposed to a simple utility to select only a subset
of packets were written. These two utilities were used to create four captures
for the four scenarios described in the architecture chapter. The third and
final utility was one to run through multiple files, stitch them together back to
back, and play them through the system while generating output to be passed
through gnuplot to generate graphs.

5.1 Classification testing

These graphs were then used to gauge how well the system functioned.
Graph 5.1 is a typical example of what the system looks like while run-
ning.

21

22 CHAPTER 5 / TESTING

256 : : : : 3.2x10°
240 Traffic (pr. 1/2s) 3x106
224 Badness 2.8x106
208 2.6x10°
192 2.4x10°
176 2.2x10°
160 2x10°
144 1.8x106 ©
128 1.6x106 &
112 1.4x106 2
96 1.2x10°
80 1x106
64 800000
48 600000
32 400000
16 200000
0 0

0 100 200 300 400 500 600 700 800 900 1000

Figure 5.1: Graph showing three sections, HEAD requests, a SYN flood, and more
HEAD requests

The start of the graph shows how the system goes from an uninitialized state to
being tuned to the data going through it. The badness is very high for the first
couple seconds before it eases out and the SYN flood starts at the red dashed
line. Note the blue points on the line, the system only performs calculations
when sending data so during the 30 second pauses between HEAD requests
there is no data. At the red vertical line the SYN flood starts and immediately
the cumulative amount of data is seen shooting to the top. During this period
the system is pushing a lot of packets in a short timespan but this is only
represented as a short spike, in reality there are over half a million packets
constituting that spike. We can also see the badness reacting to this change
in data, also represented as a single spike before it learns that the SYN flood
data is normal. As the calculations are done on each packet it means that the
system quickly returns to a state where it considers traffic to be normal, the
badness score shown is the highest badness detected during the resolution of
the graph of 1/2 of a second. The blue dashed line shows the end of the SYN
flood and as the amount of traffic plummets the badness score once again rises.
This time it is less pronounced, note how this continues longer that the initial
spike as there are now fewer packets per half second and the badness stays
high for a full minute.

In the graph shown in 5.2 we can see the opposite composition from the above.
Instead of a period of HEAD requests followed by a SYN flood this run is first
tuned on a SYN flood, then subjected to a series of HEAD requests. As can

5.1 / CLASSIFICATION TESTING 23

be seen in the graph the result is pretty much as expected given the above
results.

256 , , , 3.2x108
240 L Traffic (pr. 1/2s) 4 3x106
224 |t Badness 1 2.8x106
208 | - 2.6x106
192 . - 2.4x10°
176 { ! 4 2.2x10°
160 ! 4 2x10°
144 H 4 1.8x10® @
128 H: ¢ 1 1.6x108 ¢
112 H! 4 1.4x106 2
96 [|! 4 1.2x10°

80 | 4 1x10°

64 | - 800000

48 || 4 600000

32 H| - 400000

16 ¢ i E 1. - 200000

0 0

0 100 200 300 400 500 600

Figure 5.2: Graph showing three sections, a SYN flood, HEAD requests, and another
SYN flood

The next graph seen in 5.3 shows much the same as 5.1, albeit on a much
shorter time-scale and with much more traffic in the regular sample. This is
based on the SFTP upload, followed by a SYN flood and then back to the SFTP
upload. The badness is initially high as with the first example, but quickly
drops once enough packets have passed the system. Then after the SYN flood
starts at the red dashed line the badness spikes before recognising the flood as
normal traffic. Later when the SYN flood is over the SFTP data is detected as
bad before it to is seen as normal again.

24 CHAPTER 5§ / TESTING

256 . *— I —4 . 3.2x10°
240 | . Traffiq (pr. 1/2s) 4 3x106
224 | : Badness 1 2.8x106
208 | l - 2.6x10°
192 | : 4 2.4x10°
176 F : 4 2.2x10°
160 | : ! T 2x10°
144 | | 4 1.8x10°6 ©
128 | ' 4 16x108 @
112 } 4 1.4x106 2
96 [4 1.2x10°
80 [t 4 1x10°
64 It -4 800000
48 4 600000
32 -4 400000
16 i l I -4 200000
0 0
0 20 40 60 80 100 120

Figure 5.3: Graph showing three sections, SFTP data, a SYN flood, and more SFTP
data

As before the inversion is seen in 5.4 where the SYN flood is followed by the
SFTP data before going back to a flood.

256 T T T T T T 3.2x106
240 | raffic (pr. 1/2s) 4 3x106
224 | Badness 1 2.8x106
208 -4 2.6x10°
192 4 2.4x10°
176) 4 2.2x10°
160 4 2x10°
144 4 1.8x10°6 ©
128 ¢ S 4 1.6x108 @
112 | 1 14x106 2
96 | 4 1.2x10°
80 | 4 1x10°
64 | -4 800000
48 | 4 600000
32 - 400000
16 E I d - 200000
0 0
0 20 40 60 80 100 120 140

Figure 5.4: Graph showing three sections, a SYN flood, SFTP data, and another SYN
flood

5.2 / SYSTEM INSPECTION 25

Finally the graph in 5.5 shows some different results. Here the system is not
able to tune in to the RTSP data, and there are frequent disturbances in the
badness score. When the SYN flood starts and stops there is a spike which
corresponds to the change in traffic, but with the overall noisy result it would
be hard, if not impossible to use this data for anything of value.

256 . ——— I S —— 3.2x10°
240 } ! : Traific (pr. 1/23) - 3x106
224 : | Badness -4 2.8x10°
208 | | | 4 2.6x106
192 | : ! -4 2.4x10°
176 | ! 4 2.2x108
160 | : 4 2x10°
144 } | 4 1.8x106 ©
128 } S l 4 1.6x108 ¢
112 ! 1.4x106 &
96 |t ! 1.2x108
80 [t ! 1x10°
64) 800000
48 | 600000
32] 400000
16 | : 200000
0 0
0 20 40 60 80 100 120 140 160

Figure 5.5: Graph showing three sections, a SYN flood, RTSP data, and another SYN
flood

5.2 System inspection

As mentioned the target hardware for this system are simple home routers or
their equivalents. This means a quite severe limit on what is possible to use
in terms of resources. In the current implementation the two trackers are the
distance tracker, the minimum/maximum tracker, and the IP tracker. The table
in 5.1 shows the memory required for each of the data structures associated
with these trackers. The system uses one distance tracker for the packet size,
a minimum/maximum tracker for distance between packets, and one IP mask
tracker. The TP mask tracker consists of one IP mask and a distance tracker. This
means that the entire tracking system uses distance * 2 + minmax + ipmask =
8 * 2 + 16 + 4 = 36 bytes of memory per device. This low amount not only
means that a lot of devices could be connected at the same time, but also
that swapping the memory out of storage would incur less of a performance
hit.

26 CHAPTER 5 / TESTING

Tracker ‘ Memory (bytes)
Distance 8
Min/max 16
IP (mask only) 4
IP w/tracker 12

Table 5.1: Table showing the various trackers and their memory requirements

In terms of CPU operations it’s hard to calculate without having an actual
hardware implementation. However the typical distance check and update
doesn’t use much more than 5-10 arithmetic operations (including bit shifts)
and a similar amount of branching statements. Again the minimum/maximum
solution is a bit more involved, but not considerably so. Considering that a good
software floating point implementation is about 10-30 times more cycles than
integer arithmetic[13] this is a very small amount of operations compared to
more traditional learning algorithms. Of course depending on the performance
of the underlying CPU branch predictor it might be beneficiary to implement
some of the branching logic with arithmetic should the compiler fail to do
SO.

Discussion

In the previous sections many graphs the system shows that it is able to detect
changes in traffic, but there are a few shortcomings. This chapter will go into
more details on how the data from the system could be used and what limits it
would have from this perspective. There are two main issues with the current
implementation, first the badness only spikes on the edge of the data, and
secondly it is not always able to fully tune into a data stream and see it as
normal data.

6.1 Tuning issues

Throughout this project the system would often fail to properly tune to a
set of data. This is still apparent with the RTSP example from above. While
it looks fairly bad in the graph there is actually only about 4% of the data
which is marked with a badness level of over 20, and no more than about 2%
which is above 32 in badness. If this was fed directly into a Qos algorithm
however it might, at least for other protocols than RTSP, end up prompting a
lot of retransmits and other things which could further deteriorate the badness
score.

Since this has been such a prevailing problem throughout the development

multiple methods of dealing with these scenarios have been considered, how-
ever none have been implemented due to being out of scope. One method

27

28 CHAPTER 6 / DISCUSSION

would be to use one of the continuous value trackers to track the badness value
itself. This would mean that the system would be able to have some normal
badness and still be able to detect a change in the data stream. As seen in
the graph in 5.5 the badness drops when the SYN flood starts, which could
be considered not-normal for this sample. This system could also be used to
simply decide to not track certain devices if their badness fluctuated too much
for the system to be able to get a proper reading. If this worked properly it is
also conceivable that the system could be applied to more organic data as well,
and simply discard devices it didn’t understand.

The RTSP example is however especially unfortunate as these devices are quite
numerous in the 10T device counts. Upon analysing the data for this example
it became apparent that the reason why it is so unstable is simply because it
periodically sends packets which are two to three times larger than it’s normal
packets. It is these packets that triggers the packet size metric and in fact
when disabling that part of the system the tracking of this particular case is
substantially better as seen in 6.1. This is however not a universal solution
as some of the other cases don’t give nearly as good results without it. An
interesting approach would of course be to include more metrics, and possibly
discard metrics that introduce too much noise on the fly. However this is still
further outside the scope.

256 T T ' T 1 T ! T T 3.2X106
240 b . N Traffic (pr.d1/2$) 4 3x106
224 } | | Badness 4 2.8x10°
208 | I | - 2.6x106
192 : ! 4 2.4x10°
176 | ' ! 4 2.2x10°
160 | : 4 2x10°
144 | | 4 1.8x10® ©
128 b S l 4 16x108 @
112 l 4 1.4x106 &
96 ! -4 1.2x10°
80 ! 4 1x108
64 . - 800000
48 l 4 600000
32 : - 400000
16 L ! -4 200000
0 0

0

20

40

60

80

100

120

140

160

Figure 6.1: Graph showing three sections, a SYN flood, RTSP data, and another SYN
flood. With packet size tracking turned off

Yet another solution could very well be to simply increase the amount of
packages needed to change a given metric. This is something which would
allow the RTSP traffic to include the larger numbers in it’s package size metric.

6.2 / RETAINING BADNESS 29

The current implementation has a very short time-scale it operates on. Part
of the problem is that the current solution is only based on a per. packet
analysis. This means that something like the HEAD request example which
only sends about ten packets every 30 seconds would take hours to tune the
metrics to it’s values. During a real-life operational situation however it very
likely that this would be beneficial for the system, but during the initial design
phases were various metrics where in consideration and everything was being
manually analysed on a per packet level this simply wouldn’t have been feasible
to implement. Now that the system is more mature and stable however it is
certainly an interesting vein of further research possibilities. Doing this would
also serve to let bad data me marked as bad for longer.

6.2 Retaining badness

Slightly tied together with the previous issue is the fact that the badness score
is very quickly getting back to normal levels. This is again because there is
such a high volume of packets passing through the system and each packet
has a quite meaningful impact on the metrics tracking information. While
initially something which was born from necessity from not having floating
point numbers that could deal with very small changes it should certainly
be possible to implement a more generalized version of the floating point
emulation to overcome this limitation.

Another option, which could also be used in conjunction with decreased sen-
sitivity, is to keep snapshots of the tracking data. For example if the system
were to each day at a certain time incorporate the current tracking data in a
secondary tracking structure which would remain untouched for the rest of the
day. This would mean that the secondary tracking structure would be frozen
for the entire day and when a packet with sufficient badness is detected it
could switch to use this frozen copy until the data is once again back to being
considered good. Doing this would allow the short spikes seen in the graph
above to trigger the usage of a filter corresponding to what caused that spike
in the first place and thus remain flagging packets as bad. Care must be taken
however to not end up in a state of flagging every packet is bad and never
returning as has been previously mentioned. This was an issue during develop-
ment and it causes the system to never be able to return to a normal state as
it can’t change what is determined as good. Of course if a tiny portion of the
bad traffic were to count towards the frozen tracking datas daily change then
it would be able to slide out of it, albeit over a very long period of time.

However both of these methods only delays the problem, at some time the
system would start considering bad data as normal data, strictly from the

30 CHAPTER 6 / DISCUSSION

nature of being a system that learns. The first system would probably start
doing this after a couple of minutes or hours, depending on how insensitive it
actually was. And the second might delay the fact for multiple days, at least
if combined with the first solution. But if the utility of botnets are taken into
consideration it certainly limits them. Getting an attack up to speed under a
system which implemented either, or both, of these mechanisms could possibly
take too much time for it to be of any value. The target of the attack, or
intermediary infrastructure, would have time to detect and avert the attack.
Or if the attack was as a response to a certain event it would be completely
out of context if it was carried out days after the fact. These networks are
also commercialized, selling DOS capabilities by it’s throughput. Having to pay
for a ramping up period where the botnet had to be carefully orchestrated to
slowly alter it’s own traffic pattern without setting of the badness detection
would certainly make them less viable. Not to mention that this would be a
technological challenge for the writers of botnet code.

6.3 Implementation into QOS algorithms

Most routers today come with some kind of QOS system. These work by giving
priority to certain types of data or devices in order to have data that’s considered
more important pass through the router unimpeded. A typical example would
be to prioritize streaming services and Voice over IP (VOIP) to avoid stuttering
while other machines in the network are performing routine updates. The
system described in this thesis could be implemented as a part of such QoS
algorithms such that 10T devices currently experiencing high badness scores
would be allotted less bandwidth.

Care must be taken though to not completely block the device if it’s traffic
patterns are normally irregular. Image for example a security camera that
only starts streaming on request. The system as currently implemented would
gather that this was a low-traffic device, and the sudden increase in traffic
from starting a stream would likely be flagged as bad. If the QoS algorithm
were to sanction it too hard it would render the stream, and thus the device
itself completely useless. Honouring both these requirements, both to block
bad data that is actually bad, and not stopping actual data mislabelled as bad
would be difficult to do properly.

However a regular stream would likely be less affected than a DOs attack for
multiple reasons. First of a DOS attacks value is directly proportional to it’s
bandwidth. Limit bandwidth by 10% and the DoOs attack is limited by 10%,
of course the receiving end have a pain-point at which it simply wont be able
to handle more traffic so as long as the attack stays above that threshold it

6.4 / THE FIELD OF DDOS PROTECTION 31

can be said to be 100% effective. But the available targets are diminished
proportionally with the available attack strength. Normal traffic like a stream
on the other hand is often adaptive to it’s allotted bandwidth so given less
bandwidth the stream would still work, albeit the quality might not be as
good. This holds true for most good traffic. However dialling down the quality
of normal data is a very severe penalty for a system like this and should be
avoided if at all possible.

6.4 The field of DDOS protection

As mentioned in the introduction there are many ways DDOS as a problem is
being treated. Most of these however are server side and aim more at being
able to handle the amount of traffic instead of avoiding it. This solution tries
to limit the usability of DDOS as an attack in itself, and not only for those who
are able to pay for and set up server-side DDOS protection. It doesn’t rely on,
or interfere with, any of the existing solutions for DDOS prevention and can
therefore be seen as a compliment to those.

Another benefit of this system over other traffic learning devices like the DoJo
by Bullguard[12] is that this system could be implemented into existing router
firmware. Preventing DDOS attacks is not something a small group of people
can do, it requires the majority of devices to be secured. By installing systems
like the one described in this thesis, either by free will or by legislature, on
most consumer routers could severely help in deteriorating the usability of
DDOS attacks.

Conclussion

The system displayed in this thesis offers a novel approach to DDOS mitigation
which not only benefits those that use it, but everyone affected by DDoOS.
During the design, implementation, and testing many interesting problems
have surfaced and been discussed throughout the thesis. The implementation
offered along with this thesis offers a base upon which a functional system can
be built to provide the benefits of the design. Defeating the problem thatis DDOS
is something which should be handled not simply by treating the symptom
on the server side, but something that should be cured by better securing our
devices. While 10T devices lack behind systems like the one described here
would be able to offer a first level defence against the threat.

Further research into better low-resource systems for learning network traffic
would be able to be added as drop-in replacements for the current learning
algorithms to make the implementation more viable. But a certain baseline and
proof-of-concept has been provided in this thesis. Not inconceivably it would
also be possible to choose completely different metrics, or simply add more
metrics to the system to attain better results.

The low-memory consumption per device and likewise low amount of opera-
tions to perform per packet makes this system quite readily ported to hardware
with strict limitations on both. It is also completely void of floating point calcula-
tions, except from timekeeping in the graphing utility. This is something which
would heavily penalise devices without hardware floating point operations.
These measures are important as reusing the same hardware as used today

33

34 CHAPTER 7 / CONCLUSSION

would help keep prices low for such products and allow a higher adoption rate
of these systems.

Bibliography

[1]

[2]

[3]
[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

Internet Live Stats. Number of internet users (2016).

Pew Research Center. Majority of internet users in most countries are
daily users.

Cisco Visual Networking Index. The zettabyte era: Trends and analysis.
Dyn EVP Scott Hilton. Dyn analysis summary of friday october 21 attack.

Network Working Group P. Ferguson. Network ingress filtering: Defeating
denial of service attacks which employ ip source address spoofing.

Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos,
Michael Bailey, and Manish Karir. Taming the 8oo pound gorilla: The rise
and decline of ntp ddos attacks. In Proceedings of the 2014 Conference on
Internet Measurement Conference, IMC ’14, pages 435-448, New York, NY,
USA, 2014. ACM.

Christian Rossow Thorsten Holz. Horst Gortz Institute for IT-Security
Ruhr-University Bochum Germany Marc Kuhrer, Thomas Hupperich. Hell

of a handshake: Abusing tcp for reflective amplification ddos attacks.

Senior Reporter SC Magazine Bradley Barth. Zscaler traffic analysis finds
iot devices misbehaving.

Alan Saied, Richard E. Overill, and Tomasz Radzik. Artificial Neural
Networks in the Detection of Known and Unknown DDoS Attacks: Proof-of-
Concept, pages 309—320. Springer International Publishing, Cham, 2014.
Cloudflare. Ddos protection.

Imperva Incapsula. Ddos mitigation.

BullGuard. Dojo by bullguard.

37

[13] Cristina Iordache and Ping Tak Peter Tang. An overview of floating-point
support and math library on the intel "xscale" architecture. In Proceedings
of the 16th IEEE Symposium on Computer Arithmetic (ARITH-16'03), ARITH
'03, pages 122—, Washington, DC, USA, 2003. IEEE Computer Society.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Attacking the internet
	1.2 The new threat
	1.3 Amplification and exploits
	1.4 Current mitigation efforts
	1.5 Problem statement
	1.6 Limitations

	2 Background and related work
	2.1 Denial of Service
	2.1.1 Amplification
	2.1.2 Distribution
	2.1.3 Internet of Things devices

	2.2 Related work

	3 Architecture and Design
	3.1 Hardware
	3.2 Badness score
	3.3 Testing methodology
	3.4 Detecting change
	3.4.1 Change in continuous values
	3.4.2 Change in discrete values

	3.5 Determining device category
	3.6 Learning badness

	4 Implementation
	4.1 Random numbers and float simulation
	4.2 Continuous values tracking
	4.2.1 Minimum/Maximum tracking
	4.2.2 Distance tracking

	4.3 Discrete value tracking
	4.4 When to change

	5 Testing
	5.1 Classification testing
	5.2 System inspection

	6 Discussion
	6.1 Tuning issues
	6.2 Retaining badness
	6.3 Implementation into qos algorithms
	6.4 The field of ddos protection

	7 Conclussion
	Bibliography

