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“Many of these creatures so low in the scale of nature are most exquisite in their forms & rich colours” 
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SUMMARY  

Many benthic marine organisms produce pelagic larvae, meroplankton, which spend 

from hours to months in the pelagic before settling on the sea floor. During this time, 

meroplankton form an important part of the pelagic community. The survival of meroplankton 

is important for maintaining benthic population and community structure and is hinged on 

larvae being released at a time with suitable environmental variables in the water column. In 

polar waters, seasonal fluctuation in the environment are strong, thus meroplankton dynamics 

vary temporally and spatially. Few field studies have focused on the year round dynamics of 

meroplankton or identified meroplanktonic larvae with a high taxonomic resolution. 

Therefore, many aspects of meroplankton dynamics remain poorly understood in sub-Arctic 

and Arctic waters. In the 1960s one of the largest benthic decapods in the world, the red king 

crab, was intentionally introduced into Russian coastal waters of the southern Barents Sea. 

Today they are continually expanding their range along the Norwegian coast and fjords. They 

cause changes to the benthic community through predation, but also provide a valuable 

fishery. Like many benthic invertebrates, the red king crab have a pelagic larval stage. Yet 

there is no knowledge on when and where larvae are released nor how larval release correlates 

with favorable environmental variables in Norwegian waters. The objectives of this thesis 

were to increase our understanding on the seasonal and spatial dynamics of meroplankton in 

sub-Arctic waters and identify the environmental variables responsible for these dynamics. 

The potential role of meroplankton in the pelagic was investigated by identifying their 

numerical contribution to the zooplankton community. Finally, the temporal and spatial 

dynamics of red king crab larvae was investigated to see how larvae are timed with favorable 

environmental variables in Norwegian waters. The study area, the sub-Arctic Porsangerfjord, 

Norway (70 – 71 ºN), has a productive benthic community and was recently invaded by the 

red king crab. It displays strong gradients in environmental variables and therefore represents 

an ideal field laboratory for investigating aspects of meroplankton dynamics.  

 

Sampling monthly to bi-monthly over a 1.5-year period, showed that meroplankton 

abundance and assemblage separate into significantly different seasonal communities (winter, 

spring, early summer and late summer). Meroplankton were present in the water column year 

around but the highest abundance and greatest number of meroplanktonic taxa were found in 

spring and summer and correlated with increased chlorophyll a and temperature in the water 

column. Meroplankton was periodically the dominant numerical component in the 
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mesozooplankton community these seasons (particularly in April). Spatial patterns in 

meroplankton was investigated by sampling transects along the fjord in spring (April). 

Significantly different meroplankton assemblages were found in three separate basins along 

the fjord. The assemblages correlated with environmental variables and followed a downfjord 

succession in seasonal communities. A community typical of winter characterized the inner 

basin and an early summer community the outer basin. A high abundance and numerical 

dominance of meroplankton in the mesozooplankton community was found in shallow bays 

and the middle basin. Larvae of the red king crab were first recorded in late winter and were 

continually released over a period of four months resulting in a larval period of six months 

(January to June). The greatest densities of larvae on both a temporal and spatial scale was 

found at shallow protected stations. Having a prolonged larval release is advantageous for 

recruitment success of this invasive species because it ensures that at least some larvae will 

coincide with favorable food concentrations and warmer temperatures in the water column. 

Releasing larvae at protected sites may also increase the chance that larvae remain close to 

suitable settlement localities. These findings coupled with a wide tolerance to temperature and 

salinity during their larval and adult phase means that they are well suited for life in the 

southern Barents Sea and that they have the potential of continuing their range along the coast 

to southern Norway and north into Svalbard coastal waters. The findings on meroplankton 

dynamics in this study provide evidence that larval release by benthic invertebrates is tightly 

coupled with seasonal and spatial variations in environmental variables and that an 

organism’s response to these variables result in complex seasonal and spatial dynamics of 

meroplankton. In a warming ocean this coupling could cause a shift in larval release timing 

and a range expansion for organisms. A periodical seasonal and spatial dominance of 

meroplankton in the mesozooplankton community suggest that they are an important 

component of the pelagic food web.  
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1 BACKGROUND 

1.1 EARLY LIFE-CYCLE AND LIFE HISTORY TRAITS OF BENTHIC MARINE 

INVERTEBRATES  

A majority of animals on earth display a complex life cycle, meaning that they pass 

through two or more discrete phases during their lifetime (Moran 1994). These phases can differ 

from each other in a number of ways, including morphologically, behaviorally and/or 

physiologically (Moran 1994). The passage through a life cycle is governed by an organisms 

life history traits such as: size at birth, growth rate, age and size at maturity, number of offspring 

and reproduction events and lifespan (Stearns and Hoekstra 2005). The exact combination of 

these traits characterize a species and are imperative for their present and future survival and 

reproduction (Stearns and Hoekstra 2005). Some life history traits can be plastic in nature and 

vary between individuals and populations of the same species. These include size and age at 

maturity, fecundity, hatching timing, larval duration and size (Nylin and Gotthard 1998). The 

plasticity of these traits is usually an effect of external forces acting on an organism, such as 

food availability, environmental variables, competition and predation (Nylin and Gotthard 

1998). Life history traits can thus vary within a species over both geographical and temporal 

scales.  

 

Marine benthic invertebrates display a wide range of life cycles. One prevalent and 

highly complex life cycle is the production of larvae that hatch, swim into the water column, 

metamorphose and settle back to the benthos as juveniles that mature and finally reproduce 

(Levin and Bridges 1995). Other life cycles include the production of larvae that hatch and 

metamorphose close to or on the sea floor, brooding of larvae until metamorphosis to the 

juvenile state, and production of eggs that hatch directly as juveniles (Levin and Bridges 1995). 

Marine invertebrates that produce larvae are usually termed as having an indirect development 

whereas those that brood or produce juveniles have a direct development. Within many benthic 

invertebrate families and genera, one can often find examples of species belonging to each of 

the life cycle types. Moreover, some populations of the same species can even vary between an 

indirect development with pelagic larvae or benthic larvae (Bhaud and Duchêne 1995). Yet, an 

indirect development with pelagic larvae is the predominant life-cycle type for marine benthic 

invertebrates and is displayed by approximately 70 % of species (Thorson 1950; Young et al. 

2002). The complexity in both early life cycle and life history traits of marine benthic 
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invertebrates sparked its own field of study, marine larval ecology, which aims at identifying 

patterns in life history traits, ecological niches and the ecological role of larval stages (Marshall 

et al. 2012). Increasing our insight into such patterns is essential for understanding, managing 

and predicting the abundance, distribution, potential dispersal and range expansion of benthic 

invertebrate populations (Steidinger and Walker 1984). The focus of the present study is on the 

larval stages of benthic invertebrates with an indirect reproduction and free-living larva in the 

water column.  

 

1.2 SEASONAL AND SPATIAL DYNAMICS OF BENTHIC INVERTEBRATE LARVAE 

For life history and thereby life-cycle events to happen at an optimal time for survival 

and future reproduction, organisms are often entrained and triggered by external as well as 

internal forces. For benthic as well as pelagic invertebrates in marine environments, these 

external factors include photoperiod, temperature, salinity, lunar cycles, tidal periodicity, food 

availability and chemical cues; while internal factors include hormonal secretion and gamete 

maturation (Giese 1959; Olive 1995; Morgan 1995). In reproductive cycles the events are often 

timed with the optimal survival of either or both the reproducing adult and their released 

offspring (Mercier and Hamel 2009). 

 

Due to the axial rotation and elliptical orbit around the sun, the earth experiences daily 

and annual variations in photoperiod, light intensity and temperature (Hut et al. 2013). 

Moreover, because the earth’s axis is tilted relative to its orbit around the sun, the seasonal 

(annual) variation and amplitude in photoperiod and temperature increases with increasing 

latitude from the equator (Hut et al. 2013). Consequently, both poles experience continuous 

darkness during winter and continuous light in summer, while the equator experiences a more 

or less constant light to dark ratio (Hut et al. 2013). These geographical differences in light 

regimes in turn affect temperature and the timing and intensity of primary production, the latter 

of which is dependent on sufficient irradiation. Thus, an increased seasonality in environmental 

variables is found with increasing latitude in marine environments. As a consequence, 

reproductive events and larval release by many benthic marine invertebrates becomes more 

seasonal with increased latitude. Despite the knowledge that such recruitment phenology i.e. 

reproductive seasonality is operating, only a modest number of studies have focused on the year 

around seasonality of benthic invertebrate larvae in sub-Arctic and high-Arctic waters (Thorson 
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1936; Mileikovsky 1970; Smidt 1979; Falk-Petersen 1982; Kuklinski et al. 2013; Silberberger 

et al. 2016; Stübner et al. 2016; Kulikova et al. 2011; Paper I). These studies have been 

conducted with varying sampling frequencies, sampling methods and have identified larvae to 

a varying degree (some to phylum others to family, genus and/or species level). Thus, many 

aspects on the timing of spawning, larval duration in the water column and timing of settlement 

still remain unknown for many benthic organisms at these latitudes.  

 

Benthic invertebrates that produce pelagic larvae often differ in the number of gametes 

produced and their spawning habits. Some benthic invertebrates produce large amounts of small 

sized eggs while others produce large eggs in low numbers. These gametes may be released 

into the water column with consequent fertilization, embryology and egg hatching happening 

freely (Levitan 1995). Others fertilize and brood their eggs until they are ready for release or 

when the optimal environmental variables are met (Levin and Bridges 1995). Moreover, 

spawning and larval release may happen in one large burst, over a prolonged period of time or 

portions are released several consecutive times (Levin and Bridges 1995). These differences 

make the study of benthic invertebrate phenology and thereby meroplankton dynamics even 

more complex.  

 

Benthic invertebrate larvae released into the water column are small in size 

(micrometers to a few millimeters) giving them a limited ability of deciding their horizontal 

distribution (Shanks 1995). Although some larvae are capable of migrating vertically in the 

water column, their horizontal distribution mainly depends on water currents in the area of 

release. Consequently, larvae may be advected or retained close to their release site. The ability 

to advect can be an important recruitment and distribution mechanism for benthic populations, 

as it ensures that sessile adults have the opportunity of exchanging genetic material with other 

subpopulations and to colonize new areas (Scheltema 1986). The amount of time these larvae 

spend in the water column varies from hours to months, some even remain years before settling 

on the sea floor (Shanks 1995). Thus, larvae have the potential for dispersing vast distances. 

Understanding the spatial variability in marine invertebrate larvae may aid in developing 

optimal marine protected areas (Shanks et al. 2003), understanding the spread of invasive 

species (Neubert and Caswell 2000; Pedersen et al. 2006) and the potential northward expansion 

of benthic populations with warming sea temperatures (Berge et al. 2005; Renaud et al. 2015).  
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1.3 LARVAL LIFE IN THE WATER COLUMN  

When benthic marine invertebrate larvae are released into the water column they form 

a temporary part of the zooplankton community termed meroplankton (Greek: meros = part + 

plankt = drifter). They reside here together with holoplankton (Greek: holo = entire/whole + 

plankt = drifter), which are permanent members that spend their entire life cycle in the water 

column. Holoplankton display seasonal variation in abundance, biomass and reproductive 

events at high-latitudes (e.g. Hopkins et al. 1984; Weydmann et al. 2013). Because 

holoplankton are permanent members in the zooplankton community they are usually the most 

prevalent and dominant component. Yet, a growing number of high-latitude zooplankton 

studies in fjord and coastal areas are now showing a periodic high contribution of 

meroplankton in the zooplankton community (e.g. Kwasniewski et al. 2013; Stübner et al. 

2016).  

 

During their time in the water column, meroplankton display different nutritional 

modes. Some larvae are dependent on food for survival (planktotroph), feeding on 

phytoplankton, bacteria, microorganisms, other pelagic organisms and even dissolved organic 

matter (Boidron-Fétairon 1995). Other meroplankters are dependent on food supplies in the 

form of lipids and yolk derived from their mothers and thus do not feed (lecitotrophic). The 

exact feeding mode, prey preferences and feeding rates is still unknown for many boreal and 

Arctic species. Thus, the potential feeding pressure by meroplankton at high-latitudes remains 

difficult to assess. A wide array of pelagic organisms prey upon meroplanktonic larvae 

(Thorson 1950). Thus, meroplankton can also have an inverse trophic position by acting as a 

food source for other pelagic organisms (Anger 2006; Short et al. 2013).  

 

One of the most central paradigms in marine benthic larval biology at high-latitudes is 

“Thorson’s Rule” (Mileikovsky 1971). This paradigm states that the number of benthic adult 

species producing non-pelagic larvae increases with latitude and depth, i.e. pelagic larvae 

becomes rarer at high-latitudes and deep seas (Mileikovsky, 1971). The paradigm has, and 

still does, receive a considerable amount of attention, resulting in a growing number of 

contradictory observations of high proportions of pelagic development at both poles (e.g. 

Clarke, 1992; Fetzer and Arntz, 2008; Pearse, 1994). Today the paradigm receives less support 

and has been modified to include the observation of higher proportions of lecitotrophic larvae 

with increasing latitude (Clarke, 1992; Marshall et al., 2012). This modification is based on 
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studies from mainly Antarctic waters (summarized by Marshall et al. 2012), but a growing 

number of studies in the Arctic and on selected taxonomic groups are suggesting that the 

increase in lecitothophy with latitude may not always be the rule (Clarke 1992; Fetzer and 

Arntz 2008). 

 

1.4 INVASIVE SPECIES 

 In a world that is progressively being effected by human expansion and movement 

with ships, anthropogenic disturbances and global change, the translocation of marine species 

to new areas is increasing rapidly (Molnar et al. 2008). Although this translocation may be 

intentional or unintentional, some species establish self-sustaining populations well outside 

their native range (deRivera et al. 2007). Many of these new populations become invasive 

meaning that they cause considerable ecological and/or economic damage in their new home. 

They are thus one of the threats to global biodiversity today (Bax et al. 2013). Consequently, 

a large and increasing body of research and legislative efforts have been put on understanding 

and preventing new and further range expansion of such organisms (e.g. Molnar et al. 2008). 

For invasive organisms to establish, persist and expand their range, a complex life cycle and 

high plasticity in life history traits has been identified as important factors (Anger 2006). Thus 

in order to eradicate, predict and prevent further expansion of these organisms it is crucial to 

understand timing of life cycle events, life history traits and tolerances in their native as well 

as non-native range. Yet, as previously mentioned such knowledge is still lacking for many 

boreal and Arctic benthic species. Complicating matters further is the fact that the biology of 

a species in its native range may not always be applicable to their new area (deRivera et al. 

2007).   

 

One invasive benthic organism in Norwegian coastal waters with a complex life cycle 

is the red king crab (Paralithodes camtschaticus). Russian scientists intentionally introduced 

them to the Barents Sea from the North Pacific Ocean in the early 1960s, with the intension 

of establishing a population of a new harvestable species (Orlov & Ivanov 1978). In the late 

1970s, the first crabs were caught in Russian and Norwegian waters and the introduction was 

deemed successful (Orlov and Ivanov 1978). The crab spread rapidly along the coast and not 

until the 1990s did the Norwegian and Russian governments start a joint research and 

management cooperation. In 2002, commercial fishing for the crab was opened to local 
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fishermen (Sundet and Hoel 2016). Due to concerns about their potential effects to the benthic 

ecosystem, a western distribution limit was set at 26˚E, which is on the northernmost tip of 

Norway (Figure 1). West of 26˚E, an open access fishery and decimation fishery was 

implemented while east of 26˚E the population was – and currently is – managed as a 

harvestable resource. Despite these efforts the crab has, as of 2013, increased their distribution 

from Kapp Kanin, Russia in the east to Sørøya (22 ºE), Norway in the west (stippled line in 

Figure 1) (Britayev et al. 2010, Jørgensen and Nilssen 2011). However, recent research cruises 

in Tromsø (19 ºE), Norway have found adult and juvenile crabs (red dot in Figure 1), 

indicating that a reproducing population has established this far south (E. M. Nilssen pers. 

com. 2017).  

 

Due to concerns that this invasive crab can have a negative effect on local benthic 

ecosystems, the Norwegian government expressed - in a white paper on the management of 

red king crab - a need for an increased research effort on population surveys, understanding 

their life cycle and their potential effect on the local benthic ecosystem (Anon. 2007). In the 

same white paper, the government expressed a desire to use such knowledge to both 

implement further eradication efforts and to keep the crab as a resource (Anon. 2007). 

Currently, most of the research in Norwegian waters has focused on dynamics of the large 

juvenile and adult portion of the population, focusing on individual growth (Windsland et al. 

2013), migration patterns (Windsland et al. 2014) and mortality (Windsland 2015), feeding 

habits (Jørgensen and Primicerio 2007; Fuhrmann et al. 2015, Mikkelsen et al. 2012), 

temperature preferences (Christiansen et al. 2015) and size and fecundity of adult females 

(Hjelset et al. 2008; 2012). In contrast, the only work done on their zoeal (larval) phase in 

Norwegian waters is modeling work and one laboratory experiment. The former focused on 

potential spread with surface currents and possible settlement localities along the coast 

(Pedersen et al. 2006), while the latter looked at temperature and salinity tolerances of the 

larvae (Larsen 1996). Thus, many aspects of their temporal and spatial patterns in egg hatching 

and larval stage composition remain unknown in Norwegian waters. This leads to 

uncertainties as to what role reproductive phenology and the larval phase has had for the 

successful crab invasion, how well larval release is timed with favorable environmental 

variables and how the timing of larval release compares with other native Anomuran and 

Brachyuran crabs.   
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1.5 HIGH-LATITUDE FJORD SYSTEMS AS FIELD LABORATORIES 

Despite the seasonal variation in environmental variables, benthic communities in sub-

Arctic and high-Arctic fjord and estuarine systems are some of the most diverse and productive 

on earth (Nilsen et al. 2006). This is due to a heterogeneous coastal and seafloor topography, 

varied sediment types, strong environmental and hydrographical gradients, high sedimentation 

rates and thereby benthic food supply, which provides a rich environmental landscape for 

benthic invertebrates of different ecological niches to occupy. Unlike temperate and boreal 

fjords on the southern and south western coast of Norway where benthic sediments can be 

periodically or permanently anoxic, sub-Arctic north Norwegian fjords experience yearly 

vertical mixing of the water column and have a frequent exchange of water masses with the 

coast (Wassmann et al. 1996). The frequency of such exchange varies through the year and 

depends on the presence or absence of a fjord sill (Svendsen 1995) and can affect not only 

temporal but also spatial gradients in environmental variables within a fjord. This in turn can 

impact both the pelagic and benthic community. Typically communities are more stable in silled 

fjords due to predicable hydrodynamics, environmental variables and less frequent advection 

of pelagic organisms into or out of the fjord (Nilsen et al. 2006; Renaud et al. 2007). In contrast, 

hydrodynamics and hydrographics are more variable in fjords without sills making the 

composition and advection of organisms more susceptible to change over time and space 

(Basedow et al. 2004; Renaud et al. 2007). 

 

One of the largest fjords in northern Norway is the sub-Arctic Porsangerfjord (70 – 71 

° N) located adjacent to the Barents Sea (Figure 1). As with other high-latitude fjords, it displays 

a strong along fjord gradient in temperature, salinity, depth and sediment types. This is in part 

caused by a deep sill at the fjord entrance, characterizing a majority of Porsangerfjord as silless 

while a shallow sill separates the innermost part of the fjord from the rest (Myksvoll et al. 2012) 

This has led to the formation of different benthic communities along the fjord, consisting of a 

mix of cosmopolitan, boreal and Arctic organisms (Oug and Høisœter 2000; Oug and Fuhrmann 

2013; Fuhrmann et al. 2015). In particular, the innermost part of the fjord provides a unique 

refuge area for benthic populations of truly Arctic species (Fuhrmann et al. 2015; Wassmann et 

al. 1996). Porsangerfjord is located at the westernmost edge of the quota regulated area for red 

king crab and today it has become one of the most important harvestable species in the fjord 

(Fuhrmann et al. 2015). The fjord also provides an important nursing ground for fish and 

contains populations of birds, seals and whales that feed on the rich benthic and pelagic 
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communities. Strong gradients in environmental variables, hydrodynamics, benthic 

communities and as well as the presence of red king crabs make Porsangerfjord an ideal field 

laboratory to study larval timing, duration and spatial patterns of benthic marine invertebrates 

sub-Arctic waters.  
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2 MAIN OBJECTIVES  

 

In this study we investigated the seasonal and spatial dynamics of benthic invertebrate larvae 

residing in the water column (meroplankton) in the sub-Arctic Porsangerfjord, Norway (70 – 

71 ºN). Special focus was put on the red king crab (Paralithodes camtschaticus) to elucidate 

reproductive patterns and early life cycle characteristics responsible for the successful 

introduction of this invasive species. The main objectives were:  

 

I. to investigate the abundance, seasonality and spatial pattern in the meroplankton 

community by identifying larvae to the lowest taxonomical level (Paper I, II, III),  

 

II. to identify environmental drivers responsible for seasonal and spatial patterns in 

meroplankton community structure (Paper I, II and III), 

 

III. to assess the relative abundance of meroplankton in the mesozooplankton community 

on a seasonal (Paper I) and spatial (Paper II) scale, 

 

IV. to investigate the timing and spatial patterns in red king crab zoeal stage composition 

in order to understand possible causes for their successful invasion (Paper III).   



16 
 

3 MATERIALS AND METHODS  

3.1 PORSANGERFJORD 

Porsangerfjord is located on the northernmost coastal part of Norway (70.0 – 71.0 ºN, 

25 – 26.5 ºE). It is a broad fjord of 15 – 20 km with a length of  approximately 120 km and a 

mean depth of 200 m. Based on bathymetry and water exchange, the fjord can be separated into 

three main basins: Outer, Middle and Inner (Figure 1) (Svendsen 1991; Myksvoll et al. 2012; 

Mankettikkara 2013). A shallow 60 m sill delineates the Inner-basin, while the Middle-basin is 

separated from the Outer-basin by the large island Tamsøya (Figure 1). Finally, the Outer-basin 

is separated from the coast by a deep sill at 180-200 m, which is in the same depth range as the 

surrounding basin (Mankettikkara 2013; Myksvoll et al. 2012) (for location of basins and sills 

see Figure 1). Due to the deep sill, the Outer-basin is open to the coast while the Middle-basins 

is classified as semi-enclosed. The basins thus experience a continuous or frequent exchange of 

deep water with the Norwegian Coastal Current (NCC) and Atlantic water (Svendsen 1995; 

Wassmann et al. 1996; Eilertsen and Skarðhamar 2006). The Inner-basin has little contact with 

the coast and experiences a moderate amount of freshwater runoff during spring and summer. 

This basin is characterized as Arctic, due to annual ice-coverage in late winter and early spring, 

temperatures reaching as low as -1.7 ºC in late winter and remaining around 0 °C through 

summer.  

 

Circulation patterns in the fjord is influenced by prevailing wind direction and strength, 

which is strongest in un-stratified waters during winter and spring (Svendsen 1991, 1995). The 

prevailing wind direction in the fjord is southerly and northerly (Wassmann et al. 1996). 

Southerly winds in combination with rotational effects result in the main circulation pattern of 

the fjord, forming an outflowing current with winter cooled fjord-waters along the eastern side 

and an incurrent of warmer coastal waters along the western side of the Middle-basin (Myksvoll 

et al. 2012; Svendsen 1991). In summer stratified water (May – October) a wind-induced 

upwelling and downwelling system sets up on the western and eastern side of the fjord, 

respectively. This often causes a cross fjord gradient in environmental variables and 

stratification. In the Outer-basin, a large eddy is often formed mixing water from the NCC and 

cold water originating from within the fjord (Pedersen et al. 2005; Myksvoll et al. 2012). 

 

 



17 
 

 

Figure 1. Map of the study area: Norway and Porsangerfjord, Norway. Red solid lines delineates the 

area of commercial fishery for red king crabs (Paralithodes camtschaticus), red stippled line shows 

the current distribution of red king crabs, black stippled lines show the location of fjord sills. Red 

circle shows the location of a newly discovered red king crab stock and yellow circle pinpoints the 

Lofoten and Vesterålen area.   

 

The limited exchange of surface waters between the Inner- and Middle-basin results in a strong 

down-fjord gradient in environmental variables, with the water column becoming warmer and 

more saline moving from the fjord head toward the mouth. Recently, The Norwegian 

Geological Survey produced detailed maps of the bottom sediments in the Middle-basin and 

Inner-basin (Anon. 2015). Generally, the deep basins have a muddy and sandy sediment type 

while gravel, cobbles, boulders and hard bottom are found on the western part of the fjord, 

around islands and in bays along the western shoreline.   
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Porsangerfjord is located at the westernmost limit of the quota-regulated area for the red 

king crab (P. camtschaticus) (Figure 1) and was one of the last fjords to be invaded by the crab. 

In 2002, the first crabs were recorded within the fjord (Fuhrmann et al. 2015) and by 2008, a 

quota-regulated fishery for crabs in the Outer- and Middle-basin was established. In 2012, 

juvenile crabs started being caught in the Inner-basin, while a few adult crabs have been 

detected in 2014 (E. M. Nilssen).  

 

3.2 FIELD PROCEDURES  

The temporal dynamics of meroplankton and decapod zoeal release was examined by 

collecting zooplankton samples monthly or bi-monthly between February 2013 and August 

2014 (11 sampling dates in total) from RV Johan Ruud. Zooplankton samples were collected at 

six fixed stations along the eastern side fjord (1c, 2c, 3d, 4a and 4b) and in a shallow protected 

Bay on the western side (B4) (Figure 1). All samples from all stations were analyzed and used 

in Paper III when focusing on decapod zoea (a total of 72 samples). This way spatial and 

temporal dynamics of zoeal stage composition could be studied simultaneously and possible 

hotspots for crab zoea identified. For Paper I, we selected two contrasting stations. This was 

done because identifying meroplankton to the lowest taxonomic level from all the samples 

proved to be complicated (see next section 3.3 for details). Previous seasonal studies on 

meroplankton in fjord and coastal areas usually select stations in shallow protected areas. 

Therefore, one shallow station that was protected and surrounded by mixed sediment types (B4) 

and one deep station influenced by eddies and surrounded by mainly soft sediments (3d) was 

selected (Figure 1). Between April 11th and 17th, 2013 zooplankton samples was collected at 18 

stations within the fjord. Stations were arranged in transects across the fjord: one transect was 

located in the Outer-basin (1a-c), three transects in the Middle-basin (2a-c, 3a-d and 4a-b) and 

two stations in the Inner-basins (5a-b), and four stations in Bays (B1, B2, B3, B4) along the 

western side of the Middle-basin (Figure 1). This way it was possible to identify possible along-

fjord and cross-fjord differences in meroplankton (Paper II) and decapod zoeal stage (Paper 

III) composition and abundance.  

 

All zooplankton samples were collected using a standard WP2 equipped with a 180-µm 

mesh size net (Hydrobios, Kiel, 0.57 m mouth opening) and a filtering cod-end. The net was 

towed vertically from approximately 5 m above the seafloor to the sea surface at a speed of 0.5 

m s-1. One to three hauls were taken at each station and fixed with 4 % buffered formaldehyde 
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in seawater. Environmental variables were provided by the University of Tromsø Sea 

Monitoring Program, which collects CTD-data from fixed stations all along the north-

Norwegian coast including Porsangerfjord. Within the fjord, stations 1c, 2c, 3d, 4a and 4b are 

established monitoring stations and our seasonal zooplankton samples were collected as part of 

this cruise regime. A CTD-profile was collected prior to each zooplankton sample. The CTD-

profiles were cast using a Sea-Bird Electronics SBE9 and a Sea-Bird Electronics SBE25 

(Seabird Electronics Inc., USA). Due to loss of instrumentation during one cruise, we were not 

able to provide CTD-profiles for June 2014. In April 2013 CTD-profiles were collected at all 

stations (Paper II, III). Only environmental variables important for timing of meroplankton in 

the water column were included in the papers. These variables included water column 

temperature, salinity and in situ fluorescence. In situ fluorescence was calibrated to provide an 

approximate chlorophyll a concentration in the water column.  

 

3.3 TAXONOMIC IDENTIFICATION AND STATISTICAL ANALYSIS  

Zooplankton samples were analyzed in the laboratory at UiT, The Arctic University of 

Norway and the two main zooplankton components, meroplankton and holoplankton, were 

counted and identified (Paper I and II). First, the whole sample was sorted through and all 

decapod crab zoea were removed and stored for identification and reference (Paper III). Large 

macrozooplankton were also removed at this stage. Decapod zoea were first identified to genus 

(Figure 2a) or species (Figure 2b) level and then to zoeal stage using available identification 

literature. Anomuran decapods pass through four zoeal stages and a final glaucothoe stage that 

settles on the seafloor while brachyuran decapods have two zoeal stages and a settling megalopa 

stage (see Figure 2a and 2b for examples of stage I zoeae). Because the literature available for 

species and stage identification is based on larvae originating from other geographical localities, 

they differed slightly in size (one of the key ways of separating some species) from the zoea 

identified in this study. Therefore several repeated rounds of identification was needed to 

identify zoeae from Porsangerfjord. If key features separating two very similar species were 

absent (e.g. length of rostral spines on Hyas araneus vs. Hyas coarctatus in Figure 2c and 2d, 

respectively) zoeae were grouped in their respective higher taxon.  

 

Second, randomized subsample aliquots were extracted from the zooplankton sample 

until approximately 300 individuals of each zooplankton component (meroplankton and 

holoplankton) were counted (600 individuals in total) using a stereomicroscope equipped with 
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a calibrated micrometer (Paper I and II). The aim was to identify all meroplankton to the level 

of genus or species using available identification keys. However, many soft-bodied 

meroplankton undergo big changes in morphology from the time they enter the water column 

to the time they are ready to settle (e.g. polychaete larvae in Figure 2f) and closely related 

species can often be very similar in morphology (e.g. bivalve and gastropod veligers in Figure 

2g,h), making species identification difficult. Moreover, there is a scarcity in identification 

literature available for many marine invertebrate larval species and stages. The identification of 

larvae to a low taxonomic level of genus and species therefore proved to be highly complex for 

many taxa. To compensate for this, unidentifiable larvae were pooled according to their 

respective higher taxa or developmental stage (e.g. Prosobranchia veliger, Bivalvia veliger in 

Figure 2g,h). 

 

Holoplankton were identified to the level of phylum or order (Paper I). Copepods were 

separated by order into cyclopoid and calanoid copepods and the calanoid copepods were 

further divided according to size, smaller and larger than 2 mm prosome length. Copepod 

nauplii were considered as a single group. Due to low representation the remaining 

holoplanktonic mesozooplankton and macrozooplankton were identified but designated as one 

group in results and discussion. With this identification scheme, we could describe general 

temporal and spatial trends in the holoplanktonic composition within the fjord.  

 

Total and relative abundance of both zooplankton components were used in the analysis 

of temporal and spatial dynamics. This way the relative abundance of meroplankton in the 

zooplankton community could be evaluated. In Paper I and Paper II, total abundances were 

presented as individuals per cubic meter (ind. m-3). Because of a low number of individuals per 

sample, decapod zoea were presented as individuals per square meter (ind. m-2 in Paper III). 

This is the main presentation method used in decapod zoea studies and makes comparisons 

easier. In the studies we used both univariate statistics: Kruskal-Wallis test; and multivariate 

statistics: Canonical Correspondence Analysis (CCA), Multivariate non-Parametric 

Permutation ANOVA (PERMANOVA), hierarchical clustering and Similarity Percentages 

Analysis (SIMPER). These methods were used to identify temporal and spatial differences in 

meroplankton composition and to pinpoint possible environmental variables responsible. R 

version 2.14.2 (R Development Core Team, 2012) using the vegan (Oksanen 2015) and pvclust 

(Suzuki and Shimodaira 2015) libraries, were used for statistical analysis. Graphs were 
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produced in SigmaPlot Version 13.0 (Systat Software, San Jose, CA), R version 2.14.2 and 

Windows Excel. 

 

 

Figure 2. Photographs of meroplankton collected over the course of this study: a) Hyas sp. stage I 

zoea, b) stage I zoea of the red king crab Paralithodes camtschaticus, c) rostral spines of Hyas 

araneus zoea (spines are longer than the width of rostrum), d) rostral spines of Hyas coarctatus zoea 

(spines are shorter than the width of rostrum), e) cirripede Balanus crenatus nauplii, f) polychaete 

larvae of various stages and species (mainly Spionids), g) various bivalve veligers and h) various 

gastropod veligers.  
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4 SUMMARY OF RESULTS  

Paper I: Seasonal dynamics of meroplankton in a high-latitude fjord  

From the 21 samples collected at two stations (B4 and 3d) over a 1.5 year period, we 

identified 56 distinct morphological larval forms belonging to 41 benthic taxa and eight phyla. 

The two stations did not differ significantly in terms of meroplankton composition nor 

abundance. Multivariate analysis indicated that there were significantly different meroplankton 

compositions through the year separating into winter, spring, early summer and late summer 

assemblages. The winter composition of main meroplanktonic taxa was composed of mainly 

gastropod veligers and bryozoa cyphonautes, while the composition during spring was 

dominated by cirripede nauplii and polychaete larvae (Figure 3). In early summer a wide variety 

of meroplankton taxa were present, belonging primarily to polychaeta and echinodermata 

(Figure 3). Finally, late summer comprised of bivalve veligers and bryozoan cyphonautes larvae 

(Figure 3). The highest abundances of larvae appeared during spring and summer, forming two 

peaks in meroplankton abundance in April and August (Figure 3). The spring peak was 

dominated by cirripede nauplii, while the late summer peak was dominated by bivalve veligers. 

Meroplankton were the principal component in the zooplankton community in spring. By 

contrast, winter had a very low abundance of meroplankton and their relative abundance in the 

zooplankton community was negligible. The presence of a majority of meroplankton correlated 

with primary production and temperature in the water column. The fact that meroplankton were 

present in the water column through the whole year and at times were the dominant component 

in the zooplankton community, suggests that they, in addition to being important for benthic 

recruitment, are important in the pelagic ecosystem as grazers on phytoplankton and as prey for 

other organisms. 
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Figure 3. The seasonal relative abundance of the main meroplanktonic groups and the total abundance 

of meroplankton in Porsangerfjord, Norway (based on mean abundances from the two stations B4 and 

3d).  

 

Paper II: Spatial patterns of spring meroplankton along environmental gradients in a 

sub-Arctic fjord 

Because April was one of the spring months that experienced a peak in meroplankton 

abundance and relative abundance in the zooplankton community, their spatial patterns, 

relationship with environmental variables and their relative abundance in the mesozooplankton 

community was investigated in April 2013. In this part of the study, a total of 32 

morphologically different larval forms were identified belonging to 23 taxa and eight phyla. 

Meroplankton were found at all stations and their community structure and total abundance 

differed significantly along the fjord (Figure 4). The abundance in the Inner-basin and Outer-

basin was low and dominated by gastropoda and echinodermata, respectively (Figure 4). The 

highest abundances were recorded in the Bays and the Middle-basin where cirripedia and 

polychaeta were dominant (Figure 4). Numerically meroplankton contributed highly to the 

zooplankton community in the Bays (30-90 %) and Middle-basin (13-48 %). Changes in 

community structure were attributed to spatial gradients in environmental variables such as 

chlorophyll a, salinity and temperature. When these results were compared with the seasonal 

communities found in Paper I, the different communities suggested a down-fjord seasonal 

succession in reproductive events where the Inner-basin had a community typical for late winter 

(dominated by gastropods), the Middle-basin typical of spring (dominated by cirripede nauplii) 
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while the Outer-basin was more typical for late spring to early summer (dominated by 

echinoderms).  

 

 

Figure 4. The spatial relative abundance of the main meroplanktonic groups in April 2013 in 

Porsangerfjord, Norway. 

 

Paper III: Temporal and spatial dynamics of invasive Red King Crab larvae and co-

existing decapods in north Norwegian waters 

Temporal and spatial patterns in larval stages belonging to the invasive red king crab 

(Paralithodes camtschaticus) and co-existing native decapods was investigated at 6-18 stations 

over the whole study period (1.5-years). To explain the spawning behavior of the red king crab 

population in Norwegian waters, the degree of egg hatching was determined from females 

collected at selected stations in April 2013 and 2014. Larvae of the red king crab were the first 

to be released into the water column and display a prolonged larval release (Figure 5), where 

hatching starts in January and terminates in late April or early May. This is likely due to several 

peculiarities in their spawning behavior - like a protracted hatching that lasts 30 days for 
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individual females and a later shift in timing with each successive reproduction - together with 

the environmental effects influencing both the adults and their zoea. Two native larval 

decapods, Pagurus pubescens and Hyas araneus, displayed a similar behavior, appearing in the 

water column in February and March, respectively and residing there for three to four months 

(Figure 5). Finally, three native decapods, Pagurus bernhardus, Hyas coarctatus and Munida 

sp., were observed later in spring and summer and had a comparably shorter larval duration. 

The highest density of decapod larvae was located in shallow areas of the fjord and in locations 

with mixed sediment types of hard bottom and gravel, and may reflect aggregative behaviors 

displayed by spawning females. Based on the biogeographical origin of the decapod species, 

the differences in timing and duration in the water column is due to various tolerances to 

environmental variables. Moreover, findings from this study could help explain how high-

latitude species such as the red king crab have successfully invaded the southern Barents Sea 

and how they may spread further along the Norwegian coast.  

 

 

Figure 5. Timing and duration decapod zoeae various decapod species are found in the water column 

and the monthly average environmental variables – seafloor and surface temperature (ºC) and 

Chlorophyll a (µg chla l-1) in Porsangerfjord, Norway.  
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5 DISCUSSION  

5.1 MEROPLANKTON COMPOSITION AND SEASONALITY  

By sampling the sub-Arctic Porsangerfjord over a 1.5-year period, we found a strong 

seasonal variation in larval timing, duration and abundance in the water column (Paper I, III). 

The peak abundance and highest number of meroplanktonic taxa were found in spring and 

summer (Paper I, II). This appears to be a prominent feature across the whole sub-Arctic and 

Arctic (e.g. Eastern Greenland by Thorson 1936; Andersen 1984; Western Greenland by Smidt 

1979; Arendt et al. 2013; the Chukchi Sea by Hopcroft et al. 2010; Questel et al. 2013; the 

Northeast Atlantic by Falk-Petersen 1982; Silberberger et al. 2016; Stübner et al. 2016; 

Kamchatka by Kulikova et al. 2000) and demonstrates that these seasons are important for 

spawning and reproduction of many benthic organisms at these latitudes.  

 

Currently, only a handful of meroplankton studies have focused on identifying the entire 

meroplanktonic community to a high taxonomic level in sub-Arctic (Paper I, II; Falk-Petersen 

1982; Shlüter and Rachor 2001; Silberberger et al. 2016) and high-Arctic waters (Thorson 1936; 

Smidt 1979; Andersen 1984; Fetzer and Arntz 2008). In Porsangerfjord, 41 benthic taxa and 75 

distinct larval stages belonging to eight phyla were identified on a temporal and spatial scale 

(Paper I, II, III). Although this number of taxa is lower than that found in temperate waters 

(e.g. 160 taxa by Thorson 1946) and a recent sub-Arctic shelf study (65 taxa by Silberberger et 

al. 2016), it is within a comparable range to that of other high-latitude coastal areas and suggests 

that similar benthic compositions and reproductive strategies are operating in the sub-Arctic 

and Arctic (Paper I). The level of taxonomic resolution and identification of larval stage varies 

between studies due to the difficulty in identifying some larvae to a low taxonomic level and 

the scarcity of identification literature available for larvae of many boreal and a majority of 

Arctic species. Therefore, a higher number of taxa are most likely present at high-latitudes 

(Paper I). Morphological identification of mollusk larvae in particular has been fraught with 

difficulty regardless of latitude, as closely related species are indiscernible at early stages 

(summarized by Pulfrich 1997). Yet, in a recent study from Svalbard, bivalve veligers were 

identified to species level and larval stage by using a combination of morphological 

identification and molecular techniques (Brander et al. 2016). Combining classical 

morphological taxonomy with modern molecular methods are proving to be a promising future 
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within meroplankton biology and has been used in an increasing number of studies in Antarctic 

waters (e.g. Webb et al. 2006; Bowden et al. 2009). 

 

Other year-round meroplankton studies at high-latitudes report a very similar but also 

somewhat different seasonal composition and development in the main meroplanktonic groups 

found in this study (Paper I). For example, a pulse of cirripedia nauplii is a common feature in 

spring, followed by multiple peaks of echinoderm and polychaete larvae through spring and 

summer, high abundance of bivalve veligers and bryozoan cyphonautes in late summer and fall 

and finally a low abundance of mainly gastropod veligers in winter appears to be a common 

scenario in the sub-Arctic and Arctic (e.g. Paper I; Smidt 1979; Kuklinski et al. 2013; 

Silberberger et al. 2016; Stübner et al. 2016). This pattern is also observed for polychaete and 

echinoid larvae, while bivalve veligers are only recorded in late summer in sub-Antarctic and 

high-Antarctic waters (Stanwell-Smith et al. 1999; Bowden et al. 2009; Sewell and Jury 2011). 

In contrast to the seasonal assemblages found in this study, Thorson (1936) did not record any 

gastropod veligers during winter in Franz Joseph Fjord, Greenland while Stübner et al. (2016) 

reported bivalve veligers and bryozoa cyphonautes in mid-winter in Adventfjord, Svalbard. 

Finding comparable seasonal compositions of the main meroplanktonic groups suggest that 

benthic adults belonging to these groups respond in similar ways to external and internal forces 

over broad geographical scales. At the same time, dissimilarities between studies are expected 

as various regions exhibit different hydrographics, hydrodynamics, substrate types and benthic 

adult compositions.  

 

Identifying larvae to the lowest taxonomic level demonstrated that a seasonal succession 

of taxa, larval stages, abundance and durations are operating through the year in Porsangerfjord 

(Paper I, III). Three co-occurring mass spawning cirripede species were responsible for the 

peak meroplankton abundance in spring. This is similar to findings from sub-Arctic shelf seas 

outside Lofoten-Vesterålen, Norway, however unlike our finding they also detected a slight 

temporal succession in the timing of peak abundance for these species through spring and early 

summer (Silberberger et al. 2016). Interestingly, although the greatest variety of taxa had their 

peak larval abundance in the early summer months the total bulk of meroplankton decreased 

this season. This feature has also been found in Greenland fjords (Smidt 1897; Andersen 1984) 

and in another north Norwegian fjord (Balsfjord, Norway by Falk-Petersen 1982) and 

demonstrates that these taxa are not mass spawners to the same degree as cirripedes and 

bivalves. The duration different larvae were present in the water column varied, ranging from 
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six months for red king crab zoea to single observations of Anomia sp. in August (Paper I, III). 

Other organisms like gastropods were found year around but due to the lack of high taxonomic 

resolution on this taxon, it is unknown if this consists of one or several species with continued 

or successive spawning. It is important to note that by sampling monthly to bi-monthly we have 

likely missed some larval dynamics, as some larvae may have appeared and settled between our 

sampling dates (Paper I, II). Moreover, by using a coarse mesh size of 180 µm many young 

larval stages of bivalves, polychaetes and trochophores have escaped the net (Paper I, II). 

Despite this by comparing findings between meroplankton studies using various sampling 

frequencies and methods we are steadily getting closer to understanding the full scope of 

meroplankton seasonality at high-latitudes.   

 

5.2 ENVIRONMENTAL VARIABLES CORRELATES WITH MEROPLANKTON 

SEASONALITY 

The meroplankton assemblage is affected by environmental variables in boreal (Thorson 1946), 

sub-Arctic (Silberberger et al. 2016) and Arctic waters (Brander et al. 2016; Kuklinski et al. 

2013; Stübner et al. 2016). In the present study, correlations between the environment and 

meroplankton were detected on both a temporal (Paper I) and spatial scale (Paper II). The 

majority of meroplankton in Porsangerfjord are planktotrophic (Paper I) and their ability to 

locate an adequate quantity and quality of food is vital for development and survival (Thorson 

1950). Thus timing larval release to phytoplankton availability greatly increases the chance of 

propagules surviving to settlement. Mazzuco and Kasten (2017) argued that releasing larvae at 

a time when food is abundant in the water column is a strong evolutionary driver for benthic 

invertebrates with feeding larvae. This likely explains why the greatest number and variety of 

planktotrophic cirripede, polychaete, decapod, echinoderm and bivalve larvae are present 

during the spring and summer phytoplankton bloom in sub-Arctic (Paper I, II, III; Falk-

Petersen 1982; Silberberger et al. 2016) and Arctic waters (Smidt 1979; Stübner et al. 2016). 

Some benthic invertebrates also have temperature requirements during their larval phase 

(Mileikovsky 1968). For example, larvae of many boreal organisms need warmer sea surface 

temperatures to successfully grow, feed and survive (e.g. the boreal hermit crab P. bernhardus 

in Paper III). Increased temperatures will ultimately accelerate larval development and thereby 

shorten the time larvae are exposed to pelagic predators and potential adverse advection with 

currents.  
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For invertebrates to synchronize spawning and larval release with the phytoplankton 

bloom and favorable sea surface temperatures, they rely on external ques like chlorophyll a 

concentration, temperature and photoperiod as triggers (Paper I, II; Kuklinski et al. 2013; 

Silberberger et al. 2016; Stübner et al. 2016). In this study, the identification of larvae to the 

lowest taxonomic level made it possible to discern when and possibly why certain taxa are 

present in the water column through the year. Cirripedes, such as Semibalanus balanoides, 

release their nauplii when they come into direct contact with substantial concentrations of 

diatom cells (Barnes 1962). Waiting for this direct que is a strong signal that an adequate 

amount of suitable food is available as soon as their larvae enter the water column in spring 

(Paper I, II). The boreal-Arctic spider crab H. araneus and polychaetes belonging to genus 

Dipolydora require a combination of cooling temperatures and increasing photoperiod prior to 

and during egg hatching in late winter and early spring (Paper I; Petersen 1995). This early 

spawning mechanism is advantageous at high-latitudes where the onset of the phytoplankton 

bloom can occur while temperatures are low but photoperiod is increasing (Eilertsen and 

Frantzen 2007). In contrast, many polychaetes (Blake and Arnofsky 1999), echinoderms 

(Mercier and Hamel 2009), bivalves (Günther and Fedyakov 2000) and decapods (Paper III; 

Lindley 1998) require a combined increase in temperature, photoperiod and/or nutrients. Larvae 

belonging to these groups are released through summer, thereby coinciding with peak 

phytoplankton bloom and sea surface temperature (Paper I, III). These findings suggests that 

benthic invertebrates are well adapted to the temporal dynamics in phytoplankton and 

temperature in Porsangerfjord. 

 

Interestingly, some meroplankters appear to be unsynchronized with favorable 

environmental variables and reside in the water column in fall and winter (Paper I; Hirche and 

Kosobokova 2011; Silberberger et al. 2016; Stübner et al. 2016). It has been suggested that 

many of these larvae are lecithotrophic and can thus utilize a larger part of the year for 

spawning, even when there is no phytoplankton available (Thorson 1950). However, in this 

study some larvae present this season could be planktotrophic and likely utilize alternative food 

sources (Paper I). The advantage to releasing larvae in winter could be less competition for 

space when settling on the seafloor (Kuklinski et al. 2013; Meyer et al. 2017). Moreover, newly 

settled recruits potentially receive sinking nutrients in the form of phytoplankton cells and 

detritus during the phytoplankton bloom, providing them with a good start to the benthic phase 

(Thorson 1946). These findings add to the evidence that benthic invertebrate reproduction and 
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biological processes are operating during the polar night in not only Arctic waters (Berge 2015), 

but also in sub-Arctic waters (Paper I; Silberberger et al. 2016).  

 

5.3 ENVIRONMENTAL GRADIENTS CAUSE SPATIAL VARIATIONS IN 

MEROPLANKTON ASSEMBLAGE 

Spatial patterns of planktonic larvae is influenced by the local adult community, 

environmental variables, adult spawning behavior, larval behavior, larval duration and 

hydrodynamics (Shanks 2009; Pineda et al. 2010). In this thesis, I provide some of the first 

evidence that down-fjord gradients in environmental variables influence spawning and larval 

release of benthic invertebrates (Paper II). In the Inner-basin, sub-zero temperatures and low 

chlorophyll a concentrations may have inhibited spawning for some benthic adults, thereby 

causing the meroplankton community to be of a late winter and early spring assemblage in April 

2013. In contrast, the community in the Outer-basin consisted of taxa that are more typical of a 

spring and early summer assemblage, and correlated with the highest seafloor salinities and 

temperatures recorded in April. A similar reproductive delay has been found for the 

holoplanktonic copepod Calanus finmarchicus in the Inner-basin of Porsangerfjord. They 

release their nauplii one month later and have a longer developmental time than those residing 

in the Outer-basin (Priou 2015). Spatial studies in other Atlantic influenced sub-Arctic and 

high-Arctic fjords have shown a similar up-fjord delay in reproduction and development by 

holoplanktonic organisms (e.g. Falkenhaug et al. 1997). Thus, reproductive patterns in both the 

benthic community and the holoplanktonic are influenced by along fjord gradients in 

environmental variables of high-latitude fjords. 

 

Two general features of potential larval origin and settlement in the fjord became 

apparent: first, because the larval assemblage reflected the benthic adult composition and there 

was a significant difference in meroplankton community and abundance between the three 

basins it could be suggest that larvae were, to some extent, locally produced. Second, shallow 

protected bay stations had the greatest abundances of larvae both on a temporal and spatial scale 

and likely act as hotspots and retention areas for propagules of intertidal and subtidal adults. 

The benthic invertebrate community within the fjord may therefore be self-recruiting depending 

on area of release. Recent evidence indicate that local retention close to the release site may 

actually be a common feature for many pelagic larvae in coastal, fjord and embayment waters 

(Archambault et al. 1998; Levin 2006; Silberberger et al. 2016). Current systems within parts 



31 
 

of Porsangerfjord are however strong, water exchange between the Mid-basin and Outer-basin 

is frequent and larval duration in high-latitudes can last between 2-8 weeks, thus larval transport 

out of the fjord and intrusion of propagules originating from outside the fjord cannot be entirely 

excluded. A recent study on the mesozooplankton community in Porsangerfjord found that 

advection is occurring due to the presence of holoplanktonic organisms originating from outside 

the fjord in the Outer-basin and the outer parts of the Middle-basin (Varela 2015). In contrast, 

the Inner-basin is more enclosed and experience less larval advection due to the shallow sill 

(Myksvoll et al. 2012), which may aid in the maintenance of a unique refuge area of Arctic 

benthic species in this basin.  

 

5.4 MEROPLANKTON IN THE MESOZOOPLANKTON COMMUNITY AND THE 

FOOD WEB 

In Porsangerfjord meroplankton was periodically a high contributor (summer) and a 

dominant (spring) component in the mesozooplankton community on both a temporal (Paper 

I) and spatial scale (Paper II). This agrees well with other studies on seasonal dynamics of 

zooplankton in high-latitude coastal and fjord studies, which have shown a periodic (e.g. Smidt 

1979; Willis et al. 2006; Kwasniewski et al. 2013; Questel et al. 2013) or even a continuous 

(Stübner et al. 2016) dominance and high contribution of meroplankton through spring and 

summer. In contrast to coastal waters, meroplankton are a negligible component in the water 

column of the deep open ocean (Longhurst 1998) and is linked with a predominantly direct 

benthic reproduction and development at great depths. The spring dominance of meroplankton 

at high-latitudes typically appear at the start of the phytoplankton bloom prior to the increase 

in copepods and is predominantly due to the pulse of planktotrophic cirrpede nauplii (Paper I; 

Smidt 1979; Kwasniewski et al. 2013; Stübner et al. 2016). Similar to our study, Walkusz et al. 

(2009) found that cirripede nauplii and echinoderm larvae caused a pulsed and patchy 

dominance of meroplankton thorough spring and summer in Kongsfjord, Svalbard. A 

dominance due to cirripedes was however not found in Young Sound east Greenland (Nilsen et 

al. 2007) and is likely caused by prolonged ice scouring causing adults to become dislodged 

from the sea floor (Kwasniewski et al. 2013). A recent study in Adventfjorden, Svalbard found 

that bivalve veligers caused a prolonged dominance of meroplankton through mid to late 

summer (Stübner et al. 2016). Although meroplankton abundance, distribution, seasonality and 

composition in fjords and coastal areas is variable in nature, their periodic high contribution to 
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the mesozooplankton community during the productive seasons could point to an important role 

in the pelagic food web.  

 

Currently, the general consensus is that feeding pressure exerted by meroplankton is 

negligible due to low abundances and clearance rates (Strathmann 1996; Hansen et al. 1997). 

Yet, many dominant meroplankton found in this (Paper I) and a recent Arctic study (Fetzer 

and Arntz 2008) appear to be planktotrophic and can feed on a mixture of diatoms, flagellates, 

ciliates, bacteria, detritus and dissolved organic materials (Young et al. 2002). Currently, 

literature on larval nutritional mode (planktotrophic vs. lecithotrophic), ingestion rates and food 

selectivity for many benthic invertebrates are scarce (Paper I). The studies that have looked 

into these mechanisms show that feeding often change with larval ontogeny and differ between 

taxa and larvae of similar size (e.g. Cirripedes by Stone 1989; Echinoderms by Hart 1996; 

Opisthobranchs by Hansen 1991; Polychaetes by Hansen et al. 2010) making the potential role 

of meroplankton in the pelagic food web difficult to determine. In general, crustacean larvae 

have higher ingestion rates, compared to ciliated filter-feeding larvae due to a more efficient 

feeding behavior and morphology of feeding structures (Strathmann 1971; Hansen et al. 1997). 

Yet, ciliated larvae like polychaetes, mollusks and echinoderms display an omnivorous diet 

(Young et al. 2002) and their feeding pressure can be substantial depending on their abundance 

and prey field. Jørgensen (1981) found an abundant veliger cohort of the bivalve Mytilus edulis 

to have a daily clearance rate of 0.25 – 1.39 ml larva-1 d-1 on nanophytoplankton, in Isefjord, 

Denmark, which resulted in a loss of 40 – 50 % nanophytoplankton in local waters. Since 

crustacean and ciliated meroplankton of different species and sizes occur simultaneously in 

high abundances in fjords and estuaries they should not be overlooked as part of the food-web 

structure. Meroplanktonic larvae can also serve as prey for a wide range of pelagic predators 

such as chaetognaths, ctenophores, hydromedusae, schyphomedusae, euphausiids, shrimp, fish 

larvae and juveniles and other predatory meroplanktonic larvae (Thorson, 1950), and many of 

these predators overlapped with meroplankton in time and space in the present study (Paper I). 

Juvenile capelin and herring caught at the mouth of Porsangerfjord have been found to have 

bivalve veligers, polychaete larvae, cirripede nauplii and bryozoa cyphonautes in their stomachs 

(Fossheim et al. 2006; Pedersen and Fossheim 2008). Thus during spring and summer, 

meroplankton is an important food source for pelagic predators. The periodic dominance of 

meroplankton in the water column certainly warrants further research on what trophic role 

meroplankton may have in high-latitude coastal waters. 
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5.5 CAN LARVAL DYNAMICS SHED LIGHT ON THE INVASIVE SUCCESS OF RED 

KING CRABS?  

For an invasive species to persist and survive in a new environment they need to recruit 

successfully on a consistent basis (Anger 2006). Hence, invasive marine invertebrates with 

planktotrophic larvae must release their propagules at a time when they experience favorable 

conditions in the water column. The present study, showed that larval release by red king crabs 

in Porsangerfjord is prolonged over a period of approximately 4 to 5 months, starting in winter 

(January) and ending in early summer (May). Disseminating larval release over such a long 

period is a highly advantageous reproductive behavior because it increases the chance that at 

least some zoea will encounter favorable conditions. That zoea of the red king crab can tolerate 

a broad range of temperatures and salinities make them even more suited for life in fluctuating 

environments (Larsen 1996). However, duration of the zoeal phase is highly sensitive to food 

availability and temperature in the water column (Paul and Paul 1980; Shirley and Shirley 

1990). In north Norwegian and native Alaskan waters, larval release by red king crabs appeared 

to be uncoupled with the phytoplankton bloom (Paper III; Shirley and Shirley 1989; Shirley 

and Shirley 1990). Therefore, zoeae residing in the water column in January and February may 

experience a suboptimal availability of food, leading to a prolonged larval phase and subsequent 

reduced survival (Paper III; Shirley and Shirley 1990). Those present in the water column from 

March will encounter favorable conditions as the phytoplankton bloom builds and the pulse of 

suitable meroplanktonic larval prey becomes available (Paper III).  

 

When the final pelagic stage of the red king crab is ready to settle on the seafloor they 

actively chose shallow (< 27 m) structurally complex habitats with heterogeneous hard bottom 

and communities of bryozoans and hydrozoans and thus plenty of hiding places from predators 

and availability of food (Stevens and Kittaka 1998). Having a long individual residence time in 

the water column (two months) coupled with a protracted hatching period leaves zoeae of the 

red king crab at the risk of dispersing vast distances and potentially away from favorable places 

to settle. In a 3 year modelling study on advection of red king crab zoea in fjords and along the 

coast of northern Norway, Pedersen et al. (2006) found that zoeae released within fjords and 

semi-enclosed areas generally stayed close to their release site each year while those released 

in less protected areas on the coast were transported into the Barents Sea or along the shelf with 

the Norwegian coastal current depending on the wind systems. The present study suggested that 

some degree of retention was operating within Porsangerfjord, as zoeae were only found in the 
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Middle-basin and the bay stations retained the greatest abundance of zoeae (e.g. stations B4 and 

B3 in Paper III). Zoeae released or transported into the Outer-basin of Porsangerfjord may be 

subject to a higher level of advection (Paper II), which based on advection modeling mainly 

travel east with the Norwegian coastal current (Pedersen et al. 2006). However, a small fraction 

are transported west and thus outside the quota regulated area. Having a migratory spawning 

behavior where larvae are released at shallow protected sites, semi-enclosed areas and within 

fjords is highly advantageous for this species as it increases the chance that zoeae are retained 

in close proximity to suitable settlement areas. This coupled with the complex coastal and 

seafloor topography with numerous fjords and semi-enclosed areas along the Norwegian coast 

increases the chance that red king crab zoeae do not travel far (Shanks 2009), can locate 

favorable settlement habitats and thus survive their larval phase.  

 

Although the open fishery and decimation fishery for red king crabs has slowed their 

spread west of 26 ºE (Sundet and Hoel 2016), young crabs have recently been caught in fjords 

around Tromsø (red circle in Figure 1) indicating that a local stock has established in the area 

(E. M. Nilssen pers. comm.). Given their wide tolerance to environmental variables and their 

potential for further spread there is concern that the red king crab could also establish north in 

Svalbard waters (Christiansen et al. 2015). It is unlikely that adult migration will be responsible 

for any northward migration given that the deep depth between the continental shelves of 

Norway and Svalbard is outside the depth range utilized by adults. However, if a crab stock 

establishes around Vesterålen, Norway (yellow circle in Figure 1), larvae could be advected 

with the strong Norwegian Atlantic Current that passes this area before moving into Svalbard 

waters (Loeng 1991). A recent study modelling the drift of bivalve veligers from Vesterålen to 

Svalbard showed that surface-layer transport takes between 47 to 80 days in May and that 

transport is likely faster earlier in spring (Berge et al. 2005). A protracted larval release through 

spring (Paper III) and a larval duration that lasts on average two months, could thus provide 

plenty of opportunities for northward advection of king crab zoeae. For these zoeae to 

successfully recruit and establish a new Svalbard stock there needs to be an adequate prey field 

available in the water column as they advect and that they need to locate suitable settlement 

localities once they reach Svalbard. Future research on king crab zoea should therefore also 

model a potential northward advection. The findings in this study ultimately provides further 

evidence that a strong fishery on particularly female red king crabs is vital when aiming at 

decreasing and restricting the spread of crab outside the quota regulated area in northern 

Norway. 
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It is clear that for the red king crab as population and from an economic standpoint, the 

introduction has been successful and that a combination of different life history traits and life 

cycle mechanisms have contributed to this success. These include high individual investments 

in eggs (Stevens 2014), high female fecundity (Hjelset et al. 2012), a large size at maturity 

(Hjelset et al. 2008), a migratory spawning behavior to shallow protected areas (Paper III; 

Sundet and Hjelset 2010), a protracted zoeal release (Paper III), a temporal match between 

favorable pelagic conditions and zoeae (Paper III), zoeal and adult stages that are tolerant to a 

wide range of temperatures (Larsen 1996; Christiansen et al. 2015), an omnivorous diet (Paul 

et al. 1979; Fuhrmann et al. 2015; Fuhrmann et al. 2017) and the ability to migrate great 

distances into new areas (Windsland et al. 2014). Moreover, characteristics of the southern 

Barents Sea and Porsangerfjord contribute to the success by providing favorable environmental 

variables for both the pelagic and benthic phase, a rich prey field (Fuhrmann et al. 2015), few 

natural enemies (Sundet 2014) and little competition during their adult life (Fuhrmann et al. 

2017) and a complex coastal topography with a wide range of suitable areas for feeding, 

spawning and larval settlement coupled with hydrodynamics that keep some larvae close to 

suitable settlement locations (Pedersen et al. 2006). Combined, these factors show that the red 

king crab have the potential to continue their spread south along the Norwegian coast and 

potentially north to Svalbard waters.  

 

5.6 BENTHIC INVERTEBRATE REPRODUCTION IN A WARMING OCEAN 

In this study we show that shifts in timing of larval release due to changes in temperature 

and phytoplankton bloom occur at the level of individual species and main meroplanktonic 

groups on broad latitudinal scales (Paper I, III), over short spatial scales (Paper II) and 

interannually (Paper I). For example, cirripeds nauplii appear later in regions with delayed 

bloom situations (Paper II). Boreal organisms such as the hermit crab Pagurus bernhardus 

require warm temperatures in the water column to hatch their eggs and for their larvae to 

survive, therefore a later larval release is observed with increased latitude and subsequent later 

warming of the water column (Paper III; Lindley 1987; Lindley et al. 1993). This demonstrates 

how reproductive phenology of benthic invertebrates is fine-tuned with local environmental 

variability in the various regions they inhabit. Temperature has a strong influence on benthic 

invertebrate reproduction. In a warming ocean due to climate change, long term temperature 
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increase may have consequences for reproductive phenology, recruitment success, range 

expansion of benthic organisms and benthic community structure in sub-Arctic and Arctic 

waters. Changes in timing of spawning has already been demonstrated for echinoderms in the 

North Atlantic and North Sea, which in a 44 year time series appear progressively earlier in the 

year as temperatures in the water column have gradually increased (Edwards and Richardson 

2004; Kirby and Lindley 2004; Kirby et al. 2008). Shifts in phenology have been proposed to 

cause a potential mismatch in time between larvae and the food and environment they require 

(Atkinson et al. 2015). How larval survival and reproductive cycles of benthic organisms will 

respond to higher temperatures in the future, will depend on their niche breadth, plasticity and 

ability to adapt (Philipart et al. 2014; Slayter et al. 2013). Here an organism’s niche can be 

defined, in the widest sense, as the range of tolerance for multiple environmental factors like 

temperature and salinity, their dietary requirements and their utilization of these both in time 

and space (Hutchinson 1957; Slayter et al. 2013). Species with a broad generalist niche during 

their adult and larval stage could be expected to be more tolerant to increased temperatures. 

Examples of such species are the red king crab which are tolerant to a wide array of 

temperatures during a majority of their life and disseminates larval release over time in order 

to optimally utilize food resources in the water column (Paper III). Specialist species with a 

narrower niche are likely to be less tolerant to increased temperatures and may experience 

periods that are suboptimal for successful reproduction. Research therefore needs to continue 

looking at environmental tolerances, larval timing in the water column and how timing 

corresponds with favorable environmental variables.  

 

The north Norwegian coast lies at the transition between sub-Arctic and high-Arctic 

waters and serves as a biogeographical transitional zone for many benthic organisms, which 

reside at their northernmost and southernmost distribution limit (Mileikovsky 1968). Temperate 

and boreal species requiring warm temperatures for reproduction could find a warming Arctic 

more favorable and thus move northward. A northward shift from sub-Arctic Norwegian to 

Arctic Svalbard waters has already been noted for the boreal bivalve Mytilus edulis and has 

been attributed to periodically warm years (Berge et al. 2005). Similar expansions could be 

expected for other organisms. For example, females of the hermit crab P. bernhardus, require 

late fall and winter temperatures of between 6 to 8 °C to produce eggs (Lancaster 1990), while 

the larval stage require temperatures above 6 ºC to survive in spring (Dawirs 1979). Currently 

these temperature requirements are too high for this crab to establish a viable population in 

Svalbard waters where temperatures are generally lower than 6 ºC in fall and winter (Loeng 
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1991). In contrast, Arctic species that require cold winter temperatures for reproduction will 

likely respond in the opposite way by retreating north. Thus, a predicted temperature increase 

of 2 to 4 ºC during winter in high-latitude waters by the end of the century (IPCC 2001), will 

certainly cause changes in local reproductive phenology and distribution patterns of benthic 

invertebrates.  
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 

This thesis provided new knowledge on meroplankton dynamics in sub-Arctic waters, 

including their temporal and spatial abundance, assemblage and relative abundance in the 

mesozooplankton community. Moreover, it was shown that reproductive strategies of the red 

king crab makes them well suited for life in the southern Barents Sea and that they are equipped 

to continue their spread westward and potentially north into Svalbard waters.  

 

The composition and abundance of meroplankton formed four distinct seasonal 

assemblages caused by a complex succession of taxa and larval stages through the year. Larvae 

varied in the duration they resided in the water column, some benthic invertebrates were mass 

spawners producing large quantities of larvae causing the bulk of meroplankton to peak some 

months. These finding provides strong evidence that benthic invertebrates are tuned to release 

their larvae at different parts of the year and shows various reproductive strategies and life 

history traits are operating in sub-Arctic waters. Because a majority of larvae correlated with 

the phytoplankton bloom through spring and summer it can be concluded that phytoplankton is 

involved in governing when spawning and larval release should take place for many benthic 

organisms and may act as a direct trigger for some species. Strengthening notion is the fact that 

many of these larvae were identified as planktotrophic and thus need to be released when food 

is available in the water column. Meroplankton also correlated with temperature, where some 

species wait for an increase in temperature before spawning. This can increase larval survival 

by shortening the time they reside in the water column. Finding an up-fjord delay in the seasonal 

succession of meroplankton communities which correlated with the up-fjord decrease in 

temperature and chlorophyll a provides further evidence that timing of some benthic larvae is 

coupled with temperature and phytoplankton. The significantly different communities in the 

three basins and high concentration of larvae in protected bays suggests that larvae are locally 

produced and may add to increasing evidence that local retention is a common feature in fjord 

and coastal waters. Yet some degree of larval transport into and out of the fjord cannot be 

entirely excluded. To elucidate the origin of larvae in the fjord requires studying spatial patterns 

in larval supply, juvenile settlement localities and adult compositions. A periodic dominance of 

planktotrophic meroplankton in the mesozooplankton community both in space and time 

suggests that they are an important part of the pelagic food web, both as grazers on 

phytoplankton and as potential prey for other pelagic predators. This therefore warrants further 
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studies on larval feeding type (planktotrophic vs. lecitotrphic), diet and potential predators on 

meroplankton at high-latitudes.  

 

Red king crabs released their larvae over a period of four to five months and larvae were 

present in the water column for six months. Having a protracted larval release acts as a 

successful reproductive strategy for this high-latitude invasive species, ensuring that at least 

some larvae will match the variable phytoplankton bloom and thus survive to settlement. This 

coupled with a complex and favorable coastal topography with plenty of shallow protected 

areas to release larvae, retain larvae and for juveniles to settle makes the red king crab well 

equipped for life in the southern Barents Sea. It also makes them able to continue their westward 

spread along the Norwegian coast and potentially advect north into Svalbard waters. Therefore, 

to restrict its spread it is vital that the Norwegian government continue the free fishery and 

decimation fishery on female crabs outside the quota restricted area. Further research is needed 

to model potential northward drift of zoeae, to identify their predator-prey relationship with 

phytoplankton and other prey organisms and identify potential predators in the water column 

of Norwegian waters.  

 

There is still a strong need to better understand various reproductive strategies and the 

temporal and spatial patterns in spawning and larval release displayed by benthic invertebrates 

and how this structures benthic populations. Moreover, predicting how species may respond to 

warmer temperatures due to climate change and how this may change benthic community 

structure calls for a more holistic research effort on both the pelagic and benthic phase. This 

will require the identification of meroplankton in spatial and temporal zooplankton studies 

together with benthic studies that incorporates juvenile settlement dynamics with adult 

population patterns in sub-Arctic and high-Arctic waters. Identification of larvae to the level of 

species, genus and larval stage should become a central part when working with meroplankton 

and can be done by combining morphological identification with molecular techniques. 

Moreover, field and laboratory experiments on reproductive strategies and tolerances to various 

environmental variables during the adult and larval phase of benthic invertebrates needs to be 

continued.   
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