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Abstract
The fishing and aquaculture industry is one of the largest industries of Norway.
Enhanced knowledge of the distribution of fish in the ocean is important for an
economical and sustainable fishing industry. This study investigates the possibilities
of using Gaussian processes for regression within fish catch prediction. A dataset that
combines catch reports from the Norwegian shipping company Havfisk ASA with a
multitude of ocean-related data is created, and analysed in this thesis. Stochastic
variational inference for Gaussian process models is used for the regression, as the
method allows the use of Gaussian processes for regression on large datasets. The
aim of this study is to assess the suitability of the dataset for fish catch predictions,
in addition to evaluating the predictions from the Gaussian process model. Different
investigations were performed within; time dependency, clustering analysis, data
transformation and feature selection. The investigations indicates that Gaussian
processes for regression do reveal a structure in the dataset and that the collected
dataset is suitable for fish catch prediction.
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1
Introduction
The interest of analysing and finding patterns in large, historical datasets are far
from new within the field of statistics. Predicting the future weather or the final
score in a game are coveted skills, which have been of interest for a long time. The
amount of data that are stored over the years increases, and so does the need for
processing, understanding and analysing the data. Computer power and capacity has
increased over the last decades, which can explain the increasing attention that the
field of machine learning, abbreviated ML, has received in recent years. ML combines
statistical knowledge with computer science and is based on algorithms that learn
from datasets without explicitly being be told how to interpret the data [52].

One of the largest industries of Norway is the Norwegian fishing and aquaculture
industry [16], where the profit of today’s traditional fishing industry is highly depen-
dent upon the knowledge of individual skippers and fishermen. Better knowledge of
the distribution of the fish in the ocean, both quantity and location, is important for
an economical and a sustainable fishing industry.

The use of ML in the development of decision support systems, abbreviated DSSs,
in fisheries and aquaculture could be a useful tool for the fishing management
and the fishing industry to make better decisions [50]. A DDS can be helpful for
correctly determine fishing quotas, for decreasing fuel consumption and for fish
catch optimization through good and accurate fish catch predictions. This thesis
will focus on the possibilities of fish catch prediction through Gaussian processes for
regression.

1
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1.1 Former research
In the review by Mathisen et al. [50] stated that there today is little research on
DDSs within the fisheries and the aquaculture. The two papers, [1, 37] found in
the review, have developed techniques for predicting the presence of fishing banks
through data obtained by various remote sensors. Both papers focused on the use of
Neural Networks, abbreviated NN, [8, 81], to locate fish banks.

Neither of the data sources selected for this thesis uses remote sensors to gather data
which could be helpful in fish catch prediction. This is, to the author’s knowledge,
the first time that the selected data sources are used for fish catch prediction which
motivates the application of “new” prediction methods. Gaussian processes for regres-
sion (GPR), see Refs. [53, 65], is a probabilistic inference method that in contrast to
both NN and support vector machines, abbreviated SVM, return both a prediction
and an uncertainty of the predictions. The properties of Gaussian processes (GP) and
the fact that many studies [10, 14, 89] have shown that GPs can provide an excellent
accuracy estimation in addition to uncertainty estimates to the predictions, motivates
the use of GPR for fish catch prediction.

1.2 Aim of the study
This thesis will contribute to an initial study on the possibilities of using GP for fish
catch prediction.

The main contributions of this thesis include:

• A rederivation and formulation of one of themost recent state-of-the-artmethods
for achieving sparse GP models, i.e. stochastic variational inference (SVI) for
GP models. The method, developed by Hensman et al. [32] in 2013 makes it
possible to perform inference through GP on a real-time dataset that at least is
of size 800,000 data points. Knowledge of the principles of SVI for GP models
is necessary as it makes inference through GP possible on the large datasets
that will be considered in this thesis.

• A description of the preparatory work needed in the process of identifying,
collecting, assimilating and preprocessing real world data, before it initially can
be used for regression analysis.

• Initial analysis and investigations in the assimilated dataset through Gaussian
processes for regression. This work involves investigations on how the dataset
should be modified to achieve more accurate predictions. Two differentmethods
for feature selection, Automatic relevance determination (ARD) and Forward
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feature selection (FFS) have also been considered in the initial analysis and
investigations.

1.3 Structure of the thesis
This thesis is structured in four parts.

Part I describes the relevant background theory needed for the investigations per-
formed in the thesis. Ch. 2 briefly introduce different concepts of machine learning
and the fundamentals of Bayes’ statistic. The latter is needed for the understanding of
the fundamentals of Gaussian processes, GP. Ch. 3 introduces the framework for GP
and GP for regression. The principles introduced in this chapter are only suitable for
small datasets, with no more than 10,000 observations. A major part of the novelty
of the presented work is that this thesis will consider a dataset that is larger than
what the framework of Ch. 3 is intended for. For this purpose will Ch. 4 introduce
the framework of stochastic variational inference (SVI) for GP. This “new” framework
allows the use of GPR for datasets that are much larger than what has been possible
before.

In Part II, the assimilated dataset is described and important performance metrics
are defined.

Part III contains the investigations of this thesis, where SVI for GP models are applied
to the dataset described in Part II. Ch. 7 presents an initial analysis of the input data
that investigates different configurations for the input data to increase the prediction
accuracy by decreasing the overall Standard Deviation Error (STDE). Ch. 8 presents
and compares two different methods for feature selection, the ARD method and
the FFS algorithm. Ch. 9 concludes the investigations by performing a performance
comparison between the best input data in Ch. 7 and Ch. 8, that yielded the lowest
overall STDE with an alternative regression strategy.

Part IV concludes the thesis with a summary of the most important results, a notation
over the challenges encountered during the work and finally some recommendations
to future work.

1.4 Notation and definitions
In this thesis, scalars will consistently be denoted by normal italic type and matrices
in bold, italic, capital letters.
The words data points and observations will be used interchangeably in the same
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context, as they represent observations or measurements of real world data. Data
points and observations will consistently be denoted by bold, italic types as each
observation/data point will be a multidimensional vector. Features and dimensions
will also be used interchangeably in this thesis. Both definitions indicate the number
of parameters in a vector x .



Part I

Background theory

5





2
Fundamentals of Machine
learning and Bayesian
statistics
2.1 Machine learning, an overview
This section will give an overview of the different disciplines within machine learning,
that will be described more deeply in in the forthcoming sections. ML today used in
a multitude of different research areas for data analysis, feature selection and data
transformation [81]. Figure 2.1 gives an overview of the different categories within
ML.

Supervised machine learning is a category where the computer is presented with
both the training data and the desired output. The objective of supervised machine
learning is for the computer to learn some general “rule” that maps the data from
the input space to the output space, following the rule. Supervised learning can be
divided into two different kinds of problems, regression or classification problems [81].
Regression problems consider the prediction of continuous quantities and will be the
focus of Gaussian Processes for regression. Classification problems are on the other
hand try to assign input data into classes, where the outputs of the classification are
discrete class labels [65].

In unsupervised machine learning, the computer does not have any information regard-

7
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ing the structure of the data or the desired output. The main goal for the computer,
when considering data of this ML category, is to find ways to distinguish between
dissimilarities and similarities, i.e. patterns, in the data set. This is performed by
different clustering techniques, that cluster similar data into groups [81].

The data transformation and feature selection methods are often used during prepro-
cessing to get rid of redundant and uninformative data [39, 81].

Figure 2.1: An overview of the main categories within ML.

The specific methods that are listed within the different categories in Fig. 2.1 will be
introduced in later chapters and sections, and are only shown here to help the reader
get an overview of the topics.

Figure 2.2 illustrates the learning procedure of an arbitrary ML model, used for
prediction. During training is input data fed to the ML model. The ML model predicts
the output, based on the input data. The predicted output is then compared to
the actual target/validation data available during training, and a prediction error
can be computed. The prediction error will be used as input in the next round of
learning/training and will help the ML model to adjust model parameters in order to
achieve more accurate predictions by minimizing the error. The optimization/training
of the ML model proceeds until the error is constant. The optimal model setup can
then be used for prediction on new data, as shown in the figure.
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Figure 2.2: Machine learning flowchart. The dashed line indicates the transition to the
optimized ML algorithm that can be used for predictions.

2.2 Bayesian statistics
Bayesian statistics introduces another approach to statistical inference than the clas-
sical or frequentist approach. The core concepts of Bayesian statistics are that pa-
rameters are viewed as random variables, and that Bayes’ theorem is the backbone
to the methodology [90]. This section will briefly establish and introduce the main
concepts to Bayesian statistics, that in Ch. 3 and Ch. 4 are assumed to be background
knowledge.

2.2.1 Fundamental Bayesian statistics
The conditional probability of event B given event A is given by:

P(B|A) = P(B,A)
P(A) , (2.2.1)

where P(B,A) denote the joint probability of the two events A and B. Applying the
conditional probability of Eq. B.0.15 allows for the mathematical formulation of Bayes’
theorem [81],

P(A|B) = P(B|A)P(A)
P(B) . (2.2.2)
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The posterior distribution of the parameters θ given some data, x , is denoted p(θ |x)
and given by Bayes’ rule [90],

posterior =
likelihood × prior
marginal likelihood

=
p(x |θ )p(θ )

p(x) , (2.2.3)

where the denominator, i.e. the marginal likelihood distribution is independent of
θ , because the parameter have been marginalized out. The marginal likelihood can
therefore be interpreted as a normalizing constant.
The marginal likelihood in Eq. 2.2.3 for continuous data, x is defined in the following
way [65],

p(x) =
∫
θ
p(x |θ )p(θ )dθ . (2.2.4)

p(θ ) in Eq. 2.2.3 is the prior distribution of the parameters in θ and reveals prior
beliefs of the parameters, before the data is presented [53]. The likelihood function is
defined as the probability density of the observed data x given the parameters to the
observations [65].



3
Gaussian Processes
This chapter will introduce the concepts of Gaussian processes (abbreviated GP),
which in later chapters will be used for regression analysis of the potential catch
of fish in the oceans. A GP can be interpreted as a generalization of the Gaussian
distribution, where the probability distribution governs the properties of functions,
instead of variables or vectors [65]. The field of Gaussian processes is divided into two
major disciplines; regression and classification, where GP for classification considers
the problem of assigning input data into different categories or groups. The interested
reader can consult [65] for an introduction to Gaussian processes for classification,
as this is beyond the scope of this work.

3.1 Background and introduction to Gaussian
processes

The concept of Gaussian processes for regression is far from new and have been
studied for a long time. The Wiener process is an early example of a GPR applied
within time series [35]. Some background material for Wiener processes and GPR
within time series can be found in [92, 93]. Gaussian processes for regression have
been used in a more recent setting, where it was introduced to geostatistics during
the 1970’s under the name "Kriging" [78]. The process within geostatistics, named
after the South African mining engineer D.G. Krige, was introduced as a method
for predicting the distribution of ore grades and ore reserves through samples from

11
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drill holes. Refs. [23, 48, 49] can be consulted for an introduction to the principles
of geostatistics and Kriging. The framework of Kriging is identical to the concepts
of GPR [46], but is mainly concerned with two or three-dimensional cases. GPR are
on the other hand considering a more general, i.e. multidimensional, input space
[96].

The use of Gaussian processes within the machine learning community is a more
recent development. Neal introduced in 1995 the idea that infinite neural networks
converge to a Gaussian process [78]. This discovery inspired Williams and Rasmussen
[96] to describe Gaussian processes in a machine learning context [65, 95]. An
advantage of using Gaussian processes over neural networks is that the distribution
over the parameters in the process can be treated analytically [95]. The book of
Rasmussen and Williams, [65], and Chapter 15 in the book by Murphy, [53], can be
consulted for good introductions to Gaussian processes for regression.

Gaussian processes, in aML context, are used tomake inferences about the relationship
between input data and the output data, without explicitly modeling the whole
distribution of the input data. Inferences, that can be drawn from the regression
analysis, are based the conditional distribution of the target values given the input
data [65].

The GPR is divided into two parts, regression and prediction. The first, regression
part is considered with revealing the relationship between the input data and the
output target values. This part has similarities with supervised learningwithin machine
learning where both training and target data are available.
The second part of GPR considers prediction, where the trained process can be
applied to new, unseen input data, to perform predictions of future, unseen target
values.

An introduction to the theory of Gaussian processes for regression will be given in the
forthcoming section, where the statistical background for Gaussian processes will be
established. This will in later sections be used to formulate the function that connects
the input variables with the output variables, which can be used for prediction.

3.2 Gaussian processes for regression, a theoretical
review

This section will give an introduction to the framework of Gaussian processes for
regression. Only real-valued data will be considered as input and output of the
GP because this is the focus of this thesis. The theory presented in this section is
closely related to Chapter 15, Murphy [53], and the book; Gaussian Processes for
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Machine Learning, Rasmussen [65]. The same notations will therefore be used, when
possible.

3.2.1 GP for regression
It will from now on be assumed that a training set is available, consisting of both
input training data x and target (output) data y. The training set will be denoted D,
where D = {(xi ,yi )|i = 1, ...,n}. It will initially be assumed that the input training
data, x , is noise-free. Let xi = {xi,1,xi,2, ...,xi,p} denote the ith multidimensional
input point i.e. an observation/realization from the p-dimensional input space. The
index i = 1, ...,n can either be interpreted as a time variable, denoting when xi is
observed, an index defining the number of an observation, or a combination of an
unique time and observation. All input training data can be combined into a matrix
of multidimensional observations, it will be denoted X .

Similarly will yi denote the target value in the output space, andy = {y1, ...,yn} will
from now on denote a vector of target (output) values in the output space.

The GPR assume that the target values yi are related the input data xi through
a function such that yi = f (xi ). Thus, yi represents a realization of the Gaussian
process, f (xi ), at location xi . Figure 3.1 illustrates the relation ship between the
multidimensional input observations and the output targets through the Gaussian
process, f (xi ).

Figure 3.1: Visualization of the relationship between the input and output data through the
GP.

From now on, let f = [f (x1), ..., f (xn)]T denote the vector of all f (xi ). To make
predictions of new, unseen observations, a distribution over the functions f (xi ), given
the data D need to be defined. The approach presented here will be based on
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Gaussian processes, which defines a prior over the functions, that can be converted to
a posterior given D [53]. Using the approach of GP, the distribution over the function
values, f (xi ), does not have to be explicitly defied. It will instead be enough to define
the distribution over the function’s values at a finite, random sets of points x1, ...,xn .
Defining the the prior of the functions f (xi ) to be a GP will imply that probability
distribution, p

�
f (x1), ..., f (xn)� will be jointly Gaussian distribution [53, 65].

As a reminder,the general, multivariate Gaussian distribution of a p-dimensional
random vector x is defined by,

f (x) = 1

(2π )p/2|Σ|1/2
exp

{
−

1
2
(x − µ)TΣ−1(x − µ)

}
, (3.2.1)

where Σ is thep×p variance-covariancematrix ofx , |.| denotes the determinant and µ
denote the p×1 vector of expectations for the random vectorx [39]. Appendix A gives
an example of how Eq. 3.2.1 can be used to compute a bivariate Gaussian distribution.
The example in App. A can then be extended to the case of the multivariate Gauassian
distribution.

An advantage of using Gaussian processes is that they are completely specified
by its mean function, m and covariance function, Knn , in the same manner as
multivariate Gaussian distributions are specified by its mean vector and covari-
ance matrix [46, 58]. Using the approach of GP allows the prior of the functions
f = [f (x1), f (x2), ..., f (xn)]T to be defined in the following way,



f (x1)
f (x2)
...
f (xn)



∼ N(m,Knn),

which can be simplified to
f ∼ N(m,Knn), (3.2.2)

wherem is a vector of expectations,

m =



E[f (x1)]
E[f (x2)]
...
E[f (xn]

,


and K is the matrix of covariance functions between vectors of the dataset in D,
formulated as,

Knn =



k(x1,x1) · · · k(x1,xn)
k(x2,x1) · · · k(x2,xn)
...

. . .
...

k(xn,x1) · · · k(xn,xn)
.


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The covariance function is assumed to be a function of the input data,

k(xi ,x j ) = cov(f (xi ), f (x j )) = k(xi ,x j ), (3.2.3)

where xi and x j denotes two different vectors of size 1 × p.

Both the covariance function and the mean function need to be chosen in some
manner depending on the data. It is commonly to chosem = 000, because the Gaussian
process should be flexible enough to model the mean in a reasonable way [53]. Thus,
Eq. 3.2.2 can then be redefined to:

f ∼ N(000,Knn) (3.2.4)

Further information about properties of covariance functions etc. can be found in
Sec. 3.2.3.

In the following will it be assumed that an arbitrary covariance function, denoted
k(xi ,x j ), is available in addition to a zero mean function be assumed. It will also be
assumed that new observations are available, in addition to the training set. These
will be gathered into a matrix of test observations, denoted X∗. Gaussian processes
will be used to predict the outputs, f∗, of the variables in X∗ with help of both f and
the training set, where f∗ = [f (x1,∗), ..., f (xn,∗)]. By the definition of GP, the joint
distribution of f and f∗ will be Gaussian distributed, and will have the following
form, [

f
f∗

]
∼ N

(
000,

[
K(Xn,Xn) K(Xn,X∗)
K(X∗,Xn) K(X∗,X∗)

] )
. (3.2.5)

Henceforth, the notation will be simplified in the following way,

• Knn = K(Xn,Xn), the n × n covariance matrix between Xn and Xn

• Kn∗ = K(Xn,X∗), the n × n∗ covariance matrix between Xn and X∗

• K∗∗ = K(X∗,X∗), the n∗ × n∗ covariance matrix between X∗ and X∗,

where n denote the number of observations in X , while n∗ denote the number
of observations in X∗. The covariance matrix is symmetric,¹ which implies that
K(Xn,X∗) = K(Xn,X∗)T , where T denotes the transpose of a matrix.

The primary goal for GPR is to predict the function values of f∗ for the new test
set input X∗. It turns out that the conditional distribution of f∗ given f can be com-
puted since both the function values of f and X∗ are known. This can be expressed

1. See Sec. 3.2.3
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as [64, 65],

f∗|X∗,Xn, f ∼ N

(
KT
n∗K

−1
nn f ,K∗∗ −K

T
n∗K

−1
nnKn∗

)
, (3.2.6)

where it is assumed thatm =m∗ = 000.m is the mean function of f whilem∗ is the
mean function of f∗. In the case when the mean functions are non-zero, Eq. 3.2.6
would look like:

f∗|X∗,Xn, f ∼ N

(
m∗ +K

T
n∗K

−1
nn

�
f −m

�
,K∗∗ −K

T
n∗K

−1
nnKn∗

)
. (3.2.7)

The expressions in Eq. 3.2.6 and Eq. 3.2.7 are well known results for jointly Gaussian
distributions. The full result, and a proof for the bivariate case can be found in the
Appendix B, as it is easier to compute and show than the multivariate case.

3.2.2 Noisy data
So far, it has been assumed that the observations in Xn and X∗ are noise-free. In
general, data collected from measurements are often corrupted by noise due to
different kinds of measurements errors, or errors that occur during storage and/or
processing of the data [28]. This section will consider situations that are more
realistic, for work with real world datasets. It will from now on be assumed that the
observed target values are given by the function values at some point, in addition
to some additive noise. The most common assumption for the noise is the additive
independent identically distributed (abbreviated iid) Gaussian noise, denoted ϵ [64].
The interested reader can consult Neal [57] for an example of a Student’s t-distributed
noise model.

Adopting the assumption of iid Gaussian noise, the observed target values will from
now on be expressed in a slightly different way according to [65],

yi = f (xi ) + ϵ ,
where ϵ ∼ N(0,η2) and η2 denotes the noise variance that is by definition constant
for all vectors of X . Reformulating the general notation of the covariance function in
Eq. 3.2.3 for noisy observations gives

cov(yi ,yj ) = k(xi ,x j ) + η2δi j , (3.2.8)

where δi, j denotes the Kronecker delta function,

δi, j =



1 if i = j

0 otherwise .
(3.2.9)

Using matrix notation for Eq. 3.2.8 result in,

cov(y) = Knn + η
2I = Knn,y , (3.2.10)
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where the additive noise is added to each observation of X , via the n × n identity
matrix I , [53]. Knn,y is a simplified notation for the covariance matrix with additive
noise.

The joint density in Eq. 3.2.5 can now be reformulated with help of Eq. 3.2.10 under
the assumption of additive iid Gaussian noise,

[
y
f∗

]
∼ N

(
0,

[
Knn,y Kn∗
KT
n∗ K∗∗

] )
, (3.2.11)

still assuming a thatm = 000. The conditional distribution for the noisy observations,
corresponding to Eq. 3.2.6, can eventually be formulated, following [65] and [53],

f∗|X∗,Xn,y ∼ N

(
E[f∗|X∗,Xn,y], cov(f∗)

)
, (3.2.12)

where

f̄∗ = E[f∗|X∗,X,y] = KT
n∗K

−1
nn,yy, (3.2.13)

and

cov(f∗) = K∗∗ −K
T
∗ K
−1
nn,yK∗. (3.2.14)

The two equations, Eq. 3.2.13 and Eq. 3.2.14 are essential for Gaussian process regres-
sion, and will be referred to as the predictive equations for Gaussian process regression
[65].

The prediction process is illustrated in Fig. 3.2, where the left panel shows three
arbitrary samples from a GP prior, with a SE covariance function. The right panel of
Fig. 3.2 shows three samples from a GP posterior, after conditioning on five noise-free
observations. The shaded region in the right panel corresponds to the 95% confidence
region [53, 65].

The predictive equations in Eq. 3.2.13 and Eq. 3.2.14 can be simplified when the test
set only contains a single input, x∗. In this case will k∗ be a vector of the covariances
between the test input and the training points of X , k∗ = [k(x∗,x1), ...,k(x∗,xn)].
The covariance between of the test point, and it self, will be defined: k∗∗ = k(x∗,x∗).
Introducing this compact notation for the single input x∗ gives the simplified predictive
equations [53, 65],

f̄∗ = E[f∗|X∗,Xn,y] = kT∗ K−1
nn,yy, (3.2.15)

cov(f∗) = k(x∗,x∗) − kT∗ K−1
nn,yk∗, (3.2.16)

with Knn,y = Knn + η
2I .
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(a) (b)

Figure 3.2: (a) Visualization of three functions sampled from a GP prior with a SE covariance
function (see Sec. 3.2.3). (b) Visualization of three samples from a GP posterior,
after conditioning on five noise-free observations. The figures are generated by
gprDemoNoiseFree written by [65]

It can in some cases be useful to consider GP with non-zero mean functions. In
these cases can Murphy [53] and Rasmussen [65] be consulted for some examples of
non-zero mean functions.

3.2.3 Covariance functions
When no other references are mentioned, this section is based on [65]. As stated in
Sec. 3.2.1, the Gaussian process is completely specified by its mean and covariance
functions. The choice of the covariance function will play an essential part of the
Gaussian process for regression and prediction, as the both predictive equations
Eq. 3.2.13 and Eq. 3.2.13 (and the simplified equations Eq. 3.2.15 and Eq. 3.2.16)
depend upon the covariance function.

A basic assumption for predictions is that similar inputs x , should have similar output
values,y. Hence, training input points that are located close to a test input point should
be more informative in the prediction, than training input points located further away.
Assuming a GP, the covariance function should reflect this closeness.

Furthermore, valid covariance functions need to generate a positive semidefinite
(abbreviated psd) covariance matrix for any points in space [46]. A symmetric and
real covariance matrix K is psd if it satisfies

0 ≤ xTKnnx , (3.2.17)

for all vectors xT = [x1,x2, ...,xn]. Furthermore, a symmetric matrix Knn is positive
semidefinite if and only if its eigenvalues are greater than or equal to zero [39]. It
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can be difficult to come up with covariance functions that fullfills the requirement
of generating a psd matrix. Fortunately, there are several families of covariance
functions that fullfills this requirement and from which a suitable covariance function
can be chosen. A well known class of positive semidefinite covariance functions
are the stationary and isotropic covariance functions [95]. A stationary covariance
is a function of xi − x j , whilst an isotropic covariance function is independent of
the direction and only a function of ||xi − x j ||, where ||.|| denotes the Euclidean
distance.

It should be noted that, in theML context, the covariance function is often referred to as
a kernel function [26]. This thesis will use the two expressions interchangeably.

The squared exponential covariance function

One of the most popular choices of the covariance function is the squared exponential
(SE), also denoted the radial-basis function (RBF) [26].

The SE covariance function is symmetric, isotropic, stationary and positive semidef-
inite, in addition to be infinitely differentiable and thus very smooth. The squared
exponential covariance function is defined here with Gaussian noise added to the
model:

k(xi ,x j ) = σ 2 · exp
[
−

1
2

p∑
d=1

(xdi − xd j )2
λ2
d

]
+ η2δi, j , (3.2.18)

where i, j denotes two different vectors of observations, and d = 1, ...,p denotes
the dimension of the input data. σ , λ and η are the hyperparameters of the squared
exponential covariance function.

• λd is the characteristic length scale and it is is a horizontal scale, over which the
function changes.

• σ 2 is the signal variance, and controls the vertical scale of the

• η2 is the noise variance.

The characteristic length scale can either be different for each dimension of x , this is
indicated by its subscript d, or constant along all dimensions of x . The characteristic
length scale will in the latter case be denoted by λ. The SE covariance function can
in the latter case be expressed in the following, simplified way,

k(xi ,x j ) = σ 2 · exp
[
−

1
2λ2




xi − x j





2
]
+ η2δi, j ,

where


xi − x j





2
denote the squared Euclidean distance between the two vectors xi
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and x j . The SE function in Eq. 3.2.18 can be rewritten in a more compact form using
matrix notation for two arbitrary vectors xi ,x j ,

k(xi ,x j ) = σ 2 · exp
[
−

1
2
(xi − x j )TΛ−1(xi − x j )

]
+ η2δi, j , (3.2.19)

where the matrix Λ can be defined in several ways. Using this matrix: Λ1 = λ−2I ,
where I is the identity matrix gives an isotropic matrix, while Λ2 = diag(λ)−2I with
λ = λ1, ..., λp generates an matrix with different length scale along all dimensions
[53]. Refs. [3, 46, 53, 65].

3.2.4 The importance of choosing the hyperparameters
correctly

Sec. 3.2.3 introduced the hyperparameters of the SE covariance function, which have
to be determined in some way to perform GP prediction. Fig. 3.3 and Fig. 3.4 will
be used to examine the importance of choosing the hyperparameters correctly. The
upper left panel in the both figures, Fig. 3.3 and Fig. 3.4 represents a reference figure.
The reference figures were made by first sampling 20 noisy observations, marked
with + signs, from a SE kernel, with the following hyperparameters; (λ,σ ,η) =
(1,1,0.1). Predictions were then made, conditioned on the data and recycling the same
hyperparameters, i.e. (λ,σ ,η) = (1,1,0.1). This results in a narrow confidence region
which indicates a good fit, as can be seen in the both reference figures [53, 65].

The red curve indicates the underlying function while the shaded area in the both
figures represents the 95%-confidence region, which for a Gaussian distribution
mathematically can be expressed by,

f̄∗ ± 2 ·
√
cov(f∗). (3.2.20)

The reference figures in Fig. 3.3a and Fig. 3.4a shows that predictions in the areas
where the observations are close will yield better predictions, than in the areas where
the observations are far away, This can be interpreted from the confidence region,
which is narrow in areas with many observations. The opposite is true in areas with
few observations, which can be seen close to x = 2. The importance of choosing the
hyperparameters correctly will be shown in Fig. 3.3 and Fig. 3.4, by keeping two of
the hyper parameters constant while the third will be changed.

Fig. 3.3b shows the result for λ = 0.3 while Fig. 3.3c shows the result for λ = 3.0. Both
σ and η are held constant at the same parameter values as in Fig. 3.3a. Decreasing
the characteristic length scale results in a more wiggly function, with a confidence
region that has increased rapidly, compared to Fig. 3.3a. This indicates that defining
λ too small could increase the uncertainty in the predictions. On the other hand,
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increasing the length scale to λ = 3.0 results in a slowly varying function with a
narrow confidence region, as in Fig. 3.3c. It could be noted that the the function
in Fig. 3.3c does not fit all observations very well, which could result in misleading
predictions.

(a) (b)

(c)

Figure 3.3: The three figures in (a), (b) and (c) shows 20 noisy observations, marked with
+ sign, generated from a 1D GP defined through a SE covariance function. The
shaded grey regions indicate the 95% confidence region that was achieved from
the GPR. The values of the hyperparameters (λ,σ ,η) in panel (a) are (1,1,0.1).
The hyperparameters of (b) are set to (0.3,1,0.1) while the hyperparameters of
panel (c) are set to (3.0, 1, 0.1). The figures are based on Figure 2.5 in [65], and
generated by the functiongprDemoChangeHparams, written by Carl Rasmussen
[65].

Turning the focus to Fig. 3.4; Fig. 3.4b shows the result of keeping the length scale
and the noise variance constant at the same parameter values, as in , while σ is set
to 0.1. Fig. 3.4c shows the case when the signal variance was set to σ = 1.16, while
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the other parameters are kept constant. The latter result, Fig. 3.4c, is similar to the
reference figure (Fig. 3.4a), but there are some places where the accuracy of the
predictions decreases. This can be seen around x = 2 and x = 4, which resulted in
larger peaks for the confidence region. A decrease in σ , as in Fig. 3.4b, shows an
almost non-existing confidence region, compared to Fig. 3.4a, concurrently as the
function shows a poor fit to the observations.

Fig. 3.4d shows the result for (λ,σ ,η) = (1,1,0.00005), where the predictions function
overfit the observations. The last figure, Fig. 3.4e shows the result for (λ,σ ,η) =
(1,1,0.89) which result in a slowly varying function with large error bars for all
observations.

The figures in Fig. 3.3 and Fig. 3.4 reveals the problem of determining the hyperpa-
rameters properly. The decision of the hyperparameters of the squared exponential
covariance function will be even more complicated when the characteristic length
scale is allowed to change with each input dimension. This will result in a huge
variety of possible hyperparameters and distance measures, and it would be to time
consuming to change the hyperparameters manually [65]. The following section will
consider the the optimization of the hyperparameters through the marginal likeli-
hood of the GP model, which is a non-manual way of optimizing the hyperparameters.

3.2.5 Hyperparameter estimation and optimization
For this section, let θ = {λ,σ ,η} denote the vector of the hyperparameters of the SE
kernel function. The characteristic length scale, λ, in θ will either be constant for all
dimensions, or a separate parameter for each of the different dimensions of x (see
Sec. 3.2.3).

One of the major advantages with GPs is that the hyperparameters of the covari-
ance function can be chosen directly from the training data, instead of using more
complicated methods [78]. Ideally, the optimal hyperparameters of θ = {λ,σ ,η},
given a set of observations, would in a Bayesian setting be computed by the posterior
distribution over the hyperparameters, see Sec. 2.2.3. The posterior distribution over
the hyperparameters given the data, denoted p(θ |y,Xn), can be expressed in the
following way [29],

p(θ |y,Xn) = p(y|Xn,θ )p(θ )
p(y|Xn) , (3.2.21)

where Xn denote the training set and y denote the noisy observed target values. The
denominator, in Eq. 3.2.21 will be independent of θ , and can therefore be treated as a
normalization constant. The normalizing constant will often be ignored , see Sec. 2.2,
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(a) (b)

(c) (d)

(e)

Figure 3.4: The five figures in (a)-(e) shows 20 noisy observations, marked with + sign,
generated from a 1D GP with a SE covariance function. The shaded grey regions
indicate the 95% confidence region that was achieved from the GPR. The values
of the hyperparameters (λ,σ ,η) in panel (a) are (1,1,0.1). The hyperparameters
of (b) are set to (1,0.1,0.1), the hyperparameters of panel (c) are (1, 1.16, 0.1),
the hyperparameters of panel (d) are (1, 1, 0.00005) while the hyperparameters
of panel (e) are (1, 1, 0.89) . The figures are based on Figure 2.5 in [65], and
generated by the functiongprDemoChangeHparams, written by Carl Rasmussen
[65].
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which gives the following simplified expression for p(θ |y,Xn),
p(θ |y,Xn) ∝ p(y|Xn,θ )p(θ ). (3.2.22)

Thus, the posterior of the hyperparameters given the data are proportional to the
marginal likelihood function, p(y|Xn,θ ), times the prior distribution for θ [53]. The
prior distribution p(θ ) should encode prior beliefs about the hyperparameters, before
the data is presented [90]. Ref. [12] points out that the optimal hyperparameters
could be found from Eq. 3.2.22 given knowledge about the prior density. The optimal
hyper parameters will be those that maximizes the posterior density. This will be
called the maximum a posterior (MAP) estimates, denoted θMAP , which can be fed
into Eq. 3.2.13 and Eq. 3.2.14 to make predictions and calculate the uncertainty of the
predictions.

A common practise to ignore the prior term in Eq. 3.2.22, when for example p(θ )
is unknown [29]. The posterior distribution can then be defined in the following,
simplified form,

p(θ |y,Xn) ∝ p(y|Xn,θ ), (3.2.23)

which implies that the maximum a posterior estimates of θ = {λ,σ ,η} can be
computed by maximizing the marginal likelihood function of the hyperparameters.
The marginal likelihood is a GP, and will by definition follow the distribution of a
multivariate Gaussian distribution:

y ∼ N(000,Knn,y), (3.2.24)

where Knn,y = Knn + η
2I is the covariance matrix for the noisy targets y. For

numerical reasons, the log marginal likelihood will be considered [12],

l = log
�
p(y|Xn,θ )� = 1

(2π )n/2|Knn,y | exp
(
−

1
2

�
yTK−1

nn,yy
�)

= −
1
2

log
(|Knn,y |

)
−

1
2
yTK−1

nn,yy −
n

2
log(2π ).

(3.2.25)

The first term of Eq. 3.2.25 is a complexity and penalty term, which measures and
penalizes the complexity of the model [64]. The second term, −1

2y
TK−1

nn,yy, is the
only term that involves the observed target values and thus measures the fit of the data.
The last term of Eq. 3.2.25 is independent of both X and y and thus a normalization
term. It can be shown, [95], that the partial derivatives of the log marginal likelihood
can be expressed with respect to the hyperparameters in the following way,

∂l

∂θi
= −

1
2
Tr

(
K−1
nn,y
∂Knn,y

∂θi

)
+

1
2
yTK−1

nn,y
∂Knn,y

∂θ
K−1
nn,yy = 0 (3.2.26)

Thus, the hyperparameters of the squared exponential covariance function in Eq. 3.2.18
can be found by solving Eq. 3.2.26 with respect to the hyperparameters. It should be
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noted that the likelihood generally have multiple local optima, which could result in
some bad solutions for the optimal hyperparameters. This problem could be avoided
by using sensible priors of the hyperparameters, and calculating the MAP-estimates
instead of the maximum likelihood estimates [29].

The interested reader can consult Alg. 2.1 in [65] and Alg. 15.1 in [53] for a pseudo-
code of the implementation of GPR.





4
Applying GP for inference on
large datasets
Once the kernel parameters are optimized, the framework for GP for inference is
both elegant and simple, as the prediction of new unseen points is completely de-
fined trough Eq. 3.2.13 and Eq. 3.2.14. The latter equation gives the uncertainty of
these predictions. Predictions achieved through GP are based on a well-established
foundation through the multivariate Gaussian distribution. This ensures that new
predictions can be completely defined given new input data, previous input and
output data. Despite this, the framework GP for regression suffers from some crucial
limitations. The complexity for applying inference by GP on a dataset of size n is of
O(n3), which occurs during the computations of the inverse covariance matrix K−1

nn,y
[53]. Furthermore, the storage demands are of O(n2) [83].
These complexities could, unfortunately, restrict the use of GPR to datasets where
n < 10, 000 observations. In order to apply GP for inference on larger datasets many
different sparse and approximation methods for Gaussian processes have been sug-
gested, where Refs. [34, 65, 72, 75, 77] can be consulted for some examples. Many
of these approximation and sparse methods are based on a small set of m inducing
variables instead of using the whole dataset of n observations. This will allow a re-
duction of the computational complexity from O(n3) to O(nm2), and a reduction of
storage demands to O(nm) [32]. The many different sparse and approximate methods
mentioned mainly differ in how the inducing inputs are selected [82]. Common for
many of these approaches are that they are still not suitable for datasets where the

27
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number of observations can be many millions or billions [32].

This chapter focus on a newly developed algorithm that is called stochastic varia-
tional inference, SVI, for Gaussian process models. The algorithm combines inducing
variables with SVI to fit the GP to the data [32]. The method presented in [32] was
published in 2013 and is one of the most recent methods for achieving sparse GP
models. Hensman et al. [32] proved that their method works well for inference on a
real-time dataset of size 800,000 data points, and state that SVI for GP also could
be applied to datasets containing millions of data points. This method has been
chosen among others both because it is a very recent method, and because it has
been demonstrated to work well on large datasets.

An understanding of how the method of SVI for Gaussian processes works will be
established in the following sections. The theory presented will follow the structure
in [32] closely, and will therefore start by introducing the main ideas behind sparse
GPs, and how the inducing variables can be derived using variational inference and
learning. This introduction will closely follow [82] and [83], where the technical
report in [83] has more details than [82]. This chapter will then proceed by briefly
introducing the main parts of SVI for GPs.

4.1 Sparse GP and variational learning
4.1.1 Aim of sparse GP methods
Sec. 3.2.5 stated that the estimation and optimization of the hyperparameters, θ ,
of the GP model is crucial for achieving accurate and good predictions. It was also
stated that the optimal hyperparameters could be estimated by maximizing the log
marginal likelihood:

p(y|X ,θ ) ∼ N(000,η2I +Knn), (4.1.1)

which involves the computation of theK−1
nn,y matrix, whereKnn,y = η

2I +Knn .

The aim of sparse GP methods is to perform matrix operations, such as inversion and
diagonalisations, in themost time efficient way [21]. Instead of using alln observations,
approximate or sparse methods for GP will only consider a small set ofm inducing
inputs, denotedZ = {zi}mi=1. It is assumed thatm � n,which yields a time complexity
that scales as O(nm2) [82]. In order to apply a sparse GP method for inference, both
the input points in Z = {zi}mi=1 and the hyperparameters of θ = {λ,σ ,η} must be
learned and optimized. The input points in Z = {zi}mi=1 and θ can be inferred by an
approximation of the true log marginal likelihood in Eq. 4.1.1, [82].
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Introducing the notation

This subsection will introduce some new notation, and restating some of the notations
used for GP, in the previous chapter to make it easier to follow the computations. For
consistency with [32], the same notation will be adopted when possible.

Let y denote an observed output/data vector where each yi is a noisy observation of
the function f (xi ) for the training points in X = {xi}ni=1. Since f (·) is not observed
directly, it will be referred to as an unobserved or latent function [82]. The latent
function, f (·), is assumed to be a Gaussian process prior with zero mean and a
covariance function that is specified through a set of hyperparameters. The noisy
observations yi will be corrupted by independent Gaussian noise such that

yi = f (xi ) + ϵi , ϵi ∼ N(0,η2), i = 1, ...,n. (4.1.2)

Thus,y is Gaussian distributed and f contains the latent function values at the points
Xn (see Sec. 3.2.1).

A set of inducing variables will be introduced here, that is a significant part of most
sparse methods for Gaussian process regression. The inducing variables are denoted
Z = {zi}mi=1, and are points that live in the same space as Xn . It could be assumed
that Zm is a subset of Xn , wherem denotes the number of inducing variables. The
vector u is defined to contain the values of the latent function f (·) at the points
Z = {zi}mi=1, i.e.

f =



f (x1)
f (x2)
...
f (xn)



, u =



f (z1)
f (z2)
...
f (zm)



.

Since f (·) follows a Gaussian process, will y, f and u be distributed in the following
way

y ∼ N(000,Knn +
1
η2 I )

f ∼ N(000,Knn)
u ∼ N(000,Kmm),

(4.1.3)

where Knn = K(Xn,Xn) is of size n × n and Kmm = K(Zm,Zm) is of sizem ×m.
Knm=KT

mn will in what follows be the covariance function between all inducing
points Zm and the training points Xn .

The notation introduced here can now be used to formulate an approximation to
the true log marginal likelihood function. The following section will focus on the
differences between the sparse GP method introduced in [82] (and used in [32]) and
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the current, common form for approximation methods of GP, such that the novelty of
[82] can be emphasized.

4.1.2 Difference between current sparse methods and the
variational approximation

Two different state-of-the-art approximation methods for GP are the sparse pseudo-
inputs GPmethod (SPGP),which is proposed in [77], and the likelihood approximation
proposed by [72] which is called the Projected Latent Variables (PLV) method [63].
These two methods approximate the log marginal likelihood function in the following
way

p̃(y) ∼ N(000,η2I +Qnn), (4.1.4)

where

Qnn = diag[Knn −KnmK
−1
mmK

T
nm] +KnmK

−1
mmK

T
nm in SPSG, (4.1.5)

and where
Qnn = KnmK

−1
mmK

T
nm in PLV. (4.1.6)

Qnn is an approximation of the true covariance function Knn in both Eq. 4.1.5 and
Eq. 4.1.6. The PLV form of Qnn , Qnn = KnmK−1

mmK
T
nm , is also called the Nyström

approximation [82]. The interested reader can consult [94] for a derivation of the
method.

Comparing Eq. 4.1.1 with Eq. 4.1.4, it is apparent that p̃(y) is obtained by modifying
the GP prior. This and similar approximation methods focus on maximizing the
marginal likelihood of the modified GP model with respect to the inducing inputs Zm .
The approximation in Eq. 4.1.4 will not ensure a reliable approximation of the exact
GP model because there is no assurance that the difference between the modified GP
and the exact GP model is minimized [82].

The work presented by Titsias [82] instead focuses on minimizing the Kullback-Leibler
(KL)-divergence between the exact posterior GP, given by the predictive equations
in Eq. 3.2.13 and Eq. 3.2.14, and a variational approximation to the GP posterior.
The inducing inputs Zm will in this setting be defined to be variational parameters
that, together with the model hyperparameters, are jointly selected such that the KL-
divergence between the approximate posterior and the true posterior is minimized
[82].
The KL-divergence is a common measure of differences between probability distribu-
tions [8]. For two distributions f and д is is defined as

KL(f ||д) =
∫

f (x) log
( f (x)
д(x)

)
, (4.1.7)
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for some data x. Minimizing the KL-divergence between f and д can be viewed
as minimizing the grey area in Fig. 4.1. Obviously, this will occur when the two
distributions f and д are as similar as possible.

Figure 4.1: Visualization of two arbitrary distributions f andд. Minimizing the KL-divergence
corresponds to minimize the grey shaded area in this figure.

4.2 Introduction to variational inference for
approximating posterior GP

The aim of this section is to define a sparse method that directly approximates the
posterior GP without modifying the GP prior. Variational methods for inference and
learning are often used for this kind of problems since they can be used to approximate
the exact GP posterior distribution [6]. This section will briefly introduce the concept
of how variational inference can be used to both approximate the exact posterior GP
and specify the inducing points Zm . The introduction will follow the work presented
in [82] closely.

The exact posterior GP, given by Eq. 3.2.13 and Eq. 3.2.14, can more formally be
described through the predictive Gaussian distribution [65]. Using the predictive
Gaussian distribution to formulate the prediction of the output f∗ given new observa-
tions X∗ gives

p(f∗|y) =
∫

p(f∗, f |y,Xn,X∗)d f

Using: p(f∗, f ) = p(f∗|f )p(f )

=

∫
p(f∗|f ,y,Xn,X∗)p(f |y,Xn)d f .

(4.2.1)
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The dependency of Xn and X∗ will for simplicity be neglected from now on, which
allows the following formulation

p(f∗|y) =
∫

p(f∗|f ,y)p(f |y)d f . (4.2.2)

Here, p(f∗|f ,y) denote the conditional GP prior, while p(f |y) denote the posterior
distribution over the training latent function values. Eq. 4.2.2 shows that the predictive
Gaussian distribution is computed by marginalization over the function values f , see
Ch. 2.2. The posterior GP, given by the integral in Eq. 4.2.2, can be approximated using
a small set ofm inducing variablesu, that is evaluated at the pointsZ = {zi}mi=1.

Assuming that f∗ are independent from the training inputs, Xn [82], allows the
following reformulation of Eq. 4.2.2

p(f∗|y) =
∫

p(f∗, f ,u |y)d fdu

=

∫
p(f∗|f ,u,y)p(f ,u|y)d fdu

=

∫
p(f∗|f ,u,y)p(f |u,y)p(u |y)d fdu .

(4.2.3)

Furthermore, assuming that u is a sufficient statistic for the parameter f in the sense
that f∗ and f are independent given u implies that the conditional prior over any
finite set of the function points in f∗ can be computed through u only [82]. Thus, it
holds that p(f∗|u, f ) = p(f∗|u) for any f∗. Using this, Eq. 4.2.3 can be rewritten in
the following way:

p(f∗|y) =
∫

p(f∗|u,y)p(f |u,y)p(u |y)d fdu

Define: ϕ(u) = p(u |y)

=

∫
p(f∗|u,y)

[ ∫
p(f |u,y)d f

]
ϕ(u)du

where
∫

p(f |u,y)d f = 1

=

∫
p(f∗|u,y)ϕ(u)du .

(4.2.4)
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The last line of Eq. 4.2.4 can be reformulated to q(f∗,u) = p(f∗,u |y)p(u |y) =
p(f∗|u,y)ϕ(u), using conditional probability once and defining q(f∗) = p(f∗|y).
Eq. 4.2.4 can then be written in the following, simplified form

q(f∗) =
∫

q(f∗,u)du . (4.2.5)

The distribution in Eq. 4.2.5 is a new predictive distribution, similar to the one defined
in Eq. 4.2.1, but the predictive distribution in Eq. 4.2.5 is only dependent onm function
points through the inducing variables u. This is an advantage over Eq. 4.2.1, which
depends on n inducing variables through f . As long as the assumption of u being a
sufficient statistic for f holds will Eq. 4.2.5 be an exact approximation of Eq. 4.2.1.
Consequently, Eq. 4.2.5 can be computed in O(nm2) time instead of O(n3) [83].
It will, unfortunately, be hard to find the inducing variables u such that they are
sufficient statistics. It is more likely that q(f∗) only will be an approximation of the
exact predictive distribution p(f∗|y) in Eq. 4.2.1. In order to optimize the quality of
this approximation, [83] defines ϕ(u) to be a “free” variational distribution where
ϕ(u) , p(u |y) with q(f∗) ∼ N(µ,A).
The predictive posterior distribution in Eq. 4.2.4 (and Eq. 4.2.5) will be Gaussian, and
it is possible to show that the mean and covariance functions of the approximate
posterior GP can be formulated in the following way [82],

f̄ ′∗ = K∗mK
−1
mm µ̃

cov(f ′∗) = K∗∗ −K
T
m∗K

−1
mmKm∗ +K

T
m∗K

−1
mmAK

−1
mmKm∗.

(4.2.6)

The approximate predictive equations in Eq. 4.2.6 are the general form of a sparse
posterior GP. The quality of how well Eq. 4.2.5 approximates Eq. 4.2.1 will depend on
where the inducing points Zm are located, thus both the ϕ-distribution, i.e. (µ,A) and
Zm needs to be selected in an appropriate way. Titsias [82] solves this issue by applying
a variational inference method that jointly specifies Zm and the ϕ-distribution, and
treats the inducing inputs as variational parameters. The inducing points Zm and the
ϕ-distribution will be selected such that the KL divergence between the augmented
true posterior, p(f ,u |y) = p(f |u,y)p(u|y), and the augmented variational posterior
distribution q(f ,u |y) is minimized, [83]. Using the definition in [40] allow the
following formulation of the KL-divergence

KL(q(f ,u |y)||p(f ,u |y)) =
∫

q(f ,u |y) log
[q(f ,u |y)
p(f ,u|y)

]
d fdu . (4.2.7)
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Clearly, this KL-divergence will be minimizedwhen there arem = n inducing variables
that are located at exact the same positions as the original training points, i.e. u =
f and Kmm = Knm = Knn [32]. This will however not yield any computational
benefits, and this is whym is restricted tom � n. Minimization of the KL-divergence
in Eq. 4.2.7 is equivalent to maximizing the variational lower bound on the true
augmented log marginal likelihood [40], i.e.

max
(
loд

[
p(y|f ,u)

])
. (4.2.8)

Perfroming the maximization in Eq. 4.2.8 will determine the variational quantities
Zm and the ϕ-distribution [83], thus:

log
[
p(y|f ,u)

]
= log

[ ∫
p(y|f )p(f |u)p(u)d fdu

]

= log
[ ∫

p(f |u)ϕ(u)
(
p(y|f )p(f |u)p(u)

p(f |u)ϕ(u)
)
d fdu

]
.

(4.2.9)

Let U = p(y|f )p(f |u)p(u)/�p(f |u)ϕ(u)� and V = p(f |u)ϕ(u), the expression within
the integral can then be formulated as E[U ] with respect to V , i.e. the expectation of
U with respect to V . The computation of the integral in the second line of Eq. 4.2.9
can be simplified by applying Jensen’s inequality. The concavity of the logarithm
function, and Jensen’s inequality will imply that logE[f (y)] ≥ E[log f (y)] is true
for any random vector y [36]. Thus, applying Jensen’s inequality to Eq. 4.2.9 yields

log [p(y|f ,u)] ≥
∫

p(f |u)ϕ(u) log

(
p(y|f )����p(f |u)p(u)

����p(f |u)ϕ(u)
)
d fdu

=

∫
ϕ(u)

( [ ∫
p(f |u) logp(y|f )d f

]
+ log

p(u)
ϕ(u)

)
du .

(4.2.10)

It is possible to show¹, that the integral within the square brackets will be∫
p(f |u) logp(y|f )d f = log [N(α ,η2I )] − 1

2η2Tr (K̃), (4.2.11)

where α = KnmK−1
mmu, K̃ = Knn − KnmK−1

mmKmn = Knn − Qnn and Tr denotes
the trace. Insert Eq. 4.2.11 into Eq. 4.2.10 and reversing the Jensen’s inequality, i.e.

1. The interested reader can consult [83] for the derivation of this expression



4.2 INTRODUCT ION TO VAR IAT IONAL INFERENCE FOR APPROX IMAT ING POSTER IOR
GP 35

moving the logarithm outside of the integral in Eq. 4.2.10 yields the following objective
function, i.e. lower bound, after maximization

L2 = logN(0,η2I +Qnn) − 1
2η2Tr (K̃), (4.2.12)

where QnnKnmK−1
mmKmn . The interested reader can consult [83] for the complete

derivation of L2. This lower bound matches the lower bound, also denoted L2, in
[32], with β = 1/η2. The new marginal likelihood function, Eq. 4.2.12, derived by
[82] differentiates from the frequently used marginal likelihood function given by
Eq. 4.1.4 through the regularization trace term: − 1

2η2Tr (K̃). This term will be zero

whenKnn = KnmK−1
mmKmn , which occurs when the variational distribution q(f ,u |y)

approximates the true posterior distribution exactly. KnmK−1
mmKmn is still referred

to as the Nyström approximation, [82]. The trace term corresponds to the squared
error of predicting the training latent values f from u, i.e. only using m inducing
inputs instead of all n training inputs. Thus, L2 attempts to both maximize the log
likelihood and simultaneous minimizing the regularization term [82, 83].

The lower bound given by Eq. 4.2.12 can be computed in N(nm2) time, which clearly
is an enhancement compared to N(n3). A maximization of the lower bound can
be achieved by optimizing over Zm , and also the number of inducing inputs, m.
The inducing inputs will determine the flexibility of the variational distribution
q(f ,u |y) = p(f |u,y)ϕ(u)∗ in Eq. 4.2.7, where ϕ(u)∗ is defined as the optimal distri-
bution [82].

ϕ(u)∗ can be computed by inserting Eq. 4.2.11 into Eq. 4.2.10 and differentiate it
with respect to ϕ(u). After some computations, see [83], can the optimal variational
distribution ϕ(u)∗ be defined in the following way

ϕ(u)∗ ∼ N(µ̃,A), (4.2.13)

where
µ̃ = η−2Kmm(Kmm + η

−2KmnKnm)−1Kmn, (4.2.14)

and
A = Kmm(Kmm + η

−2KmnKnm)−1Kmm . (4.2.15)

The variational GP is fully specified by the optimal variational distribution ϕ(u)∗.
Substituting for (µ̃,A) into Eq. 4.2.6 will allow for the possibility of making predictions
in unseen points using onlym inducing inputs [82].

This section has focused on the ideas from [82]and describes how the GP posterior
can be approximated through ϕ(u)∗. Stochastic variational inference for Gaussian
process models, introduced in [32], are based on another formulation of these results.
In order to embrace the framework of SVI for GP models, the following section will
be devoted to a derivation, confirming that the distribution in Eq. 4.2.13 corresponds
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to the implicit approximating distribution q(u) presented in [32]. When these results
have been confirmed, Sec. 4.3 will focus on a brief introduction to the main ideas of
SVI for GP models.

4.2.1 Confirming the results
The aim of this section is to work through the necessary calculations that shows
that the optimal variational distribution ϕ(u)∗ defined by Eq. 4.2.13, corresponds
to the implicit approximating distribution q(u) in [32]. The implicit approximating
distribution in [32] is defined in the following way

q(u) ∼ N(µ̂, Â), (4.2.16)

where

µ̂ = βÂ−1K−1
mmKmny

Â = βK−1
mmKmnKnmK

−1
mm +K

−1
mm .

(4.2.17)

Hensman et al. [32] actually use Λ instead of Â, but this symbol is already used for
the characteristic length scale matrix, so Â will represent the covariance matrix in
the approximation distribution q(u).

Let EKmm define a new matrix, defined as EKmm = KmnKnm . Note that β = 1/η2 is
called the precision, and will be used from now on in the expressions of Eq. 4.2.14
and Eq. 4.2.15. The following known matrix manipulations [51] will be used, here
shown for three arbitrary matricesU , V ,W that all are invertible

U (V +W ) = UV +UW (1)
(UV )−1 = V −1U −1 (2)
(U −1)−1 = U (3)

(V +W )U = VU +WU (4).
(4.2.18)

It is important to note that both Knn and Kmm are assumed to be invertible. If this
was not the case, the predictions in Eq. 3.2.13, Eq. 3.2.14 and Eq. 4.2.6 would not be
possible to compute, since the inverse ofKnn andKmm need to be computed in order
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to achieve predictions. This section starts by confirming that µ̃ = µ̂

µ̂ = β
(
βK−1

mmKmnKnmK
−1
mm +K

−1
mm

)−1
K−1
mmKmny,

using Eq. 4.2.18 (3) with V −1 = (·)−1 andU −1 = K−1
mm

= β
(
Kmm

[
βK−1

mm
EKmmK

−1
mm +Kmm

])−1
Kmn,

(4.2.19)

using Eq. 4.2.18 (1) within the square brackets

µ̂ = β
[
βEKmmK

−1
mm + I

]−1
Kmny

= β
[
I + βEKmmK

−1
mm

]−1
Kmny.

(4.2.20)

Now focusing on µ̃,

µ̃ = βKmm

(
Kmm + βEKmm

)−1
Kmny

Using Eq. 4.2.18 (3)

= β
(
K−1
mm

)−1 (
Kmm + βEKmm

)−1
Kmny

Using Eq. 4.2.18 (2)

= β
[(
Kmm + βEKmm

)
K−1
mm

]−1
Kmny

Using Eq. 4.2.18 (4) within the square brackets:

= β
[
I + βEKmmK

−1
mm

]−1
Kmny.

(4.2.21)

This shows that Eq. 4.2.20 is equal to Eq. 4.2.22, which implies that µ̃ = µ̂.
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Now, turning the attention towards the covariance and showing that A = Â,

A = Kmm(Kmm + βEKmm)−1Kmm

Using the trick of Eq. 4.2.18 (3) on both sides

of the parenthesis:

=

[
K−1
mm

(
Kmm + βEKmm

)
K−1
mm

]−1

=

(
K−1
mm + βEKmm

−1
)−1

(4.2.22)

which is the same expression as in Eq. 4.2.17 with EKmm = KmnKnm .

This confirms that the interpretation of Titsias’s work in the previous sections corre-
sponds to the same rederivation presented in [32].

4.3 Stochastic variational inference for GP
In the previous sections, an introduction to sparse GP models was presented, through
the concept of variational inference. The introduction was based on an additional
interpretation of the work presented in [82], and does not follow the rederivation
of the variational approach to inducing variables that is presented in [32]. A brief
summation of the main results from the previous sections can be found in the
following subsection, which highlights the starting point of stochastic variational
inference.

Summarizing the main results

Sec. 4.2 introduced the approximate predictive equations in Eq. 4.2.6, which provide
the general form of the sparse posterior GP. The quality of howwell the new predictive
distribution, q(f∗) approximates the exact predictive distribution, denoted p(f∗|y),
will depend on the number of inducing pointsZm , where they are located and how the
variational distribution ϕ was defined. The KL-divergence was introduced such that
the distance between the augmented true posterior p(f ,u |y) = p(f |u,y)p(u |y), and
the augmented variational posterior distribution q(f ,u |y) was minimized. Instead of
minimizing the KL-divergence directly it is a common practice, see [32, 36, 40, 82] to
maximize what is called the variational lower bound of the true marginal likelihood.
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This will result in the objective function, denoted L2 in Eq. 4.2.12. Maximization, i.e.
optimization, of this lower bound can, as described in Sec. 4.2, be done by optimizing
over Zm , which also will modify the optimal variational distribution q(uu)∗. The
previous sections did not mention how the optimization should be accomplished, and
this will be the starting point of the stochastic variational inference method proposed
in [36].

The rest of this section will introduce the main concepts behind stochastic variational
inference, that allow the use of variational inference for very large datasets, and will
follow the work presented in [32]. The concept of stochastic variational inference is
initially introduced in [36], which can be consulted for the main ideas behind SVI. The
authors of [36] do not consider how the ideas of SVI can be combined with Gaussian
processes, and this is where the novelty of the work presented in [32] lies. This
section will start with a brief introduction to the main concepts of SVI, and then focus
on how [32] combines these ideas with the concepts of Gaussian processes.

The main idea proposed in [36] is to use stochastic optimization, [79], for the opti-
mization of the objective function that was found through the method of variational
inference. Combing stochastic optimization with variational inference result in the
method SVI [36]. Stochastic optimization focuses on finding the maximum of an
objective function, by following noisy, but unbiased estimates of its gradient (i.e. the
slope [18]) with decreasing step size. The requirement for applying SVI to a model
is that it contains a set of global variables [36], that can be factorized into observa-
tions and inducing variables [32]. SVI is a powerful tool for applying inference to
very large datasets when this requirement is fulfilled [32]. The introduction of the
inducing variables u in the previous section will guarantee for the GP model to be
appropriate for SVI. Unfortunately will the dependencies between the observations
be re-introduced when the marginalization over u (Eq. 4.2.4) is performed, which
will eliminate the global parameters.

Hensman et al. [32] presents a way to work around this problem by introducing
an additional variational distribution q(u), that unlike the variational distribution in
Eq. 4.2.16, is explicit. This additional variational distribution will allow for SVI, which
can be used to optimize the kernel hyperparameters, and the noise precision (β =
1/η2) by performing standard stochastic gradient descent alongside the variational
parameters. The work proposed by [32] allows for a gradient approximation to the
natural gradient, where the data can be considered either separately or in mini
batches [32]. The interested reader can consult [32] and [33] for a deeper insight to
how the global variables are defined and how natural gradients are computed.

Fig. 4.2 is borrowed from Hensman et al. [32] and describes visually how the approx-
imate GP posterior converges towards the exact GP posterior when SVI are applied
for GPR. Ten mini batches were used in total and only three inducing points are
considered during each step.
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Figure 4.2: Example of how a GPR problem is optimized thought stochastic variational
inference. The optimization is performed in 10 mini batches, and each panel of
the figure shows the posterior GP after optimization of the points considered in
each mini batch. The black, dark points indicate which of the points that were
considered for each mini batch. The hollow points show points that have been
considered during optimization of previous mini batches. The vertical error bars
in this figure represents the explicit variational distribution q(u). The black curve
indicates the true posterior GP. This figure is borrowed from [32] because it
explains the method of applying SVI for GP in such a good way.

The authors of [32] have implemented the method of SVI for GP as a part of the GPy
Gaussian process toolkit, http://github.com/SheffieldML/GPy. The implementation
requires that the user specifies the batch size and the number of inducing variables
that should be considered.

http://github.com/SheffieldML/GPy
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5
Data sources
The identification and collection of the data that will be used trough this thesis was
conducted in collaboration with the other teammembers of the eSushi project team at
SINTEF Nord. The process of identifying, collecting, assimilating and preprocessing
the data has been a major part of the preparatory work for this thesis. This chapter
will, therefore, be devoted to a description of the preparatory work, the identified
data sources and how different features were assimilated into a dataset. The last part
of this chapter will describe how a baseline for the forthcoming analysis was defined
through the preprocessing of the assimilated dataset.

A selection of a data source, or a feature, was motivated by the overall question of
this thesis; is it possible to achieve accurate predictions of the quantity of fish catch
through the interpretation of different oceanic features? The group of different data
sources, from which the features were extracted, was selected based on their ability
to describe the state of the ocean, and/or the nutrient content in the ocean.

It is important to notice that this is the first time, to the author’s knowledge, that
the selected different data sources have been assimilated with catch reports from the
Norwegian shipping company Havfisk ASA for fish catch prediction. This work is a
major part of the novelty of the work presented in this thesis. Thus, the definition
of the baseline in the preprocessing part of this thesis was mostly defined through
what seems to work and the wish to start these initial analysis through a smaller case
instead of using all the available data which could confuse the understanding of the
results.
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5.1 Data from the Havfisk ASA data base
The first selected data source was provided by Dualog AS’s electronic logbook,
eFangst, and contains fish catch reports from the Norwegian shipping company
Havfisk ASA. The vessels, belonging to Havfisk ASA, are logging each activity that
they perform during one trip. This database contains, among other things, informa-
tion about the activities that the vessels from Havfisk ASA performs at the ocean.
The following will briefly introduce some of the main parts from the Havfisk ASA
database, henceforth denoted the Havfisk database,

• The logged data in the database ranges from November 2006 to June 2015.

• A trip is defined as the time between a vessel leaves a port, and lasts until the
vessel arrives to port again.

• To launch a haul will denote the activity that is performed when a vessel lowers
its fishing gear into the water.

• The haul ends when the fishing gear is brought aboard on the ship.

• For each haul a vessel launch, the date, time, and location is logged for both
the launch and the retraction of the haul .

• It is possible for a vessel to launch several hauls during the same trip.

• All catch of fish that are brought on board is logged in numerous of ways. This
includes the different species of fish, the quantity of catch for each individual
species in units of kg (kilogram) and the gear specification used.

• Only start- and finish positions are registered during trawling in the database.
This implies that there is no knowledge of the accurate position(s) where the
fish actually was caught.

Due to the last point, it will be assumed that the position where the fish is caught
will be equivalent to the vessels reported haul position. This assumption will be
independent of the actual gear specification. The haul position will from now on be
denoted the catch position(s).

Because the purpose of this thesis is to find out if it is possible to predict the quantity
of catch of fish from the collected data sources, the actually logged quantity of catch
will be defined to be the correct output from the prediction model. In the GP context,
the actual quantity of catch will, therefore, be denoted with y or f∗ depending on if
the quantity of catch is used for training or prediction. The reported catch positions,
consisting of longitude and latitude coordinates will together with the reported day
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and time be used as input to the ML regression model. Figure 5.1 shows how the data
from the Havfisk is partitioned into input and output data.

5.2 Additional data sources and their different
features

The following three data sources have been selected since they can provide the catch
position in the database from Havfisk ASA with additional knowledge of the state of
the ocean. The selected variables from each data source, i.e. model, will from now
on be referred to as features or variables. The intuition is that if these features are
chosen appropriately they will be able to help the ML method to recover some pattern
in the dataset, that may be informative in for predictions.

5.2.1 The TOPAZ4 model
TOPAZ4 is an Arctic Ocean physics reanalysis product provided by the Copernicus
Marine environment monitoring service, CMEMS¹. Documentation over the physical
variables, achieved from the TOPAZ4 reanalysis product, can be found in the qual-
ity information document [97] and [68]. These two references are also the main
information sources for this reanalysis product.

TOPAZ4 have for example assimilated Sea surface temperature from NOAA (National
Oceanic and Atmospheric Administration)² and the OSTIA system (i.e. Operational
Sea Surface Temperature and Sea Ice Analysis) with in situ temperature and salinity
from hydrographic cruises. The following two references can be consulted for addi-
tional information about the OSTIA system; [24, 80]. Some model specifications for
TOPAZ4,

• TOPAZ4 uses version 2.2.18 of HYCOM, see Ref. [9] , (the HYbrid Coordinate
Ocean Model- NORWegian ECOlogical Model).

• The TOPAZ4 model covers the North Atlantic and the Arctic basins, which also
is shown in Figure 2 in [97].

• The current model has a temporal coverage from 1991-01-15, time 00:00:00 to
2014-12-15, time 00:00:00.

1. See http://marine.copernicus.eu/.
2. See http://www.noaa.gov/

http://marine.copernicus.eu/
http://www.noaa.gov/
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More about the model’s specification can be found in Ref. [19], where the entire
dataset can be downloaded after registration. The code for the model can be accessed
from: https://svn.nersc.no/repos/hycom or browsed at https://svn.nersc.
no/hycom/browser.

Table 5.1 list the features that are achieved from the TOPAZ4 reanalysis product,
which all are real physical variables [97]. The reanalysis product contains data of
both monthly means and daily means. The feature bottom temperature was only
available in monthly means, which explains why daily means was not chosen for this
feature. Figure 5.1 shows how the features from the TOPAZ4 model are assimilated

Table 5.1: List over the physical variables achieved from the TOPAZ4 reanalysis product,
where [·] indicate the unit.

Physical variables

Bottom temperature [◦C], monthly means
Sea surface temperature [◦C], daily means
Sea surface salinity [g/kg], daily means

Depth, [m]

into the input training and test datasets.

5.2.2 The HYCOM-NORWECOMmodel
This section will give a brief review of the HYCOM-NORWECOM model (HYbrid
Coordinate Ocean Model-NORWegian ECOlogical Model), as well as the biochemical
parameters achieved from the model. Reference [69] can be consulted for an in-
depth assessment of the revised HYCOM-NORWECOM v2.1 model. The HYCOM-
NORWECOM model is a physical-biological modelling system that combines the
ocean model HYCOM [9] with the physical-chemical-biological NORWECOM [73]
model system. A user’s manual of different versions of the HYCOM model can be
found at: http://hycom.org/hycom/documentation.

• The HYCOM-NORWECOM v2.1 model is tested and evaluated on both local, in
situ observations, as well as satellite data.

• The HYCOM-NORWECOM v2.1 model could provide this thesis with features
from year 1997 up to, and including 2014.

• The model covers the North Atlantic and the Arctic Ocean.

The available features from the model are listed in Tab. 5.2, where the feature DEPT is

http://hycom.org/hycom/documentation
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Table 5.2: List over the biogeochemical variables that are retrieved from the revised HYCOM-
NORWECOM v2.1 model. DEPT are in the model defined to be the phosphate part
of Detritus.

Biogeochemical variables

Nitrogen Phosphate Silicate
Flagellates Diatoms Primary production

Microzooplankton Mesozooplankton Detritus
Biogenic silica DEPT Chlorophyll

Model Depth

the phosphate part of Detritus. Both features close to the surface, and near the bottom
of the model are extracted from this model as well as the depth of the model. The
units of the different features are omitted in Tab. 5.2 because they where not provided
by the model. Figure 5.1 shows how the features from the HYCOM-NORWECOM v2.1
model are assimilated into the input training and test datasets.

5.2.3 The Nora10 model
NORA10 is a regional hindcast model, that is a downscaling of the ERA40 reanalysis
to a spatial resolution of 10-11 km through the High Resolution Limited Area Model
(HIRLAM, see Ref. [84]) of version 6.4.2, [27]. Data from the NORA10 model are
according to Reistad et al. [67] accurate enough to be used in the designing and
planning of offshore installations and operations. The methods of the downscaling,
as well as assessments of the accuracy of the model, are well described in [67]. The
wave simulations in NORA10 are achieved from a modified version of the WAM [42]
cycle 4 model [2]. Some additional specifications regarding the NORA10 hindcast
model,

• The ERA40 dataset consists of a reanalysis of meteorological observations,
which spans the period from September 1957 to August 2002 [85] and have a
resolution of approximately 125 km [67].

• HIRLAM is an atmospheric model with a 10 km horizontal resolution [67].

• The geographical scope of NORA10 is the North-East Atlantic Ocean, which
includes the North Sea, the Norwegian Sea and the Barents Sea, [2].

The variables, provided by the NORA10 model, are listed in Table 5.3. Only wind and
wave features near the sea surface was extracted since the effects of the wind and
waves are strongest close to the surface.
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Table 5.3: List over the wind and wave variables that can be retrieved from the NORA10
model. The letter(s) within [·] indicate the unit of the variable. A variable without
[·] indicates that there were no knowledge about the unit of that variable.

Variables from NORA10

Significant wave height [m] Peak wave period [s]
Significant wave period [s] Peak wave direction [◦C]
Wave direction Significant wind wave height [m]
Peak wave period wind [s] Peak wave direction wind [◦C]
Mean wave direction wind [◦C] Significant swell wave height [m]
Peak wave period swell [s] Mean wave period swell [s]
Mean wave direction swell [◦C] Stokes drift x-velocity [ms−1]
Stokes drift y-velocity [ms−1] Wind speed [ms−1]
Wind direction Peak wave direction
Peak Wave Period Swim

5.3 Additional features
Two additional features were chosen to be included in the forthcoming analysis; the
lunar phase and the distance to land.

5.3.1 Lunar phase
There are some studies, e.g. Poisson et al. [62], that claims that the lunar cycle could
affect the catch rate of some fish species. For this reason will the phase of the moon,
i.e. the lunar phase, be considered as an additional feature. The Python function
moon.py³ was used to calculate the “actual” lunar phase at the same time, date and
position as the catch of fish was brought aboard on the vessel. The function returns a
value between 0.0-1.0, which indicates the percentage of illumination of a full circle.
Thus the “actual” lunar phase is defined to be the percentage of illumination of a full
circle , where 0.0 indicates new moon, while 1.0 indicates full moon.

5.3.2 Distance to land
The shortest distance to land was computed from each of the catch reports, for each
catch position. The unit of this feature will be in kilometers (km). The distance to

3. The code moon.py can be retrieved from:
https://github.com/KitWallace/routefinder/blob/master/moon.py
The Python-function is based on a code written by John Walker, where the algorithms are achieved
from the book: Practical astronomy with your calculator, P. Duffett-Smith, 2nd Edition.
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land feature was selected because it is possible that that different fish species are
caught at different distances from land. This implies that this feature can be used to
distinguish between different fish species.

Figure 5.1: Visualization of how the different data sources are assimilated to an input training
set, X, and an input test/test set, X∗. The output training data, y, and the output
test/test data, f∗, are achieved from the Havfisk ASA dataset. The three blue boxes
denote different models, i.e. Nora10, HYCOM-NORWECOM v2.1 and TOPAZ4,
the grey box denote a database, the green and the peach coloured box denote
additional features, while the beige boxes denote assimilated input and output
data.

5.4 Combining the features to create datasets
All features, for each catch report in the database, were be aggregated, see Fig. 5.1,
into the data matrices X ,X∗. The data matrix is similar to the one shown in Fig. 5.2.
Each row in Fig. 5.2 represents an observation, i.e. a catch report combined with the
corresponding features from the NORA10, HYCOM-NORWECOM v2.1 and TOPAZ4
models and the two additional features (lunar phase and distance to land). Each
column represents a specific feature. Thus,x12 denote feature 2 of catch report number
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1, e.g. the daily mean of the salinity content in the ocean at date YYYY-MM-DD and
time HH:MM:SS.sss at the position for which the first catch report was reported. In
the same manner will x14 denote feature 4 of catch report number 1, e.g. the nitrogen
content in the ocean at date YYYY-MM-DD and time HH:MM:SS.sss at the position
for which the first catch report was reported etc.

A combination of all the features listed in Sec. 5.1, Sec. 5.2.1, Sec. 5.2.2, Sec. 5.2.3
and Sec. 5.3 result in 53 different features since the HYCOM-NORWECOM model
provides the dataset with both a bottom and surface variable for each feature.

X ,X∗ =

*...............
,

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

+///////////////
-

Figure 5.2: Visualization of how the data in the input data matricesX andX∗ are structured.

5.5 Defining a baseline for data analysis
The following section will lead the reader through the different choices and decisions
that were made for the first analysis of the collected variables that this thesis will
perform. The different choices and decisions will in the end of this section define the
baseline for the forthcoming analysis of the large available data material. The curious
reader can consult Sec. 5.5.5 on page 53 for the full summary over the baseline,
presented here.

5.5.1 The primary production and the chlorophyll features
Some initial tests were performed on the whole dataset of 51 features to find out if
some of the features could cause any problem in the forthcoming analysing work.
It turns out that the features “primary production bottom” and “primary production
surface” will give rise to a lot of “linear algebra”-errors in the programming language
Python. These both parameters will, therefore, be neglected from now on in the
forthcoming analysis. The minimum, maximum and sample mean values of “primary
production bottom” and “primary production surface” are all very small and close to
zero, see Tab. 5.4, which possibly could cause the “linear algebra”-errors in Python.
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Table 5.4: Table over the minimum, maximum and sample mean values for the variable
Primary production surface/bottom.

Variable Minimum value Maximum value Sample mean value
Primary production, surface 0 0.0005239400 0.0000192306
Primary production, bottom 0 0.0001016857 0.0000006195

Using both the feature “Chlorophyll bottom” and “Chlorophyll surface” will in the
same manner as the “primary production” feature cause “linear algebra”-errors in
Python. After some trial and error, it turns out that the use of an average value for
the chlorophyll content solved the problem. The chlorophyll content in the ocean at
each catch report and position i will from now on be defined as,

Ci =
1
2

(
Cbottom,i + Csurface,i

)
. (5.5.1)

5.5.2 The depth feature
Two different depth features was selected, see Fig. 5.1, see Tab. 5.1, and Tab. 5.2. The
idea of using a depth feature is that it could give some additional information to the
model regarding why fish species are located at specific places. Furthermore, it is
possible that the model could distinguish between different fish species based on the
depth of the ocean.

Some pre-inspection of the two depth features from the TOPAZ4 model and the
HYCOM-NORWECOM model showed that the two features are relatively similar.
Thus, the depth feature, that will be used from now on will be defined to be the
average depth from the two models at each catch position. The average depth feature
will be defined D̄i for catch report i in the data base. it will be computed by,

Di =
1
2

(
DTOPAZ4,i + DHYCOM-NORWECOM,i

)
. (5.5.2)

5.5.3 Defining the gear specification and a species of fish
There is a variety of different possible ways to investigate and analyse the whole
collected dataset, but it will not be possible to do it all during the time limit of this
thesis. Since the work in this thesis presents a first initial analysis of the collected
dataset in a machine learning context, some limitations will, therefore, be defined
here and used in the forthcoming analysis of this thesis. This implies choosing a
species of fish and a specific gear specification.
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Figure 5.3: Histogram over the number of catch reports per species of fish represented in the
database. The indices on the x-axis represents the same index that is used in the
Havfisk database.

The collected dataset is large and consists of catch reports over many years and
over 31 different fish species. The work presented in this thesis will only focus on
one species of fish, mainly to narrow the scope but also because it is not known in
advance if GP or other ML methods for regression performs best on a single species or
a multitude of species. The histogram in Fig. 5.3 will be used to select which species
of fish that will be the focus of the forthcoming investigations. Figure 5.3 shows a
histogram over the different fish species in the database, where the x-axis represents
the identification number of the different fish species, used in the Havfisk database.
The y-axis represents the frequency over the number of catch reports for a specific
species of fish. The quantity of catch per fish species is not taken into consideration
in Fig. 5.3. The species of fish with identification number 52, i.e. North-East Atlantic
Cod, will be considered in the forthcoming analysis since Fig. 5.3 shows that this fish
species has the highest number of catch reports. This implies that there also will be
more information about this species of fish compared to other species.

The North-East Atlantic cod are caught with single trawl or double trawl, where the
double trawl potentially could yield a larger amount of catch compared with the single
trawl. Single trawl was chosen arbitrarly since most of the fish catch of North-East
Atlantic cod was caught with this gear specification. Figure 5.4 shows an example a
single trawl.
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Figure 5.4: Example of a single trawl ⁴

5.5.4 Defining a time scope
Some of the additional ML algorithms that are considered in this thesis, see for
example Sec. 7.5 at page 76, had some numerical problems with datasets consisting of
more than 18,000 data points. Therefore, the time scope of this thesis is defined to be
the 18,000 first catch reports/observations of the years 2007-2011. The selected 18,000
catch reports are visualized on the map in Fig. 5.5 For visualization purposes was the
quantity of catch transformed by taking its logarithm to the base of 10. The colourbar
indicates the actual quantity of catch in kg. The figure indicates a higher quantity of
catch in the upper half of the Norwegian Sea, and especially east of Bjørnøya.

5.5.5 The defined baseline
The following list summarizes the baseline for the forthcoming analysis,

• The both primary production features will not be considered in the forth coming
analysis.

• The average chlorophyll content at each catch position for each catch report
will be used from now on.

• The depth feature is defined in Eq. 5.5.2 and is the average of the depth in the
TOPAZ4 and the HYCOM-NORWECOM model.

4. The image is retrieved from http://www.fao.org/fishery/topic/4080/en
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• The three points above have decreased the number if features to 49 different
features. The features that will be used in this thesis is listed in App. C.

• Only the 18,000 first catch reports over North-East Atlantic Cod (Skrei) caught
with a single trawl during the years 2007-2011 will be considered.

10.0

100.0

1000.0

10000.0

Figure 5.5: Map of all reported catch for the 18,000 observations of North East Atlantic Cod.
The red/yellow marks denote one quantity of catch per position. Red indicates a
lower quantity of catch while yellow indicates a higher quantity of catch



6
Preprocessing and
assessment of the results
6.1 Data preprocessing and transformation
Machine learning algorithms, like the Gaussian processes, are used to automatically
extract information frommachine-readable datasets. The success of theML algorithms
usually depends on the quality of the data that is fed to the algorithm, where data
of high quality will lead to results of high quality. Data preprocessing is an umbrella
term that covers many different methods and techniques that all aims to increase the
quality of the data before it is fed to the ML algorithm [43].

The measurement unit of the features in a dataset can affect the forthcoming data
analysis. For example; a feature measured in kilograms or grams, or measured in
meters or centimeteres, may lead to different results. Data normalization or data
transformation are techniques that can be applied to a dataset to avoid dependence
on the choice of measurement units [31]. The words transformation or normalization
will in this thesis be used interchangeably in the same context.
Data normalization is performed on the dataset to scale the maximum and minimum
values of the features to lower values such as [-1,1] or [0.0, 1.1]. This will, in gen-
eral, give the feature a larger range [31]. The two most common methods for data
transformation will be presented in what follows.

For the two transformations, let A denote a feature, which can be represented by nu-
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meric values and let x = [x1, ...,xn] be the vector of n observations of A. Furthermore,
let x

′

denote the vector of n normalized observations of A.

The Min-max normalization performs a linear transformation of the original ob-
served values in x . Let minA denote the minimum value of A, and let maxA denote
the maximum value of A. The min-max normalization maps a value x of A to x

′

, where
all x

′

i are in the "new" range [min
′

A,max
′

A]. The mapping is achieved by computing

x
′

=
x −minA

maxA −minA
· (max

′

A −min
′

A) +min
′

A. (6.1.1)

The zero-mean normalization are a normalization that are based on the (sample)
mean value of A, denoted Ā and the (sample) standard deviation of A, denoted sA.
The zero-mean normalization is defined as,

x
′

=
x − Ā

sA
, (6.1.2)

where the sample mean of the observations of feature A can be computed by

Ā =
1
n

n∑
i=1

xi for i = 1, ...,n. (6.1.3)

Furthermore, the sample standard deviation, sA, is the positive square root of the
sample variance, that in this setting is given by

s2
A =

1
n

n∑
i=1

(xi − Ā)2, for i = 1, ...,n. (6.1.4)

The both normalization techniques are achieved from, [43] and [31], which can be
consulted for further preprocessing techniques.

6.2 Cross validation
Cross validation, CV, will be used to compare different data configurations or experi-
ments with each other. This is a statistical method for comparing and evaluating the
outcome of different machine learning models against each other. Cross validation
partitions the dataset into parts, i.e. groups, where one part will be used to train
the GP or ML regression model, and the other to validate i.e. test the model and its
performance [66]. The three most common methods for CV are called the Hold-out
Validation, Leave-one-out Cross-validation and K-fold cross validation [65, 66, 81].

The so-called Hold-out Validation it is both simple and fast [13]. In the hold-out
validation method, the whole dataset is divided into two disjoint sets, a training and
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a testing set. The test will be completely independent of the training set, and will
only be considered after the model has been trained. This method will only iterate
through all points in the dataset once, which imply that it will be less time-consuming
than the other two CV methods. The downside of this method is that it is highly
dependent on the choice of the training/test splits [66]. Furthermore, a small test set
can give rise to a performance estimate that may have large variance [65].

In the k-fold cross validation, abbreviated k-fold CV, the dataset consisting of n obser-
vations is partitioned into k equally sized, disjoint sets. k sequential iterations are
performed, one for each of the k-folds. In each of the k iterations, the test set will
consist of the kth k-fold, while the training set is the union of the other k − 1 sets
[66]. The procedure will be repeated k times, such that all k subsets will be used in
both a training and test set [65]. Figure 6.1 shows an illustration of k-fold CV, where
the data has been portioned into k = 8 k-folds. The grey box indicates which part of
the data that is considered for testing, while the green boxes are combined into the
training set.

The overall performance of the model is computed by, for example, the k-fold Bias,
that is presented in the following section.

Figure 6.1: Illustration of k-fold CV, with k = 8 folds. The whole available data set consist of
all the data in the eight boxes. The grey box indicate the part of the data that is
considered for testing in one round, while the green boxes indicates the training
data.

The Leave-one-out Cross-validation method, also denoted LOOCV, is a special case of
the k-fold CV with k = n. This implies that n iterations are performed, one for each
observation in the dataset. For each of the n iterations; one single observation at the
time is considered to be the test set while the rest n − 1 observations are considered
to be the training set [66]. When n is a large number, this model selection method
can come with a large computational cost [65]. Similar to k-fold CV, the overall
performance of the model can be computed by for example the k-fold Bias.
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LOOCV is a popular method when the size of the whole dataset is small [66], but
performing k-fold CV is less time consuming than the LOOCV, as only k iterations
are performed instead of N . It is assumed that k � n. This thesis will only consider
k-fold cross validation since it would be to time consuming to perform LOOCV on the
dataset that this thesis considers.

6.3 Performance validation
This section will define different validation methodologies that in Ch. 7-Ch. 9 can
be used to evaluate the outcome from different outcomes from the k-fold CV. The
following three statistical parameters,

• the root mean squared error, henceforth RMSE

• the Bias

• the standard deviation error, henceforth STDE

have been used in several different settings to evaluate the model performance, see
for example [15, 47, 91], and will therefore also be used in this thesis.

For this section, let f∗,k denote the true output in the test set of the kth k-fold,
thus f∗,k = [f (x1∗,k ), ..., f (x j∗,k )]. Furthermore, let f̂∗,k denote the estimated/pre-
dicted output of the GP or ML regression model, from the kth k-fold, i.e f̂∗,k =
[ f̂ (x1∗,k ), ..., f̂ (x j∗,k )]. The index j denote the size of a k-fold in both cases.
In addition, let f∗ denote the true output from all the 600 k-folds, i.e. f∗ =
[f (x1∗), ..., f (xn∗)], where n = 18, 000 in this thesis. Furthermore, let f̂∗ denote
the estimated/predicted output of the GP or ML regression model from all the the
600 k-folds, i.e. f̂∗ = [ f̂ (x1∗), ..., f̂ (xn∗)].

The overall RMSE can then be computed by

RMSE =

√√
1
n

n∑
i=1

�
f̂ (xi∗) − f (xi∗)�2

. (6.3.1)

A small overall RMSE, i.e. close to zero, indicates that the estimated output is close to
the true output, while a larger overall RMSE indicates that estimated output deviates
from the true output. The square root in Eq. 6.3.1 guarantees that the overall RMSE
will have the same unit as f̂ (xi∗) and f (xi∗) [91].
An interpretation of the overall Bias or the k-fold Bias, abbreviated Biask will be



6.4 BIC 59

used to evaluate the data tendency. A positive overall Bias or Biask indicates that the
predicted outputs tend to be an overestimate of the true output, while a negative
overall Bias or Biask indicates that the predicted outputs tend to be an underestimate
of the true output [15]. The overall Bias is defined as,

Bias =
1
n

n∑
i=1

�
f̂ (xi∗) − f (xi∗)�, (6.3.2)

while Biask is defined as,

Biask =
1
N

N∑
i=1

�
f̂ (xi∗,k ) − f (xi∗,k )

�
, (6.3.3)

where N indicates the size, i.e. the number of observations/data points of a k-fold.
Plotting a histogram over Biask for i = 1, ...,k can give an indication of the distribution
of the Bias for the k-fold CV of an experiment. Both the Bias and the Biask will have
the same unit as f̂ (xi∗) and f (xi∗).
The overall STDE can be computed through the overall RMSE and the overall Bias in
the following way,

STDE =
√�

RMSE
�2
−

�
Bias

�2
. (6.3.4)

The square root in the expression of the overall STDE ensures that it will have the
same units as the RMSE and the Bias.

The overall RMSE, Bias and STDE will be used to compare the overall performance of
different experiments and investigations. The overall STDE will be prioritised when
different experiments are be compared to each other [15], since it both considers the
error through the RMSE and the tendency through the Bias.

6.4 BIC
The Bayesian information criterion, abbreviated BIC, will be used when different GP
models are compared with each other, see Sec. 8.3. The choice of using BIC is inspired
by the work presented by Duvenaud [26] who chose to use this criterion because of
its simplicity for model comparison, since it can be used to approximate the integral
of the marginal likelihood over all free parameters in the GP model [71].

BICρ = log
�
likelihood(optimized GP model)

�
−

1
2
· ρ · log

�
n

�
, (6.4.1)

where ρ denote number of kernel parameters in the GPmodel,n denote the number of
observations/data points in the dataset. BIC should penalize the marginal likelihood
of a GP model in proportion to how many parameters the model has. The model with
the highest BIC will be considered to be the optimal [26].
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6.5 Comparing the quantity of catch
Two additional measurements will be considered in the forthcoming experiments an
analysis in order to set the Biask introduced in Sec. 6.3 in context to the expected
average quantity of catch in the k-folds. The actual average quantity of catch per
k-fold, denoted Quantk-fold can be computed by the following,

Quantk-fold =
1
k

k∑
j=1

N∑
i=1

f (xi∗,k , forj = 1, ...,k and i = 1, ...,N , (6.5.1)

where j denote the index of the kth k-fold, k is the number of k-folds and N is the
number of observations/data points in a k-fold. Similarly can the average predicted
quantity of catch per k-fold, FQuantk-fold be computed by,

FQuantk-fold =
1
k

k∑
j=1

N∑
i=1

f̂ (xi∗,k ) forj = 1, ...,k and i = 1, ...,N , (6.5.2)

recalling that f̂ (xi∗,k ) denote the predicted quantity of catch for observation i in
k-fold k while f (xi∗,k ) denote the actual quantity of catch for observation i in k-fold
k. Both Quantk-fold and FQuantk-fold will in this thesis be given in kg.
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7
Initial data analysis
In order to achieve god predictions using different ML methods and GP for regression,
the dataset must possess a meaningful and informative structure for the method to be
successful. A dataset without an underlying structure could result in poor predictions,
as the data looks too similar to the regression method. This chapter will investigate
different methods for understanding and extracting information from the collected
data. Regression through SVI for GP models will be the considered regression method
of this chapter, with a batch size of 1,000 observations and 200 inducing variables. The
number of inducing variables and the batch size was arbitrary defined to be a fifth of
what Hensman et al. [32] used in their experiment of airline delays. The investigations
in this chapter will only consider the SE/RBF-kernel with a characteristic length scale
in each feature dimension.

The term data configuration will be used as an umbrella term describing how the
dataset can be modified in different ways. This chapter will focus on the following
three topics time dependency, clustering analysis and data transformation.

The same first 18,000 catch reports of North East Atlantic Cod, with their corre-
sponding 49 features, will be used through the whole chapter. For simplicity, the term
observationwill be used as a collective term that combines a catch report, i.e. the quan-
tity of catch, longitude and latitude, with its corresponding physical, biogeochemical,
wind and wave features.

The focus of this chapter is to establish an understanding of how the data should
be modified and presented to the GP model in order to achieve as good predictions
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as possible. The aim with the different dataset configurations is to increase the
accuracy of the predicted quantity of catch for an observation. This will be done by
modifying the input data, i.e. the remaining features of the observation, in different
ways. Common for all the experiments and analysis presented in this chapter is that
they are all based on k-fold CV.

The number of k-folds will be set to k = 600, which implies that there will be 600 test
sets, each consisting of N = 30 observations. All the 600 test sets are independent of
each other, which implies that there will be 600 independent performance metrics.
The value/size of k was chosen such that the distribution of Biask should, according
to the central limit theorem (CLT), converge towards a normal distribution [90]. A
histogram over the Biask , for k = 600, would under this assumption be bell shaped. A
skewed histogram over the Biask will, on the other hand, violate the assumption that
the Biask follows a normal distribution. By definition, this can indicate that there are
some over or underestimation tendency in the predictions for a specific experiment,
as discussed in Sec. 6.3.

During the 600 iterations of the k-fold CV, the GP model will be trained on 17,970
observations. The model is then used to predict quantity of catch for the remaining
30 observations. For consistency, the k-fold CV method with k = 600, will be used
in the rest of this thesis so that the result from the predictions can be compared and
evaluated with each other.

7.1 Investigating the time dependency between
observations

This section will focus on the annual, monthly and daily pattern in the dataset. The
aim of this section is to investigate if more accurate predictions could be achieved
by preserving the time dependency between the observations. Investigations in this
section will be performed in two parts; one where the time dependency between the
observations is preserved and one where the order of the observations is randomized.
In the first part, the 18,000 observations were ordered in ascending time order from
the 1st of January 2007 at time 00:00:000 until the most recent observation. The data
was then partitioned into the 600 k-folds.
In the second part, the order of the 18,000 observations were randomized before they
were divided into the 600 k-folds.
It should be mentioned that the time dependency is not perfectly preserved in the
first part of the experiments, since the construction of the k-folds will introduce time
gaps in the k-fold training datasets, as shown in Fig. 6.1.

The actual average quantity of catch per k-fold was computed separately for both
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cases to examine if there were any difference between the ordered or the randomized
data. This was not the case, and therefore Quantk-fold = 70, 334 kg per k-fold will be
used for both cases. This will be a reference value that the Biask can be compared to
in both this section and the forthcoming sections of this chapter.

7.1.1 Result, investigating the time dependency
Figure 7.1 shows a visualization of the Biask , using both randomized and ordered
training data in kg. The upper panel of Fig. 7.1 shows two Bias histograms, where
the bins on the x-axis give an interval that represents the computed Bias for each
of the k folds, the y-axis represents the occurrence of a specific Biask . The lower
panel of Fig. 7.1 shows a scatter plot of the Biask for all the k-folds, for the both the
randomized and ordered data.

The overall RMSE,Bias and STDEwas computed by Eq. 6.3.1, Eq. 6.3.3 and Eq. 6.3.4,for
the both parts of this investigation and are aggregated into Tab. 7.1. In the same
manner was the average predicted quantity of catch per k-fold computed for the two
cases by Eq. 6.5.2 and summarized in Tab. 7.1.
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Figure 7.1: Upper panel: Histogram over the Biask from the two cases of the investigations
of Sec. 7.1. Lower panel: Scatter plot over the Biask from the two cases. All values
in the table are in the unit kg.
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Table 7.1: The overall RMSE, Bias and STDE for the two cases in Sec. 7.1 are shown in row
1-3. The last row represents the computed average predicted quantity of catch per
k-fold for the both cases in Sec. 7.1. All values in the table are in the unit, kg.

Ordered data Randomized data

Overall RMSE 2,917 2,342

Overall Bias 94 23

Overall STDE 2,916 2,342

FQuantk-fold Average 67,527 kg/k-fold Average 69,636 kg/k-fold

7.1.2 Discussion, investigating the time dependency
Although only 18,000 observations were used, the results in Tab. 7.1 indicate that
it is better to present the data to the model in a randomized order, as the overall
RMSE, Bias and STDE decreased when the order of the observations were randomized.
Furthermore, the average predicted quantity of catch per k-fold, FQuantk-fold for the
randomized data only differs with 698 kg of fish from the Quantk-fold-value of 70,334
kg/k-fold.

The both panels of Fig. 7.1 indicates that the variation in the Biask is larger when
the data presented to the GP model is ordered in time. A randomization of the order
resulted in a Biask distribution with both shorter tails and with an approximately
bell-shaped structure. On the other hand, ordered input data results in a Biask
distribution that is more skewed and with a larger variance. The computed Bias in
Tab. 7.1 indicates that there is an overestimation tendency in the predictions for the
both cases, and that is approximately four times larger for the ordered data which
can explain the skewness shown in the upper panel of Fig. 7.1. The scatter plot in the
lower panel of Fig. 7.1 indicates that there could be an underlying systematic error
in the predictions, using ordered data, as the scatter plot almost indicate a periodic
pattern.

The results of the investigations in this section indicate that it is better to present the
data to the GP model in a randomized way. This could indicate that an observation
from another period of the year, or another year, is more important to the GP model
than the observations from the days before. In other words, preserving the annual,
monthly and daily patterns will not increase the prediction accuracy. Even though
the evidence of this section suggests that randomizing the input data leads to smaller
Bias, STDE and RMSE, the forthcoming experiments of this chapter will include
both ordered and randomized data to ensure that this is the case for other data set
configurations.
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7.2 Clustering and data transformation
In the previous section, all training data from each of the k-folds were used sequentially
to train the GP model. There were no considerations taken regarding if some of
the observations in the k-fold training set would be more or less important in the
prediction.

This section and the following sections of this chapter will, therefore, focus on the
following questions,

1. Is there a pattern or structure in the data?

2. Is it possible to achieve better predictions, using only the observations of the
k-fold training data that are most similar to the k-fold test data?

3. Is it possible to perform a linear or non-linear mapping of the data from the high
dimensional space to a lower dimensional space, and achieve better predictions
in this low-dimensional space?

7.3 Revealing the structure of the data
This section will focus on the first question by visually interpret the whole dataset
of 18,000 observations. As the data is of 49-dimensions, it will not be possible to
visualize the high-dimensional data. It will, therefore, be natural to introduce a
mapping, or transformation method here that will allow the data to be transformed
to a 2-dimensional space for visualization.

7.3.1 Principal component analysis
One of the most used data transformation methods in the literature is the principal
component analysis, PCA, that has been introduced in a multitude of textbooks, see
for example [8, 11, 20, 39, 59, 81]. Principal component analysis is a popular method
for feature generation, dimensionality reduction and data interpretation. PCA can
also provide information regarding the variance-covariance structure of the original
data [39, 81].

The basic idea of PCA is that the original p-dimensional data can be explained by a
smaller set of p-components, i.e. new variables, that is a linear combination of the
original variables [11], thus PCA is a linear transformation method [81]. The linear
combination is chosen such that the resulting p-components are uncorrelated, and
so that the variance of the mapping is maximized. In other words, PCA aims to keep
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low-dimensional, dissimilar transformed observations far away from each other [45].
This is achieved by considering the eigenvectors and eigenvalues of the covariance
matrix of the input data, see [8, 81]. The reference literature listed above can be
consulted for further insight into the PCA method.

7.3.2 Result and discussion of the PCA mapping
The 18,000 observations were transformed to a 2-dimensional space through PCA, that
is visualized in Fig. 7.2. Figure 7.2 shows one compact cluster of transformed observa-
tions with some outliers. An evaluation of the outcome in Fig. 7.2 suggests,

• The data is non-linearly separable in the high-dimensional space.

• There is no underlying structure in the data.

• It is not optimal to transform the data through PCA to a 2-dimensional space.

A linear data transformation method is not expected to perform well on non-linearly
separable data, and this can explain the unsatisfactory transformation result in Fig. 7.2.
A reasonable procedure would be to apply a non-linear transformation to the original
data, and check for structures in the non-linearly transformed data, before it is possible
to suggest that there is no underlying structure in the data. If this also results in
a transformed dataset with a non-visual structure it could suggest that it would be
worth trying to transform the data to a 3-dimensional space with the PCA mapping
to find out if this is more suitable for the data.

7.3.3 t-Distributed Stochastic Neighbor Embedding
The t-Distributed Stochastic Neighbor Embedding algorithm, also denoted t-SNSE,
is a non-linear dimensionality reduction technique. The method models each high-
dimensional point by a two or three-dimensional representation of the point, and
can therefore only be considered for a transformation to a two or three-dimensional
space. It ensures that similar objects in the high-dimensional space are modelled
by nearby points in the two or three-dimensional transformation, while dissimilar
points in the high-dimensional space are modelled far away in the transformation
[45]. The algorithm is proposed in [45] and developed by Laurens van der Maaten
and Geoffrey Hinton. An implementation of the software in multiple programming
languages can be retrieved from https://lvdmaaten.github.io/tsne/. An additional
implementation for the programming language Python is also provided by Scikit-learn
[60]. The following references can be consulted for additional reading of the t-SNE
algorithm [86, 87, 88].

https://lvdmaaten.github.io/tsne/
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Figure 7.2: Visualization of the 18,000 observations after a transformation to the 2-
dimensional space with PCA. Each of the points in the figure corresponds to
an unique observation.

7.3.4 Result and discussion of the t-SNE mapping
The t-SNE algorithm was applied to the same 18,000 observations described above,
for dimensionality reduction to the 2-dimensional space. It turned out that the t-SNE
implementation, provided by the scikit-learn package for Python [60], was the best
alternative for the dataset considered in this thesis. The resulting low-dimensional
interpretation of the observations, using the scikit-learn package implementation for
the t-SNE mapping, is visualized in Fig. 7.3.

Figure 7.3 indicates that there is an underlying structure in the high-dimensional
data that have been preserved during the transformation. The results from the t-SNE
transformation also indicate that the high-dimensional data is non-linearly separable.
Because Fig. 7.3 is more informative than Fig. 7.2 will the forthcoming analysis only
consider the t-SNE transformation of the data.

The interested reader should note that only the default parameters were used in
the t-SNE mapping that is presented in this section and in Sec. 7.5. It is possible
that the tuning of the parameters of the t-SNE algorithm could have resulted in a
better mapping, see [87], but this was not considered as it is beyond the scope of this
thesis.
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Figure 7.3: Visualization of the 18,000 observations after a transformation to the 2-
dimensional space with t-SNE. Each of the points in the figure corresponds
to an unique observation.

7.4 Clustering analysis
The second question listed in Sec. 7.2 will be investigated by clustering analysis
of the training data. Clustering analysis arises from unsupervised machine learning
and considers the task of separating a dataset into groups depending on similarities
or dissimilarities between observations or points in the dataset [8]. The following
references [25, 38, 81] can be consulted for an introduction to the majority of today’s
different clustering algorithms. Common for almost all clustering techniques is that
they require that the number of clusters, c, is known in advance and/or a predefined
similarity/dissimilarity measure [81].

The idea to tackle the second question of Sec. 7.2 is to sequentially cluster each of
the 600 k-fold training sets into c different clusters. The cluster that is most similar
to each of the 600 k-fold test sets will be defined to be the new training set. This
procedure implies that the training sets in each of the 600 k-fold iterations will be
smaller, i.e. consist of less than 17,970 observations, but hopefully more similar to
the test sets. The forthcoming investigation will try to find out if the use of a training
set similar to the test set results in better predictions, than using the whole, initial
training sets. The following procedure explains how the new 600 k-folds training sets,
referred to as the k-fold cluster training sets, was selected through k-means clustering.
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Algorithm 1 Code

1: procedure k-means clustering for k-fold CV
2: for i = 0 to 600 do
3: % Cluster all observations of k-fold Training set i in c clusters,
4: % Store the centroid coordinate to each cluster:
5:

6: cluster, centroid = kmeansClustering(kfoldTrainingSet[i])
7: cent_val = mean(kfoldTrainingSet[i]) % Centre of kfoldTrainingSet[i]
8: Dist = [] % Empty list
9: Ind = 0 % Index
10: for j = 0 to c do
11: % Find closest cluster to kfoldTestSet[i]:
12: Dist[j] = EuclideanDist(centroid[j],cent_value)
13: Ind = index(min(Dist))
14: end
15: New kfoldTrainingset[i] is closest cluster to kfoldTestSet[i],
16: clust_kfoldTrainingSet[i] = cluster[:,Ind]

17: end

The 600 clustered training datasets were then sequentially used as inputs to the GP
model during training, before the GP model was used to predict the potential catch
at the 600 different k-fold test sets. The investigation will, in conformity with the
investigations in Sec. 7.1 be performed in two parts.

The k-means algorithm has been chosen for the investigation of the second question,
due to its computational and conceptual simplicity [38]. The k-means algorithm is
initialized by a predefined number of clusters, denoted c, and by an arbitrary definition
of the mean estimates for the clusters, i.e. centroids. Each data point in the dataset
is then defined to belong to the cluster for which the distance to its corresponding
centroid is minimized. The squared Euclidean distance is used tomeasure the distance
between centroids and the points that should be clustered [81]. Since the k-means
considers the minimizing of a distance, the algorithm will in general work best for
compact clusters [54].

The main drawbacks to the algorithm are that the number of clusters are needed as
an input, and that the algorithm is sensitive to noise and outliers. A poor estimate
of c could result in a poor clustering result, where the underlying structure of the
dataset is not revealed properly. Outliers could, for example, influence the algorithm
in such a way that it could form new clusters from the outliers [81].
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7.4.1 Defining c
The so-called Elbow-criterion is a common rule of thumb method that can be used
to find the optimal number of clusters within a dataset. The core of this method is a
graphical pinpointing of the smallest number of clusters that exposes the variance of
the data satisfactory [7]. The Elbow-method is conducted by plotting the percentage
of variance explained by the clusters as a function of the number of clusters. The
first clusters will explain a lot of the variance in the dataset, but at some point will
the gain of adding another cluster yield an increase of explained variance. This point
will result in an angle, i.e. an elbow, on the graph which indicates that the number of
clusters should be chosen at this point [4, 7]. The drawback with this method is that
the elbow cannot always be unambiguously identified [4].

7.4.2 Finding the number of clusters within the dataset
Since it would be too time-consuming to apply the Elbow-criterion to all the 600
different k-fold training sets, the Elbow- criterion was only applied to the whole
training set of 18,000 observations once. The resulting number of clusters found
in the whole dataset was then used for each of the 600 k-fold training sets in the
both experiments. This procedure was considered to be appropriate, since the k-fold
training sets are defined through the 18,000 observations.

The elbow-method was executed by sequentially increasing the number of clusters
in the k-means algorithm from one cluster until 18 clusters. The maximum number
of clusters, 18, was arbitrary set to a large number. The first elbow-graph that got a
distinct elbow was kept, and this elbow was set to define the number of clusters for
all of the 600 k-fold training datasets. Figure 7.4 shows the first elbow-graph with
a distinct elbow, located at 6 clusters, while Fig. 7.5 shows the resulting six clusters
plotted on the same t-SNE plot shown in Fig. 7.3. It should be pointed out that the
Elbow-method had to be restarted several times, since the elbow was not always
visible in the graph.

The number of clusters found was only evaluated on the whole dataset, when the
number of observations was ordered by time in ascending order. For the sake of
simplicity will also 6 clusters be adopted for the same data, when the order between
the samples have been randomized, see Sec. 7.1. This decision seems appropriate
as this section investigates in whether clustering analysis can be used to define the
training data and not on finding the optimal number of clusters.
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Figure 7.4: Using Elbow method to find out an initial number of clusters. The graph indicates
that the optimal number of clusters for the 18,000 observations are 6.
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Figure 7.5: Visualization of the optimal 6 clusters of the 18,000 observations. The cluster
affiliation is shown on the t-SNE transformed data shown in Fig. 7.3.
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Table 7.2: Result of investigations in Sec. 7.4.3, where k-means was introduced to find the
training data that was most similar to the test data. The second column shows the
results when the time dependency was preserved. The third column shows the
results when the time dependency was not preserved. All values in the table are
given in kg.

Ordered data Randomized data

Overall RMSE 3,048 2,576

Overall Bias -58 289

Overall STDE 3,048 2,560

FQuantk-fold Average 72,072 kg Average 61,661 kg

7.4.3 Results, using k-means to initialize the training data
The upper panel of Fig. 7.6 shows the histograms over the Biask per k-fold found in
the investigations when clustered data was used as input to the GP regression model.
The lower panel of Fig. 7.6 shows a scatter plot over the Biask for all the k-folds, for
the both cases of the investigation.

Table 7.2 summarizes the overall RMSE, Bias and the STDE from the investigations of
this section in combination with the FQuantk-fold.

7.4.4 Discussion the results of k-means clustering
The results in Tab. 7.2 indicates once again that the overall RMSE decreases in
magnitude when the clustered training data is defined through randomized input
data instead. Furthermore, the overall Bias indicates that the GP model tends to
underestimate the predictions when the input data is ordered, while it tends to
overestimate the predictions when the input data is randomized. It should be noted
that the Bias is higher for the case with randomized data, though that the overall
STDE prefers the randomized data.

Table 7.2 shows that the FQuantk-fold value is closer to the actual average quantity of
catch per k-fold, Quantk-fold, for the case with ordered data. An explanation to this
result could be that the clusters were defined through the ordered data, and not for
the two datasets separately.

Figure 7.6 indicates once again that the distribution over Biask have a smaller variation
and shorter tails for the case when randomized input data is used. Comparing the
distribution of Biask for the ordered data in Fig. 7.6 with the corresponding distribution
in Fig. 7.1 it should be noticed that the distribution in Fig. 7.6 seems more symmetric
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Figure 7.6: Upper panel: Histogram over the Biask per k-fold from the two cases of the
investigations in Sec. 7.4.3. Values on the x-axis represent the Biask per k-fold in
kg, per k-fold. Values on the y-axis sum the number of different k-folds that falls
within a specific range of the Biask per k-fold.
Lower panel: Scatter plot over the Biask per k-fold for the two cases. Values on
the x-axis denote which k-fold that is plotted, while the y-axis gives the Biask per
k-fold per k-fold. All values in the table are given in kg.
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thought the longer tail on the right-hand side. This visual interpretation is also
confirmed by the overall Bias that in magnitude has been halved in Tab. 7.2, using
clustered input data, compared with the investigations in Tab. 7.1.

The scatter plot in the lower panel of Fig. 7.6 indicates once again that the distribution
over Biask is more evenly and tighter distributed around zero, for the randomized
data. The scatter plot of the Biask for the ordered data indicates once again some
pattern or periodicity, that could indicate a systematic error.

Despite this, it is important to notice that the predictions performed in this section
have been computed on a GP model that have been trained on a training dataset that
is smaller than the 17,970 observations used in Sec. 7.1. Using fewer observations
during the training of the GP model will reduce the time it takes to optimize the
model, which can be preferable if the dataset is much larger than today’s 18,000
observations.

7.5 Dimension reduction
This section will investigate the third and last question of Sec. 7.2 and will focus on
the t-SNE algorithm to achieve the dimension reduction, since the investigations in
Sec. 7.5.1 indicates that the data could be non-linearly separable. Data transformation
through t-SNE is time-demanding, and therefore will the dimension reduction only be
performed on the whole dataset of 18,000 observations and 49 different features. The
transformation was performed to a 2-dimensional space to simplify the visualization
of the data. A transformation to a 3-dimensional space was not considered in this
section as the focus is on the concept of using transformed as input data to the GP
model for achieving better predictions.

The transformed data was then partitioned into the 600 k-folds in the same manner
that is described in the previous sections, i.e. using both ordered and randomized
order of the transformed data.

7.5.1 Results, using t-SNE transformed data for dimension
reduction

Table 7.3 summarizes the computed overall RMSE, Bias and the STDE in addition to
the FQuantk-fold values for the experiments in Sec. 7.5, considering both randomizes
and ordered data.
Figure 7.7 visualizes the resulting histograms and scatter plots over the Biask .
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Table 7.3: Result of performing predictions on transformed data, using t-SNE. All values in
the table are given in kg.

Ordered data Randomized data

Overall RMSE 3,010 3,010

Overall Bias 0.0135 0.0235

Overall STDE 3,011 3,010

FQuantk-fold Average 70,334 kg/k-fold Average 70,333 kg/k-fold
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Figure 7.7: Upper panel: Histogram over the Biask for the two cases of the investigations in
Sec. 7.5.1. Values on the x-axis represent the Biask in kg, per k-fold. Values on the
y-axis sum the number of different k-folds that falls within a specific range of the
Biask .
Lower panel: Scatter plot over the Biask from the two cases. The values on the
x-axis denote which k-fold that is plotted, while the y-axis gives the Biask per
k-fold. All values in the table are given in kg.
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7.5.2 Discussion, using t-SNE transformed data for dimension
reduction

An interpretation of the overall RMSE, Bias and STDE in Tab. 7.3 indicates that there
are (almost) nothing to gain using ordered or randomized transformed input data.
The exception is the Bias that is slightly lower in the case with ordered data. The
overall STDEs are high for the both cases and indicates that the t-SNE transformation
of the data to a 2-dimensional space is not the most proper choice for the given
dataset. The high overall STDE could indicate that a lot of information in the original
dataset is lost during the transformation to the 2-dimensional space through the t-SNE
algorithm.

The two panels in Fig. 7.7 indicates that the distribution of the Biask is tighter and
more bell-shaped for the randomized data than for the ordered data. It could be of
interest to note that the resulting panels in Fig. 7.7 indicates that the computed Bias
within each k-fold has a much higher variance than the overall Bias in Tab. 7.3. These
conflicting results could indicate that the transformed input data is not optimal for
the GP model, and/or that there is some systematic prediction error.

Furthermore, the interested reader may have observed that the predicted average
quantity of catch within a k-fold FQuantk-fold is identical to the true average quantity of
catch within a k-fold, i.e. Quantk-fold = 70, 334 kg per k-fold. This is the best results
so far and indicates the transformed data is very informative for the GP model under
training and optimization.

The inconsistent and contradictory results of the investigations, using a 2-dimensional
transformation of the input data motivates for some additional investigation in the re-
sults. The additional investigations will be presented in the forthcoming section.

7.5.3 Additional investigations
The first row of Tab. 7.4 summarizes the minimum and maximum values of the predic-
tions, using the ordered or randomized input data from the t-SNE transformation. The
second row in the same table summarizes the minimum and maximum values of the
actual reported catch, the for intervals are based on all 18,000 observations. The two
intervals from the predictions in Tab. 7.4 indicates that the GP model actually does
not manage to capture the structure in the transformed input data as the predictions
are far away from the actual quantity of catch. These problems are also illustrated in
Fig. 7.8 where the actual reported quantity of catch in k-fold number zero is plotted
against the predictions from the GP model using t-SNE transformed data. Figure 7.8
clearly shows that the prediction from the GP model are constant and that the GP
model does not manage to capture any structure in the input data. The resulting
predictions in Fig. 7.8 are based on the ordered data, but the from the randomized,
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Table 7.4: First row: intervals for the minimum and maximum values of the predictions in
Sec. 7.5. Second row: intervals for the minimum and maximum values of the actual
reported quantity of catch. All values in the table are given in kg and are computed
for all 18,000 observations.

Overall [min; max] quantity of catch Ordered data Randomized data

in predictions [2,297; 2,376] kg [2,155; 2,455] kg

in actual reported catch [2; 30,539] kg [2; 30,539] kg

transformed data show the same tendencies. K-fold number 0 was arbitrary chosen
for visualization, but the same tendencies visualized in Fig. 7.8, can be found in the
other 599 k-folds. The outcome of the additional testing in this section highlights the
importance of thorough testing, not rushing to a premature conclusion based on a
single test result. The predicted average quantity of catch in a k-fold, FQuantk-fold, is
apparently not the best measurement to base the conclusions on, whereas the overall
RMSE and the STDE seem to be better validation measurements.

This additional investigation indicates that no further focus should be put into the
use of a t-SNE transformation of the data to a 2-dimensional space.
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Figure 7.8: Visualization of the predictions from Sec. 7.5 for k-fold number 0. The black points
indicate the true, reported catch wile the blue points indicates the predictions
from the GP model for the ordered, transformed input data. The lines between
the predicted/actual catch reports are only used to simplify the interpretation of
the figure.



8
Feature selection
So far have all 49 features been represented in previous experiments, without consid-
ering if some of the features could be more or less important for the GP model. This
chapter will, therefore, focus on investigating the features that have been assembled
for this thesis through feature selection.

The sections considering feature selection will both try to find out if it is possible to
find a selection of features that are more important for the model than the whole
collection of the 49 features. These sections will also investigate how well the GPR
performs, using only a selection of the most important features.

In order to compare the prediction results of this chapter with the experiments
performed in the previous chapter, will this chapter also consider the same 18,000
observations, in addition to applying k-fold CV with 600 k-folds. The experiments
of this chapter will also be performed in two parts, one where the time dependency
between the observations are preserved and the other where the order of the obser-
vations are randomized before the k-folds are chosen. The same randomization will
be used in this chapter so that the results from the randomized data in this chapter
can be compared to the corresponding results from the previous chapter.

As a reminder to the reader, the actual average quantity of catch per k-fold is
Quantk-fold = 70, 334 kg of fish, and will be referred to when comparing to the
Biask .

Regression through SVI for GP is the only ML method for regression that will be
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considered in this chapter, with a batch size of 1,000 observations and 200 inducing
variables. Only the SE-kernel with a characteristic length scale in each feature dimen-
sion will be considered, such that the results in this chapter can be compared with
the previous chapter of data analysis.

Different features will mostly be referred to with a number in the range 0-48, as
this is the indexing the programming language Python uses. The feature indices
are preferred over the whole feature names to not confuse the reader with long
feature names. A full list of the features, with their actual names, can be found in the
appendix, see App. C.

8.1 Feature selection
Feature selection is an important part in many data analysis and ML tasks since
feature redundancy and uninformative features can result in a ML model with poor
performance. Thus, the work presented in this section will be an important part for
understanding the assembled data. The following sections aims to investigate the
following two questions,

1. which features are more important than the other?

2. will the predictions from the GPR model be more, less or equally accurate, using
a fewer number of features for prediction?

Two different approaches to feature selection will be considered in the following
two sections, i.e. the method of Automatic relevance determination, henceforth ARD,
and the Forward feature selection algorithm, henceforth FFS algorithm. ARD was
selected since it is a natural way of arranging the features after their importance
when considering GP and kernels with a characteristic length scale per each feature
dimension, see Sec. 3.2.3. The FFS algorithm for feature selection was selected both
because it is traditionally more used, and known outside of the framework of GP
[22].

The two following sections, Sec. 8.2 and Sec. 8.3 will both start with an introduction of
the main concepts to the respective feature selection methods. After the introduction
will the two sections continue with the actual feature selection, where the ten most
important features will be selected among the whole set of 49 features.

The threshold was set to ten features since it corresponds to approximately 20% of all
available features. It was important to not select too few or too many features, since
selecting too few features could in worst case give the GP model to little information
and result in bad predictions. Selecting too many features could on the other hand not
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ensure that the redundant and uninformative features have been sorted out.

The feature selection will in the both sections be performed on the whole set of 18,000
observations, since it would be to time-consuming to apply the feature selections on
each of the 600 k-folds. The ten most important features will then be combined into a
new optimal set of size 18, 000×10. This optimal set can then be partitioned into 600
k-folds before they eventually can be presented to the GP model for regression. The
two sections will individually discuss the benefits/disadvantages of using ordered or
randomized data. Section 8.3.2 will conclude the feature selection part of this chapter
by discussing and comparing the results from the two different feature selection
methods with each other. The results of this chapter will be evaluated with the same
concepts that were introduced in Sec. 6.3.

8.2 Automatic relevance determination
In the GP setting, the inverse characteristic length scales λ−2

d in the squared expo-
nential covariance function, Eq. 3.2.18, could be used for interpreting the relevance
of each feature in the dataset, [56, 65]. This method is called automatic relevance
determination, ARD, and evaluate the magnitude of the inverse λ−2

d . A large length
scale in specific feature dimension results in a covariance function that is almost
independent of this feature dimension. These features can then, in the ARD setting,
be interpreted to be almost unimportant. Similarly, a small length scale in specific
feature dimension indicates that this feature plays a significant role for the covariance
function and by that also a significant role in the prediction procedure.

This section will investigate if the method of ARD for selecting important features
from the original dataset can result in better and more accurate predictions, than
considering all features. A GP model will in the following section be trained and
optimized on the whole dataset of 18,000 observations. The inverse characteristic
length scales will then be interpreted, and the ten most important features, i.e. those
with the smallest characteristic length scales will then be combined to a new optimal
set.

It is important to notice that the input data to the GP model needs to be normalized
so that the optimized length scales over each feature dimension can be interpreted
in the same way.
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8.2.1 Results, investigating if ARD gives better predictions
Figure 8.1 shows a histogram over the relative importances between the 49 different
inverse characteristic length scales after optimization. Higher bars indicates that the
corresponding feature is more important for the GP model, than the other features.
The upper panel shows the histogram of the inverse characteristic length scales for
the case with the ordered input data, while the lower panel of Fig. 8.1 shows the
relative importance for the GP model trained on randomized input data. The purple
bars indicates the ten most important features for each of the two cases.
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Figure 8.1: Visualization of the inverse length scales found by the ARDmethod for all features.
The red bars indicates the ten most important features, according to the method
of ARD. Upper panel visualizes the result for the ordered data while the lower
panel visualizes the result for the randomized input data.

Table 8.1 list the ten most important features with their corresponding feature name
in descending order, for both the case with ordered input data and randomized input
data. The ten most important features from the ordered (randomized) data were
then combined into a new optimal dataset of size 18, 000 × 10, which then was
then partitioned into the 600 different k-folds. K-fold CV was then applied to the
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Table 8.1: Table representing the ten most important features, found by ARD. The most
important feature is on the top and the 10th most important feature on the bottom.

Ordered data Randomized data
40, MesozoonplanctonBottom 40 MesozoonplanctonBottom
3, Temperature 3, Temperature
1, Longitude 1, Longitude
0, Latitude 26, NitrogenBottom
24, DistanceToLand 0, Latitude
39, MesozoonplanctonSurface 24, DistanceToLand
29, SilicateSurface 41, DetriusSurface
43, DEPTSurface 35, OxygenSurface
25, NitrogenSurface 39, MesozoonplanctonSurface
38, MicroplanctonBottom 47, AvgDepth

Table 8.2: The overall RMSE, Bias and STDE in addition to the average predicted quantity
of catch per k-fold, FQuantk-fold. The results are computed, using only the ten most
important features during training and prediction. The ten features were achieved
through the ARD method. All values in the table are given in kg.

Ordered data Randomized data

Overall RMSE 2,904 2,911

Overall Bias 53 8.4

Overall STDE 2,904 2,910

FQuantk-fold Average 68,758 kg/k-fold Average 70,082 kg/k-fold

two different optimal datasets and Tab. 8.2 summarizes the overall RMSE, Bias and
STDE from the results in addition to the predicted average quantity of catch per
k-fold, FQuantk-fold. A histogram over the distribution of the Biask for the two cases,
are visualized in the upper panel of Fig. 8.2, while the lower panel of the same figure
shows a scatter plot over Biask for each k-fold for the both cases.

8.2.2 Discussion, investigating if ARD gives better predictions
Many of the important features listed in Tab. 8.1 and visualized in Fig. 8.1 are
represented as important when both ordered data and randomized data are used.
The features MesozoonplanctonBottom, Temperature and Lonдitude are listed to be
very important for the both cases. Furthermore, it is important to notice that the
ARD method did not find any of the wind and wave features, index 6-23, or the lunar
phase, index 5, to be of any relevance for the GP model, see Fig. 8.1.

The histogram over the Biask distribution in Fig. 8.2 deviates from the previous



86 CHAPTER 8 FEATURE SELECT ION

2000 0 2000 4000 6000
Biask, per k-fold, [kg]

0

10

20

30

40

50

60

N
u
m

b
e
r 

o
f 

k-
fo

ld
s

Biask, ordered data, [kg]

Biask, randomized data, [kg]

0 100 200 300 400 500 600
k-fold index

2000

0

2000

4000

6000

B
ia

s k
, 
p
e
r 

k-
fo

ld
, 
[k

g
]

Biask, ordered data, [kg] Biask, randomized data, [kg]

Figure 8.2: Upper panel: histogram over the distribution of Biask for the both cases. The
x-axis represents the value of Biask in kg while the y-axis counts each k-fold
that falls within a bin. Lower panel: scatter plot of Biask per k-fold. The x-axis
represents the k-fold index while the y-axis represents the average prediction
error per k-fold.
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histogram over the Biask distributions, see Ch. 7, since the Biask distribution over
the randomized data is almost identical to the corresponding distribution of the
ordered data. The both Biask distributions are skewed and have long tails, which
could indicate that there is some systematic error in the predictions. An interpretation
of the scatter plot in the lower panel of Fig. 8.2 also indicates that there could be
a systematic error in the method where the ARD was used to select the ten most
important features to the optimal input dataset. The scatter plot also indicates that
the Biask for the randomized data does not follow the structure the can bee seen in
the previous corresponding plots of Ch. 7.1.

Table 8.2 shows for the first time that overall RMSE is higher for the case with
randomized data, than for the case with the ordered data. Despite this, it should be
mentioned that the difference between the FQuantk-fold and the Quantk-fold is only of
252 kg for the randomized data.

It is possible that the selection of the 20% most important features through the ARD
method still causes redundant features, which can explain the poorer prediction
results for especially the randomized data in this section. It could, therefore, be of
interest to repeat the procedure explained in these sections but with a fewer number
of important features, say the 10% most important features before the ARD method
could be rejected in favour for another feature selection method. This will not be
considered in this thesis due to the lack of time.

8.3 Forward feature selection
This section will focus on another conventional feature selection algorithm that in
the literature is referred to as the forward feature selection algorithm, henceforth FFS
algorithm [22]. The following references can, for example, be consulted for examples
of the FFS algorithm, [22, 30, 41, 61]. The FFS algorithm is known as one of two basic
sequential feature selection algorithms, the other is examined in the opposite way as
the FFS algorithm and is therefore called the backward feature selection algorithm, BFS
algorithm [61]. The FFS algorithm starts with one or zero features and selects one
of the other possible features to the model according to a specific selection criteria.
More features will then iteratively be added to the optimal set for the model, until
a stopping criterion is met [44]. Features can only be added to the optimal set of
features, and it is not possible to remove features from the optimal set during the
FFS procedure. It is computational faster to optimize fewer features, especially in the
case of GP with kernels that have one characteristic length scale for each dimension.
This motivates the selection of the FFS algorithm over the BFS, which is initialized
with all available features.

The FFS algorithm for GPR was implemented as a part of the work in this thesis
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since it was not possible to find any available implementation of the FFS algorithm in
Python that was suitable for GPR. The algorithm assumes that the input training data
is normalized to have zero mean and unity variance, while the test data is normalized
to have zero mean. The selection criterion for selecting a feature or a combination
of features over other features will be the Bayesian information criterion. In each
round of the FFS algorithm will the BIC be computed for each possible candidate
feature to the optimal set. The feature that receives the highest BIC in a round will
be selected to the optimal set. A pseudo-code to the implementation of the forward
search algorithm can be found in App. D.

The aim with this section is to find out if this additional feature selection method
can result in other important features than the method of ARD. This section will,
in addition, investigate if the important features, found by the FFS algorithm result
in better, equally or worse prediction results than the method of ARD. In order to
compare the FFS algorithm against the ARD method will the FFS algorithm terminate
when the ten most important features are found. These ten features will then be
combined into a new optimal set of 18, 000 × 10 observations. In accordance with
previous investigations will k-fold CV be used and the investigations will be performed
on both randomized and ordered input data.

8.3.1 Results, investigating if FFS gives better predictions
Applying the forward search algorithm on the 49 features results in the ten most
important features, shown in Tab. 8.3. The features are sorted in order so that the
feature on the top of the list in Tab. 8.3 is the first one to be added to the optimal
set, and the last feature on the list is the 10th and last feature to be added to the
combination of the others in the optimal set. The left column shows the ten most
important features for the first part of this investigation, when the order and time
dependency is kept between the observations. The second column shows the result
from the case where the order of the observations was randomized before they were
introduced to the FFS algorithm. The important features were found by computing
the BIC for each feature or each combination of the features in a round.

The two optimal sets found through the FFS were sequentially used for regression by
SVI for GP, where k-fold CV once again was used on the 18,000 observations. The
aim of the regression was to find out if the features found by FFS gave better, equally
or worse predictions, compared with predictions achieved from the ARD method.

Table 8.4 summarizes the overall RMSE, Bias and STDE in addition to the predicted
average quantity of catch per k-fold for the two cases. Figure 8.3 shows both a
histogram visualization over the resulting Biask distribution and a scatter plot of the
same distribution for the both cases.



8.3 FORWARD FEATURE SELECT ION 89

Table 8.3: Table representing the ten most important features, found by the FFAS procedure.
The most important feature is on the top and the 10th most important feature
on the bottom. The features are given with both their defined number and the
corresponding feature names, see App. C.

Ordered data Randomized data
28, PhosphateBottom 35, OxygenSurface
3, Temperature 43, DEPTSurface
48, AvgChlorophyll 33, DiatomsSurface
19, StokesDriftXVelocity 32, FlagellatesBottom
7, MeanWaveDirectionWind 14, PeakWavePeriodSwim
33, DiatomsSurface 2, Salinty
6, MeanWaveDirectionSwell 0, Latitude
32, FlagellatesBottom 16, SignificantWaveHeight
4, BottomTemperature 48, AvgChlorophyll
14, PeakWavePeriodSwim 27, PhosphateSurface

Table 8.4: The overall RMSE, Bias and STDE and the FQuantk-fold, using only the ten most
important features during training and prediction. The ten features was achieved
through the FFS algorithm, and all values in the table are given in kg.

Ordered data Randomized data

Overall RMSE 2,890 2,537

Overall Bias 26 -49

Overall STDE 2,889 2,536

FQuantk-fold Average 69,567 kg/k-fold Average 71,817 kg/k-fold
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Figure 8.3: Upper panel: histogram of the distribution of Biask for the both cases. The x-axis
represents the value of Biask in kg while the y-axis counts each k-fold that falls
within a bin. Lower panel: scatter plot of Biask per k-fold. The x-axis represents
the k-fold index while the y-axis represents the average prediction error per
k-fold.
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8.3.2 Discussion the FFS results
The following four features FlagelatesBottom, PeakWavePeriodSwim, DiatomsSurface
andAvдChlorophyll can be found in the both lists of Tab. 8.3, but are not selected to
be important on the same round of the FFS algorithm. Besides these features, it can
be of interest to note that neither the feature Lonдitude or the feature Latitude have
been selected to be included in the optimal set of the ordered data. This implies that
the results from the predictions presented in Tab. 8.4 and Fig. 8.3 are not based on
the coordinates where the fish have been caught. In other words, the predictions for
the ordered data presented in Sec. 8.3.1 are entirely based on features that describe
the state of the ocean and not a position in the ocean.

The structure histogram in Fig. 8.3 reminds of the structure of the histograms in
Fig. 7.1, Fig. 7.6 and Fig. 7.7 where distribution of the Biask for the randomized data
clearly deviates from the distribution of the Biask for the ordered data. Similarly
shows the scatter plot in the lower panel of Fig. 8.3 that the variance of the Biask is
smaller for using the randomized data, than using the ordered data.

Table 8.4 is consistent with the results of Ch. 7.1 in the way that the overall RMSE
decreases when the data is randomized. The overall RMSE in Tab. 7.1 is slightly better
than the overall RMSE for the both cases in Tab. 8.4. Furthermore, the overall STDE
is lower for the ordered data in Tab. 8.4, and only slightly higher for the randomized
data, compared to Tab. 7.1. This is positive news since it indicates that when the
ten optimal features are learned from the FFS algorithm, the accuracy in the overall
RMSE will be comparable with the overall RMSE using five times as many features. It
will also be computational faster to optimize a GP model with only ten features than
49 features.

The results and the resulting features from the method of ARD compared with the
results and the resulting features from the FFS algorithm indicates that the FFS
method for finding the ten most optimal features is a better feature selection method.
The time costs of using the FFS algorithm is higher since a GP model have to be
trained for each feature in each round of the FFS algorithm. This can be compared
with the ARD method that only trains a GP model once and optimizes the 49 features
once.

A reason to the different results, using feature selection through ARD or FFS, can be
that the different models base their indication on an important feature on different
criteria. The method of ARD provides information about which features that are
more or less important for the GP model in the prediction. The features have been
optimized such that the GP model returns the optimal predictions according to the
marginal likelihood.

The features found by the FFS algorithm are, on the other hand, defined through the
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optimized GP model that yielded the highest BIC, among other optimized models.
Thus, the BIC can not directly be used to interpret which features that are more or
less important for a GP model as it only gives an overall assessment of the optimized
model.



9
A performance comparison,
focusing on an alternative
regression strategy
So far has the focus of this thesis been on interpreting and evaluating the outcome
from GPR for the collected data set. The previous chapters have demonstrated how
the prediction error can increase or decrease with different data set configurations,
and by considering a different number of features in the input data.

Many different studies have been performed in different research areas, see [10, 14, 17,
89], stating that GPs performs well in a regression context, compared to alternative
strategies for regression. The work presented in this chapter will examine if this also is
true for the data set collected and used in this thesis. This examination will compare
the results of the best data set configuration, presented in this thesis, with another
ML method for regression to find out how well GPs for regression performs.

The overall STDE indicates that the use of randomized data in Sec. 7.1 yields the
so far best predictions, and this data set configuration will also be considered in
the following investigation. Support vector machines, abbreviated SVM, will be the
alternative regression strategy that will be considered in this section because it, in
conformity with GPs, is a kernel based method [8]. The main concept of SVM for
regression, abbreviated SVR [74], is to predict the input data through a function
f (x), that only allows to deviate with ±ϵ , at most, from the true targets or outputs
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REGRESS ION STRATEGY

Table 9.1: The overall RMSE, Bias and STDE for the results of the randomized data in Tab. 7.1
and for SVR, using the same randomized data as introduced in Sec. 7.1. The last
row represents the computed average predicted quantity of catch per k-fold for
the both cases, all values in the table are given in kg.

Results randomized data, Sec. 7.1 Results randomized data, using SVR

Overall RMSE 2342 3147

Overall Bias 23 1149

Overall STDE 2342 2930

FQuantk-fold Average 69,636 kg/k-fold Average 35,862 kg/k-fold

yi . Principles of SVR are beyond the scope of this thesis, and will therefore not be
introduced here. The interested reader can consult Refs. [8, 74, 76] for the principles
of SVM and SVR.

The investigation in this section will also consider k-fold CV in the same setting as
described in Sec. 7.1 so that the results can be comparable. Furthermore, the SVR
model will also be defined with a SE/RBF-kernel such that this experiment will be in
consistence with previous experiments. Tuning of the parameters of the SVR model,
see Refs. [8, 74, 76], is not a part of the scope of this thesis, and therefore will only the
default parameters be considered in the scikit-learn software package [60].

9.1 Evaluation of the performance comparison
Table 9.1 summarizes the results from the GP model in Tab. 7.1 for the randomized
data with the corresponding results from the SVR model. Figure 9.1 visualizes the
distribution of the Biask , in the upper panel, while the lower panel shows the scatter
plots of the Biask for the both cases. The results of Tab. 9.1 indicates that in overall
will the predictions from the GP yield prediction estimates with an overall smaller
error and Bias. Furthermore, the overall STDE is smaller for the results from the GP
model, and the FQuantk-fold is closer to the average quantity of catch per k-fold, i.e in
average 70,334 kg of fish per k-fold.

Figure 9.2 visualizes the prediction outcome from k-fold 1, which was arbitrary chosen,
for the performance comparison of this chapter. Black points in the figure indicate
the actual reported catch in k-fold 1, light blue points indicate the predictions from
the GPR while the blue points indicate the predictions from the SVR. The light blue
region visualizes the 95% confidence region for the outcome from the GP model.
The predictions are connected with line segments for the illustrative purpose. The
outcome illustrated in Fig. 9.2 visualizes both that the GPmodel captures the structure
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Figure 9.1: Upper panel: Distribution of Biask per k-fold for the two experiments.
Lower panel: Scatter plot of Biask per k-fold for the two experiments.

in the input data and yield reasonable predictions, and GPR perfroms better than the
SVR.

The computed overall from the SVR is the highest in all the tests that have been per-
formed, and indicates that the SVM overestimates the predictions. These tendencies
can also be seen in Fig. 9.1 which in both panels for the SVR predictions indicates an
overestimation that in comparison with the Biask , computed for the GP predictions,
is extra evident.
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10
Concluding remarks
The focus of this thesis has been on investigating the possibilities of fish catch
prediction using Gaussian processes. This work has for the first time combined
catch reports from the Norwegian shipping company Havfisk ASA with a multitude of
ocean-related data. GP for regression was considered, and this is the first time that the
method of SVI for GP have been considered on the specific assimilated dataset.

In addition to initial investigations on the assimilated dataset, this thesis has also
focused on the suitability of GPs for large datasets and to assess the predictions from
the GP model. A summary of the main results and findings of the investigations
presented in this thesis follows bellow, while Sec. 10.2 conclude this thesis with some
recommendations for future work.

10.1 Summary
Different investigations have been performed to evaluate how the input dataset, used
in the GPmodel, can be configured in the bestway for achieving as accurate predictions
as possible. All test except one, where ARD was applied for feature extraction, showed
that the randomization of the input data resulted in a lower overall STDE compared
to the use of input data that is ordered by time.

Using as large training dataset as possible (i.e. 17,970 observations and 49 features),
and randomizing the order of the input data resulted in the lowest overall STDE, i.e.
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STDE = 2,342. The second lowest overall STDE, i.e. STDE = 2,536 was achieved using
the FFS algorithm to extract the ten most important features and perform predictions
on an input dataset of size 17970 × 10 observations.

The investigations in this thesis indicate that SVI forGP is a suitable tool for performing
regression in a GP setting on large datasets. Furthermore, only one test (using a t-SNE
transformation on the input data) indicated that GP model did not catch the structure
in the dataset, since it gave an almost constant estimation of the potential catch of fish
independent of the structure of the input data. Thus, the investigations of this thesis
indicate that GP for regression does reveal a structure in the dataset and manages to
capture this to perform predictions that are non-random. A performance comparison
between GPR and SVR indicated that, in accordance with the literature, that GPR
does yield a lower overall STDE when the same datasets were considered.

10.2 Recommendations to future work
The scope of the performed investigations was wide, in order to investigate as many
topics as possible during the time limit of this thesis. Still, there are numerous of
interesting cases and things that could have been investigated further. This section
will list some of the topics that could be considered in a future analysis, either
for improving the GP regression model or to investigate further some of the topics
discussed.

• Kernel design
It has been mentioned in the thesis that the selection of an appropriate kernel
(or combination of kernels) is important to achieve accurate predictions. The
work presented by Duvenaud [26] for kernel design is very promising and
should be considered in future investigations.

• Additional data
After the analysis of the data considered in this thesis began, more recent data
has been available. It is of interest to determine if the accuracy in the predictions
increases if more data are used during the training and the optimization of
the GP model. Furthermore, the scope of this thesis was set to one species of
fish and a specific gear specification. Additional investigations could focus on
investigating if the GP model is sensitive for different species of fish and/or
different gear specifications.

• Features
It is a well-known fact that the pressure changes with altitude, so does also the
pressure below the sea surface [55]. The use of pressure as an addition feature
could be useful to determine if different fish species can be found on different
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altitudes etc.

Moreover, most of the features considered for this thesis were achieved from
different models over areas close to the reported catch positions. It is interesting
to investigate the possibility to equip the vessels with different sensors that
could log (almost) the same features, but at the exact positions at which the
fish is caught. This will give features that more exactly describes the state of the
ocean. It is also possible that it could be both less time consuming and more
economic to process data from “one” source instead of assimilating data from
at least four different oceanic models with a catch database, as done for the
preparatory work of this thesis.

In addition, many different reasons can explain why a vessel reports lower or
higher catches for specific species of fish than usual. The use of historical and
today’s Norwegian fish quotas in combination with the input data could be a
good supplement to achieve good predictions.

• Additional feature analysis and selection
The feature analysis and selection part of this thesis indicated that there are
potential in using feature selection to find features that are more relevant
than others, and to achieve predictions that are almost as accurate as using all
accessible features. More effort should be put into additional feature analysis
and selection. The sensitivity study of GP for oceanic chlorophyll content,
presented by Blix et al. [10], could be an interesting method to consider and
to compare to the ARD method and the FFS algorithm presented in the thesis.

• Clustering and data transformation
The work presented did only consider PCA and t-SNE transformation of the
data to a 2-dimensional space. Further investigations could for example be
put into the 3-dimensional space. In addition, alternative data transformation
methods could result in better results, where the Kernel PCA method [70] and
the method of Laplacian eigenmaps [5] are two suggestions.

Moreover, an inspection of the visualized t-SNE transformation, see Fig. 7.3,
suggest that the selected k-means clustering algorithm may not be the best
choice for the data since it does not possess compact clusters.

• Catch positions
The FFS algorithm, applied on the ordered data, resulted in a lower overall STDE
compared to the corresponding experiment of Sec. 7.1, although ten features
were used. The predictions from the FFS algorithm for the ordered data did not
consider the coordinates. This motivates an investigation in how important the
coordinates in the ocean are for good predictions.
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• Additional recommendations to future work

– Investigate the possibilities to achieve better predictions, using for example
SVR when the parameters of the model are tuned and optimized.

– Investigate in what causes the GP model to perform very well on some
predictions and worse on other.
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A
Derivation of the bivariate
Gaussian distribution
Themultivariate Gaussian distribution in Eq. 3.2.1 can be used to achieve an expression
for the bivariate Gaussian distribution, f (x1,x2). Let the covariance matrix between
two random variables X1 and X2 be represented by:

Σ =
[
σ11 σ12

σ21 σ22

]
,

where σ11 = Var(X1), σ22 = Var(X2) and σ12 = Cov(X1,X2). σ11, σ12, σ21 and σ22

represents scalar values. Due to symmetry will σ12 = σ21. The (linear) correlation
between X1 and X2 can be represented by,

Corr(X1,X2) = ρ12 = σ12/
√
σ11σ22. (A.0.1)

Solving Eq. A.0.1 with respect toσ12 allows the following formulation of the covariance
function: σ12 = ρ12

√
σ11σ22. Furthermore, let the expectations of X1 and X2 be

represented by the following vector,

µ =
[
µ1

µ2

]
.
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The inverse of any 2 × 2 matrix A is given by [39],

A−1 =
1
|A|

[
a22 −a12

−a21 a11

]
, (A.0.2)

where |.| denote the determinant.

Finding the determinant of |Σ| for the bivariate Gaussian distribution,

|Σ| = σ11σ12 − σ
2
12

= σ11σ12 −
�
ρ12
√
σ11σ22

�2

= σ11σ12 − ρ
2
12σ11σ22

= σ11σ12
�
1 − ρ2

12

�
.

(A.0.3)

Thus, the inverse of the covariance matrix can then be expressed with help of Eq. A.0.2,

Σ−1 =
1

σ11σ12
�
1 − ρ2

12

�
[

σ22 −ρ12
√
σ11σ22

−ρ12
√
σ11σ22 σ11

]
. (A.0.4)

Computing the argument of the expectation in Eq. 3.2.1: (x − µ)T Σ−1(x − µ),
(x − µ)TΣ−1(x − µ) = �

x1 − µ1,x2 − µ2
� 1

σ11σ12
�
1 − ρ2

12

�×

[
σ22 −ρ12

√
σ11σ22

−ρ12
√
σ11σ22 σ11

] [
x1 − µ1

x2 − µ2

]

=

[
σ22(x1 − µ1) −ρ12

√
σ11σ22(x2 − µ2)

−ρ12
√
σ11σ22(x1 − µ1) σ11(x2 − µ2)

]
×

[
x1 − µ1

x2 − µ2

] 1

σ11σ12
�
1 − ρ2

12

�

=
σ22(x1 − µ1)2 − 2(x1 − µ1)(x2 − µ2)ρ12

√
σ11
√
σ22 + σ11(x2 − µ2)2

σ11σ12
�
1 − ρ2

12

� .

(A.0.5)

The argument of the exponential term can then be expressed in the following way,
after some simplifications,

(x − µ)TΣ−1(x − µ) =
1

(1 − ρ2
12)

[(x1 − µ1
√
σ11

)2
− 2ρ12

( (x1 − µ1)(x2 − µ2)
√
σ11σ22

)
+

(x2 − µ2
√
σ22

)2]
.

(A.0.6)
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(a) Contour plot. (b) Surface plot.

Figure A.1: Two plots visualizing a bivariate Gaussian distribution.

Hence, the bivariate Gaussian distribution f (x1,x2) can then be formulated, with
help of Eq. A.0.3 and Eq. A.0.6 in the following way:

f (x1,x2) = 1

2π
√
σ11σ12

�
1 − ρ2

12

�×

exp
(
−

1

2(1 − ρ2
12)

[(x1 − µ1
√
σ11

)2
− 2ρ12

( (x1 − µ1)(x2 − µ2)
√
σ11σ22

)
+

(x2 − µ2
√
σ22

)2])
.

(A.0.7)

The left panel of Fig. A.1 shows a contour plot of a bivariate Gaussian distribution
while the right panel of the same figure shows a surface plot of the same distribution.
The expression in Eq. A.0.7 was used for plotting. The parameters of the bivariate
distribution was chosen in the following way,

µ1 = 1, µ2 = 0.7, σ11 = σ22 = 1 and σ12 = 0.4.





B
The conditional distribution
of f∗ given f
The conditional distributions of f∗ given f is based on a well known result for Gaussian
distributions, that can be found in [39]. The full result will be restated here:
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Let Z =
[
Z1

Z2

]
∼ Np(µ, Σ), where p denotes number of features of Z .

Furthermore, let the mean vector of Z be formulated by: µ =
[
µ1

µ2

]
,

and let the variance-covariance matrix of Z be formulated by:

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
, with |Σ22| > 0.

The conditional distribution of Z1, given that Z2 = z2, will follow a
Gaussian distribution with,

Mean = µ1 + Σ12Σ
−1
22 (z2 − µ2)

and

Covariance = Σ11 − Σ12Σ
−1
22Σ21

(B.0.1)

The result given in is generalizable for any multivariate Gaussian distributed random
matrix of vectors, X . This section will show that the multivariate result given in the
previous section will be true for a bivariate Gaussian distribution. The conditional
density of X1, given that X2 = x2, for any bivariate distribution is defined by:

f (x1|x2) = f (x1,x2)
f (x2) , (B.0.2)

where f (x1,x2) denote the joint (bivariate) density of f (x1) and f (x2), f (x2) denote
themarginal distribution ofX2. It will be assumed that f (x1,x2) is a bivariate Gaussian
distribution with,

Σ =
[
σ11 σ12

σ21 σ22

]
, and µ =

[
µ1

µ2

]
.

According to the result, will f (x1|x2) be distributed in the following way;

f (x1|x2) ∼ N

(
µ1 −

σ12

σ22
(x2 − µ2),σ11 −

σ 2
12

σ22

)
, (B.0.3)

which in the forthcoming will be shown.

The bivariate Gaussian distribution is expressed in Eq. A.0.7, and the exponential
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term will be restated here for convenience:

exp
�
·

	
= exp

{
−

1

2(1 − ρ2
12)

[
A +

(x2 − µ2
√
σ22

)2]}
,

with

A = *
,

(x1 − µ1)2
σ11

−

(2ρ12(x1 − µ1)(x2 − µ2)
√
σ11σ22

)
+
-
. (B.0.4)

Factorizing out 1/σ11 results in the following,

A =
1
σ11

[
(x1 − µ1)2 − 2ρ12

√
σ11
√
σ22

(x1 − µ1)(x2 − µ2)
]
. (B.0.5)

The expression in Eq. B.0.5 is similar to the right side of the algebraic identity
(a − b)2 = a2 − 2ba + b2 with,

a = (x1 − µ1)
b = ρ12

√
σ11
√
σ22

(x2 − µ2). (B.0.6)

The following computations are performed such that A can be formulated on the
following form: A = (a − b)2 − b2, for reasons that will clear soon.

A =
1
σ11

[
(x1 − µ1)2 − 2ρ12

√
σ11
√
σ22

(x1 − µ1)(x2 − µ2)

+

(
ρ12

√
σ11
√
σ22

(x2 − µ2)
)2
− (ρ12

√
σ11
√
σ22

(x2 − µ2)
)2]

=
1
σ11

[
(x1 − µ1) − ρ12

√
σ11
√
σ22

(x2 − µ2)
]2
−
ρ2

12

σ22
(x2 − µ2)2

= c(a − b)2 − b2,

(B.0.7)

where c = 1/σ11 is a constant. Inserting for A from Eq. B.0.7 into Eq. B yields,

exp
�
·

	
= exp

{
−

1

2(1 − ρ2
12)

[ 1
σ11

(
(x1 − µ1) − ρ12

√
σ11
√
σ22

(x2 − µ2)
)2

−
ρ2

12

σ22
(x2 − µ2)2 + (x2 − µ2)2

σ22

]}

= exp
{
−

1

2(1 − ρ2
12)

[ 1
σ11

(
x1 −

�
µ1 − ρ12

√
σ11
√
σ22

(x2 − µ2)�
)2]

−
1

2(1 − ρ2
12)

( 1
σ22
−
ρ2

12

σ22

)
(x2 − µ2)2

}
.

(B.0.8)
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Using the relationship between the correlation and the covariance within the square
bracket, i.e. ρ12 = σ12/(√σ11

√
σ22),

exp
�
·

	
= exp

{
−

1

2(1 − ρ2
12)

[ 1
σ11

(
x1 −

�
µ1 −

σ12���
√
σ11

√
σ22���
√
σ11σ22

(x2 − µ2)�
)2]

−
1

2�����(1 − ρ2
12)�

����(1 − ρ2
12)(x2 − µ2)2

}

= exp
{
−

1

2(1 − ρ2
12)

[ 1
σ11

(
x1 −

�
µ1 −

σ12

σ22
(x2 − µ2)�

)2]
−

1
2

(x2 − µ2)2
σ22

}
.

(B.0.9)

Hence, the (whole) bivariate Gaussian distribution can now be expressed in the
following form,

1

2π
√
σ11σ12

�
1 − ρ2

12

� exp
{
−

1

2(1 − ρ2
12)

[ 1
σ11

(
x1−

�
µ1−

σ12

σ22
(x2−µ2)�

)2]
−

1
2

(x2 − µ2)2
σ22

(B.0.10)
The marginal density of the Gaussian distribution, f (x2), is given by,

f (x2) = 1
√

2π
√
σ22

exp
{
−

1
2

(x2 − µ2)2
σ22

}
. (B.0.11)

The conditional density of X1, given that X2 = x2 can now be computed, when
Eq. B.0.11 is inserted in the denominator of Eq. B.0.2, and Eq. B.0.11 is inserted in the
numerator of the same equation

f (x1|x2) =B × exp

{
− 1

2(1−ρ2
12)

[
1
σ11

(
x1−

�
µ1−

σ12
σ22

(x2−µ2)
�)2]

− 1
2
(x2−µ2)2

σ22

}

exp

{
− 1

2
(x2−µ2)2

σ22

} , (B.0.12)

where B contain all terms independent of both x1 and x2:

B =
( 1

2π
√
σ11
√
σ12

√�
1 − ρ2

12

�
) / ( 1
√

2π
√
σ22

)

=

√
2π
√
σ22

2π
√
σ11
√
σ12

√�
1 − ρ2

12

�

=
1√

σ11(1 − ρ2
12)
.

(B.0.13)
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Inserting for B in Eq. B.0.12, and using the the exponential identity: exp(a)/ exp(b) =
exp(a − b) yields,

f (x1|x2) = B × exp

{
− 1

2σ11(1−ρ2
12)

(
x1−

�
µ1−

σ12
σ22

(x2−µ2)
�)2]

−
����
1
2
(x2−µ2)2

σ22
−

(
−
����
1
2
(x2−µ2)2

σ22

)}

=
1√

σ11(1 − ρ2
12)
× exp

{
− 1

2σ11(1−ρ2
12)

(
x1−

�
µ1−

σ12
σ22

(x2−µ2)
�)2}
.

(B.0.14)

Using the following to substitute for the correlation,

σ11(1 − ρ2
12) = σ11(1 − σ 2

12
σ11σ22

) = σ11 −
σ 2

12
σ22

The conditional density f (x1,x2) can then be written in the following way:

f (x1|x2) = 1√
σ11 −

σ 2
12
σ22

× exp

{
− 1

2 ·
1

σ11−
σ 2

12
σ22

(
x1−

�
µ1−

σ12
σ22

(x2−µ2)
�)2}
, (B.0.15)

which can be recognized as Gaussian distribution:

f (x1|x2) ∼ N

(
µ1 −

σ12

σ22
(x2 − µ2),σ11 −

σ 2
12

σ22

)
, (B.0.16)

and corresponds to Eq. B.0.3, which should be shown.





C
Feature names
List of the feature name for each feature index used through the thesis. Python start
to index values from “0”, which is why the same indexing have been adopted also
here.

0 Latitude

1 Longitude

2 Salinity

3 Temperature

4 BottomTemperature

5 LunarPhase

6 MeanWaveDirectionSwell

7 MeanWaveDirectionWind

8 MeanWavePeriodSwell

9 PeakWaveDirection
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10 PeakWaveDirectionSwell

11 PeakWaveDirectionWind

12 PeakWavePeriod

13 PeakWavePeriodSwell

14 PeakWavePeriodSwim

15 SignificantSwellWaveHeight

16 SignificantWaveHeight

17 SignificantWavePeriod

18 SignificantWindWaveHeight

19 StokesDriftXVelocity

20 StokesDriftYVelocity

21 WaveDirection

22 WindDirection

23 WindSpeed

24 DistanceToLand

25 NitrogenSurface

26 NitrogenBottom

27 PhosphateSurface

28 PhosphateBottom

29 SilicateSurface

30 SilicateBottom

31 FlagellatesSurface
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32 FlagellatesBottom

33 DiatomsSurface

34 DiatomsBottom

35 OxygenSurface

36 OxygenBottom

37 MicroplanctonSurface

38 MicroplanctonBottom

39 MesozoonplanctonSurface

40 MesozoonplanctonBottom

41 DetriusSurface

42 DetriusBottom

43 DEPTSurface

44 DEPTBottom

45 SISSurface

46 SISBottom

47 AvgDepth

48 AvgChlorophyll





D
Forward feature selection,
pseudo-code
This section provides a pseudo-code for the FFS algorithm used in Sec. 8.3. The list
bellow gives an overview of some of the parameters mentioned in the pseudo-code.
The pseudo-code assumes SVI model for GP.

• ρ is the number of kernel parameters, which increases automatically in each
round of the algorithm when more features are added.

• m denote the number of inducing variables in the GP model, while bSize denote
the batch size of the GP model.

• X denote the input training data while y denote the output values from the
test data. X are assumed to be normalized according to z-mean normalization
in Eq. 6.1.2, while y is normalized to have zero mean.

• p denote the number of features/variables in X .

• n denote number of observations in X .

• kernel is a predefined GP kernel.
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Algorithm 2 Code
1: procedure Forward search
2: Input: X , y, m, bSize, Nstep, p, kernel, n
3: Initialization:
4: XtrSplit = split(X ,p) % Split X according to its features
5: BIC_list = [] % Empty list
6: ind = 0 % Index
7: ρ = 1 % Only one feature
8: First round forward selection:
9: for i = 0 to p do
10: X = XtrSplit(:, i) % All observations for feature i
11: % Define the GP model through: X , y, m, bSize, kernel
12: % Optimize the GP model
13: % Calculate the BIC for feature i, see Eq. 6.4.1
14: % Define the GP model through: X , y, m, bSize, kernel
15: BICρ [i] = log

�
likelihood(optimized GP model)

�
− 1

2 · ρ · log
�
n

�

16: end
17: % Find the feature that maximizes the BIC:
18: OptFeat = XtrSplit

�
max(BIC)

�

19: BIC_list(ind) = index
�
max(BIC)

�

20: ρ = 2
21: for j = 1 to Nstep do
22: for i = 0 to p do
23: if i not in BIC_list then
24: % Concatenate features from early rounds with new features
25: X = concat

�
XtrSplit(:,i),OptFeat

�

26: % Repeat step 10-15
27: else
28: BIC[i] = very small number
29: end
30: OptFeat = concat

�
OptFeat,XtrSplit

�
max(BIC)

��

31: BIC_list(ind) = index
�
max(BIC)

�

32: ind = ind + 1
33: end
34: ρ = ρ + 1
35: end
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