
Regression analysis using a blending type spline

construction

Tatiana Kravetc, Børre Bang, Rune Dalmo

R&D group Simulations
Department of Computer Science and Computational Engineering

Faculty of Science and Technology
UiT - The Arctic University of Norway

9th International Conference on Mathematical Methods for Curves
and Surfaces,

Tønsberg, June 23rd - 28th, 2016

Abstract

Regression analysis allows us to track the dynamics of change in
measured data and to investigate their properties. A sufficiently good
model allows us to predict the behavior of dependent variables with
higher accuracy, and to propose a more precise data generation hy-
pothesis.
By using polynomial approximation for big data sets with complex de-
pendencies we get piecewise smooth functions. One way to obtain a
smooth spline representation of an entire data set is to use local curves
and to blend them using smooth basis functions. This construction
allows the computation of derivatives at any point on the spline. Prop-
erties such as tangent, velocity, acceleration, curvature and torsion can
be computed, which gives us the opportunity to exploit these data in
the subsequent analysis.
We can adjust the accuracy of the approximation on the different seg-
ments of the data set by choosing a suitable knot vector. This article
describes a new method for determining the number and location of
the knot-points, based on changes in the Frenet frame.
We present a method of implementation using generalized expo-rational
B-splines (GERBS) for regression problems (in two and three vari-
ables) and we evaluate the accuracy of the model using comparison of
the residuals.

1

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 1



1 Introduction

1.1 The problem

We describe a general method suitable for use on stream based data. A wide
range of applications is possible, trend analysis for correlation of trends be-
tween weather stations, and estimation of trends in online revenue streams
are two examples that will be considered for further work at a later time.
In this paper, the model implementation is based on weather data. Stages
in the data form the basis for a segmentation intended to be used in further
classification, which gives us the opportunity to identify state changes, or
derived properties as for instance accumulations (mass/volume etc.). Iden-
tifying shifts in trends, i.e. stages in time-dependent open ended stream
based data sets is considered to be of general interest in a wide area of real
world applications.

1.2 Contribution

A natural way of treating possibly noise contaminated data which consists
of more or less well defined stages, is to utilize local approximation in the
relevant stages.

Our method changes the representation of the raw data to a form that
accommodates both local approximation and adjustable criteria for identify-
ing stages. Local piecewise Bézier curves are formed from the Least Squares
Method of a limited number of data points that are close in time. Blend-
ing splines makes it possible to keep the original approximation and gives a
gradual refinement that can be used to balance accuracy and computational
effort. The Hermite properties of the interpolation method we use, where the
local curves supply the additional information regarding derivatives, makes
the resulting approximation work on localized intervals without keeping the
complete data set (in memory).

1.3 Related work

1.3.1 Statistical methods

In [15], James solves the registration problem between curves by ”equating
the moments of the curve while also shrinking toward a common shape”.
This could also be used to recognize ”stages” or states, if information about
the shapes of the stages are available. Statistical methods like the use of
first and second moments of data for feature extraction, have been treated in
[7]. For several application specific problems, an expansion in this direction
of the approximation theory related to a blending type spline construction,
would be appropriate.

2

2 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



1.3.2 Geometrical methods

Real-time approximation and smoothing of geometry data, like position and
orientation under constraints, arises frequently in path planning and con-
trol theory for self-guided vehicles. In [6], Brezak and Petrovic consider
locally smoothing of paths by clothoids, using table lookup to implement a
numerical integration that otherwise could be prohibitive in computational
cost.

The problem of finding suitable knot vectors has been studied in the
literature [13, 5, 8]. It seems to be an active area of research, however, the
methods are depending on the data. In [3], Bittner and Brachtendorf utilize
the Oslo algorithm for knot insertion in a wavelet context and provides an
adaptive approximation method.

In [19] a locally supported spline quasi-interpolant is developed, with
the assumption that the B-spline knots are chosen to lie midway between
consecutive sampling points, or chosen to coincide with the sampling points.
Then by blending of this and a local Hermite interpolation scheme, a method
for fast interpolation is achieved, which has some resemblance to our method.
Since our global setting is open ended, and we choose to approximate our
data with local curves before blending, we also gain a data reduction for the
current stage.

The implemented approximation method in [16], called MARS, provides
searching for a suitable knot vector and approximates the data using the
B-spline. It has parameters such us maximum number of basis functions,
and an accuracy of this approximation depends on the size of the data set.
The method presented in this paper provides a flexible approximation curve,
independent of the complete data set. We do not need to keep all stages.
This feature shows the distinction between local curves and control points.
In MARS, if we remove the first knots, we completely lose the connection
with the previous data points.

3

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 3



2 Method overview

We seek to obtain a real-time continuous smooth approximation of noisy
data, automatization of searching for non-stochastic deviation, and approx-
imation with sufficient accuracy near sudden changes in the data.

The main goal of the algorithm presented in this paper is searching for
features of the data. In other words, the algorithm provides preparation
for clusterization of the data. Based on that, we consider to use data with
the following definition: the 2- or 3-dimensional point set, which is the time
dependence of some value, and can be divided into ”stages”. For example,
change of temperature caused by the weather can be divided by times of day
or seasons, depending on the length of the data set. In this paper we have
considered open data from the Norwegian weather service yr.no at a specific
location [21]. For the 2D data set we have used the maximum temperature
between 01.12.2016 and 01.03.2017, measured once per hour, as shown in
Figure 1(a). For the 3D data set we have used the data from the weather
radar, as the pixel’s coordinates of the maximum amount of precipitation
movement, as shown in Figure 1(b).

(a)

(b)

Figure 1: The data is taken from yr.no [21]. The dashed lines between
the data points are generated to obtain a more clear view. Figure 1(a)
shows time dependence of the temperature in Narvik during winter months,
the timestep is one hour; figure 1(b) shows time dependence of the pixel’s
coordinate of the maximum amount of precipitation in Nordland taken from
the weather radar.

In order to choose our approximation method we first notice some im-
portant properties: the data set has been collected throughout a long time
and is has unpredictable dynamics. Additionally, the number of points in-

4

4 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



creases with time, i.e., we based our approximation on the amount of points
available at the current time step.

From existing methods for building regression models we will take the
Multivariate Adaptive Regression Splines method (also known as MARS) [11,
16] for comparison with our implemented method. The MARS method
makes cubic B-spline approximation and provides optimization of knots po-
sitions and the number of knots. The maximum number of basis functions
can be set as a parameter.

The approach is to recognize the changes between ”stages” on the data
action, when they occur, where the duration of one ”stage” is unknown.
Thus, we need to provide the approximation of each ”stage”. We can use
polynomial approximation for this purpose because the dynamics within
one ”stage” does not change sharply. Then we blend these local polynomial
curves together continuously and smoothly.

The algorithm considered in the present paper combines several approx-
imation methods. We initiate the approximation with a rough estimate and
improve it to obtain clustered sets of points. The motivation is to keep the
accuracy independent of the length of on the point set, to provide stable
real-time approximation, since the size of the data is unknown.

Consider the following short outline of the sequence of algorithms con-
stituting the main algorithm proposed in the paper. Transition from one
step to to the next occurs only if the step returned a value. Throughout
this text, kv is an array of the elements of the knot vector, ℓ is an array of
local curves, A is the blending spline approximation curve, i is the index of
a local curve, and t is time.

(i) Statistical searching of a ”stage” or, in other words, element of a knot
vector, return kv(i); (see Algorithm 1)

(ii) Compute the (i− 1)th local curve, return ℓi−1; (using formula (1))

(iii) Blend ℓi−1 together with ℓi−2, return parametric curve A(t); (see Al-
gorithm 2 and formula (3))

Extension of the knot vector:

(a) Find candidates for knot insertion from the knot intervals; (see
Algorithm 3)

(b) Find the positions for new knots, return recomputed arrays
kv, ℓ, and curve A(t); (see Algorithm 4)

The sequence above is realized for each time step.

5

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 5



3 GERBS

In this section we shall briefly consider some of the theory of blending type
spline constructions, which is relevant for this work. A comprehensive study
of GERBS can be found in [9, 17].

In contrast to classical B-splines [4, 18], where the coefficients typically
are control points in some Eucledian space Rn, blending spline coefficients
can be local geometry. Here we have opted to use Bézier curves [2] defined
by

ℓi(t) =

d∑

k=0

ckbd,k(t), if ti−1 ≤ t < ti+1, (1)

where bd,k are the Bernstein polynomials [1] of degree d, and ck ∈ R2 are
coefficients (or control points), ti−1 and ti+1 are blending spline interpolation
knots, as described below.

We find the coefficients ck by using the Least Squares Method [20]. Ac-
cording to this method, the vector of coefficients c = (c0, c1, ..., cd)

T is the
solution of the common equation:

c = (W TW )−1W T y,

where the vector y consist of values of the time dependent variable, and W
is the matrix of basis functions.

The general formula for an expo-rational B-spline (ERBS) [9] curve over
the knots (ti)

n+1
i=0 is:

f(t) =
n∑

i=1

ℓi(t)Bi(t), if t1 ≤ t ≤ tn, (2)

where the coefficients ℓi in our case are the local Bézier curves (1), and Bi(t)
are the expo-rational basis functions [17].

The domain of the local curves has to correspond with the domain of the
respective ERBS basis function. This means that ℓi in (2) is defined on the
domain (ti−1, ti+1), as shown in (1). Blending of local curves in the global
domain [0, 1] is performed via the formula

f(t) =
(
1−Bi−1 ◦ ωi−1(t) Bi ◦ ωi(t)

)(ℓi−1(t)
ℓi(t)

)
, 0 ≤ t ≤ 1, (3)

where ωk(t) = t−tk
tk+1−tk

, tk and tk+1 are knots, and our choice of B is the

logistic expo-rational B-function [22]:

B(t) =
1

e
1
t
− 1

1−t + 1
.

6

6 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



The choice of using expo-rational basis functions is founded on some
important properties of these functions [17]. One main difference when
compared to polynomial B-splines is the continuity properties. The con-
tinuity at the knots will increase with the order of the B-function. The
expo-rational basis functions are C∞-smooth at the respective exterior knot
and all derivatives are zero at their interior knot. The blending splines in (2)
possess a transfinite Hermite property, namely, ℓi(t) and all their existing
derivatives are interpolated at the interior knots ti. Figure 2 shows that the
first derivative of the basis function is zero at the start and at the end of its
support.

The speed of expo-rational B-splines occurs in a more ”natural” way
than the speed of polynomial B-splines, as shown in Figure 3. Its minimums
are at the start and at the end of curve, local minimums at the turns and
local maximums at the straights. We will use these speed properties further
as criteria for inserting new knots and finding knot positions.

Figure 2: A graph of the expo-rational basis function (solid red) and its first
derivative (dotted blue).

7

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 7



Figure 3: The top picture shows a plot of a 3rd degree polynomial B-spline
(blue). The dashed green lines are the control polygon. The red curve shows
an expo-rational B-spline using the same knot vector and control points as
the polynomial B-spline. The red and green stars denotes extreme values of
the speed. The bottom picture shows the comparison between the speeds
of these curves. Here the blue function shows the speed of the polynomial
B-spline whereas the red function denotes the speed of the expo-rational
B-splines.

4 Statistical method for real-time approximation

Our data are noisy, so we can divide them into noise and a non-stochastic
part. We assume that the noise tends towards a normal distribution. We
will construct probability distribution functions for some initial number of
points, and successively add points to the point set. The deviation from the
normal distribution yields a new stage of activity. Such a method facilitates
the so-called real-time, that is, we run the algorithm while we receive new
data.

Algorithm 1 provides searching for knots by comparing the normal distri-
bution with the probability distribution function for an open ended stream
of data.

A virtual example of Algorithm 1 is shown in Figure 4. Here, the green
curves are normal distributions, where the red curves are probability distri-
bution functions (PDF) for all points between each pair of blue lines. The
blue lines illustrate the stages array, which corresponds to the knot vector.

Let us imagine that the set of points is the random translation of one
point. Then for each time step it makes a displacement with an average
value of 1. The initial value for displacement is 0 for both axes. Since the
PDF can be unstable for small numbers of points, we have used a constant
interval as a minimum distance between the knots.

8

8 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



Algorithm 1 Statistical searching of ”stage”

1: procedure Search stage
2: start = 1;
3: step = 4; //take a step number of points for computation of the next

PDF
4:

5: for t = start+ 1 : step : T do
6:

7: compute σ(start : t), µ(start : t); //σ is the standard deviation
and µ is the mean value

8:

9: nd = 1
σ
√
2Π

e−(x−µ)2/2σ2
; //normal distribution

10:

11: f =pdf(y(start : t)); //compute probability distribution function
12:

13: if f has > 1 local maximums then
14:

15: start = t;
16:

17: append start to stages;
18:

return stages

Figure 4: Illustration of statistical ”stages”, i.e., initial knots, searching by
Algorithm 1 for 2D data (see Figure 1(a)). The blue lines show recognized
knots, red lines show probability distribution functions of groups of data
points separated by the blue lines, and the green curves are the normal
distribution functions for those data points.

9

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 9



For the R3 case we define translation of the point as a continuous dis-
placement of the R3 → R2 projection.

The distance between two points is

|dj | = |pj+1 − pj |. (4)

The initial displacement D0 is zero, and accumulates the distance (4)
between the first and the second point. Then we choose the direction Dt+1

of translation as the sign of the difference between the y coordinates as
shown in formula (5).

Dt+1 = Dt + sign(yt+1 − yt)
√

(xt+1 − xt)2 + (yt+1 − yt)2. (5)

By involving these steps we get the picture of a random walk, see Fig-
ure 5, to which we can apply Algorithm 1.

Figure 5 shows translation of the point as a projection from 3D to 2D, us-
ing formula (5), combined with an illustration of the searching for ”stages”.

Figure 5: Illustration of searching for ”stages” for 3D data (see Figure 1(b)).
The distance between neighbor points in this figure is equal to the distance
between neighbor points in 3D, and the direction corresponds to the projec-
tion on the plane determined by the t and y axes. The blue lines show the
knots found by applying Algorithm 1.

Algorithm 2 provides construction of local curves, as Bézier curves of
degree 3, and blending them together. A description of such a spline con-
struction was addressed in Section 2 (see formula (2)). In Algorithm 2, the
input value stages is adjusted by applying Algorithm 1. N denotes the
number of stages, which changes with time, and N + 2 is the number of
knots. We begin to compute the ith local curve when we have i + 2 knots.
The blending starts when we have a minimum of two local curves. Finally,
by repeating the procedure, we obtain the blending spline A(t). We make
the observation that since our initial knot vector will increase with time, we
can draw local curves and blend them in real-time.

10

10 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



Algorithm 2 Blending of local curves

1: procedure gerbs(stages, N)
2: kv = [stages(0), stages(0), stages(1), ...
3: ..., stages(N − 1), stages(N), stages(N)]; //kv is the knot vector
4:

5: for i = 1 : N do
6:

7: dom = kvi+1 − kvi−1; //define the domain of the ith local curve
8:

9: curvei = Bezier(y(dom, 3)); //compute the Bézier local curve of
degree 3 on the domain dom using formula (1)

10:

11: if N > 2 then
12:

13: for t = 0 : kv(N) do
14:

15: A(t) =
(
1−Bi−1 ◦ ωi−1(t) Bi ◦ ωi(t)

)(curvei−1(t)
curvei(t)

)
;

//blending using formula (3)
16:

return A

5 Adding knots

In the procedure above we defined the initial knot vector for a current time
step. If this vector contains at least two knot intervals, we can improve
the approximation of the data, i.e., increase the accuracy, by inserting new
knots at certain positions.

Let A(t) be a spline function. X is the discrete set of points, xt ∈ X, xt =
(t, y) for the 2D case and xt = (t, x, y) for the 3D case, where t is the time
variable. Thus, we have a point for each t and a continuous approximation
of this set of points. The knot vector is denoted by τ = (ti)

N
i=0, where N is

number of knots.
We introduce a moving frame, denoted by its tangent and normal vectors,

η and ξ for the 2D case, and tangent, normal and binormal vectors η, τ ,
ξ, for the 3D case, respectively. Such a frame represents a moving local
coordinate system.

Definition 1. The ”scope” is the interior of the geometric boundary outlined
by the pair of straight lines for the 2D case, or planes for the 3D case, which
are defined via the knot interval. Each knot interval on τ yields the top and
the bottom borders of the ”scope”, which go through the points from the set
Xi ⊂ X, Xi = [xti ,xti+1 ], which have the maximum distance from the local
origin along the axis ξ of the moving frame, and are parallel to the axis η,

11

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 11



for the 2D case, or rectifying plane denoted by the axes η and τ , for the 3D
case.

The process of inserting new knots consists of two steps: finding candi-
dates for knot insertion from intervals in the knot vector, and defining the
position for knot insertion.

a) The first step is based on the detection of points which are outside of
the ”scope”. The ”scope” should contain all of the points. Algorithm
3 and Figures 6 and 8 describe a process for finding the indices of
intervals where new knots should be inserted.

We shall now consider separately line 15 from Algorithm 3 for the
3D case and describe how to find the points which are outside of the
”scope”.

The parametric expression of the plane which belongs to the ”scope” is:

q(u, v) = p0 + ut+ vb,

where t is the tangent vector, b is the binormal vector, and p0 is the
local origin.

Let the vector between p0 and the point to check be dpoint, the vector
between p0 and A be dcurve, and n be the normal vector of the curve
at p0 (see Figure 8(c)). If the inner product between n and dpoint has
the same sign as the inner product between n and dcurve, then the
point and the curve lie on one side of the plane:

if

〈dpoint,n〉〈dcurve,n〉 < 0, (6)

then add a new knot

b) The second step is based on the properties of ERBS curve, as consid-
ered in Section 2 (see Figure 3). We seek to divide the knot interval
by inserting a new knot at the position where we can measure the
largest change in the point set. We define this to be the position with
the highest speed, thus, we need to find local maximums of the first
derivative of the curve. Algorithm 4 and Figure 7 describe the process
of inserting new knots. x and y are point coordinates, kv is the knot
vector, and ms is an array of local maximums of the first derivative of
the curve A. in is an array of indices of knot intervals, and there are
two types of indexation, i is the index of the knot interval and t is an
index along the time axis.

12

12 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



Algorithm 3 Finding candidates for knot insertion from knot vector

1: procedure FindIntervals(kv, A) //kv is the knot vector, A is the
curve

2: ρ = []; //an array for extremal points, which denote the border of the
”scope”

3:

4: Define the moving frame to A(t); //Fig. 6(a), 8(a)
5:

6: for i = 0 : length(kv)-1 do
7: //add to ρ extremal points along ξ on the interval [kvi, kvi+1)
8: ρ.add(X(max(ξt)));
9: ρ.add(X(min(ξt)));

10:

11: Construct lines through points from ρ, parallel to the η axis, and we get
the ”scope” for the 2D case; //Fig. 6(b)

12: OR
13: Construct planes through points from ρ, parallel to the rectifying plane

denoted by the η and τ axes, and we get the ”scope” for the 3D case;
//Fig. 8(b)

14:

15: if ∃ points from X on the interval [kvi, kvi+1) which lie below of the
bottom border or above of the upper border then

16: insert a new knot using Algorithm 4;
17: recompute the knot vector and the curve and goto 2;

// (Fig. 6(c), 8(d))

Algorithm 4 Inserting new knots

1: procedure NewKv(kv, A, N)
2: in = [], ms = [];
3:

4: //find knot intervals where we need to add new knots, using Algorithm 3
in = FindIntervals(kv, A); //in consists of indices of knot inter-

vals
5:

6: ms = LocalMaximums(A′); //populate the array ms with indices of
local maximums of the A′(t)

7:

8: Add to kv the indices (t) from ms, which lie on knot intervals with
indices (i) from in; //in the case when values of ms or in does not lead
to add new knot, then we do not add any indices

9:

10: return kv

13

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 13



(a) (b) (c)

Figure 6: Describes algorithm 3. (a) illustrates the detection of a moving
frame on the curve (Algorithm 3, line 4). The blue lines in (b) are the tangent
lines of the curve through the red points, corresponding to maximum and
minimum distances along the ξ axis on the considered knot interval, which
are used to obtain the ”scope” (Algorithm 3, line 11). Since there are points
outside of the ”scope” (Algorithm 3, line 15), we insert a new knot and
recompute the curve as shown in (c) (Algorithm 3, lines 16-17).

Figure 7: Relation between the arrays, described in Algorithm 4, which
uses Algorithm 3. The blue curves show the derivative of the curve A(t)
before (top) and after (bottom) knot insertion. The red circles illustrate
the positions of the knots. kv is the knot vector before knot insertion, ms
is the array of positions on the time-axis of the maximums of the curve’s
first derivative, in is the array of indices of the knot intervals where we
need to insert new knots found by using Algorithm 3, and newkv is the new
knot vector, found via comparing the kv, ms and in arrays, as described in
Algorithm 4.

14

14 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



(a) (b)

(c) (d)

Figure 8: Description of Algorithm 3 for the 3D case. (a) illustrates the
detection of a moving frame on the curve (Algorithm 3, line 4). The blue
planes in (b) are the tangent planes to the curve through the red points,
corresponding to the maximum and minimum values along the ξ axis on the
considered knot interval, constituting the ”scope” (Algorithm 3, line 13).
(c) illustrates how we recognize the points which are outside of the ”scope”
in the projection on a plane denoted by the t and y axes: n is the normal
to the curve at p0. We are checking the position of dpoint relative to the
plane by applying formula (6). Since there are points which are outside of
the ”scope” (Algorithm 3, line 15), we insert a new knot and recompute the
curve as shown in (d) (Algorithm 3, lines 16-17).

15

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 15



6 Results and concluding remarks

Figures 9 and 11 show some steps of the proposed algorithm applied to
representative examples in R2 and R3, respectively.

The approximation is a continuous smooth function which is generated
by the automated algorithm. We can use intrinsic parameters of the result-
ing curve for further analysis. The settings of the algorithm are implicit:
sensitivity to the detection of stages by changing the step, tolerance to the
points which are outside of the ”scope” (see Algorithm 3, line 15), and ad-
justing the degree of the local curves (in our case d = 3). We do not need to
set the initial number of knots, or initial length of knot-intervals, or number
of iterations.

For comparison, we consider the MARS algorithm [16]. Parameters for
the MARS model have been set as

params = aresparams2(’maxFuncs’, 70);

which limits of the maximum number of basis functions used. Note that the
implementation is not a real-time version, so, assuming that we can realize
a comparable approach, we simply run MARS for each time step.

By making a visual comparison of Figures 9 and 10 one can see the
differences and similarities between the results of the two algorithms. We
note that the length of the resulting knot vectors for both methods are
equal, but the values are very different. For example, the accuracy of the
approximation changes within the range 300 − 600. Also one can compare
the range 800− 1200 for both algorithms.

One can not conclude which one is the better, based on the curves, since
we do not have an original curve. However, we can discuss which method is
more fit for our task and for our data.

The method presented in this paper provides flexible approximation of
curves, independent of the complete data set. The curve is an affine com-
bination of two and only two local functions on each knot interval. We do
not need to keep all local curves or all ”stages”. This feature shows the
distinction between local curves and control points. For comparison, with
MARS, if we remove the first knots, we completely lose the connection with
the ”earlier” data points. But by using local curves, we keep the previous
”stage” only as long as we need it.

We observe a constant (but not established) accuracy in our method
for any time step. Conversely, with MARS, if maxFuncs is large, then we
obtain one accuracy at first, which will decrease when increasing the number
of data points. This can be addressed by changing the maximum number of
basis functions, but requires an extension of the algorithm.

Thus, we conclude that the presented algorithm is suitable for data pos-
sessing similar properties as our model data, whereas MARS is an estab-
lished method with flexible settings for specific tasks.

16

16 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



Figure 9: The process of approximation for 2D data (see Figure 1(a)). The
red curves are local curves, the blue curve is the approximation curve.

Figure 10: Result of the MARS [16] algorithm.The blue curve is the resulting
curve, black circles and dashed lines show knots.

17

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 17



Figure 11: The process of approximation for 3D data (see Figure 1(b)). The
red curves are local curves, the blue curve is the approximation curve.

18

18 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’



References

[1] S. Bernstein, Démonstration du théoréme de Weierstrass fondée sur le
calcul des probabilités, Communications de la Société Mathématique de
Kharkow, 2-ée série, volume: 13(1), pages:1-2, 1912.

[2] P. Bézier, Numerical control: Mathematics and Applications, Wiley se-
ries in computing, J. Wiley, London, New York, English language edition,
1972.

[3] K. Bittner, H. G. Brachtendorf, Fast Algorithms for Adaptive Free-
Knot Spline Approximation Using Non-Uniform Biorthogonal Spline
Wavelets, SIAM J. Scient. Computing, 37(2): 283-304, 2015.

[4] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York,
1978.

[5] J. Bratlie, R. Dalmo, P. Zanaty, Fitting of Discrete Data with GERBS,
in volume 8353 of Lecture Notes in Computer Science, pages 569-576.
Springer, 2014.

[6] M. Brezak, I. Petrovic, Real-time Approximation of Clothoids With
Bounded Error for Path Planning Applications, IEEE Transactions on
Robotics, volume: 30, pages: 507 - 515, 2014.

[7] U. Clarenz, M. Rumpf, A. Telea, Robust Feature Detection and Local
Classification for Surfaces Based on Moment Analysis, IEEE Transac-
tions on Visualization and Computer Graphics, volume: 10, pages: 516-
524, 2004.

[8] R. Dalmo, Expo-Rational B-Splines in Geometric Modeling, Methods
for Computer Aided Geometric Design. PhD thesis, University of Oslo,
2016.

[9] L. T. Dechevsky, A. Laks̊a, B. Bang, Expo-Rational B-Splines, Interna-
tional Journal of Pure and Applied Mathematics, volume: 27 (3), pages:
319-367, 2006.

[10] G. Farin, Curves and Surfaces for Computer Aided Geometric Design,
Academic Press, Inc., Fifth Edition, 2002.

[11] J.H. Friedman, Multivariate adaptive regression splines, Stanford linear
accelerator center, Stanford, California, volume: 19, pages: 1-67, 1990.

[12] I. Guttman, Introductory Engineering Statistics, John Wiley & Sons,
Inc., 1965.

19

MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’ 19



[13] P. J. Hartley and C. J. Judd, Parametrization of Bézier-type B-spline
curves and surfaces, Computer Aided Design, volume: 10, pages: 130-
134, 1978.

[14] W. Härdle, Applied Nonparametric Regression, volume: 34(2), pages:
341–342, 1989.

[15] G. M. James, Curve Alignment by Moments, The Annals of Applied
Statistics, volume: 1, pages: 480–501, 2007.

[16] G. Jekabsons, ARESLab: Adaptive Regression Splines toolbox for Mat-
lab/Octave, Institute of Applied Computer Systems, Riga Technical Uni-
versity, Riga, Latvia, 2009.

[17] A. Laks̊a, Blending technics for curve and surface constructions, Narvik
University College, Narvik, Norway, 2012.

[18] L. L. Shumaker, Spline Functions, Cambrige University Press, Cam-
bridge Cb2 8RU, UK, 3rd edition, 2007.

[19] M. D. Van der Walt, Real-time, local spline interpolation schemes on
bounded intervals, Applied Mathematical Sciences, volume: 10, pages:
205-234, 2015.

[20] K.V. Vorontsov, Lectures about algorithms for dependencies reconstruc-
tion, 2007.

[21] Weather service yr.no,
www.yr.no/place/Norway/Nordland/Narvik/Narvik/almanakk.html,
www.yr.no/place/Norway/Nordland/Narvik/Narvik/radar.html, Norwe-
gian Meteorological Institute and Norwegian Broadcasting Corporation,
2007 - 2017, dates 01.12.2016-03.01.2017.

[22] P. Zanaty, L. T. Dechevsky, On the numerical performance of FEM
based on piecewise rational smooth resolutions of unity on triangulations,
AIP Conference Proceedings, volume: 1570, page:191, 2013

20

20 MMCS2016, 025, v1: ’Regression analysis using a blending type spline construction’


