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ABSTRACT

A two-dimensional stochastic–diffusive energy balancemodel (EBM) formulated on a sphere byG. R. North
et al. is explored and generalized. Instantaneous and frequency-dependent spatial autocorrelation functions and
local temporal power spectral densities are computed for local sites and for spatially averaged surface tem-
perature signals up to the global scale. On time scales up to the relaxation time scale given by the effective heat
capacities of the ocean mixed layer and land surface, respectively, scaling features are obtained that are rem-
iniscent of what can be derived from the observed temperature field. On longer time scales, however, the EBM
predicts a transition to a white-noise scaling, which is not reflected in the observed records. A fractional gen-
eralization, which can be considered as a spatial generalization of the zero-dimensional, long-memory EBM of
M. Rypdal and K. Rypdal, is proposed and explored. It is demonstrated that this generalized model describes
qualitatively the main correlation characteristics of the temperature field reported in the literature and those
derived herein from 500-yr-long control simulations of the NorESM Earth system model. A further general-
ization of the model, to include long-term persistence in the stochastic forcing, is also discussed.

1. Introduction

The enormous complexity of present-day general circu-
lation climate models implies that model data can only be
interpreted through advanced data analysis. Implicit in
such data analysis is always the application of concepts
based on simpler dynamic, stochastic–dynamic, or statisti-
cal model frameworks. Such models will in some form
describe the correlation structure of Earth’s climatic fields.
Zero-dimensional energy balance models (EBMs) only
describe correlation structure in time—in simplest form,
as an exponential relaxation time with a time constant
of a few years determined by the heat capacity of the
ocean mixed layer. Zero-dimensional two-layer models
include the energy exchange between the mixed layer
and the deep ocean, which introduces another and larger
time constant of the order of a century (Held et al. 2010;
Geoffroy et al. 2013). An alternative generalization of

the one-layer model, which yields a power-law impulse
response, was introduced by Rypdal (2012) and, by
further introducing stochastic forcing, in Rypdal and
Rypdal (2014). These generalizations thus provide a
phenomenological stochastic–dynamical model describing
the long-range temporal correlation structure on time
scales from years to centuries observed in global tem-
perature data as well as in millennium-long climate
model simulations (Østvand et al. 2014).
One-dimensional EBMs describe meridional energy

transport in addition to the vertical radiation balance
(Budyko 1969; Sellers 1969), and two-dimensional models
include also zonal transport. There is a plethora of papers
on such models, many of which include a stochastic forc-
ing. One of the earlier studies of such stochastic-diffusive
EBMswasmadebyNorth andCahalan (1981). Thismodel
was expanded to include a simple model for ocean diffu-
sion and upwelling by Kim and North (1992), and was
compared to early versions of atmospheric–ocean general
circulation models (AOGCMs) by Kim et al. (1996). The
latter study revealed power-law temporal spectra corre-
sponding to strong long-range temporal correlation struc-
ture in global temperature on time scales up to a decade in
the AOGCMs, but a loss of correlations on longer time
scales. The stochastic–diffusive EBM showed a more
gradual transition toward uncorrelated noise on longer time
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scales. Their spectra of instrumental global temperature
also shows the transition to uncorrelated noise on time
scales longer than a decade, which is now known not to
reflect the true correlation structure on time scales from
decades to centuries revealed in millennium-long temper-
ature reconstructions (Rypdal et al. 2013) and AOGCM
simulations (Østvand et al. 2014). The explanation of the
observed flattening of the spectra on long time scales may
be the particular spectral analysismethod used inKimet al.
(1996), which is based on fitting a high-order autoregressive
(AR) process to the data. AR processes cannot model
long-range dependence in data (Beran 1994).
Thework presented in the present paper focuses on the

more fundamental mechanisms by which spatiotemporal
long-range persistence may arise in Earth’s temperature
field. Hence the goal is not to construct a model that re-
flects the details in land–ocean topography, and param-
eters in the model are estimated from data, not derived
from modeling the actual physics. It is inspired by, and a
generalization of, the recent work by North et al. (2011).
In that paper the stochastic–diffusive EBM is first for-
mulated on a plane disk, where it takes the form
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›t
1T2 l2

!
›2T

›x2
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›2T

›y2

"
5F(t, x, y) . (1)

Here t is time, x, y are the two spatial coordinates,
T(t, x, y) is the surface temperature field, and tr is a re-
laxation time constant that is proportional to the effective
heat capacity per unit area of the surface and inversely
proportional to the effective emissivity of outgoing long-
wave radiation. Also, F(t, x, y) represents the horizontal
turbulent energy flux into a vertical column of unit area due
to atmospheric weather systems, and the standard choice is
to model it as a white-noise source field in space and time.
The generalization of this equation to the surface of a
sphere is straightforward, and is done in North et al. (2011).
The assumptions of isotropy and the uniformity of the dif-
fusion tensor are obviously unrealistic, since it ignores the
meridional dependence of the insolation and the uneven
distribution of landmasses. This distribution also affects the
time constant tr since the heat capacity of the ocean mixed
layer is much larger than that of the land surface.
It is shown in North et al. (2011) that the stationary ran-

dom field resulting from Eq. (1) exhibits an exponentially
decaying, frequency-dependent, spatial autocorrelation
function (ACF). They express this as a frequency-
dependent spatial autocovariance Cv(r) defined as the
inverse spatial Fourier transform (FT) of the space–time
spectral density Sv,k 5E[jTv,kj2]. Here Tv,k is the space–
time FT of the temperature field and E[!] denotes the ex-
pectation value. They give an analytic expression for Cv(r)
on the flat disk, which in the limit r/l/‘ decays

exponentially in space with a correlation length lv that de-
creases with increasing v. In the limitv/ 0 the correlation
length is l0 5 l. Thismeans that the spatial ACFs are short-
range (exponential rather than power law), and that this
model cannot describe long-range spatial correlations.
North et al. (2011) do not compute explicit in-

stantaneous spatial ACFs or temporal power spectral
densities (PSDs). Fromadata-analysis viewpoint temporal
spectra are of great interest because of the published evi-
dence that such spectra exhibit power-law scaling of the
form S(v);v2b with b 2 (0, 1) both for local and glob-
ally averaged temperature records (Rypdal et al. 2013;
Rypdal and Rypdal 2014; Østvand et al. 2014). The spec-
tral index b measures the degree of persistence in the re-
cord, and in local records it is close to unity over oceans,
and close to zero over land (Fraedrich and Blender 2003).
It also appears that b is larger in records averaged over
large areas, like global and hemispheric averages, than in
local time series.Aswewill demonstrate in section 2,many
of these features are described by the stochastic-diffusive
EBM of North et al. (2011) (in the following called the
North EBM) for time scales up to the relaxation time tr.
However, we also show that persistent long-range corre-
lations beyond this time scale cannot be described by this
model. In section 3 we generalize this model to include
long-memory delays in the surface temperature response
due to energy exchange between the ocean mixed layer
and the deep ocean. Mathematically this is done by re-
placing the exponential temporal relaxation due to vertical
radiative energy balance with a power-law relaxation
(Rypdal andRypdal 2014), and corresponds to introduction
of a fractional time derivative in the North EBM (Rypdal
2012). We demonstrate the power-law nature of spatio-
temporal correlations in this model and its consistency
with an observed reconstructed temperature time series.
In section 4 we compare these results with multicentury
long control simulations of the NorESM Earth system
model and find that the fractional EBM provides a better
description of the correlation structure observed in these
simulations than the North EBM. Transient relaxation
after a sudden increase in forcing in the NorESM shows a
long-range persistent response, but with a lower b than
observed in the control simulations. This motivates a
generalization of the fractional EBM to include persis-
tent, stochastic forcing in section 5. In section 6 we sum-
marize and conclude, and in the appendixes we elaborate
on some mathematical technicalities.

2. The North EBM on a sphere

a. Spatial ACFs and temporal PSDs of the North EBM

In this section we shall outline the derivation of the
frequency-dependent spatial ACF given by North et al.
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(2011) and then derive the corresponding temporal PSD
for a time series measured in a given location on the
sphere. On the unit sphere Eq. (1) for the temperature
field T(t, m, f) takes the form

t
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›2T

›f2
5F(t,m,f),

(2)

where m5 cosu, where u is the polar angle, and f is the
azimuthal angle (longitude). This equation is now for-
mulated on the rectangle m 2 [21, 1], f 2 [0, 2p). To
avoid all the subtleties of stochastic integralswe shall start by
representing the random forcing fieldF(t, m, f, ) by a finite
series FK,N(t, m, f) of spherical harmonics Yn,m(m, f) in
space and harmonic functions exp(ivjt) in time:

F
K,N(t,m,f)5 !

K/2

j52K/2
!
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n50
!
n

m52n
F(v

j
,n,m)eivj tY

n,m(m,f) .
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Here vj 5 2pj, j52K/2, . . . , K/2, are the frequencies
of the discrete Fourier expansion of a time series with
K1 1 elements sampled at intervals Dt5 1/K (the time
record is supposed to have duration KDt5 1). We shall
let the integersK, N/‘ at the end, which corresponds to
the continuum limitDt/ 0 in time and also infinite spatial
resolution on the sphere. In appendix A it will be shown
that ifF(t, m, f) is a randomfield (awhite-noise process in
space and time) the variance of the expansion coefficients
will be the same for all terms in the sum, that is,

E[jF(v
j
, n,m)j2]5s2 , (4)

for all 2K/2# j#K/2 and 0# n#N. Higher spatio-
temporal resolution is obtained by increasing K and N,
and since all spatiotemporal scales are represented by
equal power in the random field the total power diverges
as K, N/‘. This power now takes the form

P
K,N 5

ð1

0

dt

ð

4p

dVE[jF
K,N(m,f, t)j

2] ,

where dV5 sinududf52dmdf is the solid angle dif-
ferential. Inserting Eq. (3) into this integral, using the
orthonormality of the basis functions Yn,m(m, f) and
exp(ivjt), and the random-field assumption Eq. (4), we
find after some straightforward algebra

P
K,N 5 (K1 1)(N1 1)2s2 . (5)

By expanding the temperature field in the same way as
the forcing field in Eq. (3), and substituting these ex-
pansions into Eq. (2), we find

T(v,n,m)5
F(v, n,m)

2ivt
r
1l2n(n1 1)1 1

, (6)

and hence

T(v,m,f)5 !
‘

n50
!
n

m52n

F(v,n,m)Y
n,m(m,f)

2ivt
r
1l2n(n1 1)1 1

. (7)

This formula can be used for computing the frequency-
dependent spatial ACF as well as the temporal PSD.
The frequency-dependent covariance between the
‘‘North pole’’ given by the unit vector ẑ (given by m5 1)
and the point r̂ (given by m, f) is defined by

C
v
(r̂, ẑ)5C

v
(m)5E[T(v,m,f)T*(v, 1, 0)] . (8)

Because of the statistical uniformity of the fields on the
sphere this is the covariance between any two points r̂ and r̂0

separated by an angle a such that m5 cosa5 r̂ ! r̂0. By in-
serting Eq. (7) into Eq. (8), using the white-noise relation

E[F(v,m, n)F*(v,m0, n0)]5s2d
m,m0dn,n0 ,

and the formula

!
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4p
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where Pn is the nth-order Legendre polynomial, we ar-
rive at the frequency-dependent ACF
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C
v
(m)[

s2

4p
!
‘

n50
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The frequency-dependent ACF rv(cosu) is plotted for
l5 0:4 and l5 0:2 and for different values of vtr in
Fig. 1. We observe that it approaches a limit function
r0(cosu) as vtr / 0. The instantaneous spatial co-
variance is computed in appendix B [Eq. (B2)] to yield

C(m)5E[T(t,m,f)T*(t, 1, 0)]

5
1

2p

ð‘

2‘
C

v
(m) dv . (11)

Equation (11) is also derived for a more general EBM at
the end of section 3a. The integral diverges in the limit
m/ 1 (u/ 0). This is because the diffusion operator is
unable to smoothen the irregularities introduced by the
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random forcing field on the shortest time scales. This
irregularity vanishes if we truncate the Fourier expan-
sion in time at a finite K (i.e., if we assume that the
forcing field is smooth on time scales shorter than 1/vK).
In Fig. 2a we have plotted the truncated CvK

(m) given in
Eq. (B2) for l5 0:2 for three different values of the
upper (Nyquist) frequency. We note that CvK

(m) con-
verges to a finiteC(m) except form5 1. However, because
CvK (1) diverges, the decorrelation time of the truncated
ACF, rvK

(m)5CvK
(m)/CvK

(1), goes to zero as vK /‘,
as shown in Fig. 2b. In appendix B we also compute an
ordinary differential equation for the instantaneous spatial
ACF,C(m). The solution is given in terms of the Legendre
function, Qn(m), which in general diverges at m5 1. This
solution is plotted as the dashed curve in Fig. 2a. The im-
portance of Fig. 2 is to be aware that the instantaneous
ACF computed from observation data will depend on the
sampling rate of the data analyzed, while the frequency-
dependent ACFs will not.
From putting r̂5 ẑ in Eq. (8) we observe that

Cv(1)5E[jT(v, 1, 0)j2] is the temporal PSD of the
temperature time series at any point on the sphere. If we

set m5 1 in Eq. (10), and use that Pn(1)5 1 for all
n5 1, 2, . . . , we find

S(v)5C
v
(1)5

s2

4p
!
‘

n50

(2n1 1)

v2t2r 1 [l2n(n1 1)1 1]2
. (12)

The PSD S(v) is plotted in Fig. 3 for different values of l.
Note that since we operate on the unit sphere l is measured
in radians. For time scales longer than the relaxation time tr
(vtr , 1), the spectrum is flat, which indicates that there is
no memory on those time scales. According to North et al.
(2011) tr is a few months over land, and several years over
oceans. By estimating tr for the corresponding zero-
dimensional model (a model for global temperature),
Rypdal and Rypdal (2014) found tr 5 4:7 yr. The flat spec-
trum for longer time scales than this is not consistent with
spectra obtained from instrumental data records over
oceans, wherewefindpower-law spectrawithb’ 1 on time

FIG. 1. Frequency-dependent spatial ACF of temperature mea-
sured vs angular distance u from any reference point on the uniform
unit sphere given by Eq. (10) for (a) l5 0:4 and (b) l5 0:2.

FIG. 2. (a): Instantaneous spatial covariance, CvK
(cosu), as

computed from Eq. (B2) for s2 5 1, l5 0:2 and three different
values of the Nyquist frequency vK . Blue curve: vKtr 5 1, orange
curve: vKtr 5 10, green curve: vKtr 5 100, dashed curve:
1223C(cosu), where C(m) is given by Eq. (B6). (b) The corre-
sponding ACFs defined as rvK

5CvK
(cosu)/CvK

(1).

8382 JOURNAL OF CL IMATE VOLUME 28



scales up to a decade. In section 4 we shall demonstrate
that such power-law spectra also extend to century time
scales in the NorESM model.

b. Relating temporal and spatial correlations

A major objective of the present paper is to relate the
temporal correlation structure in regionally, hemispheric
or globally averaged temperature to the local temporal
correlations and the spatial, frequency-dependent corre-
lations. We start by defining a spatially averaged tem-
perature over a region (solid angle) V on the unit sphere,

TV(t)5
1

V

ð

V
T(u,f, t) df sinudu .

We make the Fourier transform of this integral in time
and then form the temporal PSD,

SV(v)5
1

V2
E[TV,vT V,v

* ]

5
1
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df0 sinu0 du0
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V
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5
1
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v
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5
S(v)

V
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V
r
v
(m) df dm .

Here we have used the (unrealistic) assumption that

E[T
v
(̂r)T

v
* (̂r0)]5C

v
(cosu)5C

v
(m) (13)

depends only on the angular distance u between two
points on the sphere. IfV is the solid angle of a spherical
cap characterized by m0 5 cosu0 this reduces to

S
m0
(v)5S(v)

1

12m
0

ð1

m0

r
v
(m) dm . (14)

If V is the entire sphere, then m0 521 and S21(v) is the
PSD of the global temperature. The interesting feature
of Eq. (14) is that it expresses the PSD of the regional or
global temperature as a product of the local PSD, S(v),
and a spatial integral over the frequency-dependent
spatial ACF, rv(m). It is generally valid for any statisti-
cally uniform field [satisfying Eq. (13)] on a sphere, and
not just for solutions of the North EBM. For the EBM
we saw in Fig. 1 that rv(m)/ r0(m) as vtr / 0. This
means that for vtr " 1 we have that S21(v)} S(v); that
is, the PSD of the global temperature scales the same
way as the local temperature for frequencies lower than
the inverse time constant. However, for vtr . 1, the
integral

Ð
1
21rv(m) dm varies with frequency and hence

explains the different scaling exponent b for local and
global temperature observed in Fig. 4. Equation (14)
shows that in general, if rv(m) for a statistically uniform
field on a sphere approaches a limit function r0(m) for
1/v greater than a certain time scale t, then local and
global temperature should scale the same way for all
time scales greater than t. In the NorESM data we are
not able to identify such a time scale t (i.e., if it exists it
must be more than several centuries). This is a major
motivation for searching for a generalization of the
North EBM, which does not exhibit the same scaling for
local and global time series at low frequencies.

3. Generalizations of the North EBM

a. Transfer function formulation

The Fourier representation (in time) of Eq. (2) given
by Eq. (7) is expressed through the transfer functions

g
n
(v)5

1

(2ivt
r
1 1)1 l2n(n1 1)

, (15)

FIG. 3. Log–log plots of the temporal PSD of temperature time
series at any point on the uniform unit sphere given by Eq. (9), for
l5 0:4, p/2, p, 100. For vtr # 1 the slope corresponds to b’ 1
for l " p and to b’ 2 for l # p.

FIG. 4. Log–log plot of power spectral density for the tempera-
ture averaged over a fractional area j5A/4p5 (12 cosu)/2 of the
unit sphere as given by Eq. (14), for j5 0, 0:03, 0:1, 0, 35, 1. The
slope for vtr # 1 and j5 0 approaches b5 1. For j5 1 (global
average) we have b5 2.
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such that

T(v,m,f)5 !
‘

n50
g
n
(v) !

n

m52n
F(v, n,m)Y

n,m(m,f) . (16)

In the following we will specify a choice of the sequence
fgn(v)g that corresponds naturally to the generalization
from a zero-dimensional EBM with an exponential re-
laxation time to a zero-dimensional EBM with a long-
memory response, but first wewill point out some results
that are independent of the choice of functions gn(v).
The general form of Eq. (10) is

C
v
(m)5

s2

4p
!
‘

n50
jg

n
(v)j2(2n1 1)P

n
(m) . (17)

If we take the inverse Fourier transform (in time) of
Eq. (16) we obtain the expression

T(t,m,f)5 !
‘

n50
!
n

m52n
Y
n,m(m,f)

ð
g
n
(v)F(v,n,m)e2ivt dv,

and if the forcing is white noise (in time and space) we
have

E
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(v)F(v, n,m)e2ivt dv
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g
n0
(v)F(v, n0,m0)e2ivt dv

$
*

5s2

ð
jg

n
(v)j2 dvd

n,n0dm,m0 ,

and using this, we easily recover that Eq. (11) is valid for
any response function. The more cumbersome derivation
in appendix B serves to demonstrate why C(m) diverges
for m5 1 and how to understand the instantaneous
spatial ACF.

b. The fractional EBM

The response in global surface temperature can be found
by integrating the model over the sphere, or equivalently
letting l5 0 (note that this is very different from the limit
l/ 0; a spatiotemporal model with vanishing diffusion
coefficient). The first term in the denominator in Eq. (15) is
2ivtr 1 1, and we note that

G
0
(v)5

1

2ivt
r
1 1

is the transfer function corresponding to the differential op-
erator tr›t 1 1 (i.e., of the zero-dimensional EBM). Hence
the transfer functions gn(v) can be written in the form

g
n
(v)5

1

G21
0 (v)1 l2n(n1 1)

. (18)

The inverse Fourier transform of G0(v) is an expo-
nential function with time constant tr; that is,
the Green’s function for the zero-dimensional
EBM is

G
0
(t)5

2p

t
r

e2t/trQ(t) ,

whereQ(t) is the unit step function. This is the response
in the global surface temperature to a delta function d(t)
in the forcing. The generalization suggested in Rypdal
(2012) and Rypdal and Rypdal (2014) is to replace the
exponentially decaying response function by a power-
law function

G(t)5 (t/h)b/221jQ(t) , (19)

which is equivalent to the fractional differential
equation

c

2p
Db/2

t T(t)5F(t) ,

with

c5
2phb/221

jG(b/2)
,

where G is the Euler gamma function and h is a con-
stant parameter of dimension time that characterizes
the strength of the response. The unit constant j5 1
has dimension (time)21. The Fourier transform of
G(t) is

G(v)5
1

2p
eipbsgn(v)/4G(b/2)jhjhvj2b/2 , (20)

and the corresponding modification of the North
EBM is the replacement G0(v)/G(v) in Eq. (18),
that is,

g
n
(v)5

1

ce2ipbsgn(v)/4jvjb/2 1 l2n(n1 1)
. (21)

The constant c has dimension (time)b/2, hence c2/bv is a
dimensionless frequency. Note that the solutionT(v, m, f)
obtained in Eq. (16) is the solution of the equation

e2ipbsgn(v)/4jc2/bvjb/2T2 l2=2T5F , (22)

where =2 is the dimensionless Laplace operator on the
unit sphere. The first termon the left can be considered as
the Fourier transform of a fractional time derivative
(Rypdal 2012). In the time domain this equation can be
written as
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c

2p
Db/2

t T2 l2=2T5F ,

which is why we call this equation a fractional
EBM. In the present context, however, the formalism
of fractional derivatives has no practical use, the
temperature response is computed by the inverse
Fourier transform of Eq. (16), using the transfer

functions Eq. (21). Figure 5 shows a snapshot of
such a solution computed for a simulated random
force field.

c. Spatial and temporal correlations in the fractional
EBM

From Eq. (21) we have

jg
n
(v)j2 5 1

jc2/bvjb 1 [l2n(n1 1)]2 1 2l2n(n1 1)jc2/bvjb/2 cos
!
pb

4

" , (23)

which we can insert into Eq. (17) to obtain explicit ex-
pressions for Cm(v) and S(v)5C1(v).
The frequency-dependent ACF is plotted in Fig. 6 for

two values of l and is the analog of Fig. 1 generalized to
the fractional EBM.We have the same tendency toward
loss of long-range spatial correlation at high frequencies,
but in the zero frequency limit the correlation function is
uniform; that is, the fluctuations are dominated by spa-
tially uniform (global) variations. Such behavior does
not appear in the conventional EBM since that model
lacks a long-range global response reflecting the slow
response of the deep ocean.
In Fig. 7 we plot the PSD of the local temperature for a

number of different l values. This figure is the fractional
analog of Fig. 3. For small and large l these spectra are
perfect power laws over most of the frequency range. For
small l (i.e., in the regime relevant for the Earth climate
system) the spectral exponent is b/2 (i.e., half of the
spectral exponent for the global temperature in the zero-
dimensional fractional model; Rypdal and Rypdal 2014).
For l # p, the spectrum is a power law with spectral
exponentb. This result is obvious, since in the large l limit
the fieldwill be spatially uniformand themodel reduces to
the zero-dimensional one. For intermediate values of
l there is a break in the scaling from exponent b at low
frequencies (dominated by global fluctuations) to b/2 at
high frequencies (dominated by local fluctuations).
We can also compute the PSD for the temperature

averaged over a fraction j of the globe surface, as we did
in Fig. 4 for the conventional EBM. The result is shown
in Fig. 8. It may not come as a surprise that the spectra
are power laws, and that local spectra have exponent
b/2, gradually increasing to b with increasing degree of
spatial averaging up to global.
In Fig. 9 we show that this feature is also reflected in

observation data. The figure shows the fluctuation functions
of a first-order detrended analysis (DFA1) (Kantelhardt
et al. 2001) of the centralEngland instrumental temperature

record and two globally averaged records. DFA1 does not
eliminate linear trends, but this trend is small in the 350-yr-
long central England record. The averaged records are
derived from the 160-yr-long HadCRUT3 global in-
strumental surface temperature (Brohan et al. 2006) and
the 2000-yr-long Northern Hemisphere reconstruction of
Moberg et al. (2005). The scaling properties of these re-
cords may be strongly influenced by the global radiative
forcing and hence not representative of the internal (un-
forced) variability. However, by using a reconstruction of
the forcing (Hansen et al. 2011; Crowley 2000) and amodel
for the global temperature response we can compute the
temperature response to this deterministic forcing. This
was done by Rypdal and Rypdal (2014), who also dem-
onstrated that a simple zero-dimensional, fractional EBM
response model yields a deterministic response almost
indistinguishable from the mean response in ensembles of
CMIP5 model runs. The residual noise obtained by sub-
tracting the deterministic response from the observed/
reconstructed record represents the internal variability,
and it is these records that have been subject to analysis in
Fig. 9. The slope a of the fluctuation-function curve is
related to the spectral exponent b via a5 (11b)/2, and
the slopes correspond to b’ 0:4 for the local central
England record, and to b’ 0:8 for the global-scale re-
cords, in agreement with the fractional EBM result that
the global b is twice the local b.

4. Comparison to NorESM data

The simple version of the North EBM and the fractional
EBM we have explored here assumes a uniform Earth
surface. Since the global spatial average of thesemodels are
identical to the zero-dimensional ‘‘exponential’’ and
‘‘scale-invariant’’ response models studied in Rypdal and
Rypdal (2014), we can use their methods for estimating the
model parameters tr (for theNorthEBM) andb andh (for
the fractional EBM). The temperature data records to
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use as input for such estimates can be the instrumental
record for global land temperature or sea surface temper-
ature, depending on whether we want to study spatiotem-
poral persistence over continental interiors or over oceans.
As discussed in the previous section, the b for un-

forced dynamics should be estimated from the residual
obtained by subtracting the deterministic response from
the observed record. In Figs. 10a and 11a the red full
curve is the deterministic solution to the fractional EBM
when b’ 0:61 is estimated from the full record. The
estimation method used here is to model the full record
as a fractional Gaussian noise (fGn) and determine the
b of that fGn that minimizes the mean square error. If
we subtract the red full curve from the observed record
and estimate b again from the residual record, we find
b5 0:28. The deterministic response with this new b is
the dotted red curve, which is almost the same. Hence in
the fractional EBM the response to the deterministic
forcing is not very sensitive to b, and hence that b5 0:28
self-consistently describes the unforced dynamics. The
situation is different for the North EBM for which re-
sults are shown in Fig. 10b. Here the time constant is
tr ’ 8:0 yr estimated from the full record and tr ’ 1:7 yr
from the residual, and the corresponding deterministic
responses are quite different. The response to the
deterministic forcing is better described by the large t,
but the random fluctuations requires a shorter re-
sponse time, and suggests that the response is char-
acterized by more than one time constant, as in the
two-layer model considered by Geoffroy et al. (2013).

Similar observations are made for the ocean temper-
atures as shown in Figs. 11a and 11b.
The diffusion parameter l cannot be estimated from

such globally averaged records, so thesemust be obtained

FIG. 7. Log–log plots of the temporal PSD of temperature time
series at any point on the uniform unit sphere given by Eq. (17) for
l5 0:1, 0:5, 1:0, 10. The blue dashed line has slope2b, and the red
dashed line has slope 2b/2.

FIG. 6. Frequency-dependent spatial ACFof temperaturemeasured
vs angular distance u from any reference point on the uniform unit
sphere given by Eqs. (17) and (23) for (a) l5 0:4 and (b) l5 0:2.

FIG. 5. Instantaneous temperature field in a simulation of the
fractional EBM on a sphere. The parameters are b5 0:75 and
l5 0:4, which are typical for an ocean planet.

8386 JOURNAL OF CL IMATE VOLUME 28



from spatiotemporal observation data, reanalysis data, or
data from AOGCMs. The latter provide the best data
coverage in space and longer temporal records, whichmake
it possible to ‘‘calibrate’’ the EBMs to general circulation
models. For this purpose we use the frequency-dependent
ACF rv(x) computed from the surface temperature field
derived from long control runs of the NorESM [see
Bentsen et al. (2013) and Iversen et al. (2013) for general
descriptions of the NorESM1-M model]. Such ACFs are
shown for Eurasian land temperature as the pointed curves
in Fig. 10c. Each curve corresponds to a given frequency
v5 2pf , where the highest frequency is f1 5 1 yr21 and the
other frequencies are f2 5 f1/3, f3 5 f1/10, f4 5 f1/30, and
f5 5 f1/100. This corresponds to periods 1/f of 1, 3, 10, 30,
and 100yr. There seems to be a weak elevation of theACF
for x; 4000 km for all these frequencies, and a strong el-
evation for periods approaching 100yr. The former may be
the characteristic spatial extent ofmodes of interannual and
decadal variability, while the latter may reflect the spatial
structure of a multidecadal oscillation. These modes are of
course not represented in the EBMs.
The next step is to compute rv(x) from the fractional

EBM with the parameters b and h estimated from the
observed global land temperature and different l and se-
lect the value of l that minimizes the mean square error
between the theoretical and observed ACFs in the range
0, x, 4000 km. The resulting ACFs computed from the
fractional EBMwith the estimatedmodel parameters, and
for the same frequencies as above, are shown as the full
curves in Fig. 10c. Because of the multidecadal oscillation
the correlation structure is poorly described by the model
for distances longer than 4000km, but otherwise theACFs
of the model has similar shapes and the same tendency
toward increasing width as periods are increased.
In Fig. 10d we show similar results for theNorth EBM,

where the time constant tr estimated from the global
land temperature record has the very low value tr ’ 1:7 yr.

In this model the width of the ACF does not increase
gradually with increasing period, as in the AOGCM data
and the fractional EBM. It rather converges to the zero-
frequency limit r0(x), and is close to this limit already for
periods greater than 3yr. For periods less than a decade
the model predicts much smaller correlation lengths than
observed in the NorESM model. Hence these results
show that for land data the fractional EBM provides a
much more accurate description than the North EBM.
Corresponding results for ocean temperatures are

shown in Fig. 11. To avoid a strong influence from El
Niño–Southern Oscillation in the ACF on interannual
time scales we study only the oceans south of 208S in the
NorESM control run. We obtain b’ 0:77 from the re-
sidual record, which is close to what we found for the
global observed temperature in Fig. 9. For these data the
fractional EBMproducesACFs that fit better to theACFs
from theNorESMmodel for periods less than a decade, but
not for longer time scales. The reason for this poor perfor-
mance of the fractional model for oceans will become clear
in the forthcoming section, where we propose a modifica-
tion of the model based on data fromNorESM simulations
with instantaneous (step function) increase in CO2 forcing.
The performance of the two EBM models with respect

to reproducing the observed global-scale PSDs is shown in
Fig. 12. The black curves are the spatially averaged spectra

FIG. 9. DFA1 fluctuation functions of the temperature record for
central England (blue triangles), Moberg’s reconstruction of the
mean surface temperature in the Northern Hemisphere in the last
millennium (red crosses), and the instrumental record for global
mean temperature (red circles). For the global data the records
analyzed are the residuals after the response to the deterministic
forcing has been subtracted. The blue dotted line corresponds to
b’ 0:4 and the red dotted line corresponds to a b’ 0:8.

FIG. 8. Log–log plot of power spectral density for the tempera-
ture averaged over a fractional area j5A/4p5 (12 cosu)/2 of the
unit sphere as given by Eq. (14) and S(v) and rv(m) computed from
the fractional EBM, for j5 0, 0:03, 0:1, 0, 35, 1.
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of local temperatures over the Eurasian continent
(Fig. 12a) and over the SouthernOcean (Fig. 12b). The red
curves are the theoretical spectra from the fractional EBM
and the blue curves for the North EBM, demonstrating
very clearly the superiority of the fractional model.

5. Fractional forcing noise

From Figs. 10c and 11c we have observed that the
fractional EBM provides a less accurate description of
the correlation structure for sea surface temperatures as
compared to the land temperatures. However, the
comparison with the NorESM model improves signifi-
cantly if we allow the stochastic forcing F to be an fGn
with an exponent bf . 0 rather than the white noise
(bf 5 0) considered so far. If the average temperature of
the Southern ocean in the NorESM control run can be
modeled by a fractional EBM characterized by a response
exponent b, and this EBM is driven by an fGn with

spectral exponent bf , then the global-scale temperature of
the control run is a realization of an fGn with spectral
exponent bcr 5b1bf .
Such a generalization of the fractional EBMwould be

rather ad hoc if it was not directly suggested by other cli-
mate model simulations. Geoffroy et al. (2013) studied a
large number of such runs of CMIP5 models, with results
that were all similar to the black curve in Fig. 13a, which
is the global temperature following sudden quadrupling
of atmospheric CO2 concentration in the NorESM
model. Geoffroy et al. (2013) find good fits to these
curves with a function that is a linear combination of two
exponential functions with one small time constant of
the order of a few years and one larger of the order of a
century. In Fig. 13a the red curve is a fit of a power-law
function tb/2, with b5 0:36. On the shorter time scales
(up to few years) the fit is not good, because a power law
with b, 1 has a diverging derivative as t/ 0, which is
not physical. But our interest in the power-law response

FIG. 10. (a) The black curve is the global mean land surface temperature. The red solid curve is the mean temperature in
the fractional EBM with deterministic forcing and parameters estimated using the least squares method. The estimated
b value is 0.61. The red dotted curve is the same as the red solid curve, but in this case the b parameter is estimated from the
residual signal obtained by taking the difference between the temperature observations (black curve) and the least squares fit
(solid red curve). Thisb value is 0.28. (b)As in (a), but in this case for theNorthEBM.The solid blue line shows the response
to thedeterministic forcingwithparameters estimatedusing the least squaresmethod.This gives theestimate tr 5 8:0 yr. The
blue dotted curve is constructed by estimating the response time from the residual signal. This gives tr 5 1:7 yr. (c) The solid
curves are the spatial ACFs given by Eqs. (17) and (23), and the points are the corresponding estimates obtained from the
land surface temperatures over the Eurasian continent in a NorESM control run. The frequencies chosen are 1/100 yr21

(blue), 1/30 yr21 (dark green), 1/10 yr21 (light green), 1/3 yr21 (light red), and 1 yr21 (dark red).We estimated l5 0:275 by
fitting the spatialACF to theNorESMdataon the lowest frequency (1/100 yr21) on distances up to 2500km.Theparameters
b5 0:28 and c5 8:7 are estimated from the global response to the deterministic forcing as shown in (a). (d)As in (c), but for
the North EBM; i.e., the solid curves are given by Eqs. (17) and (15). The parameters are l5 0:18 and tr 5 1:7 yr.
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function is as a model for the response on time scales
from decades to centuries, for which it seem to perform
quite well. In this respect, these climate model runs
support the fractional EBM as a model for the global
response.We observe, however, that the estimated b for
the response is roughly half the value of bcr estimated
from global temperature [or average Southern Ocean
(SO) temperature] in control runs. This discrepancy is
explained if we assume a fractional forcing such that
bf 5bcr 2b. Recall that an estimate ofbcr can be obtained
from the spatially averaged SO temperature in the control
run, and b from the transient evolution shown in Fig. 13a.
Hence we have bf 5bcr 2b’ 0:772 0:365 0:41. The
deterministic response corresponding to b5 0:36 is given
by the red curve in Fig. 12b, and Fig. 12c shows the
frequency-dependent ACFs computed from this general-
ized, fractional EBM. The expressions for these ACFs are
slightly modified from the original fractional EBM, and
are given in appendix C [Eq. (C2)]. There we also show
that the local spectrum for the generalized, fractional
EBM has exponent bf 1b/2. The ACFs of the fractional
EBM are now much closer to those of the SO in the
NorESM. In Fig. 13d the lower black curve is the

spectrum of the averaged SO temperature and the red
line the power-law spectrum with the estimated expo-
nent bcr, hence the red line represents a fit to the spec-
trum. The upper black curve is the average of the local
spectra of the SO. Here the red line is the power-law
spectrumwith exponent bf 1b/2’ 0:59, where bf ’ 0:41
and b’ 0:36 have been estimated as described above.
Hence, this line is not a fit to the observed spectrum but a
result of the generalized fractional EBM. The fact that
the fit is good confirms the consistency between this
model and the NorESM data.

6. Conclusions

In an editorial comment, Mann (2011) asserted that the
scaling behavior in instrumental and long-term proxy
temperature reconstructions appears consistent with the
results of a standard, zero-dimensional EBM forced by
estimated natural and anthropogenic radiative forcing
changes, and subject to white-noise stochastic weather
forcing. According to this author, ‘‘nothing more exotic
than the physics of such a simple model is necessary to
explain the apparent scaling behavior in observed surface

FIG. 11. As in Fig. 10, but for sea surface temperatures. (a) The estimated scaling exponent is b5 1:03. The dotted red
line is the response to the deterministic forcing with the parameter b5 0:77 obtained from the residual signal. (b) The
estimate is tr 5 20:4 yr. The blue dotted curve is constructed by estimating the response time from the residual signal. This
gives tr 5 2:0 yr. (c) As in Fig. 10, the solid curves are the spatial ACFs, and the points are the corresponding estimates
obtained from the sea surface temperatures for the region south of 208S in aNorESMcontrol run. The frequencies chosen
are the same as in Fig. 10. We estimated l5 0:68 by fitting the spatial ACF to the NorESM data on the lowest frequency
(1/100 yr21). The parameters b5 0:77 and c5 63:6 are estimated from the global response to the deterministic forcing as
shown in (a). (d) As in (c), but for the North EBM. The parameters are l5 0:15 and tr 5 2:0 yr.
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temperatures.’’ This conclusion was drawn from applica-
tion of a number of standard estimation techniques for
b to realizations of the purely stochastically forced, and
stochastic plus radiatively forced, EBM. These estimates
were compared to results from the same techniques ap-
plied to observation data. Such comparisons show over-
lap of the distributions of b estimates for the model
realizations and the observation records, which lead the
author to conclude that the scaling properties of the ob-
servation data are consistent with this simple model.
The results derived in the present paper demonstrate

that there is a clear discrepancy between the scaling
properties of the North EBM and data derived from ob-
servations and climate models. The conclusions of Mann
(2011) arise from uncritical application of estimation
techniques for the scaling exponent to time series that do
not exhibit scaling. For instance, the stochastically forced
model signal is an AR(1) process, which scales like a
Wiener process (b5 2) on scales shorter than the auto-
correlation time and as a white noise (b5 0) on longer
time scales. There is no unique scaling exponent for this
process. Careful examination of power spectra or fluctua-
tion functions for model data and observation data, in
particular of the residual resulting from subtracting the
(deterministic) radiatively forced response from the ob-
servations, demonstrates very clearly that the spatiotem-
poral scaling properties of the North EBM data are
different from those of the observation data. We also
demonstrate that the model can produce the observed

scaling by a generalization which involves a long-range
memory response that can be interpreted as a delayed heat
exchange between the ocean mixed layer and the deep
ocean. This physics goes beyond the simple ‘‘one-box’’
energy balance model, but it is not particularly ‘‘exotic.’’
The fractional EBM not only explains the power-law

temporal scaling, but also how and why the spectral
exponent increases with increased spatial averaging, and
it describes themain features of the frequency-dependent
spatial autocorrelation functions. An inconsistency be-
tween the standard fractional EBM and climate models
simulations is observed in the transient response to sud-
den change in forcing, giving a lower b for the response
than observed in the control runs. The consistency is re-
stored by assuming that the stochastic forcing is a frac-
tional noise with b’ 0:4. One can think of this forcing as
exchange of sensible and latent heat between the at-
mosphere and land surface/ocean mixed layer influ-
enced by atmospheric weather systems, but radiative
forcing, such as the CO2 greenhouse effect, also has a
noisy component that may exhibit long-range persis-
tence. This assertion is supported by recent direct ob-
servations of CO2 forcing at Earth’s surface. Feldman
et al. (2015) measured the clear-sky radiative CO2 sur-
face forcing and obtained time series as shown in
Fig. 14a. The PSD of this time series has a spectral ex-
ponent b’ 2 (Fig. 14b), but this value is determined by
the strong anthropogenic trend. There is also a strong
seasonal trend that appears as peaks at the first and

FIG. 12. (a) The black circles show the average power spectral density for the temperatures on the Eurasian
continent in a control run of the NorESMmodel. The blue curve is the power spectral density for local temperatures
in the North EBM [Eq. (12)] with parameters tr 5 1:73 and l5 0:18. The red curve is the power spectral density for
local temperatures in the fractional EBM [Eqs. (17) and (23)] with parametersb5 0:28 and l5 0:44. (b)As in (a), but
for ocean temperatures. The black circles show the average power spectral density for the temperatures in sea surface
south of 208S in a control run of the NorESM model. The blue curve is the power spectral density for local tem-
peratures in the North EBM with parameters tr 5 2:0 and l5 0:15. The red curve is the power spectral density for
local temperatures in the fractional EBM with parameters b5 0:77 and l5 0:51.
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second harmonic of the annual cycle. We have modeled
these trends by the predictor function

y(t)5 (a1bt)1 (c1 1 d1t) sin(2pt/1001f1)

1 (c
2
1 d

2
t) sin(4pt/1001f

2
) , (24)

and regressed it to the observation data. The result is the
red dotted curve in Fig. 14c. The residual obtained after
eliminating the linear and seasonal trends seems to
exhibit a power-law spectrum with b’ 0:5 on time scales
from a month to a decade as shown in Fig. 14d. The PSD
has a shape quite similar to the surface temperature over
land, and suggests that the radiative CO2 forcing, and radi-
ative forcing in general exhibits a noisy component that is
persistent, and not white. The length of the observation re-
cord is too short to claim statistical significance of this per-
sistence on time scales longer than a month, but the noisy
CO2 forcing record illustrates that radiative forcing has a
noisy component, and there are good reasons to believe that
this noise exhibits persistent scaling properties.
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APPENDIX A

Expansion Coefficients for a Random Field

Let K, N/‘ in Eq. (3) and define

F(m,f, t)5 lim
K,N/‘

F
K,N(m,f, t) .

We form the inner product of each side of this equation
with the basis functions exp(2ivj0 t)Yn0,m0(m, f) by in-
tegrating in time

Ð
1
0dt and in space over solid angleÐ

4pdV5
Ð
1
21dm

Ð
2p
0 df. By using that these basis func-

tions are orthonormal we find

F(v
j
, n,m)5

ð1

0

dt

ð

4p

dVe2ivtY
n,m(m,f)F(m,f, t). (A1)

Now, let us use Eq. (A1) to compute a covariance of the
expansion coefficients:

FIG. 13. (a) The temperature response to a step function forcing scenario in theNorESMmodel (black curve) and a least
squares fit of a power-law expression } tb/2 with b5 0:36. (b) With b5 0:36 the response to the deterministic forcing is
optimized to fit the global sea surface temperature. The residual signal is analyzed and found consistent with an fGn with
exponent b1bf 5 0:80. This gives the estimate bf 5 0:44. (c) The spatial autocorrelation functions for the sea surface
temperatures south of 208S in aNorESM control run. As in Fig. 10 the solid curves are the theoretical expressions, which in
this case are in the formofEq. (C2).Wehave estimated l5 0:41. (d) The lower black curve is the spectrumof the averaged
SO temperature and the red line the power-law spectrum with the estimated exponent bcr. The upper black curve is the
average of the local spectra of the SO. Here the red line is the power-law spectrum with exponent bf 1b/2’ 0:59.
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E[F(v
j
,n,m)F*(v

j0
, n0,m0)]5

ð1

0

dt0
ð1

0

dt0 e2ivj t1ivj0 t
0
ð

4p

dV
ð

4p

dV0E[F(m,f, t)F(m0,f0, t0)]Y
n,m(m,f, t)Yn0 ,m0* (m0,f0, t0) .

(A2)

Now we make the assumption of a statistically uniform,
random field; that is, we assume that

E[F(m,f, t)F(m0,f0, t0)]5s2d(t2 t0)d(m2m0)d(f2f0) ,

(A3)

where d(x) is the Dirac delta-function and s is a constant
indicating the strength of the field. By substituting Eq.
(A3) into Eq. (A2) we find

E[F(v
j
,n,m)F*(v

j0
, n0,m0)]

5s2

ð1

0

dt e2i(vj2vj0 )t
ð

4p

dVY
n,m(m,f, t)Yn0,m0* (m,f, t)

5s2d
j,j0dn,n0dm,m0

(A4)

and hence

E[jF(v
j
,n,m)j2 5s2 . (A5)

Thus, we have proven the validity of Eq. (4) for a
random field.

APPENDIX B

The Spatial Covariance

Here we will prove Eq. (11). By expanding T(t, m, f)
in the same way as in Eq. (3), using Eq. (7) and Eq. (A4),
we get

FIG. 14. (a): Measured CO2 forcing at the surface measured at the North Slope of Alaska from 2000 throughout
2010. Time resolution is 1022 yr. The red dashed line is a linear fit to the data. The slope (trend) is 0.2Wm22 per
decade. (b) The power spectral density (PSD) estimated by the periodogram of the time series in (a). The red dashed
line has slope2b522. The slope is strongly influenced by the linear trend. (c) The red dashed curve is a nonlinear
regression of the predictor function given by Eq. (24), to the observed time series. (d) The PSD of the residual,
defined as the difference between the blue and red curves in (c). The blue dotted line has slope 2b522, and the
slope of the red dashed line is 2b520:5.
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C(m)5E[T(t,m,f)T*(t, 1, 0)]

5 !
‘
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!
n

m52n
!
‘
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m052n0
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j52K/2
!
K/2

j052K/2
ei(vj02vj)tE[F(v
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. (B1)

By means of Eqs. (10), (11), and (B1) this reduces to

C
vK
(m)5

s2

4p
!
K/2

j52K/2
!
‘

n50

(2n1 1)P
n
(m)

v2
j t

2
r 1 [l2n(n1 1)1 1]2

5 !
j52K/2

K=2

C
vj
(m)/

K/‘

1

2p

ð‘

2‘
C

v
(m) dv . (B2)

The integral on the right-hand side of Eq. (B2) diverges
for m5 1.
The spatial covariance can also be computed directly

from Eq. (2). Let us introduce the short-hand notation
h5 (m, f) and =2

h the Laplace operator in spherical
coordinates given by the second and third terms on the
left-hand side of Eq. (2). If we compute each side of Eq.
(2) at (h, t) and multiply by T(h0, t), and then compute
each side of Eq. (2) at (h0, t), and multiply by T(h, t),
then addition of the resulting equations yields

›

›t
[T(h0, t)T(h, t)]2 l2[T(h0, t)=2

hT(h, t)

1T(h, t)=2
h0T(h0, t)]1 2T(h0, t)T(h, t)

5T(h0, t)F(h, t)1T(h, t)F(h0, t) . (B3)

Now, we take the expectation of both sides of
Eq. (B3). Stationarity implies that ›tC(h0, h, t)[
›tE[T(h0, t)T(h, t)]5 0, and the white-noise character
of the forcing field implies that E[T(h0, t)F(h, t)]5
E[T(h, t)F(h0, t)]5 0. Thus, the expectation of Eq.
(B3) must satisfy the equation

=2
hC(h

0,h)1=2
h0C(h,h0)5

2

l2
C(h0,h) . (B4)

The spherical symmetries of the temperature field implies
that =2

hC(h
0, h)5=2

h0C(h, h0), and we can without loss of
generality set h0 [ (m0, f0)5 (1, 0). Since covariance only
depends on the cosine of the angle between the two
vectors h and h0, we can then write C(h0, h)5C(m),
and hence Eq. (B4) reduces to the Legendre equation

=2C(m)[
›

›m

#
(12m2)

›C(m)

›m

$
5

1

l2
C(m) . (B5)

This equation has solutions in the form of the LegendrePn

and Qn functions, where n is given by 21/l2 5 n(n1 1),
wheren is a nonnegative integer;Pn(m) diverges atm521
and Qn(m) at m5 1. We have already seen that the co-
variance should diverge at m5 1, so we should select the
solution

C(m)5AReQ
n
(m) , (B6)

with A being a constant and

n5

2

41
2

0

@211

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 2 4

l2

s 1

A

3

5 .

APPENDIX C

Formulation of the Fractional EBM using Fractional
Derivatives

The global mean temperature in the fractional EBM is
given by convolving the (spatial averaged) forcing F(t)
with the power-law kernel given by Eq. (19); that is,

T(t)5 j

ðt

2‘

!
t2 s

h

"b/221

F(s) ds .

In practice we have no information about the forcing
F(t) in the infinite prehistory, and it is useful to write

T(t)5 j

ðt

0

!
t2 s

h

"b/221

[F
0
1F(s)] ds , (C1)

where F0 is a parameter describing the deviation from
equilibrium at time t5 0. We use the following notation
for the Riemann–Liouville integral:

aD
2a
t f (t)5

1

G(a)

ðt

a

(t2 s)a21f (s) ds ,

which allows us to write Eq. (C1) in the form

T(t)5
jG(b/2)
hb/221 0D

2b/2
t [F

0
1F(t)] .
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We have defined

c5
2phb/221

jG(b/2)
,

so the zero-dimensional fractional EBM can be formu-
lated as a fractional differential equation,

c

2p 0D
b/2
t T(t)5F

0
1F(t) .

If we consider only purely stochastic forcing the zero can
be omitted from the notation on the fractional derivative.
Hence, the modification from the zero-dimensional EBM
consists of replacing the differential operator tr›t 1 1 with
the fractional operator Db/2

t . If we apply the same modi-
fication to the spatiotemporal model we arrive at

c

2p
Db/2

t T2 l2=2T5F .

Taking the Fourier transform yields

c

2p
G(v)21T2 l2=2T5F ,

where G(t)5 j(t/h)b/221Q(t), and thus we arrive at
Eq. (22).

ACFs and PSDs in the generalized, fractional EBM

If we replace the white-noise stochastic forcing by a
forcing that is fractional in time and white in space, then
the relation

E[F(v,m, n)F*(v,m0, n0)]5s2d
m,m0dn,n0

is replaced by the expression

E[F(v,m,n)F*(v,m0, n0)]} d
m,m0dn,n0v

2bf .

This is actually the expression for the temporal PSD of
the forcing noise. From Eq. (16) we then have the fol-
lowing modification of Eq. (17):

E[T(v,m,f)T(v,m0,f0)*]}v2bf !
‘

n50
jg

n
(v)j2(2n1 1)P

n
(m) .

It follows that

S(v)5C
v
(1)}v2bf !

‘

n50
jg

n
(v)j2(2n1 1). (C2)

When gn(v) is given by Eq. (21) we have

!
‘

n50
jg

n
(v)j2(2n1 1);v2b/2

and hence the expression in Eq. (C2) scales as;v2(b/21bf ).
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