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Abstract 
 

In recent years, first-row metallocorroles have provided some of the most instructive 

examples of noninnocent ligands. This thesis presents a study of some 50 iron, 

manganese, and cobalt corrole complexes with different axial ligands (including 

approximately 30 new compounds and 6 new X-ray structures) with emphasis on 

their noninnocent/innocent character. UV-vis spectroscopy has for some time 

provided a convenient empirical probe of ligand noninnocence in transition metal 

meso-tris(para-X-phenyl)corrole (TpXPC) complexes. Redshifts of the Soret maxima 

with increasing electron-donating character of the para-substituent X have indicated 

noninnocent systems, while substituent-insensitive Soret maxima have indicated 

innocent corrole ligands. I have greatly expanded the scope of this optical probe of 

noninnocence and used it to identify new classes of noninnocent metallocorroles. 

The μ-oxo diiron corroles have long been thought of as true Fe(IV) complexes. 

However, as discussed in Paper A, a study of the optical spectra of {Fe[TpXPC]}2O 

derivatives along with DFT calculations have indicated a noninnocent description for 

these complexes. 

Iron-aryl corroles are classic examples of true Fe(IV) species. Several Fe-aryl 

corroles were synthesized and examined together with other Fe corrole derivatives 

by means of UV-vis and NMR spectroscopy and electrochemistry in a detailed study 

for ligand noninnocence in a wide range of Fe corroles (Paper B). Analogous studies 

of Mn-aryl corroles were also carried out (Chapter 3), but these have not yet been 

written up as a manuscript. A collaborative study with the Stanford Synchrotron 

Radiation Lightsource also provided the first X-ray absorption spectroscopic analysis 

of the question of ligand noninnocence in Fe corrole complexes. 

Cobalt-triphenylphosphine (Co-PPh3) corroles have also been thought of as 

classic low-spin Co(III) complexes until now. An examination of the UV-vis spectra of 

Co-PPh3 corroles and DFT calculations again indicated a partially noninnocent Co(II) 

corrole radical description for these complexes (Paper C). In contrast, an innocent 

description was indicated for Rh-PPh3 corroles. 

Finally, as discussed in Paper D, Co corrole pyridine adducts were likewise 

studied with a variety of spectroscopic techniques and the noninnocent behavior of 

the monopyridine adducts was elucidated in considerable detail. 
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Chapter 1 - Introduction to Porphyrins and Corroles 
 

1.1 General Properties 
Porphyrins are an important class of highly colored, aromatic compounds occur 

pervasively in nature. The unsubstituted porphyrin skeleton is called ‘porphine’ and it 

consists of four pyrrole rings linked together by ‘methine’ (=CH-) bridges. The 

macrocycle contains a total of 22 p-electrons including an [18]annulene substructure 

(shown in Fig. 1.1). The aromaticity of the conjugated p-system is responsible for 

intense absorption in the visible region of the electromagnetic spectrum, which is 

responsible for the brilliant deep-purple color of many porphyrins. In fact, the name 

‘porphyrin’ originates from ‘porphyra’, the Greek word for ‘purple’. The neutral, free-

base form of porphyrins contains two acidic protons, which can be deprotonated to 

yield the dianionic form which occurs as the ligand in many metal ion chelates. Metal 

complexes of porphyrins serve important roles in biological systems. For example, 

heme, which is an iron(II) porphyrin (Fig 1.2), acts as the prosthetic groups in many 

proteins, which are accordingly known as hemoproteins. Hemoproteins carry out 

many essential biological processes such as: (a) transport of oxygen in blood 

(hemoglobin), (b) binding and storage of oxygen in muscle (myoglobin), (c) ATP 

generation via electron transport (cytochromes b and c), and (d) dioxygen activation 

(cytochrome P450). Further, a reduced porphyrin complexed to a Mg(II) ion is 

present in the chromophore occurs as the pigment chlorophyll, the photosynthetic 

pigment in green plants. 

 
Fig. 1.1 IUPAC numbering for unsubstituted (a) free-base porphyrin or porphine and 
(b) unsubstituted free-base corrole. The [18]annulene substructure is shown in bold. 
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Corroles are an important class of porphyrinoid analogues, which have a 

direct bond (C1-C19 bond) between two adjacent pyrrole units (see Fig. 1.1) and 

accordingly one less methine bridge. Corroles thus have a smaller coordination 

cavity than porphyrins. Further, unlike porphyrins, corroles have three pyrrole protons 

and thus can act as trianionic ligands (corrole3-) towards metal ions. These two 

features together result in many formally high-valent metal complexes of corroles, 

where the metal is formally one oxidation unit higher than in related metalloporphyrin 

congeners. Despite the structural perturbation, corroles also contain an [18]annulene 

substructure. They are thus aromatic and also absorb strongly in the visible region of 

the electromagnetic spectrum. Unlike porphyrins, corroles are not known to occur in 

nature. Vitamin B12 contains a nonaromatic tetrapyrrole ring called corrin, which is 

complexed to a Co ion. A corrole is the fully aromatic counterpart of the naturally 

occurring corrin macrocycle (Fig. 1.2). 

 
Fig. 1.2 Structures of (a) heme and (b) vitamin B12. 

 
1.2 Structural Properties 
As expected for an aromatic system, sterically unconstrained porphyrins adopt planar 

conformations. Nevertheless, significant deviations from planarity are common and 

has been observed in many heme prosthetic groups in hemoproteins as well as in 

synthetic metalloporphyrins.1 The reasons underlying such nonplanar distortions 
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include: (a) steric congestion arising from peripheral substituents, (b) size mismatch 

between the macrocycle cavity and the metal ion, (c) electronic and steric 

interactions involving the axial ligand, (d) influences of the protein environment, etc.1a 

These distortions influence various chemical and physical properties of porphyrins 

including their redox potentials, axial ligand binding affinity, UV-vis spectra, etc.  

Some of the main types of nonplanar porphyrins include the following (Fig. 1.3):1,2 

(a) Ruffling: Alternate twisting (clockwise and anticlockwise) of pyrrole rings, 

resulting in alternate displacement of meso-carbons above and below the mean 

porphyrin plane, e.g., NiII[Br8(CF3)4P]3 and Ni[Et8(n-Bu)4P]4. 

(b) Saddling: Alternate tilting of the pyrrole rings above and below the mean 

porphyrin plane, which leaves all the meso-carbons in the mean molecular plane, 

e.g., H2[Br8TPFPP]5 and Zn[I8TpCF3PP]6. 

(c) Doming: Displacement of the metal ion above the mean porphyrin plane 

and of the b-carbons below the same plane, typically as a result of an excessively 

large coordinated ion, e.g., TlIII[Et8(NO2)4P]Cl7 and  PbII[(n-Pr)4P]8.  

(d) Waving: Upward and downward tilting of two opposite pyrrole rings, 

relative to the mean macrocycle plane, e.g., H2[(4-F-Ph)8TPFPP]9. 
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Fig. 1.3 Nonplanar distortion modes in porphyrins. Reproduced with permission from 

ref 2. 

 

 

Corroles are structurally less diverse than porphyrins. Free-base corroles 

undergo significant nonplanar distortion in order to relieve the steric strain arising 

from the three N-H protons.10,11 The X-ray structure of the free-base b-

octabromocorrole H3[Br8TPFPC] exhibits the strongest nonplanar distortion among all 

free-base corroles reported to date, where two adjacent pyrrole rings were found to 

be tilted by 98° relative to each other.12 DFT calculations suggest that the steric 

interaction among the three central N-H protons is the main cause behind such 

nonplanarity. 

Metallocorroles, on the other hand, exhibit mostly planar structures. 

Interestingly, even in the presence of highly sterically hindered substituents, 

metallocorroles such as Au[(CF3)8TpFPC]166 or Ir[Br8TPFPC](tma)2
13, exhibit 

essentially planar macrocycle conformations. 

Saddled conformations are rare for metallocorroles. The only major exception 

consists of copper corroles which are inherently saddled as a result of a specific 

Cu(dx2–y2)-corrole(p) orbital interaction (see sections 2.3.5 for additional details).144 

Sterically hindered substituents can lead to even more intense saddling.14 Slightly 
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saddled structures have been observed for Fe[Me8TPC]Cl200 and Ag[TpMePC]150, 

while a silver b-octabromocorrole has been found to exhibit a strongly saddled 

geometry.152 

A four-coordinate bismuth corrole BiIII[TPFPC] has been recently found to 

exhibit significant doming.16 In addition, five-coordinate MoO,15 SnIVPh,156a and 

ReO160 corroles exhibit pronounced domed conformations, whereas mild doming has 

been observed for MnV-(NMes) corrole17 and GeIV-µ-oxo biscorroles.155 

The ruffled conformation is also extremely rare for corroles. DFT calculations 

predict that ruffling is generally extremely unfavorable for metallocorroles. However, 

mild ruffling has been recently noted for certain phosphorus corroles.18 

The wave conformation has not yet been observed for corroles. 

 

1.3 Optical Properties 

The presence of an extended conjugated p-system in porphyrins and corrole results 

in strong absorption in the visible region of electromagnetic spectrum, which is the 

reason behind their bright colors. A typical UV-vis spectrum of a free-base porphyrin 

or corrole consist of a sharp and strong Soret band in the near UV-region around 400 

nm and two to four less intense Q bands in the visible region around 500-700 nm 

(Fig. 1.4). 

 
Fig. 1.4 UV-vis spectra of (a) H2[TPP] and (b) H3[TPC] in DCM. 

 

The electronic spectra of porphyrins can be explained by Gouterman’s four-

orbital model.19 According to the model, the two near-degenerate HOMOs {b1(a2u) 

and b2(a1u) respectively} and the two degenerate LUMOs {c1(eg) and c2(eg) 
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respectively} of a porphyrin (D4h) are energetically well separated from all other 

occupied and unoccupied molecular orbitals. The possible transitions involving these 

four frontier MOs give rise to the Soret and Q bands of porphyrins,20 where intense 

Soret bands correspond to the ‘allowed transitions’ and lower intensity Q bands to 

the ‘forbidden transitions’ (Fig. 1.5).  

As shown in Fig. 1.5 the a2u HOMO has amplitudes at the meso-position and 

pyrrole nitrogens, whereas a1u HOMO has amplitudes at the a- and b-position. Thus, 

substitution at the meso-position with an electron-donating group or coordination with 

a more electropositive metal increases the energy of b1 HOMO, which leads to a 

redshift of the Soret band. Similarly, substitution at the b-positions by electron-

donating alkyl groups or electron-withdrawing bromine group result in increase or 

decrease in the energy of the b2 HOMO. Peripheral substituents thus exert a 

significant influence on the electronic properties and spectra of porphyrins. 

 
Fig. 1.5 Porphyrin frontier orbitals in the four-orbital model and the possible 

transitions between energy levels. Reproduced with permission from ref 20. 

 

Gouterman’s four orbital model applies also to corroles, as suggested initially 

by Hush et al.21 and later by Ghosh and co-workers.22 The absence of one meso-

carbon results in a lowering of symmetry to C2v for corroles relative to D4h for 

porphyrins. Thus, in corroles, the a2u HOMO transforms as b1, and a1u HOMO 

transforms a2. The HOMOs and LUMOs of corroles thus are qualitatively similar in 

shape to those of porphyrins. Accordingly, we may apply the similar substituent effect 

arguments to corrole derivatives as we do for porphyrin derivatives. 
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1.4.1 Synthesis of Porphyrins 
The pioneering work of H. Fischer in porphyrin synthesis23 inspired many chemists to 

seek several efficient methodologies for porphyrin synthesis over almost 60-70 years. 

In this section, I have discussed the key one-pot procedures available for the 

synthesis of meso-A4 porphyrins (Figure 1.6). 

 
Fig. 1.6 Structure of a meso-A4 free-base porphyrin. 

 

The first one-pot synthesis of porphyrins was reported by Rothemund in 1935-

36. A solution of pyrrole (5 M) and formaldehyde (2%) in pyridine was heated in a 

sealed glass tube for several hours, which after extraction and work-up led to 

crystalline unsubstituted porphine.24 This same method was also applicable to other 

aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, benzaldehyde 

and furfuraldehyde.25 A modified synthesis of free base meso-tetraphenylporphyrin 

(H2[TPP]) was also established.26 The presence of pyridine in the reaction medium in 

sufficient amounts was necessary for easier crystallization of the porphyrin product 

while keeping other impurities in solution phase. Formation of two porphyrin-like 

products was observed during the synthesis of TPP. These two products were 

chromatographically separated and spectroscopically identified as H2TPP and 

H2[TPChl] (tetraphenylchlorin).27 Modified procedures were later suggested to 

improve the yield of free-base TPP, along-with synthesis of new meso-

tetraarylporphyrin derivatives with different p-substituents.28,29 Other methods for the 

synthesis of unsubstituted porphine were also discovered around this time.30  

The Rothemund seal-tube method generally led to poor yields of porphyrins. A 

new synthesis of tetraphenylporphyrin by Adler and Longo greatly overcame this 

problem in 1966. In the new method, condensation of benzaldehyde and pyrrole 

(0.005 mole each) was performed in refluxing acetic acid over 6-8 hours, whereupon 

HN

NNH

N

R

R

R

R
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H2[TPP] was obtained in ~40% yield after purification (~50% in acidified benzene).31 

The yield of H2[TPP] and the reaction rate was found to depend on several factors 

such as the acidity of the solvent, temperature, the availability of atmospheric 

oxygen, and the initial concentrations of the reagents.32 A simplified one-pot 

synthesis of H2[TPP] was later developed where pyrrole and benzaldehyde (0.8 mole 

each) were refluxed in propionic acid under air for only 30 min, after which H2[TPP] 

crystallized out upon cooling and was filtered off.33 The simple filtration technique led 

H2[TPP] in nearly ~20% yield and is clearly a great advantage of the Adler-Longo 

method. However, tetraphenylchlorin (H2[TPChl]) was observed to be present as a 

contaminant (~3-5% by weight) and attempts to remove it via column 

chromatography and other separation methods have not proved particularly 

successful. Subjecting the entire H2[TPP]- H2[TPChl] mixture to DDQ oxidation 

provided a convenient solution to the problem, leading to pure H2[TPP].34 

The harsh acidic conditions employed in the Adler-Longo method is unsuitable 

for aromatic aldehydes with sensitive functional groups. Also, many porphyrins do not 

crystallize out from the solution as readily as H2[TPP] and accordingly purification via 

simple filtration of the tarry product mixture can be cumbersome. To overcome these 

difficulties, Lindsey proposed a new methodology applicable to sensitive aldehydes 

and amenable to simple purification steps. The synthetic strategy builds on the 

postulate that the cyclic porphyrinogen, formed via the condensation of pyrrole and 

aldehyde under appropriate conditions, is thermodynamically favored over linear 

polypyrrylmethanes. Once generated under equilibrium conditons, the porphyrinogen 

can be irreversibly oxidized to the porphyrin. In a typical method, equimolar quantities 

of pyrrole and benzaldehyde (10-2 M each) were condensed in dry DCM under a N2 

atmosphere in presence of BF3.Et2O (10-3 M) as a catalyst for 1 hour, followed by 

oxidation using p-chloranil (reflux, 1 hour), after which pure H2[TPP] (yield = 45-50%) 

could be obtained via column chromatography.35 The maximum yield of porphyrin is 

achieved with pyrrole and aldehyde concentrations at 10-2 M each and the yield 

declines markedly at higher and lower concentrations. 

The question of reversible porphyrinogen formation in the Lindsey synthesis 

was examined in a key set of experiments.36 Two different solutions containing 

different preformed porphyrinogens (i.e., from two separate reactions of two different 

aldehydes with pyrrole) were mixed together and allowed to react further (exchange 
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reaction) and the end result was compared with the ‘mixed condensation’ scenario 

where both aldehydes were present together and condensed with pyrrole. Both 

experiments led to very similar product distributions, strongly supporting the 

reversibility of porphyrinogen formation.37 Detailed experiments have suggested that 

the porphyrinogen derives from an open-chain octameric species at equilibrium. 

Pyrrole and aldehyde concentrations higher or lower than 10-2 M were found to 

reduce the octamer yield by affecting the equilibrium distribution profile of the 

oligomers, thus compromising the overall yield of the porphyrin. 

The major advantage of the Lindsey method is its applicability to a wide range 

of aldehydes, including those with sensitive functionalities. Thus, a variety of meso-

tetraalkylporphyrins,37 meso-tetramesitylporphyrin,38 and several mono- and bis-

ortho-substituted tetraarylporphyrins39 were synthesized according to this procedure. 

However, the small working concentrations of pyrrole and aldehyde is still a 

drawback in gram-scale preparations of porphyrin, since it requires large volumes of 

chlorinated solvents. In 1994, Lindsey came up with a modified procedure where 0.1 

M pyrrole and benzaldehyde were condensed at a higher Lewis acid concentration 

([BF3.Et2O] = 0.01 M) to afford H2[TPP] in 20-30% yield.40 A one-step synthesis 

involving pyrrole, aldehyde, and the oxidant from the beginning was also devised. In 

order to account for the poor solubility of the higher amount of oxidant in the reaction 

medium, an electron-transport chain was devised consisting of catalytic amounts of 

p-chloranil together and Fe(II)-phthalocyanine, with molecular oxygen as terminal 

electron acceptor. Furthermore, addition of certain salts to the two-flask synthesis of 

H2[TPP] improved the yield remarkably. Thus a ~ 50% yield of H2[TPP] was obtained 

by using 0.1 equiv NaCl together with pyrrole (0.1 M) and benzaldehyde (0.1 M) and 

BF3.Et2O (0.01 M).41 The effects of several acid catalysts on yield of H2[TPP] were 

also examined.42 The mechanistic aspects of these protocols were all examined in 

considerable detail with the help of laser desorption mass spectrometry (LD-MS) as 

the key tool.43 
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Fig. 1.7 Schematic representation of the key stages of a one-pot porphyrin synthesis. 

Adapted with permission from ref 43a. 

 
1.4.2 Synthesis of Corroles 
The synthesis of corroles has been reviewed recently and is summarized here in 

somewhat greater detail than the syntheses of porphyrins.44 The first successful 

synthesis of corroles was accomplished by Johnson and Kay in 1965 via a 

photochemical oxidative cyclization of an a,c-biladiene. Condensation of either (a)	

5,5′-diformyldipyrrane with 3,4-dialkylpyrroles (path A in Fig. 1.8) or (b) 2-

formylpyrroles with dipyrrane-dicarboxylic acid (path B in Fig. 1.8) in HBr/AcOH 

medium yielded the precursor a,c-biladienes as crystalline hydrobromide salts, which 

were then suspended in methanolic ammonia solution and irradiated to afford free-

base corroles in about 20-60% yields.45 Oxidizing agents such as K3[Fe(CN)6], FeCl3, 

and H2O2 could at times also be used in lieu of irradiation.46 
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Fig. 1.8 Schematic representation of the corrole synthesis by Johnson and Kay. 

Adapted with permission from ref 44. 

 

Another useful method for corrole synthesis consists of the metal-assisted 

cyclization of a tetrapyrrolic precursor such as an a,c-biladienes. A Co(II)-mediated 

template synthesis of a CoIII-PPh3 octaalkylcorrole was attempted by Conlon et al.47 

The role of cobalt ion is both to act as the templating agent and to stabilize the 

various tetrapyrrolic intermediates and the final product. The in-situ cyclization and 

metalation of a,c-biladienes was later exploited to synthesize rhodium, iron, and 

manganese octaalkylcorroles.48 Metal-assisted cyclization was also reported by 

Paolesse and co-workers, where they managed to synthesize cobalt-corroles directly 

from a mono-pyrrolic precursor such as 2-formylpyrrole.49 Cobalt-coordination was 

believed to catalyze the ring contraction of the initially formed porphyrinogen species, 

followed oxidation leading to a meso-phenyl-substituted cobalt corrole.49a Other 
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examples of ring contraction of a porphyrinoid leading to a corrole include (a) the ring 

contraction of a thiaphlorin50 and (b) the metalation of a porphyrin with a rhenium 

carbonyl.51 

 
Fig. 1.9 Schematic representation of a corrole synthesis via ring contraction. Adapted 

with permission from ref 49a. 

 

Until 1999, the synthesis of free base corrole synthesis was mainly limited to 

the use of a,c-biladienes as a precursor. Although improvements were made to the 

synthesis52 and cyclization53 of a,c-biladienes, a simple one-pot synthesis of free-

base corroles was still lacking. The discovery of new one-pot and quasi-one-pot 

syntheses of meso-triarylcorroles via the reaction of pyrrole and aromatic aldehydes 

proved to be a game-changer that led to the rapid blossoming of corrole chemistry to 

the point where it begins to rival porphyrin chemistry in terms of breadth and 

diversity.   

Gross et al. reported a solvent-free method of condensing an equimolar 

mixture of pyrrole and an aromatic aldehyde using basic alumina as a solid support 

at 100°C for 4 hours, followed by oxidation with DDQ.54 This method proved 

successful for synthesizing the electron-deficient meso-

tris(pentafluorophenyl)corrole, H3[TPFPC], which was obtained in 11% yield after 

purification. Given the highly exothermic nature of the reaction, heating and the use 

of the solid support was later shown to be unnecessary in many cases.55 Although 
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initially meant for electron-deficient aldehydes, Gross’s method was found to be 

applicable to synthesizing new A3-corroles from both electron-rich and electron-poor 

aldehydes.77,185 

Also in 1999, Paolesse et al. synthesized meso-triphenylcorrole, H3[TPC], by 

reacting pyrrole and benzaldehyde (3:1) in refluxing AcOH.56 One drawback of the 

method was the formation of H2[TPP] in comparable yields to corrole. Several meso-

triarylcorroles from different aldehydes (both electron-poor and electron-rich) were 

synthesized following this procedure, with higher yields of corrole being obtained with 

electron-poor aldehydes.57 In another interesting approach, free-base H3[TPC] was 

synthesized in good yield (~65%) by oxidation of the corresponding open-chain 

tetrapyrrane precursor under acid-free conditions and in presence of NH4Cl or 

NH4NO3 as additive.58  

Around the same time, new methods for synthesizing A2B meso-triarylcorroles 

(where one of the three meso aryl group is different from the other two) were being 

developed. Dehaen et al. reported an acid-catalyzed [2+2] condensation of 

dipyrromethane (DPM) with electron-deficient aromatic aldehydes,59 while Gryko et 

al. reported the synthesis of five new unsymmetrically meso-substituted corroles via 

the reaction of dipyrromethanes with reactive aldehydes (i.e. with electron-

withdrawing fluorine atoms) in the absence of any added catalyst.60 A versatile 

method was accordingly devised for the synthesis of trans-A2B corroles via the acid-

catalyzed condensation of a DPM and an aromatic aldehyde followed by oxidation 

with DDQ.61 Gryko and co-workers further refined methods for condensing pyrroles 

with different classes of aldehydes (categorized according to reactivity and/ or steric 

bulk) for the synthesis of different A3-corroles62 and even managed to synthesize an 

ABC corrole with three different aryl groups at the meso-positions.63 Specific and 

optimized methodologies were also suggested for trans-A2B corroles,62 especially for 

the ones bearing electron-withdrawing groups.64 

While searching even higher yielding methods with improved purification 

steps, Koszarna and Gryko came up with a protocol in 2006 that almost 

revolutionized the one-pot pyrrole-aldehyde condensation process.65 The primary 

strategy was to maximize the yield of bilane, the direct corrole precursor, among the 

various condensation products (e.g., dipyrromethanes, tripyrrane, and higher 

oligocondensates), which they accomplished by carrying out the condensation in a 

water/MeOH mixture. The choice of the solvent mixture came from findings by Kral et 
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al. who developed an effective method dipyrromethane synthesis via pyrrole-

aldehyde condensation in water. These authors exploited the solubility difference 

between the substrates (aromatic aldehyde, pyrrole) and the product 

(dipyrromethane) in water and managed to essentially stop the reaction at the 

dipyrromethane stage by precipitating it out from the reaction medium.66 A notable 

point was that when the condensation was conducted in a 1:1 mixture of aqueous 

HCl and methanol, the yield of dipyrromethanes decreased significantly (probably 

because of higher oligomerization). This observation prompted Gryko to run the 

pyrrole-aldehyde condensation in water/methanol mixtures to allow better solubility of 

both the substrates and the DPM and thereby promote further reaction leading to the 

formation of the bilane, which could be precipitated out from the system due to poor 

solubility. Thus, condensation of benzaldehyde (5 mM) with pyrrole (molar ratio 1:2) 

in 1:1 water/methanol in presence of HCl (0.25 mM) for 3 hours, followed by 

extraction with CHCl3 and subsequent oxidation by p-chloranil (reflux, 1 hour), 

yielded free-base H3[TPC] in 27% yield.65 Additional A3 meso-triarylcorroles with 

were synthesized by the same method in moderate to good yields (10-25%), with 

relatively low yields observed for electron deficient aldehydes. For the oxidation step, 

CHCl3 and p-chloranil were found to be the best solvent-oxidant combination, which 

facilitated the purification and avoided over-oxidation. This same water/methanol/HCl 

method was also found to be applicable to the synthesis of trans-A2B corroles from 

DPMs (both sterically hindered and unhindered) and different aldehydes. However, 

sterically hindered DPMs were found to require a higher MeOH to H2O ratio, a higher 

acid-concentration, and longer reaction times relative to sterically unhindered DPMs. 

In this thesis, I have used Gryko’s standard water/methanol/HCl method65 to 

synthesize free-base para-substituted triarylcorroles, H3[TpXPC] (X = CF3, H, Me, 

OMe) in good yields. 
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Fig. 1.10 Schematic representation of the syntheses of meso-A3 and meso-A2B 

corroles via the water/MeOH method. 

 

Other notable methods of corrole synthesis include:  

(a) microwave irradiation of a mixture of pyrrole, aldehyde, and basic alumina 

in a microwave vial, which leads to an improvement in the yield of several A3-corroles 

relative to Gross’s conventional heating approach;67  

(b) pyrrole-aldehyde condensations catalyzed by the cation exchange resin 

Amberlyst-15, which is advantageous for the reusability of the catalyst;68  

(c) use of an ionic liquid such as [Bmim][BF4] (Bmim+ = 1-butyl-3- 

methylimidazolium cation) for the synthesis of trans-A2B corroles, which effectively 

reduces the amount of organic solvent required for the synthetic procedure and 

thereby leads to a “greener” synthesis;69 and 
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(d) a large-scale, modified Lindsey synthesis of H3[TPFPC], via a BF3.Et2O-

catalyzed condensation reaction of pyrrole and C6F5CHO in the presence of p-

formaldehyde.70 

 

1.5 Modifications/Functionalization of Corroles 
Since the discovery of corroles, several attempts have been made to functionalize 

corroles. Functionalization at the inner core positions of corroles mainly involve 

metalation reactions. Corrole ligands are found to form stable complexes with several 

main-group metals, almost every transition metals, and many f-block metals.71c,72 

Other important functionalization processes include demetallation73 and N-alkylation 

reactions.74 

Peripheral functionalization can be perfomed at both the meso- or the b-

positions of corrole rings, as described in several review articles including a recent 

one.71 Here we will focus on a handful of important b-functionalization methods, with 

an emphasis on b-halogenation reactions, especially bromination.  

b-Octafluorocorroles can only be synthesized via the condensation reaction of 

aromatic aldehydes with 3,4-difluoropyrrole.75,236 In contrast, chlorination of all eight 

b-positions has been accomplished by treating a Cu-corrole with NCS76 or by 

exposing a Co-corrole to chlorine gas.229  

b-Octabromination is also facile in copper corroles, especially with liquid 

bromine at room temperature.77 Alternatively, direct bromination can also be carried 

out on chromium,78 iridium,79 alumnium,80 and gallium corroles,81 as well as for 

certain free-base corroles.57 Methodologies for partial bromination have also been 

documented.82,155a Copper b-octabromocorroles are of particularly value as synthetic 

intermediates. Thus, Cu[Br8TpXPC] derivatives can undergo a variety of palladium-

catalyzed coupling reactions to afford b-octakis(trifluoromethyl)corroles,147 

undecaarylcorroles,83,84 and triaryltetrabenzocorroles.85 These new complexes all 

exhibit interesting electronic and structural properties. The partially brominated 

corroles also undergo Suzuki coupling with arylboronic acids82a or Stille coupling with 

Sn-acetylene reagents86 to yield the corresponding substituted products.  

Copper or manganese b-octabromocorroles can be demetalated to synthesize 

corresponding free-base octabromocorroles,87 which upon metalation yield new 

classes of sterically hindered metallocorroles.87b,88,133 
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Iodination has been performed for up to four b-pyrrolic positions. 2,3,17,18-

Tetraiodinated complexes have been obtained for aluminum and gallium corroles,89 

while for phosphorus corroles a tri-iodinated derivative was synthesized and 

spectroscopically studied.90 Quite interestingly, Gross and co-workers recently 

reported a one-pot metalation and iodination reaction of free-base meso-

tris(pentafluorophenyl)corrole, affording the tetraiodinated, M[I4TPFPC] complexes, 

where M = Cu, Ag and Au.91 

Other important examples of b-functionalization include: (a) formylation of 

free-base H3[TPC]92a and of Ga[TPFPC](py),92b (b) 3-carboxylation of 

Ga[TPFPC](py)93a also synthesis of a series of free-base corrole-3-carboxylic acids 

and their Cu complexes,93b (c) iridium-catalyzed borylation of H3[TPFPC] to afford 2-

borylcorrole,94 d) fluoroalkylation of H3[TPFPC],82a (e) chlorosulfonation and 

sulfonation of free-base corroles and metallocorroles,92b,90,95 and, (f) nitration of free-

base, Cu, Ge, or Fe corroles to afford the corresponding mono-3-substituted or bis-

3,17-disubstituted products.96,129 
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Chapter 2 - Introduction to Ligand Noninnocence 
 

2.1 Introduction 
The assignment of a formal oxidation state to the central metal ion in coordination 

complexes can at times be tricky. In such cases, strong mixing of metal d and ligand 

s or p orbitals can result in a metal oxidation state that differs from one that one 

might naively predict from an ionic model of metal-ligand bonding. The ligands in 

such complexes have been termed ‘noninnocent’ or ‘suspect’ in such complexes on 

account of their involvement in the ‘uncertainty in oxidation state assignment’.97  

The ‘innocent’ and ‘noninnocent’ terminology was introduced by Jørgensen in 

his comprehensive review in 1966.98 According to his definition, ‘‘ligands are innocent 

when they allow oxidation states of the central atom to be defined’’. Werner-type 

complexes such as [Co(NH3)6Cl3] or PtCl2(NH3)2, where the oxidation state of the 

central metal can be unambiguously determined {Co(III) in the first complex, and 

Pt(II) in the second one}, are complexes with innocent ligands (Fig. 2.1) 

On the other hand, the Ni(gma)2 {gma = glyoxalbis(2-mercaptoanil)} complex  

(Ni-A) can be considered as a Ni(II)-diradical (Ni-B), or as a Ni(IV) complex (Ni-C), or 

even as a Ni(0) complex (Ni-D), as a result of extensive interactions of the Ni(II) d-

electrons with the gma p-system. Thus, complex Ni-A is best thought of as a Ni-

complex with delocalized bonds (Ni-E).99 Here, an assignment of oxidation state for 

Ni is ambiguous and the ligand is thus noninnocent (Fig. 2.1). 

Although the original definition of ‘noninnocence’ referred only to the ligands, 

in reality it is the metal-ligand combination that elicits noninnocent behavior. A 

specific ligand such as corrole can be innocent in certain complexes, but noninnocent 

in others. For noninnocence to occur, key frontier MOs of the metal and the ligand 

need to overlap in a symmetry-allowed manner and also be energetically matched. 

We shall see (in sections 2.3.5 and 2.3.6) that these conditions explain that corroles 

are innocent in gold complexes, but noninnocent in copper complexes. 
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Fig. 2.1 Examples of complexes with (a) innocent and (b) noninnocent ligands. 

Adapted with permission from ref 99. 

 

In section 2.2, I shall briefly discuss some of the major types of noninnocent 

ligands. In section 2.3, I shall present the main ideas of this thesis, viz., a detailed 

discussion of different metallocorroles in respect of their noninnocent/innocent 

behavior. 

 

2.2 Some Major Classes of Noninnocent Ligands 
2.2.1 Dithiolene. Nickel dithiolene complexes were discovered as the first 

series of complexes to exhibit non-innocent behavior. As shown in Figure 2.2, the 

oxidation state of the metal might conceivably range from Ni(0) up to Ni(IV). Magnetic 

measurements revealed the diradical nature of the compounds and helped assign 

the Ni oxidation state as Ni(II).100 Each of the two dithiobenzil ligands thus acts as a 

radical-anion.101 

Similar square-planar structures were suggested for M(mnt)2
2- [mnt2- = 

maleonitriledithiolate] complexes (M = Ni, Pd, Pt, Co, Cu), based on their powder X-

ray diffraction patterns.102 Quantum-mechanical calculations revealed that the HOMO 

of dithiolene complexes is essentially ligand-based and electrochemical studies 

established the following reversible one-electron oxidation and reduction steps for the 

complexes (see equation 2.1 and Fig. 2.2):103  
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(eq. 2.1) 

 

 
Fig. 2.2 (a) Resonance structures of a Ni-dithiolene complex; (b) representation of 

three oxidation states of a dithiolene complex connected by electron transfer 

processes. Reproduced with permission from ref 103. 

 

A dithiolene-like moiety is well-established in bioinorganic chemistry as a part 

of the molybdopterin or tungstopterin cofactors.104 
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2.2.2 Dioxolene. 1,2-Dioxolene ligands derived from catechol exist in three 

distinct oxidation states related by single-electron transfer processes105 (see Fig 2.3). 

Examples of such ligands include tetrachloro-1,2-semiquinonate (Cl4SQ) ligands 

coordinated to 3d metal ions such as Cr and V.106 A neutral, chromium complex with 

a 9,10-phenanthraquinone ligand, CrIII(phenBQ)3, exhibits a multistep redox series 

with electron transfers occurring entirely on the ligand. The neutral form of the 

complex consists of an S = 3/2 Cr(III) center antiferromagnetically coupled to three 

chelated semiquinone radical ligands.107 

In biology, certain iron proteins contain a FeIII center that can be chelated by a 

catecholate substrate, which then undergoes an intramolecular electron transfer 

process to form a FeII-semiquinone complex that subsequently reacts further (Fig. 

2.3).108 

 
Fig. 2.3 (a) Three oxidation states of a dioxolene ligand and its metal complex. (b) 

Schematic representation of the noninnocent behavior of an enzymatic iron complex. 

Reproduced with permission from ref 112. 
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2.2.3 Diiminopyridine. The neutral complex Fe(PDI)(N2)2 is best described as 

an Fe(II) complex with a doubly reduced diradical ligand (Fig. 2.4)109 and not as an 

Fe(0) species. This complex serves as a pre-catalyst for hydrogenation,	

hydrosilylation, and cycloaddition reactions.110 By serving as a reservoir of electrons, 

the conjugated diiminopyridine ligand allows Fe-PDI complexes to undergo two-

electron oxidative addition of a diene via a cycloaddition reaction.111  

 

 
Fig. 2.4 Redox activity of the diiminopyridine ligand in an Fe complex. Reproduced 

with permission from ref 109. 

 
2.2.4 Dioxygen. The noninnocent behavior of the O2/O•–/O2

2− series has been 

well established in biology.112 Oxygen transport and storage are important biological 

functions and in many animals involve oxygen binding to the heme centers of 

hemoglobin (Hb) and myoglobin (Mb). The electronic structure of oxyhemoglobin 

(and oxymyoglobin) has long been debated. As expected for a high-spin Fe(II) 

complex, deoxy-Hb is paramagnetic; oxy-Hb, however, is diamagnetic. According to 

Weiss, the following reaction takes place:113 

FeII (high spin, S = 2) + O2 (S = 1) à FeIII-O2
•– 

According to this picture, oxygen binding leads to oxidation of the FeII center to a low-

spin FeIII that is antiferromagnetically coupled to a superoxide ligand to afford an 

overall S = 0 ground state. Pauling disfavored this picture and instead suggested an 

FeII-(O2
0) electronic structure for oxy-Hb, where both the heme and O2 fragments are 

S = 0.114 

A recent advanced quantum chemical study115 strongly supports the Weiss 

picture, whereas certain other studies favor Pauling’s description. However, all 

studies agree as to the fundamentally noninnocent behavior of the dioxygen ligand in 

these complexes. 
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2.2.5 Nitric Oxide. Jørgensen described nitric oxide (NO) as the ‘simplest 

case of noninnocent ligand’.98 The key orbital interactions in transition metal nitrosyls 

involve the metal d orbitals and the NO p* orbitals. Some of these orbital electrons 

can be thought of classic backbonding interactions, others not. In light of these 

considerations, Enemark and Feltham have suggested that the MNO unit in a metal 

nitrosyl should be viewed as a single covalent unit with an effective d electron count 

that is the sum of the metal d electrons and the NO p* electrons.117 According to their 

notation, FeIII-NO, FeII-NO, CoII-NO complexes are better described as {FeNO}6, 

(FeNO}7, and {CoNO}8, respectively, where the superscripted numeral indicates the 

effective number of d electrons. For metalloporphyrins, these three Enemark-Feltham 

counts correspond to highly characteristic MNO angles, which are ~180°, ~140°, and 

~120°, respectively (Fig. 2.5).118,119 Some authors have suggested that a linear MNO 

unit such as the one in the {FeNO}6 complex [Fe(CN)5(NO)]2– is indicative of an NO+ 

ligand.116 However, a number of nonheme {FeNO}7 complexes also exhibit linear 

FeNO units, where the NO is clearly not describable as NO+.120 In our view, there is a 

clear subjective element in describing a coordinated NO as NO+, NO•, or NO–.  In 

these cases, stating the Enemark-Feltham electron count often provides an adequate 

indication of the electronic structure. As discussed in section 2.3.2 (b), FeNO corroles 

provide some particularly fascinating examples of nonobvious Enemark-Feltham 

counts. 

 
Fig. 2.5 MNO angles in metalloporphyrins. 

 

2.2.6 Tetrapyrrole Ligands. Noninnocent behavior is fairly common for 

porphyrins and other tetrapyrrole ligands.121 The critical Compound I intermediate of 

heme proteins such as the cytochromes P450, chloroperoxidase and other 
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peroxidases, and catalase provide classic examples of ligand noninnocence. 

Although these intermediates are sometimes simplistically written as Fe(V), they are 

better described as S = 1 FeIVO centers spin-coupled to a ligand radical.122 The 

ligand radical may be localized on the porphyrin or in part also on the heme axial 

ligand. The nature of the spin coupling may range from fairly strongly 

antiferromagnetic (in the case of heme-thiolate proteins such as chloroperoxidase 

and the cytochromes P450) to ferromagnetic (for many peroxidases). The compound 

I (Fig. 2.6) intermediates have been studied in great detail by a variety of 

spectroscopic techniques, notably EPR and Mössbauer spectroscopy.123 

 
Fig. 2.6 Compound I, an FeIV-oxo porphyrin radical. Reproduced with permission 

from ref 123b. 

 

Chlorophylls, which are highly substituted Mg(II)-chlorin complexes, provide 

another key example of biological metalloradicals. As primary electron acceptors in 

photosystem I, they form a paramagnetic, EPR-detectable trianionic species:124 

MgII−(Chl2−) + e− → MgII−(Chl•3−) 

Occurrence of this short-lived species is crucial for the charge-separation within the 

photosynthetic membrane during photosynthesis. 

 
2.3 Noninnocence and Innocence in Metallocorroles 
Corroles exhibit unique coordination chemistry relative to porphyrins. Unlike dianionic 

porphyrins, corroles typically act as formally trianionic ligands toward coordinated 

atoms. Second, corroles provide a significantly more compressed cavity for the 
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coordinated atom. These two factors are responsible for the existence of many 

stable, formally high-valent transition metal corrole complexes. Careful examination, 

however, shows that many of these complexes do not contain true high-valent metal 

centers. Instead, the metal atom retains a normal oxidation state, while the corrole 

ligand assumes an oxidized corrole•2−-like state. The true oxidation state of the 

central metal is thus ambiguous in many metallocorroles and accordingly the corrole 

ligands in these complexes may be described as noninnocent. Of course, there are 

many innocent metallocorrole systems as well. The corrole ligands in the majority of 

4d and 5d metallocorroles may be described as innocent. Most main group element 

corrole complexes are also innocent. Finally, with some metals such as silver, the 

corrole may be innocent or not depending on the peripheral substituents.152 

 

2.3.1 Experimental Techniques for Identifying Noninnocence in Metallocorroles 
Ligand noninnocence in metallocorroles can be identified both experimentally and 

theoretically. UV-vis absorption spectroscopy is arguably the most convenient tool in 

this regard. A comparative study of the Soret absorption maxima of meso-TpXPC-

complexes [where TpXPC = tris(para-X-phenyl)corrole] provides a simple yet and 

reliable probe of the innocence/noninnocence of the corrole ring system. Thus, a 

strong redshift of the Soret maxima with increasing electron-donating character of 

para-substituent X is indicative of a noninnocent corrole with substantial corrole•2− 

character. This is the case for all Cu triarylcorrolates (regardless of b-pyrrole 

substitution) and several classes of Mn and Fe corroles. Many of the findings in this 

area are my own, as discussed later in this thesis. On the other hand, substituent-

insensitive Soret maxima, as observed for Au, Ru, and Os corroles, are indicative of 

for innocent, formally corrole3− ligands. 

NMR spectroscopy has proved to be another valuable probe for detecting 

corrole radical character, especially for iron and copper corroles. Temperature-

dependent 1H NMR spectroscopy has proven particularly useful for characterizing the 

singlet-triplet equilibria of Cu corroles. Both 1H and 13C NMR spectroscopy provide 

detailed information on the spin-density profiles of FeCl and Fe-aryl corroles, wherein 

the corrole ligand is essentially noninnocent and innocent, respectively.  

EPR spectroscopy is also useful in that it can indicate whether a certain 

radical is metal-centered or corrole-centered. Thus, EPR spectra indicated the 
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presence a full-fledged corrole radical in certain charge-neutral Pt-diaryl corrole 

complexes.140 

X-ray crystallographic structures provide another powerful probe of a 

noninnocent corrole. For copper corroles, strong macrocycle saddling is indicative of 

a specific metal(d)-ligand(p) orbital interaction, which results in a noninnocent corrole 

ligand. For certain other systems such as FeCl corroles, characteristic bond length 

alternations in and around the bipyrrole part of the corrole skeleton indicate radical 

character. These bond length alternations can also be probed with IR and resonance 

Raman spectroscopies. 

Very recently, X-ray absorption spectroscopy has been found to yield fairly 

detailed insights into the oxidation state of the central metal and hence also into the 

question of ligand noninnocence in metallocorroles.153 

Finally, quantum chemical calculations, in particular DFT calculations, provide 

a detailed picture of the spin density profiles (and spin couplings) of metallocorroles 

and thus shed a great deal of light on the question of ligand noninnocence. 

Somewhat surprisingly, electrochemical redox potentials are an unreliable 

probe for ligand noninnocence. Thus, for a given corrole ligand, both innocent FePh 

(FeIV-corrole3-) and a noninnocent FeCl (FeIII-corrole•2−) complexes (see paper B) 

exhibit similar redox potentials and HOMO-LUMO gaps. That said, an 

electrochemical HOMO-LUMO gap (i.e. the algebraic difference between the first 

oxidation and the first reduction potentials) of ~2.2 eV, which is the p-p* energy gap 

for most closed-shell corroles, is generally indicative of an innocent corrole ligand. 

 

2.3.2 Ligand Noninnocence in Iron Corroles 
(a) Chloroiron Corroles. Despite early Fe(IV) assignments, FeCl corroles are 

best described as noninnocent FeIII-corrole•2−, on the basis of UV-Vis spectra 

(substituent-sensitive Soret maxima), 1H NMR spectra, and DFT calculations.125 A 

detailed discussion of FeCl corroles vis-à-vis the question of ligand noninnocence is 

provided in section 3.4 and in paper B. 

One important observation is that the addition of excess imidazole to a 

solution of an FeCl octaalkylcorrole leads to a bisimidazole adduct at -50 °C. 1H 

NMR, EPR, and DFT studies describe these adducts as having low-spin Fe(III) 

centers that are uncoupled or weakly ferromagnetically coupled to a corrole•2− 
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radical.125 Similar behavior is also observed for cyanide addition, although the 

oxidized biscyanide adduct slowly reduces to the nomal-valent Fe(III) state, 

{Fe[Cor](CN)}–.126 

(b) FeNO Corroles. FeNO corroles are one of the newest additions to the 

family of noninnocent systems. Ever since Vogel’s early report of the Fe[OEC](NO) 

complx,127 a large number of FeNO corroles have been synthesized and until 

recently described as {FeNO}6 complexes.128-131 Ghosh and co-workers, however, 

have recently proposed a different, noninnocent electronic description for the FeNO 

corroles, based on experimental and computational studies. According to these 

authors, FeNO corroles are best described as an {FeNO}7 center (low spin, S = 1/2), 

antiferromagnetically coupled to a corrole•2− radical, to yield an overall S = 0 ground 

state.132  

UV-vis spectroscopic studies provided the first clue to the noninnocent 

character of FeNO corroles. Thus, the Soret maxima of Fe[TpXPC](NO) derivatives 

were found to exhibit strong redshifts with increasing electron-donating character of 

the meso-aryl para-substituent X (see Fig 2.7).132 Further, IR spectroscopy also 

appeared to support the new {FeNO}7 description of FeNO corroles. The NO 

stretching frequencies (uNO) of Fe[TpXPC](NO) derivatives range over 1761-1781 

cm-1 for X = OMe to X = CF3. These frequencies are substantially lower those of 

genuine {FeNO}6 porphyrins (e.g. uNO = 1893 cm−1 for Fe[TpivPP](NO), which is 

some 90 cm−1 higher than those of analogous {FeNO}7 porphyrins). Accordingly, it is 

reasonable to view FeNO corroles as a resonance hybrid of the form {FeNO}6-Corr3− 

↔ {FeNO}7-Corr•2−, with the latter resonance form contributing substantially. 
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Fig. 2.7 UV-vis spectra of Fe[TpXPC](NO) as a function of X. Reproduced with 

permission from ref 132. 

 

Possibly the most convincing evidence for the noninnocent nature of FeNO 

corroles came from DFT calculations, where the spin density profile of Fe[TPC](NO) 

could be clearly attributed to spin-coupled {FeNO}7-corrole•2− fragments. Detailed 

calculations further suggested that the FeNO unit was best thought of as an Fe(III) 

center (S = 3/2) antiferromagnetically coupled to a NO− (S = 1) diradical. It is worth 

mentioning that the substantial displacement of the Fe atom from the mean corrole 

N4 plane (~0.45 Å) favors the antiferromagnetic coupling between Fe dz2 electron and 

corrole a2u radical. Furthermore, the optimized structure of Fe[TPC](NO) exhibits 

characteristic bond distance alternations in and adjacent to the bipyrrole part of the 

corrole macrocycle (Fig. 2.8). High quality X-ray crystal structures and IR 

spectroscopy confirm the presence of these bond-length alternations, which have 

also been found in noninnocent FeCl corroles. 
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Fig. 2.8 Calculated bond length alteration in Fe[TPC](NO). Reproduced with 

permission from ref 132. 

 

Ghosh and co-workers also examined the electronic structures of FeNO b-

octabromocorroles.133 The NO stretching frequencies for Fe[Br8TpXPC](NO) 

complexes were observed to be higher than those of their nonbrominated 

counterparts. Interestingly, the Soret maxima of the octabromo complexes were 

found to vary little with increasing electron character of para-substituent X (lmax = 

394±3 nm), compared to the nonbrominated FeNO corroles. However, this 

substituent-insensitivity of Soret maxima was attributed to steric inhibition of 

resonance, whereby the bulky bromine atoms in b-positions force the meso-aryl 

groups to be essentially orthogonal to the corrole ring, thereby exerting smaller 

electronic effects. DFT calculations on Fe[Br8TPC](NO) indicated the same non-

innocent {FeNO}7-corrole•2− electronic description as for Fe[TPC](NO). Both the 

crystal structure of Fe[Br8TFPC](NO) and DFT calculations indicated characteristic 

bond length alteration in the bipyrrole part of the macrocycle, analogous to what was 

found for Fe[TPC](NO). Moreover, analogous IR skeletal modes, indicative of a non-

innocent corrole ring, were identified for both Fe[TPC](NO) and Fe[Br8TPC](NO). 

Overall, despite their electron-deficient nature, FeNO octabromocorroles were found 

to exhibit the same qualitatively noninnocent electronic structures as their 

nonbrominated counterparts.133 

Finally, it is worth noting that FeNO corroles exhibit one reversible oxidation 

and one reduction128b,131 in cyclic voltammetry experiments and both are believed to 
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be ligand-centered processes, according to DFT calculations. The calculated spin 

density profiles for both the oxidized and reduced states of FeNO corroles indicate a 

simple S = ½ {FeNO}7 center.134 

(c) µ-Oxo Diiron corroles. In the course of research described in this thesis 

(see section 4.6.1 and paper A), µ-oxo diiron corroles, which have long been thought 

of true Fe(IV) species, have been formulated as complex spin-coupled assemblies of 

intermediate-spin FeIII centers and corrole•2− radicals. The evidence for this 

conclusion derived from substituent-sensitive Soret maxima of {Fe[TpXPC]}2O 

derivatives and broken-symmetry DFT calculations.  
 

2.3.3. Ligand Noninnocence in Manganese Corroles 
(a) MnCl Corroles. Substituent-sensitive Soret maxima derivatives and DFT 

calculations effectively have suggested a noninnocent MnIII-corrole•2− description for 

MnCl corroles (see sections 3.3 and 3.6 for a detailed discussion). 

(b) Mn(V) Corroles. Several Mn corroles at the formal Mn(V) level are known. 

Although the majority of these are S = 0 dxy
2 complexes with strongly p-donating oxo 

or imido axial ligand, there are a few instances of corrole radical states at the formal 

Mn(V) level. 

An interesting case of corrole radical formation has been reported recently by 

Abu Omar et al. The addition of one equiv TFA to the Mn(V)-oxo corrole 

Mn[TPFPC](O) resulted in the formation of a manganese(IV)-hydroxo corrole cation, 

{MnIV[TPFPC•2−](OH)}+ (Fig. 2.9), with a dramatically different UV-vis spectrum 

relative to the starting material.135 Also, EPR studies revealed the presence of both 

an S = 3/2 Mn(IV) center and a corrole radical.135 

  
Fig 2.9 Proton-induced corrole radical formation from Mn[TPFPC](O). Reproduced 

with permission from ref 135. 
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A second instructive example is provided by the Mn-tosylimido TPFPC 

complex. Based on magnetic susceptibility measurements, Abu Omar et al. reported 

a high-spin S = 1 ground state for Mn[TPFPC](NTs) complex,136 which may be 

contrasted with a clear S = 0 ground state for the analogous mesitylimido complex 

Mn[TPFPC](NMes).137 DFT calculations on the model Mn[Cor](NTs) (Ms = 1) 

revealed a complex spin-density profile suggestive of an MnIII[Cor•2−](NTs•−) 

description for the complex (see Fig. 2.10).134  

 

 
Fig 2.10 DFT spin density plot for Mn[Cor](NTs) (Ms = 1). Reproduced with 

permission from ref 134. 

 

2.3.4 Noninnocence in Nickel and Platinum Corroles 
A nickel corrole was first reported in the legendary publication by Johnson and Kay, 

who postulated presence of a Ni(II) center, with the corrole acting as a doubly 

deprotonated, dianionic ligand in the neutral complex.45b The Ni corrole exhibited 

significant UV-vis spectral changes in presence of added base, which was 

interpreted as indicative of the formation of an anionic Ni(II) complex. A similar 

observation was also reported by Murakami et al., who again invoked a Ni(II) 

description.138 However, the X-ray structure of Ni[Et4Me4C] reported by Vogel et al. 

tells a different story.139 The structure reveals a planar macrocycle with short Ni-N 

bond distances (1.829−1.859 Å) relative to NiII[OEP] (1.928- 1.958 Å). The structural 

studies, alongside EI mass spectra and IR spectra, appeared indicative of a formally 
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trivalent metal center. However, magnetic moment studies and EPR studies of the 

sample in both solid and in solution phase indicated an S = 1/2 ground state. The 

EPR spectra were also qualitatively different than spectra of a typical Ni(III) 

porphyrins. In light of these findings, a noninnocent NiII−corrole•2− description was 

assigned to the complex. DFT calculations also confirmed that the NiII-corrole•2−  

radical states have significantly lower energy than a NiIII state.22 

Platinum corroles, reported recently by Ghosh and co-workers, present a 

fascinating story in respect of ligand noninnocence.140 Insertion of platinum into 

corroles is a challenging affair and has only been accomplished in benzonitrile 

solution under microwave irradiation. These conditions afford diamagnetic Pt(IV) 

corroles with the formula, Pt[TpXPC](o/m/p-C6H4CN)(PhCN), with a solvent-derived 

o/m/p-C6H4CN ligand. The Soret maxima of these complexes were found not to vary 

as a function of para substituent X, thus indicating an innocent corrole macrocycle 

(see Fig. 2.11). Treating these Pt(IV) complexes with aryl-Grignard reagent led to air-

stable, Pt[TpXPC](o/m/p-C6H4CN)(p-C6H4Me) derivatives at the formal Pt(V) level. 

These oxidized Pt complexes exhibited a strongly split Soret envelope, of which the 

higher energy peaks were found to redshift significantly (~32 nm on going from X = 

CF3 to X = OMe) with increasing electron-donating character of para substituent X 

(see Fig. 2.11), strongly suggesting a PtIV-corrole•2− description of the complexes. X-

band EPR spectra of the complexes in both solid and frozen-solution state revealed a 

signal centered around g	≈ 2.00. This observed g-value is in agreement with the 

reported values for other corrole radical derivatives. Also, the hyperfine coupling to 

Pt, observed only in solution state, was deemed too small for the radical to be Pt-

centered. Furthermore, the X-ray structures of the oxidized, Pt-diaryl complexes were 

found to exhibit characteristic bond length alternations in and adjacent to the 

bipyrrole part of the corrole ring. Based on all these results, a noninnocent 

PtIV-corrole•2− description could be assigned to these Pt-diaryl corroles.140 
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Fig. 2.11 UV-vis spectra of innocent and noninnocent Pt corroles. Reproduced with 

permission from ref 140. 

 

2.3.5 Noninnocence in Copper and Silver Corroles 
Copper corroles have been the subject of some of the most in-depth studies of ligand 

noninnocence in metallocorroles. The first Cu corrole was synthesized by Johnson 

and Kay, where it was initially formulated as a Cu(II) species.45b A much clearer 

picture of the electronic structure emerged from Vogel and co-workers’ analysis of 

the Cu[Et4Me4C] complex, which was found to be EPR-inactive.139 Although the 

crystal structure of the Cu[Et4Me4] suggested a trivalent Cu center, the compound 

exhibited broadening of 1H NMR signals at elevated temperatures and even 

disappearance of meso-proton signals above 386 K. Such behavior could only be 

interpreted in terms of a thermally accessible, paramagnetic excited state. Indeed, 

DFT calculations by Ghosh and co-workers confirmed the presence of CuII−corrole•2− 

triplet states, only slightly higher in energy than the S = 0 ground state.22 Ghosh et al. 

also synthesized of Cu b-octafluorocorrole derivatives, Cu[F8TpXPC], for which 

temperature-dependent 19F NMR peak (b-F’s) also exhibited thermal broadening, 

consistent with increasing population of a paramagnetic excited at higher 

temperatures.75b Additional confirmation came from the findings of Brückner et al. 

who reported variable-temperature 1H NMR spectra of Cu[TPC] (see Fig. 2.12), and 

concluded that the equilibrium between the diamagnetic singlet ground state and 
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paramagnetic triplet excited state is both temperature and solvent-dependent.141 

Gross et al. also noted analogous NMR peak broadening of Cu[TPFPC] and 

Cu[TDCPC] at higher temperature, and they favored the earlier assignment of the 

paramagnetic excited state as CuII−corrole•2− state.142 Quite interestingly, the copper 

triphenyltetrabenzocorroles exhibit a paramagnetic ground state.85b 

 
Fig. 2.12 Variable-temperature 1H NMR spectra of Cu[TPC]. Reproduced with 

permission from ref 141. 

 

Fairly uniquely among metallocorroles, Cu corroles exhibit strongly saddled 

geometries. Early DFT calculations by Ghosh and co-workers predicted a strongly 

saddled conformation for Cu[Br8TPFPC].77 Such a nonplanar distortion can be 

attributable to a Cu(dx2-y2)−corrole(p) orbital interaction. Subsequently, X-ray 

structural studies confirmed significantly saddled structures for Cu[TPC]141 as well as 

for other Cu corroles.143 In connection with an X-ray structure of a decasubstituted 

Cu corrole, Bröring et al. pointed out the presence of a Cu(d)-corrole(p) orbital 

interaction and postulated a CuII−corrole•2− ground state description.143 X-ray 

structural studies by Ghosh and co-workers on two sterically unhindered, trans-A2B 

Cu triarylcorroles also revealed strongly saddled conformations.144 Based on DFT 

calculations, these authors identified a specific Cu(dx2-y2)-corrole(a2u) orbital 

interaction, which becomes symmetry-allowed under saddling, as the driving force for 

the nonplanar distortion. Thus, according to DFT calculations, even unsubstituted Cu 

corrole is predicted to be significantly saddled. The Cu(dx2-y2)-corrole(a2u) orbital 

interaction allows the flow of electron density to flow the corrole p-HOMO into the 
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formally empty dx2-y2 orbital of the Cu(III) ion (Fig. 2.13). Accordingly, copper corroles 

are best viewed as a CuII-corrole•2− assemblies rather than as CuIII-corrole3−. It is 

therefore legitimate to describe the saddling of Cu corroles as driven by the 

imperative to adopt a noninnocent electronic structure. In an extensive ab initio 

quantum chemical study, Pierloot et al. have supported the idea of a noninnocence-

driven, inherently saddled Cu corrole.145 To our knowledge, the occurrence of 

noninnocence-driven saddling is unique to Cu corroles and is unprecedented for 

metalloporphyrins, where saddling occurs primarily due to peripheral steric crowding. 

 
Fig. 2.13 DFT HOMO of Cu[TPC]. Reproduced with permissions from ref 144. 

 

Although all Cu corroles are inherently saddled on electronic grounds, the 

degree of saddling increases with increasing sterically hindered character of the 

peripheral substituents. Thus, X-ray structural studies by Ghosh and coworkers 

indicated saddling dihedrals of χ3 ~68° for Cu b-octabromo-meso-triarylcorroles146 

and χ3 = 84.5° for a Cu b-octakis(trifluoromethyl)-meso-triarylcorrole, 

Cu[(CF3)8TpFPC]. The latter compound, with nearly orthogonal adjacent pyrrole rings 

(see Fig. 2.14), is the most strongly saddled metallocorrole reported to date.147b 

Interestingly, Cu undecaarylcorroles are slightly less saddled (χ3 ~60-66°) than Cu b-

octabromo-meso-triarylcorroles, but significantly higher than b-unsubstituted Cu[TPC] 

(χ3 ~45°).83c The higher degree of saddling in the various sterically hindered Cu 

corroles results in enhanced CuII-corrole•2− antiferromagnetic coupling; as a result, 
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the NMR spectra of these complexes do not show any evidence of thermally 

accessible paramagnetic excited states.146,83c 

 
Fig. 2.14 X-ray structure of Cu[(CF3)8TpFPC]. Reproduced with permission from ref 

147a. 

 

Optical spectra provide some of the most dramatic illustrations of the 

noninnocent character of Cu corroles. Thus, Ghosh and co-workers have shown that 

the Soret maxima of Cu[Y8TpXPC] derivatives (Y = H, Br, F, CF3) exhibit dramatic 

redshifts with increasing electron-donating character of the para substituent X on 

meso-aryl groups (see Fig. 2.15).75b,77,147a Furthermore, for a given meso substituent, 

the Soret  maximum redshifts along the following series of b-substituents, Y = H → F 

→ Br → CF3, which correlates with the increasing degree of saddling along the 

series. Overall, a 100-nm shift of the Soret maximum has been observed across the 

entire set of Cu[Y8TpXPC] derivatives, from 407 nm for Cu[TpCF3PC] to 507 nm for 

Cu[(CF3)8TpOMePC]. 



	 46	

 
Fig. 2.15 UV-vis spectra of Cu[TpXPC] as a function of X. Reproduced with 

permission from ref 134. 

 

TDDFT calculations by Ghosh and co-workers have provided crucial insight 

into the substituent-sensitive Soret maxima of Cu corroles. In particular, they showed 

that the key substituent-sensitive transitions under the composite Soret envelope 

which indicate that one or more transitions within the Soret envelop have significant 

aryl-to-corrole charge-transfer character.148 In another study of a series of trans-A2B 

Cu triarylcorroles, Ghosh and co-workers showed that only the substituents at 5,15-

meso positions exert a significant influence on the positions of the Soret maxima.149 

In contrast to Cu corroles, the Soret maxima of Ag[TpXPC] derivatives are 

found to be insensitive toward the para-substituents X.151 The X-ray structure of a 

silver corrole also revealed only a slightly saddled Ag corrole core.150 These findings 

appear to indicate a relatively innocent AgIII-corrole3- description for Ag 

triarylcorroles. For the Cu corroles, the relatively low energy of Cu 3dx2−y2 orbital 

facilitates the strong Cu(dx2−y2)-corrole(a2u) orbital interaction, which is crucial for the 

corrole radical character. For Ag corroles, an analogous orbital interaction is much 

less favored because of the higher energy of Ag 4dx2−y2 orbital, which explains the 

lower degree of saddling of Ag triarylcorroles. TDDFT calculations also predict much 

less charge-transfer character in the Soret transitions of Ag[TPC], explaining the 

substituent-insensitive Soret maxima. 
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Bromination at b-positions of Ag corroles introduces new twists to the above 

story, as observed recently by Ghosh and co-workers.152 Thus, the Soret maxima of 

b-octabromo series Ag[Br8TpXPC] were found to redshift with increasing electron-

donating character of the para-substituent X (Fig. 2.16). Also, a crystal structure of 

Ag[Br8TpMeC] complex revealed a dramatically saddled macrocycle. Together, these 

results appeared to suggest that Ag[Br8TpXPC] are significantly noninnocent. Ghosh 

and coworkers postulated that the steric factor, i.e., the increased inclination of 

Br8TpXPC ligands to undergo saddling, and the electronic factor, i.e., the 

Ag(4dx2−y2)-corrole(a2u) orbital interaction, reinforce each other, resulting in a 

noninnocent corrole with strongly saddled geometry. In other words, unlike simple Ag 

triarylcorroles, Ag[Br8TpXPC] derivatives appear to be best described as AgII-

corrole•2–.152 A recent X-ray absorption near-edge spectroscopic (XANES) study on 

Ag porphyrins and corroles provided additional evidence consistent with this 

picture.153 

 
Fig.2.16 UV-vis spectra of two families of Ag corroles. Reproduced with permission 

from ref 152. 

 
2.3.6 Innocent Metallocorroles 
Metallocorroles with main-group elements provide archetypal examples of 

electronically innocent corrole ligands. Group 13 metallocorroles, including Al(III) and 

Ga(III) corroles, and Group 14 metallocorroles, including Ge(IV) corroles and Sn(IV) 
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corroles, exhibit sharp Soret and Q bands, which are explained by Gouterman’s four-

orbital model. Moreover, high values of electrochemical HOMO-LUMO gaps 

(~2.1-2.2 V) of these complexes are also indicative of an innocent corrole ligand in 

these complexes.154-156 Group 15 corrole derivatives such as PV meso-

triarylcorroles,157 AsIII[OEC],158 and SbIII[OEC]158 all exhibit electrochemical HOMO-

LUMO gaps of ~2.0-2.1 V, indicating macrocycle-centered redox reactions and hence 

an innocent corrole ligand. 

Several electronically innocent 4d and 5d transition metal corroles have been 

identified by Ghosh and co-workers and these satisfy nicely the optical test for 

innocence/noninnocence described above. Thus Au,151 OsN,159 ReO,160 99TcO,161 

and RuN162 complexes of meso-triarylcorroles all exhibit substituent-independent 

Soret maxima and high electrochemical HOMO-LUMO gaps (~2.15 ± 0.10 V), which 

indicate an innocent corrole ligand and a redox-inactive metal center. On the other 

hand, CrO,163 MoO,163 Ag,151 and RuNO162 complexes of meso-triarylcorroles, 

together with the newly discovered Mo and W biscorroles,164 all exhibit substituent-

insensitive Soret maxima but relatively low electrochemical HOMO-LUMO gaps 

(~1.0-1.6 V). Therefore, these complexes thus contain an innocent corrole ligand 

coexisting with a redox-active metal center. 

As archetypal innocent metallocorroles, Au corroles deserve a brief 

discussion. Compared with Cu and Ag corroles, Au corroles are found to be 

essentially planar.151 Even a great deal of peripheral steric crowding does not affect 

the planarity of Au corroles, as exemplified by the X-ray structures of 

Au[(pCF3Ph)8TPC],84c Au[Br8TPFPC],165 and Au[(CF3)8TpFPC].166 Compared with the 

nearly perfectly planar Au[(CF3)8TpFPC] complex (Fig. 2.17)., the saddling dihedrals 

in the analogous Cu complex are up to some 80° higher. This planarity of the Au 

corroles can be explained in terms of an almost insignificant metal(dx2−y2)-corrole(a2u) 

orbital interaction as a result of the very high energy of the Au 5dx2−y2 orbital (in 

significant part due to relativistic effects). These same considerations explain the 

absence of charge-transfer character in Soret region of Au corroles, which explains 

the substituent-independent behavior of the Soret maxima of both the Au[TpXPC]151 

(Fig. 2.18) and Au[Br8TpXPC] series.167 
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Fig. 2.17 X-ray structure of Au[(CF3)8TpFPC]: (a) side view (b) top view. Reproduced 

with permission from ref 166. 
 

 
Fig. 2.18 UV-vis spectra of Au[TpXPC] as a function of X. Reproduced with 

permission from ref 151. 

 
2.3.7 Conclusion 
Since the original discoveries involving dithiolene complexes, the subject of ligand 

noninnocence has engaged inorganic and bioinorganic chemists for more than five 

decades. Although the discussion above focuses largely on electronic-structural 

aspects, it is worth emphasizing that noninnocent ligands are of great importance in 

catalytic transformations, especially for transition metal-mediated group transfer 

reactions. As discussed in section 2.3, research carried out in the Ghosh group 

including my own research has led to the identification of several metallocorrole 

families as paradigmatic noninnocent systems. Nearly a half-dozen tools have been 
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routinely used to characterize the phenomenon in metallocorroles, of which the use 

of optical spectroscopy is arguably the most convenient and striking. In this thesis, I 

have used all these tools to identify noninnocent corrole ligands in µ-oxo-diiron 

corroles (section 4.6.1, paper A) and Co-PPh3 corroles (section 5.5.1, paper C). I 

have also used these tools to reexamine the known noninnocent families of FeCl and 

MnCl triarylcorroles (section 4.6.2; paper B and section 3.6, respectively). Using the 

same approach, I have also identified four classes of innocent metallocorroles, 

namely, FePh corroles (section 4.6.2, paper B), MnPh corroles (section 3.6), Rh-

PPh3 corroles (section 5.5.1, paper C), and Co-bispyridine corroles (section 5.5.2).  
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Chapter 3 – Manganese Corroles 
 

3.1 Introduction 
Manganese corroles are among the most intensively investigated 3d metallocorroles 

and their electronic properties, catalytic behavior, and biological applications have 

been summarized in a recent review.168 For Mn corroles reported to date, the 

oxidation state of the Mn center ranges from +3 to +6. The present chapter focuses 

on the structural and electronic properties of the three classes of Mn corroles, namely 

the Mn(III) corroles, MnCl corroles, and Mn-aryl (MnPh) corroles, and concludes with 

a brief discussion of their fascinating electrochemical behavior.  

 

3.2 Manganese(III) Corroles 
Early reports of the synthesis of Mn-corroles involved in situ metal-coordination and 

subsequent cyclization of (a) 1,19-dideoxybiladiene-ac48b or (b) 2,2’-bisdipyrrins.169 In 

both approaches, an Mn(II) ion serves as a template for the ring closure of the 

corresponding tetrapyrrolic precursor of corrole. In recent years, Mn(III) corroles have 

been conveniently prepared in high yields via metalation of the corresponding free-

base corroles with a manganese salt such as Mn(OAc)2.4H2O in refluxing DMF.170 

Manganese insertion can also be achieved in other solvents like methanol and 

pyridine.171-173 Typically, the final product is the four-coordinate neutral Mn(III) 

corrole. These complexes, especially the more electron-rich ones, tend to undergo 

aerial oxidation, especially in solution. The electron-deficient complex Mn[TPFPC], 

however, is reasonably air-stable.170 Mn(III) corroles serve as convenient starting 

materials for the synthesis of a variety of higher-valent Mn corrole derivatives, as 

depicted in Fig. 3.1.  
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Fig. 3.1 Schematic representation of synthetic transformations of Mn corroles. 

 

The crystal structures of Mn(III) corroles exhibit average Mn-N distances ~1.9 

Å, suggesting an optimum steric match between the metal and the macrocyclic 

ligand. Unsurprisingly, the Mn atom is slightly displaced from corrole N4 plane in five-

coordinate Mn-corroles with an axial ligand such as pyridine, methanol, etc., whereas 

four-coordinate Mn(III) corroles are generally planar.172,174-176 

Magnetic susceptibility measurements on Mn(III) corroles indicate a high-spin 

S = 2 metal center. Consistent with their paramagnetism, the 1H NMR spectra exhibit 

broad signals with a wide range of chemical shifts. Most Mn(III) corroles are EPR-

silent at room temperature. Instead, high-frequency and -field EPR (HFEPR) studies 

are performed to identify the spin state of manganese corroles. Bendix et al. reported 

the first HFEPR studies on a five-coordinate Mn corrole, Mn[TPFPC](OPPh3), at two 

different frequencies and temperatures and assigned an S = 2 spin state for the 

Mn(III) complex.175 Further HFEPR investigations were carried out by Krzystek et al. 

on the four-coordinate complex Mn[Et2Me6C], who also found an S = 2 state for the 

compound in the solid state.177 Interestingly, Licoccia et al. have reported that the 

pyridine adduct of an Mn octaalkylcorrole, Mn[Me2Et6C](py), exhibits a six-line EPR 

spectrum centered around g = 2, when measured in pyridine at T = 100 K.178 

Temperature variation of the solution magnetic moment of Mn[Me2Et6C](py) was 
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thought to be indicative of antiferromagnetic coupling between an intermediate-spin 

Mn(II) (S = 3/2) ion and a corrole radical (S = 1/2) resulting in an overall Stotal = 1 

state. A similar observation was also noted by Kadish and co-workers for 

Mn[OEC](py), where the authors postulated a temperature dependent high- to low-

spin conversion of the Mn(III) center due to the binding of a second pyridine ligand at 

low temperature.174 However, according to Krzystek et al., the Mn[Et2Me6C] complex 

exhibits an S = 2 Mn(III) HFEPR spectrum even in frozen pyridine solution, with the 

occurrence of a temperature-assisted valence isomerization from MnIII−Corr3− at low 

temperature to MnII−Corr•2− at higher temperatures.177  

Manganese corroles such as Mn[OEC] and Mn[OMC] exhibit characteristic 

UV-vis spectra in noncoordinating solvents such as DCM, which generally consist of 

a Soret band around 390 nm and a broad Q band around 600 nm. In coordinating 

solvents such as pyridine, the corresponding pentacoordinate complex Mn[OEC](py) 

forms in solution, which is reflected by an increase in intensity of a band around 480 

nm.174,178 Manganese meso-triarylcorroles, on the other hand, exhibit a split Soret 

band in DCM, with two peaks of almost equal intensity – one around 400 nm and 

another around 430-440 nm. When measured in pyridine, the band around 440 nm, 

increases in intensity along with a concomitant intensification of bands around 500 

nm and 560-650 nm (see Fig. 3.2). These spectral changes are indicative of the 

formation of the five-coordinate, mono-pyridine adduct of the Mn corrole.173,179,180 b-

Octahalogenation significantly affects the UV-vis spectra of Mn(III) corroles, as 

evidenced by the significant redshift of both the Soret and Q bands for Mn(III) b-

octabromocorroles.176,234  
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Fig. 3.2 UV-vis spectra of Mn corroles (neutral form) in different solvents, containing 

0.1 M TBAP. Reproduced with permission from ref 134 (the original figure is from ref 

179). 

 

3.3 Chloromanganse Corroles 
Chloromanganese corroles can be readily obtained by treatment of Mn(III) corrole 

solution with tris(4-bromophenyl)aminium hexachloroantimonate181 or, more 

conveniently, with aqueous HCl under aerobic conditions.179 MnCl corroles undergo 

ligand exchange reaction to afford pseudohalogeno derivatives, as reported by 

Bröring et al., who managed to synthesize a Mn-NCS corrole, 

Mn[Et8(pMeP)2(H)C](NCS), by treating a MnCl corrole with KSCN at room 

temperature.182 

X-ray structures of MnCl corroles reveal a square-pyramidal metal center, Mn-

N4 displacements of ~0.43 Å, and a mildly domed macrocycle (Fig. 3.3). The average 

Mn-Ncorrole bond distance is ~1.93 Å and the Mn-Cl distance (avg) is ~2.3 Å, which is 
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~0.05 Å shorter than that in MnIII-Cl porphyrins.174,183 Interestingly, an 

iodomanganese corrole, Mn[Et8(Ph)2(H)C](I), was found to exhibit a smaller Mn-N4 

displacement (~0.38 Å) relative to a MnCl corrole.184 The EPR spectrum of MnCl 

corroles (centered around g = 4) and the temperature-invariant nature of magnetic 

moment both suggest a Mn(IV) (S = 3/2) oxidation state for MnCl corroles.174 UV-vis 

spectra of Mn[TPFPC](X) (X = Cl, Br) complexes also consist of relatively sharp, 

unsplit Soret bands (lmax = 414 & 416 nm), which may again be viewed as 

suggestive of a Mn(IV) center.181 

 
Fig. 3.3 X-ray structure of Mn[TpNO2PC]Cl. Reproduced with permission from ref 

183. 

 

Ghosh and co-workers, however, have suggested a different electronic 

description for MnCl corroles, in light of UV-Vis spectroscopy and DFT 

calculations.185,186 Thus, the Soret maxima of Mn[TpXPC]Cl derivatives undergo 

distinct redshifts with increasing electron-donating character of the para substituent 

X, which is suggestive of a MnIII−corrole•2− description. In addition, DFT spin density 

profiles also indicate that MnCl corroles are described as a Mn(III) center (S = 2) 

antiferromagnetically coupled to a corrole a2u radical (S = 1/2). The antiferromagnetic 

coupling involves a metal(dz
2)-corrole(a2u) overlap, which is facilitated by the out-of-

plane displacement of the Mn atom from the N4 plane.185 Finally, the first oxidation 

and first reduction potential of Mn[TpXPC]Cl complexes are found to be almost 

similar to those of analogous chloroiron corroles, suggesting a similar electronic 

structure for all these complexes.185 Based on these spectroscopic results, a 

noninnocent MnIII−corrole•2− description suits best for MnCl corroles. 
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3.4 Manganese-Aryl Corroles 
Manganese-aryl corroles can be obtained by the reaction of MnX corroles (X = 

Cl, Br) with an excess of arylmagnesium bromide (ArMgX) reagent. Although 

Grignard reagents are generally used,174 a preformed mixture of equimolar n-BuLi 

and 1,4-C6H4X2 (X = Br, I) can also be used for aryl functionalization.187  

The molecular structure of Mn-aryl corroles exhibit significant differences 

relative to MnCl corroles. Thus, X-ray structural analysis reveals that the square-

pyramidal complex Mn[OEC]Ph has a flattened macrocycle and a nearly in-plane 

manganese ion.174 The average Mn-Ncorrole distance in the Mn-aryl corrole is shorter 

relative to MnCl corroles (~1.89 Å vs. ~1.93 Å). Also, the Mn-N4 displacement in Mn-

aryl corrole is lower than that in MnCl corroles (~ 0.244-0.286 Å vs. ~ 0.43 Å). 

Another interesting feature of the crystal structure of Mn[Et6Me2C](p-C6H4Br) is that 

the complex forms p-stacked dimers with an Mn…Mn distance separation of about 5 

Å (Fig. 3.4).187 

 
Fig. 3.4 p-Stacked dimers of Mn[Et6Me2](p-C6H4Br). Reproduced with permission 

from ref 187. 
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The UV-vis spectra of Mn-aryl corroles exhibit a characteristic single Soret 

band around 376 nm and broad Q bands between 520-620 nm. As for MnCl corroles, 

magnetic susceptibility measurements of Mn[OEC]Ph indicated a nearly temperature-

independent magnetic moment (µeff = 3.56 µB), consistent with an S = 3/2 Mn(IV) 

center.174 Indeed, the DFT spin density profile of Mn[TPC]Ph reveals a much smaller 

minority spin population on the corrole relative to Mn[TPC]Cl, consistent with a 

relatively innocent corrole in the former complex.134 The lower Mn-N4 displacement of 

Mn-aryl corroles relative to MnCl corroles can thus be understood in terms of a lesser 

degree of Mn(dz
2)−corrole(a2u) orbital interaction (which is necessary for 

MnIII−corrole•2− antiferromagnetic coupling) in the former complex. 
 
3.5 Electrochemistry of Mn(III), MnCl, and Mn-aryl Corroles 

Manganese corroles exhibit a rich electrochemistry in non-aqueous media, 

which has been studied extensively.189 The Mn[OEC] complex exhibits a reversible 

one-electron reduction (E1/2 = -1.58 V) and two reversible, well-defined one-electron 

oxidations (E1/2 = 0.36 and 0.93 V respectively) in PhCN. Based on its EPR spectrum 

(a six-line hyperfine splitting centered at g = 3.8 due to 55Mn), the singly oxidized 

product is assigned as a {MnIV[OEC]}+ species.188,189 In PhCN, the one-electron 

reductions of Mn[OEC] and Mn[OEC](py) occur at quite highly negative potentials 

(E1/2 = -1.58 V and Epc = -1.66 V for Mn[OEC] and Mn[OEC](py), respectively). 

These values are substantially more negative than those for metal-centered 

reduction of FeIII[OEC](py) (E1/2 = -1.04 V in DCM) but are similar to those for ring-

centered reduction of AsIII[OEC] and SbIII[OEC] (E1/2 = -1.67 V and -1.66 V, 

respectively, in PhCN).189 These results suggest that a Mn(III) corrole p-anion radical 

is formed after one-electron reduction, instead of a Mn(II) species.189 Similar ligand-

based reduction was also observed for the Mn[TpNO2PC](py) complex, where the 

EPR spectrum after the first reduction at - 1.46 V did not show any signal attributable 

to a Mn(II) species.173 

 The first reversible reduction of Mn[OEC]Cl occurs at E1/2 = -0.01 V in PhCN 

while the second reduction is irreversible and appears at almost the same value as 

the first reduction of MnIII[OEC] (E1/2 = -1.68 V); the latter suggests the formation of 

an Mn(III) corrole p-anion radical. Also, the UV-vis spectra obtained after the first and 

second electroreduction of Mn[OEC]Cl are similar to the spectra of neutral and one-
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electron reduced MnIII[OEC], respectively.174 The nature of the one-electron oxidized 

MnCl corrole {Mn[OEC]Cl}+, however, is a matter of debate. Although Kadish and co-

workers assigned it as a MnIV−p-cation radical, DFT calculations suggest a doubly 

oxidized corrole formulation, i.e. MnIIICl−corrole−.134 

Kadish and co-workers have reported a detailed electrochemical investigation 

of the Mn[TpXPC] and Mn[TpXPC]Cl (X = F, Cl, H, Me) series of complexes.179 

Interestingly, the first oxidation of Mn[TpXPC] in DCM was found to be split into two 

wavelets, where the current was smaller for the first process than for the second (see 

Fig 3.5). The authors assigned the split oxidation to two different oxidation products, 

the naked cation {Mn[Cor]}+ and the tight–ion-pair Mn[Cor](ClO4), where ClO4
– is 

derived from the supporting electrolyte. The potentials for the first reversible 

reduction of the Mn[TpXPC]Cl derivatives were found to be virtually identical to the 

first oxidation potentials of Mn[TpXPC] derivatives. Interestingly, the product formed 

after first reduction of Mn[TpXPC]Cl is a {Mn[Cor]Cl}– anion, with an axially bound 

chloride ion. Thin-layer UV−vis spectroelectrochemical studies showed that the 

spectra generated after controlled-potential one-electron reduction of Mn[TpXPC]Cl 

differ significantly from the spectra of neutral MnIII[TpXPC], but are remarkably similar 

to the spectra generated upon addition of TBACl to MnIII[TpXPC]. Thus, the one-

electron reduced products of Mn[TpXPC]Cl derivatives were clearly identified as 

{Mn[Cor]Cl}–.179 The second reduction potential of Mn[TpXPC]Cl was found to be 

almost similar to the first reduction potential of MnIII[TpXPC], indicating fast 

dissociation of Cl– from the {Mn[TpXPC]Cl}– anions prior to further reduction (E1/2 = 

-1.33 to -1.40 V in PhCN). The final products obtained after second reduction of 

Mn[Cor]Cl (or after the first reduction of MnIII[Cor]) were found to exhibit a strongly 

redshifted Soret band at around 480 nm and a sharp, strong Q band around 660 nm) 

were assigned as Mn(II) species. With pyridine as solvent, the first reduction of 

Mn[Cor]Cl initially yields a {Mn[Cor]Cl}– anion, whose chloride axial ligand is 

replaced by a pyridine molecule to afford neutral MnIII[Cor](py) species as the first 

reduced product. Again, the second reduction potentials of Mn[TpXPC]Cl complexes 

were found to be identical to the first reduction potentials of Mn[TpXPC] in pyridine 

(E1/2 = -1.30 to -1.37 V), indicating formation of a MnIII corrole p-anion radical (after 

the second reduction) in both cases.179 



	 59	

 
Fig. 3.5 Cyclic voltammograms of Mn(III) and MnCl corroles in DCM and MeCN 

containing 0.1 M TBAP. Reproduced with permission from ref 134 (the original figure 

is from ref 179). 

 

The first reduction of Mn[OEC]Ph complex was found to be irreversible in 

PhCN (Epc = -1.15 V).174 Spectroelectrochemical studies (Fig. 3.6) revealed that the 

singly reduced species exhibit UV-vis spectra almost identical to the neutral, 

unreduced Mn[OEC] complex under the same solution condition, indicating that the 

reduction involves cleavage of metal-phenyl bond. The second reduction was found 

to be reversible (E1/2 = -1.89 V) and is believed to be macrocycle-centered, based on 

the UV-vis spectrum obtained after thin-layer controlled-potential reduction of the 
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complex. Finally, one-electron oxidized Mn[OEC](Ph) corrole was assigned as an 

MnIV-corrole•2− species.174  

 
Fig. 3.6 Cyclic voltammograms (top) and electronic absorption spectra of neutral, 

reduced and oxidized species (bottom) of Mn[OEC] in PhCN containing 0.1 M TBAP. 

Reproduced with permission from ref 134 (original figure is from ref 174). 
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3.6 New Results on Ligand Noninnocence in MnCl and MnPh Corroles 
In this section, I have summarized my own investigations of the question of ligand 

noninnocence in MnCl and MnPh corroles. Earlier work in our laboratory revealed a 

systematic redshift of the Soret maxima of Mn[TpXPC]Cl derivatives along the series 

X = CF3 → H → Me.185 As discussed in section 3.3, the MnCl corroles were 

accordingly thought to be best described as MnIII−corrole•2− complexes. On the other 

hand, no such spectral comparisons have been reported for the Mn[TpXPC]Ph 

series, which, at the beginning of my project, had not been synthesized. I have 

therefore synthesized this series (X = CF3, H, Me, OMe) as well as the new 

compound Mn[TpOMePC]Cl as well as the known compounds Mn[TpXPC]Cl (X = 

CF3, H). 

 (a) Synthesis. The Mn[TpXPC]Cl corroles (X = CF3, H, Me, OMe) were 

synthesized following a previously reported procedure.179 Interaction of the 

corresponding free-base corroles with Mn(II) acetate in DMF at 165-170°C for 

approximately 45 min followed by column chromatography on silica gel with n-

haxane/ethyl acetate as eluent afforded the pure Mn(III) corroles. The Mn corroles 

thus synthesized were then subjected to aerial oxidation in the presence of 10% aq. 

HCl, whereupon they oxidized to MnCl corroles. Silica gel column chromatography 

with DCM and DCM/MeOH as eluent afforded the pure Mn[TpXPC]Cl corroles. The 

new complex Mn[TpOMePC]Cl was obtained as a dark brown solid (dark brownish 

red in DCM solution) in approximately 39% yield (relative to H3[TpOMePC]).  

Arylation of the MnCl corroles was performed according to a published 

protocol.174 The Mn[TpXPC]Cl complexes were dissolved in anhydrous DCM and 

treated with an excess (6 equiv) of phenylmagnesium bromide (3.0 M in Et2O) under 

an inert atmosphere, whereupon Mn[TpXPC]Ph corroles formed via ligand exchange. 

The optimum reaction time was found to be about 7-8 min; longer reaction times 

resulted in drastic reductions of yield. The MnPh products were obtained in 33-42% 

yield after aerobic work-up. The Mn-Ph corroles are moderately stable as dry solids 

and can be stored in a freezer at low temperature. In solution under aerobic 

conditions, they decompose fairly quickly, via cleavage of the Mn-Ph bond, as shown 

by ESI-MS. The decomposition of Mn-Ph corroles is also visible to the naked eye as 

the dark reddish-brown solution turns yellowish-green within 1-2 hours under aerobic 

condition. Accordingly, accurate elemental analyses of the Mn-Ph corroles could not 
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be accomplished. For both the MnCl and MnPh complexes, the purity of the freshly 

prepared samples was judged primarily via ESI-MS. 

 (b) Optical Spectroscopy. The UV-vis spectra of the Mn[TpXPC]Cl series 

indicate a large redshift of the Soret maxima from X = CF3 (423 nm) to X = OMe (460 

nm) (see Fig. 3.7 and Table 3.1). The new complex Mn[TpOMePC]Cl exhibits an 

interesting split Soret band with absorptions of almost equal intensity at 394 and 460 

nm. The substituent-sensitive Soret feature, along with DFT calculations (mentioned 

above), strongly suggest a noninnocent MnIII−corrole•2− electronic description for the 

Mn[TpXPC]Cl complexes. 

In contrast, the Soret maxima of the Mn[TpXPC]Ph series exhibit much 

smaller and somewhat erratic variations with respect to para substituent X. Although 

a nominal blue-shift of Soret maxima is observed on going from X = CF3 (398 nm) to 

X = OMe (387 nm), the overall Soret envelope does not shift appreciably (Fig. 3.7). 

This observation appears to be consistent with an innocent MnIV–corrole3- electronic 

description for MnPh corroles. 

 
Fig. 3.7 UV-vis spectra of Mn[TpXPC]Cl (left) and Mn[TpXPC]Ph corroles (right), 

measured in DCM as a function of X. 
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Table 3.1 Soret absorption maxima (nm) of  Mn corroles in DCM. 

 

Series 

p-substituent 

CF3 H Me OMe 

Mn[TpXPC]Cl 423 433 442 460 

Mn[TpXPC]Ph 398 394 389 387 

 

 (c) Electrochemistry. The cyclic voltammograms of Mn[TpXPC]Cl corroles in 

DCM exhibit a reversible one-electron reduction at 0.06 V-0.23 V, depending on the 

electronic nature of the para substituent X, which can be assigned as the following 

redox couple: 

MnIII(Cl)-corrole•2–/ MnIII(Cl)-corrole3-. 

On the other hand, one-electron reduction of Mn[TpXPC]Ph corroles in DCM is 

irreversible (Fig. 3.8). The irreversible nature of the process can be explained in 

terms of reductive cleavage of the axial Mn-phenyl bond. This is in accord with partial 

radical character of the axial phenyl group, as suggested by DFT calculations. The 

second reduction is reversible and appears at high negative potential (-1.50 V – –

1.68 V). Also, two reversible oxidations are seen for the Mn-Ph corroles in DCM. 

The electrochemical HOMO-LUMO gap is observed to be much larger for Mn-Ph 

corroles (~1.7 V) compare to analogous Mn-Cl corroles (~0.9 V) (see Table 3.2)  

 

Table 3.2 Electrochemical data (V) for Mn corroles. 

 

 

Series X Eox2 Eox1 Ered1 Ered-irrev Ered2 EHOMO-LUMO 

Mn[TpXPC]Cl CF3  1.17 0.23   0.94 

 H  1.05 0.10   0.95 

 Me  1.00 0.07   0.93 

 OMe  0.93 0.06   0.87 

Mn[TpXPC]Ph CF3 1.27 0.86  -0.90 -1.50 1.76 

 H 1.13 0.77  -0.95 -1.68 1.72 

 Me 1.06 0.73  -0.97 -1.66 1.70 

 OMe 0.98 0.70  -0.99 -1.64 1.69 
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Fig. 3.8 Cyclic voltammograms of Mn[TpXPC]Cl (left) and Mn[TpXPC]Ph (right), 

measured in DCM containing 0.1 M TBAP (scan rate: 0.1 V/s). 

 

(d) X-ray crystallography. I obtained a single-crystal X-ray structure for 

Mn[TpOMePC]Ph via vapor diffusion of MeOH into a concentrated CHCl3 solution, 

the first Mn-s-aryl structure with meso-triarylcorrole ligand. The complex was found 

to crystallize as a face-to-face stacked dimer (two units together in one unit cell). The 

average Mn-N distance for Mn[TpOMePC]Ph is ~1.9 Å, with the Mn…Mn distance 

being ~5.2 Å and a lower Mn-N4 displacement (~0.28 Å).  

 
Fig. 3.9 X-ray structure of Mn[TpOMePC]Ph (p-stacked dimer). 

 

(e) DFT calculations. DFT calculations on Mn[Cor]Ph indicated an S = 3/2 

Mn(IV) center coordinated to an essentially innocent corrole3- ligand (Fig. 3.10).134 
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However, the spin density profile of Mn[Cor]Ph reveals a large negative spin 

population on the ipso carbon of the s-aryl group, which is suggestive of radical 

character of the axial phenyl group. Thus Mn-aryl corroles can be described as a 

resonance hybrid: 

MnIV −Ar ↔ MnIII –Ar•. 

 
Fig. 3.10 DFT spin density profile of Mn[TPC] derivatives. Reproduced with 

permission from ref 134. 

 

My contribution to the above work consisted of the syntheses and 

characterization (UV-Vis spectroscopy, MS, and electrochemistry) of the 

Mn[TpXPC]Cl and Mn[TpXPC]Ph derivatives and also obtaining an X-ray single 

crystals for Mn[TpOMePC]Ph, which was solved at the Advanced Light Source, 

Lawrence Berkeley National Laboratory. The DFT calculations were carried out by 

our collaborator Prof. Jeanet Conradie. The work on manganese corroles has not yet 

been written in manuscript form; accordingly an experimental section is provided 

below.  

 

(f) Experimental section  
Materials.  All reagents and solvents were used as purchased unless 

otherwise noted. CHROMASOLV® HPLC-grade n-hexane and DCM were used as 

solvents for column chromatography. Silica gel 150 (35-70 μm particle size, Davisil) 

was used as the stationary phase for flash chromatography and silica gel 60 

preparative thin-layer chromatographic (PLC) plates (20 x 20 cm, 0.5 mm thick, 

Merck) were used for final purification of the products. Phenylmagnesium bromide 
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(3.0 M in diethyl ether) obtained from Sigma-Aldrich, and Mn(OAc)2.4H2O, obtained 

from Merck, were both used as received. Anhydrous DCM for electrochemistry was 

prepared by distillation after pre-drying with CaH2 and stored over 3 Å molecular 

sieves. The free-base corroles H3[TpXPC] (X = CF3, H, Me, OMe) were synthesized 

as previously reported.65 
Instrumentation. Ultraviolet-visible spectra were recorded on an Agilent Cary 

8454 UV-Visible spectrophotometer in DCM. Cyclic voltammetry experiments were 

performed with an EG&G Princeton Applied Research Model 263A potentiostat 

equipped with a three-electrode system consisting of a glassy carbon working 

electrode, a platinum wire counterelectrode, and a saturated calomel reference 

electrode (SCE). Tetrakis(n-butyl)ammonium perchlorate (Sigma-Aldrich, TBAP), 

recrystallized three times from absolute ethanol, vacuum-dried at 40°C for two days, 

and kept in a desiccator for further drying for at least two weeks, was used as the 

supporting electrolyte.  The reference electrode was separated from bulk solution by 

a fritted-glass bridge filled with the solvent/supporting electrolyte mixture. All 

potentials were referenced to the SCE. A scan rate of 100 mV/s was used. The 

anhydrous DCM solutions were purged with argon for at least 5 min prior to 

electrochemical measurements and an argon blanket was maintained over the 

solutions during the measurements. High-resolution electrospray ionization (HR-ESI) 

mass spectra were recorded on an LTQ Orbitrap XL spectrometer. 

 

Synthesis of MnCl corrole complexes. A detailed procedure is described 

below for the synthesis of Mn[TpOMePC]Cl. A similar procedure was also followed 

for synthesis of the other Mn complexes, except for details of the chromatographic 

purifications, which are specified separately. 
Synthesis of Mn[TpOMePC]Cl. A 100-mL two-necked round-bottomed flask 

equipped with a magnetic stir-bar was charged with free-base tris(4-

methoxyphenyl)corrole (0.1 g, 0.16 mmol) and DMF (40 mL) as solvent. To the 

solution was added 10 equiv Mn(OAc)2•4H2O (0.392 g, 1.6 mmol) and argon was 

bubbled through the solution for 5 min.  The reaction flask was then fitted with a 

reflux condenser and heated on an oil bath at 165-170°C with stirring for 

approximately 45 min. Completion of the reaction was confirmed by UV-vis 

spectroscopy and mass spectrometry. Upon cooling, the solution was rotary 

evaporated to dryness to yield a dark brownish-green residue. The residue was 
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redissolved in a minimum volume of 1:1 DCM/ethyl acetate and was 

chromatographed on a silica gel column (8-10 cm in height) with 1:1 n-hexane/ethyl 

acetate as eluent. The front-running green band and the second, reddish-brown band 

were collected and combined; these contained the initially formed Mn(III) corrole (as 

confirmed by ESI-MS). 

 The combined fraction was rotary evaporated to dryness and the residue was 

redissolved in DCM (25 mL). The DCM solution of the Mn(III) corrole was treated with 

10% aqueous HCl (3 x 25 ml), washed twice with distilled water, dried over 

anhydrous Na2SO4, and filtered, and the filtrate was rotary evaporated under vacuum 

to yield a dark reddish-brown residue. The residue was redissolved in a minimum 

volume of DCM and chromatographed on a silica gel column (10 cm in height) with 

DCM and subsequently with 1:0.01 DCM/methanol as eluent. The reddish-brown 

band was collected and identified as pure Mn[TpOMePC]Cl (0.044g, 0.062 mmol, 

39% yield relative to free-base H3[TpOMePC]. UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-

1cm-1)]: 330 (2.77), 394 (3.95), 460 (3.84), 533 (1.86). HRMS (major isotopomer) [M]–

: 703.1314 (expt), 703.1314 (calc). 

Synthesis of Mn[TpMePC]Cl. Silica gel column chromatography with DCM 

and subsequently with 1:0.005 DCM/methanol as eluent afforded the pure product 

(0.061g, 0.09 mmol, 53% relative to H3[TpOMePC]). UV-vis (CH2Cl2) λmax [nm, ε x 10-

4 (M-1cm-1)]: 318 (2.56), 361 (3.08), 442 (4.71). HRMS (major isotopomer) [M]-: 

655.1467 (expt), 655.1467 (calc). 
Synthesis of Mn[TPC]Cl. Silica gel column chromatography with DCM and 

subsequently with 1:0.005 DCM/methanol (200 mL) as eluent afforded the pure 

product (0.053g, 0.086 mmol, 45% relative to H3[TPC]). UV-vis (CH2Cl2) λmax [nm, ε x 

10-4 (M-1cm-1)]: 315 (1.69), 363 (2.21), 433 (4.64). HRMS (major isotopomer) [M]–: 

613.1000 (expt), 613.0997 (calc). 
Synthesis of Mn[TpCF3PC]Cl. Silica gel column chromatography with DCM 

(3 x 500 mL) and subsequently with 1:0.005 DCM/methanol (100 mL) as eluent 

afforded the pure product (0.062g, 0.076 mmol, 54% relative to H3[TpCF3PC]). UV-

vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 314 (1.59), 363 (2.29), 423 (5.10). HRMS 

(major isotopomer) [M]–: 817.0612 (expt), 817. 0619 (calc). 
Synthesis of Mn-phenyl corroles. A detailed procedure is described below 

for the synthesis of Mn[TpOMePC]Ph. A similar procedure was also followed for 



	 68	

synthesis of the other Mn complexes, except for details of the chromatographic 

purifications, which are specified separately. 
Synthesis of Mn[TpOMePC]Ph. A 50-mL round-bottom flask equipped with a 

magnetic stir-bar was charged with Mn[TpOMePC]Cl (0.04g, 0.057 mmol). 

Anhydrous DCM (15 mL) was added with a syringe under argon and the mixture was 

stirred under argon for 5 min. Phenylmagnesium bromide (114 µL, 6 equiv) was then 

added with a syringe, and the mixture was stirred under argon for 7-8 min. The 

solution was then quenched with an excess of distilled water and extracted with 

DCM. The organic fraction was dried with anhydrous MgSO4 and filtered, and the 

filtrate was dried on a rotary evaporator under vacuum. The dark brown residue 

obtained was redissolved in a minimum volume of DCM and chromatographed on a 

silica gel column with 1:1 n-hexane/DCM as eluent. The product eluted as an intense 

dark red band, which was collected and evaporated to dryness. Final purification was 

carried out with PLC using 1:2 n-hexane/DCM as eluent. The frontrunning red band 

contained pure Mn[TpOMePC]Ph (0.014g, 33%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 

(M-1cm-1)]: 341 (3.35), 387 (5.67), 429(sh) (3.8), 519 (1.26), 544 (1.54). HRMS (major 

isotopomer) [M]+: 745.2009 (expt), 745.2006 (calc).  

Needle-shaped X-ray quality crystals were obtained by slow diffusion of MeOH 

vapor into a concentrated CHCl3 solution of the complex over one week. 

Synthesis of Mn[TpMePC]Ph: Silica gel column chromatography with 3:1 n-

hexane/DCM followed by PLC with 3:2 n-hexane/DCM as eluent afforded pure 
Mn[TpMePC]Ph (0.0156 g, 37%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 341 

(3.21), 389 (4.8), 521 (1.16), 542 (1.36). HRMS (major isotopomer) [M]+: 697.2150 

(expt), 697.2158 (calc). 
Synthesis of Mn[TPC]Ph: Silica gel column chromatography with 3:1 n-

hexane/DCM followed by PLC with 2:1 n-hexane/DCM as eluent afforded pure 
Mn[TPC]Ph (0.018g, 42%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 341 (3.5), 

394 (5.15), 521 (1.3), 539 (1.4). HRMS (major isotopomer) [M]+: 655.1690 (expt), 

655.1689 (calc). 
Synthesis of Mn[TpCF3PC]Ph: Silica gel column chromatography with 4:1 n-

hexane/DCM followed by PLC with 3:1 n-hexane/DCM as eluent afforded pure 
Mn[TpCF3PC]Ph (0.016 g, 38%). UV-vis (CH2Cl2) λmax [nm, ε x 10-4 (M-1cm-1)]: 340 

(3.4), 398 (5.36), 523 (1.36), 535 (1.35). HRMS (major isotopomer) [M]+: 859.1317 

(expt), 859.1311 (calc). 
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Chapter 4 - Iron Corroles 

 
4.1 Introduction 
Iron corroles are notable for their rich electronic-structural features and their 

application as catalysts for several important transformations. In this chapter, key Fe-

corrole derivatives relevant to this thesis, including Fe(III), FeCl, Fe-aryl and Fe2(µ-O) 

corroles, are discussed, with emphasis on their structural and electronic properties.  

 

4.2 Iron(III) Corroles 
Iron(III) corroles are formed upon initial iron insertion into free base corroles, but they 

are readily oxidized during aerobic work-up. Vogel et al. experienced formation of µ-

oxo diiron corroles due to aerial oxidation of the corresponding Fe(III) corroles and 

observed that such oxidation could be prevented by treating the Fe(III) corroles with 

pyridine prior to admission of air.190 The complex formed under the latter conditions 

was a five-coordinate mono-pyridine adduct, Fe[OEC](py), as revealed by its X-ray 

crystal structure. Magnetic susceptibility measurements of the complex indicated an 

S = 3/2 state, whereas the Mössbauer isomer shift was suggestive of a Fe(IV) center.  

Gross et al. showed that oxidation of Fe(III) corroles could be prevented when 

diethyl ether is used as solvent. Using diethyl ether as solvent and eluent, the 

FeIII[TPFPC] complex could be isolated as an air-stable bisetherate, 

Fe[TPFPC](OEt2)2.191 The bisetherate complex can serve as a convenient precursor 

for a variety of other Fe corroles, as illustrated below in Figure 4.1. 
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Fig. 4.1 Synthetic transformations of Fe corroles. 

 

Recrystallization of Fe[TPFPC](OEt2)2 from a solvent mixture containing 

pyridine afforded the corresponding bispyridine-ligated iron(III) corrole, 

Fe[TPFPC](py)2.191 The X-ray structures of both Fe[TPFPC](py)2
191 and 

Fe[OEC](py)190 reveal a planar corrole ring and short Fe−Ncorrole distances (1.89 ± 

0.025 Å). However, Fe[OEC](py) exhibits slightly a significant Fe-N4 displacement 

(0.273 Å), as well as a longer Fe-Npy bond distance (2.188 Å), relative to 

Fe[TPFPC](py)2. A recent X-ray structure of an Fe-bispyridine octabromocorrole, 

Fe[Br8TDCPC](py)2, exhibits structural parameters similar to Fe[TPFPC](py)2, i.e. a 

planar corrole with Fe-Ncorrole averaging 1.90 Å and an Fe-Npy distance of 2.02 Å, as 

well as coplanar alignment of the axial pyridines along the C5−C15 axis of the corrole 

ring (Fig. 4.2).87b 
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Fig. 4.2 X-ray structure of Fe[Br8TDCPC](py)2. Reproduced with permission from ref 

87b. 

 

The b-pyrrolic protons of Fe(III) corroles exhibit interesting 1H NMR chemical 

shifts that are indicative of their spin states and can be interpreted by analogy with 

Fe(III) porphyrins. As observed for the Fe(III) porphyrins, these protons appear	at 

very low fields for high-spin (S = 5/2) state, at very high fields for low-spin (S = 1/2) 

state, and at moderately high to moderately low fields for intermediate-spin (S = 3/2) 

state.192 For the Fe[TPFPC](OEt2)2 complex, two b-protons resonances appear at 

high field(d = −60.0, −126.0 ppm), while the other two resonances appear at low field 

(d = 19.7, 13.4 ppm), which is indicative of an intermediate-spin (S = 3/2) Fe(III) 

complex (Fig. 4.3).191 In contrast, all four b-proton resonances for Fe[TPFPC](py)2 

appear at high field (d = 3.2, −61.1, −65.8, −134.6 ppm), suggesting a low spin (S = 

1/2) Fe(III) state (Fig. 4.4).193 The EPR spectra of these two complexes also agree 

with these spin-state assignments. Thus, the EPR spectrum of Fe[TPFPC](py)2 

exhibits a typical pattern for low-spin S = 1/2 species, centered around g = 2. On the 

other hand, Fe[TPFPC](OEt2)2 exhibits a broad g = 3.8 feature, consistent with an S 

= 3/2 state. Moreover, the S = 3/2 spin state for Fe[TPFPC](OEt2)2 could also be 

confirmed by magnetic susceptibility measurements.193 
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Fig. 4.3 1H NMR spectrum of Fe[TPFPC](Et2O)2. Reproduced with permission from 

ref 193. 

 
 Fig. 4.4 1H NMR spectrum of Fe[TPFPC](py)2. Reproduced with permission from ref 

193. 

 

4.3 Chloroiron Corroles  
Vogel et al. reported the first FeCl corrole in their seminal work on iron 

corroles, where the initially formed µ-oxo diiron corroles (obtained via the reaction of 

free-base H3[OEC] with Fe2(CO)9) afforded Fe[OEC]Cl upon treatment with 1 M 

HCl.190 The 1H NMR spectrum of Fe[OEC]Cl revealed its paramagnetic character, 

with extreme downfield chemical shifts observed for the meso-protons {d: 177 (br, 

2H, 5,15-H) and 189 (br, 1H, 10-H)}. Based on the results from magnetic 
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susceptibility (µeff = 2.97) and Mössbauer spectroscopic studies, the authors 

suggested a formally Fe(IV) center with an S = 1 ground state for Fe[OEC]Cl. 

Subsequently, the Fe(IV) formulation195,196 was questioned and the current electronic 

structural picture is that of a noninnocent metalloradical, FeIII-corrole•2−. 

A consideration of 1H NMR chemical shifts led Walker et al. to propose that 

FeCl corroles are intermediate-spin Fe(III) centers (S = 3/2) antiferromagnetically 

coupled to corrole•2− radicals,125 and not Fe(IV) complexes. As for Fe[OEC]Cl, these 

authors observed extremely large downfield shifts of meso-H resonances for 

Fe[OMC]Cl and Fe[Me2Et6C]Cl (d: ~172-189 ppm) (Fig. 4.5). It may be recalled that 

for the analogous porphyrin complex Fe[OEP]Cl (S = 5/2), the meso-H resonance 

exhibits a considerable upfield shift (d: -56 ppm). The strikingly divergent meso-1H 

shifts of Fe[OEC]Cl and Fe[OEP]Cl suggested meso spin populations of opposite 

signs for the two compounds. Moreover, the large positive chemical shifts of the 

meso-H’s of FeCl corroles could only indicate large negative p-spin densities at the 

meso positions, which would be antiferromagnetically coupled to the unpaired 

electrons on the Fe.197 The FeCl corroles were found to be EPR silent while magnetic 

susceptibility measurements (µ ~3.0 µB) indicated an overall S = 1 state.198 

 
Fig. 4.5 1H NMR spectrum of Fe[Me2Et6C]Cl. Reproduced with permission from ref 

197. 

Walker and co-workers further investigated the 1H NMR paramagnetic shifts 

for several Fe[TpXPC]Cl derivatives and found a notable pattern for the meso-phenyl 
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proton resonances.199 Thus, the 1H NMR spectrum of Fe[TPC]Cl exhibits positive 

(i.e., downfield) chemical shifts for the ortho-H and para-H and a negative shift for 

meta-H (i.e., upfield) of meso-phenyl rings (Fig. 4.6). This leads to the negative 

chemical shift differences (dm - do) and (dm - dp), which are characteristic of negative 

spin densities at the meso-carbons, as for FeCl octaalkylcorroles. 

 
 Fig. 4.6 1H NMR spectrum of Fe[TPC]Cl. Reproduced with permissions from ref 199. 

 
13C NMR paramagnetic shifts for FeCl corroles were also found to be useful 

for mapping the spin density around the macrocycle.200 The meso-carbon spin 

densities of Fe[TPC]Cl and the undecasubstituted complex Fe[Me8TPC]Cl could be 

predicted by estimating the 13C chemical shift differences for meso-phenyl carbons. 

As expected, the dm-dp value indicated a negative spin density at the meso positions 

of Fe[TPC]Cl. Surprisingly, the shift difference the dm-dp value for the meso-phenyl 

carbons of Fe[Me8TPC]Cl was opposite in sign relative to Fe[TPC]Cl, suggesting 

significant positive spin density at the meso-carbons of Fe[Me8TPC]Cl. This was 

explained in terms of an intermediate spin (S = 3/2) Fe(III) center, ferromagnetically 

coupled to a corrole•2− radical to give an overall S = 2 state for Fe[Me8TPC]Cl. A 

solution magnetic moment of μeff = 4.7 ±0.5 μB also supported this conclusion. The 

crystal structure of Fe[Me8TPC]Cl also shows a smaller out-of-plane displacement of 

Fe of 0.387 Å from the mean corrole plane, qualitatively consistent with 

ferromagnetic coupling between Fe(III) and the corrole radical.200 
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19F NMR spectroscopy also proved useful for mapping the spin density profile 

of fluorinated FeCl corroles.The Walker group found out that, for Fe[TPFPC]Cl, all 

the aryl fluorines exhibit negative paramagnetic shifts with respect to the diamagnetic 

free base (with the highest shift exhibited by the ortho-F’s at about -32.3 ppm).201 

Although the authors were not able to dissect the 19F paramagnetic shifts into contact 

and dipolar contributions, they proposed that the sign of the large paramagnetic shift 

of the ortho-F’s must be related to the sign of the spin density at the meso-carbons.  

Ghosh and co-workers studied several Fe[TpXPC]Cl corroles by means of 

DFT calculations, electronic absorption, NMR, and resonance Raman 

spectroscopy,185 and confirmed the FeIII-corrole•2− description proposed by Walker et 

al. DFT calculations showed negative spin populations at meso-carbons and corrole 

nitrogens (Fig. 4.7).121,202 The calculations clearly indicated a dxy
2dxz

1dyz
1dz2

1 

configuration for the S = 3/2 Fe(III) center and assigned the negative spin density to a 

corrole b1 radical (using C2v notation), where the b1  HOMO qualitatively resembles 

the porphyrin a2u HOMO in shape.202 The calculations furthermore showed that the 

antiferromagnetic coupling between the Fe and the corrole radical is mediated by an 

Fe(dz2)-corrole(b1) orbital interaction, facilitated by the significant out-of-plane 

displacement of the Fe atom (~0.4 Å) from the N4 plane.185  

 
Fig. 4.7 DFT spin-density plot of Fe[TPC]Cl. Reproduced with permissions from ref 

134. 

 

A study b-octafluorinated Fe[F8TpXPC]Cl complexes also indicated an 

alternating pattern of 1H paramagnetic shifts for the meso-phenyl protons, similar to 

Fe[TPC]Cl but ~20% lower in magnitude, again indicating a substantial negative p-
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spin density at meso-carbons.75b Also, the 19F paramagnetic shifts in Fe[F8TpXPC]Cl 

complexes were also thought to primarily reflect the contact or spin density 

contribution. 

For both the Fe[TpXPC]Cl and Fe[F8TpXPC]Cl series, the Soret maxima were 

found to redshift with increasingly electron-donating character of the para substituent 

X, (Fig. 4.8) consistent with a noninnocent FeIII-corrole•2− formulation for these 

complexes.75b,185 

 
Fig. 4.8 UV-vis spectra of Fe[F8TpXPC]Cl as a functions of X. Reproduced with 

permissions from ref 75b. 

 

Two additional studies completed the case for the FeIII-corrole•2− formulation. 

The first was a high-level ab initio CASSCF/CASPT2 study by Ghosh, Roos, 

and coworkers, which confirmed the expected S = 1 FeIII−corrole•2− ground state with 

no evidence of a true Fe(IV) state within 1.5 eV of the ground state.203  

The second study, by Gross, Neese, and co-workers, consisted of Mössbauer 

spectroscopy, temperature- and field-dependent magnetization measurements, and 

DFT calculations, which also confirmed a FeIII(S = 3/2)−corrole•2− description for 

Fe[TPFPC]Cl.204 
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4.4 Iron-Aryl Corroles 
In their original study of Fe corroles, Vogel et al. synthesized air-stable Fe[OEC]Ph 

by reacting Fe[OEC]Cl with excess phenylmagnesium bromide.190 The X-ray 

structure of Fe[OEC]Ph reveals a much smaller Fe-N4 displacement compared to 

Fe[OEC]Cl (0.27 Å vs. 0.42 Å). The Fe[OEC]Ph complex exhibits 1H paramagnetic 

shifts with moderately downfield meso-H resonances (d: 54.5 and 49.3 ppm) and 

upfield axial phenyl-H resonances (maximum d = -153.6 ppm for o-H). Magnetic 

susceptibility measurement and Mössbauer spectroscopy suggested an S = 1 Fe(IV) 

state for the complex.190 Walker et al. also proposed a similar description for 

Fe[Me2Et6C]Ph, based on temperature-dependent magnetic susceptibility 

measurements and the low isomer shift (d = -0.10 mm/s) in field-dependent 

Mössbauer spectroscopic studies.198 The 1H NMR spectrum of Fe[Me2Et6C]Ph also 

revealed positive chemical shifts for meso-H resonances (d = 53.4 and 49.4 ppm) 

and negative chemical shifts for the axial phenyl-H’s (maximum value of d = -148 

ppm for o-H and minimum value of d = -3.7 ppm for m-H), analogous to Fe[OEC]Ph. 

DFT calculations suggested only small negative spin densities at the meso-

carbons but the net spin density on the macrocycle was practically zero, thus 

indicating a FeIV-corrole3– electronic description.198 Further, the calculated contact 

shifts of axial-phenyl protons have alternating signs, consistent with p-spin 

delocalization from the Fe to phenyl ligand. Apparently, the strongly basic character 

of phenyl carbanion helps stabilize the Fe(IV) state via a strong σ-donor interaction, 

as reflected in the short Fe-Ph bond distance (1.98 Å).  

A recent study of Fe[TpMePC]Ph revealed small isotropic shift for the meso-

aryl protons but larger isotropic shifts are observed for the b-pyrrolic protons (Fig. 

4.9).205 Extreme upfield resonances of ortho and para-protons of the axial phenyl 

ligand were also observed for Fe[TpMePC]Ph, apparently reflecting the combined 

effects of substantial paramagnetic shifts and shielding by the corrole macrocycle.205 
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Fig. 4.9 1H NMR spectrum of Fe[TpMePC]Ph. Reproduced with permission from ref 

205. 

 

Finally, UV-vis substituent effects, XANES measurements, and DFT 

calculations indicated that the corrole ligand in FePh corroles is essentially innocent 

(see paper B). 

 

4.5 µ-Oxo Diiron Corroles 

Vogel et al. reported the first µ-oxo-diiron corrole, {Fe[OEC]}2O, which formed via 

spontaneous aerial oxidation of an FeIII precursor during workup.190 X-ray 

crystallography confirmed the molecular stoichiometry, i.e., two Fe-corrole units 

connected through a µ-oxo bridge. The 1H NMR spectrum showed that the complex 

is diamagnetic and Mössbauer spectral parameters suggested a low-spin Fe(IV) 

description, similar to heme protein Compound I and II intermediates. An analogous 

compound {Fe[TPFPC]}2O was subsequently obtained by Gross et al. during 

recrystallization of the monomeric precursor FeIII[TPFPC](OEt2)2 from aerobic 

mixtures of acetonitrile and n-heptane.191 Alternatively, µ-oxo diiron complexes can 

also be synthesized by washing FeIII-diethyletherate206 or FeCl corroles (paper A) 

with aqueous NaOH. Gross et al. reported four sets of sharp ortho-F resonances in 

the 19F NMR spectra of the diamagnetic {Fe[TPFPC]}2O. The crystal structure 

reveals a smaller Fe-O-Fe angle compared to the previously reported{Fe[OEC]}2O 

complex (158° vs. 170°), which the authors attributed to steric repulsion between the 
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C6F5 groups of the adjacent corrole units.191 Paolesse and co-workers also reported 

a crystal structure of a b-dinitro-substituted Fe2(µ-O) corrole (Fig. 4.10), which was 

also obtained accidentally during their attempt to crystallize the corresponding FeNO 

corrole.207 The µ-oxo derivative of Fe tris(4-pyridyl)corroles208 and xanthene-modified 

Fe corroles209 have also been synthesized. 

 
Fig. 4.10 X-ray structure of {Fe[3,17-(NO2)2TPC]}2O. Reproduced with permission 

from ref 207. 

 

µ-Oxo diiron corroles have also been observed as side products of Fe(III)-

corrole catalyzed decomposition of H2O2
210 and of chemical oxidation of FeIII[TPFPC] 

by iodobenzene diacetate in the absence of any substrate.211 The Fe-O-Fe bond has 

also been found to be photochemically cleaved by visible light to generate a putative 

FeVO intermediate that can oxidize hydrocarbons effectively.212 

 Ghosh and co-workers have reported a comparative study of {Fe[TpXPC]}2O 

derivatives, where they observed lower oxidation potentials of µ-oxo dimers 

compared with analogous FeCl corroles.185 The authors interpreted this observation 

in terms of ligand-centered oxidation. 

Recently, as part of my own studies, the iron centers in µ-oxo diiron corroles 

have been described as intermediate-spin Fe(III) coupled to corrole•2- radicals (see 

Paper A). 
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4.6.1 Introduction to Paper A: Wolves in Sheep’s Clothing: µ-Oxo-Diiron 
Corroles Revisited 
Since their discovery by Vogel in 1994,190 µ-oxo diiron corroles were long thought of 

as comprising two low-spin Fe(IV) centers (S = 1) that are antiferromagnetically 

coupled to each other. Earlier work in our laboratory revealed a modest redshift of 

Soret maxima in the optical spectra of {Fe[TpXPC]}2O derivatives across the series X 

= CF3 → H → Me.185 The fourth member of this series, the {Fe[TpOMePC]}2O 

complex had not been reported before. Accordingly, I synthesized {Fe[TpOMePC]}2O 

and reexamined the complex along with the three other previously reported 

{Fe[TpXPC]}2O derivatives. 

The {Fe[TpXPC]}2O derivatives were synthesized via a modified procedure 

relative to the one reported earlier.185,190 First, the Fe[TpXPC]Cl derivatives were 

according to a literature procedure.191 The {Fe[TpXPC]}2O complexes were then 

prepared by treating the Fe[TpXPC]Cl complexes with aq. NaOH (2M) under aerobic 

conditions. Attempts were made to directly oxidize the Fe(III)-bisetherate corroles by 

treating with aq. NaOH under aerobic conditions, but this procedure led to incomplete 

reaction. ESI-MS showed the expected product along with monomeric products in 

substantial amounts. In contrast, the new procedure with FeCl corroles as starting 

materials led to Fe2(µ-O)-corroles in nearly quantitative yields (>90%). The newly 

synthesized {Fe[TpOMePC]}2O could be obtained in 92% yield after chromatographic 

purification. 

As solids, the {Fe[TpXPC]}2O complexes are air-stable. In solution, however, 

they tend to degrade over time under aerobic conditions. The Fe-O-Fe linkage is 

light-sensitive and it also cleaves in the presence of traces of acid in solution. Even 

the presence of slightly acidic methanol leads to cleavage of the Fe-O-Fe linkage in 

the course of an ESI-MS experiment. Flushing the mass spectrometer with pure 

DCM several times before injecting the sample solution (also made in DCM) helps 

retain the dimeric form as the main species.  

Overall, however, the Fe2(µ-O) corroles are stable enough for storage as 

solids as well as for manipulations such as column chromatography or crystallization 

under normal conditions. Such stability stands in sharp contrast the instability of 

Fe(IV)-oxo porphyrin intermediates, which generally can only be observed in solution 

at low temperatures. 
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The optical spectra of three known {Fe[TpXPC]}2O corroles were reexamined 

along with that of the newly synthesized {Fe[TpOMePC]}2O complex. The moderate 

redshift of the Soret maxima from X = CF3 (383 nm) to H (386 nm) to Me (389 nm) 

was reestablished. Interestingly, the new complex {Fe[TpOMePC]}2O was found to 

exhibit a strongly perturbed spectrum with a blue-shifted Soret band (375 nm) and a 

prominent shoulder around 410 nm. This higher wavelength shoulder is believed to 

be a plausible candidate for the LL’CT transition characteristic of a noninnocent 

metallocorrole. These observations served as a preliminary indication of a different 

oxidation than simple Fe(IV) for the {Fe[TpXPC]}2O complexes. 

Broken-symmetry DFT calculations on {Fe[TPC]}2O carried out by my 

colleague Dr. Hugo Vazquez-Lima showed that the overall S = 0 ground state may 

be viewed as the following spin-coupled assembly of S = 3/2 Fe(III) and corrole•2- 

radical fragments: 

corrole•2−(↓)−FeIII(↑↑↑)−FeIII(↓↓↓) − corrole•2−( ↑ ) 

Moreover, both the optimized geometry of {Fe[TPC]}2O and the published X-ray 

structure of {Fe[TPFPC]}2O show bond length alternations in and adjacent to the 

bipyrrole part of the corrole macrocycle, which are also indicative of corrole radical 

character. 

 The Fe-O-Fe asymmetric stretch of the complexes was identified with IR 

spectroscopy and 18O labeling. All four {Fe[TpXPC]}2
18O complexes were 

synthesized by treating the corresponding FeCl corroles with 2 M Na18OH in H2
18O,i 

which was generated by a reported procedure.248 Complete exclusion of ambient O2 

and moisture were mandatory for these experiments, which were therefore carefully 

conducted with Schlenck techniques. The 16O/18O stretching frequencies for the 

{Fe[TpXPC]}2O complexes were found to be as follows, as a function of X: CF3 

(821/792 cm-1), H (829/791 cm-1), Me (832/795 cm-1), and OMe (820/790 cm-1). For 

{Fe[TPC]}2O, both the 16O and 18O frequencies were found to be in excellent accord 

with corresponding DFT values, indicating the essential correctness of the electronic-

structural description afforded by DFT.  

																																																								
i	A solution of Na18OH was prepared by dropwise addition of H2

18O to NaH. This solution was 
combined with a DCM solution of an FeCl corrole. These manipulations were all carried out under 
argon and the dark brown 18O-labeled µ-oxo dimer was also stored under argon.	
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The 1H NMR spectrum of the new compound {Fe[TpOMePC]}2O was difficult 

to assign at room temperature because of several overlapping signals. Lowering the 

temperature appeared to result in sharper and better separated peaks and a well-

resolved spectrum was obtained at -15 °C. Further lowering of temperature again led 

to merging of the b-H and aryl-H peaks and, at -60°C, only a broad and unresolved 

signal was obtained. 

My contributions to this paper consisted of the syntheses, the 18O labeling 

studies, and all spectroscopic characterization (UV-vis, IR, NMR). The computational 

studies were carried out by my colleague Dr. Hugo Vazquez-Lima. 

 

4.6.2 Introduction to Paper B: Ligand Noninnocence in Iron Corroles: Insights 
from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox 
Potentials 
A study of Fe-aryl corroles was undertaken to test the validity of the substituent effect 

criterion for Fe-aryl corroles. For Fe[TpXPC]Cl, we already know that the Soret 

maximum redshifts with increasing electron-donating character of the para 

substituent X. In this project, I synthesized two series of Fe-aryl corroles, 

Fe[TpXPC]Ph and Fe[TpXPC]Tol (Tol = 4-methylphenyl), to examine the influence of 

X on their spectroscopic and electrochemical properties with a few to gaining insight 

into the question of ligand noninnocence. Existing studies190,205 already suggested 

that these complexes are essentially low-spin (S = 1) Fe(IV) species. The hypothesis 

thus was that the Soret maxima the Fe-aryl series should not redshift as a function of 

X, which indeed turned out to be the case, providing powerful support for the validity 

of the substituent effect criterion to families of complexes. 

The Fe-aryl corroles were synthesized by treating the corresponding FeCl 

corroles in anhydrous DCM with arylmagnesium bromide, ArMgX (Ar = Ph, 4-MePh), 

under an inert atmosphere. As solids, the complexes are moderately stable. In 

solution, however, the Fe-aryl bond was seen to undergo cleavage over time under 

aerobic conditions. However, the Fe[TpXPC]Ph and Fe[TpXPC]Tol corroles are more 

stable than the analogous Mn[TpXPC]Ph complexes and reasonably satisfactory 

elemental analyses could be obtained for the Fe complexes. 

As part of this study, the FeCl complex Fe[TpOMePC]Cl was synthesized for 

the first time. The complex exhibits a highly perturbed UV-vis spectrum with a split 

Soret band. We proposed that the higher-wavelength Soret peak at 426 nm is 
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attributable to an LL’CT (aryl-to-corrole charge transfer) transition. With this 

assumption, the Soret maxima for the Fe[TpXPC]Cl series was found to redshift with 

increasingly electron-donating X, as expected for their noninnocent character. As 

mentioned, the Fe-aryl corroles did not show such substituent sensitivity. 

The 1H NMR spectra of Fe[TpXPC]Ar derivatives provided clear evidence of 

their paramagnetic character. However, the corrole paramagnetic shifts were found 

to be much smaller than those observed for the Fe[TpXPC]Cl series, consistent with 

a relatively innocent macrocycle in the case of the Fe-aryl complexes. DFT spin 

density profiles also supported the conclusion of a low-spin Fe(IV) center with an 

essentially dxy
2dxz

1dyz
1 electronic configuration and a relatively innocent corrole in 

Fe[TPC]Ph. 

The Fe[TpXPC]Ar derivatives were subjected to cyclic voltammetry 

measurements. In the interest of a complete comparative study, the analogous FeCl, 

FeNO, and Fe2(µ-O) corroles were also reexamined with cyclic voltammetry. The 

Fe[TpXPC]Ar corroles all exhibit two reversible oxidations and two reversible 

reductions in DCM. In general, the oxidation potentials are similar across the different 

Fe corrole families. However, the FeAr corroles are reduced at somewhat more 

negative potentials than analogous FeCl corroles, but at almost similar potentials as 

analogous FeNO corroles. The overall picture that emerged is that the first one-

electron oxidation and reduction potentials as well as the electrochemical HOMO-

LUMO gaps (~1.0-1.2 V) of the innocent Fe-aryl corroles are qualitatively similar to 

those of analogous noninnocent FeCl, Fe2(µ-O), and FeNO corroles. In other words, 

redox potentials in and of themselves do not appear to provide a clear indication of 

the innocence or noninnocence of the corrole ligand in Fe corroles. 

Finally, four iron corroles, Fe[TPC]Cl, Fe[TPC]NO, Fe[TPC]Ph, and 

{Fe[TPC]}2O, were investigated with K-edge X-ray absorption spectroscopy.194 The 

integrated pre-edge (1s®3d) intensity of Fe[TPC]Ph was found to be approximately 

2.5 times those for Fe[TPC]Cl or Fe[TPC]NO. Considering similar coordination 

geometries of these complexes, the dramatically higher pre-edge intensity of 

Fe[TPC]Ph indicates greater number of 3d holes relative to the other complexes and 

is thus consistent with a high-valent Fe(IV) electronic configuration. 

My contributions to this paper consisted of the synthesis of all the complexes 

studied as well as their characterization by means of UV-vis, 1H NMR, MS, and 
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electrochemistry. The XAS measurements and associated theoretical calculations 

were carried out by our collaborator Dr. Ritimukta Sarangi at the Stanford 

Synchrotron Radiation Lightsource.  
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Chapter 5 - Cobalt and Rhodium Corroles 
 
5.1 Introduction 
Cobalt insertion in corroles dates back the very first report of corrole synthesis by 

Johnson and Kay in 1965.45b Between 1970-1995, several Co corroles were obtained 

through the metal-assisted cyclization of a linear tetrapyrrolic precursor of the 

corrole.47,49 More recently, Co corroles have been studied as effective catalysts in the 

oxygen reduction reaction (ORR)221b,233,239 and in the hydrogen evolution reaction 

(HER).231,236 In this chapter, the electronic structures and spectroscopic properties of 

cobalt corroles with a single triphenylphosphine (PPh3) ligand and one or two 

pyridine (py)2 ligands are discussed with emphasis on the possibility of a noninnocent 

corrole macrocycle. For comparison, I also present an analogous discussion of Rh-

PPh3 corroles. 

 

5.2 Cobalt-Triphenylphosphine Corroles 
In the early days of corrole chemistry, Co-PPh3 corroles were obtained directly 

as the result of Co-templated corrole synthesis.49,213 At present, Co-PPh3 corroles are 

most conveniently synthesized by reacting an alcoholic solution of the corresponding 

free-base corroles with cobalt(II) acetate in presence of an excess of (PPh3) ligand 

(see Fig. 5.1), whereupon air-stable Co-PPh3 corroles are obtained in high yield after 

work-up.56,195,220,221a The presence of PPh3 ligand in the reaction mixture from the 

very beginning of the synthesis is crucial. In the absence of a suitable coordinating 

ligand (or solvent), four-coordinate cobalt corroles are unstable and tend to dimerize 

oxidatively. Gross et al. showed that, when PPh3 is added after cobalt insertion into 

H3[TPFPC], a C3(b)-C3’(b) linked dimeric Co corrole by-product is obtained, whose 

amount on how late the PPh3 is added after the metalation.214 However, for Co 5,15-

dimesityl-10-pyrimidinylcorroles, addition of PPh3 even 24 hours after cobalt insertion 

doesn’t affect its stability. Here the unusual stability of the four-coordinate cobalt 

corrole (without any axial PPh3 ligand) was attributed to the presence of bulky mesityl 

groups at the 5,15-positions, which presumably hinders dimerization via b-b’ 

coupling.76b 
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Fig. 5.1 Synthesis of Co corrole complexes. 

 

The X-ray structures of several meso-triarylcorroles reveal an essentially 

planar corrole geometry with short equatorial Co-N distances (Co-Navg »1.88 Å) and 

modest Co-N4 displacements (~0.27 Å), indicating an optimum fit of the Co ion with 

the corrole ligand (Fig. 5.2).56,215,217 The Co-P bond distance for all complexes is 

found to be approximately 2.21 Å. The planarity of the corrole macrocycle is 

maintained even in the presence of considerable steric hindrance, e.g. as a result of 

multiple bromine,57 aryl,84a alkyl,49a and perfluoroalkyl216 groups. The planar 

macrocyclic core also appears to be responsible for the strong supramolecular 

complexation of a Co-PPh3 corrole with fullerenes, both in the solid state and in 

solution.218 

Co-PPh3 corroles are diamagnetic species, as reflected in their 1H NMR 

spectra, which show well-resolved signals for both the meso-aryl and b-pyrrolic 

protons.214,219 The ortho, meta, and para-protons of axial PPh3 group (4-7 ppm) are 

strongly shielded by the diamagnetic ring current of the corrole.  

The UV-visible spectra of Co[TpXPC](PPh3) complexes in non-coordinating 

solvents such as DCM consist of an intense Soret band around 372-400 nm and a 

prominent Q band around 560 nm.221a However, certain Co corroles such as 

Co[TPFPC](PPh3) exhibit a split Soret band, reflecting the essentially composite 

nature of the Soret manifold.214,215b  
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Fig. 5.2 X-ray structure of Co[TPFPC](PPh3). Reproduced with permission from ref 

215. 

 

Co-PPh3 corroles exhibit rich electrochemical properties, as established in a 

detailed study of Co[TpXPC](PPh3) derivatives by Kadish et al.221 In noncoordinating 

solvents such as DCM, Co-PPh3 corroles generally undergo two reductions and up to 

three oxidations (Fig. 5.3). The first reduction process is irreversible, which may be 

explained by rapid dissociation of the axial PPh3 from the {CoII[Cor](PPh3)}– anion. A 

similar conclusion was also reached in an earlier electrochemical study of 

Co[Me8TpXPC](PPh3) complexes by the same group.222 Thus, the EPR spectrum of 

Co[Me8TPC](PPh3) after bulk electroreduction at -1.3 V, exhibited partially resolved 

hyperfine splitting due to 59Co, but no additional hyperfine splitting due to 31P. This 

suggests dissociation of PPh3 after the first one-electron reduction; moreover, the g 

and ACo values were supportive of a Co(II) formulation. 

 
Fig. 5.3 Cyclic voltammogram of Co[TPC](PPh3) in DCM containing 0.1 M TBAP. 

Reproduced with permissions from ref 219. 
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The {CoII[Cor]}– species is further reduced to the Co(I) form at more negative 

potentials. Interestingly, this second reduction (CoII/CoI) occurs reversibly in DMF, 

but is irreversible in DCM. The irreversible reduction in DCM is thought to reflect the 

formation of a σ-bonded Co(III)-alkyl intermediate from the reaction of the {CoI[Cor]}2– 

species with a DCM solvent molecule.221a A similar irreversible second reduction is 

also observed for several Co-PPh3 triarylcorroles in DMF in the presence of 

lindane/g-hexachlorocyclohexane (1.0 eq.), again presumably reflecting the formation 

of Co(III)-alkyl intermediate.223 When the electrochemical measurement is done 

under a CO2 atmosphere, the {CoI[Cor]}2-  species is also found to react with CO2, as 

evidenced by an increase in the current of the second reduction wave.224 

Electrogenerated Co corrole species have been further characterized with 

thin-layer UV–visible spectroelectrochemistry. The first electroreduction of cobalt 

corroles is generally accompanied by a modest decrease in intensity of the Soret and 

Q bands, with concomitant appearance of a new Soret band redshifted by 20-30 nm. 

For example, Co[TPC](PPh3) upon controlled-potential reduction at −1.20 V exhibits 

a significantly redshifted Soret band (which has shifted 387 nm to 421 nm) and a 

weak Q band (575 nm, Fig. 5.4).219 Similar spectral changes were also observed for 

both electro- and chemical reduction of Co[Me8TPC](PPh3).222 These spectral 

changes were ascribed to an essentially metal-centered CoIII®CoII reduction 

process. Further reduction of {CoII[TPC]}–  at –1.80 V results in the appearance of a 

sharp Soret band at 415 nm.219 This spectral change was also interpreted as another 

metal-centered reduction process (CoII®CoI) leading to an S = 0 {CoI[TPC]}– 

anion.219 

The spectral changes accompanying successive one-electron oxidations of 

Co-PPh3 corroles, carried out at controlled potentials in DCM, are accompanied by a 
weakening of the Soret and Q bands.221a,225 According to Gray et al., one-electron 

oxidation of Co[TPFPC](PPh3) by tris(4-bromophenyl)aminium hexachloroantimonate 

also results in the weakening of both the Soret and Q bands and the appearance of a 

broad absorption band at 690 nm.245 These processes have been assigned to 

corrole-centered oxidations. 
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Fig. 5.4 UV−vis spectra of the Co(III), Co(II), and Co(I) states (top) and spectral 

changes of Co[TPC](PPh3) upon electroreduction (bottom) in DCM containing 0.1 M 

TBAP. Reproduced with permission from ref 219. 

 
5.3 Cobalt-Bispyridine Corroles  
Cobalt-bispyridine corroles can be readily synthesized by metalation of free-base 

corroles in pyridine (see Fig. 5.1).214 The X-ray structures of Co-bispyridine corroles 

indicate an essentially planar macrocycle, where the two axial pyridine molecules 

exist in a nearly mutually coplanar orientation (Fig. 5.5).231 The short Co–Ncorrole bond 

distances (~ 1.89 Å), slightly longer Co–Npyridine bond distances (~ 1.99 Å), and a 

perfectly in-plane cobalt atom all indicate a low-spin Co(III) state.214,226-228 

Substitution of the b-positions by chlorine atoms does not induce any distortion from 

planarity, as evidenced by the perfectly planar structure of Co[Cl8TPFPC](py)2.229 As 
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expected for a low-spin Co(III) state, the diamagnetic Co[TPFPC](py)2 complex was 

found to exhibit sharp resonances for both b-pyrrole protons and the pyridine 

protons.214 

 
 

Fig. 5.5 X-ray structure of Co[TPFPC](py)2. Reproduced with permission from ref 

231. 

 

The UV-vis spectra of Co-bispyridine complexes differ markedly in the 

presence and absence of pyridine. Thus, Co[TPFPC](py)2 complex in pure DCM 

exhibits a split Soret band (380 nm and 440 nm). Gradual addition of pyridine to the 

DCM solution decreases the intensity of the 380-nm band while intensifying the 440-

nm band. A single Soret band at 440 nm and two intense Q bands around 580 nm 

and 600 nm are observed in presence of substantial amounts of pyridine in the DCM 

solution as well as in neat pyridine (Fig. 5.6). 214,245 Further dilution of the sample 

using only DCM, results in re-appearance of the band around 380 nm (see Fig. 5.7). 

Based on these observation, Gross et al. pointed out that in dilute solutions in 

noncoordinating solvents such as DCM, the Co-bispyridine corrole undergoes 

dissociation of one axial pyridine ligand to form the pentacoordinate monopyridine 

complex.214 The pentacoordinate form (Soret lmax 380 nm) exists in equilibrium with 

the corresponding six-coordinate bispyridine form (Soret lmax 440 nm) in solution 

and, with higher pyridine concentrations, the bispyridine form prevails. A recent MCD 

and TDDFT study also suggests dissociation of one axial pyridine from the 

bispyridine form.230 
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 Fig. 5.6 UV-vis spectrum of Co[TPFPC](py)2 in DCM containing 5% pyridine. 

Reproduced with permission from ref 245. 

 

The lability of the axial pyridine ligands can be further demonstrated by adding 

excess PPh3 to a DCM solution of Co-bispyridine corroles, which leads to the 

formation of pentacoordinate Co-PPh3. The bispyridine adduct can be regenerated 

by adding an excess of pyridine to the same solution.245 These substitution reactions 

can be conveniently monitored by means of UV-vis spectroscopy (Fig. 5.7). Gross et 

al. have estimated that the dissociation constant of six-coordinate Co[TPFPC](py)2 is 

quite low (3.3 x 10-5 M) in DCM.214 

In their attempt to isolate the mono-pyridine form Co[TPFPC](py) via column-

chromatography with n-hexane/DCM followed by crystallization, Gross et al. actually 

obtained a dimeric Co-bispyridine corrole, with a direct C3(b)-C3’(b’) link between 

two corrole units. The dimerization is believed to occur when the monopyridine form 

is left in solution for crystallization, presumably as a result of corrole radical character 

in such a species.214 Therefore, the presence of an excess of pyridine is necessary 

during workup for obtaining the bispyridine form. The monopyridine form 

Co[TPFPC](py), however, is believed to be the actual species adsorbed on the 

surface of multi-walled carbon nanotube (MWNT), during application of the corrole-

MWNT assembly for oxygen reduction in acidic media.232 
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Fig. 5.7 Transformations of a Co-bispyridine corrole via ligand dissociation and 

substitution. Also shown are UV-vis spectral changes accompanying (a) gradual 

addition of PPh3 into a DCM solution of Co[TPFPC](py)2 (left) and (b) dilution in a 

noncoordinating solvent DCM (right). Adapted with permissions from ref 245 and ref 

214 respectively. 

 

The cyclic voltammogram of Co[TPFPC](py)2 in acetonitrile consists of two 

oxidations and two reductions. The first reduction is irreversible and shifts from -0.2 

V to -0.7 V, when pyridine (0.5 M) is present externally in the electrochemical 

system.214 The irreversibility of the reduction wave results from the dissociation of 

pyridine upon one-electron reduction. The second reduction process is reversible and 

appears at an almost similar potential to that of the second reduction of 

Co[TPFPC](PPh3). This observation suggests the formation of similar square-planar, 

tetracoordinate {CoI[Cor]}2- species in both cases. One-electron oxidation of 

Co[TPFPC](py)2 corrole is thought to be essentially ligand centered, based on the 

EPR spectra (a single g = 2.008 feature) of the oxidized species.245 

Cobalt b-halogenocorroles exhibit a variety of interesting physical and 

electronic properties. Gross et al. have synthesized the paramagnetic square-planar 

complex Co[Br8TPFPC] by metal insertion into the corresponding free-base b-

octabromocorrole.234 The 19F NMR spectrum of this complex in a noncoordinating 

solvent such as DCM or benzene exhibits opposite isotropic shifts of the C-10 C6F5 

resonances relative to the C-5 and C-15 C6F5 resonances, which were interpreted in 
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terms of an intermediate-spin Co(III) center.234 Addition of pyridine to this species 

affords the corresponding bispyridine complex, Co[Br8TPFPC](py)2, which is 

diamagnetic. The electron-withdrawing bromine atoms induce a strong positive shift 

of both the first and second reduction potentials, relative to the analogous 

nonbrominated complex (e.g. 0.36 V vs. -0.2 V for first reduction), indicating that the 

octabrominated complex is much easier to reduce. 

The diamagnetic Co b-octachlorocorrole Co[Cl8TPFPC](py)2 on the other hand 

was obtained by direct chlorination of the corresponding nonchlorinated cobalt 

corrole Co[TPFPC](py)2 with chlorine gas, followed by quenching with NaBH4 and 

pyridine.229 Gradual addition of TFA to a benzene solution of Co[Cl8TPFPC](py)2 

resulted in a blueshift of the Soret band from 444 nm to 410 nm as well as large 

paramagnetic shifts in the 19F NMR spectrum. These changes were interpreted in 

terms of TFA-induced dissociation of the axial pyridines leading to the formation of 

the intermediate-spin four-coordinate Co(III) complex Co[Cl8TPFPC]. 

A comparative study of b-octahalogenated series Co[X8TPFPC](py)2 (X = F, 

Cl, Br) showed that the first reduction is irreversible in all cases (because of lability of 

axial pyridine) and appears at practically a constant potential of 0.36 V.235 However, 

prior removal of pyridines by TFA makes the first reduction reversible (see Fig. 5.8). 

The second reduction is reversible for all the complexes even in the absence of TFA, 

further supporting the dissociation of axial pyridines after the first one-electron 

reduction. Unsurprisingly, all the halogenated complexes are reduced at much less 

negative potentials than their nonhalogenated counterparts. 

Dey and co-workers have demonstrated that the second electroreduction 

product of Co[F8TPFPC](py)2 complex, i.e., the corresponding {CoI[Cor]}2– species, 

acts as a highly efficient catalyst for hydrogen gas evolution by proton reduction.236 

The putative protonated intermediate, {Co[Cor](H)}–, however, has not been 

detected, presumably because it undergoes very fast protonolysis to generate 

{CoII[Cor]}– and H2. DFT calculations and 19F NMR spectroscopy indicated a 

diamagnetic Co(I) description for the {CoI[Cor]}2– species.235 In a recent study by Dey 

and co-workers, the low-spin Co(II) species originated obtained by one-electron 

reduction of Co[Cl8TPFPC] was found to bind dioxygen. EPR and IR spectra and 

DFT calculations indicated a CoIII–O2
•2− description for the resulting adduct.237 
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Fig. 5.8 Cyclic voltammograms of Co[Y8TPFPC](py)2 (Y = H, Cl, F, Br) in MeCN 

containing 0.1 M TBAP, with and without added TFA. Reproduced with permission 

from ref 235. 

 

b-Alkyl and/or aryl-substituted cobalt corroles have been extensively studied 

by Kadish et al. with respect to their electrochemical properties and pyridine binding. 

The bispyridine adduct of a nonasubstituted Co corrole, Co[Me4Ph5](py)2, was also 

structurally characterized.238 Gradual addition of pyridine to a DCM solution of 

Co[Me4Ph5] resulted in a redshift of the Soret band from 398 nm to 433 nm, with the 

appearance of a new intense band at ~600 nm; these changes were ascribed to 

stepwise formation the mono- and bispyridine adducts (Fig. 5.9). The pyridine binding 

constants for the stepwise formation of the mono- and bispyridine complexes were 

found to be log K1 = 4.9 and log K2 = 2.1. respectively. 
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Fig. 5.9 UV-vis spectral changes of Co[Me4Ph5] in DCM upon titration with pyridine. 

Reproduced with permission from ref 238. 

 

The first one-electron reduction of Co[Me4Ph5] at -0.15 V was found to be 

reversible in DCM. In pyridine, the first reduction shifted to a much more negative 

potential (-0.72 V) and also became irreversible (see Fig. 5.11). The irreversible 

nature of the reduction could be attributed to dissociation of a pyridine molecule from 

the bisligated form prior to the first reduction. A spectroelectrochemial study of the 

Co[Me4Ph5](py)2 in pyridine revealed that the characteristic ‘marker band’ at 598 nm 

of the neutral, bispyridine form disappeared completely upon first electroreduction 

leading to the Co(II) oxidation state (Fig. 5.10).238 
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Fig. 5.10 UV-vis spectral changes of Co[Me4Ph5] during (a) electroreduction and (b) 

electrooxidation in pyridine containing 0.2 M TBAP. Reproduced with permission 

from ref 238. 
 

On the other hand, a total of four oxidation processes were observed in the 

cyclic voltammogram of Co[Me4Ph5] in DCM (Fig. 5.11).238 The first one-electron 

oxidation process appeared to be split into two processes occurring at different 

potentials, with the corresponding peak currents approximately half as large as that 

observed for the first reduction (CoIII®CoII) process. This intriguing observation was 

attributed to dimer formation during electrooxidation. The formation of ‘half-oxidized’ 

corrole dimers depends on the nature of the solvent and of the peripheral 

substituents. Interestingly, in neat pyridine, such dimerization did not occur, 

presumably due to the formation of bispyridine adducts, which preclude p-stacking. 

Also, the first oxidation in pyridine was found to yield a corrole p-cation radical that 

retained both its axial pyridines, i.e., a {Co[Cor•](py)2}+ species. 
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Fig. 5.11 Cyclic voltammograms of Co[Me4Ph5] in DCM and pyridine containing 0.1 

M TBAP. Reproduced with permission from ref 238. 

 

 

Finally, a most interesting property of four-coordinate Co corroles such as 

Co[Me4Ph5] is their ability to bind one molecule of CO.238a Guilard and coworkers 

have exploited this property to design CO sensors based on Co corroles.240,241 DFT 

calculations have also suggested the potential application of Co corroles for HNO 

sensing, a possibility that still has to be experimentally realized.242 

 

5.4 Rhodium Corroles 
Early reports on rhodium corroles included the reaction of [Rh(CO)2Cl]2 with 

octaalkylcorroles or N-alkyl corroles, which afforded an Rh(I) corrole after 

metalation.243 The first Rh(III) corrole was synthesized by Boschi et al., who obtained 

Rh[OMC](PPh3) by treating octamethylbiladiene with hydrated RhCl3 in the presence 

of PPh3.48a Alternatively, a six-coordinate Rh(III) complex Rh[OMC](CO)(PPh3) was 

formed when [Rh(CO)2Cl]2 was used as the metal source. The triphenylarsine-ligated 

complex Rh[OMC](AsPh3) was also synthesized in an analogous manner and 

structurally characterized by the same group.48b 

Subsequently, Gross et al. reported the synthesis of Rh[TPFPC](PPh3)195 and 

Rh[TDCPC](PPh3)244 via metalation of the corresponding free-base corroles with 

[Rh(CO)2Cl]2 in presence of PPh3. A similar methodology was also used for 

synthesizing a tricyclohexylphosphine adduct of Rh[TPFPC].191 
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The UV-vis spectra of Rh-PPh3 corroles exhibit a Soret band around 430 nm 

and Q band around 560 nm. The diamagnetic complexes exhibit 1H NMR spectra 

that are qualitatively similar to those of Co-PPh3 corroles. The X-ray structure of 

Rh[TPFPC](PPh3) exhibits a slightly domed macrocycle and a moderate Rh−N4 

displacements of ~0.27 Å (Fig. 5.12).195 The average M−Ncorrole distances in Rh-PPh3 

corroles (~1.968 Å) are significantly longer than those in analogous Co-PPh3 

corroles, as expected for the larger ionic radius of the 4d metal.  

 
Fig. 5.12 X-ray structure of Rh[TPFPC](PPh3). Reproduced with permission from ref 

195. 

 

Interestingly, addition of pyridine to a DCM solution of Rh-PPh3 corroles 

results in the formation of the six-coordinate complex Rh[Cor](PPh3)(py) via ligand 

addition.244 This reactivity may be sharply contrasted from that of Co-PPh3 corroles, 

where only ligand substitution takes place, leading to the Co-bispyridine 

adducts.214,245 Addition of pyridine into the coordination sphere of the Rh atom is 

accompanied by a redshift of Soret band by ~20 nm and the appearance of new Q 

bands at 595-610 nm, as well as visible change in color from wine-red to intense 

green.244 The X-ray structure of Rh[TPFPC](PPh3)(py) revealed a near-planar 

macrocycle with a smaller Rh−N4 displacement (~ 0.1 Å) relative to the 

pentacoordinate Rh[TPFPC](PPh3) corrole.244 A similar ligand addition is also 

observed upon the addition of excess PPh3 into a solution of Rh[TPFPC](PPh3), as 

suggested by changes in visible spectra (see Fig. 5.13).245  
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Gray and coworkers performed one-electron oxidation of Rh[TPFPC](PPh3) 

with t-4bpa, which resulted in sharp reductions in the intensity of the Soret and Q 

bands, along with formation of a new, broad band around 710 nm, suggesting 

corrole-centered oxidation (Fig. 5.13).245 For six-coordinate Rh[TPFPC](py)2, one-

electron oxidation was also found to be essentially corrole-centered, based on a 

sharp g = 2.003 EPR signal.245 Extensive DFT calculations by these researchers also 

confirmed corrole-centered oxidation for these complexes.246 

 
Fig. 5.13 UV-vis spectral changes of Rh[TPFPC](PPh3) upon (a) addition of excess 

PPh3 (left) and (b) oxidation by t-4bpa in DCM (right). Reproduced with permission 

from ref 245. 

 

The cyclic voltammogram of Rh[OMC](PPh3) consists of three reversible 

oxidations and one irreversible reduction in PhCN (Fig. 5.14).247 The oxidations are 

believed to be macrocycle-centered. Addition of excess PPh3 to the system results in 

formation of {Rh[OMC](PPh3)2}+ after first oxidation. One-electron reduction was 

found to be irreversible, presumably reflecting the loss of the axial PPh3 ligand and 

leading ultimately to a {RhII[OMC]}– species, which parallels the electroreduction 

behavior of Co-PPh3 corroles. In an interesting twist, the singly reduced {RhII[OMC]}– 

species was found to undergo rapid dimerization, after electrogeneration. The 

dimerization could be slowed down or prevented by performing the experiment at low 

temperature (THF, -70°C) or in presence of excess PPh3 in PhCN.247 Thus, on 

applying high scan rates in the presence of an excess PPh3 in PhCN, 

{RhI[OMC](PPh3)}2– was found to form via stepwise two-electron reduction of the 

neutral complex; the dianion subsequently was found to lose PPh3 to yield the bare 
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{RhI[OMC]}2− dianion. This Rh(I) corrole dianion could then be reoxidized to the 

original charge-neutral Rh(III) species via two one-electron oxidations. 

 
Fig. 5.14 Cyclic voltammograms of Rh[OMC](PPh3) in PhCN containing 0.1 M TBAP 

at two different scan rates. Reproduced with permission from ref 247. 

 
5.5.1 Introduction to paper C: Cobalt- and Rhodium-Corrole-
Triphenylphosphine Complexes Revisited: The Question of a Noninnocent 
Corrole 
Cobalt-PPh3 corroles have long been thought of as classic low-spin Co(III) 

complexes. A multitechnique investigation, including UV-Vis spectroscopy, 

electrochemistry, XAS and XES analyses, and DFT calculations, however, suggests 

that Co-PPh3 corroles are noninnocent with partial CoII-corrole•2– character. In 

contrast, no evidence of ligand noninnocence was found for Rh-PPh3 corroles.  

A total of nine Co[Y8TpXPC](PPh3) corroles (X = NO2, CF3, H, Me, OMe; and 

Y = H, Br) and four Rh[TpXPC](PPh3) corroles (X = CF3, H, Me, OMe) were 

synthesized for this study. Unlike in previous studies, THF was chosen as the solvent 

for Co insertion into free-base corroles, which was carried out at 45-50°C in the 
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presence of excess PPh3 and NaOAc. The choice of THF ensured good solubility of 

all free-base corroles in the reaction medium. The complexes were generally purifiied 

by column chromatography on silica gel with n-hexane/DCM as eluent.  

The synthesis of Rh[TpXPC](PPh3) complexes was initially attempted with 

[Rh(cod)2Cl]2 as the metal source (5 equiv)	in refluxing THF under argon in the 

presence of excess PPh3 (5 equiv) and dry K2CO3, a procedure akin to the synthesis 

of Ir-PPh3 corroles.245 Except for X = CF3, this method failed miserably for all the 

other free-base H3[TpXPC] ligands. A new procedure, where smaller amounts of the 

metal source [Rh(cod)2Cl]2 (1.5 equiv) and PPh3 (1 equiv) were used in 2:1 

DCM/EtOH (2:1), led to good yields (48-54%) of Rh[TpXPC](PPh3) derivatives along 

with simpler purification. The Rh-PPh3 corroles are stable as solid and also in 

solution for reasonable time periods, allowing for satisfactory elemental analyses.  

The UV-vis spectra of Co[TpXPC](PPh3) corroles were found to exhibit 

substantial redshifts of the Soret maxima along the series: NO2 → CF3 → H → Me → 

OMe, i.e., with increasing electron-donating character of the para-substituent X. This 

observation provided the first indication that Co[TpXPC](PPh3) corroles may be 

significantly noninnocent, i.e., with significant CoII-corrole•2– character. In contrast, the 

Soret maxima of Rh[TpXPC](PPh3) derivatives were found not to shift as a function 

of para-substituent X, implying an essentially innocent RhIII-corrole3- system. 

 DFT calculations carried out by our collaborator Prof. Jeanet Conradie yielded 

a broken-symmetry spin density profile for Co[TPC](PPh3) that matched a CoII-

corrole•2– description as well as a small singlet-triplet enery gap (0.15 eV). The 

broken-symmentry optimized geometry of Co[TPC](PPh3) also showed small skeletal 

bond length alternations in the bipyrrole half of the corrole, further suggesting 

corrole•2– radical character in the complex. Analogous calculations on Rh[TPC](PPh3) 

yielded neither a broken-symmetry solution nor the characteritic bond length 

alternations; the calculated singlet-triplet enery gap was also much larger than for the 

Co complex, all of which was consistent with an innocent RhIII–corrole3– electronic 

description for the Rh complex. 

The electrochemistry of Co-PPh3 corroles has been described at some length 

earlier in this chapter. Both the Co- and Rh-PPh3 complexes studied in this work 

exhibited irreversible one-electron reductions, reflecting reductive cleavage of the 

PPh3 ligand. An interesting difference between the two metals is that the Rh-PPh3 

corroles undergo reduction at considerably more negative potential (~400 mV) than 
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the analogous Co-PPh3 corroles. This can be attributed to the greater stability of the 

Rh(III) states relative to the Co(III) or CoII-corrole•2– state. 

The Co[Br8TpCF3PC](PPh3) complex proved amenable to single crystal X-ray 

structure determination. The structure revealed a mildly saddled corrole macrocycle, 

which is quite unusual for metallocorroles other than Cu corroles. X-ray structures 

were also obtained for two Rh-PPh3 corroles, Rh[TPC](PPh3) and 

Rh[TpOMePC](PPh3), both of which exhibited domed corrole macrocycles. The M-

Ncorrole, M-P, and M-N4 distances of these complexes were all found to be in good 

accord with literature values. 

Finally, four complexes – Co[TPP], Co[TPP](py)Cl, Co[TPC](PPh3) and 

Co[TPC](py)2, (TPP = tetraphenylporphyrin, py = pyridine) – were examined by X-ray 

absorption spectroscopy (XAS). The XAS data showed that the K-rising-edge energy 

of Co[TPC](PPh3), which corresponds to a 1s®4p transition, is significantly lower 

than that of the genuine Co(III) complex Co[TPP](py)Cl. This suggests a relatively 

low positive charge on the Co ion in Co[TPC](PPh3), consistent with partial CoII-

corrole•2– character. 

My contribution to this paper consisted of all syntheses and characterization of 

the complexes by means of UV-vis, MS, and 1H NMR spectroscopies as well as 

electrochemistry of the nine Co-PPh3 corroles and the four Rh-PPh3 corroles. The X-

ray absorption spectroscopic measurements were carried out by our collaborator Dr. 

Ritimukta Sarangi at the Stanford Synchrotron Radiation Lightsource. The three X-

ray structures were solved at the Advanced Light Source, Lawrence Berkeley 

National Laboratory. The DFT calculations were carried out by Professors Jeanet 

Conradie and Abhik Ghosh. 

 

5.5.2 Introduction to paper D: Electronic Structure of Cobalt-Corrole-Pyridine 
Complexes: Noninnocent Five-coordinate Co(II) Corrole-Radical States 
After discovering clear evidence of noninnocent character in Co-PPh3 corroles, I 

wished to investigate whether Co corrole pyridine adducts might also exhibit 

indications of ligand noninnocence. Toward this end, I synthesized Co[TpXPC](py)2 

and Co[Br8TpXPC](py)2 derivatives and characterized them by UV-vis spectroscopy 

and 1H NMR spectroscopies and electrochemistry. As described below, substituent 

effects in the meso-TpXPC series (X = CF3, H, Me, OMe) series of complexes 

provided unique insight into the question of ligand noninnocence in the Co-pyridine 
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adducts.  

The Co[TpXPC](py)2 and Co[Br8TpXPC](py)2 complexes could all be 

synthesized by reacting the corresponding free-base corroles with Co(II) acetate in 

pyridine at 100°C for approximately 30 minutes. For stability, the Co[TpXPC](py)2 

derivatives were found to require a small amount of pyridine (~1-2% v/v) in the eluent 

mixture (DCM/hexane) during column chromatography. In the absence of pyridine, 

the complexes degraded severely in contact with the silica. The Co[Br8TpXPC](py)2 

complexes on the other hand proved to be more stable towards silica and could be 

chromatographed with n-hexane/DCM as eluent without any added pyridine. For 

long-term stability in solution, however, a small amount of added pyridine was still 

necessary. Thus, attempted crystallization of Co[Br8TpXPC](py)2 from CHCl3/MeOH 

led to a poor quality structure (not shown) of a six-coordinate cobalt isocorrole with a 

pyridine and a chloride as the axial ligands. X-ray quality crystals of 

Co[TpMePC](py)2 and Co[Br8TpMePC](py)2 were successfully obtained in the 

presence of a small amount of pyridine in the solvent mixture. 

In noncoordinating solvent like DCM, CHCl3, etc. in absence of any added 

pyridine, Co-bispyridine corroles dissolve to yield yellow to brown solutions, where 

the main species are thought to be the five-coordinate monopyridine adducts. The 

Soret maxima of these solutions were found to redshift strongly from X = CF3 to 

electron donating X = OMe, much as was observed for the Co[TpXPC](PPh3) series, 

suggesting a noninnocent CoII-corrole•2– electronic description for the Co[Cor](py) 

species. Upon addition of pyridine, these solutions turn bright green, where the main 

species are thought to be the six-coordinate bispyridine adducts.  The Soret maxima 

of these solutions proved insensitive to the nature of the substituent X, suggesting an 

innocent CoIII–corrole3– description for the Co[Cor](py)2 forms. Unsurprisingly, 

solutions Co[Cor](py)2 in noncoordinating solvents such as DCM exhibit different 

electrochemical behavior in the absence and presence of pyridine.  

The 1H NMR spectra of the Co[TpXPC](py)2 complexes in relatively polar NMR 

solvents such as CDCl3, CD2Cl2, CD3CN, etc. consist of weak, broad, and unresolved 

signals. This behavior can be related to the rapid dissociation and reassociation of 

the axial pyridines of Co[TpXPC](py)2 on the NMR time scale. In benzene-d6, 

however, sharp and well resolved signals for aryl-H’s and b-H’s could be observed, 

consistent with diamagnetic bispyridine adducts. The axial pyridines of 

Co[TpXPC](py)2 were found to resonate in a high-field region (2:4:4 ratio), reflecting 
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the diamagnetic current of the corrole ring.  

Single crystal X-ray structures were obtained for two complexes, 

Co[TpMePC](py)2 and Co[Br8TpMePC](py)2. The former was found to exhibit a 

planar corrole ligand, whereas the latter complex exhibited a mildly ruffled 

macrocycle, an unusual deformation for corroles.  

Finally, broken-symmetry DFT calculations strongly support a CoII-corrole•2– 

formulation for the ground states of five-coordinate Co[Cor](py) complexes. The 

calculations further indicate that these species are open-shell singlets with 

antiferromagnetic coupling between the Co(dz2) electron and a corrole a2u radical. 

My contributions to this paper consisted of all the syntheses and 

characterization of the complexes with UV-vis, NMR, MS and electrochemistry. The 

two X-ray structures were solved at the Advanced Light Source, Lawrence Berkeley 

National Laboratory. The DFT calculations were carried out by Professors Jeanet 

Conradie and Abhik Ghosh. 
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Conclusion 
 

Half a century after the concept was first introduced, the phenomenon of ligand 

noninnocence continues to captivate chemists. In this thesis, I have examined the 

phenomenon, as it applies to first-row transition metal corroles, in particular Mn, Fe, 

and Co corroles. I identified multiple families of metallocorroles as noninnocent, 

which until now had not been recognized as such. I also studied in greater depth 

metallocorroles that have been recognized as noninnocent by others. The principal 

achievements of this work can be summarized as follows: 

 I synthesized several series of Mn, Fe, and Co corroles with different axial 

ligands. In many cases, I developed new synthetic protocols. Out of the 50 or so 

compounds examined in this thesis, 30 are new compounds. A total of six crystal 

structures were obtained in the course of this work. 

 I have investigated the role of substituent effects on the Soret maxima of 

metallocorroles as an indicator of a noninnocent corrole ligand. As a result of my 

work, this ‘optical probe’ of ligand noninnocence has been placed on a much firmer 

footing. Indeed, I used the optical probe to identify Fe2(µ-O) and Co-PPh3 corroles as 

substantially noninnocent systems. Given that these complexes are diamagnetic and 

do not offer convenient NMR and EPR handles, the availability of a simple optical 

probe of ligand noninnocence is quite valuable for these compounds. I also applied 

the optical probe for the first time to Mn-aryl and Fe-aryl corroles, for which the 

corrole emerged as an innocent ligand. 

 Obviously, optical spectroscopy was far from a standalone tool in my 

research; a wide variety of other techniques including NMR and EPR spectroscopies, 

electrochemistry, X-ray crystallography and DFT calculations were routinely used 

and they led to a deeper appreciation of the many possible manifestations of the 

phenomenon of ligand noninnocence. To give a couple of examples, 1H NMR 

spectroscopy provided a detailed experimental probe of the spin density profiles of 

Fe corroles and X-ray crystallographic studies demonstrated characteristic skeletal 

bond length alternations in a noninnocent corrole ligand.  

 I examined the influence of pyridine binding on the innocence or otherwise of 

the corrole macrocycle in cobalt corroles. Again, the optical probe proved useful. The 

key conclusion is that whereas Co-bispyridine complexes are innocent Co(III) 
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species, the corresponding monopyridine adducts are noninnocent with a CoII-

corrole•2– ground state as well as other low-energy open-shell excited states. 

 Last, through a collaboration with the Stanford Synchrotron Radiation 

Lightsource (SSRL), I began to explore the use of X-ray absorption spectroscopy and 

related techniques to shed light on the issue of ligand noninnocence in 

metallocorroles. Although I have not been able to participate in a hands-on manner in 

the experimental work, the findings on my complexes have provided some of the first 

high-quality XAS data on metallocorroles and important electronic-structural insights 

especially in the case of Fe corroles. The current renaissance of X-ray science, 

including the emergence of new third- and fourth-generation light sources as well as 

new X-ray spectroscopic methods, promise a major new approach to electronic-

structural studies of transition metal complexes – if I have the opportunity, I hope to 

pursue this fascinating area as a PhD scientist. 
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