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Abstract

Approximately 800 women die from pregnancy or childbirth-related pregnancy com-
plications around the world every day. One of the major reasons for these compli-
cations is inflammation following infection. Approximately 40% cases of preterm
births occur due to microbial invasion in the genitourinary track. During inflamma-
tion, macrophages present at the feto-maternal junction release an increased amount
of nitric oxide (NO) and other important pro-inflammatory cytokines: TNF-α and
INF-γ. This can disturb the trophoblast function which can lead to pregnancy
complications, such as abortion, pre-eclampsia and birth defects.

Here I aimed to study the cellular and sub-cellular morphological changes in macrop-
hages (RAW264.7) and trophoblasts (HTR-8/SVneo) following externally supplied
inflammatory agents: lipopolysaccharides (LPS), concanavalin-A (Con-A) and tu-
mor necrosis factor alpha (TNF-α), in vitro.

Nitric oxide (NO) produced by the cells under inflammatory response was measured
quantitatively using the Griess reagent test. Morphological changes were examined
in response to LPS, Con-A and TNF-α challenge on live macrophages and tro-
phoblasts using structured illumination microscopy (SIM) and quantitative phase
microscopy (QPM).

LPS-challenged macrophages produced approximately 22 folds more NO as com-
pared to controls, whereas no significant increase was seen after TNF-α or Con-A-
challenge. No significantly increased amount of NO was detected in trophoblasts
following LPS, TNF-α or Con-A-challenge. Superoxide (O·−2 ) produced during res-
piration by mitochondria may react with NO to produce reactive nitrogen species
(RNS) e.g. peroxynitrite (ONOO−), which have strong damaging effects on the
mitochondria.

SIM imaging showed changes in the morphology of mitochondria and plasma mem-
brane in approximately 50− 60% of macrophages following LPS challenge (1µg/ml
for 24hr), but no detectable changes in mitochondria or plasma membrane were ob-
served after TNF-α (1ng/ml for 24hr) or Con-A challenge (1µg/ml for 24hr). QPM
revealed that the phase value decreased by approximately 18% in LPS-challenged
macrophages after 24hr as compared to controls. In contrast, mitochondrial mor-
phology appeared different in trophoblasts following TNF-α challenge under similar
conditions. No effect was seen in trophoblast morphology following either LPS or
Con-A challenge. Through SIM and QPM it was found that the effect on the mor-
phology of macrophages can be detected following 2hr of incubation with LPS,
whereas The Griess method was unable to detect increased amounts of NO before
4hr.

Our results suggest that the cells which are responsible for the mother-fetus crosstalk,
especially macrophages and trophoblasts, respond differently to various inflamma-
tory agents. Additionally, SIM and QPM are shown to be live-cell friendly, useful
tools to evaluate sub-cellular mechanisms associated with inflammation mediated
pregnancy complications.
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Chapter 1

Introduction

”There is a unique pain that comes from preparing a place in your heart for a child that never
comes.” ∼ David Platt

Maternal infections can lead to pregnancy complications and failure like birth defects, intrauter-
ine growth restriction, premature delivery, abortion etc.[1] According to the World Health Or-
ganisation (WHO), 830 women died everyday worldwide in 2015 due to pregnancy complica-
tions and childbirth related problems.[2] One of the major pathogen causing these infections
is gram negative bacteria. These bacteria colonise the genitourinary tract of women, where
they continuously release an endotoxin called lipopolysaccharide (LPS). LPS is present on the
outer membrane of the gram negative bacteria which induces inflammation by stimulating the
immune system, particularly macrophages.[3] In response to these stimuli, pro-inflammatory
cytokines like TNF-α, INF-γ and the inflammatory modulators such as nitric oxide, etc. are
released which are known to cause inflammation and infection. This can change the placental
physiology during pregnancy, which can lead to preterm delivery in the rodents and is also linked
to cause pregnancy related complications in humans.[4] It has also been shown in the research
that increase in the number of the inflammation inducing macrophages at the feto-maternal
junction can cause improper trophoblast invasion, which might lead to preeclampsia.[5]

The mechanisms linking infection to the placental dysfunction are still insufficiently under-
stood.[6] Despite the advancements in Obstetrics and Neonatology, the rate of premature
delivery has increased approximately 12% since 1990.[7] It is well-established fact that the
macrophages and the trophoblast cells carry the receptors on their membrane that recognises
the endotoxin.[8] However, very little is known about the effect of the endotoxin and other
cytokines released in its effect on the morphology of these cells at the sub-cellular level. Many
important details in the inflammation-related sub-cellular processes in these cells could so far
not properly be observed due to the limited spatial resolution of conventional fluorescence mi-
croscopes. These limitations can be overcome using optical nanoscopes, such as SIM which
improves the resolution twice as compared to the conventional microscopes and is compatible
with the live cell imaging. Therefore, exploring the inflammatory response of the trophoblasts
and the macrophages using optical nanoscopy can reveal unprecedented new insights into the
understanding of pregnancy related complications and thus the potential of early detection and
treatment.

Work done during my master thesis stands at the crossroads between physics and biol-
ogy. Fig1.1 provides an overview of the experiments done during my master thesis research.
Macrophage and trophoblast cell lines were studied in parallel. Both the cell lines were chal-
lenged with three inflammatory agents (LPS, TNF-α and Concanavalin-A (Con-A)) as shown in
Fig1.1. Different measurement techniques were employed to study the inflammatory response.

Having no prior practical knowledge of working in the field of biology, I was first trained in
cell culture, sample preparation for the imaging and SIM operation during the first semester.
During second semester, I independently did the following: cultured two cell lines, namely, HTR-
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8/SVneo and RAW264.7; nitric oxide (NO) measurements in cell culture media using Greiss
reagent; planned the experiments which were to be done using SIM and QPM; prepared the
samples for SIM and QPM imaging; optimised the staining parameters; operated OMX-SIM to
acquire images and analysed the images. QPM images were acquired and analysed by Vishesh
Dubey, a visiting PhD candidate at UiT. Extensive studies were carried in studying macrophages
following 24hr challenge with LPS. Due to the lack of time, studies in inflammatory response
of macrophages at early time-point are not complete and further experiments need to be done.
Due to the same reason, inflammatory response of trophoblasts was studied following 24hr
challenge with inflammatory agents only using SIM. Early time-point studies and quantitative
analysis could not be done.

Figure 1.1: Experimental plan: Flow chart giving an overview of the various experiments
performed to study the inflammatory response of macrophages and trophoblasts.

Currently I am working on the preparation of two manuscripts for peer-reviewed journals. I
will be first author in one of them, and third author in the other. I have also submitted abstract
for an oral presentation at International Federation of Placental Associations 2017 conference
to be held in Manchester and I am co-author in another abstract submitted for an invited talk
at the same conference.
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Chapter 2

Theory and background

”Life is like a placenta. Full of attachment, separation and loss.” ∼ Anonymous

Optical microscopy is a minimally invasive technique to study the cellular structure and pro-
cesses. Initially, the high power microscopes were developed by Carl Zeiss and Ernst Abbe
together in late 1800s, which had optical resolution around 0.2µm [9]. These microscopes
formed the bases of the modern cell biology and microbiology. However, these microscopes
have not been a choice when it comes to observing structures at the sub-cellular level. Light
microscopy has a unique advantage, e.g. live cell imaging, over the other techniques like electron
microscopy, when it comes to biological imaging. It’s been only about two decades that the
resolution limit has been broken and Nobel prize was given to Eric Betzig, Stefan W. Helland
William E. Moerner for the development of super-resolved fluorescence microscopy. Now a days
it is possible to build microscopes which have a resolution as low as 30 nm. These microscopes
are called super-resolution microscopes or optical nanoscopes.

2.1 Point spread function and optical resolution

Any object to be imaged undera microscope e.g. biological cell might some times have a complex
structure, containing substructures of varying sizes. Some of the organelles e.g. nucleus can be
observed under an ordinary microscope, but others e.g. mitochondria, tubulin, etc. can’t be
observed through ordinary microscope.

Figure 2.1: Any object to be imaged can be considered as the sum of different spatial frequencies
and complex amplitudes. [10]

According to Fourier theory, any function (in our case an object to be imaged) can be anal-
ysed as the sum of harmonic functions of different spatial frequencies and complex amplitudes
(Fig2.1). Spatial frequency can be defined as how many times a structure is varied in an interval
of unit length. Higher the spatial frequency, the finer structural details become.

Consider an optical imaging system in which, an object lying at the focal plane of an
objective lens and the tube lens lying behind the objective lens forms an image. The objective
lens produce Fourier transform of the object at its back focal plane. Light corresponding to
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Figure 2.2: Rayleigh’s criteria for resolution limit. (a) Well resolved point objects. (b) Just
resolved point objects. (c) Unresloved point objects. [11]

the higher spatial frequencies are diffracted at larger angles, so these will not be collected by
the lens. Hence, lens acts as a low pass filter. Tube lens converges these frequencies and the
image of the object might be blurred due to missing fine details. If the object is a point object,
its image will be a three dimensional blob and is called point spread function (PSF). PSF in
two dimensions is known as airy pattern. Fig2.2 represent PSF of two point objects lying at
different distances. The Fourier transform of the PSF is known as optical transform function
(OTF). The OTF of an optical system specifies which spacial frequencies are permitted through
an optical system.

2.1.1 Rayleigh’s criteria

Optical resolution is the ability of an optical system to resolve fine details of an object being
imaged. If two point objects are placed at some distance r apart at the focal plane of an
objective lens, the image will be two point spread functions. Upon decreasing the distance r
between the objects, the PSFs will start overlapping and a point will be reached where the
central maxima of one disk lies on the first minima of the other and vice-versa. At this distance
rl, the objects are just resolved and this distance is known as Rayleigh’s resolution limit. Object
lying further apart are well resolved and those lying closer than rl will be unresolved (Fig2.2).
According to Rayleigh, the resolution limit is given by:

rl =
1.22λ

2N.A.
(2.1)

where λ is the wavelength of light illuminating the sample, N.A. = n sinα is numerical aperture
of the objective lens, n is the refractive index between sample and α is its edge angle. Resolution
limit also gives us maximum cut-off spacial frequency,

kmax =
4πN.A.

1.22λ
(2.2)

that can be allowed to pass through the system. Eq(2.1) represent the lateral resolution which
is typically, rl = 200nm for the conventional optical microscopes.

2.1.2 Surpassing the resolution limit-superresolution

For many years, resolution limit remained unbreakable. Researchers tried different methods
to increase the resolution of microscopes. Going to lower wavelengths, such as particle waves
was one of the options because higher the momentum, the shorter is the wavelength associated
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Figure 2.3: The fluorescence process. (a) Simplified Jablonski diagram. (b) Normalized excita-
tion and emission spectra. [11]

with a particle. This concept gave birth to the electron microscopy. Increasing numerical
aperture was another way which is successfully exploited in 4-pi confocal microscopy. It is
worth mentioning here that one can’t make N.A. infinitely large due to practical reasons. In
1994, Stephan W. Hell and Jan Wichmann proposed a technique called stimulated-emission-
depletion (STED) fluorescence microscopy breaking down the resolution limit. Theoretically,
the resolution limit of STED was shown to be infinite[12]. Many other techniques followed soon
after e.g. Structured Illumination Microscopy (SIM), Single molecule localisation microscopy
techniques like STORM, PALM etc.

2.2 Fluorescence

Fluorescence plays a crucial role in modern microscopy. Specific targets can be labelled inside
the cell which will be visible with high contrast in front of a dark background. Upon shining
light of a particular wavelength higher than the energy gap on a fluorescent molecule, the
photon might be absorbed and an electron in the ground state is excited to a higher state. This
electron then makes a transition to the bottom of the excited energy state through vibrational
relaxation. Then it decays back to the ground state emitting a photon which is known as
fluorescence (Fig2.3a). Due to the non radiative energy loss through vibrational relaxation, the
emission wavelength is generally higher than the absorption wavelength. The difference between
the maxima of emission and absorption spectra is known as the Stokes shift (Fig2.3b).
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Figure 2.4: Moire effect. Two patterns are overlaid, coarser pattern appears in the middle of
two patterns. [13]

While imaging, a filter is placed on the detection arm of the microscope, which only allows
the emitted light to pass through. This enables us to image the biological samples with high
specificity and contrast. There are many ways for fluorescent labeling the samples. Most
commonly used are green fluorescent proteins (GFPs), organic dyes and fluorophores tagged
with antibodies.

2.3 Structured illumination microscopy (SIM)

The structured illumination microscope is considered to be one of the best choices for live cell
imaging at extended resolution. SIM requires low illumination intensities as compared to most of
the other superresolution techniques, uses conventional fluorophores and capture images at wide
field of view. Some of the other superresolution techniques (e.g. dSTORM, STED, etc.) can
achieve better spatial resolution than SIM, but SIM has advantage of high temporal resolution
for large field of view. STED is point scanning technique, it can provide high temporal resolution
for a small field of view, while for a bigger field of view STED gives a slow temporal resolution.
Single molecule localization techniques are usually very slow, as several thousand images are
acquired to generate a single super-resolved image.

SIM makes use of Moiré pattern (Fig2.4) to increase the resolution of the fluorescence
microscopy. When two fine patterns are overlaid on each other, a coarser pattern appears. In
SIM, the sample containing finer details is illuminated with pattern generated by the interference
of coherent beams (Fig2.5). A third coarser pattern is formed in the light distribution by the
sample. The illumination pattern is known and the coarse pattern is detected by the detector.
By recording the resulting pattern at different angles, one can deduce the finer details of the
sample, thus increasing the resolution of the microscope. Following section gives mathematical
details of the image formation and resolution enhancement in SIM.

2.3.1 Mathematical derivation of image generation in SIM

As discussed in Sec2.1.1, the OTF puts a limit on spacial frequencies which will be allowed to
pass through the system. If F̃ [A] is the object function in frequency space, then this function
will be modified after passing through the optical system. Image formed in frequency space will
be given by:

F̃ ′[A] = F̃ [A].OTF (2.3)

In real space, image formation can be described as the inverse Fourier transform of eq(2.3).
Multiplication in frequency space is convolution in real space, so the imaging process in wide
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Figure 2.5: Illumination pattern in SIM. In case of 2-D SIM, the interference pattern is produced
by the interference of two coherent beams which will increase the lateral resolution twice, as
the pattern is varying only along x-direction. In 3-D SIM, the illumination pattern is produced
by the interference of three coherent beams. The pattern also varies along z-direction, thus
increasing the resolution twice along the depth of sample as well. [14]
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Figure 2.6: Extension of effective OTF in SIM. (a) Sinusoidal pattern illumining the sample
in position space. (b) Sinusoidal pattern in frequency space will be three delta peaks. (c)
Multiplying OTF with these peaks will increase the effective OTF support and the red boundary
shows new cutoff for maximum spacial frequency permitted through the microscope. (c) To
achieve isotropic resolution extension, the pattern is rotated.[15]

field microscopy can be described as:

A′(~r) = A(~r)⊗ PSF (~r) (2.4)

where A is the object function, ⊗ is convolution operation and A′ is an image of the object.
In fluorescence microscopy, the object distribution is proportional to illumination intensity Iill
and fluorophore distribution ρ(~r) can be written as:

A(~r) = ρ(~r)Iill (2.5)

In SIM, the sample is illuminated with sinusoidal field and the corresponding intensity can be
written as:

Iill(~r) = I0[1 +m(cos(~kG.~r + φ))] ≡ I0[1 +
m

2
(ei(

~kG.~r+φ) + e−i(
~kG.~r+φ))] (2.6)

here m is modulation factor, ~KG is the spacial frequency of the sinusoidal fringe illumina-
tion pattern whose magnitude is KG = 2π

GSIM
and GSIM is the period of the illumination. φ

determines the lateral position of the pattern.
In the Fourier space, image formation can be described as:

Ã(~k) = [ρ̃(~k)⊗ Ĩill]×OTF (~k) (2.7)

The Fourier transform of illumination intensity can be derived by taking Fourier transform of
eq(2.6) and is given by:

Ĩill = I0[δ(~k) +
m

2
eiφδ(~k − ~kG) +

m

2
e−iφδ(~k + ~kG)] (2.8)

Putting in the value of Ĩill from eq(2.8) into eq(2.7) and solving, one arrives at the following
result:

Ã(~k) = I0[ρ̃(~k) +
m

2
eiφρ̃(~k − ~kG) +

m

2
e−iφρ̃(~k + ~kG)]×OTF (~k) (2.9)

for a conventional uniform illumination, only ρ̃(~k) contributes but in the case of structured
illumination, there are two extra terms positioned at ~kG and −~kG. Upon multiplying the
OTF with these three terms, the effective OTF of the system increases, thus increasing the
cutoff frequency limit. The raw image will be an overlap of the these three frequency spectra,
so the information needs to be separated out, then shifted to their respective position in the
frequency space. This process is done computationally. The sample is illuminated with (atleast)
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three different phase shifted (φ1, φ2, φ3) illumination patterns. This will give us three different
frequency spectrum images Ã(~k). Having this information, the eq(2.9) can be solved to get
an information about spectral terms ρ̃(~k), ρ̃(~k − ~kG) and ρ̃(~k + ~kG) which consist of separated
frequency spectra of the sample. This high frequency spectrum is then shifted to get an extended
frequency spectrum of the sample. Taking its Fourier transform yields super-resolved image.[14]

The factor of resolution enhancement depends on ~kG, spacial frequency of the illumination
fringes. The sinusoidal pattern is produced by the interference of two plane waves, the maximum
spacial frequency that can be produced is, ~kG = 2NA

λex
, where λex is the wavelength of incident

light. Maximum cut-off frequency of the OTF with plane illumination is given by ~k0 = 2NA
λem

,
where λem ≈ λex is the emission wavelength from fluorophore. The reconstructed frequency
spectrum has a cut-off at ~kG + ~k0. Hence, the maximum detectable frequency of an object will
be:

~kSIM =
4NA

λem
(2.10)

Hence, SIM enhances resolution limit approximately by the factor of 2.

2.4 An overview of some other superresolution techniques

2.4.1 Single molecule localisation microscopy (SMLM)

Working principle of SMLM techniques (e.g. dSTORM, PALM, etc.) is illustrated in Fig2.7.
In these techniques, the information is separated temporally rather than spatially. Capturing
image of a single fluorescent molecule through a conventional microscope will be a spot much
bigger than the size of molecules. But, it is possible to localise this molecule with high precision
by finding the centroid of the resultant PSF. Photo-switchable fluorophores are used to stain
the cell, such that, only a few molecules lying at a distance greater than the diffraction limit
from each other at a given instant are emitting the signal. At next time-frame (generally the
difference between each time-frame is few ms), these molecules are shut down and different
molecules are in on-state (emitting signal). Several thousand images are captured at different
time-frames and combined to get a final image. Resolution of an image will depend on how
precisely our molecule is localised. This localisation precision of a molecule [17] is given by:

σ =

√(s2 + a2

12

N

)
.
(16

9
+

4πs2b2

a2N

)
(2.11)

N is the no. of photons collected from each fluorescent molecule, s is the standard deviation
of the PSF, a is the pixel size, b is the background noise level. Here N is one of the most
important factors which decide the resolution of our image. Larger N means more localisation
precision and more signal to noise ratio. The resolution also depends on labelling density. The
labeling density should be twice as high as desired resolution following the Nyquist-Shannon
theorem and the size of labelling should be as low as possible. Tens of thousands of snapshots
of a particular sample are taken and then a two dimensional Gaussian curve is fitted to each
possible point of fluorescent molecules. The FWHM of this curve is determined by eq(2.11)
and the amplitude is proportional to the value of N (Fig2.7). Then all these Gaussian fitted
snapshots are combined to get final super-resolved image [19].

2.4.2 Stimulated emission depletion (STED) microscopy

In STED, the sample is made to emit the fluorescence signal from an area shorter than the
diffraction limit. This kind of illumination is achieved by using two laser beams, one to get
fluorescence and another to produce a donut shaped beam that depletes (by stimulated emission)
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Figure 2.7: Principle of SMLM in nutshell: (a) Image taken by camera of a singe molecule and
its localisation (green dot). (b) At a single instant, few fluorophores lying at a distance greater
than diffraction limit are emitting. An image is taken and the molecules are localised. Then
this process is repeated for thousands of time and finally all the localisations are localised to
get a super-resolved image.[18]

the fluorophores in the excited state, except the fluorophores in the center of the beam (Fig2.8).
Then the sample is scanned-through to get whole image of the sample. FWHM of effective
fluorescence area for STED is given by:

r =
λ

2nsin(α)
√

1 + Imax
Isat

(2.12)

where Isat = 1/(τflσ) is the saturation intensity of fluorescence of at which its value is
reduced to 1/e of its maximum value. τfl is the lifetime of the excited state and σ is the
transition cross section of STED laser wavelength Imax is the depletion intensity[21]. Typically,
Isat = 10MW/cm and Imax = 100MW/cm [20]. Increasing the value of Imax arbitrarily large
resolution can be achieved. Hence its resolution can be infinite, theoretically. Though, one can-
not just arbitrarily shine high laser intensity on a sample as biological sample can be destroyed.
The wavelength of STED laser is longer than Excitation laser to avoid secondary excitation of
fluorophores. By using STED, one can achieve resolution as low as 20nm. Due to very high
power, sample can photobleach very fast, hence live cell imaging is hard performed. Special
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Figure 2.8: Bear profile of STED laser. Fluorescence is emitted from a very narrow area.[20]

fluorophores are also needed for labeling biological sample.

2.5 Quantitative phase microscopy (QPM)

Most of the biological samples, e.g. cells are transparent and thus contrast of the image is very
poor in the bright field image. Phase contrast microscope provides better contrast and reveals
finer structures through visualisation, though, one can’t quantify the variations in the phase.
The phase variations are directly related to the biophysical parameters, such as, thickness and
local refractive index variations in the sample. Phase variations are quantified using quantitative
phase imaging (QPI) techniques. (Fig2.9) shows typical quantitative phase contrast image of
the cells in culture. The advantage of using QPI is that it does not require any labelling
and the phase information can be extracted from the single recorded intensity pattern, thus
preventing phototoxicity. In this section, I will just explain the basic principle of QPI. The
rigorous theoretical description is out of the scope of my thesis.

Figure 2.9: Quantitative phase image of cells in culture. The height and color of an image
point correspond to the optical thickness, which only depends on the object’s thickness and the
relative refractive index.[22]
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Upon illuminating an object under the microscope with a plane wave, the intensity O0(x, y)
and phase φ(x, y) of the transmitted light at the image plane will vary due to transmittance
variations in the object. Transmitted wave at an image plane can be represented as:

Oi(x, y, t) = O0(x, y)e−i(
~k.~r−ωt+φ(x,y)) (2.13)

But only the intensity is recorded by the detector, which is the modulus square of the field,
|O0(x, y)|2. Thus the phase information is lost and one can only see the amplitude variation
at image plane. The trick to recover the phase information is by mixing the image field with
another plane wave known as reference field,

Ri(x, y, t) = R0(x, y)e−i(
~kR.~r−ωtR) (2.14)

For brevity, I will denote the amplitudesO0(x, y) = O0 andR0(x, y) = R0 in further calculations.
The resultant intensity at the image plane after interference of both fields is given by:

I(x, y, t) = |Oi(x, y, t) +Ri(x, y, t)|2

= |O0|2 + |R0|2 +O∗i (x, y, t)Ri(x, y, t) +Oi(x, y, t)R
∗
i (x, y, t)

= |O0|2 + |R0|2 + 2|O0||R0|cos[ω(t− tR)− (~k − ~kR).~r + φ(x, y)]

(2.15)

The resulting intensity contains information about the quantity of interest, φ(x, y), which can
be extracted using various QPI techniques such as phase shifting method, off-axis method, etc.

2.6 The placenta and its function

The placenta is an interfase tissue joining the mother and the fetus, which allows the passage
of nutrients and oxygen from mother to the fetus. It also permits the release of waste from the
fetus back into mother’s systemic circulation. After fertilisation, when the embryo reaches a
stage known as morula, it begins to differentiate into two groups of cells: outer cell layer called
the trophoblast and an inner layer called the inner cell mass. Trophoblast forms the fetal part
of the placenta, whereas, the inner cell mass develops into a fetus.

An embryo during the fifth to sixth day after fertilization consists of about a hundred cells in
the form of a fluid filled hollow sphere called blastocyst. At the end of the first week, the blasto-
cyst attaches to the endometrium. Soon after the attachment, the trophoblast layer divides into
two layers: inner layer called the cytotrophoblast and outer layer called the syncytiotrophoblast.
Syncytiotrophoblasts produce certain enzymes, which gradually removes the maternal tissue, as
a result, finger like projections of the syncytiotrophoblast extend through the endometrium[23].
The trophoblast cells then invade the spiral arteries in the endometrium in order to set up
supply of nutrients to the fetus and this process is known as trophoblast invasion (Fig2.10).

Implantation of an embryo and the development of fetus happens in the uterus of a female.
The Uterus is a female organ which is connected from one end to the vagina through an opening
called cervix and another end connected to both fallopian tubes. It consist of three layers: en-
dometrium, myometrium and serosa. Endometrium is lining of the uterus made up of epithelial
cells. During the pregnancy, the endometrium layer becomes thicker and the number of blood
vessels present in it increases in size and number. After implantation, the endometrium in a
pregnant woman is known as decidua or decidua basalis. Decidua forms the maternal part
connecting placenta (Fig2.11).
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Figure 2.10: Spiral artery remodelling through trophoblast invasion. During first trimester, the
trophoblasts accumulate and form a plug in spiral artery which only allow the blood plasma
to seep through. Fetus growth occur in low oxygen state resulting in a physiological oxygen
gradient between mother and fetus. Between 10-12 weeks, these plugs are dislodged flooding
intervillus space with maternal blood. [25]
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Figure 2.11: Inside the womb: fetus is connected through placenta to mother. Villous chorion is
in contact with the maternal blood and allows the passage of nutrients to fetus from mother.[23]

2.7 Trophoblast-macrophage crosstalk at feto-maternal junc-
tion

Macrophages play an important role in immune response, tissue development, remodelling and
repair, etc. They are generally classified into two categories depending on how they respond
to the various environmental signals: classically activated macrophages (M1) and alternatively
activated macrophages (M2). M1 macrophages are stimulated by the virus infections, endotoxin
(LPS) or some cytokines e.g. TNF-α, INF-γ, etc. which maximises their cytotoxic and inflam-
matory capabilities. Important cytokines, such as IL-1, IL-6, IL-12 and TNF-α are released in
response. M2 macrophages help in the tissue remodelling and repair and are characterised by
the release of the cytokines such as IL-2β and IL-10.[5]

The presence of the macrophages at implantation site can be explained as the response of
maternal body to the paternal antigens. Studies have shown that initially, the trophoblasts
release monocytes attractants which promotes their migration towards decidua, surrounding
the trophoblast cells. Then these monocytes differentiate into the macrophages. Decidua in
a pregnant woman contains 20 − 30% macrophages of the total population of the leukocytes.
During peri-implantation period, the decidual macrophages are inclined towards M1 phenotype.
Their profile predominantly shifts towards M2 macrophage phenotypes during the pregnancy.
Macrophages play important role in the spiral artery remodelling and the trophoblast invasion
by clearing the apoptotic cells in the decidua.[24] For a successful pregnancy, balance between
M1 and M2 polarisation of macrophages is important during the gestation period.

Factors such as infections, inflammatory diseases or aberrant classical activation of macro-
phages may disturb the normal macrophage function and lead to various pregnancy compli-
cations. Classically activated macrophages produce TNF-α and nitric oxide (NO) in abun-
dance which has been linked with pre-eclampsia, preterm delivery and early abortion. Fig2.10
shows systematic diagram of macrophage-trophoblast molecular cross-talk during normal and
pathological pregnancy. TNF-α may also be capable of inducing apoptosis in the trophoblast
cells.[24] Some studies suggest that first trimester trophoblast cells have the capability to keep
pro-inflammatory cytokines under control by interacting with macrophages, if the dose of LPS
is low (0.1µg/ml). They were unable to suppress them in the case of high dose (10µg/ml) of
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Figure 2.12: Systematic diagram showing macrophage-trophoblast molecular cross-talk during
normal and pathological pregnancy. During normal pregnancy, various factors such as vascular
endothelial growth factor (VEGF), fibroblast growth factor (FGF), IL-10, etc. are produced
which are important for spiral artery remodeling, trophoblast invasion, phagocytosis, etc. In
contrary, during pathological pregnancy, increased number of M1 macrophages produce pro-
inflammatory factors which can disturb the fetal growth.[5]

LPS. Generally, the level of nitrates and nitrites, which are the metabolites of NO are elevated
in the case of the pre-eclamptic women.[39]
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Chapter 3

Measurment of nitric oxide in
stimulated macrophages and
trophoblasts

”There are very few things in our body that nitric oxide doesn’t regulate.” ∼ Dr. Ferid Murad

3.1 Introduction

Both macrophages and trophoblasts are able to produce nitric oxide. Different studies attribute
different roles to nitric oxide produced by these cells in the process of embryonic implantation
during pregnancy. Previous studies have shown that the nitric oxide produced by trophoblast
may play a role in the successful outcome of the implantation by dilating uteroplacental arteries,
while nitric oxide produced by macrophages plays a role in the regulation and apoptosis of
trophoblasts.[26] Overproduction of NO by macrophages can have a negative effect on the
pregnancy.[5]

Nitric oxide is an unstable free radical and thus reacts with oxygen instantly to form nitrites
(NO−2 ) and nitrates (NO−3 ). We measured the nitrite levels present in the cell culture media,
which are directly proportional to the amount of nitric oxide produced by the cells.[27] Thus
measuring nitrite levels indirectly gives us the amount of NO produced. Both cell lines were
cultured by using the same type of media, induced by the same concentration of inflammatory
agents, and the amount of nitrite was measured in a similar fashion. NO was measured at 0hr,
4hr, 8hr, 12hr, 24hr time points for both cell lines after challenge with one of the three different
inflammation inducing agents at different concentrations as shown in table 3.1. In literature,
researchers have used various concentrations of LPS varying from 50pg/ml to few 10µg/ml, in
vitro.[28, 29] Typically, in preeclamptic placenta, the levels of TNF-α are found to be around
200pg/ml.[30]. Some protocols suggest that 5µg/ml concentration is enough to stimulate T-
cells.[31] Our decision of choosing concentrations was based on these studies and the discussions
with clinical practitioners. The Griess test is done to detect the amount of nitrite ions in the
solution. The solution turns pink in the presence of nitrites when mixed with Griess reagent.
Nitrite levels were measured quantitatively in µM by comparing the absorbance of the test
sample with that of a standard sample of sodium nitrite (NaNO2). The Griess reagent is easy
to prepare and is cheaper to perform as compared to other NO measurement methods, but the
lower limit of detection for Griess testing is just 1µM .[27]
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LPS TNF-α Con-A

100ng/ml 10pg/ml 100ng/ml
1µg/ml 100pg/ml 1µg/ml
10µg/ml 1ng/ml 10µg/ml

Table 3.1: Inflammation inducing agents and their concentrations used in the experiments

3.2 Experimental methods

3.2.1 Materials and instruments

RPMI 1640 (#R8758), LPS (#L2880), TNF-α (#T5944), Concanavalin-A (#C2272), sul-
phanilamide (#S9251), naphthalene diamine dihydrochloride (#N91250) and Dulbecco’s PBS
(#D8537) were bought from Sigma-Aldrich, St Louis, MO, USA. Agilent 8453 UV-Visible Spec-
trophotometer, Agilent Technologies, Santa Clara, USA. FALCON 24-Well cell culture plates,
Corning Incorporated, New York, USA. Zeiss standard binocular microscope, Carl Zeiss, West
Germany with 10X and 40X objective lenses.

3.2.2 Cell lines and cell culture

RAW 264.7 and HTR-8/SVneo cell lines analysed in the experiments were from ATCC and were
collected from the Laboratory of Women’s Health and Perinatology at UiT. RAW 264.7 cells
are murine (mouse) macrophages, immortalised by inducing Abelson murine leukemia virus.
HTR-8/SVneo cell line was derived in 1992 by immortalizing the trophoblast cells that grew
out of chorionic villi of human first-trimester placenta. Both cell lines adhere to the surface
during culture.

Both cell lines were cultured separately in a humidified atmosphere of 95% air and 5% CO2

at 370C with glutamine containing RPMI-1640 medium supplemented with 10% fetal bovine
serum and antibiotics (penicillin and streptomycin). The cells were subcultured every 2-3 days
by transferring about 20% of the cells to the next passage (transferring some amount of cells to
new flask) and were utilised for experiments at 80− 90% confluency.

3.2.3 The Griess method for NO measurement

Figure 3.1: Standard curve is linear and is used to quantify the concentration to nitrites present
in the culture media.
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Preparation of Griess reagent:
Griess reagent is prepared by adding 2.5% solution of phosphoric acid in distilled water.

1% sulphanilamide and 0.1% naphthalene diamine dihydrochloride are added to that solution
and mixed well. The reagent is then protected from the direct light exposure. The protocol to
prepare the standard curve is:

1. Standard solutions of sodium nitrite (NaNO2) were prepared with following concentra-
tions: 0µM , 1µM , 2µM , 5µM , 10µM , 20µM , 50µM , 100µM , 200µM .

2. Griess reagent (300µl) was mixed with standard solution of each concentration of NaNO2

described in step 1.

3. Each solution from step 2 was individually transfer into the cuvette and absorbance on a
UV spectrometer was measured corresponding to the wavelength 540nm.

4. For each concenration, three independent experiments were conducted.

5. A curve for concentration vs. absorbance was plotted (Fig3.1).

Quantisation of NO levels:
A standard curve (Fig3.1) is prepared to quantify the unknown nitrite concentration in any

solution. Once a standard curve is prepared, absorbance from the culture media is measured
at 540nm on UV spectrometer. Then this value of absorbance is compared with standard
curve and a corresponding concentration of nitrite is calculated using the linear equation. The
absorbance of an unknown sample (x) is measured on UV spectrometer corresponding to 540
nm. The nitrite concentration (y) from this curve can be calculated as follows: y = x−0.0092

0.0187

Figure 3.2: Representative 24-well plates of nitrite assays. This figure represent the plan for
LPS-challenged cells in which nitrite concentration will be quantified after 0hr and 4hr. Similar
plates were prepared for 8hr, 12hr and 24hr studies. Same method was adopted for other two
inflammation inducing agents as well.

Measurement of NO in cell culture media:
For the nitrite measurement, 1 × 105 cells/ml were transferred to each well of the 24-well

plates. The cells were allowed to stabilize and adhere for 24 h in an incubator at 370C and 5%
CO2. The inflammation-inducing agents were added to these wells afterwards, according to the
following procedure:
Each plate was divided into two sets (12 wells each). Each set was further divided into a subset
of 3 wells. One subset was kept as a control and the other three subsets were challenged with
three different concentrations of a particular inflammation-inducing agent as shown in (Fig3.2).
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3.3 Results and discussion

3.3.1 LPS induces NO production in macrophages, but not in trophoblasts

Figure 3.3: The production of NO by macrophages (left) and trophoblasts (right) following
LPS-challenge at various concentrations. Bar graph shows the mean value (+S.D.) of three
experiments. Considerable amount of NO was produced only in case of macrophages stimulated
by LPS. (The horizontal red line shows the detection limit for NO measurements.)

LPS is an endotoxin known to induce cellular stress in response to which some cells, e.g.
macrophages produce NO. We measured the response of macrophages and trophoblasts upon
challenging them with various concentrations (100ng/ml, 1µg/ml, 10µg/ml) and at different
time points (0hr, 4hr, 8hr, 12hr, 24hr). Upon activation of macrophages with LPS, large
amount of NO is produced after 24hr. From Fig3.3, it can be seen that compared with control,
challenged cells already started producing NO, but they are below the lower detection limit of
Griess method, so the results after 4hr are not conclusive. After 8hr, UV spectrometer started
detecting the nitrites and the nitrite concentration remains almost constant until 12hr. The
maximum increase in the NO production is seen between 12 − 24hr. An increase in the NO
production was expected and is in accordance with the previous studies.[32, 33]

In contrast, trophoblasts were not able to produce any significant increase in the amount of
NO even after 24hr following LPS-challenge. A possible reason for this might be that the iNOS-
enzyme is not as active as in trophoblasts as compared with macrophages. Another reasons
might be that the concentration of LPS was not enough to induce the effect or the time frame
for the stimulation was not enough. Some studies suggest that primary trophoblasts produced
a significant amount of NO with 100µg/ml LPS after 24hr.[34]

Upon comparison of the results between macrophages and trophoblasts, one can infer that
similar inflammatory conditions result in different amounts of NO production. It is worth
mentioning here that both cell types have toll like receptors (TLR-4) which recognises the LPS.
Macrophages produce significant amounts of NO upon activation by LPS, but trophoblasts
failed to produce a significantly higher amount of NO. We repeated the experiment three times
and every time similar results were obtained. The negative values in the results are due to blank
error.

3.3.2 TNF-α induces NO production in neither macrophages nor trophoblasts

TNF-α is released by macrophages upon stimulation of LPS. During the first trimester, it may
be involved in the regulation of trophoblast differentiation.[5] Some studies suggest that the
TNF-α was elevated in case of pre-eclamptic placenta.[24] Macrophages and trophoblasts were
challenged with different concentrations of TNF-α (10pg/ml, 100pg/ml, 1ng/ml) and measured
the corresponding nitrite concentration in the cell culture media.
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Both macrophages and trophoblasts do not show significantly increased levels of NO pro-
duction even after 24hr of stimulation, which can be seen in Fig3.4. Some values are above the
detection limit, but the standard deviation for these readings is also large. Our results suggest
that though, TNF-α is produced by the macrophages after classical activation, but it might
not stimulate the macrophages directly to produce NO. According to [35, 36], macrophages are
activated by TNF-α in combination with interferon gamma (INF-γ). So far, we have not come
across any literature discussing NO production by trophoblasts after TNF-α challenge. Our re-
sults suggest that TNF-α might not induce nitric oxide synthase in case of trophoblasts. Future
studies could investigate how trophoblasts behave in combination with TNF-α and INF-γ.

Figure 3.4: The production of NO by macrophages (left) and trophoblasts (right) following
TNF-α-challenge at various concentrations. Bar graph shows the mean value (+S.D.) of three
experiments. (The horizontal red line shows the detection limit for NO measurements.)

3.3.3 Con-A induces NO production in neither macrophages nor trophoblasts

Concanavalin-A (Con-A) is a plant mitogen, which is known to cause inflammation in some
mouse lymphocytes.[37] It is not produced naturally in our body and is not known to cause
pregnancy complications. However, we wanted to see how macrophages and trophoblasts would
react to such inflammatory agent. Macrophages and trophoblasts were challenged with different
concentrations of Con-A (100ng/ml, 1µg/ml, 10µg/ml) and corresponding nitrite concentra-
tion was measured in the cell culture media. Neither macrophages nor trophoblasts produced
significantly increased amount of NO. From Fig3.5, one can see that there are some values above
the detection limit of the setup, but they might be due to experimental error. There have been
some studies on effect of Con-A on different kinds of macrophages, but the nitrites detected were
of the order of nM concentration.[38] Our setup is not able to detect these amounts. Moreover,
this value might vary according to the cell type. No literature was found on NO production by
trophoblasts upon Con-A challenge.
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Figure 3.5: The production of NO by macrophages (left) and trophoblasts (right) following
Con-A-challenge at various concentrations. Bar graph shows the mean value (+S.D.) of three
experiments. (The horizontal red line shows the detection limit for NO measurements.)
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Chapter 4

Multimodality imaging of stimulated
trophoblasts and macrophages

One thing I liked about being in microscopy is it gets you out of your box constantly because
there’s such a diverse range of applications. ∼ Dr. Eric Betzig

4.1 Introduction

The Griess reagent has low sensitivity, detecting nitrites ≥ 1µM .[27] NO is not be detected
until nitrite levels reach the detection limit of the Griess test. The inflammatory environment
might still affect sub-cellular morphology before nitrite levels reach above the detection limit.
High resolution microscopy can be used to analyse a single cell at a time and thus can detect
the morphological changes at cellular level at an early stage. While SIM provides specific sub-
cellular information of mitochondria and plasma membrane, QPM is used to obtain information
about the thickness of the cell or the cellular content. Thus, multimodal imaging approach was
adopted to study the inflammatory response of macrophages and trophoblasts.

Two sets of experiments were carried out with different aims. The first aim was to see if there
are any sub-cellular morphological changes after 24hr of inflammatory stimuli. Another set of
experiments was carried out to detect how early the sub-cellular morphology start changing
after the stimulus. Most of the time during this research project was spent on experiments
with 24hr incubation time; early time-point experiments were done during the last month of
the project period and this work can be further extended.

Mitochondria utilizes oxygen during energy production and reactive oxygen species (ROS)
e.g. superoxide (O·−2 ), hydroxyl radical (HO·), alkoxyl radical (RO·), etc. are generated as the
byproduct. O·−2 may react with NO to produce reactive nitrogen species (RNS) e.g. perox-
ynitrite (ONOO−), which has strong damaging effects on the cell. ROS affect many cellular
functions, such as autophagy, anti-microbial effects, cell differentiation, inflammation, etc. ROS
also regulates mitochondrial fission and fusion, thus, controlling the overall morphology and
function the of mitochondria.[41] Generally, fission and fusion rates are equal, but imbalance in
these processes can lead to the alteration of morphology and function of mitochondria. Cells
with high fusion-to-fission ratio have fewer number of mitochondria, which are long and highly
interconnected. Cells with low fusion-to-fission ratio have higher number of mitochondria, which
are shorter and are often referred to as fragmented mitochondria.[42]

Any damage to the mitochondria can cause cell dysfunction and eventually leads to cell
death.[43] Thus we investigated the morphological changes in mitochondria in response to in-
flammatory environment. It can be seen while observing under a simple microscope that the
size of macrophages increases after LPS challenge. Through our experiments we also studied
plasma membrane morphological changes in macrophages using SIM and QPM. QPM was also
used to study the effect of inflammatory stimuli on the phase value of cells, which is related to
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their thickness and refractive index of cellular content.
In Ch3, three concentrations for each inflammatory agent were used. From Fig3.3 it can be

seen that NO is produced significantly by all three concentrations (1ng/ml, 1µg/ml, 10µg/ml)
of LPS used after 24hr. We decided to opt for middle concentration 1µg/ml. TNF-α and Con-A
challenge could not induce NO production in macrophages and trophoblasts, it was therefore
decided to use the highest concentration (TNF-α: 100ng/ml and Con-A: 10µg/ml) for both.

4.2 Experimental methods

4.2.1 Materials and instruments

CellMask Green (CMG) (#C37608), MitoTracker Green (MTG) (#M7514) and live cell imag-
ing solution (#A14291DJ) were bought from Thermo Fisher Scientific (Waltham, USA). #1.5,
25mm round coverslips (#631−0172) were bought from VWR international. Human fibronectin
purified from human plasma by affinity chromatography on Gelatin Sepharose 4B was a kind
gift from Vascular Biology Research Group, Dept. of Medical Faculty. Commercial OMX 3D-
SIM v4 blaze system (GE Healthcare, USA). Quantitative phase microscope is custom build at
optical nanoscopy lab, UiT-The Arctic University of Norway.

4.2.2 Sample preparation

The plasma membrane and mitochondria were labelled in our experiments using CellMask
Green (CMG) and MitoTracker Green (MTG), respectively. Both dyes are excited by the same
wavelength (λex = 488nm). CellMask, is an amphipathic molecule containing a lipophilic part
for membrane loading and a negatively charged dye for membrane anchoring.[45] Mitochondria
are generally difficult to visualise under phase contrast or differential interference contrast mi-
croscopy. Hence, labels play a vital role in the study of mitochondria using microscopy. As
mitochondria have negative transmembrane potential, the dyes used, e.g. MitoTracker (green,
red etc) to probe them are generally positively charged and lipophylic.[46] However, MitoTracker
chemically reacts and link to thiol groups in the mitochondria.[47]

For SIM imaging, cells (cultured as described in section 3.2.1) were seeded on #1.5 coverslips
(170µm thick) the day before imaging and were incubated. Next day cells were challenged with
inflammatory agents. They were labelled and imaged after various time points. For QPM, the
cells were seeded on silica chips with a reflecting surface. Before seeding the cells, the surface
was treated with fibronectin for 20 minutes. The chips were then washed thrice with PBS and
cells were seeded and incubated for 24hr. Next day cells challenged with inflammatory agents.
They were labelled and imaged after various time points.

A fair amount of time during this master research project was spent on optimising the
labelling protocols for both cell lines. Different concentrations for MTG were tried (30−75nM)
for different time periods (15 − 45mins). After a series of experiments, cells incubated with
60nM of MTG concentration for 30mins was found to be optimum for both the cell lines and
further experiments were carried out using these parameters. For CMG, labelling the samples
with ratio of stock solution of CMG to RPMI, 1 : 1000 for 10mins was found to be optimum.
Oil #1.1516 (provided along with OMX-setup by GE Healthcare) was found to be best for
imaging cells seeded on #1.5 coverslips and labelled with CMG or MTG at room temperature.
Protocol for labelling the plasma membrane:
The sample was washed once with pre warmed RPMI. The stock solution of CMG was diluted
to a final concentration of 1:1000 in a pre warmed complete media and was added to the culture
dish. The sample was incubated for 10 minutes. Then the was sample washed thrice with pre
warmed RPMI and RPMI was replaced with imaging media before imaging.
Protocol for labelling the mitochondria:
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A Stock solution was prepared by dissolving the MTG in new vial with 74.4µl of DMSO, which
gave a final concentration of 1µM . The sample was washed once with pre warmed RPMI. The
stock solution was diluted to a final concentration of 60nM for staining both cell lines in A pre
warmed complete media. The sample was incubated for 30 minutes with a working solution.
The sample was washed with pre warmed RPMI thrice and RPMI was replaced with imaging
media before imaging.

4.2.3 Fluorescence microscopy

DeltaVision OMX (GE Healthcare) is a commercial 3D-SIM set-up used in the experiments
to acquire SIM images. Deconvolution microscopy can also be performed using this setup. It
is equipped with 60X, 1.4NA (Olympus) oil immersion objective lens, four excitation lasers
(405nm, 488nm, 561nm, 642nm) and emission filters (419-465, 500-550, 609-654, 665-705) for
imaging DAPI, green, red and far red fluorophores. The images shown in this thesis are projected
images of z-section stacks. Each z-section is 0.125µm and each section is illuminated 15 times
(five different phases at three different angles). 15× 8 = 120 images are acquired for 1µm thick
sample. Image acquisition time is generally few seconds, which depends on the exposure time
(typically 20-50 ms). For deconvolution microscopy, the z-section was chosen to be 0.25µm
thick and 1µm thick sample is illuminated only four times. Deconvolution microscope is less
phototoxic to the biological sample, but the resolution is almost half compared with SIM.
Imaging was done at room temperature for maximum one hour after the cells have been taken
out of the incubator. In our experiments, the thickness of samples to be imaged was kept
between 1.2− 2.5µm for SIM imaging and 4.0− 7.0µm for deconvolution microscopy imaging.
For better reconstruction of the images, oil was matched with the refractive index of coverslip
before starting the experiments. This was done by checking the shape of PSF of any deconvolved
image of bright point in an image. The shape should be symmetrical in all three directions.
More SIM artifacts and their eradication is discussed in Ch6. Images were analysed using
ImageJ later.

4.2.4 Quantitative phase microscopy

QPM setup is custom build by Azeem Ahmed and Vishesh Dubey, visiting PhD candidates at
UiT. Discussion of this setup is beyond the scope of this thesis. I was involved in planning the
experiments, sample preparation and the discussion of results. Imaging on this setup and data
analysis was done by Vishesh Dubey.

4.3 Results and discussion

4.3.1 Macrophages: LPS changes sub-cellular morphology, whereas TNF-α
and Con-A don’t

Results for macrophages are discussed in this section will be divided into three parts. The first
part will discuss the results about the morphological changes occurring in macrophages after
24 hour incubation with LPS. The second part will discuss the results about morphological
changes seen at early time points of LPS-challenge. In the third part, morphological effects on
macrophages challenged with TNF-α and Con-A for 24hr will be discussed. The experiments
at early time points were not performed for TNF-α and Con-A.

24-hr incubation with LPS:

High-resolution fluorescence imaging:
Mitochondria of control and LPS-challenged macrophages were labelled with MTG and were

imaged using SIM. The experiment was repeated more than three times and every time the order
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of imaging the samples was different in order to eliminate the effect of time gap between imaging
on the results. Each time the results were similar.

Macrophages stimulated with LPS showed different mitochondrial morphology as compared
to the controls. Fig4.1 show comparison between control and LPS-challenged macrophages.
Fig4.1)(d) suggest that the mitochondria appear fragmented, round and shorter in LPS-challenged
macrophages compared with control Fig4.1(b). Distribution of mitochondria also seems differ-
ent in these two cases. To rule out the phototoxicity effect due to SIM, images were also taken
in DV mode and similar morphology was found in this case as well. Not all the cells seem to be
affected with LPS. In order to get the statistics about the number of cells damaged, DV images
of more than 150 cells were analysed. About 50 − 60% cells were found to be damaged with
LPS-challenge.

We discussed in Sec3.3.1 that LPS induces large amount of NO is macrophages. The response
of different cells to NO can be apoptotic or necrotic, depending on the concentration of NO they
are exposed-to.[48] Apoptosis and necrosis are two different pathways of cell death. Apoptosis
is natural and programmed death triggered by normal processes in our body, whereas necrosis
is the premature death of cells caused by e.g., infections, toxins, etc. Recently it has been
shown that the cells can die through necrosis in a programmed way. This process is known
as necroptosis and is under heavy investigation.[49] Main morphological features of apoptotic
cell death are: cell shrinkage, nuclear and cytoplasmic condensation. Necrosis and necroptosis
share most of the morphological features, the cell and its organelles begin to swell and the
membrane integrity is lost.[49] Albina J. E. et. al. showed that NO can induce apoptosis in
case of RAW264.7 macrophages. They treated RAW264.7 macrophages with LPS (1µg/ml)
in combination with INF-γ (10U/ml) for 48hr and showed using electron microscopy that
nuclear and cytoplasmic condensation occurs, leading to apoptosis. They also reported that
the apoptotic changes were asynchronous. Some cells were healthy and some were necrotic as
well.[50, 29] Hortelano S., et. al. showed that NO can induce apoptosis in macrophages, also
the mitochondrial membrane potential is increased.[52] Baker B., et. al. studied the effect of
low dose (50pg/ml) of LPS on primary mouse macrophages and proved that low doses of LPS
induces necroptosis in these cells.[28] Kirschnek S., et. al. co-cultured RAW264.7 macrophages
with E. Coli bacteria and showed using electron microscopy that the cells die through necrosis.
LPS is derived from E. Coli bacteria and they both have similar effects on macrophages.[51] Our
results taken together with the results found in citations mentioned in this paragraph suggest
that LPS-challenged macrophages might be headed towards necrosis. Further experiments need
be done to confirm it.

Motivated by the fact that the size of macrophages seems to be increased after LPS challenge
in Fig4.1(c), we decided to investigate the plasma membrane of macrophages challenged with
LPS. We expected some changes in the morphology of the plasma membrane. Plasma mem-
brane of control and LPS-challenged (1µg/ml for 24hr) macrophages was labelled with CMG.
Upon comparison of results, drastic changes were seen in the morphology. From Fig4.2(a) and
Fig4.2(b) shows that the control macrophage has defined boundaries and in Fig4.2(b) villi-like
projections can be seen on the plasma membrane. From Fig4.2(c) and Fig4.2(d) it can be seen
that the cell is spreading and the membrane integrity seems to be lost. Arrows in Fig4.2(c)
show plasma membrane rupture. Plasma membrane starts spreading out from these points,
which can be seen from Fig4.2(d). Thick projections can also be seen sticking out of the cell
in Fig4.2(c), and from Fig4.2(d) it can be seen that plasma membrane is spreading along these
directions. Less villi-like projections from challenged cells were seen compared with the control
sample. These results also indicate that the cell might be headed towards necrosis. Imaging
with deconvolution microscope gave similar results thus ruling out the phototoxicity effect due
to SIM on the plasma membrane.

Quantitative phase imaging:
Further studies were done using QPM. QPM is label-free imaging technique and is not
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phototoxic to the cells. The results showed that the phase values and the size of LPS-challenged
macrophages compared with controls. Comparing Fig4.3 and Fig4.4, it can be seen that the
size of cells increases more than twice. Note that Fig4.3 and Fig4.4 uses different pixel numbers
in x and y axis. Also, the boundaries in LPS-challenged macrophage are not defined properly
compared control and the cell spreads. During the experiment, the phase values of around 15
cells of (each control and LPS-challenged) macrophages were calculated and the data is plotted
in Fig4.5. The experiment was repeated thrice and the results were similar every time. We can
see from Fig4.5 that the phase values in LPS-challenged macrophages decreased by about 2rad.
This suggests that either the thickness of the cell is decreased or the refractive index of cellular
content has decreased. If we assume that the refractive index has not changed considerably, the
decrease in phase value suggests that the thickness of the cell has decreased. Although another
set of experiment can be performed to decouple the effect of refractive index and thickness.
Thus, the surface area of a stimulated cell seems to increase and thickness seems to decrease.
To the best of our knowledge, this is the first report on the quantitative phase analysis of
RAW264.7 macrophages following LPS-challenge (1µg/ml for 24hr) using QPM. In Fig4.4 the
arrows indicate low phase regions. These can be vacuoles or membrane ruptures, and lower
phase value in these regions can be due to the low refractive index as compared to rest of the
cell in these areas. LPS is reported to induce vacuoles in the cytoplasm of macrophages.[53]
The detailed study of these vacuole structures was done by Yoshida K., et. al.. [54] Using
electron microscopy they showed that the vacuole structures are formed in macrophages after
LPS challenge (0.1µg/ml for 2 days). They showed that the origin of these vacuoles is not
lysosomes or phagosomes, but they are related to endoplasmic reticulum or plasma membrane.

Early time-point study of macrophages challenged with LPS:
After 24hr stimulation studies, we were also interested in studying the effect of inflammatory

agents at an early stage. NO levels reach at the lower level of detection of the Griess test later
than 4hrs. Preliminary experiments were carried out to analyse the morphological changes
in macrophages at an early stage. Cells were imaged with SIM and QPM after 2hr and 4hr
of LPS-stimulation. Mitochondria and plasma membrane were labelled with MTG and CMG
respectively for SIM imaging. Preliminary experiments done on SIM and QPM were able to
detect morphological changes as early as 2hrs after LPS-challenge.

High-resolution fluorescence imaging:
Comparing mitochondria in Fig4.6 it can be seen that after 2hr of stimulation, mitochondrial

morphology begins to change. After 2hr of LPS-challenge, mitochondria in 53 cells was analysed,
out of which mitochondria of 14 cells changed. Mitochondria became rounded and shorter.
After 4hr, out of 58 cells, mitochondria in 18 cells seem damaged. Similarly, plasma membrane
morphology also started changing just after 2hr of LPS-challenge. 10 out of 34 cells examined
were found with damaged plasma membrane and after four hours plasma membrane structure in
7 out of 30 cells was found to be changed. We can not get general statistics because the number
of cells examined in each experiment were not enough. These experiments were done twice and
further experiments need to be carried out to get the statistics and to check if the experiment
is reproducible. However, the initial experiments indicate that it is possible to visualise damage
in mitochondria and plasma membrane at early time-points using SIM.

Quantitative phase imaging:
Fig4.8 is comparison of quantitative phase values following 0hr, 2hr, 4hr LPS-challenge.

The phase values of the cells remain almost constant from 0hr-2hr and decreases by about
one radian from 2hr-4hr. Comparing figures Fig4.9 andFig4.10 it can be seen that the size
of macrophages begin to increase after two hours of LPS-challenge. Further, from Fig4.11 we
can see that the size increases further. There were also some early indications of the vacuole
formation in phase images after 4hr.

Interestingly, SIM images showed morphological changes after 2hr, but phase values Fig4.8
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Figure 4.1: (a) and (c) 3-D projected SIM images of the mitochondria labelled with MTG
(λex = 488nm) in control and LPS-challenged macrophages, respectively. (b) and (d) are their
cropped parts. Mitochondria in LPS-challenged macrophage is shorter and rounded. Scale bar:
(a), (c)=5µm; (b), (d)=2µm

does not change significantly. We suspect that the phase value might be changing, but as only
twenty cells were analysed, there is a probability that there was no damaged cell. Or if there
are few damaged cells with lower phase value, the values must have been averaged out and thus
we are not able to see in the graph. In OMX-SIM, it is easy to identify the damaged cells on
mosaic, as their size is bigger than normal cell size, as the field of view due to mosaic is very
large. Field of view in single mosaic is very large and typically there can be 20 macrophages in
one mosaic. So the probability of getting damaged cells increase if we analyse multiple mosaics.

Effect of TNF-α and Con-A on morphology of macrophages
TNF-α-challenged and Con-A-challenged macrophages did not show any alteration in size

or mitochondrial structure as compared to controls. From Fig4.12 it can be seen that the
mitochondria look similar, uniform and long. It must be noted that trophoblasts did not produce
any NO following TNF-α and Con-A-challenge. Further, experiments with phase microscopy
and plasma membrane using SIM were not done, as no significant changes in the mitochondrial
morphology of macrophages were seen following TNF-α and Con-A-challenge in SIM images.
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Figure 4.2: (a) and (c) bright field images of control and LPS-challenged macrophages, respec-
tively; (b) and (d) 3-D projected images of plasma membrane labelled with CMG (λex = 488nm)
of same control and LPS-challenged macrophages. Comparing (b) and (d) one can see that the
cell spreads and membrane integrity is lost in (d). Scale bar: 5µm
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Figure 4.3: Phase image of control macrophages. x and y axes are expressed in no. of pixels
and phase value is represented by the colour from 0 (blue)-15 radian (red).

Figure 4.4: Phase image of LPS-challenged macrophage. x and y axes are expressed in no.
of pixels and phase value is represented by the colour from 0 (blue)-15 radian (red). Arrows
indicate the vacuole-like structures.
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Figure 4.5: Comparison of phase values between control and LPS-challenged macrophages. Bar
graph shows the mean value (+S.D.) of phase of 15-20 cells. Phase value in LPS-challenged
macrophages decreased on an average 2 radians compared to control.
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Figure 4.6: Projected 3-D images of mitochondria labelled with MTG. (a) Control, (b) 2hr
LPS-challenged, (c) 4hr LPS-challenged macrophages; (b), (d) and (f) are their cropped part,
respectively. Mitochondrial morphology begins to change after two hours. Scale bar: 5µm
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Figure 4.7: Projected 3-D images of plasma membrane labelled with CMG. (a) Control, (b)
2hr LPS-challenged, (c) 4hr LPS-challenged macrophages. Plasma membrane begins to loose
its integrity after two hours. Scale bar: 5µm

Figure 4.8: Comparison of phase values of macrophages after LPS-challenge at early time-points.
Bar graph shows the mean value (+S.D.) of phase of 15-20 cells. Phase value seems constant
between 0hr-2hr and starts to decrease after 2hr.
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Figure 4.9: Phase image of control macrophages. x and y axes are expressed in no. of pixels
and phase value is represented by the colour from 0 (blue)-15 radian (red)

Figure 4.10: Phase image of macrophages after 2hr of LPS-challenge. x and y axes are expressed
in no. of pixels and phase value is represented by the colour from 0 (blue)-15 radian (red).
Macrophages start to spread.
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Figure 4.11: Phase image of macrophages after 4hr of LPS-challenge. x and y axes are expressed
in no. of pixels and phase value is represented by the colour from 0 (blue)-15 radian (red). Phase
values decreases as compared to control and cells are spreading.
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Figure 4.12: (a), (c) and (e) 3-D projected SIM images of the mitochondria labelled with MTG
in control, TNF-α and Con-A-challenged macrophages, respectively. (b), (d) and (f) are their
cropped parts. Mitochondria in (c) and (e) look similar to (a). Scale bar: (a), (c) and (e)=5µm;
(b), (d) and (f)=2µm
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4.3.2 Trophoblasts: TNF-α changes sub-cellular morphology, whereas LPS
and Con-A don’t

Experiments with trophoblasts were done only with 24hr incubation time. Due to the limited
duration of master thesis, experiments with early time-point(2hr, 4hr) and QPM were not
performed.

Mitochondria of control, LPS-challenged, TNF-α-challenged and Con-A-challenged tropho-
blasts were labelled with MTG. SIM images suggest that there are morphological differences
in TNF-α-challenged trophoblasts compared with control samples. Interestingly, we could not
measure increased NO production by trophoblasts after TNF-α-challenge. In Fig4.13(d) one
can clearly see that the size of mitochondria in TNF-α-challenged trophoblasts is decreased
and they appear fragmented, thicker and more in number compared with control Fig4.13(b).
Over 50% (36 out of 67 cells examined on SIM) showed altered mitochondrial morphology,
whereas in control samples, no significant number cells were found with shorter mitochondria.
This experiment was repeated three times, and morphological differences were found in TNF-
α-challenged trophoblasts as compared to control samples. It would be interesting to extend
the study and see what happens if we challenge the cells for a longer or shorter period.

Studies have shown that the TNF-α levels were increased in case of pregnancy complications,
such as, preeclampsia.[5, 24] Zsengellér, et. al. reported that the mitochondria appear shorter
and Zhonghua, et. al. showed that the mitochondria swells in preeclamptic placental tissue using
electron microscopy.[55, 56] These studies taken together with our results suggest that TNF-α,
which is found to be heightened in preeclamptic placenta, causes damage to mitochondria in
trophoblasts.

No differences were seen in the morphology of mitochondria after challenging macrophages
with LPS and Con-A compared with control. Fig4.14(b) and Fig4.14(d) suggest that the
mitochondria is long and similar to mitochondria in control Fig4.13(a).
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Figure 4.13: (a) and (c) 3-D projected SIM images of mitochondria labelled with MTG in
control and TNF-α-challenged macrophages, respectively. (b) and (d) are their cropped parts.
Mitochondria in TNF-α-challenged macrophage is shorter and thicker. Scale bar: 5µm
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Figure 4.14: (a), (c) and (e) 3-D projected SIM images of the mitochondria labelled with
MTG in control, LPS-challenged and Con-A-challenged trophoblasts, respectively. (b), (d) and
(f) are their cropped parts. Mitochondrial structure in LPS-challenged and Con-A-challenged
trophoblasts look similar compared to control. Scale bar: (a), (c) and (e)=5µm; (b), (d) and
(f)=2µm
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Chapter 5

Conclusions and perspectives

The aim of this thesis has been to study cellular and sub-cellular morphological changes in
macrophages and trophoblasts in response to different inflammatory agents. From our results,
we can conclude that if macrophages and trophoblasts were to be exposed to some similar
inflammatory conditions, for an equal amount of time, the quantitative values of nitric oxide
produced by these two are very different. Multimodal imaging results suggest that the effect of
the same inflammatory agent is different, both on the cellular and sub-cellular morphology of
macrophages and trophoblasts.

LPS induces significantly large amount of NO in macrophages which in turn affects the
morphology of mitochondria and the plasma membrane as shown by SIM. It also affects either
the thickness of the cell or the cellular content as revealed by QPM results. The Griess method
does not provide cellular level information, but by using high-resolution fluorescence microscopy
it was found that 50− 60% of the macrophages undergo morphological changes following 24hr
LPS-challenge.

Through SIM and QPM it was also found that the effect on the morphology of macrophages
can be observed following only 2hr of incubation with LPS, whereas the Griess method was
unable to detect increased amount of NO before 4hr. Damage in the plasma membrane was
more prominent than in mitochondria at early time-points compared with control samples, and
the size of cells started to increase following only 2hr of incubation with LPS.

Using The Griess method we also showed that TNF-α and Con-A were unable to induce
detectable amounts of NO in macrophages. Similarly, SIM was also unable to detect any
morphological changes in macrophages following TNF-α and Con-A challenge.

The Griess method showed that TNF-α was unable to induce detectable amounts of NO in
trophoblasts. Interestingly, SIM showed that even though iNOS enzyme in trophoblasts is not
as active compared with macrophages, TNF-α was able to alter the mitochondrial morphology
in trophoblasts.

No detectable increase in NO production was reported using the Greiss method in tro-
phoblasts following LPS and Con-A challenge. SIM also showed that there were no differences
in the morphology of mitochondria after challenging macrophages with LPS and Con-A, com-
pared with control samples.

In this thesis, we showed that SIM and QPM are live-cell friendly, useful tools to evaluate
sub-cellular mechanisms associated with inflammation-mediated pregnancy complications with
immense potential to explore this untouched field further for clinical applications. SIM and
QPM are shown superior to the commonly used Griess reagent method in clinics to detect the
inflammation at early time-points. It is important to detect inflammation as early as possible
to prevent the damage caused to the body due to inflammation.

Most of the research in this field at sub-cellular level is currenlty done using electron mi-
croscopy. Electron microscopy is time consuming, highly expensive and not compatible with
live-cell imaging. In contrast, SIM is faster and live-cell imaging is possible. It brings us one
step closer to exploring sub-cellular mechanisms occurring in live cells. Commercially available
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Figure 5.1: Mitochondria can be seen in the bridge (arrow) between two cells. Mitochondria
might be exchanged between these cells. Scale bar: 5µm

SIM setups are also highly expensive at present, which can limit the use of this technique for the
possible application discussed here. The ongoing research project Chip-Based Nanoscopy at the
Optical Nanoscopy research lab, UiT-The Arctic University of Norway aims at developing low
cost, easy to use SIM setup with better resolution than current commercially available setups.

The present work can be extended to study primary trophoblast cells and macrophages
derived from placenta. Studying them in co-culture will shed more light on their interaction
with inflammatory environment. The present study of mitochondria was done using CMG,
which eventually shortens the life span of cells. We can look for alternative dyes which are
more photostable and non-toxic to the cells, or for label-free super-resolution techniques. It
will allow us to study the mitochondrial dynamics for a longer period. This will provide a
complete picture, how the dynamics change in cells exposed to inflammatory environment. In
this research project, we primarily focused on detecting morphological changes in mitochondria.
However, it will be interesting to study other properties of mitochondria using other dyes, e.g.
JC1, which is used to study the mitochondrial transmembrane potential. LPS or TNF-α tagged
with a fluorescent molecule might be used to track their path, which can increase our knowledge
about the possible mechanisms by which inflammatory molecules affect the cells.

On the technique development side, it will also be interesting to combine QPM techniques
with various superresolution techniques such as SIM in a single setup. This would allow us
to get quantitative information about different parameters of the cell, such as its thickness .
Sub-cellular morphology of the same cell can be studied using this setup.

While working with macrophages, many bridges between the cells were observed, which
contained mitochondria as seem in Fig5.1. We hypothesize that the mitochondria is being
exchanged between the cells, and this can be another important dimension of our research.
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Chapter 6

Appendix

6.1 SIM artifacts

It is important to understand that SIM depends heavily upon post-image processing for the
reconstruction of images. If some parameters (discussed in following sections) are not adjusted
correctly, the reconstructed images can contain artifacts. These artifacts can be misleading and
can be interpreted as biological features. Following section discuss about different artifacts in
the SIM images, their origin and eradication.

6.1.1 Haloing

In Fig6.1, pseudo-pattern surrounds the real structures. This effect is called haloing effect and
is caused due to refractive index mismatch between oil and the coverslip on which sample is
placed.[57] Distance between an objective lens and the sample coverslip is filled with oil in order
to collect more light rays. The refractive index (RI) of oil should be matched with the refractive
index of coverslip to reduce losses at the interface. Haloing effects can be removed by matching
the refractive index of oil and the coverslip. This is done by making the PSF symmetrical about
x, y and z direction.

Figure 6.1: 3-D projected image of macrophages. Mitochondria was labelled with MTG. Image
contain pseudo-structures surrounding the mitochondria. This was eliminated by choosing
correct oil. Scale bar: Scale bar: 5µm
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6.1.2 Hammerstroke

Hammerstroke refers to the fine pseudo-structures (seems related to the high spacial frequencies)
appearing in the reconstructed image. These are generally caused when the reconstructed noise
mixes-up with poorly resolved structures. These can be misinterpreted as biological structures
e.g. in image Fig6.2b one can think that the membrane is porous. These artifacts can be
overcome by increasing signal to noise ratio.[58]

Figure 6.2: 3-D projected image of plasma membrane (labelled with CMG) of macrophage.
Zooming-in reveals a fine, porous structure which is caused by the reconstructed high frequency
noise. This effect is known as hammerstroke. Scale bar: (a) 5µm and (b) 2µm

6.1.3 Hatching

We can see a strip pattern along one direction in the reconstructed image (Fig6.3). During
the image acquisition in SIM, the sample is illuminated along three different angles. If settings
of one or more angles is incorrect, this can lead to stripy-pattern known as hatching. This is
caused by incorrect angle settings: value of one or more angles if off, leading to the formation
of interference pattern above or below the focal point of objective lens; the intensity of one or
more angles is low; the modulation contrast for each angle is not equally high. Correcting these
angle settings can undo the hatching effect.[58]

6.1.4 Honeycomb

Fig6.4 shows the honeycomb effect which is caused by low signal to noise ratio. Low labelling
density, low laser power or less exposure time can lead to these artifacts. Some dyes can loose
their fluorescence properties if they were opened long before the use. Typically in our experi-
ments if the illumination intensity 10% and the exposure time 10−40ms gave maximum counts
around 5000, we proceeded for the experiments, otherwise the the labelling was optimised.
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Figure 6.3: 3-D projected image of mitochondria (labelled with MTG) of macrophage. The
stripy pattern is called hatching and is caused by incorect angle settings in SIM. Scale bar: (a)
5µm and (b) 2µm

Figure 6.4: 3-D projected image of plasma membrane (labelled with CMG) of trophoblasts.
The honeycomb pattern in the image caused by the low signal to noise ratio. Scale bar: (a)
5µm and (b) 2µm
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