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Abstract 
 

The main objective of this thesis is to optimize the thickness of sensitive polymer layer highly 

doped with Cryptophane-A for methane pre-concentration and to make the existing sensor more 

stable and selective towards methane. 

     In recent years, methane detection has become a hot topic due to the strong impact of 

methane on the global warming and the climate change. There has also been rising interest in 

the development of new methane sensors that can tackle the task of sensitive atmospheric 

methane detection, but are smaller, lighter, and cheaper than the state of the art. Our approach 

to this challenge is the development an on-chip waveguide sensor, which compensates for the 

rather short path lengths possible on a chip with pre-concentration of methane in a thin, 

specially designed waveguide cladding layer. 

     Our detection technique is based on evanescent refractive index sensing with a Silicon 

Nitride shallow rib-waveguide Mach-Zehnder interferometer. The waveguide was fabricated 

with dimensions supporting single TE and TM modes at the wavelength of 785 nm. The 

reference arm is cladded with SiO2 that is impermeable to methane, and the sensing arm is 

cladded with Styrene Acrylonitrile (SAN) polymer doped with Cryptophane-A. Cryptophane-

A is a molecular compound, which has a high affinity towards methane. The sensor group have 

previously reported that the presence of cryptophane increases the methane concentration in the 

SAN layer. The limit of detection of existing set-up is 6 ppm. 

     However, to bring the methane sensor to the field, not only sensitivity but also specificity to 

methane and the sensor response time need to be quantified. In this thesis, both parameters were 

targeted. 

     First, the sensor was characterized for sensitivity and response time of different thicknesses 

of sensitive layer with Cryptophane-A: SAN concentration of 8.5. The measurement result 

shows that both sensitivity and response time increase with thickness. The sensitivity gets 

saturated at 400 nm while response time continues to increase.  

     Second, the measurement was done to reach the limit of sensitivity of developed sensor. The 

measurement result shows that the sensitive layer of Cryptophane-A: SAN concentration of 1:1 

gives the highest sensitivity. Then measurement was done for thin layer of highest sensitive 
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layer and PDMS on top of that. The measurement result shows that sensitivity is increased to 

twice of previous reported value and response time reduced by almost 3 times. 

     At the end, the drift in the sensor was reduced by deposition of SAN on one arm and SAN 

doped with cryptophane-A on the other. The measurement data shows that the long-term drift 

which was evident when SiO2 was cladded in one arm is reduced. The deposition of polymer 

on both arms also provides specificity towards methane. 

     The specificity, high sensitivity, fast response and stability makes it a robust sensor that can 

be mounted on drone (UAV) for real-time testing.  
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Chapter 1 

 

Introduction 
 

1.1 Motivation  
 

In recent years, the global warming has become a hot topic as earth temperature has increased 

by 0.8°C over past hundred years and it is expected to increase by 0.3°C to 4.8°C over the next 

century [1]. The rise in global temperature is now causing the climate changes resulting in 

drought in some places and floods in others. Glaciers and oceans are also getting affected by 

the global rise in temperature, the sea level is rising and the oceans are becoming more acidic. 

Greenhouse gasses are responsible for the rise in global warming as these gases like CO2, CH4, 

CFC, N2O, etc. tend to trap the radiation coming from the sun, which warms the earth 

atmosphere. Each of these gases has a specific global warming potential, which defines the 

capacity of a gas to cause global warming. Global warming potential (GWP) is defined as the 

energy absorption by 1 ton of gas over a given time relative to energy absorption by the 1 ton 

of CO2. Carbon dioxide is taken as the reference gas and has by definition global warming 

potential of 1. It stays in the atmosphere for thousands of years. Methane gas has approx. 28-

30 GWP over 100 years which is very high in comparison to carbon dioxide. Some gases like 

N2O, CFCs have GWP in the range from 100 to 2000 on the 100-year scale relative to CO2, 

but the concentration of these gases in the atmosphere is very low [1]. 

Methane gas has high global warming potential and its concentration in the atmosphere in 

comparison to other greenhouse gases (except carbon dioxide) is also high. It has a short 

lifetime in comparison to Carbon dioxide which results in 28-30 GWP on a 100-year scale but 

on a 20-year scale, it is around 84-87. The main sources of methane emission are the agriculture 

sector (animals like cows, buffalos, sheep, goats, and camels produce a lot of methane), natural 

gas processing, landfills, and wetlands. The methane gas concentration in the atmosphere was 

slowly increasing from 1983-1999 and was constant from 1999-2006. After 2007 it is again 

increasing. In recent years, 2014-2015, the concentration of methane increased at a very fast 

rate (11 ppb/year) [2].  
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In recent years, rise in the arctic temperature and increased rainfall in tropical wetlands 

resulting in increase in concentration of methane in atmosphere. Because rise in the arctic 

temperature leads the melting of the arctic ice where large quantity of methane is present in the 

form of frozen permafrost. Similarly, the rainfall in tropical wetlands results in the emission of 

methane from the soil due to ebullition process which is defined as the release of methane 

bubbles from soil [2]. 

Wetlands and the arctic lakes are one of the largest emitter of methane [3]. But the contribution 

of these emitters is not precisely known because of their location and lack of reliable 

measurement devices. At present, a lot of small and cheap methane sensor are available that 

are used for detection of methane in remote areas using drones, but they are less sensitive and 

not stable enough to provide precise information of methane concentration. Some highly stable 

and highly sensitive methane sensors are also available but they are very big and used only in 

laboratory. So, we need a high sensitive, compact and robust methane sensor that can be used 

to do continuous monitoring of methane in remote areas. 

At present, various kinds of gas sensing technologies are in use for detection. Broadly speaking, 

detection technologies are divided into detection based on change in electrical properties and 

changes in other properties (optical, chromatography etc.) [4]. Metal Oxide Semiconductors, 

Polymer, Carbon Nanotubes sensors are based on variation in electrical properties for different 

gases. Optical and chromatographic sensors are based on change in optical and 

chromatographic properties for different gases. These techniques have their specificities and 

limitations. Electrical sensors are low cost, fast, and applicable for wide range of gases but they 

are less sensitive and selective than optical and chromatographic sensors. The limitation with 

chromatographic sensor is that, they are very expensive and not portable. In the other hand, 

optical sensors have big advantage over chromatographic sensor that, optical sensors can be 

miniaturized so, it can be used for continuous monitoring of methane gas in remote areas using 

drone. Optical gas sensors are divided into different categories based on which optical 

technique is used e.g. laser spectroscopy, refractive index sensing and surface plasmon 

resonance etc. 

It will be shown that the optical gas sensors based on evanescent field sensing using waveguide 

has the potential to fulfill all the requirements for a robust, cheap, portable and highly sensitive 

methane sensor.  

 

1.2 Aim  
 

The aim of the project (Sensor Technology WP1) is to develop a robust, highly sensitive, 

portable and fast methane sensor using a waveguide Mach-Zehnder interferometer. The plan is 

to mount this sensor on a drone and use it to measure methane in remote areas. 
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The aim of this M.Sc. project is to optimize the layer of cryptophane-A doped SAN polymer 

for high sensitivity and fast response time. And to improve the stability and the selectivity of 

existing methane sensor. 
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Chapter 2 
 

Principles 
 

2.1 Optical sensors 

 

The optical sensor technology has become very popular over recent decades. Optical sensors 

are now commonly used in oil and gas industries, defence industry, healthcare and 

environmental monitoring. Optical sensors are getting popular over other technologies as they 

can provide very high sensitivity, high stability, in-situ measurements, safety operations and 

fast response time that makes it useful for real-time monitoring. But optics also have some 

disadvantages of being fragile, expensive and the requirement of clean surface. 

 There are various techniques used in optical sensing with different inherent limitations and 

applicability. Some of the common techniques are laser spectroscopy, Surface Plasmon 

resonance [16], interferometry [9], etc. Laser spectroscopy is a general term which includes 

various techniques for e.g. Raman spectroscopy, Absorption spectroscopy, laser induced 

fluorescence spectroscopy etc. In laser spectroscopy techniques, the interaction of laser with 

the desired material is utilized as the sensing parameter which is sometimes measured as the 

function of frequency or wavelength for e.g. in absorption spectroscopy, after the interaction 

of laser with desired material the measure of absorption of laser radiation as a function of 

wavelength or frequency. The surface Plasmon resonance technique is based on total internal 

reflection (section 2.2), electromagnetic field at metal and dielectric interface used to detect 

the index change in sample. SPR is commonly used for bio sensing application. The 

interferometric (Mach-Zehnder and Young's interferometer) sensors are also common in 

chemical and bio sensing. The interferometric sensors utilize the output phase change as a 

sensitivity parameter. 

 

2.2 Waveguide sensors 
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Optical fiber and waveguides are based on the principle of total internal reflection. Total 

internal reflection (TIR) is defined as the phenomenon in which light get reflected in higher 

refractive index medium (n1) surrounded by low refractive index medium (n2), if the angle of 

incidence is greater than critical angle (θc) as shown in fig. 2.1 (right). 

 

Fig. 2.1 Condition for total internal reflection 

The guiding of light in optical fiber and waveguide under total internal reflection is shown in 

Fig. 2.2. Optical fibers are usually in the cylindrical shape with core of higher refractive index 

medium (𝑛1) and cladding with low refractive index medium (𝑛2). And similarly, waveguides 

are rectangular in shape with higher refractive index medium (n1) as a core which is sandwiched 

between two low refractive index media (n2, n3). 

 

Fig. 2.2 Optical fiber (left) and optical waveguide (right) 

 

In the waveguide and the optical fibers, light undergoes multiple reflections in core medium. 

In order to get confined light in the waveguide, the reflecting waves must satisfy a self-

consistency condition which requires that the wave reproduces itself after twice reflections in 

the waveguide. And the fields satisfying this self-consisting condition are called the modes of 

the waveguide. Modes are defined as the fields which maintain the same distribution and 

polarization along the waveguide. The waveguide and the optical fiber supports single mode 

and multimode both fields, which depends on the waveguide refractive index and dimensions 

for particular wavelength. 
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In initial stage, the waveguide and the optical fiber were used in the optical telecommunication 

[5, 9]. But, since the development of the semiconductor laser and the single mode fiber. The 

optical fibers have been in use for sensing of physical variables for e.g. Temperature, pressure, 

strain etc. [14]. These sensors are based on various optical techniques for e.g. Braggs grating, 

fluorescence, and spectroscopy. Flexibility of this fiber gives advantage of multi-point sensing 

over range of several kilometers. Military, power generation, oil and gas, environment and 

health care industries are leading user of fiber optic sensors [6]. Fiber optic sensor also have 

some advantages for e.g. High level of noise, less stable and highly sensitive. Then, 

advancement in integrated optics encouraged development of planar waveguides as sensors. 

The small size of planar optical waveguides provides an advantage over optical fibers for on-

chip and also the better stability. Optical waveguides can be designed in a specific manner to 

get low bending losses, low propagation losses [7]. Single mode optical waveguides with large 

refractive index between core and cladding provides higher sensitivity in comparison to fiber 

and multimode waveguide sensor as it offers high field intensity at surface. While, low contrast 

waveguides provide long penetration depth of decaying field in cladding, which is commonly 

used in sensing application, termed as evanescent field sensing (section 2.2.1). Optical 

waveguides are typically fabricated by thin film deposition. Silicon nitride, tantalum pentoxide 

and another high index materials are deposited on a substrate with low index [8].  Waveguide 

sensor are very popular in chemical and bio sensing application and most of the sensors are 

based on evanescent field sensing, with a sensitive layer (cladding) deposited on a core layer 

and thus interacting with the evanescent field [8-10, 12, 19-21]. The refractive index of the 

sensitive layer changes when exposed to specific measurand e.g. Methane. To detect the 

effective refractive index change in a sensitive layer, Mach-Zehnder interferometer (section 

2.2.2), Young interferometer, bimodal interferometer [13] are used. These interferometers 

detect refractive index change in the form of phase change at the output.  

This thesis is focused on evanescent field sensing of methane using Mach-Zehnder 

interferometer made with optical waveguide [11].  

 

2.2.1 Evanescent field sensing 
 

At the boundary, between dielectric mediums waveguide and cover, tangential component of 

E and H fields must be continuous. For electromagnetic wave propagating along z direction in 

asymmetric waveguide, EY and HZ must be continuous at interface between waveguide and 

cover to get TE polarization. Along with guided light in waveguide, fast decaying 

electromagnetic field surrounds the waveguide. This fast decaying field in cover region is 

known as evanescent field. Which is given as; 

𝐸𝑦(𝑥, 𝑧) = 𝐸𝑦0𝑒−𝛼𝑥 
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where 𝐸𝑦0 is the electric field at interface, x is the distance in cover and α is the attenuation 

coefficient which is given as: 

                                                                α = 𝑘0√𝑛2
𝑒𝑓𝑓 − 𝑛2

1 

where 𝑛𝑒𝑓𝑓 is effective index of the mode, n1 is the refractive index of cover and 𝑘0 = 2𝜋
𝜆⁄ . 

 

Fig 2.3 Schematic diagram of evanescent field sensing 

In the evanescent field sensing, the evanescent field interacts with the absorption and the 

density change in cover region which results into the change in effective refractive index of the 

guided mode in the waveguide. Typically, evanescent field extends for few 100 𝑛𝑚 in cover 

region but it can be increased to 1 µm by increasing the refractive index of cover region.  The 

increase in depth of evanescent field in cover region increases the sensitivity as it increases the 

interaction of analyte with electromagnetic field. 

 

2.2.2 Mach-Zehnder Interferometer 
 

The waveguide Mach-Zehnder interferometer sensor is based on the principle of interference 

of the modes in two single mode optical waveguide. The Mach-Zehnder interferometer has an 

input waveguide that is divided into two by using a Y-junction. One arm acts as reference arm 

and the other as sensing arm. After a specific length, the waveguides are recombined using Y-
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junction as shown in Fig.2.4. 

 

Fig.2.4 Outline of Mach-Zehnder interferometer 

  

The sensing arm is cladded with a sensitive layer and reference arm is cladded with a layer that 

is insensitive to measurand. 

A waveguide Mach-Zehnder interferometer must have single mode waveguide to give high 

visibility.   

The effective refractive index change in the sensing arm due to measurand leads to the phase 

change at the output. Phase change at the waveguide output can be directly calculated from the 

waveguide output intensity as: 

𝐼 = 𝐼𝑠 + 𝐼𝑟 + 2√𝐼𝑠𝐼𝑟cos (∆𝜑𝑚) 

∆𝜑𝑚 = 𝑐𝑜𝑠−1((𝐼 − 𝐼𝑟 − 𝐼𝑠)/2√𝐼𝑠𝐼𝑟) 

Where, 𝐼𝑠, 𝐼𝑟 and ∆𝜑𝑚 are the intensity in sensing arm, intensity in reference arm and phase 

change due to measurand respectively.  

Phase change due to measurand is given as: 

∆𝜑𝑚 =
2𝜋

𝜆0
𝐿𝑖𝑛𝑡∆𝑁𝑒𝑓𝑓 

where 𝜆0, 𝐿𝑖𝑛𝑡 𝑎𝑛𝑑 ∆𝑁𝑒𝑓𝑓 are the wavelength of monochromatic source, interaction length in 

sensing arm and effective refractive index change due to analyte, respectively. 

 

2.2.3 Sensitive layer 
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The sensitive layer is the layer which is deposited on the sensing window of the Mach-Zehnder 

interferometer. It should have transparency, high affinity towards analyte and high refractive 

index to get high percentage of mode overlap in sensitive layer.  

In methane sensing application, cryptophane-A molecule is used as a sensing material. 

Cryptophane-A is a supramolecule, which has cage like structure. The volume of the host 

cavity of cryptophane-A is comparable to volume of methane molecule. So, the cavity of 

cryptophane-A traps the methane molecules when it is exposed to methane gas.  Cryptophane-

A molecule can also capture chlorofluorocarbon, radon, and xenon. The affinity of other gas 

has to be further investigated but it is out of scope of this thesis. 

Cryptophane-A is a white powder so it requires a host material, which can provide transparency 

to the layer of cryptophane-A. Styrene acrylonitrile (SAN) polymer is used as a host polymer 

for cryptophane-A to provide transparency to the cryptophane-A layer. SAN polymer is used 

because it has high refractive index and has good compatibility with solvent which is used to 

dissolve cryptophane-A. 

 

2.3 Coupling Techniques: 
 

To make use of a waveguide device, external light must be coupled into the waveguide. To 

couple light into the waveguide lens coupling, butt-coupling, prism coupling and grating 

coupling techniques are used. Every coupling technique has its advantages and disadvantages. 

The coupling efficiency is the most important parameter when comparing the coupling 

techniques. 

We are only using lens coupling and butt-coupling in sensing project. These methods are 

described in the following sections. 

 

2.3.1 Lens coupling 
 

The lens coupling technique is the most common way of coupling light into the optical 

waveguide. In this technique, the objective lens is used to focus light on the edge of waveguide 

to couple light, as shown in Fig 2.5.  

The lens coupling is useful for coupling Gaussian laser source to the single mode waveguide 

because waveguide mode also resembles a Gaussian profile. The coupling efficiency of lens 

coupling is given as the ratio of overlap integral of incident beam and waveguide mode to the 

intensity distributions of incident beam and waveguide mode. So, the efficiency can be 

increased by making the beam spot comparable to the waveguide dimension, so that overlap 
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between incident beam and waveguide mode is maximum. Mostly, the efficiency of coupling 

is affected by mismatch in beam spot and waveguide dimension [16]. 

 

Fig. 2.5 Free space coupling of gaussian beam using lens into waveguide with d,2w, D, f as 

waveguide thickness, focused beam spot, Beam diameter before lens, and focal length of lens 

respectively. 

The lens coupling is commonly used in laboratory because lens set-up is easy to build and 

optical bench in laboratory makes it very stable.   

 

2.3.2 Fiber-butt coupling 
 

In this technique, the cleaved end of optical fiber is placed in contact with the end-face of a 

waveguide to couple light into waveguide. The efficiency of this technique is defined as the 

ratio of overlap integral of input fiber mode and the waveguide mode, to the fiber and 

waveguide mode. In order to get higher efficiency, the fiber mode diameter must match with 

the waveguide mode. Typically, the fiber mode diameter varies in the range of few micrometers 

for e.g. 5.3 ± 1.0 µm @ 850 nm for PM780-HP, which can give high efficiency if waveguide 

mode is also in the range of few micrometer. But in our experiment, the dimension mismatch 

between fiber and waveguide is very high because we use 150 nm thin waveguide, the coupling 

is very low. 

In addition, the immersion oil with same refractive index can be used to reduce losses during 

coupling because when light travels from one refractive index medium to other, light undergoes 

refraction if air is present between both materials and it is lost.  
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Fig. 2.6 Butt-coupling 

Butt-coupling is commonly used in place of lens coupling because it provides much better 

mechanical stability to the set-up. And in butt-coupling, the fiber can be strongly glued (fiber-

pigtailing) with waveguide that makes it more useful in industrial application. 
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Chapter 3 
 

Experimental set-up and chip processing 
 

3.1 Chip Design 
 

When I started my master thesis, the waveguide chip for the methane sensor was already 

designed and fabricated. It was designed by Dr. Firehun Tsige Dullo, Dr. Susan Lindecrantz 

and Prof. Olav Gaute Hellesø. I have included this section to explain the background of the 

waveguide chip design.  

The waveguide chips are designed using CleWin 5 (Phoenix). The dimension of each 

waveguide chip is 25x40x1 mm3. Each waveguide chip has many Mach-Zehnder 

interferometers, Young interferometers and straight waveguides. The waveguides are shallow 

rib waveguides with a silicon nitride core. The dimensions of the waveguide are chosen after 

precise simulations for single mode for both TE and TM polarization and for 785 nm 

wavelength. The silicon Nitride core has a thickness of 150 nm over a silica layer. The rib 

height is 5 nm. The rib waveguide is chosen because it gives low propagation loss [11]. The 

waveguides are top cladded with silica of 1 µm thickness. The Y-junction for the Mach-

Zehnder interferometers are designed with S bends with a radius of 4 mm. The sensing arm of 

each Mach-Zehnder interferometer are opened with a width of 25 µm in the silica layer to 

create sensing window. The Mach-Zehnder interferometers are designed for 3 waveguide 

widths (1.5 µm, 2 µm, 3 µm). For each waveguide width, 3 different lengths (1 cm, 2 cm, and 

3 cm) of sensing windows are designed. Along with unbalanced Mach-Zehnder interferometers 

with sensing window on one arm, some balanced Mach-Zehnder interferometers are also 

designed with sensing window on both arms with a center to center distance of 50 µm. The 

waveguides are fabricated at IMB-CNM, CSIC, Barcelona, Spain [18].  
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Fig 3.1 Schematic diagram of Mach-Zehnder interferometer with 1 sensing window with 

sensing length L. 

 

3.2 Experimental Set-up 
 

Experimental set-up for methane sensing broadly be divided into two parts, the optical set-up 

and the gas flow set-up. 

 

Fig. 3.2 Schematic diagram of experimental set-up 

 

3.2.1 Optical set-up  
 

In the optical set-up, the collimated solid state laser source of 785 nm wavelength was used 

(DL785-120-SO, CrystaLaser, USA). The half wave plate was placed in front of the laser 

source to adjust the polarization. A mirror was used at 45o to reflect light in the desired 

direction. Then, two lens were placed at a distance of f1+f2 from each other to expand beam 

and adapt it to the microscope objective. The beam was passed through a linear polarizer to 
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select polarization (TM) and finally beam was collected by input objective lens (25x) to focus 

light on the input facet of the waveguide for coupling. The input objective was placed on the 

3-axis piezo controller, which was used to adjust the focus on the input facet of chip. After 

chip, light was collected by the 10x output objective, which focusses the collected light into 

the photodetector. Absorptive neutral density filter was also placed between output objective 

lens and the photodetector to control the output power to match power range of photodetector. 

During my thesis work, I used the existing optical set-up. 

 

3.2.2 Gas flow system  
 

The layout of the gas flow set-up is shown in Fig. 3.2. Two calibrated gas bottles of nitrogen 

and methane (1000 ppm) were used. During the measurement, the output pressure of bottles 

was fixed at 2 bar. Two electronic valves (Parker VAC-100 PSIG) in a T-junction were used 

to electronically control the switching of gas between nitrogen and methane, the valves were 

controlled by LabVIEW. But, valves were resulting in waste of gas when closed because gas 

from bottles were directly coming to the valves with very high flow rate. To avoid that, needle 

valves were placed before the electronic valves to reduce the flow rate of the gas and regulate 

the flow during the measurement.  An overflow was included in a T-junction to regulate the 

flow rate of the gas going into the microfluidic chamber and to perform the measurement at 

atmospheric pressure. At output, one pump was placed, which was required to create pressure 

difference for continuous flow of gas. In addition, one MFC was placed before pump, which 

was working as a flowmeter. 

 

3.2.3 Chip holder and microfluidic chamber 
 

A 1-dimensional translation stage was used to hold the waveguide chip as shown in Fig 3.3 (a). 

The peltier element was fixed on the translational stage to regulate the temperature of chip. 

Above peltier element, the aluminium plate was placed with a thermal paste to provide better 

thermal conductivity. The aluminium plate was designed with grooves to hold the chip and a 

thermistor was fixed in aluminium plate to provide feedback to temperature controller. 
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Fig 3.3 (a) set-up for chip placement, (b) Microfluidic chamber 

The microfluidic chamber was placed above waveguide chip. The microfluidic chamber was 

fabricated with rectangular grooves, which was used to place PDMS chamber, which provides 

the air tight flow of gas through chip as shown in Fig 3.3 (b).  

 

3.3 Chip processing 
 

To make waveguide chip sensitive towards methane, deposition of SAN doped with 

cryptophane-A polymer layer on sensing window of Mach-Zehnder interferometer was 

required.  

To deposit the sensitive layer on Silicon Nitride surface, surface cleaning, surface activation 

and salinization process was required to get adhesive surface for sensitive layer. The protocol 

for cleaning and salinization is described in next section. 

 

3.3.1 Chip cleaning/recycling protocol 
 

A cleaning procedure was followed when chip was not used for long time and has acquired 

dust. First, the chip was cleaned with clean-room swap soaked in Acetone. Then, the chip was 

sonicated for 5 minutes with Acetone, isopropanol and distilled water successively. The chip 

was then dried with nitrogen and introduced in the hellmenax (5%) solution for 10 minutes at 

70 °C. After hellmanex, the chip was thoroughly rinsed with distilled water to remove residuals 

of hellmanex and dried with nitrogen. 

If the chip had been processed before with sensitive layer, then it required a recycling process 

to make it reusable again. For, recycling, first step was to dip the chip in dynasolve solution 

for half an hour to remove PDMS (if chip was processed with PDMS before). Then, the chip 
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was cleaned with the similar procedure which is described before. After cleaning procedure, 

the chip was sonicated with 1:1 solution of HCl (37%) and Methanol for 10 min, rinsed with 

distilled water and dried with nitrogen. The chip was then introduced in the air plasma for 10 

minutes, rinsed with isopropanol, distilled water and finally dried with nitrogen. 

  

3.3.2 Surface activation and silanization of chip  
 

Before deposition of sensitive polymer layer on the chip, the silanization process was required 

which provides the better adhesion between deposited layer and the chip. It was an important 

step for our sensing application as we deposit sensing polymer layer on silicon nitride chip, 

which has a very hard and smooth surface.  

For silanization, the recycled chip was first placed in air plasma for half an hour to activate the 

chip surface. Then, the chip was immersed in 1% of (3-Aminopropyl) triethoxysilane (APTES) 

solution for 1 hour at 40°C. The chip was then rinsed with isopropanol (or ethanol) and cured 

in oven for 1 hour at 110 °C.  

The APTES (1%) was prepared by heating the mixture of 20 ml ethanol (96%) with 0.2 ml 

APTES at 40 °C for 1 hour. 

 

3.3.3 Preparation of sensitive layer and deposition 
 

For methane sensing, a layer of SAN doped with cryptophane-A was required to be deposited 

on the sensing window of the Mach-Zehnder interferometer.  

To deposit 300 nm-400 nm thick layer of SAN doped with 11% cryptophane-A. First the 5 mg 

of cryptophane-A was measured and then added to 900 µl of 1,1,2,2 Tetrachloroethane solution 

kept in a vial. The solution was slowly mixed for 10 minutes and then 45 mg of SAN was added 

to that solution. Solution was then kept overnight to get uniformly mixed. The uniformly mixed 

solution was then spin coated on the chip (directly after silanization of the chip) with speed of 

3000 rpm for 2 minutes.  For curing, the chip was placed overnight in an oven at 110°C. And 

the thickness of SAN doped with cryptophane-A layer was measured with a stylus profiler 

(KLA-Tencor P-6). 

In order to deposit the different thicknesses of SAN doped with cryptophane-A on the chip. 

The dependence of thickness of sensitive layer with the volume of solvent (1, 1, 2, 2 

Tetrachloroethane) was investigated. First, the investigation was done for the pure SAN 

polymer. The measured thickness of SAN polymer layer with change in the volume of solvent 

is listed in Table.3.1. From the measured thicknesses of the SAN polymer, we found that the 
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thickness decreases with increase in the volume of solvent. In order to understand the relation 

of thickness with solvent volume, thicknesses for different concentrations of SAN is plotted in 

Fig. 3.4. The change in thickness shows approximately a linear trend with concentration of 

SAN solution.  

Table 3.1 Thickness vs SAN concentration 

Amount of SAN 

(mg) 

Volume of 

solvent (µl) 

SAN solution 

concentration 

(g/ml) 

Spin coating 

speed (rpm) 

Thickness (nm) 

49.5 900 0.055 3500 375 

51 1800 0.028 3500 147 

48.4 2700 0.018 3500 83 

 

Fig 3.4 SAN Concentration Vs Thickness 

After, estimation of linear behavior of thickness of SAN with solvent. We expected the same 

behavior with doped SAN. Then the same procedure was followed with SAN doped with 11% 

cryptophane-A. The solution was prepared with the same ratio as shown in Table 3.1. We 
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replaced the 50 mg of SAN with 45 mg of SAN added with 5 mg cryptophane-A. But the 

measured thickness was not as expected from Fig.3.5. From the measurement of thickness, we 

found that the solubility of cryptophane-A in the solvent was high in comparison to SAN 

polymer which resulted in completely different thickness. So, we decided to consider only the 

amount of SAN polymer for estimation of different thicknesses. The measurement results for 

thickness of SAN doped with 11% cryptophane-A with volume of solvent is listed in Table. 

3.2. The measured results were giving good match with measured results for pure SAN. 

Table 3.2 Thickness vs volume of solvent 

Amount of SAN 

(mg) 

Amount of 

Cryptophane-A 

(mg) 

Volume of 

solvent (µl) 

Spin coating 

speed (rpm) 

Thickness (nm) 

44.8 5.5 700 3500 560 

44.6 5.2 900 3500 375 

44.6 5.2 150 +450 (above 

solution) 

3500 257 

42.5 5.6 1800 3500 137 

 

During all the depositions, the recycling, silanization and the curing process were followed as 

described in section 3.3.2. 

The sensitive layer deposition process described in the section was used to deposit the sensitive 

layer on the unbalanced Mach-Zehnder interferometer because during the spin coating, the 

sensitive layer covers the whole chip. So, the balanced Mach-Zehnder interferometers which 

were fabricated on the chip with 2 sensing windows were also completely covered.  The 

deposition of sensitive layer on both arms of balanced Mach-Zehnder interferometer makes the 

sensor insensitive to methane, which is discussed in detail in chapter 4 and 6. In order to 

develop the sensor with balanced Mach-Zehnder interferometer, the further processing of the 

chip is presented in next section. 

 

3.3.3.1 Photolithography 
 

The photolithography process was chosen to perform the processing of balanced Mach-

Zehnder interferometer, because photolithography is commonly used in microfabrication to 

pattern thin layer substrate and our requirement was also to pattern 25 µm wide open sensing 

window. We used photolithographic process to pattern the thin layer of silver on one arm of 
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the balanced Mach-Zehnder interferometer to reduce the temperature sensitivity which is 

evident in unbalanced Mach-Zehnder interferometer which has silica in one arm (chapter 4,6). 

To start with photolithographic process, we started with optimization of exposure time and 

development time for the available photoresist. After, optimization we started working on 

deposition of silver on one arm of the balanced Mach-Zehnder interferometer.  

To deposit silver in one arm. First, we deposited the 351 nm thick sensitive layer of SAN doped 

with 33% cryptophane-A on the chip by following the same procedure as described in section 

3.3.3. Then, on the top of sensitive layer a 120 nm thin layer of silver was deposited using 

sputtering machine (Aja Orion-5). After deposition of silver layer, a layer of SPR-700 I 

(positive) was deposited. Then, the chip was kept at room temperature for 30 min, the pre-bake 

process was avoided to prevent expansion of polymer which was causing cracks in silver layer. 

After drying, MJB4 Mask-Aligner was used to align the mask to expose one arm of the 

balanced Mach-Zehnder interferometer. After alignment, the chip was exposed with 200 mJ 

intensity. Then, photoresist was developed in NaOH solution (2 gm NaOH + 300 ml water) for 

5-10 seconds. After, development of photoresist, the chip was dipped in silver etchant (20 gm 

Ferric Nitrate +40 ml water) for 10-15 sec to etch out the silver from exposed region. 

But we found that the silver was also etching out from the unexposed region. We tried this 

many times, but every time the silver was etching out from unexposed region also.  The 

possible reasons for this can be the use of SPR 700 I which gives very thin layer, the use of 

NaOH (which is commonly not preferred) and pre-bake (post-bake) was also avoided during 

the processing. 

Then we decided to work with Negative photoresist (651796 ALDRICH), developer (651788 ) 

and remover (651761), but we found out that the photoresist and developer were attacking the 

SAN polymer. 

From all followed procedures, we found that the available photoresist kits are not compatible 

with SAN polymer. Then, we decided to work with Microplotter, which was available in 

ultrasound lab. 

 

3.3.3.2 Microplotter 
 

The Microplotter II is a dispenser which uses ultrasonics to deposit fluid on a surface. This can 

produce picolitre droplets that can deposit 5 micron wide patterns. For deposition of pattern, 

micropipette is connected to an inbuilt robot. The inbuilt robot can move in all the 3 directions. 

The droplet size and deposition speed of robot is controlled by sonoguide software. In addition, 

to track the deposition, a high-resolution camera is connected to the robot. We used 

Microplotter to deposit SAN in one and SAN doped cryptophane-A in other arm of the 

http://www.sigmaaldrich.com/ProductLookup.html?ProdNo=651788&Brand=ALDRICH
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balanced interferometer, to make the sensor with high. For deposition SAN and doped SAN, 

we assumed that the thermo-optical coefficient is same for both pure SAN and doped SAN, 

because same thermo-optical coefficient makes the sensor insensitive (discussed in detail in 

chapter 6).  

The Mach-Zehnder interferometer chosen for this deposition were from new batch of chips 

because the sensing window in new Mach-Zehnder interferometers were 100 µm wide and the 

center to center distance between two sensing windows were 125 µm. That makes the 

deposition easy in comparison to old chip, which had only 50 µm gap between both arms. The 

Mach-Zehnder interferometers in the new chip were designed and fabricated by same process 

as mentioned in section 3.1. The difference between old and new chips were the sensing 

window length (0.5 cm and 2.5 cm).  

To deposit SAN in one arm and doped SAN in other. First, we started with deposition of pure 

SAN on both arms. Before deposition, the chip was silanized for better adhesion. Then, pure 

SAN solution was filled in the micropipette (10 µm). Then using that micropipette, pure SAN 

was plotted on the both arms of the balanced Mach-Zehnder interferometer (0.5 cm long 

sensing window). And after plotting it was cured overnight at 110 °C.  

After curing, the laser was coupled into the waveguide to test the losses in the sensing window. 

The waveguide was found to be very lossy, a lot of scattering points were present in the sensing 

windows. The possible reasons can be the adhesion problem, formation of bubble during 

plotting and dirt. 

In order to remove possible causes of scattering, a thin layer (80nm) of pure SAN was deposited 

on the chip, using spin coater. Then, chip was cured for 2 hours. After curing, 400 nm thick 

layer of pure SAN and SAN doped with 25% cryptophane-A were plotted on both arms of the 

balanced Mach-Zehnder interferometer (0.5 cm long sensing window length). After deposition 

chip was cured overnight at 110 °C. When the light was coupled into the waveguide, there were 

no scattering points. Then it was used for methane, measurement results are presented in 

Chapter 6. 

3.4 Refractive index measurement 
 

In order to do simulations (discussed in chapter 4 and 5), the refractive index measurement was 

done for pure SAN and SAN doped with different concentrations of cryptophane-A.  Refractive 

index measurement was done with prism coupler. For measurement of refractive index, thick 

layer (700-1000 nm) of SAN and doped SAN were deposited on silica chips. The thick layer 

was deposited to get atleast two waveguide modes, because prism coupler requires two 

waveguide modes to measure refractive and film thickness precisely. The measured refractive 

index are listed in Table. 3.3. 
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Table 3.3. Measured Refractive index of sensitive layer 

Sensitive layer Refractive index 

Pure SAN 1.5588±0.0042 

SAN doped with 11% cryptophane-A 1.5634±0.0022 

SAN doped with 50% cryptophane-A 1.5821±0.0018 

 

From measurement of refractive index, we found that the refractive index was increasing with 

increase of doping with cryptophane-A.  
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Chapter 4 

Measurement of sensitivity and Response time 
 

4.1 Sensitivity 
 

The theoretical background of methane sensitivity of the Mach-Zehnder interferometer is 

discussed in this section. A change of refractive index or path length in the sensing arm of the 

interferometer results in a phase change at the output. In our case, this phase change is due to 

refractive index change of the top cladding layer if methane concentration in the surrounding 

environment changes. This change is enhanced by deposition of a sensitive layer, which has 

affinity towards methane. The phase change at the output relative to methane concentration 

gives the sensitivity of the sensor.   

 

4.1.1 Phase sensitivity 
 

When monochromatic light with wavelength 𝜆0 is coupled into a waveguide, continuity of the 

tangential components results in an evanescent field in the cladding regions. The extension of 

the evanescent field depends on the waveguide geometry and the index contrast between the 

core and the top and bottom cladding. A change in refractive index of the cladding results in a 

change in the effective index of the guided mode, which results in a phase change at the end of 

the waveguide. 

The phase at the output of a waveguide (𝜑1) is given as: 

𝜑1 =
2𝜋

𝜆0
𝐿𝑛𝑒𝑓𝑓                                                                                                                                  4.1      

where 𝐿 is the length of the waveguide and 𝑛𝑒𝑓𝑓 is the effective index of the guided mode. Any 

change in 𝐿 or  𝑛𝑒𝑓𝑓 results in a change of phase at the end of the waveguide. Small change in 

physical and chemical quantities can affect 𝑛𝑒𝑓𝑓.  
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For fixed waveguide length, the phase change due to physical (temperature, pressure) and 

chemical (methane) parameters can be given as: 

𝜕𝜑1

𝜕𝐴
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓1

𝜕𝐴
                                                                                                                       4.2 

This equation can also be written as: 

𝜕𝜑1

𝜕𝐴
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1

𝜕𝑛1

𝜕𝐴
                                                                                                                4.3                                                                

where 𝑛1 is the refractive index of the cover (top cladding) on the arm, 𝑛𝑒𝑓𝑓1 is the effective 

index of the guided mode in the arm and A is the physical/chemical parameter which changes 

the index of the cover.  

Similarly, for the other arm of the interferometer, the phase change at the end of the arm can 

be given as: 

𝜕𝜑2

𝜕𝐴
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓2 

𝜕𝐴
= 

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓2

𝜕𝑛2

𝜕𝑛2

𝜕𝐴
                                                                                   4.4     

where 𝑛2 is the refractive index of the cover (top cladding) on the other arm and 𝑛𝑒𝑓𝑓2 is the 

effective index of the guided mode.                                   

From eq. 4.3 and 4.4, the phase sensitivity of the interferometer to the parameter A, 
𝜕𝜑𝑚

𝜕𝐴
 , can 

be calculated, and is defined as the relative phase change between the arms for a specific 

analyte or physical parameter change. 

𝜕𝜑𝑚

𝜕𝐴
=

𝜕𝜑1

𝜕𝐴
−

𝜕𝜑2

𝜕𝐴
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1

𝜕𝑛1

𝜕𝐴
−

2𝜋

𝜆0
𝐿𝑖𝑛𝑡

𝜕𝑛𝑒𝑓𝑓2

𝜕𝑛2

𝜕𝑛2

𝜕𝐴
   

𝜕𝜑𝑚

𝜕𝐴
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡{

𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1

𝜕𝑛1

𝜕𝐴
−

𝜕𝑛𝑒𝑓𝑓2

𝜕𝑛2

𝜕𝑛2

𝜕𝐴
}                                                                                    4.5    

Where 
𝜕𝜑𝑚

𝜕𝐴
 is the phase sensitivity for parameter A. 

 

4.1.2 Methane sensitivity  
 

For methane sensing, a Mach-Zehnder interferometer with one Sensing window (SW) was used 

(Fig. 3.1). The reference arm was cladded with silica and the sensing arm was cladded with a 

sensitive polymer layer. From eq. 4.5, the phase sensitivity to methane with concentration x 

can be calculated as: 
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𝜕𝜑𝑚

𝜕𝑥
=

2𝜋

𝜆0
𝐿𝑖𝑛𝑡{

𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1

𝜕𝑛1

𝜕𝑥
−

𝜕𝑛𝑒𝑓𝑓2

𝜕𝑛2

𝜕𝑛2

𝜕𝑥
}= 

2𝜋

𝜆0
𝐿𝑖𝑛𝑡{

𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1

𝜕𝑛1

𝜕𝑥
}                                                    4.6     

where the second term becomes zero as the silica is impermeable to methane and thus the 

change in refractive of silica with methane concentration is equal to zero (
𝜕𝑛2

𝜕𝑥
= 0).   

The sensitivity to methane depends on the input wavelength (𝜆0), the length of the sensing arm 

(interaction length, 𝐿𝑖𝑛𝑡), the change in refractive index of the sensitive layer with methane 

concentration (
𝜕𝑛1

𝜕𝑥
), and the effective index change due to change in refractive index of the 

cladding (
𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1
). For fixed interaction length and wavelength, the methane sensitivity is 

dependent on the product of the last two terms, which are discussed in separate sections below. 

 

4.1.2.1 Sensitivity due to cladding refractive index and thickness 
 

To investigate the effect of change in refractive index and thickness of the cladding on the 

sensitivity, simulations using Fimmwave (PhotonDesign) were carried out by Dr. Jana 

Jágerská. The change in effective refractive index resulting from a small change in refractive 

index of the cladding were simulated for 4 different refractive indices of the cladding 

corresponding to the refractive indices of pure SAN (n=1.5588) and SAN doped with 11% 

(n=1.5634), 33% (n=1.5733), and 50% (n=1.5821) cryptophane-A. The refractive indices of 

SAN and cryptophane-A doped SAN were determined experimentally using prism coupler as 

described in section 3.4.  



 

Page 26 of 55 

 

Fig 4.1 Sensitivity vs cover thickness 

As shown in Fig. 4.1, the simulation results show that the sensitivity increases with 

increasing thickness of the cladding, before it gets saturated at a certain thickness of the 

cladding. With increase in the refractive index of the cladding, the saturation level increases 

slightly. The simulation results show that to attain high sensitivity, the refractive index of the 

cladding should be high and its thickness must be approximately 500 nm, corresponding to 

the extent of the evanescent field. 

 

4.1.2.2 Sensitivity due to methane concentration 
 

The factor  
𝜕𝑛1

𝜕𝑥
 in eq. 4.6 describes the sensitivity towards methane. 

For methane sensing, SAN polymer was doped with cryptophane-A and used as the cladding 

in the sensing window (see section 2.2.3). The methane sensitivity for both pure and doped 

SAN polymer is described in this section. 
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4.1.2.2.1 Styrene acrylonitrile (SAN) 
 

The refractive index change of SAN in the presence of methane is discussed in detail in the 

thesis of Martin Ingvaldsen [24]. The refractive index change in SAN with methane gas is 

assumed as the function of solubility of methane and the methane concentration. From Henry’s 

law, the solubility of a gas in a polymer is directly proportional to the partial pressure of the 

gas in the equilibirium with polymer [28]. 

The refractive index 𝑛1of SAN with methane of concentration x (in nitrogen) can be given as 

[24]: 

𝑛1 − 1 = 𝑛𝑆𝐴𝑁 − 1 + (𝑛𝑁2
− 1)𝐶1(1 − 𝑥) + (𝑛𝑁𝐶𝐻4

− 1)𝐶2𝑥                                               4.7 

where 𝑛𝑁2
 is the refractive index of nitrogen, 𝑛𝑁𝐶𝐻4

is the refractive index of methane, 𝑛𝑆𝐴𝑁is 

the refractive index of pure SAN,  𝐶1 is the solubility of nitrogen in pure SAN, and  𝐶2 is the 

solubility of methane in pure SAN.  

The refractive indices of methane and nitrogen are 1.000437 and 1.000268, respectively [24]. 

Then, the sensitivity of methane for methane concentration can be calculated as: 

𝑑𝑛1

𝑑𝑥
= 𝑛𝐶𝐻4

𝐶2 − 𝑛𝑁2
𝐶1 = 0.000437𝐶2 − 0.000268𝐶1                                                             4.8                                                                                                                                                                                                      

The solubility of the methane and nitrogen in SAN polymer were not found in literature, 

however, based on solubility values in other polymers we can assume that the 𝐶1 and 𝐶2 are 

close to unity. Under this assumption, the sensitivity is 1.7 x 10-5 refractive index change per 

ppm.                                                  

 

4.1.2.2.2 Sensitivity enhancement with cryptophane-A 
 

The pure SAN polymer was doped with cryptophane-A to enhance the sensitivity of methane 

as the cryptophane-A has high affinity towards methane (see section 2.2.3). As described in 

section 2.2.3, the cryptophane-A traps methane molecules in its host cavity. So, the refractive 

index 𝑛1of SAN doped with cryptophane-A in the presence of methane of concentration x (in 

nitrogen) can be given as [24]: 

𝑛1 − 1 = 𝑛𝑆𝐴𝑁+𝐶𝑟𝑦𝑝𝑡 − 1 + (𝑛𝑁2
− 1)𝐶3(1 − 𝑥) + (𝑛𝐶𝐻4

− 1)𝐶4𝑥 + 𝑓𝑡𝑟𝑎𝑝(𝑥, 𝑐)              4.9 

Which can be written as: 
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 𝑛1 − 1 = 𝑛𝑆𝐴𝑁+𝐶𝑟𝑦𝑝𝑡 − 1 + (0.000268)𝐶3(1 − 𝑥) + (0.000437)𝐶4𝑥 + 𝑓𝑡𝑟𝑎𝑝(𝑥, 𝑐)       4.10                  

where,  𝑓𝑡𝑟𝑎𝑝is the refractive index due to trapped methane which depends on the concentration 

of cryptophane-A (c) and the concentration of methane (x), 𝑛𝑆𝐴𝑁+𝐶𝑟𝑦𝑝𝑡is the refractive index 

of cryptophane-A doped SAN polymer, 𝑛1 is the refractive index of cryptophane-A doped 

SAN with methane which includes both trapped and dissolved methane, 𝐶3  is the solubility of 

nitrogen in cryptophane-A doped SAN, and 𝐶4 is the solubility of methane in cryptophane-A 

doped SAN.  

Then, the sensitivity for methane concentration can be given as: 

𝑑𝑛1

𝑑𝑥
= 0.000437𝐶4 − 0.000268𝐶3 +  

𝜕𝑓𝑡𝑟𝑎𝑝(𝑥,𝑐)

𝜕𝑥
                                                                  4.11                             

Our group has previously reported that the enhancement factor (pre-concentration) is linearly 

dependent on the concentration of methane [22]. Therefore, eq. 4.18 can be written as: 

𝑑𝑛1

𝑑𝑥
= 0.000437𝐶4 − 0.000268𝐶3 + 𝑓𝑡𝑟𝑎𝑝(𝑐)                                                                     4.12                                                                                                                                                                                                                                                                                                                                       

 

4.2 Experimental analysis of sensitivity 
 

4.2.1 Experimental method 
 

This section describes the experimental procedure for the measurement of the methane 

sensitivity. To experimentally measure the concentration of methane, calibrated mixture of 0 

and 1000 ppm methane in nitrogen was alternatively introduced into the microfluidic chamber 

of the chip.  A TM polarized laser beam of 785 nm wavelength was coupled into a Mach-

Zehnder interferometer. A Mach-Zehnder interferometer with 2 µm wide waveguide and 3 cm 

long sensing window (interaction length) was used.  

In Fig 4.2(b), the sensor response, i.e. output intensity, is shown when methane concentration 

was alternatively changing between 0 and 1000 ppm. The response is reproducible and 

repeatable for alternate switching of methane and nitrogen. The phase change, as shown in Fig 

4.2(c), was calculated as: 

∆𝜑(𝑡) = ∆𝜑0 + 𝑎𝑟𝑐𝑐𝑜𝑠((𝐼𝑚𝑒𝑎𝑠(𝑡) − (𝐼𝑆 + 𝐼𝑟))/2√𝐼𝑟𝐼𝑠)                                                               4.13 

 



 

Page 29 of 55 

 

Fig 4.2 (a) Input methane concentration, (b) Intensity change at output due to varying 

methane concentration, (c) Phase change at output. The measurement was done for 10.5% 

concentration of cryptophane-A 

 

where 𝐼𝑆 is the intensity in the sensing arm, 𝐼𝑟is the intensity in the reference arm, ∆𝜑0is the 

initial phase shift between both arms and ∆𝜑(𝑡) is the output phase change.  

Experimentally, 𝐼𝑆  and   𝐼𝑟  were calculated from 𝐼𝑚𝑎𝑥  and 𝐼𝑚𝑖𝑛  of output intensity as 𝐼𝑆 +

  𝐼𝑟 =
(𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛)

2⁄  and 2√𝐼𝑟𝐼𝑆 =
(𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛)

2⁄  .  

In the following analysis, sensitivity was calculated as S=
∆𝜑

∆𝑥
 , where ∆x (1000 ppm) is the 

concentration of methane used in experiments. The response time of the sensor was taken as 

the rise time from 10% to 90% of total phase change.  

 

4.2.2 Measurement results for higher sensitivity 
 

As mentioned in section 4.1.2.2.2 and [22], the sensitivity increases with the cryptophane-A 

concentration in SAN.  In this section, measurements with different cryptophane-A 

concentration are presented for a fixed thickness of the sensitive layer of about 350 nm. The 
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measurement results are listed in Table 4.1. First the sensitivity measurement was done for 

10.5% cryptophane-A in SAN. This measurement was done primarily to compare the measured 

sensitivity with the previously reported sensitivity [22]. The measured sensitivity 0.42 x 10-

3rad/ppm was found to be slightly higher than the previously reported 0.29 x 10-3rad/ppm. A 

possible explanation for this is that in the previous measurement the thickness was smaller, 

around 220-250 nm. Another possible reason is that different batches of cryptophane-A of 

different purity were used. The measured sensitivity for 33% cryptophane-A was found to be 

more than double in comparison to 10.5 %. 

Table 4.1 Measurement results for different concentrations of cryptophane-A 

Concentration of 

cryptophane-A (%) 

Thickness (nm) Sensitivity(x10-3) Response time (s) 

10.5 375 0.417 22.5 

33 351 0.89 66 

 

To find the maximum sensitivity, the concentration of cryptophane-A was further increased. 

For this measurement, a thick (538 nm) layer of SAN doped with 50% cryptophane-A was 

deposited. From the measurement result shown in Table 4.2, the sensitivity was found to be 

almost twice the sensitivity for 33 %, i.e. 1.71 x 10-3rad/ppm.  

Further increase of cryptophane-A concentration was attempted (67%), however, the scattering 

of light in the sensing window became prominent and the visibility of the interference fringes 

was very low. It is possible that at the concentration of 67%, cryptophane-A starts clustering 

in the SAN host upon solvent evaporation. Because of bad visibility and a lot of scattering 

losses, we considered 50% cryptophane-A the limit giving maximum sensitivity.  

Table 4.2 Measurement for maximum sensitivity 

Concentration of 

cryptophane-A (%) 

Thickness (nm) Sensitivity(x10-3) Response time (s) 

50 538 1.71 616 

 

These measurements clearly show that the sensitivity is increasing with increase in 

cryptophane-A concentration, but along with that, the sensor response is getting slow as shown 

in Table 4.1 and 4.2. So, in order to develop a highly sensitive and fast sensor, a compromise 

between sensitivity and response time has to be made. Work towards this is presented in next 

section. 
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4.2.3 Measurement results for optimum thickness of polymer layer 
 

In this section, both the sensitivity and the response time were measured as a function of the 

thickness of the cladding. In section 4.1.2.1, the simulation results for sensitivity change with 

cladding thickness was presented, which show that the sensitivity decreases with decrease in 

cladding thickness. The response time is also expected to decrease with decrease in cladding 

thickness because with thin layer, the number of trapping sites for methane is smaller, and the 

otherwise extremely fast diffusion is not hindered by the effect of trapping. The investigation 

of response time was motivated by the fact that as the aim of our project is to develop not only 

sensitive, but also a fast methane sensor with a response time of a few seconds.  

For measurement of response time and sensitivity with cladding thickness, measurements with 

(11±0.5) % cryptophane-A doped SAN were done. The measurement results are listed in Table. 

4.3 and shown in Fig. 4.3. 

Table 4.3 Measurement data for varying thickness of sensitive layer 

Concentration of 

cryptophane-A (%) 

Thickness (nm) Sensitivity(x10-3) Response time (s) 

11.6 137 0.1441 3.2 

10.5 260 0.3446 14 

10.5 375 0.4170 22.5 

10.9 560 0.3750 43.5 

11±0.5    

 

The sensitivity increases with thickness before it saturates around 400 nm. The sensitivity 

change measured was found to be similar to the simulation results as shown in Fig. 4.1. 

The response time change with change in the sensing layer thickness follows the assumption 

of fast response in thin layer. To analyze the response time of the sensor, we assume that the 

penetration of methane into the sensing layer can be described by the Fick’s law of diffusion 

[26]. The diffusion rate for methane gas in polymer can be written as 
𝐶(𝑥,𝑡90)

𝐶0
= erf (

𝑥

√4𝐷𝑡90
) , 

where 𝐶(𝑥, 𝑡90)  is the methane concentration at time 𝑡90 (rise time) for polymer with x 

thickness, 𝐶0  is initial concentration of methane (outside polymer) and D is the diffusion 

coefficient. From the above equation, the quadratic relation between thickness and response 
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time was found. The quadratic function given by Fick’s law was fitted with measured data as 

shown in Fig. 4.3 (b). As shown, the quadratic function can be considered a good fit. The 

diffusion coefficient found from the fit was 2.4 x 105 nm2/sec. 

 

Fig 4.3 Plot of sensitivity and response time vs sensitive layer thickness (11±0.5% 

cryptophane-A) 

From Fig 4.3, the optimum thickness of the sensitive layer can be found for required 

sensitivity and response time. According to our requirement for fast response time, we have 

to make a compromise between sensitivity and response time. So, optimum thickness for 

11% cryptophane-A doped SAN was chosen to be 150 nm, corresponding to the sensitivity of 

0.2 x 10-3rad/ppm and the time response below 5s. 

From the measurements with 11 % cryptophane-A doped SAN, it can be concluded that a 

thin layer highly doped with cryptophane-A can provide high sensitivity with fast response 

time. To study this further, measurements of sensitivity and response time with a highly 

doped cryptophane-A thin layer were done. The measurement data for highly doped 

cryptophane-A are listed in Table 4.4. The response time can be kept at few seconds with 

deposition of a thin layer of highly doped SAN. We found that the sensitivity with 33% 

cryptophane-A and 60 nm is almost the same as the sensitivity with 11 % cryptophane-A and 

260 nm thick, while the response time was found to be four times shorter as shown in Table 

4.5. 

Table 4.4 Measurement data for thin layer of SAN highly doped cryptophane-A 

Concentration of 

cryptophane-A (%) 

Thickness (nm) Sensitivity(x10-3) 

rad/ppm 

Response time (s) 

33 60 0.2977 3.4 

50 95 0.4374 10 
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50 170 0.8206 44.5 

 

Table. 4.5 Comparison between thick layer of 11 % and thin layer of 33 % cryptophane-A 

doped SAN 

Concentration of 

cryptophane-A (%) 

Thickness (nm) Sensitivity(x10-3) 

rad/ppm 

Response time (s) 

11 260 0.3446 14 

33 60 0.2977 3.4 

 

In order to analyze the sensitivity as a function of cryptophane-A concentration, all 

experimental data have been fitted by equation 4.6, where the term 
𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1
 was obtained from 

Fimmwave simulations (done by Dr. Jana Jágerská) as discussed in Sec. 4.1.2.1, and the 

unknown term 
𝜕𝑛1

𝜕𝑥
 was approximated as: 

 𝑝.
𝜕𝑛1(𝑆𝐴𝑁)

𝜕𝑥
≈ 𝑝(𝑛𝐶𝐻4

− 𝑛𝑁2
) . Here p represents the sensitivity enhancement due to 

cryptophane (so-called pre-concentration), and it was used as a fitting parameter. The results 

are shown in Fig. 4.4.  

The simulation of the term 
𝜕𝑛𝑒𝑓𝑓1

𝜕𝑛1
 also allows us to normalize the experimentally measured 

sensitivities presented in Tables 4.1-4.5 to one common thickness of the sensitive layer. This 

is done by moving along the fitted curves of Fig. 4.4. The sensitivity for a fixed thickness of 

300 nm as a function of Cryptophane-A concentration is shown in Fig. 4.5. The value for pure 

SAN was taken from previously reported results (i.e. 0.015 x 10-3 rad/ppm) [24].  
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The sensitivity shows a linear trend

 

Fig 4.4 Simulated and measured sensitivity (from all tables) vs cover thickness 

 

 

𝑆 = 𝑎 + 𝑏. 𝑐 = 2.2𝑋10-5+2.7𝑋10-3.c                                                                                       4.14 

Where c is the concentration of cryptophane-A. In the equation 4.14, the first term represents 

the sensitivity of pure SAN where the concentration of cryptophane-A is equal zero. Note that 

its value compares well to the theoretical value of 1.7 𝑋10 -5 found in Section 4.1.2.2.1. 

However, for cryptophane-A concentrations above 10.5% as discussed in this work, the 

sensitivity is clearly dominated by the second term related to methane pre-concentration. 
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.

 

Fig 4.5 Sensitivity vs cryptophane-A concentration 

Regarding the response time, a quadratic function from Fick’s law gave a good fit for the 

measurements for 11% cryptophane-A as shown in Fig. 4.3, as well as for other concentrations 

of cryptophane-A as shown in Fig. 4.6. 
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Fig 4.6 Response time vs cover thickness 

Based on Fig. 4.4 and 4.6, the thickness and cryptophane-A concentration of the sensitive layer 

can be selected to best fulfill our requirements of high sensitivity and short response time. An 

80 nm thin layer of 50% cryptophane-A doped SAN was chosen as optimal, as it provides good 

sensitivity and response time of only 3 sec. 

The calculation of diffusion coefficient and system response time was also done based on 

results in Fig 4.6, and the resulting diffusion coefficient for different concentrations of 

cryptophane-A are listed in Table 4.6.  

Table 4.6 Concentration of cryptophane-A vs estimated diffusion coefficient 

Cryptophane-A conc. (%) Diffusion coefficient (nm2/s) 

11 24 x 104 

33 6.1 x 104 

50 1.9x 104 
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Fig 4.7 Cryptophane-A conc. Vs Diffusion coefficient 

The diffusion coefficients for different concentrations of cryptophane-A were plotted versus 

the concentration of cryptophane-A (Fig. 4.7), in order to study the effect of cryptophane-A on 

the diffusion of methane. The diffusion coefficients were found to be decreasing very fast 

(exponentially) with increase in concentration of cryptophane-A, which suggest that the 

trapping of methane molecules becomes very prominent resulting in slow response time as 

shown in Fig. 4.6. 
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Chapter 5 
 

 Sensitive layer covered with an insensitive layer 
 

In this chapter, we present the measurement results for increase in sensitivity with deposition 

of 1µm thick layer of Poly dimethyl siloxane (PDMS) polymer on top of thin sensitive layer 

(Fig. 5.1).  The PDMS layer was deposited on the top because the refractive index of PDMS is 

higher in comparison to air. So, we expected that the increase in refractive index of top surface 

might increase the mode overlap in the sensitive layer. And the diffusion coefficient of methane 

in PDMS is 119 x 108 nm2/s, which is approximately 3 order higher than the measured diffusion 

coefficient for SAN doped with 11% cryptophane-A (2.6x105nm2/sec). So, it was also expected 

that the diffusion of methane in PDMS will not slow down the response time of the sensor.  

 

Fig 5.1. Schematic of sensitive layer covered with PDMS layer 

 

The experiment results for response time and sensitivity of thin layer highly doped with 

cryptophane-A with PDMS on top are presented in Table 5.1. 

Table 5.1 Measured values of sensitivity and response time with PDMS and without PDMS 
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Cryptophane-

A conc. 

Thickness 

(nm) 

Sensitivity 

without 

PDMS 

(rad/ppm) 

Response 

time without 

PDMS (s) 

Sensitivity 

with PDMS 

(rad/ppm) 

Response 

time with   

PDMS (s) 

33% 60 0.29 3.4 0.29 3.4 

50% 95 0.437 10 0.645 7.5 

 

From measurement results listed in Table 5.1, we found that the sensitivity was increased with 

deposition of PDMS on top of thin layer of SAN doped with 50% cryptophane-A, which was 

expected but for 33%, the sensitivity was not increased, it remained same. We found that the 

measured signal for 33% without PDMS was very noisy which resulted in uncertainty in exact 

phase change as shown in Fig. 5.2.   

The response time was also decreased with deposition of PDMS on top of thin layer of SAN 

doped with 50% cryptophane-A, it can also be explained with the reduction in noise level as 

shown in Fig. 5.2.  

 

Fig 5.2 (a) Phase change with and without PDMS on the top of 60 nm thin layer with 33% 

doping. (b) Phase change with and without PDMS on the top of 95 nm thin layer with 50% 

doping. The phase change measurement was done for 1000 ppm methane. 

In order to understand the change in sensitivity with deposition of PDMS layer, the simulation 

of sensitivity change with cover thickness (33% doped) with PDMS on top and without PDMS 

was done. The simulations were done by Dr. Jana Jagerska. The simulation results are shown 

in Fig. 5.2. From simulation results, we found that the sensitivity for thin layer increases with 

PDMS. The simulation results also show that the sensitivity increase for cover thickness close 

to 50 nm, is low in comparison to 100 nm. Which justifies measured sensitivity for 33% 

cryptophane-A. 
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From these measurement results we found that deposition of PDMS, increases the sensitivity 

without affecting the response time. In addition, the PDMS layer reduces the noise level present 

in the thin layer measurement and make the sensor much more stable. 

 

Fig 5.2 Simulation of sensitivity change with cover thickness for 1µm thick PDMS on top 

and without 
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Chapter 6 

Balanced interferometer with doped and undoped 

layers on the waveguide arms 
 

In previous chapter, we presented the increase in the sensitivity of the optimum thickness of 

sensitive layer without effecting the response time. Which makes the highly sensitive with fast 

response time. This chapter presents the enhancement in stability and the selectivity to methane 

sensor.  

The existing sensor suffers from long-term drift which affects the repeatability of the sensor 

during long measurements. The long-term drift in existing sensor comes from the temperature 

sensitivity of the sensor as the sensor has silica in reference arm, which is methane 

impermeable but it has very low thermo-optical coefficient (12.9 x 10-6K-1). On the other hand, 

sensing arm is cladded with polymer which has very high thermo-optical coefficient (-110 x 

10-6K-1) [23]. So, difference in thermo-optical coefficient of both arms makes the sensor 

sensitive to temperature. To reduce the temperature sensitivity of the chip, the peltier element 

is placed below the chip, which regulates the temperature of the chip from below. But the 

polymer layer with very high thermo-optical coefficient is deposited on the top, so the small 

variation in the temperature of the gas flowing above the chip results in phase change. In the 

lab, temperature change is very slow, so during the measurement the sensitivity of methane 

overtakes the sensitivity due to slow change in temperature. But, in long measurements it 

results into a slow drift. And it was also observed that the measurements which were done in 

the night, the measurements were without drift. Which also shows that the drift reduces when 

temperature is stable (night).  

In order to reduce the slow temperature drift, we decided to improve the sensor with 

development of sensor from balanced Mach-Zehnder interferometer. Because in balanced 

interferometers both arms are covered with the material having similar physical and optical 

properties, so that the undesired sensitivity get cancel out at the output. To make balanced 

Mach-Zehnder interferometer, we decided to deposit the SAN layer on one arm of the 

interferometer and SAN doped with cryptophane-A doped on the other. For that we assumed 

that the thermo-optical properties of the both arms are same. In addition, with the deposition 

of SAN in one arm and SAN doped with cryptophane in another arm, it was expected that the 
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selectivity of the sensor will increase. Because with deposition of SAN in reference arm the 

sensitivity of SAN for different gases cancels out from both arms which makes the sensor 

highly sensitive to methane. 

The measurement results for methane sensitivity and stability are described in next section. 

6.1 Methane sensitivity 
 

For methane sensitivity measurement, first the 80 nm thin layer of SAN was deposited on the 

whole chip as there was problem in directly plotting the polymer layer in sensing windows of 

interferometer (discussed in chapter 3). Then, on the top of the thin layer of SAN, 400 nm thick 

layer of 25% cryptophane-A doped SAN was deposited (plotted) on sensing arm and pure SAN 

of 400 nm thickness was deposited on reference arm. The deposition of SAN and SAN doped 

cryptophane-A was done on 0.5 long open window in both arms. The measurement results for 

1000 ppm and 40000 ppm methane are shown below in Fig. 6.1. 

 

 

Fig 6.1 (a) Measured output intensity for alternate switching of 0 to 1000 ppm methane (b) 

Measured output intensity for alternate switching of 0 to 40000 ppm methane. 

 

From measurement results, we found that the sensor with balanced Mach-Zehnder 

interferometer was sensitive to methane. The sensitivity was found to be very low because the 

interaction length for the sensor was only 0.5 cm. 

As shown in Fig. 6.1 (b), we measured an unexpected dip in intensity when gas was switched 

from nitrogen to methane (40000). The measured dip in the intensity was not very fast, so it 

suggests that it was not happening because of pressure change. 

Theoretically, we explained this dip with difference in diffusion rate of methane in pure SAN 

and doped SAN. It was already shown in previous chapters that the response time for diffusion 
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of methane in SAN doped with cryptophane-A is very slow. While diffusion of methane in 

pure SAN polymer is very fast [24]. So, when methane gas is introduced in the system, intensity 

changes due to sensitivity of SAN to methane and after few seconds the sensitivity of doped 

SAN overtakes the sensitivity of pure SAN. Which results in the dip shown in Fig. 6.1(b). The 

dip corresponds to the sensitivity of pure SAN. 

And in order to mathematically support this argument, the ratio of intensity change due to dip 

and methane was calculated. 

Ratio=
( 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑚𝑒𝑡ℎ𝑎𝑛𝑒)

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑘𝑖𝑛𝑘
=

61.52−48.54

48.42−48.09
= 39.3 

The ratio should corresponds to the pre-concentration factor for 25% cryptophane-A (Fig.4.5), 

because if the dip corresponds to the sensitivity of SAN. The calculated value was found to be 

low in comparison to estimated value from chapter 4, which is approximately 50. But in 

starting, we mentioned that the thin layer (80 nm) of pure SAN was deposited below the 

sensitive layer, by considering that the most part of evanescent field was confined in thin layer 

of SAN. The lower value of pre-concentration can be justified. 

From, this measurement we found that the sensor is highly selective to methane, the dip 

suggests that the sensitivity of pure SAN was cancelling out from both arms with delay.  

During these measurements, the phase sensitivity was not calculated because for phase 

sensitivity calculation, values of maximum and minimum intensity are required. And with 1000 

ppm and 40000 ppm we were not able to reach the maxima. The temperature scan was also 

done to attain the maxima or minima of the intensity. But temperature change was giving very 

small intensity change in comparison to methane. Which shows that the sensor is very less 

sensitive to temperature that is required in reducing the long-term drift from the existing sensor. 

To estimate the long-term drift and stability of the developed sensor is described in next 

section. 

 

6.2 Stability 
 

To investigate the stability improvement from the existing senor, the 40 min long intensity 

measurement for balanced and unbalanced interferometer was compared as shown in Fig.6.2.  

The measurement data of unbalanced Mach-Zehnder interferometer with 351 nm thick layer 

of 33% cryptophane-A doped SAN and balanced Mach-Zehnder interferometer with 400 nm 

thick layer of SAN on one arm and SAN doped with 25% cryptophane-A in other arm were 

compared to estimate the stability improvement. The sensing window in balanced Mach-

Zehnder was 0.5 cm long and in unbalanced interferometer it was 3 cm long. For comparison, 

the slopes for both measurement data were scaled to same sensing window length (i.e. 0.5 cm). 
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Fig. 6.2 The stability comparison between sensing with balanced and unbalanced Mach-

Zehnder interferometer. 

The slope of drift in unbalanced Mach-Zehnder interferometer, when scaled to 0.5 cm 

interaction length was found to be 9.16 microwatt/min. 

Similarly, the slope of drift for balanced Mach-Zehnder interferometer was calculated as 0.17 

microwatt/min.  

From calculated slope (per minute), the drift in unbalanced Mach-Zehnder interferometer was 

found to be 50 times more than the balanced Mach-Zehnder interferometer. Which shows that 

the balanced Mach-Zehnder interferometer provides much better stability to the sensor. 

From measurement results, we found that the sensor with balanced Mach-Zehnder 

interferometer provides high stability and selectivity to methane. And with combination of 

results from this chapter and last chapter, a sensor can be developed with high sensitivity, fast 

response time and high stability. 
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Chapter 7 

Conclusion and future work 
 

7.1 Conclusion 
 

This thesis describes the optimum thickness of SAN polymer highly doped with cryptophane-

A for sensing of methane, which provides high sensitivity and fast response time. The 

stability and selectivity of the sensor is also described. 

First, the highest sensitivity of the developed methane sensor was investigated. The results 

showed that the 2-fold sensitivity enhancement than the previously reported sensitivity. But 

this increase in sensitivity comes in the expense of slow response time. 

Second, the change in response time and sensitivity with cover thickness was investigated. 

The results showed that the response time and sensitivity both were increasing with increase 

in cover thickness. Then, measurement results with thin layer of highly doped cryptophane-A 

showed that the thin layer of highly doped cryptophane-A can be considered as optimum 

thickness as it fulfills our requirement of highly sensitive and fast sensor. The 80 nm thin 

layer of cryptophane-A doped SAN was chosen as optimum thickness for developed sensor. 

Third, the sensitivity and noise associated with thin layer of SAN highly doped with 

cryptophane-A was investigated by deposition of PDMS layer on the top of the thin layer. 

The results showed that the sensitivity and noise level was improved, which was further 

supported by simulation results. 

After optimization of thickness of sensitive layer, the long term stability of the sensor was 

investigated by implementation of balanced Mach-Zehnder in place of unbalanced Mach-

Zehnder. For fabrication of balanced Mach-Zehnder interferometer, photolithography process 

was used to deposit Ag in one arm of the balanced interferometer to deactivate one arm for 

methane. But we found that the available solvents and photoresist are not compatible with 

polymer. Then, Microplotter II was used for deposition of SAN in one arm and doped SAN 

in other arm. The measurement results with balanced Mach-Zehnder interferometer plotted 

with Microplotter II showed that the stability is much better than the unbalanced one. And in 

addition, it can increase the selectivity towards as sensitivity of SAN for other gases will 

cancel out from both branches. 
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Based on the measured, the suggested sensor can be developed with the deposition of 20 nm 

thin layer of SAN on the chip, followed by plotting of doped and undoped SAN on both arms 

and covered with 1µm thick layer of PDMS. 

 

7.2 Future work 
 

To further improve the sensor, measurements with thin layer of doped and undoped SAN on 

balanced Mach-Zehnder interferometer with large sensing window can be done. Then, the 

selectivity of the balanced Mach-Zehnder interferometer can be verified by introducing the 

sensor with mixture of gases. Finally, the sensor can be mounted on the drone for testing after 

inclusion of fiber-pigtailing at input/output of the chip and packaged electronics.  
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Appendix 1 
 

Accepted abstract for CLEO Europe-2017  
 

Sensitivity and Response time of an On-Chip Methane Sensor 
 

Mukesh Yadav1, Jana Jágerská1, Jørn H. Hansen2 and Olav Gaute Hellesø1  

1. Dept. of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway 

2. Dept. of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway 

 

In recent years, methane detection has become a hot topic due to the strong impact of methane on the global 

warming and the climate change. There has also been rising interest in the development of new methane sensors 

that can tackle the task of sensitive atmospheric methane detection, but are smaller, lighter, and cheaper than the 

state of the art. Our approach to this challenge is the development an on-chip waveguide sensor, which 

compensates for the rather short path lengths possible on a chip with pre-concentration of methane in a thin, 

specially designed waveguide cladding layer. 

Our detection technique is based on evanescent refractive index sensing with a Silicon Nitride shallow rib-

waveguide Mach-Zehnder interferometer, see Figure 1a). The waveguide was fabricated with dimensions 

supporting single TE and TM modes at the wavelength of 785 nm. The reference arm is cladded with SiO2 that is 

impermeable to methane, and the sensing arm is cladded with Styrene Acrylonitrile (SAN) polymer doped with 

Cryptophane-A. Cryptophane-A is a molecular compound, which has a high affinity towards methane, i.e., it acts 

as a host cavity encapsulating methane and binding it within with weak dispersion forces. We have previously 

reported that the presence of cryptophane increases the methane concentration in the SAN layer by a factor of 50 

for the crytophane:SAN mixing ratio of 1:3. With this concentration we achieved a limit of detection of 6 ppm [1], 

which is 1-2 orders of magnitude better than what is typical with other methane sensors in a similar size and price 

range.  

However, in order to bring the methane sensor to the field, not only sensitivity but also specificity to methane 

and the sensor response time need to be quantified. The latter is directly related to the diffusion mechanism of 

methane in cryptophane-doped polymers, which has up to date never been closely investigated or reported. In this 

paper we provide the first experimental study of methane diffusion in strongly doped cryptophane layers. Our 

data represent an important step towards understanding and optimization of the response time of cryptophane-

doped on-chip sensors, which is crucial for their future deployment in practical applications 

  

 
Fig. 1. a) Schematic of the waveguide chip. b) Sensitivity and response time versus the sensing layer thickness. 
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 Figure 1b) shows the first experimental data, where the sensitivity and the response time were measured 

for four different thicknesses of the sensing layer with cryptophane:SAN concentration of 8.5. Although both 

sensitivity and response time increase with thickness, it is evident that the sensitivity gets saturated for a thickness 

of about 300 nm, while the response time continues to increase. From the measured response times, the diffusion 

coefficient was estimated to 2.6 x 10-9 cm2/sec. This estimate shows that the diffusion in the sensing layer is 

considerably slower, by 3 orders of magnitude, than in pure polymers (SAN, PDMS, PPMS, etc.) [3]. 

Optimization of the sensor performance will be discussed, including approaches for making a fast and sensitive 

sensor for atmospheric methane. Development of a prototype will be outlined.  

                   

References 
1 J. Jágerská, F. T. Dullo, M. Ingvaldsen, S. Lindecrantz, M. Engqvist, J. Hansen, and O. G. Hellesø, "On-Chip Methane Sensing with 

Cryptophane-A Cladded Waveguide Interferometers," in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical 

Society of America, 2016), paper SF2H.3.  

2 F. T. Dullo, S. Lindecrantz, J Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, "Sensitive on-chip methane 

detection with a cryptophane-A cladded Mach-Zehnder interferometer," Opt. Express 23, 245563 (2015). 

[3] S.G. Charati and S. A. Stern, "Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations," Macromolecules 31(16), 

5529-5535 (1998) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 51 of 55 

 

 

 

Appendix 2 
 

List of parts 
Item Manufacturer ID 

Optical table Standa  1VIS95W 

Laser  Crystalaser  DL785-120-S0 

Half-wave plate Thorlabs   

Beam expander lens 1 Thorlabs AC254-030-B-ML 

Beam expander lens 2 Thorlabs LA1986-A 

Polarizer Thorlabs LPVIS100-MP 

Objective lens input  Leitz Wetzlar 569244 

Objective lens output Thorlabs UIS 2 PLN10X 

Photodetector Thorlabs SM1PD1A 

Camera Allied Vision GC2450 

Piezo translation stage Thorlabs MAX302/M 

Piezo controller Thorlabs MDT 693A 

Modular Rack Chasis Thorlabs PRO8000 

Photocurrent measurement 

card 

Thorlabs PDA8000-2 

Peltier Laird Technologies 430139-513 

Temperature controller Thorlabs TED8080 

MFC 100 ml/min x2 Bronkhost F-201-CV-100-AAD-11-V 
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Vaccum pump VWR PM20405 

Gas AGA Nitrogen 

Gas AGA 1000 ppm in nitrogen 
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