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Abstract

The focus of this thesis is to �nd an alternative way to reconstruct a pseudo quadrature

polarimetric (quad-pol) covariance matrix from compact polarimetric (compact-pol) data.

In the latest years, the compact polarimetry SAR mode was developed and used more and

more widely. It provides a good compromise between area covered and information content per

pixel [13].

The literature has focused for a long time on quad-pol data in the past. They contain more

information compared to compact-pol data. Moreover, several ways to extract useful information

from quad-pol SAR images have been developed [8].

Compact-pol data can be considered as a lossy compression from quad-pol data, which has

inspired research to �nd ways to reconstruct the latter format from the former. This allows to apply

all the methods and algorithms developed for data analysis of quad-pol data to a reconstructed

pseudo quad-pol data.

The elaboration of more and more e�ective deep learning techniques in the last few years has

guided us to consider convolutional neural networks (ConvNets) a suitable tool for our problem.

ConvNets take advantage of the properties of grid-like topology data [7]. They are able to locate

spatial and time local connections.

After making assumptions of re�ection symmetry for the polarimetric covariance matrix, the

reconstruction problem can be formulated as the regression from an image 224x224 with 4 channels,

representing the compact-pol covariance matrix, to an image 224x224 with 5 channels, representing

the quad-pol covariance matrix. This is the reason why we thought that ConvNets could be a good

choice from the available suite of machine learning algorithms.

Our results were then compared with previous reconstruction methods, Souyris and Nord's

[6, 37], applying the same data set. The methods developed in this thesis showed, on average,

slightly worse results than those in the literature. However, we observed that, in same cases, they

produced interesting outcomes, for example, a good generalization ability.
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1 Introduction

In the latest years, the development of more e�cient and precise techniques to watch over the vast

natural surfaces (e.g. seas, oceans, forests, lands) by satellite images allows analysts to have constant

observations of the state of the Earth. This is very important to monitor climatic changes and useful

for the mapping of natural resources [8].

The observation of wide and unpopulated areas can be done e�ciently by space-borne microwave

synthetic radar (SAR) sensors. They have the advantage of being independent of the local weather

conditions, since the microwaves can propagate una�ected through the clouds, and they are not de-

pendent on light conditions [2].

There are di�erent con�guration of SAR instruments. Depending on the information needed, the var-

ious modes have di�erent resolution and spatial coverage (swath width and number of polarimetric

channels). There is a trade-o� between resolution and spatial coverage: high resolution will have a low

spatial coverage and vice versa [5].

The quadrature-polarimetric (quad-pol) SAR mode, also known as full-polarimetric mode, is used to

get the largest amount of polarimetric information about the back-scattering properties of the targets.

It uses dual polarization at the transmitter (horizontal and vertical) and dual polarization at the re-

ceiver. The issue of this method is that the coverage area is small. Dual-polarimetric (dual-pol) SAR

mode is used to cover a larger area, but it gives less information about the type and state of target

surface objects than quad-pol modes. It uses single polarization at the transmitter and double at the

receiver [11].

The Canadian RADARSAT-2 SAR sensor has a maximum swath of 50 km using the wide quad-pol

mode, and the highest resolution is 5.2 m [5].

To have at the same time the polarimetric information content of quadratic-pol and the area cov-

erage of dual-pol, the compact polarimetry SAR mode was introduced in the last decade [1]. The

compact polarimetry consists of a SAR acquisition mode where only one polarization is transmitted,

and two orthogonal polarizations are received. Unlike dual-polarimetric systems the polarization for

the transmitter could be either circular or diagonal, instead of being horizontal or vertical. That al-

lows the partial reconstruction of quad-pol data. Many research communities have concluded that the

compact-pol mode is almost as good as quad-pol SAR systems for applications that look at natural

terrain and incoherent scattering, where the underlying assumptions of compact-pol reconstruction are

ful�lled[1, 6, 4]. We can assert that this last method will be used in a large scale in the near future,

so it will be particularly interesting to �nd the best reconstruction to extract as much information as

possible from compact-pol data.
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The development of deep learning techniques has allowed solving problems that have resisted the

best attempts of the classical machine learning methods for many years. It has turned out that

deep learning is very good in application involving intricate structure in high-dimensional data and is

therefore applicable to many domains of science [7]. In [7] the authors explain how they think that deep

learning will have many more successes in the near future because it requires very little engineering

by hand, aided furthermore by the increase of computational power and available data. New learning

algorithms and architectures that are currently being developed for deep neural networks will only

accelerate this progress.

LeCun, Bengio and Hinton noticed also that there was one particular type of deep, feed-forward network

that was much easier to train and generalized much better than networks with full connectivity between

adjacent layers. This was the convolutional neural network (ConvNet). It achieved many practical

successes during the period when neural networks were out of favor and it has recently been widely

adopted by the computer vision community and many others [7].

ConvNets are a specialized kind of neural network for processing data that have a known, grid-like

topology, for example a color image composed of three 2D arrays. They employ convolution operation

instead of general matrix multiplication [3].

For these reasons we thought it would be intuitively a promising idea to apply convolutional networks

to the SAR image reconstruction problem.

1.1 Previous works

Concerning the quad-polarimetric data reconstruction, we studied and compared other methods de-

veloped before ours.

Reference [8] is a master thesis, submitted to UiT The Arctic University of Norway by Martine Moster-

vik Espeseth. It was used as a guide to work on satellite images, that composed our data set. The

quad-pol data interpretation methods are de�ned, from the scattering vector to the creation of covari-

ance matrices. Descriptions of peculiarities of sea ice images are also described, for example symmetry

assumptions of the corresponding covariance matrices. In the end some reconstruction methods are

indicated, with reference to them.

References [6] and [37] describe Souyris and Nord's methods. We applied these two methods to our

data set as a comparison.

Reference [9] gave us some ideas on how to build a ConvNet. This is a paper written at the University

of Berkeley, which is describing ConvNets as an appropriate solution to our problem. It had also helped

to choose the methodology to follow. As suggested there, we used Ca�e [35], a tool developed at the

University of Berkley too, which allow to build complex neural network. [3] assisted us to enhance

theoretical aspects.
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1.2 Objective and contribution

The aim of this work is to �nd an alternative solution to the reconstruction problem from compact-pol

to quad-pol data format. This was achieved by taking quad-pol covariance matrices, compressing them

to compact-pol form, and then developing a method to expand back to a quad-pol approximation.

The reconstruction methods of previous literature are good attempts at solving this problem, but they

are only e�ective under certain assumptions and in areas where these are ful�lled. As with any other

approximation application, there is also an error from the reconstruction process. While we are going

to work under these same assumptions, we wanted to try a di�erent approach using a Convolutional

Neural Network (ConvNet) to exploit the power of machine learning algorithms and compare the result

with previous approaches.

We also would like to apply our trained ConvNet to images of di�erent natural areas to test its ability

to reconstruct matrices describing unfamiliar terrain.

1.3 Structure of the thesis

The thesis is structured into 6 chapters including the introduction.

Chapter 2 reviews some of the most important principles of SAR imaging, including the covariance

matrix data format, both for quad-pol and compact-pol, and reconstruction methods. These aspects

have been studied to process our data set.

Chapter 3 presents the theory of Deep Learning, focusing in particular on convolutional neural net-

works.

Chapter 4 describes the way in which data are processed, from calibration to covariance matrix con-

struction. It has been also described how we have applied the reconstruction methods of the previous

literature and the tools we used to set-up ours.

Chapter 5 presents the results obtained from the di�erent reconstruction methods and settings. This

chapter also includes a comparison of results, applying to the same data Souyris and Nord's methods

and ours.

Chapter 6 summarizes the work and proposes some future work using ConvNets in SAR images.
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2 Remote sensing images

Remote sensing is de�ned, for our purposes, as the measurement of object properties on the earth's

surface using data acquired from satellites. It is, more in general, an attempt to measure something

at a distance, rather than in situ. Since there is not a direct contact with the object of interest, it is

necessary to rely on propagated signals of some sort, for example optical, acoustical or microwave [10].

One of this methods contemplates the use of synthetic aperture radars.

2.1 Synthetic aperture radars (SAR)

SAR systems are active sensors that were invented to allow high resolution monitoring of the Earth's

surface. They are mounted on either space-borne or air-borne platforms from where they transmit a

coherent electromagnetic pulse in the microwave region of the electromagnetic spectrum and measure

the back-scattered response from the surface [8].

These pulses are partially re�ected back to the radar by targets within the antenna beam (Figure 2.1).

Since SAR sensors operate in the microwave frequency bands, the transmitted signal can penetrate

clouds and most weather conditions.

SAR sensors can be divided into two main categories:

� Mono-static radars. They correspond to a system where the transmitter and the receiver share

the same antenna.

� Bi-static radars. They correspond to a system where the transmitter and the receiver are sepa-

rated by a considerable distance [11].

As the name implies, SAR instruments synthesize an aperture length in order to obtain a high resolu-

tion. This is achieved by utilizing the movement of the radar and further performing specialized signal

processing to obtain a high resolution. As the platform travels and measure the response from a given

target, the Doppler history will be considered for all the back-scattered signals from this target [11].

The spatial resolution is given by the minimum distance between two points on the surface that are

still separable [12].
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Figure 2.1: Illustration of the SAR geometry based on Figure 1.1 in [Lee and Pottier, 2009, p. 6].

2.1.1 Polarization

The polarization in SAR data is given by the orientation of the electric �eld of the wave which is

re�ected by the target we are observing, and it is expressed by the elements of the vector amplitude

of the electric �eld [34]. Multiple polarization are useful to get more information about the shape of

the target.

SAR instruments can be divided into three groups depending on the type of polarization:

� Quad-polarization. Also known as fully-polarized case, the radar transmits using two di�er-

ent polarized waves and measure the re�ected wave in two di�erent polarizations. The most

common case is to transmit both horizontally and vertically polarized waves, and measure both

horizontally and vertical polarizations. The result is a data with 4 channels (complex numbers)

per pixel, horizontal-horizontal (HH), vertical-horizontal (VH), HV, and VV.

� Dual-polarization. This method employs the use of one polarization at the transmitter and

two at the receiver.

� Single-polarization. Just one channel is used for the transmission and one at the receiver.

When the transmitter and the receiver have the same polarization, co-pol components are generated,

i.e.: VV and HH. The cross-pol component is generated when the transmitter and the receiver have

di�erent polarization modes, i.e.: HV and VH.
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Using one polarization at the transmitter allows to cover a larger swath width than using two polar-

ization. This advantage is exploited when it is necessary to look at a large area on the ground without

caring about small details [13].

In the other hand, choosing two polarization at the transmitter allow to obtain more information about

the area we are monitoring, but a smaller surface can be covered [13].

The compact polarimetric mode was introduced to combine the positive aspects of both previous ones,

it is the compact polarimetry. The compact-pol uses other polarizations than the common horizontal

and vertical ones, and di�erent combinations of the polarization of the transmitter and the receiver have

been suggested [14]. These are chosen such that an approximation of full-pol data can be reconstructed

under certain assumptions.

2.2 The scattering coe�cients

The scattering coe�cients describe the transformation of an EM �eld as the result of the wave interac-

tion with one or multiple scatters at the target. The interaction processes depend on the polarization,

phase, power, and frequency of the wave. The target's properties may alter the properties of the

incoming �eld, such that the scattered �eld contains an unique signature re�ecting the properties of

the target. These unique signatures are of special interest in remote sensing [15].

The incident �eld at the surface is de�nes as:

−→
E i

surface =
e−jkir

r

−→
E i

sensor (2.1)

where
−→
E i

sensor is the transmitted �eld from the sensor,
−→
E i

surface is the incident �eld at the surface, ki

is the wave vector, and e−jkir

r takes into account the in�uence of the propagation medium on amplitude

and phase, and r is the distance from the sensor to the surface [15].

Considering the scattered �eld at the receiver, the formula which describe it is:

−→
E s

sensor =
e−jkir

r

−→
E s

surface (2.2)

The transformation between the incident �eld,
−→
E s

surface, and the scattered �eld, at the surface is

through the so called scattering wave vector (S), and is expressed as:

−→
E s

surface = S
−→
E i

surface (2.3)
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Figure 2.2: Interaction of an EM wave and a target in Espeseth, M. M., 2015, p. 21

Inserting for the
−→
E s

surface, yields:

−→
E s

surface =
e−jksr

r
S
−→
E i

surface (2.4)

The scattering wave vector is usually written as a matrix (S), that represents the relation between the

polarizations of the incoming and outgoing waves. These relationships are referred to as scattering

coe�cients. For quad-pol systems the relation between the transmitted �elds and the measured �eld

is [16]:

[ −→
E s

H−→
E s

V

]
=

ejkr

r

[
SHH SHV

SV H SV V

][ −→
E i

H−→
E i

V

]
(2.5)

where H and V denotes horizontal and vertical polarizations.

2.3 Polarimetric covariance matrix

The covariance matrix can usually provide information about the surface we are looking at. It is de�ned

as the Hermitian outer product of the scattering vector. It is common to average over some area of the

image, the squared window of pixels taken into consideration are usually called multilook cell, since it

provides us multiple looks at the scattering process, that vary stochastically with the exact position

of the scatterers relative to the transmitter and receiver. The random e�ects of the viewing geometry

motivates the use of the covariance matrix, which is a second-order statistic. It does not make sense

to look at �rst-order statistics, such as the mean scattering vector, since scattering coe�cients are

zero mean when measured over natural terrain (incoherent targets). The sample covariance matrix is

created then by averaging over L pixels, i.e.:
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C =
⟨−→s i

−→s ∗T
i

⟩
=

1

L

L∑
i=1

sis
∗T
i (2.6)

Where:

⟨...⟩ denotes spacial averaging
T denotes the transpose operator

* denotes the complex conjugate

L is the number of pixels we are considering (multilook size)

si is the vector de�ned as:

si = [SHH , SHV,SV H , SV V ]
T (2.7)

For other applications coherency matrix is often used. It can be obtained by the covariance matrix

using a linear transformation. The coherency matrix is a sample covariance matrix computed in a

di�erent basis, which is a linear transformation of the scattering vector above. I will not go deeper

through it because it is not used in our experiment.

(2.7) contains four elements, but it can be reduced to three elements. There are some methods to do

it, the most famous is to make a reciprocity assumption between SHV and SV H and replace them with

a coherent average (that is, an average computed in the complex domain: 1
2 (SHV + SV H)), which is

then scaled by
√
2 in order to preserve power of the cross-pol measurements.[8]. I decided for this work

to average those coe�cients with the following formula to enable the use of integer arithmetic and to

reduce the computational complexity in the convolutional neural network.:

SHV+V H =
1

2
(SHV + SV H) (2.8)

The vector used to create the covariance matrix I used for the experiment looked as follows:

−→s i = [SHH , SHV+V H , SV V ]
T (2.9)

The corresponding covariance matrix is the one that follows:

CL =
⟨−→s L

−→s ∗T
L

⟩
=


⟨
|SHH |2

⟩ ⟨
SHHS∗

HV+V H

⟩
⟨SHHS∗

V V ⟩

⟨SHV+V HS∗
HH⟩

⟨
|SHV+V H |2

⟩
⟨SHV+V HS∗

V V ⟩

⟨SV V S
∗
HH⟩

⟨
SV V S

∗
HV+V H

⟩ ⟨
|SV V |2

⟩
 (2.10)
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Figure 2.3: Re�ection symmetry around the line-of-sight direction (illustration based on Figure 3.9 in
[Lee and Pottier, 2009, p. 69]).

2.3.1 Re�ection symmetry

Re�ection symmetry can be assumed when the distributed target has two points (S1 and S2) with equal

contribution [17]. The scatterers (S1 and S2) are mirrored to each other as shown in the �gure below

[18]. The equations in this �gure demonstrate how the two scattering targets within the resolution cell

produce a decorrelation between the cross- and the co-pol scattering elements.

The following decorrelation takes place between the co- and cross-pol elements [11]:

⟨
SHHS∗

HV+V H

⟩
=

⟨
SV V S

∗
HV+V H

⟩
= 0 (2.11)

This means that the orientation distribution is symmetrical about the vertical direction. Applying

therefore the symmetry assumption, the resulting covariance matrix takes the form:

CL =


⟨
|SHH |2

⟩
0 ⟨SHHS∗

V V ⟩

0
⟨
|SHV+V H |2

⟩
0

⟨SV V S
∗
HH⟩ 0

⟨
|SV V |2

⟩
 (2.12)

2.4 Compact polarimetry

In the latest years, the use of compact polarimetry has become increasingly widespread. The reason is

given by the fact that it exploits the bene�t of both quad-pol and dual-pol setups, that is the amount
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Figure 2.4: The di�erent polarization architectures in Espeseth, M. M., 2015, �gure 5.1 p. 51.

of information we can obtain from the �rst and the wider swath capacity of the second one.

The �rst satellite that operated with the compact-pol mode was the Mini-SAR sensor. This sensor

was launched on October 22th 2008 on the Chandrayaan-1 mission, and operated for nine months [19].

The polarization mode de�nes the system with regards to the polarization of the transmitted and

received electromagnetic �eld. Those modes can be divided mainly in three categories:

� single-pol. This system transmits waves using only one polarization, and receives in the same

polarization.

� dual-pol. This system transmits waves using only one polarization, and receives in two polariza-

tions.

� quad-pol. This system transmits waves with two orthogonal polarizations and measures the

response coherently in two polarizations.

A compact-pol system is a subgroup of dual-pol system. In this systems, the transmitted signal is

either a circularly polarized wave, or a linear combination of a horizontally and a vertically polarized

wave (π4 -pol architecture) [6]. The back-scattered signals are either recorded in the horizontal and

vertical polarization basis, or left- and right-hand circular polarization basis.

SAR radars can transmit just a single polarized wave at a time, so vertical and horizontal polarization

must be time-multiplexed [13]. In dual- and single-pol systems only one polarization is used at the

transmitter, it means that the swath width is double than in quad-pol systems (where two polarizations

are used). In the other hand, compact-pol use just one polarization at the transmitter, that is how it

can ensure the same coverage as single and dual pol.

Moreover, two polarizations at the transmitter require twice the average power compared to dual- and

single-pol systems [13].
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Figure 2.5: The three con�gurations of the compact polarimetry (a) π/4 , (b) CTLR and (c) DCP in
[21], �gure 2 p. 3.

2.4.1 Compact polarimetry modes

There are three di�erent modes discussed in the literature:

�
π
4 -pol mode. The radar transmit a wave which is linearly polarized at 45 degrees to the horizontal

and vertical directions [6].

� Circular mode. The radar transmits circularly polarized waves and receives linear, in the two

orthogonal linear polarizations H and V. This type of con�guration consists of two sub-classes;

left- and right-hand circular polarizations at the transmitter. This mode is also called hybrid-pol

mode [20]. In this work we focus in this kind of compact-pol data because they are widely used

and perform better in the reconstruction of previous works [8].

� DCP mode. This system transmits circularly polarized pulses, and receives coherently dual-

circular polarizations [20].

The scattering vector for π
4 -pol mode:

−→
k π

4
=

[
Sπ

4 H

Sπ
4 V

]
=

[
SHH SV H

SHV SV V

]
1√
2

[
1

1

]
=

1√
2

[
SHH + SHV

SV V + SV H

]
(2.13)

The scattering vector for hybrid-pol mode:

−→
k LC/RC =

[
SLH/RH

SLV/RV

]
=

[
SHH SV H

SHV SV V

]
1√
2

[
1

±j

]
=

1√
2

[
SHH ± jSHV

±jSV V + SV H

]
(2.14)
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The scattering vector for circular-pol mode:

−→
k LC/RC =

[
SLL SLR

SRL SRR

]
=

1√
2

[
1 j

j 1

][
SHH SHV

SV H SV V

]
1√
2

[
1 j

j 1

]
=

=
1

2

[
SHH − SV V + 2jSHV j(SHH + SV V )

j(SHH + SV V ) SV V − SHH + 2jSHV

]
(2.15)

The term
√
2 is present to conserve the power [6]. We remark that in this work coe�cients SHV and

SV H are averaged in a single value.

As we can observe in the equations above, all the scattering coe�cients in the new representations

contain a blend of co- and cross-pol terms, as de�ned with respect to the linear basis.

2.4.2 Compact polarimetric covariance matrix

The sample covariance matrix for the compact-pol modes is given as the averaged Hermitian outer

product of the target vectors.

Covariance matrix for π
4 -pol mode:

Cπ
4

=
⟨−→
k π

4

−→
k ∗T

π
4

⟩
=

1

2

 ⟨
|SHH |2

⟩
⟨SHHS∗

V V ⟩

⟨SV V S
∗
HH⟩

⟨
|SV V |2

⟩  +

⟨
|SHV |2

⟩
2

[
1 1

1 1

]
+

+
1

2

[
2N(⟨SHHS∗

HV ⟩) ⟨SHHS∗
HV ⟩+ ⟨SHV S

∗
V V ⟩

⟨S∗
HHSHV ⟩+ ⟨SV V S

∗
HV ⟩ 2N(⟨SV V S

∗
HV ⟩)

]
(2.16)

Covariance matrix for hybrid-pol mode:

C
LC/RC
Hybrid =

⟨
k⃗LC/RC k⃗

∗T
LC/RC

⟩
=

1

2

 ⟨
|SHH |2

⟩
∓j⟨SHHS∗

V V ⟩

±j ⟨SV V S
∗
HH⟩

⟨
|SV V |2

⟩ +

⟨
|SHV |2

⟩
2

[
1 ±j

j 1

]
+
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+
1

2

[
±2J (⟨SHHS∗

HV ⟩) ⟨SHHS∗
HV ⟩+ ⟨SHV S

∗
V V ⟩

⟨S∗
HHSHV ⟩+ ⟨SV V S

∗
HV ⟩ ∓2J (⟨SV V S

∗
HV ⟩)

]
(2.17)

Covariance matrix for circular-pol mode:

CRC
DCP =

⟨−→
k DCP

−→
k ∗T

DCP

⟩
=

1

4

 ⟨
|SV V − SHH |2

⟩
⟨−j(SV V − SHH)(SHH − SV V )

∗⟩

⟨j(SV V + SHH)(SV V − SHH)∗⟩
⟨
|SV V + SHH |2

⟩ +

+
1

4

[
4
⟨
|SHV |2

⟩
0

0 0

]
+

1

4

[
4J (⟨(SV V − SHH)S∗

HV ⟩) 2
⟨
SHV (SHH + SV V )

∗⟩
2 ⟨(SHH + S∗

V V )⟩ 0

]
(2.18)

2.4.3 Compact polarimetric information extraction

There are di�erent ways to extract information from compact polarimetric data. It is possible to divide

this methods in three main approaches:

� The �rst one concern on the reconstruction of a pseudo quad-pol covariance matrix from the

compact-pol. This reconstruction allows to apply well-known full-polarimetric methods to the

reconstructed matrix. This is the goal of this work, we want to try to �nd a new e�cient method

to reconstruct full-polarimetric covariance matrices.

� The second group of methods contains decompositions applied directly on the compact-pol data.

As in the quad-pol case, decomposition methods aim to decompose the data into multiple scat-

tering types, such as surface, double bounce, and volume scattering [22].

� The third group uses the compact-pol parameters available for interpretation and classi�cation

purposes directly [23].

2.4.4 Issues with the reconstruction of polarimetric information

Regarding the quad-pol case, the interpretation of the features is well known and there is a strong

theory in the background, especially for sea ice images. This is why it seems worthwhile to reconstruct
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the full polarimetric information instead of analyzing directly compact-pol data, where we still do not

have available the same suit of e�ective and con�rmed methods.

Although it is di�cult to reconstruct quad-pol features from the compact-pol data, some relevant

information can still be obtained from the compact-pol case.

One of them is the cross-pol intensity, that is an important feature to distinguish smooth ice and open

water for example. This parameter is present just in the quad-pol polarization. This is an example

which explain the importance of �nding a method to construct a pseudo matrix.

2.5 Reconstruction methods

In state-of-the-art reconstruction methods some assumptions about the target must be made. Re�ec-

tion symmetry (shown in the previous chapter) is an example of such assumption. The performance of

the reconstruction will depend on the accuracy of these assumptions, namely the ones that will have

the least negative impact on the restored data.

2.5.1 Souyris' reconstruction method

This reconstruction process is done by assuming re�ection symmetry, and that the compact-pol data

represents natural surfaces. This results in zero correlation between the cross- and co-pol scattering

coe�cients, i.e.:

⟨SHHS∗
HV ⟩ = ⟨SHV S

∗
HH⟩ = 0 (2.19)

⟨SV V S
∗
HV ⟩ = ⟨SHV S

∗
V V ⟩ = 0 (2.20)

The sample quad-pol covariance matrix will then take the following form:

C3 =


⟨
|SHH |2

⟩
0 ⟨|SHHS∗

V V |⟩

0 2
⟨
|SHH |2

⟩
0

⟨|SV V S
∗
HH |⟩ 0

⟨
|SV V |2

⟩
 (2.21)

The sample hybrid-pol covariance matrix has the following form (considering the re�ection symmetry):

C
LC/RC
Hybrid =

1

2

 ⟨
|SHH |2

⟩
∓j ⟨|SHHS∗

V V |⟩

±j ⟨|SV V S
∗
HH |⟩ 0

⟨
|SV V |2

⟩ +

⟨
|SHV |2

⟩
2

[
1 ±j

j 1

]
(2.22)
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Compared to (2.17) , the last matrix containing the correlation between the cross- and co-pol elements

is now canceled out, which leaves us with fewer unknown elements.

So it is necessary introduce another equation for linking the co- and cross-pol terms. In [6], we can

�nd the following non-linear equation to solve the system:

X

H + V
=

1− |ρHHV V |
4

(2.23)

X =
⟨
|SHV |2

⟩
H =

⟨
|SHH |2

⟩
V =

⟨
|SV V |2

⟩
P = ⟨SHHS∗

V V ⟩ ρHHV V = P√
HV

The equation (2.23) is named �Souyris' linking�. The letters X, H, V and P were put in substitution

to make the equation more readable.

The relationship given by (2.23) is extrapolated from the cases where the back-scattered wave is either

fully polarized or fully depolarized. This method can cause some problems in case of double-bounce

(like urban areas) or surface scattering.

Iterative method This algorithm was �rst proposed in [6]. This method consists mainly on search-

ing an expression for the cross-pol intensity
⟨
|SHV |2

⟩
= X. So then, having all the others parameters,

we can reconstruct the following system of equations based on hybrid-pol data (left-circular polarization

as we used in our experiment):

CQP =

 H 0 P

0 2X 0

P ∗ 0 V

 =

 2C11 −X 0 +2jC12 +X

0 2X 0

−2jC∗
12 +X 0 2C22 −X

 (2.24)

All the elements Cij are directly taken by the compact-pol matrix. Assuming that we are using

hybrid-pol data, our compact-pol matrix looks as follows:

Chybrid =

[
C11 C12

C∗
12 C22

]
=

1

2

[
H +X jP − jX

−jP ∗ + jX V +X

]
(2.25)

The degree of coherence can be then expressed as:

ρHHV V =
P√
HV

=
+2jC12 +X√

(2C11 −X)(2C22 −X)
(2.26)
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In the initial step (i = 0), the cross-pol term is set to 0:

X =
⟨
|SHV |2

⟩
= 0 (2.27)

Consequently, we have:

∣∣∣ρ̂(0)HHV V

∣∣∣ = |−jC12|√
C11C22

(2.28)

Then, the following steps will be calculated as follows:

ρ̂
(i)
HHV V =

∓2C12 + X̂(i−1)√
(2C11 − X̂(i−1))(2C22 − X̂(i−1))

(2.29)

X̂(i) =
(C11 + C22)(1−

∣∣∣ρ̂(i)HHV V

∣∣∣)
3−

∣∣∣ρ̂(i)HHV V

∣∣∣ (2.30)

The expression introduced in [6] is just an approximation, so it is possible that we encounter some

errors. Some of these errors can be caused by the fact that
∣∣∣ρ̂(i)HHV V

∣∣∣ can be larger than one for certain

pixels, or even the term in the squared root can be negative. In these cases, we have to interfere and

set the parameters in the following way:
∣∣∣ρ̂(i)HHV V

∣∣∣ = 1 and
∣∣∣X̂(i)

∣∣∣ = 0. The user has to decide how

many iterations are to be executed.

One of the main limitations to this iterative process is given by the set up of the initial step to X = 0.

It can cause signi�cant errors in the reconstruction process going through the iterations. In [8] there

is the suggestion to transform the determination of X into a optimization problem rather than using

an iterative method.

We mentioned the other relevant limitation, it is given by the assumption of re�ection symmetry from

which we assume that some values are close to 0.

This assumption should theoretically be satis�ed for natural terrain with a su�cient amount of scat-

terers, and in practice we see that values are actually close to zero. The exception is when the terrain

has a slope, which is often information that we want to suppress anyway.

2.5.2 Nord's reconstruction method

Compared to Souyris' method, which is well suited for surface that exhibit volume scattering, Nord

alters this method by replacing the 4 in the equation (2.23) with N, which is a function which will be

updated step by step [37].
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The pseudo quad-pol matrix to �ll is the same as in Souyris' method (2.24), so then the goal of the

iterative method: to �nd an approximation of the term
⟨
|SHV |2

⟩
. The initial step is the same as in

Souyris' method, choosing N = 4. This may cause some deviation in the results, as the initial step

assumes azimuthal symmetry for the data, so it could be worth to change this value and try di�erent

ones [24]. Changing the value of N should give a high reconstruction performance for open water areas.

The equations to use in the Nord's method are the following:

X̂(i) =
(2C11 + 2C22)(1−

∣∣∣ρ̂(i)HHV V

∣∣∣)
(N + 2(1−

∣∣∣ρ̂(i)HHV V

∣∣∣)) (2.31)

∣∣∣ρ̂(i)HHV V

∣∣∣ = ∓2C12 + X̂(i−1)√
(2C11 − X̂(i−1))(2C22 − X̂(i−1))

(2.32)

For the �rst step: ρ̂
(0)
HHV V = |−2jC12|√

C11C22
.

When the iteration is completed, the N parameter is calculated from the elements in the pseudo

quad-pol covariance matrix, and X is updated.

The N parameter is dependent on the surface of interest. In Souyris' method the N parameter was set

to 4, indicating that the surface is natural and exhibits strong azimuthal symmetry. Hence, one should

therefore expect the N parameter to be low for natural surfaces, and high for surfaces that exhibit

double bounce scattering, i.e., urban areas.

It is updated as follows: N =
⟨|SHH−SV V |2⟩

⟨|SHV |2⟩ after every single iteration.

18



3 Deep learning

Deep learning is a particular group of machine learning techniques which allows the algorithm to build

complex concepts out of simpler concepts, for example it can represent the concept of an image of

a person by combining simpler concepts, such as corners and contours, which are in turn de�ned in

terms of edges [3]. One of the most common examples is a multi-layer perceptron or a feed-forward

deep network, generally speaking.

The depth (meaning the number of hidden layers and their dimension) of the network allows the

computer to learn a multi-step computer program. Each layer of the representation can be thought

of as the state of the computer's memory after executing another set of instructions in parallel [3].

Not all the layers decode information about the input, the representation stores state information that

helps to execute a program that can make sense of the input.

In short words, deep learning is the study of models that either involve a greater amount of composition

of learned functions or learned concepts than traditional machine learning does.

In this work, the method of deep learning we chose is the convolutional neural network (ConvNet). As

we will explain later on, this method represent a good solution to our problem.

In this chapter we are going to focus on ConvNets and more in general in neural networks.

3.1 Arti�cial neural networks

The idea behind Arti�cial Neural Networks is to imitate the human brain, which computes in an

entirely di�erent way from the conventional digital computer.

The brain is a highly complex, non-linear and a parallel computer. It has the capability to organize its

structural constituents, the neurons, so as to perform certain computations with an astonishing speed

[25].

The computing power of a neural network derives through its massively parallel distributed structure

and its ability to learn and therefore generalize.

A machine is able to generalize when it produces reasonable outputs for inputs not encountered during

the training (learning). This capability allows neural networks to solve complex problems that are

currently intractable [25].
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Figure 3.1: Model of one neuron (image taken from [38]).

3.1.1 Modeling one neuron

The basic computational unit of the brain is a neuron (Figure 3.1). Neurons are connected to each

other by synapses. Each neuron receives input signals from its dendrites and produces output

signals along its axon. In arti�cial neural networks, the signal travel along the axons (xi) interact

multiplicatively (wixi) with the dendrites of the other neuron based on the synaptic strength at that

synapse (xi). The idea is that the synaptic strengths (the weights w) are learnable and control the

strength of in�uence of one neuron an another. After summing all the weighted inputs, before sending

to the output, the neuron applies an activation function φ(), which is usually non-linear [26].

The most common activation function is the sigmoid (Figure 3.2a):

φ(x) =
1

1 + ex
(3.1)

Where x =
∑n

i=0 wixi . The bias w0 = b and x0 = 1 to simplify the formula.

This function allows us to map all real values in a range between 0 and 1, with a strong incline close

to 0, that make it look like a step function.

Another common activation function is tanh(x) (Figure 3.2b). It squashes a real-valued number to

range [-1,1]. As the sigmoid neuron, its activation saturate. Its output is zero-centered, that is one

of the reasons why it is often preferred to the sigmoid. We can represent tanh also as a function of

sigmoid as follows:

tanh(x) = 2σ(2x)− 1 (3.2)

20



(a) Sigmoid function. (b) Tanh function.

(c) ReLU function.

Figure 3.2: Activation functions.

21



Another attractive aspect of tanh(x) is its simple derivative computation:

d

dx
tanh(x) = 1− tanh2(x) (3.3)

The last activation function that is useful to mention for our work is the ReLU (Recti�ed Linear

Unit) (Figure 3.2a). It is becoming very popular in the last years [26]. This activation function is

thresholded at zero as follows:

f(x) = max(0, x ) (3.4)

One of the advantages of ReLU function is that it accelerate the convergence of stochastic gradient

descent compared to the sigmoid/tanh functions. It is also faster, because it does not involve expensive

operations as exponentials.

The issue of using ReLU could be, on the other hand, that is fragile during the training and can �die�.

For example, a large gradient �owing through a ReLU neuron could cause the weights to update in

such a way that the neuron will never activate on any datapoint again. If this happens, then the

gradient �owing through the unit will forever be zero from that point on. That is, the ReLU units can

irreversibly die during training since they can get knocked o� the data manifold (the n-dimensional

space where our network operates) [26].

We used some reLU layers in our experiments. As can be seen in chapter 5, to avoid that a large

gradient a�ects these layers, we put a batch normalization (BatchNorm) layer after each reLU layer to

normalize their output. In traditional deep networks, a too high learning rate may cause the gradients

explode or vanish, as well as getting stuck in poor local minima. Batch Normalization helps address

these issues. By normalizing activations throughout the network, it prevents small changes in layer

parameters from amplifying as the data propagates through a deep network [43].

3.1.2 Layer structure

In a layered neural network, the neurons are organized in the form of layers. In the simplest form

of a layered network, we have an input layer of sources nodes (our features) that projects onto an

output layer of neurons (computational nodes), but not vice versa [25]. Cycles are not allowed since

that would imply an in�nite loop in the propagation forward (from input to output) of a network [26].

The most common neural network con�guration is the fully-connected one, in which neurons between

two adjacent layers are fully pairwise connected, but neurons within a single layer share no connections

[26].

The output layer, unlike all the other layers in the network, most commonly do not have an activation

function. It represent the class scores, if we are talking about classi�cation or an arbitrary real-valued

numbers, speaking about regression problems [25].
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Figure 3.3: Neural Network [39].

We can built more complex neural networks adding layers between the input and the output, these are

called hidden layers (Figure 3.3). By adding more layers the network is enabled to extract higher-order

statistics [25].

The two metrics that people commonly use to measure the size of neural networks are the number of

neurons or the number of parameters (all the connections between layers) [26].

3.1.3 Setting the dimension of the network: number of layers

How many neurons and layers are necessary for the task we want to compute? There is no appropriate

answer to this question. The number of layers and the number of neurons are a hyper-parameter, it

means that there is no method to understand how many of them give you the optimal con�guration.

As we increase the size and number of layers in a Neural Network, the capacity of the network

increases, this means that the space of the functions we can represent with our network increase.

Using more complex models bring also a disadvantage, the Network could learn too much from the

training data set and �t also some noise that a�ect it. This is called over�tting [26].

To avoid over�tting there are some rules we can follow.

One is taking a look to the space of the data: bigger it is the space and more complex can be the

model.

The amount of data we have is also an important parameter. A large data set is more di�cult to

over�t. This allows the designer to chose a bigger model.
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All these considerations were studied by Vapnik and Chervonenkis on a theoretical point of view [27],

but we will not go deeper.

Practically speaking we use di�erent techniques to avoid over�tting. It means that we chose the most

complex network our system can a�ord and then we apply: regularization, dropout and/or input noise

[26, 48].

3.1.4 Loss function

The objective of Machine Learning is to make our model learn a pattern. This means that we want

to train our model. Neural Networks are a supervised method, so our training consists of making a

prediction and then compare it with the actual value, setting up an error function:

ek(n) = dk(n)− yk(n) (3.5)

Where yk(n) is the output of the network at the n iteration and k neuron of the output layer, and

dk(n) is the desired output [25].

One of the simplest and most used loss functions is the MSE (Mean Squared Error):

ek(n) = MSE =
1

k

k∑
i=1

(di(n)− yi(n))
2 (3.6)

In this project we used the Euclidean distance that is very similar to MSE:

E(n) = ∥d(n)− y(n)∥22 =

√√√√ q∑
i=1

(di(n)− yi(n))2 (3.7)

Where q is the number of neuron of the layer.

The objective of the training is to make ek(n) smaller and smaller (avoiding meanwhile over�tting),

this process is called optimization.

Since we want to minimize the quadratic error ek(n), we compute the gradient of it with respect to

the weights.

The most common method is the stochastic gradient descent, through which we chose a direction to

update the weights [28].
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3.1.5 Backpropagation algorithm

The backpropagation algorithm is used to �nd a local minimum of the error function. The network is

initialized with randomly chosen weights.

The learning problem consists of �nding the optimal combination of weights so that the network

function f̂ , which represent the output of the network, approximates a given function f , the output

we want, as closely as possible. It is easy to deduce that the function f is unknown. It means that we

are not given the function f explicitly but only implicitly through some examples. The examples are

given by a training set
{
(x1,y1) , ...,

(
xp,yp

)}
consisting of p ordered pairs of n- and m-dimensional

vectors, which are called the input and output patterns.

yi = f(xi) (3.8)

When the input pattern xi from the training set is presented to this network, it produces an output

vector d i di�erent in general from the target yi. What we want is to make di and yi identical (or the

closest as possible) for i = 1, ..., p, by using a learning algorithm [28].

We want to minimize the error function of the network, de�ned as:

E =

√√√√ q∑
i=1

(di(n)− yi(n))
2 (3.9)

The gradient of the error function is computed and used to correct the initial weights. Our task is to

compute this gradient recursively [28].

Every single j output units of the network is connected to a node which evaluates the function 1
2 (dij −

yij)
2 , where dij and yij denote the j-th component of the output vector di and of the target yi. The

m outputs are added in a single node and they give the sum Ei as its output (Figure 3.4).

The weights in the network are the only parameters that can be modi�ed to make the quadratic error

E as low as possible. We can minimize E by using an iterative process of gradient descent, for which

we need to calculate the gradient:

∇E = (
∂E

∂w1
,
∂E

∂w2
, ...,

∂E

∂wl
) (3.10)

Each weight is updated using the increment:

△wi = −γ ∂E
∂wi

for i = 1, ..., l γ =learning constant.
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Figure 3.4: Extended network for the computation of the error function. In [28] �g 7.6 p. 156.

Using this method, we can adjust the network weights iteratively, using the backpropagation. In this

way we expect to �nd a minimum of the error function.

The computational complexity of learning algorithm becomes the critical limiting factor when one

envisions very large data sets. Stochastic gradient algorithms are recommended for large scale machine

learning problems.

The stochastic gradient descent (SGD) algorithm is a drastic simpli�cation of the standard gradient

descent. Instead of computing the gradient of E exactly, each iteration estimates this gradient on the

basis of a single randomly picked example [40].

In the backpropagation step the input from the right of the network is the constant 1. Incoming

information to a node is multiplied by the weight stored in its left side. The result of the multiplication

is transmitted to the next unit to the left.

The backpropagation step provides an implementation of the chain rule. Any sequence of function

compositions can be evaluated in this way and its derivative can be obtained in the backpropagation

step. We can think of the network as being used backwards, whereby at each node the product with

the value stored in the left side is computed [28].

3.2 Convolutional neural networks

Convolutional Neural Networks (ConvNets) are a specialized kind of neural network for processing data

that has a known, grid-like topology [29]. This made ConvNets an attractive choice for our problem,

since our data set is composed by images.
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There are four key ideas behind ConvNets that take advantage of the properties of natural signals:

local connections, shared weights, pooling and the use of many layers [7].

ConvNets have been tremendously successful in practical applications [9]. The name �convolutional

neural network� indicates that the network employs convolution.

Convolution is a specialized kind of linear operation. ConvNets are simply neural networks that use

convolution in place of general matrix multiplication in at least one of their layers [3].

3.2.1 The Convolution operation

In its most general form, convolution is an operation on two functions of a real-valued argument.

Consider the function x(t) and the function w(a). The function s(t) gives the result of the convolution

between them:

s(t) =

∫
x(a)w(t− a)da (3.11)

It is commonly denoted as follows: s(t) = (x ∗ w)(t).

In convolutional network terminology, the �rst argument to the convolution is often referred to as the

input and the second argument as the kernel. The output is sometimes referred to as the feature

map.

In real problems we usually do not have continuous function but sequences. So we need a discrete

representation of the convolution operation:

s(t) = (x ∗ w)(t) =
∞∑

a==∞
x(a)w(t− a) (3.12)

In machine learning applications, the input is usually a multidimensional array of data and the kernel

is usually a multidimensional array of parameters that are adapted by the learning algorithm. We will

refer to these multidimensional arrays as tensors.

The commutative property of convolution arises because we have �ipped the kernel relative to the

input. The only reason to �ip the kernel is to obtain the commutative property. It is not commonly

applied.

In the Figure 3.5 is shown a convolutional operation example.
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Figure 3.5: An example of 2-D convolution (Figure 9.1 p. 334 in [3]).
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Figure 3.6: Sparse connectivity, viewed from below. The input x3and the output units a�ected by it are
highlighted. (Top) When s is formed by convolution with a kernel of width 3, only three outputs are
a�ected by x.(Bottom) When s is formed by matrix multiplication, connectivity is no longer sparse,
so all of the outputs are a�ected by x3. (Figure 9.4 p. 337 in [3]).

It is rare for convolution to be used alone in machine learning; instead convolution is used simulta-

neously with other functions, and the combination of these functions does not commute regardless of

whether the convolution operation �ips its kernel or not [3].

The choice to use convolution in neural networks is supported by three main motivations:

� Sparse interactions: this is in opposition to the fully-connected neural network (where every

neuron is connected to every single neuron of the following layer). This is realized making the

kernel smaller than the input. For example, considering an image, the input image might have

thousands or millions of pixels, but the network can detect small, meaningful features such as

edges with kernels that occupy only tens or hundreds of pixels. The advantages of this aspect

are computational (low memory usage and fast calculation) and statistical (avoiding meaningless

elements). This allows the network to e�ectively describe complicated interactions between many

variables by constructing such interactions from simple building blocks that each describe only

sparse interactions (Figure 3.6).

� Parameter sharing: the network use the same parameter for more than one function in the

model, as opposed to the traditional neural networks where each element is used just and always

once when computing the output of a neuron. In a convolutional neural net, each member of the

kernel is used at every position of the input, except if the architecture is avoiding some input

elements as boundary pixels for example.
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� Equivariant representations: the layer have a property of equivariance to translation. It

means that if the input changes, the output changes in the same way. For example, in images,

convolution creates a 2-D map of where certain features appear in the input. If we move the

object in the input, its representation will move the same amount in the output.

Convolution is not naturally equivariant to some other transformations, such as changes in the

scale or rotation of an image. Other mechanisms are necessary for handling these kinds of

transformations [3].

Moreover, convolution provides a means for working with inputs of variable size.

3.2.2 Pooling

A typical layer of a convolutional network consists of three stages:

� First stage: the layer performs several convolutions in parallel to produce a set of linear activa-

tions.

� Second stage: each linear activation is run through a nonlinear activation function, such as the

recti�ed linear activation function (detection).

� Third stage: we use a pooling function to modify the output of the layer further.

A pooling function replaces the output of the net at a certain location with a summary statistic of the

nearby outputs.

For example, the max pooling operation reports the maximum output within a rectangular neighbor-

hood [30]. This is shown in �gure 3.7.

In all cases, pooling helps to make the representation become approximately invariant to small trans-

lations of the input. Invariance to local translation can be a very useful property if we care more about

whether some feature is present than exactly where it is.

The use of pooling can be viewed as adding an in�nitely strong prior that the function the layer

learns must be invariant to small translations. When this assumption is correct, it can greatly improve

the statistical e�ciency of the network.

Moreover, if we pool over the outputs of separately parametrized convolutions, the features can learn

which transformations to become invariant to.
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Figure 3.7: Max pooling example. (Top) A view of the middle of the output of a convolutional layer.
The bottom row shows outputs of the nonlinearity. The top row shows the outputs of max pooling,
with a stride of one pixel between pooling regions and a pooling region width of three pixels. (Bottom)
A view of the same network, after the input has been shifted to the right by one pixel. Every value in
the bottom row has changed, but only half of the values in the top row have changed, because the max
pooling units are only sensitive to the maximum value in the neighborhood, not its exact location.
(Figure 9.8 p. 343 in [3]).
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Convolution and pooling as an in�nitely strong prior This is a probability distribution over

the parameters of a model that encodes our beliefs about what models are reasonable, before we have

seen any data.

We can de�ne a prior weak if its distribution has a high entropy, for example a Gaussian with high

variance. In the other hand, a low variance of a Gaussian distribution and low entropy give us a strong

prior.

An in�nitely strong prior places zero probability on some parameters and says that these parameter

values are completely forbidden, regardless of how much support the data gives to those values. We

can consider the convolutional neural network as an in�nitely strong prior because the weights for one

hidden unit must be identical to the weights of its neighbor, but shifted in space and the weights must

be zero,except for in the small, spatially contiguous receptive �eld assigned to that hidden unit.

One issue of pooling is that it can cause under�tting. The network is working correctly just if the

assumptions made by the prior are accurate.

Some convolutional network architectures are designed to use pooling on some channels but not on

other channels, in order to get both highly invariant features and features that will not under�t when

the translation invariance prior is incorrect [31].

3.2.3 Some theoretical aspect about the implementation of convolution in neural net-

works

The convolution in neural network di�ers from the standard discrete convolution operation we �nd in

the mathematical literature. The main characteristic of ConvNet is that neurons in each layer shares

the weights, they are equal, but shifted. This allows the layer to search for a feature all along the

space of the data, for example an image.

In the context of neural network the convolution is working in parallel. Convolution with just a single

kernel (layer) is able to extract just one kind of feature (in many spatial locations anyway). Instead,

we want each layer of our network to extract many kinds of features, at many locations.

Additionally, the input is usually not just a grid of real values. Rather, it is a grid of vector-valued

observations. We do not have only spatial dimension but also channels, that in RGB images are the

colors and in our case they represent the element of the covariance matrix. Moreover, we usually feed

the network with not only 1 data per time, but we usually put some of them in parallel, every group of

them is called batch, so at the end we have tensor of 4 dimensions (2 spatial, the number of channels

and batch size).

Because convolutional networks usually use multi-channel convolution, the linear operations they are

based on are not guaranteed to be commutative, even if kernel-�ipping is used. These multi-channel

operations are only commutative if each operation has the same number of output channels as input

channels [3].
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Figure 3.8: The components of a typical convolutional neural network layer. On the left, the convo-
lutional net is viewed as a small number of relatively complex layers, with each layer having many
�stages�. On the right, the convolutional net is viewed as a larger number of simple layers; every step
of processing is regarded as a layer in its own right. (Figure 9.7 p. 341 in [3]).
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One essential feature of any convolutional network implementation is the ability to implicitly zero-

pad the input in order to make it wider. This means to add zeros to the data set to compute the

convolution. It allows us to control the kernel width and the size of the output independently.

As we mention before, convolutional neural networks are not just composed by convolutional layers,

but they may contain also di�erent set up.

One of them is a layer of unshared convolution. It consists of small kernels which does not share

their weights in di�erent locations. This kind of layer is called locally connected layer. They are

useful when we know that each feature should be a function of a small part of space, but there is no

reason to think that the same feature should occur across all of space.

Tiled convolution o�ers a com-promise between a convolutional layer and a locally connected layer

[32]. Rather than learning a separate set of weights at every spatial location, we learn a set of kernels

that we rotate through as we move through space. This means that immediately neighboring locations

will have di�erent �lters, like in a locally connected layer, but the memory requirements for storing

the parameters will increase only by a factor of the size of this set of kernels, rather than the size of

the entire output feature map.

Other operations besides convolution are usually necessary to implement a convolutional network.

To perform learning, one must be able to compute the gradient with respect to the kernel, given

the gradient with respect to the outputs. Multiplication by the transpose of the matrix de�ned by

convolution is one such operation. This is the operation needed to back-propagate error derivatives

through a convolutional layer, so it is needed to train convolutional networks that have more than one

hidden layer.

Recall that convolution is a linear operation and can thus be described as a matrix multiplication,

but we have to reshape the input tensor into a �at vector. The matrix involved is a function of the

convolution kernel.

Transpose convolution is necessary to construct convolutional versions of those models.

Care must be taken to coordinate the transpose operation with the forward propagation. The size of

the output that the transpose operation should return depends on the zero padding policy and stride

of the forward propagation operation, as well as the size of the forward propagation's output map. In

some cases, multiple sizes of input to forward propagation can result in the same size of output map,

so the transpose operation must be explicitly told what the size of the original input was [33].

3.2.4 ConvNet applications

As we have already anticipated, ConvNets are thought to work on data composed by several channels,

each channel being the observation of a di�erent quantity at some point in space or time (for examples

images or videos) [3, 9]. In our case the channels represent the elements of the covariance matrix.

34



They can also process inputs with varying spatial extents. In traditional neural networks the size of

the input layer is �xed. In the other hand, ConvNets can apply its kernels a di�erent number of times

depending on the size of the input, and the output of the layer scales accordingly.

Sometimes also the output of the network is allowed to have variable size as well as the input.

Note that the use of convolution for processing variable sized inputs only makes sense for inputs that

have variable size because they contain varying amounts of observation of the same kind of things [3].

This means: images with di�erent space sizes in width and height and not di�erent size of channels.
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4 Methods

In this chapter the steps regarding the experimental process are described. The data set we used for

our experiments is composed by RADARSAT-2 SAR images acquired in quad-pol con�guration with

�ne resolution (RADARSAT-2 Data and Products (c) MacDonald, Dettwiler and Associates Ltd., 2011

& 2012 - All Rights Reserved.).

Our collection consists of di�erent images of sea ice taken in di�erent locations and dates as shown in

Figure 4.1. Times and places were selected to provide diversity in geographic location and season in

order to give the neural network a more robust ability to generalize and to avoid over�tting.

The data were processed by Python. When the data set was ready for the experiment we also added

Ca�e architecture, a framework used to build the neural network structure.

The �ow every image �le went through before the experiment is the following:

1. Extraction from .tif �le and saved into numpy array.

2. Average of the two cross-pol elements into a single element, pixel by pixel, image by image.

3. Calibration of scattering matrices to sigma nought radar backscatter coe�cients (area normalized

with respect to a nominally horizontal plane on the ground).

4. Covariance computation with multi-look factor.

5. Subdivision of data sets into series of 224x224 pixels images .

6. Compression from quad-pol (target output of the experiment) to compact-pol (input).

The algorithms implemented for the reconstruction are the following:

� Souyris' method (reference method)

� Nord's method (reference method)

� Convolution Neural Network (our contribution)

37



4.1 Data structure and interpretation

The images we used for the experiments are described in the following table:

Figure 4.1: Data collection

Each single image was stored in 4 di�erent .tif �les, representing the separate layers ( SHH , SHV , SV H ,

SV V ) that compose the quad-pol scattering vector.

Each layer extracted, with �gdal� library, is read as a numpy array[ L, M, N ] where 16 bit signed

integer values were stored.

As we mentioned before, each element of the scattering vector is a complex number.

M and N represents the number of rows and columns in the images, whereas L=2 indicates that the

real and imaginary parts are stored separately.

After the extraction of the matrices, we averaged the cross-pol components ( SHV , SV H ), meaning
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we made the reciprocity assumption. This is a common assumption for sea ice images, as we mention

in section 2.2. It declares that the interaction between the target and the incident wave is equal for

the two polarization cross-pol channels.

The 8th image represent a forest. We wanted to test our trained networks also with this image, to

check its ability to generalize on a di�erent scenario. We cut the image in a square 1200x1200.

4.1.1 Sea ice test image

Some information about the sea ice image (Figure 4.2) we used to test our network.

In �gure 4.1 it is identify by the code:

RS2_20120607_165528_0004_FQ25_HHVVHVVH_SLC_201032_2857_7468797

We will refer to this as 7th image for simplicity.

This image represents the ocean next to Barrow, a small town in the north of Alaska. It is composed

mostly of sea ice and frozen land (the corner at the bottom of example).

This image is very close to the ones we used to build the training and validation sets.

The original image was a bit bigger, we cut a section 3600x3600 pixels to make it squared and usable

by the Network.

Figure 4.2 is a Pauli image [15]. The colors represent di�erent conformations of the observed surface.

In this case we have mainly dark blue areas. The blue symbolizes surface scattering. This condition

occurs for �at and uniform surfaces, for example the sea.

4.1.2 Vegetation test image

This image, which is dominated by forest and vegetation, was used to test our network. It represents

natural terrain and thereby conditions under which successful reconstruction from compact-pol data

should be possible.

It is important to remark that this is a totally di�erent image compared to the training and validation

set samples. We wanted to apply also this test to verify the capability of the network to recognize the

patterns also in an unknown surface type, and to examine the possibility of learning transfer..

In �gure 4.1 it is identify by the code:

RS2_20110519_054251_0004_FQ17_HHVVHVVH_SLC_133982_1895_4917825
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Figure 4.2: Sea ice mage used for testing. (RADARSAT-2 Data and Products (c) MacDonald, Dettwiler
and Associates Ltd., 2011 - All Rights Reserved).

We will refer to this as 8th image for simplicity.

This image represents the �elds and the forest around Svarstad, Vestfold, south of Norway. It shows

di�erent patterns: there is a small village, some lakes, a river, a road, the forest and some agriculture

�elds by the river.

The original image was a bit bigger, we cut a section 3000x3000 pixels to make it squared and usable

by the Network.

Figure 4.3 is a Pauli image [15]. The colors represent di�erent conformations of the observed surface. In

this case we have a wide range of colors. As we mention before, the blue symbolizes surface scattering,

so mainly water. We can recognize a river and some lakes. The green symbolizes volume scattering,

typical of forests. The red and pink colors represent double bounce scattering, that indicates building,

arti�cial structures and more in general geometric structures [15].

4.2 Calibration

In the calibration process we divided the values of the image, column by column, by a factor stored

in the sigma look-up table (LUT). These values are functions of the distance and the angle between

the transmitter and the target [44, 45]. Calibration is required to put the pixels of the areas that were

closer to the sensor and the farthest ones on the same scale. The wave have a di�erent incidence angle

when it touch the ground and come back to the sensor, depending on the distance.

40



Figure 4.3: Vegetation image used for testing. (RADARSAT-2 Data and Products (c) MacDonald,
Dettwiler and Associates Ltd., 2011 - All Rights Reserved).

After this manipulation, the previous 16 bit integers became 32 bit �oating point, allowing us to work

on decimal values with good precision.

4.3 Covariance matrix calculation

We computed the covariance matrix for each of the 6 images, using a multilook factor of 9. This

means that we are averaging the covariance matrices over 9 single-look complex pixels, that represent

the highest possible resolution of the Radarsat-2 SAR sensor. The resulting multilook pixels have a

resolution of approximately 20m x 20m.

The input �le is a numpy array [K, L, M, N] where K represent the 3-dimension scattering vector.

The formula used and described in section 2.3 is the following:

C =
⟨
sis

∗T
i

⟩
=

1

L

L∑
i=1

sis
∗T
i (4.1)

For each pixel we have:
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sis
∗T
i =

 SHH

SHV

SV V

 [ SHH SHV SV V ]∗ =

 aHH + jbHH

aHV + jbHV

aV V + jbV V

 [ aHH − jbHH aHV − jbHV aV V − jbV V ]

(4.2)

Where aii is the real part and bjj is the imaginary one. As we mention before, they are stored separately

in the vector.

The re�ection symmetry assumption is made, so the covariance matrix we want to obtain is the

following:

CL =


⟨
|SHH |2

⟩
0 ⟨SHHS∗

V V ⟩

0
⟨
|SHV+V H |2

⟩
0

⟨SV V S
∗
HH⟩ 0

⟨
|SV V |2

⟩
 (4.3)

The values obtained were stored in a 5x1 vector for each 3x3 group of single-look complex (SLC) pixels.

We went through the following steps to obtain that vector:

Cfp =

 c1 = a2HH + b2HH 0 c4 + jc5

0 c2 = a2HV + b2HV 0

c4 − jc5 0 c3 = a2V V + b2V V

 (4.4)

Where c4 = aHH ∗ aV V + bHH ∗ bV V and c5 = aV V ∗ bHH − aHH ∗ bV V

We put the non-zero values of the matrix in the following column vector, in order to : Ĉfp =


c1

c2

c3

c4

c5


The output �le is a numpy array [J, M, N]. Where J is the dimension of the vector generated by the

matrix Cfp.

4.4 Data set con�guration

The purpose of this stage is to create a database composed of several square image blocks (224x224

pixels). This process choice of image size involves a trade-o�: a small size will reduce memory allocation
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Figure 4.4: Image Cut

during the training phase, but the size should be large enough to permit the neural network to recognize

some patterns in the ground structure and to capture and utilize contextual information.

The following steps were executed to obtain the suitable data set for the ConvNet. The same data set

was then also applied to the previous reconstruction methods.

We split each image in two parts: one third for the test and two third for the training as shown in

�gure 4.4. With regards to the training, we also overlapped squares to increase the number of images

we could use to feed the network.

An additional data augmentation of training data was performed by �ipping the images and rotating

them. This is a common approach to improve the performance of the network [42].

All of these manipulations have provided us with thousands of samples to process in the training phase.

4.5 Compact-pol data

The goal of our work is the reconstruction of quad-pol covariance matrices, meaning we had to build

a simulated input, since our data were already quad-pol.

As we detailed in chapter 2, we chose to consider hybrid-pol data, since they are the most widely used.

The relation between quad-pol and hybrid-pol is described by the following formula:
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kLC/RC =
1√
2

[
SHH ± jSHV

±jSV V + SV H

]
(4.5)

We can then obtain a 3x2 matrix to transform quad-pol data to hybrid-pol following the steps below:

kLC/RC =
1√
2

[
SHH ± jSHV

±jSV V + SV H

]
= A

 SHH

SHV

SV V

 (4.6)

where A =

[
1 ±j 0

0 1 ±j

]
is the transformation matrix. We can apply this matrix directly to the

covariance matrix, according to the demonstration:

Ccp =
⟨
kLC/RCk

∗T
LC/RC

⟩
=

⟨
As ⟨As⟩∗T

⟩
= ACfpA

∗T

Where Ccp and Cfp are the covariance matrices, kLC/RC and s are the scattering vectors.

We consider the left circular case, where A =

[
1 j 0

0 1 j

]

4.6 Reconstruction methods: Souyris and Nord

We implemented Souyris and Nord's methods in Python using the algorithms shown in Chapter 2.5.

The result of these two experiments was a useful comparison to our convolutional neural network.

After the reconstruction method, we applied the MSE. This is the same error measure we used to asses

the ConvNet, so we were able to compare them.

We observed that the Souyris and Nord's algorithms were making very small value updates (≈ 10−8)

after 180-200 iterations. We chose then to run this algorithms for 200 iteration each.

4.7 Convolutional neural network as a reconstruction method

This is the new method we wanted to develop to perform the reconstruction task from compact-pol

data to quad-pol data.

As we mentioned previously, we used Ca�e for the implementation of our architecture, which has also

a Python interface, executed on Ubuntu OS .

Our data set was composed of 5448 images (224x224) for the training and 73 images for the test.
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4.7.1 Ca�e

Ca�e is a deep learning framework made with expression, speed, and modularity in mind. It is

developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the

project during his PhD at UC Berkeley [35].

Ca�e provides multimedia scientists and practitioners with a clean and modi�able framework for

state-of-the-art deep learning algorithms and a collection of reference models. The framework is a

BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-

purpose convolutional neural networks and other deep models e�ciently on commodity architectures

[36]. Ca�e is particularly powerful for image recognition, this is one of the reason why we chose it for

our application. The reliability is con�rmed by the fact that many important companies make use of

it (as Facebook, Samsung, Nvidia, Intel and others).

The use of this tool is helped by the extensive documentation that creators have made available on

the site [35]. The framework provides a good modularity, meaning that it allows to quickly change

the dimension of the network by changing the number, the size and the type of layers the users want

to use.

Many loss functions are usable as well.

Ca�e stores and communicates data in 4-dimensional arrays called blobs. Blobs provide a uni�ed

memory interface, holding batches of images (or other data), parameters, or parameter updates [36].

A Ca�e layer is the frameworks representation of a neural network layer: it takes one or more blobs

as input, and yields one or more blobs as output.

In our experiment we used the following layer types (refer to chapter 3 for the meaning of these layers):

� ReLU. Recti�ed Linear Unit.

� conv. Convolutional layer.

� pool. Pooling layer.

� BatchNorm. Batch normalization layer.

Ca�e trains models by optimizing the loss function using gradient-based optimization techniques (refer

to section 3.1.5) [36], in particular:

� Stochastic Gradient Descent (type: SGD).

� AdaDelta (type: AdaDelta).

� Adaptive Gradient (type: AdaGrad).
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(a) Data Layer. (b) Hidden Layer.

(c) Loss Layer.

Figure 4.5: Layers declaration example (screenshots from the website [35]).

� Adam (type: Adam).

� Nesterov's Accelerated Gradient (type: Nesterov).

� RMSprop (type: RMSProp).

4.7.2 Implementation

The training and validation inputs are described using a prototxt �le, google protocol bu�er, listing

the data input, their labels and the network architecture.

In this �le there is the declaration of the layers we are going to use. In �gure 4.5 a data layer, a hidden

layer and a loss layer and a hidden are shown.

In the Data Layer (Figure 4.5a) we can set up some settings, for example specify the batch_size

(number of images we want to use to feed the network at each iteration) and we can add a scale to

normalize the values. In our case we did not need it, since our values were in the range [ -1 , 1 ] after

the calibration process.
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Figure 4.6: Solver example (screenshot from the website [35]).

We can set up di�erent attributes for each hidden layer (Figure 4.5b), depending on the type we

chose. We then connect then to design our network architecture. The website documentation is really

exhaustive.

As input and output at each layer, we have the processed data saved in blobs that are propagated

forward and backward through the network.

Our network can be viewed as an encoder-decoder architecture, where the encoder produces a lower

dimensional representation of the image and the decoder upsamples the low dimensional representation

back to the original image size. We make use of pooling layers to subsample the feature maps between

the convolutional layers in the encoder and utilize upsampling (fractional-strided convolutions) to

perform upsampling in the decoder.

Finally, we specify if the layer has to be run in TRAIN or TEST phase.

The loss layer (Figure 4.5c) takes two blobs, the �rst one being the prediction and the second one

being the label provided by the data layer. It does not produce any outputs, all it does is to compute

the loss function value, report it when backpropagation starts, and initiate the gradient [35].

solver.prototxt (example in �gure 4.6) is another prototxt �le where many characteristics of the network

can be set up.

The solver orchestrates model optimization by coordinating the network's forward inference and back-

ward gradients to form parameter updates that attempt to improve the loss. The responsibilities of

learning are divided between the Solver, for overseeing the optimization and generating parameter

updates, and the Net, for yielding loss and gradients [35].
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5 Results

In this chapter, the results obtained from the di�erent reconstruction methods are described, compared

and analyzed in term of loss function and image distance.

In Figure 5.1 is summarized the data process chain we described in the previous chapter.

Figure 5.1: Scheme of our data processing

5.1 Error measure and comparison method

As we mention before, we applied the Euclidean distance to estimate the distance between the recon-

struction and the target all over the tested method:

E = ∥d(n)− y(n)∥22 =

√√√√ p∑
i=1

(di(n)− yi(n))2 (5.1)
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We also wanted to focus in particular in the reconstruction of the cross-pol correlation intensity

(
⟨
|SHV+V H |2

⟩
), because it is the term which in�uence the reconstruction methods the most, since it

has in�uence on every element of the reconstructed matrix (refer to section 2.5). Euclidean distance

was applied also in this case.

5.2 Souyris and Nord's methods performance over our data set

Souyris' and Nord's methods were applied on our validation data set. The validation data set was

composed by 73 images 224x224.

The Euclidean distance was applied between the array (73x5x224x224) of the real output values and

the one of the predictions. The resulting Euclidean distances we obtained were:

� Souyris: 10,76

� Nord: 18,30

Notice that these values are high because they are not normalized. To obtain the average distance,

element by element, we should divide by 73(samples)x5(channels)x224(rows)x224(columns). These

results were then normalized and shown in Figure 5.11.

The same distance was applied to the 7th image (refer to Figure 4.1):

� Souyris: 1,66

� Nord: 2,16

To normalize, in this case, we should divide by 5x1200x1200.

And to the 8th image (refer to Figure 4.1):

� Souyris: 39,72

� Nord: 73,01

To normalize, in this case, we should divide by 5x1000x1000.

We can notice that Souyris' method is working better. This was expected because the images represent

sea ice, and as we mention in chapter 2, it is a surface type for which Souyris' method has been reported

to perform better [8].

The Euclidean distance was also applied between the array (73x224x224) of the real cross-pol values

and the one of the predictions. The results we obtained was:
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� Souyris: 8,81

� Nord: 9,14

Here the result about the 7th image:

� Souyris: 1,28

� Nord: 1,08

8th image:

� Souyris: 34,19

� Nord: 36,43

5.3 ConvNet method performance

Convolutional Neural Networks can be set-up in many di�erent ways. This section is divided in sub-

section to show the results of two di�erent con�gurations. The network was trained by a data set

composed by 5448 square images of size 224 x 224 pixels..

5.3.1 1st ConvNet implementation

The representation of the structure, layer by layer, of this ConvNet is shown in �gure 5.2.

Notice that every convolutional layer is followed by a recti�ed unit and a normalization layer [9]. We

explained in chapter 3 that this is a good con�guration, as the reLU can make faster the gradient

descent and the normalization can keep the values in a smaller range.

Observe also that there is a dropout layer. This is used to avoid over�tting. The layer chose randomly

a percentage (that has to be set-up) of weights that will not be a�ected at that iteration.

Each pooling layer has a kernel and a stride equal to 2. It means that is operating over a window 2

by 2 and moving the kernel two steps a time. This fact cause a compression of the original size of the

image by a factor 2 for both axes.

As shown in Figure 5.2, the network has 4 pooling layers. It means that we have a sub-sampling factor

of 16 through the Network. The upscore layer operates the resulting up-sampling of 16 at one time.

Finally, the crop layer called score bring the blob back to the input dimension (224 by 224 pixels).

The dropout layer was set up at 20%.

The solver had the following settings:
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Figure 5.2: ConvNet 1st implementation. Graphical representation generated by [41].
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Figure 5.3: Loss function 1st network experiment.

� minimum research algorithm: Stochastic Gradient Descent

� learning rate at the beginning: 10−6

� learning step: 2000

� gamma: 0.1

It means that every 2000 iteration the learning rate was multiplied by the gamma value.

As we can see in �gure 5.3, after 20.000 iterations the loss function was not changing anymore.

We applied the same tests to the neural network we used for Souyris' and Nord's methods.

The Euclidean distance, applied between the array of the real output values and the one of the pre-

dictions, gave as a result:

� Validation set: 78,10

� 7th Image: 42,62

� 8th Image: 258,97

The euclidean distance, applied between the array of the real cross-pol values and the one of the

predictions, gave as a result:

� Validation set: 5,89
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� 7th image: 2,72

� 8th image: 34,74

As we can notice, they perform, on average, worse than Souyris and Nord's methods.

We display then the relative error, regarding the cross-pol component, in �gure 5.4. It has been

computed on the 7th image. We can notice how the methods from the literature perform better for

low cross-pol terms (
⟨
|SHV+V H |2

⟩
). However, when this value is high (for example the corner at the

right-bottom), our method is performing better.

Notice that Nord's method shows a �at error, close to 100%, almost everywhere this is due to the fact

that the cross-pol values obtained by the iterative method are close to 0. This method di�ers from

Souryis' one for the N variable at the denominator2.31. This value is equal to 4 at the beginning,

but could become higher and higher, iteration by iteration, related to a consequent decrease in the

predicted value of (
⟨
|SHV+V H |2

⟩
), since N is updated as follows: N =

⟨|SHH−SV V |2⟩
⟨|SHV |2⟩ . Considering a

smaller number of method iterations could improve this result.

The relative error ereli was calculated as follows:

ereli =

∣∣∣∣xi − x̂i

xi

∣∣∣∣ (5.2)

Where xi is the target value of the matrix and x̂i is the predicted value.

After noticing that our method was performing better for higher values of the cross-pol intensity (in

this case they indicate sea ice), we decided to test it on an image representing a forest. The cross-pol

term of the scattering vector is higher in vegetation images because of the re�ections from randomly

oriented structures in canopy layers (e.g. trees) [46, 47]. For sea ice, the cross-pol intensity increases

with surface roughness, and is maximum for highly deformed ice, such as ridges and rubble ice.

It is important to remark that our training data set was composed mainly by sea ice images. This

means that the forest image is a completely di�erent and unknown input for the network.

The average error computed over the whole covariance matrix is signi�cantly higher than Souyris and

Nord's methods. However, if we focus on the cross-pol term, the error is close to the Souyris one. The

�gure 5.5 shows the absolute squared error pixel by pixel.

Notice that we had to adapt the scale for the cross-pol intensity, with respect to the scale used for sea

ice. This is due to the higher values for this kind of area. Nord's method produces the same relative

error almost all over the region. Souyris has some di�culties to estimate the area close to the river,

this can be related to the surface type and the full�lment of the assumptions underlying the methods.
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Figure 5.4: Relative error comparison, 1st network, 7th image (sea ice) of the data set. The �rst image
represent the cross-pol value of the quad-pol covariance matrix (it is expressed in dB). The other three
images represent the relative error pixel by pixel. We are comparing: Souyris, Nord and our trained
network. The displayed error has a scale range between 0 and 200%.
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Our method is working better than Souyris and Nord's when the value of the cross-pol intensity is

in the range [-85dB, -65dB]. These cross-pol intensity values are present in the portions of the image

containing sparse vegetation, next to a river and a road. Our training data set contains mainly this

kind of surface, so it is familiar with the ConvNet.

5.3.2 2nd ConvNet implementation

Once we have analyzed the results of the �rst network, we decided to modify it to increase its power.

It means that we increase its ability to elaborate regression functions. The second network we built is

shown in Figure 5.6.

The changes we made regard the sub-sampling and the up-sampling. We thought that the up-sampling

operated at the end of the previous network (which increased the size of the blob by 16 times) was too

strong to be made at one time. This could have a�ected the network in term of resolution. It may

cause a loss of information.

We decided then to make it gradually, operating two di�erent up-sampling in di�erent times. The

layers upscore3 and upscore2 (Figure 5.6) carry out this task. The �rst one multiply the size the

network by a factor 2, the second one by a factor 8.

We also decided to add a crop layer, called score_classes2c, between the 3rd pooling layer and the

output of the �rst up-sampling. This could also avoid the down-sampling from causing an information

loss, because we are considering a layer that did not cross the 4th pooling layer.

These modi�cations increase the complexity of the network.

The dropout layer was set up at 20%.

The solver had the following settings:

� minimum research algorithm: Stochastic Gradient Descent

� learning rate at the beginning: 10−6

� learning step: 7000

� gamma: 0.1

Notice in Figure 5.7 that the training loss starts lower than in the �rst network. This is due to the

initialization of the weights of the �rst part of the network. Since it has the same structure of the �rst

network, we loaded there the weights we had calculated before.

The Euclidean distance, applied between the array of the real output values and the one of the pre-

dictions, gave as a result:
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Figure 5.5: Relative error comparison, 1st network, 8th image (vegetation) of the data set. The �rst
image represent the cross-pol value of the quad-pol covariance matrix (it is expressed in dB). The
other three images represent the relative error pixel by pixel. We are comparing: Souyris, Nord and
our trained network. The displayed error has a scale range between 0 and 200%.
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Figure 5.6: ConvNet 2nd implementation. Graphical representation generated by [41].
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Figure 5.7: Loss function 2nd network experiment.

� Test set: 101,68

� 7th image: 29,00

� 8th image: 277,56

The euclidean distance, applied between the array of the real cross-pol values and the one of the

predictions, gave as a result:

� Test set: 18,63

� 7th image: 12,44

� 8th image: 31,02

Considering the results, our network is performing quite worse than the �rst one unfortunately. This

means that we were not able to adjust the parameters to obtain a better result.

We display then the relative error, regarding the cross-pol component, in �gure 5.8. It has been

computed on the 7th image. We can notice that this network is not able to perform as the previous

image in this kind of data.

We tested then the network on the vegetation image. The result is shown in Figure 5.9. This is a

surprising result, because this network was the worst one in all the previous comparison. In this case

this network is making the smallest error. We can clearly see that the relative error of the cross-pol

intensity is very high only in the areas where there is water (cross-pol value small).
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Figure 5.8: Relative error comparison, 2nd network, 7th image (sea ice) of the data set. The �rst image
represent the cross-pol value of the quad-pol covariance matrix (it is expressed in dB). The other three
images represent the relative error pixel by pixel. We are comparing: Souyris, Nord and our trained
network. The displayed error has a scale range between 0 and 200%.
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Figure 5.9: Relative error comparison, 2nd network, 8th image (vegetation) of the data set. The �rst
image represent the cross-pol value of the quad-pol covariance matrix (it is expressed in dB). The
other three images represent the relative error pixel by pixel. We are comparing: Souyris, Nord and
our trained network. The displayed error has a scale range between 0 and 200%.
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5.4 Summary of the results

We compare �nally the results of the network in the reconstruction of the cross-pol intensity (Figure

5.10).

Notice that the �rst network is more capable to interpret the cross-pol intensity for sea ice, meanwhile

the second network is more able to work on vegetation images.

In Figure 5.11 we resumed all the results we obtained.

We display the Euclidean distance and the average distance value by value. The best performance for

each measure are highlighted with yellow. The worst performance for each measure are highlighted

with red.

Souyris is the method which is performing better over the data set. The second network is the one

which is performing worse in general.

Considering the error computed on the validation test, it is surprising that the ConvNets perform so

badly. Remember that this set derives by cropping one third of the 6 sea ice images in the table in

�gure 4.1, this should have caused a bit of correlation between train and validation set. Our �rst

ConvNet is the best to predict the cross-pol intensity anyway.

Regarding the test over the 7th image, our networks were again the worst reconstruction methods,

specially in the total euclidean distance. Our �rst network is doing a good work again on the cross-

pol term. Analyzing deeper this comparison, it is the best to predict cross-pol intensity in the range

[-130dB,-100dB], this is clear in �gure 5.4.

With respect to the 8th image, we have to most surprising result. The 2nd ConvNet we built, that was

performing very bad in all other situation, is the best one on reconstructing the cross-pol intensity,

this can be seen in �gure 5.9.
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(a) 7th image

(b) 8th image.

Figure 5.10: Comparison between 1st and 2nd Network.
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Figure 5.11: Results resume.
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6 Conclusions and further work

In this thesis a known problem in remote sensing has been faced: the reconstruction from compact-

pol covariance matrix to a pseudo quad-pol one [8]. Convolutional neural networks (ConvNets) [9]

are innovative systems which have given encouraging results in the �eld of image classi�cation. We

therefore thought to apply the ConvNets to the mentioned preexisting problem.

To the best of our knowledge, no previous works can be found in the literature where ConvNets have

been used to perform regression anlysis for reconstruction from compact-pol data. So we had to

design our method from scratch, and we could not benchmark it against similar methods as a basis

for comparison.

The �nal results are encouraging and revealing that the intuition was right, even though they are not

outstanding when compared to the outcomes of the other iterative methods.

Many choices can be done along the way of designing this method, for example in the preliminary

data set manipulation and in the neural network composition, and many ways can be followed to try

to achieve better results in the future. Given the complexity of the system, it is not so easy to tune

its parameters and settings to optimize the obtained results.

Regarding the remote sensing data, it would have been possible to choose a di�erent multi-look number

(section 4.3), instead of using 9. We could also have gone deeper in the feature analysis of the

reconstructed matrices. We only consider the euclidean distance between the covariance matrices and

cross-pol intensity values, but we could also have taken into account other parameters analyzed in this

thesis [8] to test the reconstruction performance.

Considering the convolutional neural network, there is a great number of hyper-parameters to be tuned

and small changes to be applied to the structure of the system. All these modi�cations could make

the network more e�cient. We could for example increase the deepness of the network, since we did

not encounter any over�tting problem. It could mean that our network was not complex enough to

learn more. We believe however that the number of iterations in the training phase was adequate.

Increasing the learning rate or the step-size (section 5.3.1) did not help. There are also some other

parameters that could be changed in the network layers, for example the kernel sizes of the convolution

layer or of the pooling layer.
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As for the data set, lastly, some comments can be made: we chose some sea ice images for the training

because we knew that the compared methods were working e�ciently there [8]. It would be interesting

to see how the network would perform if images of di�erent types were included in the training set,

such as images covering forests or urban areas. It would be another good idea to increase the size of

the training set, together with a larger network.
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