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Abstract 
Reactive oxygen species (ROS) production in macrophage-like cells is induced as an 

antimicrobial defence against invading pathogens. In this present study, we have explored how 

different stimuli and metabolic inhibitors affects the level of respiratory burst in Atlantic salmon 

(Salmo salar L.) head kidney macrophage-like cells. Cells stimulated in vitro by bacterial 

lipopolysaccharide (LPS) and ß-glucan showed increased production of ROS compared to 

unstimulated cells. Both stimulation and co-stimulation by curdlan (ß-glucan) induced a higher 

production of ROS compared to stimulation and co-stimulation by LPS. Metabolic inhibitors 

(developed for mammals) co-incubated with the stimulants did not, in most cases, perturb the 

level of ROS generation in the salmon macrophage-like cells. The NAD+ content as well as the 

NAD+/NADH ratio increased in curdlan, and LPS + curdlan stimulated cells compared to 

control cells, which indicated increased metabolic activity in the stimulated cells. Supporting 

these findings, gene analysis using SYBR green real-time quantitative PCR showed that the 

genes Arignase-1 and IL-1ß were highly expressed in the stimulated cells. 
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1 Introduction 
Bacterial lipopolysaccharide (LPS) (often called bacterial endotoxin) is composed of lipid and 

carbohydrate moieties, the latter extruding from the outer cell membrane. The carbohydrate 

moiety (O-antigen) serves important applications with respect to serotyping of bacteria within 

a species allowing discrimination between different subspecies. LPS may induce immune 

responses in fish, even though the lipopolysaccharide receptor, toil-like receptor 4 (TLR4) 

appears to be absent in most fish species (Palti, 2011). Since the classical TLR4 is absent, other 

LPS recognising receptors that confers signalling events must exists, as suggested by Sepulcre 

et al. (2009). It may likely be other pattern recognition receptors or members of the large 

superfamily of scavenger receptors (Seternes et al., 2001, Canton et al., 2013, Li et al., 2017). 

 

ß-glucans are a heterogeneous group of homo-polysaccharides consisting of glucose monomers 

with ß1-3 or/and ß1-6 linkages in the backbone. They may be termed immunostimulants since 

they may modulate the host immune response (Bricknell and Dalmo, 2005). In nature, ß-

glucans are widespread and are found in plants, algae, bacteria, yeast and mushrooms. ß-glucans 

from various sources possess differences in molecular weights and degree of branching, 

rendering them to be fully or moderate aqueous soluble or even insoluble (Dalmo and Bogwald, 

2008). It is acknowledged that the specific receptors for ß-glucans is dectin-1 that belongs to 

the scavenger receptor family (PrabhuDas et al., 2017). As for TLR4, the gene for dectin-1 has 

not been found in any fish species yet, thus it is speculated that receptors such a TLR-2, 

complement receptor 3 or not yet identified lectins (sugar binding proteins) may be responsible 

for binding and intracellular signaling (Petit and Wiegertjes, 2016). It has been shown that fish 

macrophages respond to perturbation using “danger” signals such as LPS and ß-glucans with 

increased production of reactive oxygen species (ROS) and pro-inflammatory molecules 

(Dalmo and Seljelid, 1995, Novoa et al., 1996, Solem et al., 1995, Castro et al., 1999, Neumann 

et al., 2001, Cook et al., 2001, Tahir and Secombes, 1996). Activation of cells by certain 

“danger” signals induces production of molecules that may enable researchers to distinguish 

different mammalian macrophage subsets; e.g. pro-inflammatory M1 polarised macrophages 

and immune suppressive M2 macrophages (Murray et al., 2014). The M1 and M2 dichotomy 

(also termed classical and alternatively activated macrophages) has also been applied to fish 

macrophages (Joerink et al., 2006a, Buchmann, 2014, Wiegertjes et al., 2016a, Edholm et al., 

2017, Nguyen-Chi et al., 2015, Forlenza et al., 2011, Hodgkinson et al., 2015), even though 

considerable macrophage heterogeneity exists. Indeed, many more subsets than the original 
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classical M1 and M2 paradigm has been described in certain mammalian species (Murray et 

al., 2014). 

 

It has been documented, in some mammalian species, that both LPS and ß-glucans activate, via 

initial receptor binding, the Akt kinase (protein kinase B/serine-threonine-specific protein 

kinase) downstream of phosphoinositide 3-kinase (PI3K) in monocytes / macrophages / 

dendritic cells. In case of LPS, it may bind to TLR4 in the cell membrane that interacts with the 

signalling entity MyD88; which activate several pathways, one of them being the RIP-PI3K-

Akt pathway (Bauerfeld et al., 2012, McGuire et al., 2013, Saponaro et al., 2012). RIP is a death 

domain kinase receptor interacting protein 1. This pathway is of vital importance during cell 

metabolism (Covarrubias et al., 2015). Curdlan, a linear ß-glucan, may bind to different 

receptors such as dectin-1, TLR4, complement receptor 3 and scavenger receptors where 

activation of Akt is one of the signalling mechanisms involved following curdlan stimulation 

of cells (Kim et al., 2016). The Akt kinase 1, 2 and 3 are activated by phosphoinositide 3-kinase 

(PI3K); which previously have been activated by tyrosine kinase receptors (e.g. cell membrane 

receptors containing tyrosine kinase motifs) by different ligands (Vivanco and Sawyers, 2002) 

such as LPS (Okutani et al., 2006, Saponaro et al., 2012). Akt are recruited to the plasma 

membrane in cells stimulated with e.g. growth factors, cytokines, and some danger signals 

(Fayard et al., 2010, Manning and Cantley, 2007). Akt kinases associates with PIP3 

(phosphatidylinositol (3,4,5)-trisphosphate; product of PI3K), this event phosphorylates Akt. 

PI3K generates metabolites that may activate Akt and protein kinase C-z (PKC-z), this 

transcription factor may in turn, under certain inflammatory circumstances, induce respiratory 

burst and modulate Akt activity (Cosentino-Gomes et al., 2012). PMA (phorbol 12- myristate 

13-acetate) may directly target PKC isoforms (Chang and Beezhold, 1993) both in mammalian 

immune cells, and also in fish leucocytes and macrophage-like cells (Burnett and Schwarz, 

1994, Olavarria et al., 2010). Mechanistic target of rapamycin complex (mTORC) is a 

serine/threonine kinase of the PI3K family. In addition to its function in the regulation of 

cellular metabolism, mTORC has been shown to be involved in the regulation of both innate 

and adaptive immune responses. Following stimulation of cells with e.g. growth factors and 

cytokines, signalling events lead to generation of mTORC2 that activates (phosphorylates) Akt 

that subsequently activates mTORC1; which regulates the glucose transport, thus glycolysis 

(Soliman, 2013) and ROS production - as also activation of mTORC2 may do (Chen et al., 

2008).  
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During e.g. infection, changed local microenvironments by virtue of oxygen tension, 

accessibility of metabolites and nutrients may be challenging for the immune cells, especially 

innate immune cells such as macrophages. During activation of macrophages by e.g. danger 

signals, the cells may undergo substantial changes with respect to metabolism to support cell 

growth, proliferation, functional transition and synthesis and release of molecules. This requires 

metabolic adaptation to new microenvironments. Activated macrophages may have increased 

glycolytic activity, utilizing glucose, glutamine and fatty acids to support the increased energy 

demand, reduced oxidative phosphorylation activity (hence reducing the formation of ATP) 

and modified TCA cycle activity (Kelly and O'Neill, 2015, Langston et al., 2017). These 

features are reminiscent of the known Warburg effect (Kelly and O'Neill, 2015). Aerobic 

metabolism produces ATP, which is the key energy molecule from glycolysis and from TCA 

cycle and oxidative phosphorylation – through intermediates such as NADH and FADH. These 

two reducing agents provide electrons, in the form of hydride anions, to the electron transport 

chain of oxidative phosphorylation. The third energy generating process is metabolism of fatty 

acid oxidation that yields acetyl-CoA, NADH and FADH2 that goes in the TCA cycle and also 

into the oxidative phosphorylation. Resting immune cells are relatively metabolically inactive, 

with minimal biosynthetic demands beyond housekeeping processes (Gaber et al., 2017). 

During the response, this activated macrophage phenotype produces pro-inflammatory 

molecules, reactive oxygen metabolites (ROS) and nitric oxide (Iles and Forman, 2002, Beyer 

et al., 2012, Mosser and Edwards, 2008). Even though not as studied as in mammalian species, 

the principle of macrophage activation has been suggested to be similar in fish (Hodgkinson et 

al., 2015, Boltana et al., 2017, MacKenzie et al., 2006). But macrophage metabolism during 

activation of fish macrophages has not been studied before, nor has the dependence of the 

metabolism on the formation of ROS from the respiratory burst activation been explored. The 

objective of the current study was to examine the formation of ROS and NAD+/NADH upon 

stimulation with LPS and curdlan (ß-glucan), and to study how different metabolic inhibitors 

affect the generation of ROS. In addition, we assessed the expressions of marker genes 

potentially discriminating M1 and M2 macrophages – be means of quantitative real time PCR. 
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2 Materials & Methods 

2.1 Reagents  

Roy A. Dalmo (University of Tromsø) kindly provided ultrapure bacterial lipopolysaccharide 

from Aeromonas salmonicida spp. salmonicida and curdlan (Alcaligenes faecalis). Chemicals 

were from SigmaAldrich if not specified.  

 

All the steps from cell isolation, centrifugation, cell maintenance and stimulation were carried 

out using Leibovitz’s L-15 Medium (L-15) (Gibco) supplemented with 60 µg penicillin ml-1 

and 100 µg streptomycin ml-1. However, Dulbecco’s Modified Eagle Medium (DMEM) 

(Gibco) was used in the experiment involving metabolic inhibition – since L-15 contains 

pyruvate, a co-factor in the glycolysis. Approximately 5% CO2 was supplied to cells incubated 

in DMEM. 

 

2.2 Fish 

The Aquaculture Research Station in Kårvika provided the non-vaccinated Atlantic salmon 

used in this study. Being fed commercial dry feed at frequencies recommended by the feed 

producer (Skretting, Norway), the size of the fish varied from 300 g – 1100 g during the two 

years this study lasted. The fish were kept in tanks at ambient temperature (3-12 °C) with a 

constant flow of seawater. The fish for cell isolation had priory been analysed clinically, and 

by RT-qPCR analysis for any presence of pathogens. The Norwegian Animal Health Authority 

approved the use of fish for experimental purpose – to be compliance with the Animal Welfare 

Act.   

 

2.3 Isolation and characterisation of macrophage-like cells 

Macrophage-like cells from the head kidney were isolated using a Percoll-gradient, as described 

by Braun-Nesje et al. (1981), with some modifications. 

In short, the head kidney was aseptically removed from the fish into a tube (Falcon) of cell 

medium (L-15) supplemented with, penicillin (60 µg ml-1), streptomycin (100 µg ml-1), 2 % 

fetal bovine serum (FBS) and heparin (20 U/ml) (LEO Pharma, Denmark). The head kidney 

and the contents of the tube were then meshed through a cell strainer (100 µm) (Falcon), layered 

onto a 25%/54% percoll (GE healthcare, Sweden) density gradient and centrifuged at 400x g at 
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4 °C for 40 minutes. The cloudy macrophage-enriched layer that appeared in the interface 

between the two gradients were collected and washed twice in L-15 by centrifugation (15 min 

and 10 min at 450 x g respectively). The cell suspension was diluted in L-15 containing 1 % 

FBS to achieve a cell number of 5 x 106 cells per ml. Thereafter, 100 µl of the cell suspension 

was transferred to wells in 96-well plates (Nunc, Denmark). To allow the macrophages to 

adhere the plates were incubated overnight at 16 °C. 

Freshly isolated cells were analysed by flow cytometry using a BD FACS Aria III (BD 

Biosciences, USA) flow cytometer. Dot blots of forward against side scatter were generated by 

BD FACSDivaTM (BD Biosciences) and three regions were overlaid (R2, R3, and R4). R2 

represented the small cells with little granularity, R3 the small-to-medium sized and medium 

granular cells, whereas the R4 region contained dot blots from detection of medium sized and 

granulated cells.  

 

2.4 Stimulation of macrophage-like cells 

Approximately 24 hours after seeding, the cells were washed with cell medium, causing 

removal of non-adherent cells. The remaining adherent cells were cultivated in cell medium 

with antibiotics. 

 

2.4.1 Stimulation by LPS and curdlan 

If otherwise not specified the concentrations of LPS and curdlan remained at 1 µg ml-1 and 10 

µg ml-1 respectively. LPS and curdlan were solubilized by microwave treatment (probe 

sonication) in required cell medium containing penicillin (60 µg ml-1) and streptomycin (100 

µg ml-1) to achieve the desired concentrations. The cells were stimulated approximately 24 

hours after isolation – where the cells were stimulated with either LPS or curdlan or a 

combination of both. The re-stimulation of the cells did occur 24 h after the first stimulation.  

The control cells were cultivated in cell medium only. 

 

2.4.2 Co-incubation with metabolic inhibitors 

In two sets of experiments, stimulated cells were co-incubated with metabolic inhibitors. The 

inhibitors were Akt 1/2 inhibitor (Tocris Bioscience, UK), Oligomycin A (Merckmillipore, 

Germany), Rapamycin (Selleckchem, Germany), 2-deoxyglucose (Carbosynth MD, UK), 

Dactolisib (Selleckchem) and Wortmannin (LC Laboratories, USA). The inhibitors were given 
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at a concentration of 100 nM, except 2-deoxyglucose, which were given in a concentration of 

100 µM. These concentrations were selected based on literature studies and from dose-response 

studies where their effects on the respiratory burst were assayed (Supplementary figure 1). The 

cells were incubated for approximately 48 hours after the addition of the metabolic inhibitors. 

Then, the cells were assayed for their respiratory burst activity (cf. 2.5). 

 

2.5 Quantification of respiratory burst activity 

To quantify the generation of ROS in macrophages, the respiratory burst assay described by 

Solem et al. (1995) was followed. In general, the cells were stimulated with LPS or/and curdlan 

for 24 h or 48 h before the assay was started. The cells were washed in PBS before addition of 

a solution containing 20 mg nitro blue tetrazolium (NBT) (Sigma Aldrich) and 20 µl phorbol 

12-myristate 13-acetate (PMA) (1 mg ml-1) in PBS. The cells were incubated for 40-50 min at 

16 °C, and thereafter fixed with 70 % methanol. To solve the formazan crystals, a solution of 

120 µl KOH (2 M) and 140 µl dimethylsulfoxid (DMSO) was added and mixed well together. 

The OD was measured at 620 nm in an ELISA reader (VersaMax ELISA microplate reader, 

USA).  

 

2.6 Measurements of nitric oxide production 

The amount of produced nitric oxide (NO) was measured according to the Griess assay 

described by Wu and Yotnda (2011). The formation of nitric oxide was assayed one and two 

days after stimulation. In short, a standard curve was made by a 1:2 serial dilution of “blank” 

L-15 (with no phenol red added) and 100 µM nitrite (Alfa Aesar, Germany), followed by 

addition of a solution made of 1 % sulphanilamide (Alfa Aesar) in 5 % phosphoric acid (Alfa 

Aesar). After stimulation, 50 µl of the cell medium from each well were transferred to wells in 

a new 96-well plate, where 50 µl of the sulphanilamide solution was added to each well. The 

plates were incubated for 10 minutes at room temperature before 50 µl of N-1-

naptylethylenediamine dichloride (Alfa Aesar) was added to each well. The plates were 

incubated as described earlier. Thereafter OD was measured at 520 nm. 
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2.7 NAD+/NADH measurements 

The kit “Amplite Flurometric NAD/NADH Ratio Assay Kit” from AAT Bioquest (USA) was 

used to calculate the NAD+/NADH ratio in the control and stimulated cells. The procedure was 

completed as described in the protocol from the manufacturer.  

In short, a standard curve was made with a dilution ratio of 1:2. The test samples were tested 

for total NAD+ and NADH, and NAD+ alone; the two groups of cell samples were therefore 

given different extraction solutions. To detect total NAD+/NADH the cells were given a 

NAD+/NADH control solution, while both NADH and NAD+ extraction solution were given to 

the cells to be assayed for NAD+. In the end, a NADH reaction mixture was added to yield the 

standard curve, the total NADH plus NAD+ and NAD+ in control cells and the test samples. 

The OD was measured at 576 nm in an ELISA reader. 

 

2.8 RT-qPCR of gene expression 

To determinate the levels of gene expression, SYBR green real-time quantitative PCR (qPCR) 

were used for gene expression analysis. 

 

 2.8.1 Isolation of RNA and cDNA synthesis  

Macrophage-like cells from the head kidney were isolated and treated with LPS and curdlan 

for 48 hours before harvested. The cells were lysed in a RLT-buffer containing 2-

mercaptoethanol and kept at -80	℃. RNA was isolated using RNeasy Mini Kit by Qiagen 

(Germany) - according to the manufacturer’s guidelines. The yield and purity of the RNA was 

determined using a Nanodrop (Nano-Drop Technologies, Wilmington, DE, USA). The samples 

having OD 260/280 values between 1.9 and 2.1 was processed further. To avoid the risk of having 

contaminating DNA, interfering with the assay, in the samples - the samples were pre-treated 

with DNase I (1 U µg−1 RNA; Invitrogen, USA). To synthesize first-strand cDNA, a 

SuperScript III RNase reverse transcriptase (Invitrogen) was used, as described by Kumari et 

al. (2015).  

 

2.8.2 RT- qPCR 

The qPCR was performed in triplicates from samples obtained from three fish using ABI 

PRISM 7500 Fast Real-Time PCR System (Applied Biosystems) using Fast SYBR® Green 
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(Applied Biosystems). The procedure was the same as described by Kumari et al. (2015). In 

short, the reaction mixtures were incubated at 95	℃ (10 min), thereafter, 40 cycles of 95	℃ (15 

s), 60	℃	(1 min) and 95 ℃ for 15 seconds. Amplifications were specific in all cases, and 

amplification was not observed in any of the negative controls (non-template control). The 

relative quantification method by Pfaffl (Pfaffl, 2001) was used to convert the Ct values for 

each sample into fold differences. The most stable reference gene was EF-1α, hence, gene 

expression was normalized by this gene in each sample. The primers used in this study are listed 

in table 1. 

 
Table 1: Sequences of primers used for RT-PCR analysis. 

Gene Primer Oligonucleotide sequence (5’-3’) Ampl

icon 

(bp) 

GenBank acc. 

no. 

R2 % 

Effici

ency 

(E) 

EF-1α For 

Rev 

TCGTTTTGCTGTGCGTGAC 

CAGACTTTGTGACCTTGCCG 

98 AF308735 

 

0.996 99,86 

IL-10 For 

Rev 

CTGTTGGACGAAGGCATTCTAC 

GTGGTTGTTCTGCGTTCTGTTG 

129 EF165028 0.996 106 

TNF-α For 

Rev  

TGTCCATCAAGCCACTACACTC 

GCACTCACACACCCTGTCATT 

129 BT049358 0,994 87,7 

IL-1β For 

Rev 

GCTGGAGAGTGCTGTGGAAGA 

TGCTTCCCTCCTGCTCGTAG 

73 AY617117 0,996 103,7 

Arginase

-1 

For 

Rev 

AGCCATGCGTATCAGCCAA 

AAGGCGATCCACCTCAGTCA 

122 EG929369 0,994 99,99 

HIF-1 α For 

Rev 

GCTCAGAAAGTCGGTTGTCC 

GCCAGCTCGTAGAACACCTC 

132 NM_00114002
2.1 
 

0,987 92,47 

GLUT-1 For 

Rev 

CGCCAGCCCATCTTCATC 

GAAAACAGCGTTGATGCCAGA 

69 AF247728 
 

0,998 107,6 

 

 

2.8.3 Statistics  

All the experiments were carried out in a duplicate or triplicate fashion (except cell stimulation 

followed by qPCR), with at least three technical replicates. Statistical analysis was performed 

using one-tailed, paired Student’s T-test. QPCR: The data was log-transformed and analysed 

by one-way analysis of variance (ANOVA). Thereafter, Tukey’s test was completed using 
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SPSS 25.0 software. In all experiments, statistically significance between the datasets 

(treatments) were considered if p<0.05. 

 

3 Results 
 

3.1 Flow cytometry of isolated cells 

The ratio of salmon head kidney cell subpopulations used for in vitro studies was evaluated by 

flow cytometry right before seeding. Approximately 77 % of the cells were small to medium 

granulated and sized (Fig. 1) (R: 2-4; small to medium forward- and side scatter (FSC and 

SSC)), resembling lymphocytes and macrophage-like cells at different developmental stages 

while the rest was evaluated to be other cells and debris (Fig. 1). The proportion of macrophage-

like cells (medium FSC and SSC) from R: 3-4 was found to be approximately 56 % (Fig. 1). 

 

 
Figure 1: Flow cytometry of salmon head kidney cells obtained right after the gradient centrifugation and subsequent washing. 
The flow cytometry was performed on cells from one fish. 

 

3.2 Stimulation of macrophage-like cells by curdlan and LPS 

Both LPS (1 µg ml-1) (p=0.01) and curdlan (10 µg ml-1) (p=0.07) increased intracellular 

respiratory burst activity of PMA-elicited salmon macrophages – measured as the formation of 

superoxide anion oxidising NBT to formazan (Fig. 2). 
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3.3 Repeated stimulation and dose relationship 

To establish whether repeated stimulation with these two immunostimulants would further 

increase the respiratory burst activity compared to control cells, the cells were stimulated with 

one of these two stimulants for one day, and subsequently re-stimulated with the same or 

another stimulant for one more day. The superoxide generation in cells stimulated with LPS 

and re-stimulated with curdlan (p=0.05), and in cells that underwent twice curdlan stimulation 

(p=0.02) was significantly higher than in control cells (Fig 3A and 3B respectively). No 

significant differences were found between the other stimulation regimes.  
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Figure 2: The formation of superoxide anion assayed by the NBT method. Cells were stimulated with A. salmonicida 
LPS (1µg ml-1) and curdlan (10 µg ml-1) for one day, and the respiratory burst activity of PMA elicited macrophages 
was analyzed. The result is a representative of triplicate analysis, whereas the values are means of at least three replicate 
analyses (±SD). The horizontal lines connected with arrows indicate statistically significant differences. 
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Since the re-stimulation experiments using fixed doses of LPS (1 µg ml-1) and curdlan (10 µg 

ml-1) appeared not to induce significant increased formation of superoxide anion compared to 

what obtained from single stimulations, we were interested to see whether this was due to a 

dose-relationship phenomenon. Thus, the cells were firstly stimulated with curdlan (1, 10 and 

100 µg ml-1) for one day and then re-stimulated with fixed doses of curdlan and LPS (10 and 1 

µg ml-1, respectively) the day after (Fig. 4).  
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Figure 3 A and B: The formation of superoxide anion assayed by the NBT method. Cells were stimulated with A. 
salmonicida LPS (1µg ml-1) (A) or curdlan (10 µg ml-1) (B) for one day, then repeatedly with LPS or curdlan stimulants the 
next day. The respiratory burst activity of PMA-elicited macrophages was analysed. The result is a representative of 
triplicate analysis, whereas the values are means of at least three technical replicates (±SD). The horizontal lines connected 
with arrows indicate statically significant differences. 
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Figure 4: Dose-relationship by repeated stimulation. The cells were incubated with different doses of curdlan (1-100 µg ml-1) 
for 24h; subsequently the cells were washed and subjected to a second dose of fixed amount of either curdlan (10 µg ml-1) or 
LPS (1 µg ml-1). The result is a representative of duplicate analysis, whereas the values are means of at least three technical 
replicates (±SD). The horizontal lines connected indicate statically significant differences. 

 

The results revealed that stimulation with 100 µg ml-1 curdlan for 24h and subsequent 1 µg ml-

1 LPS (24h) induced significantly higher ROS generation compared to control cells and cells 
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(Fig. 4). Cells pre-stimulated with 100 µg ml-1 curdlan followed by curdlan stimulation (10 µg 

ml-1) showed significantly more ROS generation compared to cells stimulated with 1 +10 µg 

ml-1 curdlan. and 10 + 10 µg ml-1 curdlan. 

 

3.4 Effect of metabolic inhibitors on respiratory burst 

Metabolic inhibitors may alter the cells ability to produce superoxide anion via respiratory 

burst. Hence, we co-incubated different metabolic inhibitors together with stimulants and 

evaluated their effects on the respiratory burst activity. We included inhibitors against glucose 
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(Unfortunately, we were not able to include wortmannin and dactolisib in the main experiment). 
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In the dose response study where LPS and curdlan-stimulated cells were co-incubated with each 

inhibitor, only 2-deoxyglucose, rapamycin and wortmannin resulted in a dose dependent 

decrease in superoxide anion formation by increased inhibitor concentration (1nM - 1µM) 

(Supplementary figure 1). The Akt 1/2 inhibitor resulted in an increase of respiratory burst at 

100 nM compared to a lower (1-10nM) and a higher (1µM) concentration of Akt 1/2 inhibitor 

(Supplementary figure 1).  We were interested to see how the inhibitors affected cells when co-

incubated with LPS and curdlan. The Akt 1/2 inhibitor (100 nM) significantly decreased the 

formation of superoxide anion in cells stimulated with LPS compared to cells without the 

inhibitor (p=0.03) (Fig. 5), whereas no significant inhibition of superoxide formation in cells 

stimulated with curdlan alone or LPS + curdlan. Oligomycin A (100 nM) and rapamycin (100 

nM), in general, increased respiratory burst activation – even in non-stimulated cells (p=0.04 

and p<0.0001, respectively). The highest increase in superoxide anion formation was found in 

cells stimulated with LPS + rapamycin (p<0.0001) and LPS + curdlan + 2-deoxyglucose 

(p=0.002). The glucose transport inhibitor, 2-deoxyglucose (100 µM), also increased the 

formation of superoxide anion when co-incubated with LPS (p=0.03), but decreased the 

respiratory burst activation when the cells where incubated with curdlan (p=0.0001) (Fig. 5). 

 

 
Figure 5: The effect of metabolic inhibitors on the formation of superoxide anion. Macrophages were co-incubated with Akt 
1/2 inhibitor, oligomycin A, rapamycin and 2-deoxyglucose for two days, subsequently the cells were assayed for their content 
of superoxide anion by the NBT method. A representative experiment is presented from duplicate experiment; the number of 
technical replicates was four or more. Horizontal lines connected with arrows denote statistical significance. 
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3.5 Measurements of nitric oxide production 

The quantification of produced nitric oxide in macrophage-like cells did not give any results. 

After the Griess assay and incubation time was completed, there were no colour change in the 

cell samples. Due to the lack of colour change, there was no difference in the OD values 

between the blank controls and test samples.  

 

3.6 NAD+/NADH measurements 

The NAD+/NADH ratio may differ between resting and activated cells; activated cells may 

have increased ratio. After stimulation of macrophages for two days with curdlan (10 µg ml-1), 

curdlan + LPS (1 µg ml-1) the NAD+/NADH ratio increased 2.3 -and 1.5-fold, respectively. The 

“opposite” was found when we calculated the ratio for LPS stimulated cells (Fig. 6). This ratio 

turned out to be negative since the OD value in the reaction mixture was lower than for zero-

controls calculated from the standard curve. 

 

 
Figure 6: The contents of NAD+ (µM per 105 cells) in macrophage-like cells after stimulation with LPS and curdlan. The cells 
were stimulated for 24 h. A representative experiment is presented from duplicate experiment; the number of technical 
replicates was eight. Horizontal lines connected with arrows denote statistical significance (p<0.05). Insert shows the calculated 
NAD+/NADH ratio – based on initial analyses of total NAD+ plus NADH, and NAD+ 
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3.7 Gene expression after LPS and curdlan stimulation 

During fungus-elicited activation of macrophages, the cells may undergo a metabolic switch 

featured by increased arginase and IL-10 expression in so-called alternatively activated 

macrophages (M1) (Roszer, 2015). In the current study, the expression of arginase-1 was 

significantly higher in cells stimulated with LPS, curdlan and LPS + curdlan compared to 

control cells (p<0.05). The expression of IL-10 by stimulated cells was not significantly higher 

than control cells. Marker for classical activated macrophages, e.g. elicited by LPS or IFN-#, 

has been suggested to be hypoxia-inducible factor 1a (HIF-1α), glucose transporter protein-1 

(GLUT-1), TNF−α and IL-1β (Kelly and O'Neill, 2015). The expression of IL-1' was 

significantly higher in cells stimulated by LPS, curdlan and LPS + curdlan (p<0.01) compared 

to control cells. TNF-a, GLUT-1 and HIF-1( mRNA expressions were not regulated by the 

stimulants (Fig. 7). 

 

 
Figure 7: Expression of different genes in the macrophage-like cells (5 x 106 cells) after 48 h stimulation by qPCR. Gene 

expression data was normalized to EF-1	( expressions, set to a numerical value 1. Bars represent mean values ±SD. Asterisk 

(*) above the bar shows significant difference. One asterisk equals P<0.05, two equals P<0.01, and three equals P<0.001. Three 

fish were used in this study and qPCR analysis included three technical replicates.  
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4 Discussion 
The aim for this study was to evaluate the effects from LPS and '-glucan stimulation on 

respiratory burst, and how different stimuli plus metabolic inhibitors affected ROS production 

by macrophages extracted from Atlantic salmon head kidney. In addition, NAD+ and NADH, 

and gene expression in the cells after stimulation with LPS and	'-glucan (curdlan) was 

analysed. 

 

4.1 Isolation and characterisation of head kidney cells 

According to the results from the flow cytometry, the proportion of macrophages in the cell 

population was found to be approximately 56%. The yield of macrophage-like cells after 

density centrifugation was quite similar to what reported for rainbow trout (Lovoll et al., 2007). 

The distribution of cells observed from the flow cytometry was also similar to what have been 

reported from other teleost fish species (Haugland et al., 2012, Overland et al., 2010, Ronneseth 

et al., 2005, Morgan et al., 1993).  

 

4.2 Stimulation of macrophage-like cells  

The present work demonstrated that stimulation by both LPS and curdlan resulted in an 

increased ROS production by the stimulated macrophages. Previous studies on the respiratory 

burst activity in salmon macrophages stimulated with LPS and '-glucan showed similar 

tendencies (Jorgensen and Robertsen, 1995, Paulsen et al., 2001, Dalmo and Seljelid, 1995). In 

the current study, macrophages stimulated with curdlan showed, in general, the highest increase 

in ROS production. Re-stimulation with curdlan induced higher increase of superoxide anion 

production compared to co-stimulation with LPS. As far as we know, combined and repeated 

stimulation of salmon macrophages by virtue of respiratory burst has not been done before; 

thus, any direct comparison with findings by others is not possible. 

 

4.3 Effect of metabolic inhibitors on respiratory burst 

As previously mentioned (cf. introduction), the PI3K/Akt/mTOR pathway is important in cell 

metabolism. How metabolism affects ROS production in fish macrophages is yet to be 

discovered. Thus, it was desirable to look into the PI3K/Akt/mTOR pathway in relation to 

respiratory burst activity in macrophages. The reason for including the metabolic inhibitors was 
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to see how they affected the ROS production by inhibiting different parts of the metabolism 

that may be connected to respiratory burst. Receptor engagement (e.g. on the cell surface) 

activates PI3K; which through cascades of activation leads to activation of Akt, the two 

mTORC, and activating the multicomponent enzyme NADPH oxidase - which initiate and 

perform ROS production. The activation of the PI3K/Akt/mTOR pathway is described in 

Figure 8. Inhibitor targets are also included in this figure. 

 

 
Figure 8: A simplified view on the PI3K/Akt/mTOR pathway in mammals. Stimuli by e.g. LPS activate the TLR4 pathway – 
inducing PI3K-AKT-mTORC1 cascade, partly resulting in ROS production. In contact with the cell, PMA activates NADPH 
oxidase through direct activation of protein kinase C (PKC) isoforms. The components of the NADPH oxidase migrate to the 
cell membrane when activated; the active multicomponent enzyme is then formed and able to generate ROS. The inhibitors 
wortmannin inhibits PI3K, Akt I/II inhibits Akt and rapamycin inhibits mTORC1. Adapted from Zhao et al. (Zhao et al., 2010) 
and Cheng et al. (Cheng et al., 2014). 

 

It is known that activated macrophages may have an increased glycolytic activity; hence, it was 

of interest to use inhibitors targeting parts of the energy metabolism. The oxidative 

phosphorylation, a highly energy-yielding part of cell metabolism in the mitochondria, goes 

through a metabolic switch towards production of reactive oxygen species rather than ATP 

generation in activated macrophages (the Warburg effect) (Kelly and O'Neill, 2015). 

Production of ROS occurs when the rate of electrons transferred in the electron transport chain 

are mismatched (Nelson et al., 2008). During the switch, most of the NADPH produced in the 

pentose phosphate pathway (PPP) (Fig. 9) is utilized by the NADPH-oxidase to generate ROS 

(Fig. 8), rather than going to the ATP yielding oxidative phosphorylation.  
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Figure 9: Parts of the glycolytic metabolism and the oxidative phosphorylation. Akt regulates transcription of Glut1, which is 
a glucose transporter central to feed glucose in the glycolysis. Both the glycolysis, PPP and the tricarboxylic acid (TCA) cycle 
generates NADH or NADPH, which can either go to ATP generation or ROS generation via the electron transport chain in the 
oxidative phosphorylation. NADPH from the PPP can also be utilized by the NADPH-oxidase (Fig. 8) to generate ROS. The 
inhibitor Akt 1/2 inhibits transcription factors Akt1 and Akt2, thus, the glucose transport to the glycolysis can be affected. 
Oligomycin A inhibits ATPase (complex V) in the electron transport chain. Adapted from (Chan et al., 2012, Marie and Shinjo, 
2011, Hecker et al., 2013, Nelson et al., 2008) 

 

The effects of the metabolic inhibitors on the respiratory burst were in most cases moderate, as 

there were not as much modulation of ROS production as expected. In some instances, 

inhibitors rather increased the rate of respiratory burst rather than the opposite. The Akt 1/2 

inhibitor induced a decrease of ROS production in cells stimulated with LPS – compared to 

cells stimulated with a combination of LPS and curdlan. As mentioned, the Akt 1/2 inhibitor 

inhibits transcription factors Akt 1 and Akt 2 in the cell cytoplasm. Akt plays an important role 

in many processes of the cell, such as glucose metabolism and downstream gene expression. 

Previous inhibition studies using Akt inhibitors suggested that activation of Akt is necessary, 

but by itself insufficient for respiratory burst activity (Chen et al., 2003).  

 

Oligomycin A possessed no inhibitory effect on the rate of respiratory burst on the PMA-

elicited salmon macrophages. The ROS production appeared to be even higher in cells co-

incubated with oligomycin A than in cells without the inhibitor. A study by Fossati et al. (2003) 

presented results that showed enhancement of ROS production, for up to 120 min, in cells 

incubated with oligomycin A (at low concentrations; 1 µg ml-1) rather than inhibition in PMA-
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elicited human neutrophils. As such there may be similarities between the current results and 

the results from neutrophil stimulation. However, neutrophils are different from macrophages, 

therefore comparison between these two cell types is difficult. 

 

The mTOR1 has, as previously mentioned (cf. introduction), a vital role in cell metabolism, in 

particular cell growth, protein synthesis and translation. It has therefore become an important 

therapeutic target in cancer treatments; hence, there is a high amount of research reports on 

possible inhibitors of mTORC1 in humans. Rapamycin is a well-known allosteric inhibitor of 

the mTOR1 complex in mammals. Despite the well-studied effects of mTOR and the impact of 

rapamycin in mammals, there has not been much research on how it affects fish cells (Dai et 

al., 2014). In the current study, the rapamycin did not give any inhibitory effect on the ROS 

production; it rather induced an increase in the respiratory burst activity -in particular in LPS 

stimulated cells. The LPS stimulated cells co-incubated with rapamycin resulted in 

approximately an 8-fold increase of ROS production compared to LPS stimulated cells (without 

the inhibitor). The reason for this increase is unknown.  

 

The inhibitor 2-deoxyglucose is known to inhibit glucose uptake, hence limiting glucose 

metabolism. 2-deoxyglucse had a significant inhibitory effect on ROS production from curdlan-

stimulated cells, and led to nearly no ROS production. A study presented by Rist et al. (Rist et 

al., 1991) found that the rate of superoxide production in PMA-elicited rat peritoneal 

macrophages increased as the concentration of added 2-deoxyglucose increased. 2-

deoxyglucose possessed no activity on LPS-stimulated cells with respect to ROS production. 

 

4.4 NAD+ and NADH 

The intracellular contents of NADH and NAD+ is important during the respiratory burst as a 

high NADH content favor ROS generation (Mills and O'Neill, 2016). 

Unfortunately, there are no previous correlative reports on the contents of NAD+ and NADH 

on cells from fish. A very few report exist on muscle tissue and egg contents of NAD+ and 

NADH. The salmon muscle tissue content of NAD+ has been estimated to be in the order of 

0.38 mM (Bailey and Lim, 1977), whereas in goldfish the NAD+ content is reported to be up to 

394 nmoles per gram fresh tissue (lateral red muscle). In the same report, the NAD+/NADH 

ration was 0.98 (Vandenthillart et al., 1982). Following on, the NAD+/NADH ration has been 

found to be 1.8 and 0.7 in oocytes and eggs of the loach (Yermolaeva, Lp. and Milman, 1974). 
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The calculated NAD+ contents in macrophage-like cells, in the current study, were 35.5 µM 

(controls), 31.5 nM (LPS), 24.5 µM (curdlan + LPS) and 72.6 µM (curdlan) – quite lower than 

the previous reported figures in fish muscle, oocytes and eggs. In the present study, the 

NAD+/NADH ratio was found to be close to 55 in control cells, 64 in LPS + curdlan stimulated 

cells and 117 in curdlan stimulated cells. The LPS stimulated cells showed even a negative ratio 

because the readings were lower than the standard curve points. It is not known why the 

NAD+/NADH ratio, in our study, was considerable higher than previously reported ratios in 

fish. When compared to mammalian macrophages (THP-1 cell line), this ratio increased during 

LPS stimulation, reaching 2.5 at 24 h relative to time-matched non-stimulated control cells (Liu 

et al., 2012). A similar finding has been revealed where the mice macrophage NAD+/NADH 

increased during LPS stimulation (Haschemi et al., 2012). These reports normalized the 

NAD+/NADH ratio to controls. If we normalize the results from LPS and curdlan stimulation 

from control values, we find a 1.4-fold increase after LPS + curdlan stimulation, and 2.3-fold 

increase after curdlan stimulation. These results are, however, comparable with those where 

LPS induced an increased cell NAD+/NADH ratio (Haschemi et al., 2012). 

 

4.5 Gene expression after LPS and curdlan stimulation 

During fungus-induced activation of macrophages, the cells may undergo a metabolic switch 

featured by increased arginase and IL-10 expression in so-called alternatively activated 

macrophages (M2) (Roszer, 2015). This polarization may also arise during stimulation with 

immune complexes through Fc receptors, IL-4 and IL-13 (Th2 cytokines) (Martinez and 

Gordon, 2014). To complicate the concept further, there is a plasticity where M2 macrophages 

may be classified into at least four subset phenotypes dependent on cytokine profile, cell 

membrane markers and activity (Roszer, 2015). In the current study, there was significant 

increase of arginase-1 mRNA expression after LPS and curdlan stimulation – suggesting that 

the cells may be skewed to a M2 phenotype, rather than M1 phenotype. But more examination 

on the expression levels of marker molecules and genes must be done to ascertain the existence 

of M2 during stimulation in fish including salmonids. However, there are reports showing that 

carp and zebra fish macrophages may undergo plasticity resembling classical (innate) and 

alternative activation (Joerink et al., 2006b, Wiegertjes et al., 2016b). Markers for classically 

activated macrophages, e.g. elicited by LPS or IFN-g, has been suggested to be hypoxia-

inducible factor-1a (HIF-1a), glucose transporter protein-1 (GLUT-1), TNF-a and IL-1ß 

(Kelly and O'Neill, 2015). Classical activated macrophages (M1) express also high levels of 
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e.g. iNOS, IL-6, TLR2 and TLR4. HIF-1a is also central in its role for nitric oxide generation 

(Wang et al., 2014). In the report by Joerink et al. (2006b), there was an increased TNF-a and 

IL-1ß expression in carp macrophages after LPS stimulation, whereas the arginase-1 and IL-10 

expression remained relatively non-regulated. As such, there are both similarities and 

dissimilarities between our results and the results obtained from carp macrophages. We were 

not able to detect any NO production from salmon macrophage-like cells – which was a bit 

strange since NO production has been found in macrophages from other fish species 

(Wiegertjes et al., 2016b). Anyway, increased loads of data from work on fish macrophages on 

the plasticity during stimulation is underway – that together may define the existence of M1 

and M2 subsets in fish, and may also suggest whether there are differences with respect to 

different fish species. 

 

5 Conclusion  
In conclusion, both LPS and curdlan stimulated the macrophage-like cells to induce the 

formation of ROS; but the effect of the metabolic inhibitors on stimulated salmon macrophages, 

with respect to ROS formation, proved to be moderate in most instances. However, the akt 1/2 

inhibitor seemed to down regulate the ROS formation, while 2-deoxyglucose up regulated the 

formation of ROS in some cases. The inhibitors used in this study are produced and optimised 

for use in mammalian systems and hence their bioactivities in fish are much unexplored. Due 

to the lack of studies on how metabolic inhibitors affects respiratory burst in salmon 

macrophages, the underlying mechanisms in fish are yet fairly unknown. The content of NAD+ 

increased during stimulation (curdlan, and curdlan + LPS); which may suggest an increased 

metabolic activity, and also supported by the gene expression studies where the stimulated cells 

expressed more arginase-1 and IL-1ß. Genes encoding for LPS receptor (e.g. TLR4) and 

curdlan (e.g. dectin-1) has not been found in the salmon genome, suggesting the presence of 

other and unknown LPS and ß-glucan receptors inducing macrophage activation. This adds, 

however, more questions whether the traditionally classical and alternative macrophage 

phenotype dichotomy exists in salmon. 
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Supplementary materials 
 

 
 
Supplementary figure 1: The dose-relationship of different metabolic inhibitors on the formation of ROS by macrophage-like 
cells. The experiment was repeated once. 
 

 

 


