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Abstract

Ordinary univariate Bernstein polynomials can be represented in matrix form using factor
matrices. In this paper we present the definition and basic properties of such factor matrices
extended from the univariate case to the general case of arbitrary number of variables by us-
ing barycentric coordinates in the hyper-simplices of respective dimension. The main results
in the paper are related to the design of an iterative algorithm for fast convex computation
of multivariate Bernstein polynomials based on sparse-matrix factorization. In the process
of derivation of this algorithm, we investigate some properties of the factorization, including
symmetry, commutativity and differentiability of the factor matrices, and address the rele-
vance of this factorization to the de Casteljau algorithm for evaluating curves and surfaces on
Bézier form. A set of representative examples is provided, including a geometric interpretation
of the de Casteljau algorithm, and representation by factor matrices of multivariate surfaces
and their derivatives in Bézier form. Another new result is the observation that inverting
the order of steps of a part of the new factorization algorithm provides a new, matrix-based,
algebraic representation of a multivariate generalization of a special case of the de Boor-Cox
computational algorithm.
AMS Subject Classification: 15A23, 15A27, 65D07, 65D17, 65D10, 65F30, 65F50
Keywords and phrases: Bernstein polynomials, matrix factorization, de Casteljau algo-
rithm

1 Introduction
Univariate Bernstein polynomials were introduced by Sergei Bernstein [1] in his proof of the Weier-
strass approximation theorem. They have been studied extensively in the literature since then,
see, e.g. [2], or a textbook on approximation theory, e.g., [3].

Bernstein polynomials consitute the basis of Bézier curves and surfaces [4], and they are com-
monly used as basis functions in spline constructions [5, 6]. One way of representing Bernstein
polynomials is by matrix form as factor matrices. Such matrices are related to de Casteljau’s
corner cutting algorithm [7]. The univariate case of Bernstein factor matrices was addressed in [8],
however, univariate Bernstein factor matrices seem to have been exposed and used prior to that,
see e.g. [9], where the de Casteljau algorithm is expressed on matrix form, or the method presented
in [10, algorithm 12]. In addition, we mention that Tom Lyche and Knut Mørken have been using
a slightly different matrix representation of B-splines in their lecture notes [11] at the university of
Oslo. A particularly attractive property of the de Casteljau algorithm and its matrix-based version
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is the convexity of computation, whereby the total accumulated error of computation stays within
the convex hull of the errors made in the process of the algorithm’s iterations.

The definition of ordinary Bernstein polynomials can be generalized with preservation of the
convexity-of-computation property by using barycentric coordinates, see e.g. [12, 13]. In this paper
we investigate symmetric and recursive properties of the factor matrices for higher dimensions of the
polynomials’ argument. Furthermore, we present an equivalent recursive definition which facilitates
the construction of Bernstein factor matrices for arbitrary dimensions of the barycentric argument,
and investigate some properties which follow from the layout and construction of the matrices. We
are interested in these findings mainly because the factorization can be seen to correspond to the
de Casteljau algorithm and to a special case of the de Boor-Cox recursion formula for B-splines.
Parts of the results, including an outline of the recursive definition of the Bernstein factor matrices,
were announced in [14].

The organization of the paper is, as follows. In subsection 1.1 we provide a brief description of
Bernstein polynomials, the Bézier representation of polynomial curves, and univariate Bernstein
factor matrices. Subsection 1.2 is concerning some properties of the algebra of square matrices.
We generalize the factor matrices to the multivariate setting in section 2, via first considering the
case of R2, and then the d-variate case. Then in section 3 we address the directional derivatives of
Bernstein polynomials and Bernstein factor matrices in the multivariate setting. Section 4 covers
the relevance of the factorization to the de Casteljau algorithm, followed by some examples of
how the construction can be used. Proofs of some of the lemmas and theorems are provided in
section 5. Finally, in section 6, we give our concluding remarks where we suggest some topics for
future work.

1.1 Univariate Bernstein polynomials and curves on Bézier form
Computing the binomial expansion

1 = (t+ (1− t))n =
n∑
i=0

(
n

i

)
ti(1− t)n−i,

where t ∈ R, leads to the Bernstein polynomials [1] of degree n,

Bni (t) =
(
n

i

)
ti(1− t)n−i, i = 0, . . . , n , (1)

which satisfy a number of important properties, including linear independence, symmetry, roots at
0 and 1 only, partition of unity and positivity (i.e., convex partition of unity) in (0, 1). They can
be expressed through the following (convex) recursion formula:

Bni (t) = tBn−1
i−1 (t) + (1− t)Bn−1

i (t) , (2)

where Bn−1
−1 = Bn−1

n = 0 and B0
0 = 1.

Since the n+ 1 linearly independent Bernstein polynomials Bni form a basis for all polynomials
of degree ≤ n, any polynomial curve c(t) of degree ≤ n has a unique n-th degree Bernstein-Bézier
representation

c(t) =
n∑
i=0

ciBni (t), (3)

where the coefficients ci ∈ Rd, called Bézier points [13], are elements of an affine space, i.e., the ele-
ments of Rd are points with coordinates defined with respect to a frame, consisting of origin with co-
ordinates (0, . . . , 0︸ ︷︷ ︸

d times

) and the canonical orthonormal basis with coordinates ( 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1 times

).
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We note that the Bernstein-Bézier representation is sometimes referred to as the B-form, as sug-
gested by Carl de Boor in [15].

The curve in (3) can be evaluated using de Casteljau’s corner cutting algorithm [7] by letting
c0
i = ci and repeatedly applying the recursion formula for Bernstein polynomials in (2):

c(t) =
n∑
i=0

c0
iB

n
i (t) =

n−1∑
i=0

c1
iB

n−1
i (t) = · · · =

0∑
i=0

cni B0
i (t) = cn0 ,

where cki = (1− t)ck−1
i + tck−1

i+1 are intermediate points of de Casteljau’s algorithm. This recursive
convex linear interpolation between two points can be expressed in matrix form as outlined in [8].
As an example, computing from right to left, for n = 3:

c(t) =
(
1− t t

)(1− t t 0
0 1− t t

)1− t t 0 0
0 1− t t 0
0 0 1− t t




c0
c1
c2
c3

 . (4)

By consecutively multiplying the matrices in (4) from right to left, the dimension of the vector on
the RHS is reduced by 1 for each computation. The factor matrices are of dimension n× (n+ 1)
given by their number of rows and columns respectively. It follows that (3) can be rewritten as

c(t) = T1(t)T2(t)T3(t)c, (5)

where c = (c0, c1, c2, c3)T and the factor matrices are denoted by Tn(t). As noted in [10], comput-
ing the three matrices from the left results in a vector containing the four Bernstein polynomials
of degree three:

T1(t)T2(t)T3(t) =
(
(1− t)3 3t(1− t)2 3t2(1− t) t3

)
=
(
B3

0(t) B3
1(t) B3

2(t) B3
3(t)

)
.

This method can be seen as a special case of the de Boor-Cox recursion formula [16, 17] for
B-splines, since B-splines are the proper generalization of Bézier curves [18].

The curve c(t) can be evaluated by multiplying the vector of Bernstein polynomials together
with the vector of coefficients c. We introduce the following matrix notation for the set of Bernstein
polynomials of degree n:

Bn(t) = T1(t)T2(t) · · ·Tn(t). (6)

Thus, by applying (6) to (5), the cubic Bézier curve in (4) can be expressed as

c(t) = B3(t)c.

The binomial in (4) can be expressed using barycentric coordinates simply by substituting 1− t
with v and t with w, so that (v, w) is a barycentric coordinate with respect to a line segment
L =

(
l0 l1

)
⊂ R1, where v + w = 1. The first three matrices of (4) would then become

T1T2T3 =
(
v w

)( v w 0
0 v w

) v w 0 0
0 v w 0
0 0 v w

 . (7)

Prior to introducing multivariate Bernstein polynomials, we provide a brief description of square
matrices and some of their properties, which we shall use in some of the proofs and examples in
the sequel of this paper.
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1.2 The algebra of square matrices
N -th order square matrices form a vector space with respect to the ordinary summation of matrices
and multiplication with a scalar [19, §93 (Example 1), §94]. Its dimension is N2, and one basis in
it is provided by the canonical matrices Eij = (δikδ`j)Nk,`=1, i, j = 1, . . . , N , where

δij =
{

1, if i = j,

0, otherwise,

is the Kronecker delta. For the linear span of the so-defined canonical basis we shall use the
notation E = EN×N = EN×N (F) where F denotes the field of scalars of the linear span and where,
in our case, we shall always consider only the case F = R (real scalars). It is well-known, that
when endowed with matrix multiplication, EN×N becomes a non-commutative algebra [19, §93].
Since in the sequel we shall not be using all the properties of EN×N as an algebra (for example, we
shall not be discussing inverse elements in EN×N ), our choice here is to provide a self-consistent
presentation of only those of the properties of the algebra EN×N which are of relevance to this
article through the next few lemmas.

Lemma 1. The dimension of the space EN×N is determined by the largest dimension of the
matrices involved in a given multiplication. For instance, let

AB = C,

where A, B and C are matrices with dimensions K × L, L ×M and K ×M , respectively. Then
N = max{K,L,M}, and we can, for instance, express the matrix A as

EN×N =
N∑
k=1

N∑
l=1

aklEkl,

where akl are the entries in A, which we define to be zero if k > K or if l > L. The result is a
space EN×N which contains A as element of the linear span of Eij for the first K values of i and
the first L values of j, i.e., corresponding to a K × L-rectangular submatrix situated in the upper
left corner of the N ×N square matrix. Entries from B and C can be obtained analogously.

Lemma 1 allows us to simplify the considerations for multiplication of several algebrae [19, §94
(item 2)], to a consideration within one single algebra EN×N of sufficiently high order N [19, §93
(item 1)].

Lemma 2. The product of two basis matrices is

EijEk` = δjkEi`, (8)

where i, j, k, ` = 1, . . . , N .

Formula (8) is a concise form of the respective formula in [19, §93 (item 1)] and a simplification
of the respective formulae in [19, §94 (item 2)]. This will prove essential in the proofs of our main
results, because there (8) will be used iteratively.

Lemma 3. Let A = (aij)N,Ni=1,j=1 ∈ EN×N , B = (bkl)N,Nk=1,l=1 ∈ EN×N , C = (cmn)N,Nm=1,n=1 ∈
EN×N and D = (dpq)N,Np=1,q=1 ∈ EN×N be four matrices. Then AB−CD is an element of EN×N ,
defined by

AB−CD =
N∑
α=1

N∑
β=1

[
N∑
λ=1

(aαλbλβ − cαλdλβ)
]
Eαβ . (9)
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For the particular case when C = B, D = A in formula (9) we obtain the following:

Corollary 4. The commutator of A = (aij)N,Ni=1,j=1 ∈ EN×N and B = (bkl)N,Nk=1,l=1 ∈ EN×N
is an element of EN×N , defined by

[A,B] =
N∑
α=1

N∑
β=1

[
N∑
λ=1

(aαλbλβ − aλβbαλ)
]
Eαβ .

2 Multivariate Bernstein polynomials
The symmetric properties of the Bernstein polynomials suggest that barycentric coordinates are
a natural choice to represent multivariate scenarios. We proceed by considering factorization of
the Bernstein polynomials in two variables expressed in barycentric coordinates with respect to a
triangle in R2. Then we shall generalize the resulting factor matrices to the multivariate setting,
with a recursive definition based on a particular decomposition of the matrices into submatrices.

2.1 Bivariate Bernstein polynomials
Proceeding as in (1), we compute the trinomial expansion

1 = (u+ v + w)n =
∑
i,j,k

(
n

i, j, k

)
uivjwk, (10)

where i, j, k ≥ 0 and i+ j + k = n. This leads to the Bernstein polynomials of degree n,

Bnijk(u, v, w) =
(

n

i, j, k

)
uivjwk, (11)

where (u, v, w) is the barycentric coordinate of a point p with respect to a triangleA = (a0,a1,a2) ⊂
R2, (i, j, k) ∈ {0, 1, . . . , n}3, and i+ j + k = n. We note that (u, v, w) represents a local parameter
with respect to A and p a global parameter, since p = Au = a0u+ a1v+ a2w, with u+ v+w = 1.

The recurrence relation for Bernstein polynomials associated with a triangle A ⊂ R2 in homo-
geneous barycentric coordinates is defined (see e.g. [12, 13]) as

Bnijk = uBn−1
i−1,j,k + vBn−1

i,j−1,k + wBn−1
i,j,k−1, (12)

where we consider expressions with negative subscripts to be zero. It is well known [12] that the
Bernstein polynomials

Bn
2 = {Bnijk}i+j+k=n (13)

form a basis for the space of polynomials of degree n. Thus, given any triangle A, every polynomial
p of degree n has a unique Bernstein-Bézier representation

p =
∑

i+j+k=n
cijkB

n
ijk, (14)

where Bnijk are the Bernstein polynomials associated with A.
In the sequel we shall assume a lexicographic order of the

(
n+2

2
)
Bernstein polynomials, as

provided in (13) and (14), such that Bnrst > Bnijk when r > i, or if r = i, then s > j, or if r = i and
s = j, then t > k. As an example, the order of Bnijk for i+ j + k = n and n = 3 is the following:

B3
300 > B3

210 > B3
201 > B3

120 > B3
111 > B3

102 > B3
030 > B3

021 > B3
012 > B3

003.
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We use the recurrence relation in (12) to define the triangular (bivariate) Bernstein factor
matrix in homogeneous barycentric coordinates, as follows:

Definition 5. The Bernstein factor matrix T2,n(u, v, w) is a
(
n+1

2
)
×
(
n+2

2
)
band-limited

matrix with three non-zero elements on each row. The columns of T2,n(u, v, w) correspond to
the

(
n+2

2
)
vectors of terms of the recurrence relation in (12) in lexicographic order, such that the

non-zero elements in every column are
1. positioned according to the lexicographic index numbers of the Bn−1

ijk on the RHS, and

2. taking the values of their associated variables; u, v, or w.

It follows immediately from Definition 5 that the first three triangular (bivariate) factor matrices
in homogeneous barycentric coordinates are as follows:

T2,1 =
(
u v w

)
, (15)

T2,2 =

 u v w 0 0 0
0 u 0 v w 0
0 0 u 0 v w

 , (16)

T2,3 =


u v w 0 0 0 0 0 0 0
0 u 0 v w 0 0 0 0 0
0 0 u 0 v w 0 0 0 0
0 0 0 u 0 0 v w 0 0
0 0 0 0 u 0 0 v w 0
0 0 0 0 0 u 0 0 v w

 , (17)

where the horizontal and vertical lines are used to annotate sub-matrices, which we shall describe
later.

We find it appropriate to include the following lemma, which states that the proposed factor
matrices are a factorization of the set of Bernstein polynomials in three variables in barycentric
coordinates.

Lemma 6. The Bernstein factor matrices {T2,i}ni=1 factor the Bernstein polynomials Bn
2 :

T2,1T2,2 · · ·T2,n = Bn
2 . (18)

By investigating the matrices in (7) and (15)-(17) we observe that a specific Bernstein factor
matrix consists of four sub-matrices: The upper left sub-matrix is the factor matrix of the same
dimension but of one degree lower. The lower right sub-matrix is the factor matrix of one dimension
lower but of the same degree. The upper right sub-matrix is a zero matrix. In the lower left sub-
matrix the only non-zero elements are on the diagonal from one of the entries on the top to the
lower right element. We shall use the term right diagonal, since it can be seen as a main diagonal
which is shifted as far as possible to the right in a square matrix.

It turns out that this relation holds for arbitrary degree of the factor matrices. We, therefore,
summarize the findings in the following lemma.

Lemma 7. The factor matrix T2,n(u, v, w), for degree n > 1, consists of four sub-matrices,
such that

T2,n(u, v, w) =
( T2,n−1(u, v, w) 0

Tdiag
2,n (u) T1,n(v, w)

)
,

where Tdiag
2,n (u) is a matrix where the only non-zero elements are on the right diagonal and equal

to u.
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2.2 The d-variate case, d = 2, 3, . . .

Multivariate Bernstein polynomials over a d-dimensional simplex A ⊂ Rd are defined in [13] as
follows:

Bni (u) =
(
n

i

)
ui =

(
n

i0, . . . , id

)
ui00 . . . uidd , (19)

where i = (i0, . . . , id) ∈ {0, 1, . . . , n}d+1, |i| = i0 + · · ·+ id = n, u = (u0, . . . , ud) is the barycentric
coordinate of a point p with respect to A, ui = (ui00 . . . uidd ), and u0 + · · ·+ud = 1. There are

(
n+d
d

)
Bernstein polynomials of degree n. They form a basis for all d-variate polynomials of total degree
≤ n, they form a partition of unity and are positive for u > 0, which is one reason to consider
Bernstein polynomials over the simplex A.

The following recurrence relation holds for the Bernstein polynomials in (19):

Bni (u) = u0B
n−1
i−e0

+ · · ·+ udB
n−1
i−ed

, (20)

where e0, . . . , ed represents the columns of the (d + 1) × (d + 1) identity matrix, B0
0 = 1, B0

i = 0
if i has negative components, and |i − ej | = n − 1. We shall assume a lexicographic order of the
multivariate Bernstein polynomials, similar to the R2 case, based on the index numbers i0, . . . , id.
The Bernstein factor matrices for arbitrary number of variables are defined as follows:

Definition 8. The Bernstein factor matrix Td,n(u0, . . . , ud) is a
(
n+d−1

d

)
×
(
n+d
d

)
band-limited

matrix with d non-zero elements on each row. The columns of Td,n(u0, . . . , ud) correspond to the(
n+d
d

)
vectors of terms in the recurrence relation (20) in lexicographic order, such that the non-zero

elements in every column are

1. positioned according to the lexicographic index numbers of the Bn−1
i−ej

on the RHS, and

2. taking the values of their associated variables; u0, u1, · · · , or ud.

We recall Lemma 7, which can be extended to the multivariate case. An outline of a proof is
to use the recurrence relation provided in (20) and Definition 8, which is similar to the proof of
Lemma 7. We use this to propose an alternative equivalent definition of the multivariate Bernstein
factor matrices of arbitrary degree, based on recursion of the sub-matrices, as summarized in the
following theorem, which is a main result:

Theorem 9. The Bernstein factor matrix Td,n(u) is a
(
n+d−1

d

)
×
(
n+d
d

)
band-limited matrix

with d+ 1 nonzero elements on each row. The matrix is defined recursively as follows:

Td,n(u0, . . . , ud) =
( Td,n−1(u0, . . . , ud) 0

Tdiag
d,n (u0) Td−1,n(u1, . . . , ud)

)
, (21)

where d ≥ 0 is the dimension, n ≥ 1 is the degree, T0,q = (ud) for q ≤ n, Tp,1 = (ud−p, . . . , ud)
for p ≤ d, and Tdiag

q,n (ud−q) is a matrix where the only non-zero elements are on the right diagonal
and equal to ud−q.

In the following we will in some cases omit specifying the parameters of the matrix T and its
sub-matrices for simplification. We note that the sub-matrices in (21) are such that Td,n−1 is of
size

(
n+d−2

d

)
×
(
n+d−1

d

)
, Td−1,n is

(
n+d−2
d−1

)
×
(
n+d−1
d−1

)
and Tdiag

d,n is
(
d+n−2

d

)
×
(
n+d−1
d−1

)
. The upper

right sub-matrix is a
(
d+n−2

d

)
×
(
n+d−1
d−1

)
matrix where all the entries are zero.

Lemma 10. The entries in every row in Td,n(u) are either 0, u0, . . . , or ud, such that each of
the elements u0, . . . , ud occurs once, in increasing order, with optional zeros in-between.
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For the sake of clarity, we formalize that the proposed factor matrices are a factorization of the
set of Bernstein polynomials in d variables, similar to Lemma 6 for the R2 case, in the following
lemma.

Lemma 11. The Bernstein factor matrices {Td,i}ni=1 factor the Bernstein polynomials Bn
d :

Td,1Td,2 · · ·Td,n = Bn
d . (22)

We include the following lemma concerning a symmetry property of the Bernstein factor ma-
trices:

Lemma 12. Given the barycentric coordinates u = (u0, . . . , ud) and z = (z0, . . . , zd) with
respect to a d-dimensional simplex A. Then

Td,k−1(z)Td,k(u) = Td,k−1(u)Td,k(z). (23)

3 Directional derivatives
Let us consider the line given by

l(t) = p + tv,

where p = a0u0 + · · ·+ adud where u0 + · · ·+ ud = 1 is a point in Rd with barycentric coordinates

u = (u0, u1, . . . , ud), (24)

and v = a0v0 + · · ·+ advd where v0 + · · ·+ vd = 0 is a vector with barycentric coordinates

v = (v0, v1, . . . , vd), (25)

and a polynomial s(u) in Bernstein-Bézier form:

s(p) =
∑
|i|=n

ciB
n
i (u). (26)

Consider Rd+1 with Cartesian coordinates u0, u1, . . . , ud, a (d+1)-variate sufficiently smooth func-
tion σ(u0, u1, . . . , ud) and a unit vector in Rd+1 with Cartesian coordinates (v0, v1, . . . , vd):

d∑
k=0

v2
k = 1. (27)

The 1-st directional derivative of σ at u0 = (u0
0, u

0
1, . . . , u

0
d) ∈ Rd+1 in the direction of the vector

v = (v0, v1, . . . , vd) satisfying (27) is, as habitual,

lim
t→0+

d
dtσ(t), (28)

where σ(t) = σ(u0 + tv), t ∈ (0, t0), 0 < t0 <∞.
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Definition 13. The 1-st directional derivative of s(u) = s(u0, u1, . . . , ud) at the point
p = (u0

0, u
0
1, . . . , u

0
d) ∈ Rd in the direction of the vector v = (v0

0 , v
0
1 , . . . , v

0
d) ∈ Rd where u0

k, v
0
k,

k = 0, 1, . . . , d are barycentric coordinates in Rd satisfying (24) and (25), respectively, is the direc-
tional derivative in Rd+1 in the particular case when u0 = p belongs to the affine manifold (hyper-
plane in Rd+1)

{
(u0, u1, . . . , ud) ∈ Rd+1 :

∑d
k=0 uk = 1

}
and the directional vector v belongs to

the intersection of the unit sphere
{

(v0, v1, . . . , vd) ∈ Rd+1 :
∑d
k=0 v

2
k = 1

}
and the d-dimensional

subspace (hyperplane in Rd+1)
{

(v0, v1, . . . , vd) ∈ Rd+1 :
∑d
k=0 v

2
k = 0

}
.

Directional derivatives in barycentric coordinates of order higher than first are defined analo-
gously.

From the chain rule, using also the properties (24) and (25) of the barycentric coordinates and
Definition 13, we have that

Dvs(p) = v0Du0s(p) + · · ·+ vdDud
s(p).

Partial derivatives of a Bernstein polynomial with respect to each of its parameters can be
obtained as

∂

∂uj
Bni = nBn−1

i−ej
,

where i is a multiindex, |i| = n, |i− ej | = n− 1, and Bj = 0 if j has a negative component. This
gives rise to the following lemma, which can be found in a trivariate setting in [12]:

Lemma 14. For arbitrary i0+· · ·+id = n, the directional derivative of a Bernstein polynomial
Bni (p) in the direction of v is

DvB
n
i (p) = n

[
v0B

n−1
i−e0

(u) + · · ·+ vdB
n−1
i−ed

(u)
]
. (29)

Recall from Lemma 11 that

Bn
d (u) = Td,1(u)Td,2(u) · · ·Td,n(u). (30)

This product of matrices can be differentiated by the same formulae as if the factors were numbers.
If T(u) is a matrix whose entries are functions of u, then the derivative in the direction of v, DvT
of T, is defined as the matrix obtained by differentiating each entry of T with respect to v.
The entries are obtained by differentiation of linear convex combinations, which yields constants
independent of u.

We formalize the definition of the derivative of the Bernstein factor matrix Td,n(u):

Lemma 15. The derivative of a Bernstein factorial matrix in the direction of v = (v0, . . . , vd),

DvTd,n = Td,n(v),

is a
(
d+n−1
n−1

)
×
(
d+n
n

)
band-limited matrix with d + 1 nonzero constant elements on each row

(independent of u).

We note here that the submatrix DvTdiag
d,n is zero if v0 = 0, since the only non-zero elements in

Tdiag
d,n are equal to v0. Furthermore, since Td−1,n(v) does not contain v0, the submatrix DvTd−1,n

is zero if v1 = · · · = vd = 0, i.e. if Dv corresponds to the partial derivative Du0 .
The remainder of this section is partially based on an analogous treatment of univariate B-

splines on matrix form in [11], adjusted here to the setting of multivariate Bernstein polynomials.
The following well-known rule for differentiating a product of two matrices will be used in order
to find the derivative of the factorization.
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Lemma 16. Let A and B be two matrices with compatible dimensions for the matrix product
AB and with entries that are functions of (u0, . . . , ud). Then

D(AB) = (DA)B + A(DB).

By applying the rule from Lemma 16 to the product of (30), we get

DvBn
d (u) =

n∑
k=1

Td,1(u) · · ·Td,k−1(u)DvTd,kTd,k+1(u) · · ·Td,n(u). (31)

Formula (31) can be simplified by applying the following lemma:

Lemma 17. The matrices Td,k−1 and Td,k satisfy the relation

DvTd,k−1Td,k(u) = Td,k−1(u)DvTd,k, (32)

for k ≥ 2, any u = (u0, . . . , ud), uk ∈ R, k = 0, 1, . . . , d, and any given direction v = (v0, . . . , vd)
with

∑d
k=0 v

2
k > 0.

The differentiation operator Dv in (31) can be shifted between the matrices by using (32), and
by making use of Lemma 15 we obtain

DvBn
d (u) = nTd,1(u) · · ·Td,n−1(u)DvTd,n = nBn−1

d Td,n(v). (33)

We are now ready to provide one of the main results, a theorem which states that the r-th
directional derivative of the set of Bernstein polynomials Bn

d can be obtained by differentiating r
of the factor matrices.

Theorem 18. Given a set of Bernstein polynomials Bn
d (u) and the directions v1, . . . ,vr, for

1 ≤ r ≤ n. Then

Dv1 · · ·Dvr
Bn
d (u) = n!

(n− r)!B
n−r
d (u)Td,n−r+1(v1) · · ·Td,n(vr). (34)

We recall from (26) that any d-variate polynomial of degree n has a Bernstein-Bézier represen-
tation,

s(u) = Bn
d (u)c,

where c =
(
c0 · · · cd

)T . Next, we obtain the following via applying Theorem 18:

Corollary 19. Given a polynomial s(u) on Bernstein-Bézier form and the directions v1, . . . ,vr.
Then

Dv1 · · ·Dvrs(p) = n!
(n− r)!B

n−r
d (u)Td,n−r+1(v1) · · ·Td,n(vr)c. (35)
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4 Relevance to the de Casteljau algorithm
The Bernstein polynomials form a basis; thus, every d-variate polynomial s(u) has a Bernstein-
Bézier representation with respect to a reference simplex A:

s(u) =
∑
|i|=n

c0
iB

n
i (u), (36)

which can be evaluated with de Casteljau’s algorithm by applying the recurrence relation in (20).
Similar to the case of curves, we obtain

s(u) =
∑
|i|=n−1

c1
iB

n−1
i (u),

and, after n− 2 steps,
s(u) =

∑
|i|=0

cni B0
i (u) = c0...0,

where cki = u0ck−1
i+e0

+ · · · + udck−1
i+ed

, with |i| = n, . . . , 0, are intermediate coefficients. These
intermediate coefficients are polynomials of degree k.

The directional derivative of a polynomial in Bernstein-Bézier form is formulated, based on a
description in [13], as follows.

Lemma 20. The directional derivative of a d-variate polynomial s(u) on Bernstein-Bézier
form, at the point p in the direction of v, is given by

Dvs(p) = n
∑

j

djB
n−1
j (u),

where
dj = v0cj+e0 + · · ·+ vdcj+ed

are the intermediate points resulting from the first step of the de Casteljau algorithm based on the
barycentric coordinates of v.

We observe that the coefficients of the first derivative of a polynomial on Bernstein-Bézier form
are as provided by Lemma 20 and verify that Dvs at the point p with barycentric coordinates u
can be evaluated using the de Casteljau algorithm by applying one step of the algorithm using v
and then n− 1 steps using u.

We abbreviate the intermediate points dj, using the notation from [13], by dj = ∆vcj. Higher-
order derivatives are obtained in the same way, e.g., an r-th directional derivative Dv1 · · ·Dvrs
has the Bézier coefficients ∆v1 · · ·∆vr

cj, where |j| = n − r. The following result is obtained by
applying Lemma 20 repeatedly.

Lemma 21. Given the directions v1, . . . ,vr, for 1 ≤ r ≤ n. Then,

Dv1 · · ·Dvr
s(p) = n!

(n− r)!
∑

j=n−r

d(r)
j Bn−rj (u),

where d(r)
j are the intermediate points obtained after performing r steps of the de Casteljau algo-

rithm using v1, . . . ,vr in this order.
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One consequence of Lemma 21 is that Dv1 · · ·Dvrs can be evaluated at the point p with
barycentric coordinates u by first applying r steps of the de Casteljau algorithm using v1 · · ·vr in
this order, and then by using u in the following n− r steps.

The forward difference operator ∆v commutes with the steps of the de Casteljau algorithm [13]
since the computation of affine combinations of affine combinations is commutative:∑

i

αi
∑
j

βjpij =
∑
j

βj
∑
i

αipij .

Thus, an r-th directional derivative can also be obtained by first computing n− r steps of the de
Casteljau algorithm followed by r differentiation steps.

We obtain the following result; by using Theorem 9, Lemma 11, and (20), formula (36) can be
expressed in matrix form:

Corollary 22. Any d-variate polynomial s(u) in Bernstein-Bézier form,

s(u) =
∑
|i|=n

c0
iB

n
i (u),

can be expressed by using Bernstein factor matrices as:

s(u) = Td,1(u)Td,2(u) · · ·Td,n(u)c, (37)

where c =
(
c0 · · · cd

)T . Computing the RHS in (37) from right to left corresponds to the steps
of the de Casteljau algorithm.

We note that computing only the matrices Td,1 · · ·Td,n, from left to right, yields a vector
containing the

(
d+n
d

)
Bernstein polynomials of degree n in d + 1 variables with respect to the

simplex A ⊂ Rd:
Bn
d (u) = Td,1(u) · · ·Td,n(u).

One important new observation here is that, in a manner similar to the case of curves, this method
can be seen to correspond to a special case of the de Boor-Cox recursion formula for B-splines in
a multivariate setting.

We conclude this section by recalling Corollary 19 and Lemma 21 to make another important
new observation: namely Corollary 22 is applicable also for computations of directional derivatives.

4.1 Examples
4.1.1 The de Casteljau algorithm as an iterative procedure

The de Casteljau algorithm can be described as an iterative process by using projection and a
linear step. Let us recall the expression in (5) for a cubic parametric curve on Bézier form by
factorization using matrices, where in general for degree n we obtain:

c(t) = T1(t)T2(t) · · ·Tn(t)v0,

where v0 =
(
c0 · · · c0

)T =
(
c0

0 c0
1 · · · c0

n−1 c0
n

)T is a vector containing the coefficients,
or Bézier points, for the curve. Then we extend the matrices Tk(t) for 1 ≤ k ≤ n, as described
in Lemma 1, to obtain a product of n square matrices of size (n + 1)2, multiplied with v0. After
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performing one step of the de Casteljau algorithm, which corresponds to multiplying together the
two rightmost factors in the product, we find

c(t) = T1(t) · · ·Tn−1(t)︸ ︷︷ ︸
n-1 times matrices

of size (n+1)2

v1,

where v1 =
(
c1

0(t) c1
1(t) · · · c1

n−1(t) 0
)T . We investigate the difference between the two steps

by considering the difference between the vectors of coefficients:

v1 − v0 =


c1

0(t)− c0
0

c1
1(t)− c0

1
...

c1
n−1(t)− c0

n−1
0− c0

n

 = d1.

Recall that the intermediate points cki = (1− t)ck−1
i + tck−1

i+1 . Then the first n− 1 entries in d1 are

c1
i (t)− c0

i = (1− t)c0
i + tc0

i+1 − c0
i = t(c0

i+1 − c0
i ).

It follows that the difference vector d1 can be decomposed into an orthogonal projection from Rn+1

onto Rn, and a linear step:
d1 = p1 + l1,

where

p1 =


0
0
...
0
−c0

n

 , and l1 = t


c0

1 − c0
0

c0
2 − c0

1
...

c0
n − c0

n−1
0

 .

In general, we find that the k-th step of the iterative procedure, which yields

c(t) = T1(t) · · ·Tn−k(t)︸ ︷︷ ︸
n-k times matrices

of size (n+1)2

vk,

consists of a similar projection from Rn+2−k onto Rn+1−k and a linear step, such that

dk = vk − vk−1 = pk + lk,

where

pk =



0
...
0

−ck−1
n−k(t)
0
...
0


, and lk = t



ck−1
1 (t)− ck−1

0 (t)
...

ck−1
n−k(t)− ck−1

n−k−1(t)
0
...
0


.

The process terminates when
c(t) = vn =

(
cn0 (t)

)
= cn0 (t).
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X

Y

Z

v0

b1

v1

b2

v2

Figure 1: An illustration of the steps of the de Casteljau algorithm by iteratively performing a
orthonormal projection followed by a linear step, for a parametric curve, with n = 2. The initial
coefficients, or points, are contained in the vector v0 ∈ R3. b1 is the orthogonal projection of v0
onto R2 ⊂ R3, v1 constitutes the vector of intermediate points after the first step of the algorithm,
and b2 is the orthogonal projection of v1 onto R1 ⊂ R2. The final step yields the vector v2 ∈ R1.
It contains one point which constitutes the value of the curve at the parameter value t.

Figure 1 shows how the vectors of coefficients are repeatedly projected onto a subspace and
translated by a linear step depending on t for the case of a parametric curve with n = 2. The
number of coefficients, or points, is reduced by one for each projection until one single point
remains.

In this example, Rn+1−k = Wk is a subset of the Euclidean space Rn+2−k, and bk = vk−1 + pk
is the orthogonal projection of vk−1 onto Wk. Then bk is the closest point in Wk to vk−1 in the
sense that ||vk−1 − bk|| < ||vk−1 − x|| for all x in Wk distinct from bk. It follows that bk is the
best approximation to vk−1 by elements of Wk.

We note that the space of square matrices used in the considered example is a complete inner
product space (i.e., a Hilbert space) with the Euclidean norm ||·||`2 . The method can be generalized
to uniformly convex Banach spaces with `p-norm, with 1 < p < ∞, since there will still exist a
unique best approximation in such cases [3]. However, that will most likely yield non-polynomial
special functions, in general, but they may share some properties with the polynomial case, where
p = 2.

4.1.2 Representing a parametric surface

In this example we show how directional derivatives of a multivariate cubic Bézier representation
of a parametric surface s(u) can be expressed in matrix form by factorization. First of all, we
consider the surface

s(u) = B3
d(u)c,

where B3
d(u) are the d-variate Bernstein polynomials of degree 3, and c are its Bézier coefficients.

The derivative of s(u) at the point p in the direction of v0,

Dv0s(p) = Dv0B3
d(u)c,

can be expressed as a factorization of the Bernstein polynomials by matrices:

Dv0s(p) = Dv0 [T1(u)T2(u)T3(u)] c,
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which computes to

Dv0s(p) = [Dv0T1T2(u)T3(u) + T1(u)Dv0T2T3(u) + T1(u)T2(u)Dv0T3] c,

and by applying Lemma 17 we obtain

Dv0s(p) = 3B2
d(u)Dv0T3c.

We proceed by applying one more differentiation step, this time in the direction of v1:

Dv1Dv0s(p) = Dv1

[
3B2

d(u)Dv0T3c
]

= 3Dv1B2
d(u)Dv0T3c,

which computes to

Dv1Dv0s(p) = 3 [Dv1T1T2(u) + T1(u)Dv1T2]Dv0T3c,

and by applying Lemma 17 again and re-ordering the terms we obtain

Dv1Dv0s(p) = 6B1
d(u)Dv1T2Dv0T3c.

With the use of Lemma 15 we write

Dv1Dv0s(p) = 6B1
d(u)T2(v1)T3(v0)c.

4.1.3 Commutativity of multiplication

We shall now look at how a special property of the multivariate Bernstein factor matrix Td,n(u)
can be used to provide an alternative proof of Lemma 12 by using induction.

Let us recall from (23) that:

Td,k−1(z)Td,k(u) = Td,k−1(u)Td,k(z),

for d ≥ 0 and n ≥ 1.

Proof. The proof is based on induction, on the variables d and n, of (23) of the fully-ordered
(well-ordered) set of all (d, n). We equip N×N with the lexicographic order relation ≤ defined by
(d, n) ≤ (s, t) if ( (d < s) or (d = s and n ≤ t) ). This is a full-order relation on N × N, which
means that we may use the induction theorem. Details on full-ordered sets and induction can be
found in [20]. We proceed as follows to prove a property P for all (d, n) in N× N:

1. Show that P holds for (d, n) = (0, 1).

2. Suppose that P holds for all elements of N × N which are less than some arbitrary (d, n).
Show that P holds for (d, n).

3. Conclude that P holds for all (d, n) in N× N by the induction theorem for the well-ordered
sets.

1. Using d = 0, n = 1 in (23) gives the following relation:

T0,1(u)T0,2(z) = T0,1(z)T0,2(u),

which yields (
u
) (

z
)

=
(
z
) (

u
)
, (38)
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and it follows that both the LHS and the RHS of (38) compute to uz, since the product of two
numbers commutes.

2. We want to prove P (d, n) using any (p, q) < (d, n). When applying (21) and its derivative
from the definitions above, the left-hand side of (23) becomes( Td,n−1(u) 0

Tdiag
d,n (u) Td−1,n(u)

)( Td,n(z) 0
Tdiag
d,n+1(z) Td−1,n+1(z)

)
,

which can be written as( Td,n−1(u)Td,n(z) 0
Tdiag
d,n (u)Td,n(z) + Td−1,n(u)Tdiag

d,n+1(z) Td−1,n(u)Td−1,n+1(z)

)
. (39)

A similar computation for the RHS of (23) yields( Td,n−1(z)Td,n(u) 0
Tdiag
d,n (z)Td,n(u) + Td−1,n(z)Tdiag

d,n+1(u) Td−1,n(z)Td−1,n+1(u)

)
. (40)

It follows that both the upper left and the lower right sub-matrices of (39) are equivalent to the
corresponding sub-matrices of (40) by definition of the induction step.

Next, we need to check that the lower left sub-matrices of (39) and (40) are equivalent:

Tdiag
d,n (u)Td,n(z) + Td−1,n(u)Tdiag

d,n+1(z) = Tdiag
d,n (z)Td,n(u) + Td−1,n(z)Tdiag

d,n+1(u). (41)

The non-zero elements of Tdiag
d,n (u) and Tdiag

d,n (z) are equal to u0 and v0, respectively. Thus, the
LHS of (41) becomes

u0

(
Tdiag
d,n (z) Td−1,n(z)

)
+ z0

(
0 Td−1,n(u)

)
.

Similarly, we obtain for the RHS of (41):

z0

(
Tdiag
d,n (u) Td−1,n(u)

)
+ u0

(
0 Td−1,n(z)

)
.

Re-ordering the terms and inserting them into (41) yields(
u0Tdiag

d,n (z) u0Td−1,n(z) + z0Td−1,n(u)
)

=
(
z0Tdiag

d,n (u) u0Td−1,n(z) + z0Td−1,n(u)
)
,

and it follows that LHS = RHS in (41), since Tdiag
d,n (u) contains u0s and Tdiag

d,n (z) contains v0s, and
since the product of two real scalars is commutative.

3. Finally, we conclude that (23) holds for all (d, n) in N× N provided d ≥ 0, n ≥ 1.

5 Proofs
This section contains proofs of some of the lemmas and theorems presented earlier in this article.
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Proof of Lemma 2
Proof. We consider the product

EijEk` = Eαβ ,

where the entries in Eij are

cµν =
{

1, if µ = i, ν = j,

0, otherwise,

and the elements of Ek` are

dλη =
{

1, if λ = k, η = `,

0, otherwise.

Since
Eij = (δiµδνj)N,Nµ=1,ν=1 ,

and
Ek` = (δkλδη`)N,Nλ=1,η=1 ,

the elements of Eαβ can be expressed as

eαβ =
N∑
a=1

cαadaβ =
N∑
a=1

δiαδajδkaδβ`.

Fixing α = i and β = ` yields

eαβ =
N∑
a=1

δajδka,

and for a = j and k = a we obtain

eαβ =
N∑

a=j=k
1 = 1.

Thus,
eαβ = δkjδiαδ`β ,

which means that
ei` = δkj .

Finally, we obtain
EijEkl = δkjEi`,

and the result follows.

Proof of Lemma 3
Proof.

AB−CD =

 N∑
i=1

N∑
j=1

aijEij

( N∑
k=1

N∑
`=1

bk`Ek`

)
−

(
N∑
m=1

N∑
n=1

cmnEmn

)(
N∑
p=1

N∑
q=1

dpqEpq

)
,

where the RHS computes to

AB−CD =
∑
i

∑
j

∑
k

∑
`

aijbk`EijEk` −
∑
m

∑
n

∑
p

∑
q

cmndpqEmnEpq.
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By using the multiplier in (8) for EijEk` and EmnEpq and re-ordering the sums we obtain

AB−CD =
∑
i

∑
j

∑
k

∑
`

aijbk`δjkEi` −
∑
m

∑
n

∑
p

∑
q

cmndpqδnpEmq,

where setting j = k = µ and n = p = ν yields

AB−CD =
∑
i

∑
`

(∑
µ

aiµbµ`

)
Ei` −

∑
m

∑
q

(∑
ν

cmνdνq

)
Emq.

Then we set i = α, ` = β, m = α and q = β, and we get

AB−CD =
∑
α

∑
β

(∑
µ

aαµbµβ

)
Eαβ −

∑
α

∑
β

(∑
ν

cανdνβ

)
Eαβ

=
∑
α

∑
β

(∑
µ

aαµbµβ −
∑
ν

cανdνβ

)
Eαβ .

Finally, we fix ν = µ = λ, and the result follows.

Proof of Corollary 4
Proof. The result follows by setting C = B and D = A in Lemma 3 and re-ordering the terms,
since [A,B] = AB−BA.

Proof of Lemma 6
Proof. We use induction on the variable n of (18). It is trivial that T2,1 = B1

2 = (u, v, w).
Assuming that it holds for n = r − 1 and setting n = r in (18) yields

Br−1
2 T2,r = Br

2.

But then the columns of T2,r must correspond to the variables u, v and w in the RHS of the
recurrence relation (12) for n = r, where the values u, v and w are indexed within every column
according to the position of the indexes of the Br−1

ijk in lexicographic order, which is exactly T2,r
by Definition 5. We conclude that (18) holds for arbitrary n by induction.

Proof of Lemma 7
Proof. The proof is based on using the recurrence relation (12) and Definition 5.
T2,n−1(u, v, w) corresponds by Definition 5 to the set of all

(
n+1

2
)
RHS terms of Bn−1

ijk in (12) for
i+j+k = n−1. By Definition 5, a similar collection of terms from the first

(
n+1

2
)
vectors obtained

from (12), for Bnijk, which corresponds to the elements where i > 0 since i + j + k = n, results
in a matrix whose upper part contains T2,n−1(u, v, w) and its lower part contains Tdiag

2,n (u). Here,
the upper part consists of the first

(
n
2
)
rows, whereas the remaining

(
n+1

2
)
−
(
n
2
)
rows consitute the

lower part. Similarly, collecting the remaining
(
n+2

2
)
−
(
n+1

2
)
vectors results in a matrix where the

upper part is a zero matrix and the non-zero elements in the lower part are either v or w, since
i = 0, and they follow the layout of T1,n(v, w).
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Proof of Lemma 10
Proof. According to Definition 8, the columns in Td,n(u) are arranged such that

1. The order of the columns are based on the lexicographic order of the permutations of i for
|i| = n, and

2. ui is placed on the (i− ei)-th row within the column, if 0 ≤ (i− ei) <
(
d+n−1

d

)
.

The possible results of computing i − ei, for i = 0, . . . , d leads to the
(
n+d−1

d

)
permutations of

j = (j0, . . . , jd), where |j| = n − 1. There are d + 1 possible ways to obtain the position jk, for
k = 1, . . . ,

(
n+d−1

d

)
in the lexicographic order of the values of j, by taking i− ei. Since the values

of i are ordered, the values of jk will appear in order such that the associated values of ui are in
the order u0, . . . , ud. Since jk corresponds to a row in Td,n(u), the result follows.

Proof of Lemma 11
Proof. We use use induction in the variable n of (22) for arbitrary degree d.
1. By setting n = 2 in the LHS of (22) and applying Theorem 9 we obtain

Td,1Td,2 =
(
u0 u1 · · · ud

)( Td,1(u0, . . . , ud) 0
Tdiag
d,n (u0) T1,n(u1, . . . , ud)

)
,

which computes to(
u2

0 2u1u0 2u2u0 · · · u2
1 2u2u1 · · · 2udu1 u2

2 · · · u2
d

)
= B2

d,

thus, (22) holds for n = 2.

2. Setting n = r in (22) gives
Td,1Td,2 · · ·Td,r = Br

d. (42)
Assuming that Td,1Td,2 · · ·Td,r−1 = Br−1

d , we obtain

Br−1
d Td,r = Br

d. (43)

Using the recurrence formula in (20), formula (43) holds if, and only if, the columns of Td,n

correspond to the variables u0, . . . , ud in the RHS of the recurrence relation in (20) for n = r, where
the values u0, . . . , ud are indexed within every column according to the position of the indices of
the associated Br−1

i−ej
in lexicographic order. But, this is true according to Definition 8; hence,

we conclude that (42) holds and that Td,1Td,2 · · ·Td,n is a factorization of the set of Bernstein
polynomials Bn

d .

Proof of Lemma 12
Proof. Consider the following relation:

Td,k−1(z)Td,k(u)−Td,k−1(u)Td,k(z),

where u = (u0, . . . , ud) and z = (z0, . . . , zd) are barycentric coordinates with respect to a d-
dimensional simplex A. Using Lemma 3, this translates to

N∑
α=1

N∑
β=1

[
N∑
λ=1

(aαλbλβ − cαλdλβ)
]
Eαβ , (44)
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where aαλ, bλβ , cαλ and dλβ are elements of Td,k−1(z), Td,k(u), Td,k−1(u) and Td,k(z), respec-
tively. Next, we change the order of the sums to

N∑
α=1

N∑
λ=1

N∑
β=1

(aαλbλβ − dλβcαλ)Eαβ .

Then the terms aαλbλβ are obtained in an order such that, for each row α, every entry in the λ-th
column of Td,k−1(z) is multiplied with all entries on the λ-th row of Td,k(u). Furthermore, the
order of the terms dλβcαλ yields that all entries on the λ-th row of Td,k(z) are multiplied with
every entry in the λ-th column of Td,k−1(u). We recall Lemma 10, and conclude that for each α
we obtain ∑

λ

∑
β

([aαλbλβ ]− [dλβcαλ]) = [z0(u0 + · · ·+ ud) + · · ·+ zd(u0 + · · ·+ ud)]

− [(z0 + · · ·+ zd)u0 + · · ·+ (z0 + · · ·+ zd)ud] ,

where the RHS can be re-arranged to

(z0 + · · ·+ zd)(u0 + · · ·+ ud)− (u0 + · · ·+ ud)(z0 + · · ·+ zd),

which clearly is equal to zero since scalar multiplication is commutative. But then (44) is equal
to zero, since changing the order of the sums commutes. Finally, since two matrices A and B
commute if AB−BA = 0 (see Corollary 4), it follows that

Td,k−1(z)Td,k(u)−Td,k−1(u)Td,k(z) = 0.

Proof of Lemma 14
Proof. The barycentric coordinates of the point p + tv are

(u0 + tv0, . . . , ud + tvd).

Using this with (19) yields

Bni (p + tv) =
(
n

i

)
(u0 + tv0)i0 · · · (ud + tvd)id .

By differentiating with respect to t and evaluating at t = 0 we obtain

DvB
n
i (p) =

(
n

i

)[
i0u

i0−1
0 v0u

i1
1 · · ·u

id
d + ui00 i1u

i1−1
1 v1 · · ·uidd + · · ·+ ui00 · · ·u

id−1
d−1 idu

id−1
d vd

]
,

where the RHS computes to (29).

Proof of Lemma 15
Proof. By applying the chain rule we obtain

DvTd,n = v0Du0Td,n + · · ·+ vdDud
Td,n.

The RHS corresponds to setting Td,n(v), and the result follows.
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Proof of Lemma 17
Proof. The result follows by differentiating both sides of (23) with respect to z in the direction of
v.

Proof of Theorem 18
Proof. We differentiate (33) to find the second derivative. Since Dvk

(Td,n(v1)) = 0, we get

Dv2Dv1Bn
d (u) = nDv2Bn−1

d (u)Td,n(v1),

and by applying (33) to Dv2Bn−1
d , we obtain

Dv2Dv1Bn
d (u) = n(n− 1)Bn−2

d (u)Td,n−1(v2)Td,n(v1).

Similarly, for the r-th derivative we find

Dvr
· · ·Dv1Bn

d (u) = n!
(n− r)!B

n−r
d (u)Td,n−r+1(vr) · · ·Td,n(v1).

Since, in addition, Bn−r
d (u) = Td,1(u), · · · ,Td,n−r(u) holds, and since it does not matter which

of the n matrices Td,k is being differentiated (it only matters that we differentiate r of them), due
to the symmetry property of (32), we conclude that (34) is true.

Proof of Lemma 20
Proof. Since l(t) is a line in the domain, it can be seen to correspond to a curve s ◦ l(t) on a given
parametric object,

s ◦ l(t) = s(p) =
∑

i

ciB
n
i (u).

Then the derivative of s(u) at the point p in the direction of v is given by its derivative with
respect to t at t = 0+:

Dvs(p) = d
dt (s ◦ l(t))

∣∣∣∣
t=0+

= v0
∂

∂u0
s+ · · ·+ vd

∂

∂ud
s

= n
∑

j

djB
n−1
j (u).

6 Concluding remarks
We have proposed a matrix representation of multivariate Bernstein polynomials of arbitrary di-
mension by factorization. The factor matrix is defined recursively via a particular decomposition
of the matrix into sub-matrices.

The multiplication of the factor matrices from right to left was shown to correspond to the
steps of the de Casteljau algorithm. A similar relation to the de Boor-Cox recursion formula,
specialized for Bézier representation, can be found by computing the matrices from left to right,
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which yields a vector containing the Bernstein polynomials for the given degree in the specified
number of variables. These polynomials can then be multiplied together with the associated vector
of coefficients in order to evaluate the parametric object in question.

The matrix representation illustrates clearly one of the differences between the two methods; in
the case of de Casteljau, every step yields intermediate points, whereas the intermediate values with
the de Boor-Cox method are numbers. The total number of arithmetic operations when multiplying
the matrices from right to left (de Casteljau) are higher than in the case of multiplication from
left to right (de Boor-Cox), provided that the coefficients are points in Rd, d > 1.
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