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Abstract 10 

 11 

The speed of sound waves is investigated using CFD-DEM numerical simulations. Appropriate 12 

initial and boundary conditions are applied to capture the phenomenon. The effect of varying 13 

the height of the bed is also studied. The results of the simulations matched those from 14 

literature. The pressure and particle velocity profiles from the simulation showed the oscillatory 15 

behavior. Functions (based on a damped standing wave) were fitted to these, which allowed 16 

them to be stated in time and space variables. These fitted functions were substituted to the 17 

linearized governing equations for the two-phase flow. Using these assumed solutions allowed 18 

a new relationship to be derived for the speed of sound and damping in the system.  It is 19 

concluded that the damping in the system is due to the effective bulk viscosity of the solid 20 

phase, which arises from the particle viscosity. 21 

 22 

1 Introduction 23 

 24 

The presence of particles in a gas phase (as in a fluidized bed) is known to affect the 25 

propagation of sound waves through the continuous phase. Cahan (1990) studied sound waves 26 

by sprinkling lycopodium seeds into an oscillating column of air within a tube to identify the 27 

nodes of a standing wave. It was found that the sound waves diminished in the presence of 28 

particles and that the speed of sound measured changed from its theoretical value in air. Later, 29 

Mallock (1910) studied the velocity of sound in liquid-gas mixtures such as froths. The results 30 

also showed that the speed of sound differed from the value in gas in a similar manner to that 31 

of the gas-particle mixture studied by Cahan (1990). Similarly, Roy, Davidson, and Tuponogov 32 
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(1990) studied the speed of sound in a gas-fluidized bed. They cross-correlated the pressure 33 

signal at different heights of the bed to detect the speed of the moving disturbance, as well as 34 

measuring the frequency of the standing wave after a disturbance had been introduced to infer 35 

wave speed. It was found that the speed of sound is significantly lower in the gas-particle 36 

medium. 37 

 38 

The velocity of a sound wave in a continuous compressible medium is given by Lamb (1963) 39 

as shown in Equation (1), 40 

 𝑢𝑠 = √
𝑑𝑝

𝑑𝜌
 (1) 

 41 

where 𝑢𝑠  is the speed of sound and 𝑑𝑝/𝑑𝜌 is the rate of change of pressure with  bulk density.  42 

 43 

To apply the given relationship (Equation (1)) to a two-phase mixture of gas and particles, a 44 

number of assumptions need to be made, as provided by Roy et al. (1990) and later 45 

acknowledged by H. T. Bi, Grace, and Zhu (1995) and Hsiaotao T. Bi (2007). These 46 

assumptions are also given by Mallock (1910), Tangren, Dodge, and Seifert (1949) and 47 

Campbell and Pitcher (1958).  48 

 49 

1. The particles and gas move together (i.e. homogenous rather than separated flow), 50 

2. The gas is compressible and obeys the ideal gas law, 51 

3. The particles are incompressible, 52 

4. The particulate matter and gas are isothermal. 53 

 54 

The assumption that the gas and particles are in an isothermal state can be justified by 55 

computing the time required for solid and gas to attain the same temperature as discussed by 56 

Roy et al. (1990). This assumption might not be valid in fluidized beds with larger particles 57 

because increasing the size of particle increases the time constant value, hence, increasing the 58 

time taken by the system to reach thermal equilibrium. A similar conclusion is reached by 59 

Turton, Fitzgerald, and Levenspiel (1989) and Kunii and Levenspiel (1991). 60 

 61 

Roy et al. (1990) derived an expression for the speed of sound in a homogenous two-phase 62 

medium as shown in Equation (2),  63 
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 64 

 𝑢𝑠 =  √
𝜌𝑔𝑅𝑇𝑔

𝜖(𝜌𝑠(1 − 𝜖) +  𝜌𝑔𝜖)
 (2) 

 65 

where  𝜌𝑠  is the density of solids, 𝜌𝑔  is the density of gas, 𝜖 is the void fraction, 𝑇𝑔  is the 66 

absolute gas temperature and 𝑅 is the specific gas constant. 67 

 68 

It is to be noted that Equation (2) is only valid when the value of voidage is less than one (𝜖 <69 

1). Roy et al. (1990) demonstrated experimentally that the speed of sound in a fluidized mixture 70 

of sand and air is typically 1/30 of the speed of sound in air. Similar results are reported by H. 71 

T. Bi et al. (1995), who found the speed of sound to be 10 m/s in a fluidized mixture of air and 72 

fine particles (50 µm diameter with a density of 1580 kg/m3). 73 

 74 

Roy et al. (1990) also suggested a theoretical damping time relationship, derived by assuming 75 

a system of a mass attached to a spring with viscous damping as shown in Equation (3), 76 

 77 

 𝜏 =
2𝑔

𝜔2𝑈𝑚𝑓
 (3) 

 78 

where  𝜏  is the damping time, 𝑔  is the gravity constant, 𝜔  is the angular frequency of the 79 

oscillations and 𝑈𝑚𝑓 is the minimum fluidization velocity. 80 

 81 

In this work, the speed of sound in the fluidized medium is verified through experiment and 82 

CFD-DEM (Computational Fluid Dynamics – Discrete Element Modelling) numerical 83 

simulations. The results are also analyzed analytically, revealing the importance of particle 84 

viscosity in the damping of sound waves in the fluidized bed.  85 

  86 
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2 Experimental verification of speed of sound in a fluidized 87 

medium 88 

 89 

An experiment was set up to demonstrate the standing wave which can be created in a fluidized 90 

medium. Roy et al. (1990) associated standing waves in the fluidized medium with the speed 91 

of sound. Their explanation takes into account a case analogous to an organ pipe, with one end 92 

closed and the other open. A simple experiment was set up to observe the same behavior, as 93 

shown in Figure 1. 94 

 95 

Figure 1: Experiment setup to study the standing wave in a fluidized bed 96 

The experimental setup consists of a Perspex® tube with an internal diameter of 5 cm and an 97 

external diameter of 6 cm. The two ends of the tube are sealed with rubber plugs. The tube is 98 

filled with alumina silicate particles (diameter ≈ 50 µm). These particles are fluidized by 99 

rotating the tube vertically for a few 360-degree rotations. As the result of rotation, the particles 100 

are exposed to centrifugal force, building a relative velocity between gas and particles. This 101 

causes the particles to fluidize, i.e. the powder gas mixture becomes free-flowing, and a 102 

horizontal level ‘free surface at meniscus’ forms, regardless of the tilt of the tube. In addition, 103 

a significant expansion in the fluidized bed is noted before and after fluidization. Once 104 
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fluidized, an impact load is induced in the fluidized medium by striking the tube on the ground. 105 

This induces vertical oscillations in the fluidized medium, corresponding to the standing wave 106 

in the medium. The frequency of these oscillations is noted by making a video of the meniscus 107 

of the fluidized medium at 30 Hz using Sony Handycam DCR-HC14E. A .wmv clip was 108 

captured and converted into image files; the captured images were observed to measure the 109 

wave frequency. Figure 2 shows the oscillations in the fluidized medium as captured using the 110 

above-described experimental setup. 111 

      

t = 0.0 s t = 0.033 s t = 0.266 s t = 0.300 s t = 0.566 s t = 0.600 s 

Figure 2: The top meniscus of the fluidized bed captured at 30 Hz; green arrows indicate the 112 

direction of oscillation on the free surface; time is shown in the bottom of each image  113 

It was found that the average time period for a single oscillation in the experiments was 0.286 114 

s, which corresponds to a frequency of 3.50 Hz. The length of the wave can be found from the 115 

height of the fluidized medium in the tube. It was noted that the height after fluidization was 116 

80 cm. This corresponds to a quarter of a standing wave in a tube with one end closed and the 117 

other open; therefore, the complete wavelength of the standing wave is 320 cm. Therefore, the 118 

speed of sound is 11.2 m/s.  119 

 120 

The results found through experimentation were compared with the speed of sound given by 121 

Equation (2). The values of variables used are as follows: the density of alumina silicate 122 

particles 𝜌𝑠 is 3500 kg/m3, the density of air 𝜌𝑔 is 1.24 kg/m3, the temperature of the air 𝑇𝑔 is 123 

298 K, (void fraction) 𝜖 is estimated to be 0.4, and the specific gas constant of the air is 287 124 
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J/kg/K. This resulted in the speed of sound in the fluidized medium 𝑢𝑠 being equal to 11.23 125 

m/s. Hence, a good agreement between experimental and theoretical results was found. 126 

 127 

3 CFD-DEM numerical simulation of speed of sound in a 128 

fluidized medium 129 

 130 

A computational fluid dynamics-discrete element methods (CFD-DEM) numerical simulation 131 

was set up to study the speed of sound in a fluidized medium. The simulated setup is shown 132 

below in Figure 3.  133 

 134 

Figure 3: CFD-DEM numerical simulation domain for the study of speed of sound in the 135 

fluidized medium; the particles are simulated in three dimensions, whereas fluid is simulated 136 

in two dimensions 137 

 138 

In this setup, the particles are simulated using a discrete element model as in H. Khawaja 139 

(2011); HA Khawaja and Scott (2011), and H. Khawaja (2015). The CFD-DEM model is based 140 

on the volume-averaged continuity and momentum equations (Equations (4) and (5)), which 141 
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are solved using the CFD (computational fluid dynamics) density driven method as discussed 142 

in T. B. Anderson and Jackson (1967); Crowe, Sommerfeld, and Tsuji (1998), 143 

𝜕(𝜌𝜖)

𝜕𝑡
+

𝜕(𝜌𝜖𝑢𝑘)

𝜕𝑥𝑘
= 0 (4) 

 144 

𝜕(𝜌𝜖 𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝜖𝑢𝑖𝑢𝑘)

𝜕𝑥𝑘
=

𝜕

𝜕𝑥𝑘
𝜖𝑝 +

𝜕

𝜕𝑥𝑘
. 𝜖𝜏𝑓 − 𝐹⃗𝑖 + 𝜌𝜖𝑔𝑖 (5) 

 145 

where 𝜖 is the voidage, 𝜌 is the density fluid, 𝑢𝑘 is the velocity of the fluid, 𝑝 is the pressure 146 

of the fluid, 𝐹⃗𝑖 is the interaction force felt by the fluid due to the particles, 𝑔𝑖 is the gravity 147 

constant and 𝜏𝑓 is the fluid stress tensor. Note that 𝑘 and 𝑖 subscripts are Einstein notations (T. 148 

B. Anderson & Jackson, 1967). Voidage 𝜖 is the ratio of the volume of fluid (excluding the 149 

particles) to the total volume of a fluid cell. It needs to be accurately computed in a cuboidal 150 

domain of CFD with moving spherical particles, as given by (HA Khawaja, Scott, Virk, & 151 

Moatamedi, 2012).  152 

 153 

The finite volume discretization technique is applied to Equations (4) and (5). This technique 154 

is based on conservation of variables; therefore, it ensures that the physical quantities are 155 

conserved over the chosen control volumes and the domain as a whole (J. D. Anderson, 1995; 156 

Patankar, 1980). 157 

 158 

The stability and sensitivity of the solution depend on the time step and cell size, whose values 159 

are determined by the Courant-Friedrichs-Lewy (CFL) condition (Courant, Friedrichs, & 160 

Lewy, 1928; Hirsch, 2007) as shown in Equation (6), 161 

 162 

 𝐶𝐹𝐿 𝑁𝑢𝑚𝑏𝑒𝑟 >
𝑎 ∆𝑡

𝑚𝑖𝑛(∆𝑥, ∆𝑦, ∆𝑧)
  (6) 

 163 

where ∆𝑡 is the time step size, ∆𝑥, ∆𝑦, ∆𝑧 are the dimensions of the fluid cell and 𝑎 is the speed 164 

of sound in the gas medium. 165 

 166 

The interaction force correlations are given by (Beetstra, van der Hoef, & Kuipers, 2007; Di 167 

Felice, 1994; Ergun, 1952; Wen & Yu, 1966). By conducting fluidized bed experiments, Müller 168 

et al. (2008) compared these correlations and found that the correlation from Beetstra et al. 169 
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(2007) is the most promising in the voidage range of 0.3 < 𝜖 < 0.5. This correlation is shown 170 

in Equation (7), 171 

 172 

𝛽 = 𝐴
(1 − 𝜖)𝜇𝑓

𝜖𝑑𝑝
2

+ 𝐵
𝜇𝑓(1 − 𝜖)𝑅𝑒

𝑑𝑝
2

 (7) 

 173 

where 𝛽 is the drag coefficient, 𝐴 is shown in Equation (8) and 𝐵 is shown in Equation (9), 174 

𝐴 = 180 +
18𝜖4

1 − 𝜖
(1 + 1.5√(1 − 𝜖)) (8) 

 175 

𝐵 =
0.31(𝜖−1 + 3𝜖(1 − 𝜖) + 8.4𝑅𝑒−0.343)

1 + 103(1−𝜖)𝑅𝑒2𝜖−2.5
 (9) 

 176 

In CFD-DEM simulations, the interaction force felt by the fluid due to the particles is the sum 177 

of the drag on the particles in the particular fluid cell as shown in Equation (10), 178 

 179 

𝐹𝑖
⃗⃗⃗ =

1

(1 − 𝜖)𝑉𝑐𝑒𝑙𝑙
∑ 𝑓𝑖

⃗⃗⃗

𝑛𝑝

𝑖=1

 (10) 

 180 

where 𝑉𝑐𝑒𝑙𝑙 is the volume of the cell, 𝑛𝑝 is the number of particles in the cell, 𝑓𝑖
⃗⃗⃗ is the drag 181 

force on 𝑖 particle as shown in Equation (11), 182 

 183 

𝑓𝑖
⃗⃗⃗ = 𝑉𝑝𝛽(𝑢⃗⃗𝑓 − 𝑢⃗⃗𝑝) (11) 

 184 

where 𝑓𝑖
⃗⃗⃗ is the force vector felt by the particle due to the fluid drag, 𝑉𝑝 is the volume of the 185 

particle and 𝛽 is the drag coefficient computed using the correlation given in Equation (7). 186 

 187 

Discrete element modelling (DEM) is based on a Lagrangian approach where each particle’s 188 

motion is governed by Newton’s second law. The linear momentum equation for each particle 189 

is,  190 

𝑚𝑝𝑎⃗𝑝 = 𝑓𝑖 +  ∑ 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠

+ 𝑚𝑝𝑔⃑ (12) 

 191 
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where 𝑚𝑝 is the mass of the particle, 𝑎⃗𝑝 is the linear acceleration vector, 𝑓𝑖 is the force on the 192 

particles due to the fluid, 𝑓𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the force due to the contact with other particles.  193 

The third-order Adams-Bashforth time stepping scheme (Gear, 1971; Hairer, Nørsett, & 194 

Wanner, 1993), as shown in Equation (13), is used to advance the fluid as well as the particle 195 

variables forward in time. 196 

𝑃𝑡+1 =  𝑃𝑡 +  ∆𝑡 (
23

12
𝑑𝑃𝑡+1 −

4

3
𝑑𝑃𝑡 +

5

12
𝑑𝑃𝑡−1) (13) 

 197 

where ∆𝑡 is the time step size, 𝑃𝑡+1 is the value of the physical property stepping forward in 198 

time, 𝑃𝑡 is the value of the physical property before stepping forward in time, and 𝑑𝑃  is the 199 

change in the property. The subscript 𝑡 in Equation (13) refers to the time step. 200 

 201 

Particle-particle contact is solved using soft sphere contact models (Crowe et al., 1998; van der 202 

Hoef, Annaland, Deen, & Kuipers, 2008). In the soft contact model, the contact forces are 203 

based on a simple linear spring-dashpot model. These models have been used in DEM by 204 

(Crowe et al., 1998; Cundall & Strack, 1979; Third, Scott, Scott, & Müller, 2010; Tsuji, 205 

Kawaguchi, & Tanaka, 1993; Tsuji, Tanaka, & Ishida, 1992; van der Hoef, van Sint Annaland, 206 

& Kuipers, 2004). The contact forces can be divided into normal and tangential forces. The 207 

normal contact model is based on the non-linear spring model given by Hertz (Hertz, 1882). 208 

The tangential contact model is given by Mindlin and Deresiewicz (1953) and simplified by 209 

Tsuji et al. (1992) for DEM. Both models are tested for their suitability for DEM by HA 210 

Khawaja and Parvez (2010). The most computationally intensive operation in the CFD-DEM 211 

simulation is the search for particle-particle contacts. H. Khawaja (2015) has undertaken a 212 

study on the optimization of this algorithm. 213 

 214 

The setup is three-dimensional for the particles and two-dimensional for the fluid. The particles 215 

are allowed to move in three dimensions, but, due to the narrow domain in the z-direction, as 216 

shown in Figure 3, the fluid flow is modeled in the x and y dimensions (this is achieved by 217 

setting a single fluid cell in the z-direction). There are 14 cells in the x-direction, of which 12 218 

are computing cells and two are boundary cells. The cells in the y-direction are varied based 219 

on the size of the simulation. The physical parameter values set for the CFD-DEM numerical 220 

simulation are given in Table 1. 221 
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Table 1: Physical parameters set for CFD-DEM numerical simulations 222 

Physical Parameters Values 

Fluid pressure 1 bar 

Temperature 298.15K 

Fluid density 1.13 Kg/m3 

Fluid viscosity 1.8 X 10-5 Pa s 

Time step size 3.25 X 10-7 sec 

Number of CFD cells in x-direction 14 (12 computing and 2 boundary cells) 

CFD cell size in x-direction 0.45 mm  

CFD cell size in y-direction 0.6 mm 

Width of domain in z-direction 1.25 mm 

Diameter of particles 0.15± 0.00625 mm 

Density of solid particles 1000 Kg/m3 

Minimum fluidization velocity  0.0085 m/s 

Speed of sound in the two-phase medium, 

from Equation (2) 
20.7 m/s 

Young modulus of solid particles 1.2 x 108 Pa 

Poisson ratio of solid particles 0.3 

Coefficient of normal restitution for solid 

particles 
0.986 

Coefficient of friction 0.1 

 223 

Four different CFD-DEM numerical simulations were set up with various heights of bed as 224 

shown in Table 2. 225 

 226 

Table 2: Different sets of CFD-DEM numerical simulations 227 

Test 

case 

Number of 

particles 

Number of cells in y-direction Height of the particles after 

fluidization (mm) 

1 107800 208 49 

2 215320 312 98 

3 322480 416 147 

4 430360 520 196 
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The simulation is initialized by randomly placing the particles in the domain. The particles are 228 

allowed to fall under gravity to settle down as shown in Figure 3. Then the particles are 229 

fluidized to approximately 1.1 times the minimum fluidization velocity (𝑈𝑚𝑓). This is achieved 230 

by specifying a rate of change of mass flow rate in the y-direction 𝑚𝑦̈  in the guard (inlet) cells, 231 

as shown in Equation (14), 232 

 233 

 
∆𝑢𝑦 =

𝑚𝑦̈ ∆𝑡

𝜌𝑔∆𝑥∆𝑧
𝑢𝑦 ≤ 1.1 𝑈𝑚𝑓 

   ∆𝑢𝑦 = 0          𝑢𝑦 > 1.1 𝑈𝑚𝑓 

(14) 

 234 

where 𝑢𝑦 is the velocity of fluid in the y-direction, ∆𝑢𝑦 is the change in fluid velocity in the y-235 

direction, ∆𝑥 is the dimesion of the fluid cell in the x-direction, ∆𝑧 is the dimension of the fluid 236 

cell in the z-direction, 𝜌𝑔 is the density of the fluidizing gas and ∆𝑡 is the time step size. The 237 

boundary conditions are specified by specifying walls for the particles in the x, y and z planes 238 

as shown in Figure 3 (walls in the z-plane are not visible in Figure 3). The CFD boundary 239 

conditions are specified by first setting full slip boundary conditions for the fluid in the cells 240 

on either side of the domain in the x-direction. This is achieved by setting the y-velocity in the 241 

guard cell equal to one in the closest cell in the x-direction, as shown in Equation (15), 242 

 243 

 
𝑢𝑦 (1,𝑦) =  𝑢𝑦 (2,𝑦) 

𝑢𝑦 (14,𝑦) =  𝑢𝑦 (13,𝑦) 
(15) 

 244 

where bracketed numbers indicate the position of the cell in the domain and the y coordinate 245 

means that it is applicable in all corresponding y-cells except the corner cells.  Characteristic 246 

boundary conditions are applied to the outlet cells to avoid reflection in pressure signals as 247 

discussed in Chung (2010). 248 

 249 

Initial attempts to introduce a disturbance into the bed, in which the boundary fluid inflow was 250 

perturbed, were unsuccessful. The perturbation quickly damped and did not perturb the 251 

relatively massive particles. The given CFD-DEM numerical simulations were performed very 252 

close to the minimum fluidization velocity of the particles. Therefore fluid velocity was neither 253 

so high that the particles would flow with the fluid nor so low that particles would not be 254 

affected at all. Therefore, it was challenging to introduce an appropriate disturbance in such a 255 
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case. After few trials, it was found that, to introduce an appropriate disturbance, the particles 256 

need to be perturbed rather than the fluid. Therefore, the disturbance is introduced by raising 257 

the particles in the y-direction by 1.5 mm (10 times the diameter of the particles) and then 258 

allowing them to drop under gravity. The sequence of steps taken to introduce this disturbance 259 

is illustrated in Figure 4. 260 

 261 

 262 

Figure 4: The sequence of steps to generate a disturbance in the fluidized medium 263 

With the drop, the fluidized medium behaves in the same way as discussed earlier in Section 2. 264 

This behavior of various physical parameters was recorded and analyzed as discussed in 265 

Section 4. 266 

4 Results of CFD-DEM numerical simulation 267 

 268 

The results of standing waves from the CFD-DEM numerical simulations in the two-phase 269 

medium were investigated by plotting the relevant oscillating physical parameters over time. 270 

Fluid pressure and particle velocity were averaged width-wise. The results were averaged in 271 

order to reduce the impact of other phenomena in the two-phase medium such as formations of 272 

bubbles, their coalescence, their eruption, etc. 273 

 274 

It can be observed that the maximum fluctuations in gas pressure occur at the bottom of the 275 

bed, whereas the maximum fluctuations in particle velocity occur at the top of the bed 276 

(supplementary material). Roy et al. (1990) observed the same trends as shown in Figure 7. 277 

These trends can be explained by the fact that particle motion is more constrained at the bottom 278 
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of the bed in comparison to the particles at the top of the bed. Figure 7 also shows that the 279 

highest value of pressure fluctuation occurs at the bottom of the bed, which is in agreement 280 

with CFD-DEM numerical simulation results. It can also be observed from Figure 5 that 281 

pressure fluctuation is at its peak when the disturbance is introduced at time zero, whereas the 282 

particle velocity fluctuation is zero at time zero, as shown in Figure 6. This difference indicates 283 

that fluctuations in particle velocity is out of phase by 
𝜋

2
 from pressure fluctuations. 284 

 285 

Figure 5: Pressure is plotted against time at 100 mm height in the bed for 430360 particles 286 

fluidized bed (test case 4); the red curve shows the fitted function and the blue circles 287 

represents the CFD-DEM numerical simulation results 288 
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 289 

Figure 6: Particle velocity fluctuation plotted against time at 100 mm for 430360 particles 290 

fluidized bed (test case 4); the red curve shows the fitted function and the blue circles 291 

represents the CFD-DEM numerical simulation results 292 
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 293 

Figure 7: The variation in amplitude of particle velocity and pressure fluctuations of a 294 

standing wave in two-phase medium with respect to the height of the bed; amplitude of 295 

particle velocity fluctuation is shown on the left, where A is the maximum amplitude and H is 296 

height of the bed; oscillation in particle motion is illustrated in the middle; variation in the 297 

amplitude of pressure fluctuations is shown on the right [Roy et al. (1990)] 298 

In order to study the interaction between the physical parameters, appropriate functions were 299 

fitted in the CFD-DEM numerical simulation results of pressure fluctuation and particle 300 

velocity fluctuation. From the fitted equations, it can be seen that the fluctuations in pressure 301 

and particle velocity all have the same form, i.e. a sinusoidal variation in time which is damped, 302 

multiplied by sinusoidal variation in space; therefore, we can assume a generic function for 303 

fluctuation variables as shown,    304 

 𝑝′(𝑦, 𝑡) = 𝑃𝑜𝑒−
𝑡

𝜏𝑐𝑜𝑠(𝑐𝑦)𝑐𝑜𝑠(𝜔𝑡 + 𝜙𝑝) (16) 

 𝑢′𝑝(𝑦, 𝑡) = 𝑈𝑝𝑜
𝑒−

𝑡

𝜏𝑠𝑖𝑛(𝑐𝑦)𝑐𝑜𝑠(𝜔𝑡 + 𝜙𝑢) (17) 

 305 

Here 𝑃𝑜  , 𝑈𝑝𝑜
 are the (initial) amplitudes of the pressure and particle velocity fluctuations, 306 

respectively; 𝜙𝑝  and 𝜙𝑢are the temporal phase shifts, 𝜏 is the damping time constant, 𝑐 =
𝜋

2ℎ
, 307 

where ℎ is the height of the fluidized medium in the bed, and 𝜔 is the angular frequency. 308 
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 It was found from the fitted equations that the damping time and angular frequency of the 309 

oscillations in pressure fluctuation and particle velocity fluctuation are consistent; however, 310 

they are out of phase by 𝜋/2. Differences can also be noted in the amplitudes and the time 311 

phase angles in the fitted equations.  312 

The values of fitted constants for CFD-DEM cases are given in Table 3. 313 

Table 3: Fitted constants to all test cases according to Equations (16) and (17) 314 

 315 

Test 

case 

Number 

of 

particles 

Height of the 

particles after 

fluidization –

m 

Pressure 

fluctuation 

amplitude 𝑃𝑜 

– Pa  

Particle 

velocity 

fluctuation 

amplitude 

𝑈𝑝𝑜
 – m/s 

Damping 

time 

period 𝜏 – 

s 

Angular 

frequency 

𝜔 – rad/s 

1 107800 0.049 3893 0.298 0.0055 640.5 

2 215320 0.098 1962 0.153 0.0129 339.6 

3 322480 0.147 1371 0.107 0.0211 222.4 

4 430360 0.196 1025 0.0804 0.0397 167.1 

 316 

5 Analytical study of waves in a fluidized medium 317 

Taking a volume averaged view of the behavior of the fluidized bed, the system can be 318 

described by four equations: (1) the volume averaged fluid continuity equation, (2) the volume 319 

averaged fluid momentum equation, (3) the volume averaged dispersed phase continuity 320 

equation, and (4) the volume averaged dispersed phase momentum equation. These equations 321 

are discussed in (H. A. Khawaja, 2015), where (1) and (2) are used as part of the DEM 322 

simulation, with the volume averaged particle equations (3 and 4) replaced by a detailed 323 

Lagrangian simulation. Here, the volume averaged equations are linearized, and a phasor 324 

analysis is applied in an attempt to describe the behavior of the standing waves in the bed, seen 325 

both experimentally and in the CFD-DEM simulations. The system is taken to be essentially 326 

one-dimensional (i.e. the fluctuations exist in the vertical dimension only), and scaling analysis 327 

is used to simplify the equations to a tractable form.  328 

 329 

Both the CFD-DEM numerical simulations and experiments (e.g. Roy et al. (1990)) have 330 

demonstrated that the presence of particles can alter the speed of sound waves in a two-phase 331 

medium. This was also highlighted by Roy et al. (1990) in their derivation of a theoretical 332 
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relationship for the speed of sound in a two-phase medium. They attributed this behavior to the 333 

fluidized phase having not only a large momentum (owing to the motion of the particles), but 334 

also a high compressibility (due to the gas). Therefore, any analysis must take into account the 335 

particle momentum equation in the y-direction (i.e. vertical).  The volume averaged momentum 336 

equation for the particle phase (written here on a per particle basis rather than on the per unit 337 

volume basis, given by Jackson (2000)) is 338 

  339 

 𝑚𝑝

𝜕𝑢𝑝

𝜕𝑡
+ 𝑚𝑝𝑢𝑝

𝜕𝑢𝑝

𝜕𝑦
= −𝑘𝑝(𝑢𝑝 − 𝑢𝑔) − 𝑣𝑝

𝜕𝑝

𝜕𝑦
+ 𝑚𝑝𝑔 + 𝑓 (18) 

 340 

where 𝑚𝑝 is the mass of the particle, 𝑢𝑝 is the velocity of the particle, 𝑘𝑝 is the coefficient of 341 

drag force from the fluid, which is a function of local voidage (HA Khawaja et al., 2012), 𝑣𝑝 342 

is the volume of the particle, 𝑝 is the fluid pressure, 𝑔 is the gravity constant and 𝑓 is the net 343 

force arising from particle contacts. It should be noted that interaction forces here have been 344 

explicitly split into terms proportional to the difference between the particle and gas phases.  345 

The term 𝑓 represents the force on the particles from the stresses in the solid phase arising from 346 

particle contacts, which, if written on a per unit volume basis, would be equal to the gradient 347 

of the solid phase stress tensor. On a per particle basis, this term can be re-written, and in one 348 

dimension, as 𝑣𝑝∇𝑆𝑦, where 𝑆𝑦 is the y component of the particle stress tensor. One of the 349 

difficulties in solving the volume averaged equations lies in being able to specify closure 350 

relationships for this stress tensor. The simplest closure is used here, which is an analogous 351 

form of the stress tensor for the fluid, with a particle pressure, and an effective viscosity for the 352 

particle phase [Harris and Crighton (1994)], i.e.  353 

 354 

 𝑓 = 𝑣𝑝

𝜕

𝜕𝑦
(−𝑝𝑝 + 𝜇𝑝

𝜕𝑢𝑝

𝜕𝑦
) (19) 

 355 

where 𝜇𝑝 is the effective particle viscosity and 𝑝𝑝 is the particle pressure. Harris and Crighton 356 

(1994) suggested the particle pressure could be modeled by, 357 

 358 

 𝑝𝑝 = 𝐴 (
1 − 𝜖

𝜖 − 𝜖𝑐𝑝
) (20) 

 359 
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where 𝐴 is a constant, 𝜖  is the voidage (void fraction) and the subscript 𝑐𝑝 denotes ‘close 360 

packing’. This form of equation ensures that the particle pressure becomes infinite when 361 

particles are closely packed and reduces to zero when the particles are fully separated. Thus, 362 

the particle momentum equation is taken here to be  363 

 364 

𝑚𝑝

𝜕𝑢𝑝

𝜕𝑡
+ 𝑚𝑝𝑢𝑝

𝜕𝑢𝑝

𝜕𝑦
= −𝑘𝑝(𝑢𝑝 − 𝑢𝑔) − 𝑣𝑝

𝜕𝑝

𝜕𝑦
+ 𝑚𝑝𝑔 

+𝑣𝑝

𝜕

𝜕𝑦
(−𝑝𝑝 + 𝜇𝑝

𝜕𝑢𝑝

𝜕𝑦
) 

(21) 

 365 

This equation can be linearized by writing each of the variables (𝑢𝑝, 𝑢𝑔, 𝑝, 𝜖) as the sum of the 366 

static (i.e. steady state) value, taken here to be at incipient fluidization, plus a small fluctuation. 367 

The resulting terms can be substituted in Equation (21). The resulting equations can be 368 

linearized and scaled, as discussed in H. A. Khawaja (2013). This analysis results in the 369 

correlation of speed of sound and damping time period, as shown in Equations (22) and (23), 370 

 371 

𝑢𝑠 =  
𝑃𝑜

(1 − 𝜖)𝜌𝑝𝑈𝑝𝑜
 (22) 

𝜏 =
𝜌𝑝

𝜇𝑝𝑐2
 (23) 

 372 

The speed of sound is computed using Equation (22) and compared with those obtained from 373 

the CFD-DEM simulations and the theoretical expression given in Equation (2).  374 

Table 4: Speed of sound for test cases given in Table 2; theoretical speed of sound values 375 
using Equation (2), CFD-DEM speed of sound values from fitted functions, and CFD-DEM 376 

speed of sound values using Equation (22) 377 

 378 

Test 

case 

Theoretical 

speed of sound 

using Equation 

(2) - m/s 

CFD-DEM speed of sound from 

fitted functions angular velocity 

- m/s (percentage difference 

from theoretical value) 

CFD-DEM speed of sound 

using Equation (22) – m/s 

(percentage difference from 

theoretical value) 

1 20.7 20.0 (3.4 %) 21.8 (5.3 %) 

2 20.7 21.1 (1.9 %) 21.4 (3.4 %) 

3 20.7 20.8 (0.5 %) 22.3 (7.7 %) 

4 20.7 20.8 (0.5 %) 21.3 (2.9 %) 

 379 



19 
 

The results given in Table 4 show that Equation (22) agrees well with both the CFD-DEM fitted 380 

function values and the theoretical expression (Equation (2)). It is also observed that the value 381 

of 
𝑃𝑜

𝑈𝑝𝑜
 is constant. This can be justified by combining Equation (22) with Equation (2). Equation 382 

(23) shows that the damping time is a function of the height of the bed, density of particles and 383 

bulk particle viscosity. This correlation was used to compute particle viscosity in a fluidized 384 

medium for both the simulations here and also in the experiments of Roy et al. (1990). The 385 

results are shown in Table 6.  386 

The damping time results of the CFD-DEM test cases are compared using the theoretical 387 

relationship given in Roy et al. (1990), as shown in Table 5. 388 

 389 

Table 5: Comparison of damping time of oscillations in two-phase medium computed via 390 
CFD-DEM numerical simulations and theoretical expression (Equation (3)) 391 

Test 

case 

Height of the 

bed - mm 

Theoretical damping time 

from Equation (3) - s 

CFD-DEM fitted 

function Damping t - 

s 

Percentage 

difference 

1 49 0.0056 0.0035 37.5 % 

2 98 0.0200 0.0129 35.5 % 

3 147 0.0467 0.0211 54.8 % 

4 196 0.0827 0.0397 52.0 % 

 392 

The comparison from Table 5 shows a significant difference between the theoretical damping 393 

time and the damping time computed via CFD-DEM numerical simulations. Similarly, 394 

significant difference is found when this relationship is used against damping time data 395 

provided in Roy et al. (1990). The reason that this correlation did not prove to be effective is 396 

the fact that the effect in damping due to the particles’ contacts was not taken into account in 397 

Roy et al. (1990). In contrast, the expression given in Equation (23) includes an effective 398 

particle viscosity, which takes into account the damping effect due to particle contacts. 399 

Therefore, it is proposed that the damping in a two-phase medium such as a fluidized bed is 400 

mainly due to the particles’ contacts; however, further study is required in this area. 401 

 402 

  403 
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Table 6: The value of particle viscosity from experimental (Roy et al. (1990)) and CFD-DEM 404 

results; 𝑼𝒎𝒇 is the minimum fluidization velocity and 𝒖𝒔 is the speed of sound in the 405 

fluidized medium 406 

Catalyst; dia. = 70µm, particle density = 1250 kg/m3, 𝑈𝑚𝑓 = 0.01 m/s, 𝑢𝑠 = 15.4 m/s 

Heights 

(m) 

Time period 

(s) 

Damping time period 

(s) 

Particle dynamic viscosity (Pa 

s) 

0.4 0.11 0.06 1350.9 

0.6 0.15 0.1 1823.8 

0.8 0.21 0.25 1296.9 

1 0.26 0.35 1447.4 

1.2 0.3 0.43 1696.5 

1.4 0.36 0.55 1805.4 

1.6 0.43 0.56 2315.9 

Glass beads; dia. = 100µm, particle density = 2900 kg/m3, 𝑈𝑚𝑓 = 0.05 m/s, 𝑢𝑠 =11.0 m/s 

Heights 

(m) 

Time period 

(s) 

Damping time period 

(s) 

Particle dynamic viscosity (Pa 

s) 

0.4 0.15 0.08 2350.7 

0.6 0.24 0.17 2488.9 

0.8 0.29 0.23 3270.5 

1 0.38 0.24 4897.2 

1.2 0.44 0.29 5836.1 

1.4 0.48 0.39 5906.8 

1.6 0.53 0.41 7338.6 

Vermiculite; dia. = 220µm, particle density = 384 kg/m3, 𝑈𝑚𝑓 = 0.025 m/s, 𝑢𝑠 =23.3 m/s 

Heights 

(m) 

Time period 

(s) 

Damping time period 

(s) 

Particle dynamic viscosity (Pa 

s) 

0.4 0.07 0.05 498.0 

0.6 0.1 0.08 700.3 

0.8 0.14 0.1 996.0 

1 0.17 0.13 1197.1 

1.2 0.21 0.16 1400.7 

1.4 0.23 0.21 1452.5 

1.6 0.28 0.24 1660.0 

CFD-DEM; dia. = 150µm, particle density = 1000 kg/m3, 𝑈𝑚𝑓 = 0.0085 m/s, 𝑢𝑠  =20.7 m/s 

Heights 

(m) 

Time period 

(s) 

Damping time period 

(s) 

Particle dynamic viscosity (Pa 

s) 

0.049 0.00981 0.0055 278.0 

0.098 0.0185 0.0129 301.7 

0.147 0.02825 0.0211 415.1 

0.196 0.0376 0.0397 503.9 

  407 
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The computed particle viscosities are much higher than those reported by Hagyard and 408 

Sacerdote (1966). However, Hagyard and Sacerdote (1966) showed that the particle viscosity 409 

increases asymptotically when close to minimum fluidization; therefore, the found values are 410 

reasonable, considering that the tests were performed very close to minimum fluidization. 411 

Particle viscosity is because of particles contacts hence its value rises as hydrostatic pressure 412 

rises in the fluidized bed.  413 

6 Conclusions 414 

In this work, sound waves were studied in a fluidized medium using CFD-DEM simulations. 415 

The following conclusions can be drawn from this study: 416 

• The theoretical relationship for speed of sound in a two-phase medium given by Roy et 417 

al. (1990) was validated by the CFD-DEM numerical simulations.  418 

• The linearized equations were used to show that the speed of sound in a two-phase 419 

medium can be linked to physical properties of the particles and the amplitudes of 420 

fluctuations in pressure and particle velocity. Since the speed of sound in a two-phase 421 

medium is constant (Roy et al. (1990)), it was also shown that the ratio of the amplitude 422 

of the fluctuations in pressure and particle velocity is also constant. This was also 423 

observed in CFD-DEM simulations.  424 

• The most significant effect in terms of damping was the particle viscous term.  Previous 425 

work by Roy et al. (1990) had neglected this effect, with the consequence that they were 426 

not able to describe the damping accurately.  Using the expressions derived from the 427 

linear analysis, it was possible to compute the particle dynamic viscosity for the 428 

experiments from Roy et al. (1990) and CFD-DEM test cases.   429 

 430 
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