UiT

THE ARCTIC Faculty of Science and Technology
UNIVERSITY Department of Computer Science
OF NORWAY

Schema crawled APl documentation exploration

Nicolai Bakkeli
INF-3981 Master's Thesis in Computer Science - December 2017

PP LG TTLEL LT LA TELLEE T EL RIREKIRIAT IIIIIIIIIIII II/IIIIIIIIIII IIIIIIIIIIIIIIIIIII
I/////lIl/I/II///////l/l/lll///////ll/ /l/I/III 11117 1Y 1Y EY T Y AN LY 1Y TV IN AN I I INIY /
LIGLHITLEEE PRI L L L EEd Tt LE ittt I/lII/l/I/I/I/I/IIIIIIIIIIIII/III/IIIIIII I/IIIIIIIII/IIIII//
//////////o/ﬁ/l//////C/OIIII//////I/ TG EA VI LI L EY A EY LY LY LY LY Y ALY I AN AN D OEEE P D A 0

/ 1111/ 1111117 / { I / I
HILTTEELEErietiieieteiiitiieleeiid III IIIIIIIIII
TELELTRFRRET IR 000 ininiiiddieidddd LIRIRIRIRIRI RN RdR PN I0IIAIAI It I (1rirnes I Lrentnert e
TLEEELEERPEeLiieteeeeleltiieieid II I I 1rerirerind IIII 1111
IOGIGGIC/IIIIIIIIIIIIIIIIIIIIIIII FELINERI NPT PRI IR I IR IIQI0ieinieiied TCrLrenireririnenineng

FET0T0REEbRIeeatnererieeeiiai 11 1117 111eired
TETRERRTRET TR TEF TR TRaadidd LA BRI RP BT I RPN I R IR TR ILI R IR QI I Qe rarrqrgrererererenrenininines
HTTTRTTERETIRRT P EE T RERarddd J000 000000000 BT RIREEIEAILIeIaereaqicdeicesrieerieerinirisei
N NNy yyyy I
"HELrirLrLIeieRrerLLLLLILIn? FTR700 0000000000 RRRRRRRRERIRIRIRREEi I Ieeeeerereiestitoerereeieisi
reresie 1rs 7 /) 1171 JEreredgrrgierqrirqrenereninenininis
FE0000RRRRRRRRIREREIIRERIILY III
1181eeii 117 FRIGERTT QDR RI000I0000000000 0000000001001 IIIIIII rereieeerqnid IIIIIII qrererint
" diiitieeeieeeeind FREFIRINFNIRENENININENEEININIY IIIIIIIIIIIIIIIIIIII IIIIII
dedeeeeneensniieied IIIIIIIIIIIIIIIIIIIIIIIIIIa’IIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

'reriiina

7
'AARRRRRRRRRRRRARRRREY JIRANAEND
Fearaabaaeibbadiney I II
"RRRARRRRRRRRRRRRRNEY QRNINININD 9 4 7
FspbRbasaReibiaanir I IIIIIIIIIIIIIllllllllIllllllll'lllll'l'lll'lllllllllllll'll U g

FORAGRRRRRRRRRaiiy B0 000000 0000000000000 0000000000 00R00R0NIEYT
"RARRRRRRRRNRNRARAY QAIININ IIIIIIIIIIIIIIIIIIIIIIlllllllllﬂ,llIIIIIIIIIIIIIIII ¥

Ny
ay
Ny
o d
ay
oy
ay
&z
ny
ay
gy
ay
~
ay
~y
ay
ay
y
oy
_—

4 4848 l l . . (LL .
L llll'l'l"'l'l""'l'l""'I'l'l'l'l.l"'l'll'll""""'l'l'l'l""'l"""" L L L
ISEREENY FOQRORNRNSARRRRRIRARNRNRIRURORNRNRNRNQUARAQNRIARARNTAQNRNRNRNONENONGNRNONONERSNSOGNENENENI
weaen ll'l'l'l"'l"'l'l'l"'l'l'l""ll"'l"'l"'l'l'l'll""l'lllll'l"ll'l'l"'l'lll".'l'.l"
INENEEE FONQUANRRRNNNNONONNRNRTNENRNNRNRIRUNANARARARARONACARARNRANAGNCARANARNGNRARNNENENENENaUaNaNa|
L L o o
Yabar JRBQNQNQNNNOIUNONGITNONONONGNONANENANANGNANENENINGRINERGRAVIRINIQARNQNONALNVRTOVAVANGERRANENEY

L 7 L L L O O L L L O L L L A T P Tl L L L Tl L L L 2 I 2y I) 2 T L Ly Ll Ll Ll L Ll L . ravane
74 l'l'l'l'l'l"'."l"'. .l. NARARANONE "'..'.'.l.'.'.l.'."l.l.'.'.'...'."'.'"".'"'l.l.'."...l
r LA A A A CA LA LA DA SR A DA LA S DA S G S S L S S L S R S L R S SR L SR AL D S LA A

.-..-.......

Abstract

An increase in open APIs deployed for public use have been seen to grow rapidly
in the last few years and are expected to do so even faster in the future. This
thesis deliver a design that reduces the API documentation exploration process by
recommending a range of suitable APIs for any user. This is done as a response
to the increased complexity in API selection that follows as a consequence of the
increased choice between APIs. This design suggestion consists of two main com-
ponents; a tailor-made web crawler that collects API documentation and a handler
that indexes the documentation and evaluates XML Schema for supposed API in-
put and output searches. The services computational chain creates an overview on
the API containing domains and a ranked list of APIs based on key-phrases applied
by any user. Experiments of an implemented version of the service revealed that
the indexation process creates a table that causes the service to run slower as the
reach of the service grows. In other words, the indexed data stored on disk causes
a scalability issue that does not get resolved in this thesis. Aside from performance
problems have the service been shown to yield data that can be considered useful
for developers in need of API recommendations.

Acknowledgements

First and foremost I would like to thank my thesis advisor Anders Andersen of
the The University of Tromsg the Arctic University of Norway. Andersen’s door has
always been open for consultation whenever I ran in need of inspiration or guidance
from someone with expertise. Finally, I would like to extend my gratitude to family,
friends and fellow co-workers for your contribution in form of help and support
throughout the construction of the thesis.

N.B.

(Nicolai Bakkeli)

iii

Contents

Abstract i
Acknowledgements iii
Contents vii
List of Figures ix
List of Tables 1
1 Introduction 2
1.1 Problem statement o v e e e e 3
1.2 LimitationsS v v v e e e e e e e e e e e e e e e e e e 4
1.3 Thesis Structure o v vt e e e e e e e e 4
2 Background S
2.1 APL . . e e s 5
2.2 REST . . . o e e e e e e 5
2.3 RESTAPIL 7
24 WebCrawling 7
2.5 API Documentation Schema 8
2.5.1 XMLSchema, 8
2.52 JSONSchema 8
2.6 Features of good API Documentations 9
2.7 Related work 9
2.7.1 Automated Information Extraction from Web APIs Documen-
tation e e e e e e e e e e e e e e 9

2.7.2 MAPO: Mining API usages from open source repositories . . 9

3 Approach 11
3.1 Objectives o i e e e e e e 11

3.2 DesignStage i e e e 12

3.2.1 DataAcquisition. i e 12
3.22 DataHandling. 12
3.3 Implementation Stage 13
3.3.1 Tools. e 13
3.3.2 Creating Main Components 15
3.4 Measurement, Analysis and Comparison Stage 15
3.4.1 ResultExtraction 15
3.4.2 Testing Components and Experimental Setup 16
3.4.3 Analysis 16
Design 18
4.1 KeyRealizations e 18
4.2 User To Service Relation 19
4.3 DataAcquiSition 20
4.3.1 API Documentation Discovery 21
4.3.2 Domain Hierarchy Constructor 21
4.3.3 Coordinator 23
4.3.4 Communicator vttt i e 24
4.4 DataHandling 24
4.4.1 Pagelndexer 24
4.4.2 SchemaEvaluator 26
4.4.3 KeyPhrase Database 26
4.4.4 Key Phrase Lookup Service 27
Implementation 28
5.1 PreparatoryWork o 28
5.1.1 TestingMachine. 28
5.1.2 TestDomains 29
5.1.3 ContentSwitch 30
5.1.4 ErrorReporting 30
5.1.5 Service Configurations 30
5.2 Crawler 31
5.2.1 Hierarchy Constructor 31
5.2.2 Coordinator 33
5.2.3 Communicatoro 33
5.3 DataHandler 33
5.3.1 Pagelndexing 34
5.3.2 XMLEvaluation 35
5.3.3 Lookup Service 35

vi

6 Experiments

6.1 DataSources i i e e e e e e e e e
6.2 TeStS . . . o e e e e e e e e e e e e
6.3 Results e

6.3.1 Experiment - A;
6.3.2 Experiment - A,
6.3.3 Experiment - H;
6.3.4 Experiment - H,
6.3.5 Experiment - T;
6.3.6 Experiment - T,
6.3.7 Experiment - T;
6.3.8 Experiment - Ty
6.3.9 Experiment - T;

7 Discussion

7.1 ProjectEvaluation

7.1.1 Data Acquisition

8 Conclusion

Bibliography

Appendices

A Results: Data Acquisition
B Results: Data Handling

C Misc

7.1.2 DataHandling
7.2 USer ServiCe v v v v v e e e e e e e e e e e e e e e e
7.3 Future Work e

vii

37
37
38
40
40
41
41
42
43
45
48
51
55

58
58
59
60
62
62

65

66

70

73

81

83

List of Figures

2.1 REST architecture: Show how client to server communication is out-

4.1 Data Acquisition: Overview diagram.
4.2 Data Handling: Overview diagram.

6.1 CPU drain during indexed crawl over 3 domains.
6.2 Equation 6.1: Speed calculation of json and usjon.
6.3 CPU drain during pure indexation of HTML files from 3 domains. . .
6.4 Memory consumption during indexed crawl over multiple domains. .
6.5 Memory consumption during pure HTML indexation.
6.6 Memory consumption during schema evaluation.
6.7 Runtime of indexed crawl based on Indexation Table size.
6.8 Runtime of pure crawl based on HTTP response size.
6.9 Runtime of pure crawl based on total runtime.
6.10 Runtime of pure indexation based on HTML file size.
6.11 Runtime of pure indexation based on Indexation Table size.

A.1 URI Hierarchy represenstaion of the api.met.no domain.
A.2 URI Hierarchy represenstaion of the developers.gettyimages.com do-

A.3 URI Hierarchy represenstaion of the crawling www.datamuse.com
domain. e

B.1 Example results from the key phrase lookup.

C.1 SetuplInstallations
C.2 Outliers - Crawl Time, Indexation Table size.
C.3 Outliers - Crawl Time, response body size.
C.4 JSON Schema for Indexation Table validation.
C.5 JSON Schema for XML Schema Table validation.

ix

List of Tables

4.1 Visited URIs translated to the URI Hierarchy. 22
4.2 Traceback of URI Hierarchy to find parent site of XML Schema. . . . 23
5.1 Testing Machine Specifications 28
6.1 Test domain statistics. 38
6.2 Short summaryontestgoals. 40
6.3 Summary of HTML validation. 41
6.4 Word validation on recommended APIs. 42
6.5 cProfile of indexed crawl with JSON Schema validation active. . . . 44
6.6 cProfile of indexed crawl withoutJSON Schema validation active. . . 44
6.7 cProfile of Indexing NOcrawl. 45
6.8 cProfile of XML Schema evaluation NO crawl. 45
6.9 Statistical description of data from indexed crawl 47
6.10 Statistical description of data from pure indexation 49

1 Introduction

Development of web-services generally is a process that involves a lot of factors
in order to be successful. A typical way of thinking when outlining a project is to
separate key elements into smaller segments that in the end are puzzled together
into one coherent unit. Abstraction is necessary for these scenarios and is effec-
tively used to foster comprehension before details are made clear or even deter-
mined. Segments necessary for patching together a project are within their own
right smaller projects that need to be planned, constructed and tested. Each of
these steps is time-consuming and can be hard in many ways to achieve based on
a range of factors. Luckily developers are aware that their need mirrors the need
of others and that the service they are creating can be useful for others. Because of
this, tools made by developers are more often made available for others to use. Ser-
vices these tools supply can often be used directly as necessary segments in other
projects. Utilizing already existing services instead of creating every piece of the
picture can reduce development time and resource costs. This can in turn increase
the development time focused on the new features instead.

The spirit of sharing APIs have within the last decade become common among de-
velopers [1]. Thus increasing the available options for borrowed functionality. Ex-
ponentially so, in fact, ProgrammableWeb.com a web site containing an API Direc-
tory for various APIs passed a content count of 17000 API entries in 2017 [2]. More
specific modules that fit niche applications have grown in tandem with the steady
growth in choice among open solutions. A downside to this is that selection of an
API appropriate for a given project under construction has become a more time-
consuming task, more so now than before. Some of the reason for this is a dilution
among previously clear keyword and API descriptions. Resulting in unclarity due
to the blend of seemingly similar APIs in the eyes of the outsiders. This in turn
increases the time sorting out the viable APIs.

Reduction in time spent choosing the correct API can be done in many ways but
this thesis will focus on one approach. Choosing an API often comes down to the

2

knowledge of URI queries and what these represent. Reducing the time spent com-
paring request and response types among APIs are usually a time-consuming part of
the process. Often, developers choose APIs that utilize queries that fit their design
plans.

By following the assumption that a common way of choosing APIs are as follows:
Designers search the internet for APIs that have potential. By first getting an
overview on possible useful APIs the developers can through an iterative process
of elimination weed out APIs that are less weldable into their own solutions. As
many designs have requirements that are met by a series of possible open APIs,
developers often choose APIs that present the least resistance in development. As a
result, a common way of finding the right APIs comes down to manually interpret-
ing query phrases for a variety of resources, to find the API with the least amount
of development time spent on adjusting the preexisting code.

Choosing the right API can be a hard task and is often dependent on a correct
interpretation of documentation for the APIs in question. A common factor for an
APIs success lies in the documentation [3]. Time spent interpreting functionality
of an API not used is ultimately wasted time.

This thesis goal is to present a suggestion on how to reduce the negative effect on
the bottleneck of human reading speed and comprehension in regards to choice
among open APIs specifically. Naturally, decreasing the amount of API documen-
tation required to read will decrease the total amount of time spent reading the
documentation. This thesis proposes a technique for reducing the sum of docu-
mentation pages by combining two key components:

1. A web crawler specific for REST API documentation pages that creates a hier-
archy overview of a domain and keeps track of the schema connected to the
given APIs found.

2. Utilizing indexation of the documentation and attribute extraction of schema
to create a ranked list of API recommendations that correspond to a set of
user applied key-phrases or words.

1.1 Problem statement

Design a set of automatic overview mechanics presenting resource location and rele-
vance on key phrases related to open APIs as a mean to reduce development delay due

3

to open API documentation exploration.

The service outlined in this paper should serve to help any end user in finding open
APIs that fit their need. Specifically, the user should be able to apply a set of key-
phrases or words and expect to get a list of viable API recommended in return. This
thesis will outline a set of separate mechanics that collectively serve to create such a
list. Entries in this list must include a score that reflects that APIs relevance relative
to the key-phrases or words applied. Additionally, each entry must also include a
URI that lets the user reach the API documentation that the entry is based on.

1.2 Limitations

This thesis will not reflect on the security aspect of the design or implementation
of this service. System load on the domains visited will be ignored along with any
"politeness" requirements set in place by the holders of the domains. For instance,
some domains wish that their sites only receive requests at a given rate or that
the pages do not get indexed by crawlers. Additionally, deprecated systems will be
treated identically to operational APIs. The entire construction of the service will
be done on one single machine so the service will be created as a centralized proof
of concept. How the service can be repurposed for other goals and applications will
not be discussed and the aesthetic presentation of the end results will have a low
priority.

1.3 Thesis Structure

This thesis will contain a background chapter(2) that gives a brief summary on
material relevant for the service that is to be constructed. The background will be
followed by the approach chapter(3) that outline the workflow and methodology
used to reach the goal of the thesis. Up next comes the design chapter(4) that
given an explanation of one possible design to implemented in the implementation
chapter(5). A experiments chapter(6) continues the thesis where experiments are
conducted to test if the service act as predicted. The last two chapters(7 & 8)
discusses whether or not the service acts in accordance with the problem statement
and the final chapter summarizes the thesis.

2 Background

This chapter describes relevant technical background and relevant work. It will
give an overview of concepts used in the thesis will be briefly explained. We will
first define web crawling, and then describe the methods that have been used in
this thesis.

2.1 API

Application programming interfaces (APIs) are routines, protocols and other tools
designed for software development. These tools are often lists of clearly defined
methods of communication between software components. Good APIs use abstrac-
tions of the underlying implementations to isolate exposure to the features that
are deemed useful for future development. APIs are can be viewed as the name
implies, an interface between an enterprise and applications that use its assets.

2.2 REST

In the late 80’s to the yearly 90’s Tim Berners-Lee a computer programmer working
at the European Organization for Nuclear Research (CERN), in Geneva, Switzer-
land had some great ideas that ended up becoming the "WorldWideWeb" [4, 5].
This lead to the creation of the Uniform Resource Identifier (URI), the Hyper-
Text Transfer Protocol (HTTP), HyperText Markup Language (HTML), the first web
server and browser. This all became so popular that the Internet infrastructure was
predicted to collapse due to the popularity outgrowing the capacity. As the prob-
lem seemed to increase, Roy Fielding the co-founder of the Apache HTTP Server
project [6] proposed some constraints that he grouped into six categories:

)

Resources

Request http://myserver/tasks

HTTP GET
Response
xml 200 OK
Media-type

Figure 2.1: REST architecture: "In REST architecture there is always a client and a server
where the communication is always initiated by the client. The client and server are de-
coupled by a uniform interface there by making both the client and server to develop inde-
pendently. Every resource in the server is accessed by a unique address (URI). When the
client access a resource the server returns a representation of the resource based upon the
request header. The representations are usually called as media-types or MIME types." [7]

* Client-server: Separation between client and server, distinguishing them so
they can be constructed, tested and deployed independently.

* Uniform interface: Separate web components need uniformity of their in-
terfaces. These constraints are: Unique Web-based concepts should be con-
sidered resources accessible through some unique identifier, such as URI. Ma-
nipulation of resources through representation, turning a single resource into
multiple representations while keeping a single identifier. Self-descriptive
messages embedding intentions into messages through metadata. And fi-
nally Hypermedia as the engine of application state (HATEOAS), the claim
that the impotence or use of a resource is to some degree determined by the
inclusion of links to other resources.

* Layered system: Transparently deployed intermediaries that intercept client-
server communication, usually to enforce security, response caching and load
balancing.

* Cache: Caching previously received data to decrease required response loads

6

on upcoming requests. Increases overall availability and reliability and re-
duces the overall cost of the Web.

* Stateless: Web services are not required to remember the state of its client
applications. To compensate, requests clients send must contain contextual
information required for each interaction.

* Code-on-demand: Web services can send executable code to clients.

Using these constraints in some collaborated work, Fielding, Berners-Lee, and oth-
ers managed to increase the scalability of the web, and in doing so standardizing
the web. In the aftermath of the scalability crisis, Fielding named and described
the Web’s architectural style "Representational State Transfer" (REST) [8, 4, 9].

2.3 REST API

REST APIs are Web APIs that follow the architectural style of REST. This is usually
achieved by having purpose-built web servers that handle function calls incoming
through standard HTTP requests. Requests are created by clients that are in need
of the servers responses and the communication is made available through URLs
directed at the application server’s resource. [4]

2.4 Web Crawling

Web crawlers also known as spiders [10] are automated browsing tools that work
towards getting overview information on public content. Crawlers gather informa-
tion on open databases, web pages, and resources by examining data downloaded
from the source in question. A variety of crawlers have been created throughout
the years [11] and most have some key-features in common. Content examined by
crawlers are reviewed on a page by page basis. Page acquisition is automated and
continuous to some degree. Upcoming fields to investigate are dynamically updated
based on the findings on previously visited sites. Web crawlers typically start off
with a set of URLs that it should visit, these are called seeds. Automatic download
of these pages is followed by extraction of URLs form the websites HTML files [12].
New possible endpoints to examine are presented by the list of URLs found in the

7

hypertext. Following new URLs with the same plan as previously creates a loop
that feeds itself.

Typical motivations for using web crawlers are as follows:

* Content indexing for search engines.

* Automated testing and model checking of web applications.

e Automated security testing and vulnerability assessment [11].

2.5 API Documentation Schema

2.5.1 XML Schema

XML Schema is document files that describes the possible contents of XML files
(Extensible Markup Language). These XML Schema are used in conjunction with
XML documents to verify the contents of the structure of variables inside the XML
documents. [13]. This is useful when XML files need to conform to a set of criteria
set in place by the developer. By default are XML documents created without any
associated schema but these schemas are sometimes used to explain the output of
APIs.

2.5.2 JSON Schema

JSON (JavaScript Object Notation) is not in its original form built around any schema
structure the way XML is. But there some modules that make up for this. One par-
ticular module named JSON Schema is commonly used to verify the structure of
other JSON documents.?

thttps://spacetelescope.github.io/understanding-json-schema/UnderstandingJSONSchema.pdf

8

2.6 Features of good API Documentations

Good API documentation should include a descriptive document that explains the
API as a whole. It should consist of the logic behind the API and the intended use
of the listed functions that the API contain. Additionally, the document should give
an overview of the scope of the API and give the user a general idea on the usage
in terms of patterns and expected behavior on both ends.

Good documentation should include a set of examples on how to interact with the
API, in such cases is it often convenient for the user if output examples are presented
as well.

Functions listed should also include data-types and other specs useful for the user.

2.7 Related work

2.7.1 Automated Information Extraction from Web APIs Docu-
mentation

An API documentation crawler made by Papa Alioune Ly, Carlos Pedrinaci and John
Domingue aimed at RPC(Remote procedure call) and RESTful interfaces. The in-
teresting segment of their crawler is the way the crawler processes HTML files. The
authors utilize common traits in documentation design to their advantage, such as
repeated chucks of layout that list HTML functions connected to the APIs. By going
over the file to find patterns that repeat itself within the documentation can the
crawler locate what the authors have termed block content. The crawler contin-
ues by looking through the content blocks to find HTML methods such as the GET,
POST, PUT and DELETE keywords. [14]

2.7.2 MAPO: Mining API usages from open source repositories

A mining framework by Tao Xie and Jian Pei that builds upon existing search
engines. The service they have created uses the search engine to extract source
code from open source repositories through a query search. Source files extracted
gets analyzed by a code analyzer that locates function calls throughout the code.

9

Then, the typical sequence of these function calls gets discovered. The result is an
overview of the sequence of the functions typically used when using the APIL. And it
is up to the user to determine which API fit their need through reading the function
sequences. [15]

10

3 Approach

This chapter tackles methodology and outlines actions that will be taken to ad-
dress the problem stated in the Problem Statement 1.1: Design a set of automatic
overview mechanics presenting resource location and relevance on key phrases related
to open APIs as a mean to reduce development delay due to open API documentation
exploration.

3.1 Objectives

The main objective of this thesis is to reduce the open API documentation explo-
ration by presenting a list of viable APIs that accept query key phrases similar to
a target query search by any user. This will be achieved by using automated data
acquisition on the API documentation pages. Acquired data will be examined and
stored if deemed relevant. A separate algorithm that through a query key-phrase
translation table will compare API documentation for query similarities that cre-
ate a select line of viable API choices. Work done on this thesis is structured into
three stages which will be explained in the upcoming sections. Section 3.2 named
the Design Stage will explain how the project was planned out and what would
be assumed to be some required steps in order to fulfill the design goal from the
Problem Statement 1.1. The next step Section 3.3 will explain how the creation
of the design was carried out in praxis and how the elements from the design ulti-
mately came together to serve the purpose of the design. Lastly, Section 3.4 will
explain how measurements and analysis on these measurements are conducted.
The purpose of the last stage is to create an overview of how well the end product
is accomplished compared to the Problem Statement 1.1.

11

3.2 Design Stage

This subchapter describes the design process and the planning steps initially deemed
necessary in order to start the implementation process that should solve the out-
lined problem. Subdividing this chapter further is an attempt at clarifying the fu-
ture workflow where Data Acquisition will focus on how to get data that can will
be analyzed and Data Handling focuses on how this acquired data can be analyzed
and utilized.

3.2.1 Data Acquisition

The first stage of the design will concentrate on finding appropriate data that build
the per-case groundwork for upcoming data analysis that could be used to con-
struct a sound list of viable API choices. Finding appropriate technique(s) on how
to discover open APIs with available API documentation will be the initial focus.
The reaction to this problem will be explained in Section 4.3.1 Following the fist
initiative, treatment of sites containing API documentation should be outlined and
a technical model on how to address attainment of the on-site information should
be discussed. Automation of the key features should be addressed as valued compo-
nent throughout the design stage. The design of the Data Acquisition is explained
in detail in Section 4.3.

3.2.2 Data Handling

The second stage of the design should find a way to utilize collected information in
order to produce API suggestions. This work builds upon the structure of the data
acquisition so the design of the data handling should be devised once the former
design is established. The Data handling aspect will be kept in mind although this
phase is planned in succession to the data acquisition. This notion is key in fear
of creating functionality that is difficult to build upon. Some key features that will
be addressed in later in Section 4.4. These include among others how to filter
files/data to focus on and how these files can be used to create an overview on
suitable APIs for the end user.

12

3.3 Implementation Stage

Implementation is set up as a stage that follows after the design stage. It will consist
of key work efforts to reach the design goals outlined in section Section 3.2 and
in detail in Chapter 4. This chapter, however, will explain which tools that were
selected for implementation and on what round they were chosen. Section 3.3.2
will include a rough summary of what functionalities the service will include. How
these are constructed and how they work together will be explained in Chapter 5.

3.3.1 Tools

The right tools are crucial for the construction of the solution. Selection of tools
was based on the usefulness of the tools in regard to how well the tool could serve
the purpose of the task required and how time-consuming the tool would be to
work with. The anticipated workload on coding is assumed to be high so any time
efficient tool with the capability of others will be chosen above any competitor that
yield the same result. Memory consumption and computational time is deemed as
a lesser priority than the mentioned as the solution will act as a proof of concept.

* Python - The choice of programming language used for creation of the main
components.! It is chosen because it is a high-level programming language
that is widely used. Meaning that the code written for the project should
be understandable for others to read and documentation for the language is
solid. Additionally I the author are more comfortable with the language than
with any other. Thus Python is the language that will create the least amount
of resistance during development, which saves time.

* Graphviz - An open source graph visualization software will be used to visual-
ize the URI hierarchy overview.2 It is chosen because it can create vectorized
graphics of the hierarchy. Additionally, there is a module of this software
adapted for python.

e JSON Schema - Used for validation of any index databases created.3 JSON is
chosen because it’s easily converted to python objects. The interesting part
of it is to use it with python dictionaries that have an easy lookup scheme.

thttps://www.python.org/about/
2http://www.graphviz.org/
3http://json-schema.org/

13

JSON Schema is chosen to make sure that JSON files used for indexation are
written correctly or at least in an anticipated way.

Tidy - Used to find errors in HTML code.# It is chosen because it makes sure
that the HTML files collected are sound, which makes any extraction of data
easier.

Pypi Memory profiler - Python module for monitoring memory consumption.>
Chosen because it is purpose-built for python and on the python wheel. It
can also be run from shell which makes it easy to use and have a low learning
curve. Additionally, its an outside process that does not get included in the
measurements.

Pypi Psutil - A cross-platform library for retrieving information on running
processes and system utilization.® Also chosen because it is on the python
wheel. It allows for measurement of CPU(Central processing unit) and disk
reads and writes which might come in handy.

NLTK - Natural Language Toolkit useful for counting words.” On the python
wheel and useful for counting words in the XML and HTML files.

matplotlib - Used for plotting of results.® On the python wheel and is easy to
use. It will create all the plots for the results.

NumPy - Fundamental package for scientific computing with Python.® Used
to make the plots easier.

Beautiful Soup - A Python library for pulling data out of HTML and XML
files.10 Chosen because it makes data extraction from HTML files much easier
which reduces development time.

USJON - Ultra fast JSON encoder and decoder for Python.!?

Lxml - Powerful and Pythonic XML processing library.2

4http://www.html-tidy.org/

Shttps://pypi.python.org/pypi/memory_profiler

6https://pypi.python.org/pypi/psutil

7http://www.nltk.org/

8https://pypi.python.org/pypi/matplotlib
Shttp://www.numpy.org/
10https://www.crummy.com/software/BeautifulSoup/bs4/doc/
11https://pypi.python.org/pypi/ujson
12https://pypi.python.org/pypi/lxml

14

3.3.2 Creating Main Components

Two main components will be constructed as a means to complete the entire ser-
vice. The first set of algorithms will concentrate on collecting raw data that can
be analyzed for API proposals further down the line. As an aim for this first set
of algorithms, there will be created an automatic engine for traversal of API docu-
mentation sites. Utilizing a set of rules to distinguish what kind of data these pages
consist of should yield appropriate responses for the data collected. Additionally,
URIs visited should be nested together to create a relations-graph between the re-
sources found.

The other set of algorithms should be responsible for constructing a set of API sug-
gestions for any end user. This will include analysis of the collected data from
the previous set of algorithms as a foundation. Sifting of user-defined key words
trough the end result of the previous stage included a ranking algorithm will be
the main inclusion of the last step. The last set of algorithms should also create a
presentation for the end user of the APIs it deems useful for the end user.

3.4 Measurement, Analysis and Comparison Stage

Measurements will be conducted as the last stage of the work on the thesis. Data
gathered throughout this segment will be thoroughly looked upon and analyzed.

3.4.1 Result Extraction
Intermediaries

The URI hierarchical graph will be created directly by the solution and will be
examined manually. Python scripts will be created for the rest of the scripts that
will create the test data. These scripts will include validation of HTML code and
the indexation database as well as measurements on memory and disk usage. The
scripts will also check the execution speed of the various algorithms in the solution.

15

End results

Results from the Data Handler will automatically return a set of possibly viable APIs
for the end user. Because of this, end results will be evaluated by taking a man-
ual look at the returned list. Scores on the APIs will be scrutinized by comparing
inputted key phrases to the contents of the websites suggested by the Handler.

3.4.2 Testing Components and Experimental Setup

Experiments will be carried out by a physical machine running Ubuntu Linux 16.04
LTS. These experiments will be initiated by any deployer of the system and will not
be initiated in large by itself during normal execution. Many of the tests are in
themselves very resource costly and will, therefore, reduce the efficiency of the
service they are trying to test. To work around this, execution of tests are done in
closed environments that resemble real runtime.

After the creation of the main components, a set of tests checking the hierarchical
representation should help to figure if the domains visited are thoroughly visited.
Experiments concerning URI hierarchical visitation and Data Acquisition specially
is labeled A,,. Following, experiments concerning Data Handling are labeled as H,,.
Experiments on the whole solution is labeled T,.

* Experiment A; - Manual comparison of hierarchical graph to web pages to
confirm visitation route.

* Experiment A, - Check that the HTML files gathered are valid and without
errors.

* Experiment H; - Validation of indexation database.

* Experiment H, - Manual execution of solution as end user and evaluate if API
recommendations are reasonable.

* Experiment T, - Various performance tests.

3.4.3 Analysis

The analysis stage can begin once data from the experiment stage are gathered to a
reasonable amount. Analysis of the collected data will be done in-depth and should

16

create a rough idea of how well the objectives are being met by the solution. This
segment will include some speculation on the accuracy of the API recommendations
by manual comparison. Naturally, this segment might be affected by biased views
due to personal subjectivity. To reduce prejudice, the manual comparison will not
judge the weight of the findings but merely prove the existence of the terms within
the documentation pages.

Analysis of the systems resource use will also be done an this stage. This includes
CPU and RAM use and how these are affected by a range of factors. The execution
time of various algorithms will also be tested at this stage.

17

4 Design

This chapter displays how the tasks defined and outlined in the approach stage
resulted and what is intended for implementation. The design to be explained
act as a possible blueprint for automatic overview mechanics from the Problem
statement 1.1. Later chapters will explain a way to implement this design and later
on will these features be examined to see if they can be used to reduce development
delay.

4.1 Key Realizations

It was clear after reviewing a series of API documentation pages that the means
for programmatically deducing API Input and API Output should be handled in
different ways to some extent. Input arrangements are often written in plain text
and hold references to example queries for their core URL as tactics to demonstrate
how to request data from the API. Output for the same APIs is often defined through
plain text in style of the input descriptions but with some minor differences. At
the same time, an attitude towards referencing schema as vehicles for giving their
explanations further bearing are frequent and seems to be an accepted standard.
These schema are resources separate from the documentation pages and this in
turn pose as a clutch for a page by page evaluation design. Both schema and the
API documentation page it was referenced from should be considered together in
order to properly establish what the output from the API presents.

Different types of schema are used to explain API output where XML Schema is
the most common type of schema seen so far. This is not to say that XML is the
most common data format for return values, but are among the types that utilizes
schema for control of data fields and types. Another form of schema is the JSON
Schema that is not used that much as JSON was built without the schema utility in

18

mind. For the purpose of this project, XML Schema will be the only type of schema
evaluated in order to create a coherent product within the timespan. The inclusion
of JSON schema can be done as future work.

Input for the API cannot be drawn from the XML Schema so the plain text and query
examples will act as the entire foundation for the input evaluation. In order to get
this data, the solution will extract this information from the HTML code received
from the documentation pages.

Additionally the range in which API documentation websites are constructed varies
a lot. Different API developers have different ideas as to how their documentation
should be presented to any user. Some even let a large portion of their API be
documented through forums, Q/A sections or even blog posts [16]. This causes a
wide variety of interlinking between websites to create certain API documentation.
In this work, each website will stand on their own ground as a representation of a
single API. Schema will however be connected to at least a single website that can
represent the schema.

4.2 User To Service Relation

The user service this design tries to achieve is to look up the API documentation
pages for data fields or descriptions that are similar to that of a list of key phrases
submitted by the user. In doing so the design is to compare the key phrases provided
by the user with the data found in the documentation. By analyzing similarities
between the two, the design aims to measure the contrast in the fields to see if
they correlate with the user’s interests. In the end, the service delivers the most
supposedly attractive APIs and their locations(URLs) to the user with a score on
how they match to the keywords applied as the input to the service.

Further more, the convenience of the utility is only realized if the service is faster
than the user is in doing the same job manually. So the ideal situation is to do
the wast majority of the work ahead of the involvement of the end user. Thus the
forthcoming explanation of the design will be discussed in the Data Acquisition
and Data Handling section. In the Data Acquisition section will the prerequisite
workload and design be outlined. Any user of this design section will be referred
to as a "deployer" as the section is outside the realm of the end user. The following
section is termed Data Handling and will outline the design that features intractable
by the end user.

19

Domain Profile

4.

Figure 4.1: Data Acquisition: Overview diagram.!

4.3 Data Acquisition

This sub-chapter explain the design of the first main component mentioned in
Chapter 3.3.2. Its clear after looking at different ways to acquire API documen-
tation that if the data attainment were to be automated, then the process must
be acknowledged as web crawling. As web crawlers can be created in a myriad
of ways and have each their own purposes, the crawler for this project must be
somewhat restricted in some aspects. The crawler must as well be specified to ac-
complish data acquisition regarded as fit for examination in the next step (Data

1(Figure 4.1 & Figure 4.2). Ellipses with the are data that originate from user input,
blocks with the display computational components of the model and blocks with the
green color represent output or result data in some form.

20

handling). The Data Acquisition is further compartmentalized into three sections,
these are the Domain Hierarchy Constructor, the Coordinator and the Communi-
cator. These segments will coexist as separate units while as a whole be referred to
as the crawler. An overview of the crawler can be viewed in Figure 4.1. There are
seven steps in the overview diagram as seen in the Figure that represent the Data
Acquisition. These numbers indicates the information flow between the segments
of the crawler that will be described shortly.

4.3.1 API Documentation Discovery

One of the restrictions of the crawler for this design is that regular web crawlers are
often able to visit a wide variety of domains in order to index the pages they come
across. The crawler addressed in this chapter will focus on handling documentation
pages. A distinction between API documentation pages and any other page on the
World Wide Web is necessary in order to let the crawler lose to its full extent. This
feature required to let the crawler sweep freely on the web will not be included as
a design element. To work around this, a seed list containing URLs(seen as point
1. from the Figure 4.1) for a set of domains with web pages consistent of API
documentation pages will be created. This seed list must be manually modified
and updated by the deployer in order for the reach of the service to expand. The
restriction of the crawler is that it keeps traversal local to the domains cataloged in
the seed list. Any URL discovered that bridges the domain list will be discarded as
an option of further traversal.

4.3.2 Domain Hierarchy Constructor

The Domain Hierarchy Constructor is in a way the head component of the crawler.
The constructor can be seen in the Figure 4.1 as the segment that receives URI
seeds from the seed list and conducts all other communication with the Coordina-
tor that will be explained soon. Additionally, the constructor is set to create the
Domain Profile that is a collection of every stored HTML, XML file and the URI
hierarchy that will get explained as well. The Domain Hierarchy Constructor is
also tasked with keeping track on what pages to visit and the creation of a visual
representation of how these are connected. The root cause of action is through a
deployers demand. Upon initiation, it will gather a URI seed that functions as the
entrance point for the crawl. By parsing the URI for its domain section the Domain
Hierarchy Constructor locks its territorial operation to the website’s root. Basing

21

this initial URI as the first entry point to the crawlers visitation list creates the foun-
dation for further operation. This list of unvisited websites is curated throughout
the crawl. On the flip side, another list of visited URIs snatches any URI visited by
the crawler. Examination of the visited list averts the crawler from visiting a page
more than once. This is done to prevent unnecessary vitiations of know websites
and creation of duplicates.

URI Hierarchy

The Domain Hierarchy Constructor creates a nested path hierarchy representation
created from a subdivision of the visited URI paths. This entails a directory trans-
lation of the URIs path relations that device an unrealistic yet useful impression
on how ownership between resources are set up. Schema as mentioned earlier are
separate resources from the documentation pages. By backtracking through the
URI Hierarchy to find the closest HTML location can the schema and HTML page
be connected. Table 4.1 show a short example on how a few searches get structure
into a URI Hierarchy, where 3 of 4 websites yielded response data. While Table 4.2
show how the XML Schema from URL "www.domain.com/pathl/path2/path3/"
gets paired with the HTML page from "www.domain.com/pathl/". Pairing the
schema to the documentation page is useful for later when the two are getting
evaluated together.

URI Path Separation

URI subdivisions response type
www.domain.com/ None .html
www.domain.com/path1/ pathl .html
www.domain.com/pathl/path2/ path1, path2 None
www.domain.com/pathl/path2/path3/ | pathl, path2, path3 xsd

URI Hierarchy
Domain: [pathl: [path2: [path3: .xsd]], .html], .html

Table 4.1: Visited URIs translated to the URI Hierarchy.

Constructor information Exchange

New data and URIs are required for the crawler to continue and for the realization
of the URI Hierarchy. Required information is collected from the Coordinator seg-
ment see chapter 4.3.3 (Coordinator). Attained information includes a list of new

22

XSD Parent Search

Traceback Focal Point | HTML

Domain: [pathl: [path2: [path3: .xsd]], .html], .xml path3 False
Domain: [pathl: [path2: path3], .html], .html path2 False
Domain: [pathl: path2, .html], .xml pathl True

XSD Location:
www.domain.com/path1/path2/path3/
XSD Parent HTML Location:
www.domain.com/path1/

Table 4.2: Traceback of URI Hierarchy to find parent site of XML Schema.

URISs that get added to the list of unvisited URIs under the criteria that they are not
previously visited. Data flagged for storage are also written to disk at this point. All
of this can be seen in the Figure 4.1 where the second stage gives the Coordinator
a URI, while the Coordinator answer with the mentioned data as stage six.

4.3.3 Coordinator

The Coordinator act as the choice taker for the crawler and is positioned between
the Domain Hierarchy Constructor and the Communicator. A URI is transmitted
to the Coordinator from the Domain Hierarchy Constructor Whenever the crawler
attempts to visit a new website. This URI is forwarded to the Communicator(point
3. in the Figure 4.1) that return a response code and response data form the
actual website communication, more on this later. Data acquired this way gets
sifted through a response switch to determine how to react to the new data. What
the Coordinator will not include that Papa Alioune Ly, Carlos Pedrinaci and John
Domingue included are to locate common trait in the response to increase the ac-
curacy of the extracted data, see Chapter 2.7.1. Neither will it utilize mechanics
for extracting HTTP methods from the return bodies.

Content Switch

Content-Type header fields from RFC 822 [17] are accessible information paired
with the return data. Control flow is forked based on these Content-Type header
fields. Among these, the ones of interest are the application and text types. Detect-
ing an application type start an extraction of subtype. A combination of these can

23

determine whether or not the data is of the file type XML or XSD. In other words
the discovery of XML Schema is done in this step. These files are flagged for stor-
age or can be examined on the spot. DTD(Document Type Definition) subtypes are
flagged for conversion to XML Schema. Additionally a Content-Type header field
of text usually refers to plain text or HTML code and in some cases XML files. In
cases of XML, are the schema location extracted. The reaction to plain text and
HTML code is to extract any URI. Fragments in these URIs are trimmed away and
the resulting URI is added to a list of new URIs that will be added to the Domain
Hierarchy Constructors visit list.

4.3.4 Communicator

The communicator is the crawlers connection to the World Wide Web (point 4.
from Figure 4.1). It receives the URI is should request data from through the Co-
ordinator. By using HTTP requests the Communicator gets on website information
that the other segments work upon. It parses response data to make it accessible
for the other segments.

4.4 Data Handling

This sub-chapter explain the design of the second main component mentioned in
Chapter 3.3.2. Data Handling refers to treatment of the collected data accumu-
lated throughout the Data Acquisition stage. In reality this stage can be incor-
porated into the previous stage but this section makes more sense explained as a
separate branch. The entirety of a catalog of data gathered from a domain will be
referred to as a Domain Profile. There will in praxis be multiple Domain Profiles
and can be seen in Figure 4.2. Do note that the Domain Profile form Figure 4.2 is
the out put from the crawler as seen in Figure 4.1 as stage seven.

4.4.1 Page Indexer

The Page Indexer is one of the two first steps in the Data Handler chain see Figure
4.2 point two. The Page Indexers job is to create a lookup table of words that
yields the words source and occurrence rate. To compile such a table the Indexer
starts out by loading HTML pages from a Domain Profile or gets it directly form

24

L Domain Profiles
(From Data Acquisition)

Key Phrase Database

API Recommendations

Figure 4.2: Data Handling: Overview diagram.'

25

the crawler at the crawl stage. Initially, the Page Indexer starts out by doing some
preparatory work on its current page. Strings of text containing the key separators
such as the following characters: ’ P H#[]@!'$&7() *+,; ‘are truncated and
added as additions to the list of words to index. The original words are still kept in
their entirety as well. This makes the lookup of words more precise at a later stage.
The indexing can begin once the preparation is complete. The actual indexation
iterates through the file and counts each word. Words found and their count are
tacked onto the lookup table with the source of the document included so the
source can be referenced upon lookup. Results from each file examined this way
are stored in the same lookup table. A focus here is to make the word in the table
easily accessible and through that word entry can the sources including the word
be found.

4.4.2 Schema Evaluator

The Schema Evaluator is the other initial step of the Data Handler and can be seen
as point three in Figure 4.2. Evaluation of schema is done in a somewhat sim-
ilar way to the Page Indexing but there are some key differences. Attributes and
elements from the schema define what the corresponding files are supposed to con-
tain. This way schema is constructed to keep its length to a restricted and with a
minimum of redundant repetition. As a consequence, there is no real benefit in
counting the recurrence of fields found in the schema. On the other hand, some
schema includes some text fields that are not intended to police what can be stored
in the responding file. These can be counted for occurrence but the Schema Eval-
uator does not take this into account as the result table is structured in another
way. Resulting terms are appended to a table that given a word yield every source
containing the word.

4.4.3 Key Phrase Database

A combined effort from the Page Indexer and the Schema Evaluator crates the Key
Phrase Database. These combined result records are stored to disk and form the
backbone for the future lookup service. Creation of this database is done outside
the end users reach and must therefore be handled by the deployer. This data
collection that consist of the Indexation Table and the Schema Table can be seen in
green in Figure 4.2.

26

4.4.4 Key Phrase Lookup Service

The Key Phrase Lookup Service seek API documentation pages that conform to a set
of predetermined key phrases or words. These phrases or words must be applied
by an end user that want to request a list of APIs that fit their need. Choice of key
phrases is essential for the accuracy of this service. In order to extend the range of
the search, the Key Phrase Lookup Service goes through each word and looks up
synonyms and similarly spelled words. These are presented to the user that can
filter through these words to make sure that any unwanted words get discarded.
Finding synonyms can help the user in finding words that might be included in
the database. This should make the chance of discovering any words from the
database more likely. The drawback is that is dilutes the precision. Presenting
similarly spelled words might help the end user with the spelling of the keywords.
This might be useful if the end user has misspelled any words. Two separate lists
of words are created this way, one for input and one for output.

Once this is done, the lookup will use the list of input keywords in conjunction
with the lookup table created by the Page Indexer to generate the input scores
of the API Documentation pages. This is done by iterating through the input key
phrase list and finding every website that contains that word. Every website that
uses the word gets included in a summary of websites where their word gets stored
with its occurrence count. When it is done with every word in the key phrase list,
the Key Phrase Lookup Service will continue by compounding each websites total
score. The calculation of the output score is calculated in its own cycle. With a
similar process to the calculation of the input score, the output calculation does
not include the number of repetitions of each given word. To compensate, each
word found have a higher intact on the score.

Additionally, for both of these score calculations words similar to the keyword from
the Key Phrase Database gets included. These stray words get presented to the user
that gets to chose to include them or not. Words included this way gets a similarity
score attached to them. This similarity score is a point system that indicates how
close they are to the original word. The inclusion of these words influences the
total score for a given website by a smaller impact based on this similarity score.

Combining both input and output scores calculated creates the resulting basis. In
order to present the finding to the end user, the Key Phrase Lookup Service sort
the websites on the total score and presents it to the user. An example of such a
presentation can be viewed in Figure B.1

27

5 Implementation

This chapter explains the implementation process of an example program that re-
sembles the design outlined in the previous chapter, Chapter 4. However, this
chapter starts out by explaining some preparatory work that is aimed at making
the implementation process easier. Following subchapters will explain how smaller
less abstract elements are put together to create the larger segments that as a whole
manifest as a possible solution to the Problem statement 1.1.

5.1 Preparatory Work

5.1.1 Testing Machine

Construction of every component in solution and all testing was done on the same
machine. Every test was intentionally done on the same machine in order to keep
the results within boundaries that can be compared without any hypothetical trans-
lation between results and hardware alteration. Specs on the machine are listed in
Table 5.1. See Appendix C.1 for information on software.

packard bell EasyNote TK85 | Hardware Specifications.
CPU 4 cores @ 2.53GHz
RAM 5,5 GiB

| 0OS: Ubuntu Linux 16.04 LTS

Table 5.1: Testing Machine Specifications

28

5.1.2 Test Domains

During the implementation of the service, some domains for the crawler to crawl
through were needed. Three domains containing API documentation were discov-
ered through a normal search on the web. These websites were chosen on various
grounds and the choice of each of them are explained as follows:

1. http://api.met.no (About to be deprecated)
Documentation sites for data collected by the Norwegian Meteorological In-
stitute. Chosen because its domain contains a series of API documentation
websites that use XML Schema for output explanation. The domain is also
structured to be relatively shallow, thus keeping a branch of sub-paths low.
Multiple APIs are described within this domain that is described in their own
documentation sites.

2. http://developers.gettyimages.com
Documentation sites for a stock image REST API by Getty images. Chosen
because the domain really only contains a single API that is described through
a series of different "child" sites. The structure of the domain is also deeper
than that of api.met.no. Response bodies from the API are also mostly JSON
files. Examples of these are however written in plain text in the HTML code,
making the examples indexable.

3. https://www.datamuse.com
Lastly, datamuse is an API for word-finding query engine documented through
the domain. Its the smallest of the three and it keep its depth and width short.

An API documentation domain that got left out was the National Road Database
from Norwegian Public Roads Administration.! The API contains a verity of doc-
umentation for utilities that among other things give information on objects on
the road, maps and layouts of the roads in Norway. The domain was not included
because it uses too many instances of fragments in their URIs which are stripped
away in the implemented crawler. This coursed the domain traversal to terminate
prematurely.

thttps://www.vegvesen.no/nvdb/apidokumentasjon/

29

5.1.3 Content Switch

The volume of code that was to be created was anticipated to be large. And the
number of separate files could also be many, so the first stage of content creation
was directed at creating a content switch that let the testing and execution of every
utility to be run from one single source. This switch generates a list of options for
the user that can be activated through user input. The code magic in this utility
is that the script gets hold of the names of every function it bestows. By sorting
out every function with function name starting with the sub-sting "choice " it finds
every function that should be included in the presentation. These are represented
by sorting the functions by function name and displaying the doc string of the
functions as explorations to the switch alternatives. The aim of the switch was to
have a utility that made content creation easier and to serve as a minimalistic Ul
for any end user.

5.1.4 Error Reporting

A wide variety of scenarios were expected from crawling the web. This creates the
diverse range of potential errors that can occur during the crawl. Many of these
failures are completely unexpected prior to running the crawler. This, in turn,
makes the crawler prone to premature termination. A typical response would be
to let the code run until it fails and fix the problem. Since the crawler would take
some time to get back to the same problem was the creation of a debugging tool
necessary. A script that when encountering an exception would parse the error and
store the message with the in script location of failure were created. This script
creates a file that only keeps unique entries that is easy to read. The main priority
of the script is to let the crawler continue without interruption so errors could be
handled in bulk.

5.1.5 Service Configurations

A configuration file was created to keep global variables to a minimum. This file
serves as a common configuration file for the entire system. Alterations of the file
are added as an option to the content switch so the user can change operational
presets for the execution. Additionally, the URI seed list containing domains the
crawler must crawl through is present in this file.

30

5.2 Crawler

The crawler is initiated through the content switch. Upon initiation will the crawler
gather the seed list from the configuration file and start feeding them to the Hier-
archy Constructor. This continues as long as there are uncrawled seeds in the list.
Hierarchy representations returned from the Hierarchy Constructor are forwarded
to a script that that translates the representation to DOT (graph description lan-
guage) format. This is done in a recursive fashion where nodes created for the DOT
scheme are URIs from the actual hierarchy. These nodes are connected between
each other to make a tree graph that visualizes the domain hierarchy. Each node
has hyperlink inclusion to make the website lookup easier. In the end, will the
script translate the DOT file into a pdf that is ready for the user to look upon. The
inclusion of this feature is intended to make the traversal of the crawled domain
easier. Some results are expected to score some sibling pages to a similar weight. In
these cases can valued information be extracted by looking their relation through
this tree. Neighboring and parenting websites can also be found this way which
can be of future use. An example of such a graph visualization of a hierarchy can
be seen in Appendix A.2 (the example does not include hyperlinks).

5.2.1 Hierarchy Constructor

The Hierarchy Constructor is present in a script that handles a single domain at a
time. This script creates a list of URIs it is supposed to visit. A counterpart to this
list is a list of visited URIs that consume the current visited URI from the visited list
upon visitation. Initially is the URI seed the only URI in the visitation list and the
crawler will work its way from that point. The Hierarchy Constructor will run its
course until every URI in the visitation list is visited. Each entry in the visitation list
is unaltered and might contain unwanted queries or fragments. A shaving routine is
implemented to avoid using any unwanted endpoints among the URIs. This routine
removes any fragments from the URI and will simply skip any URI that utilizes any
form of query. The routine is initiated upon the URI swap that updates the current
URI to a new one from the unvisited list.

Interaction with the Coordinator gives the Hierarchy Constructor the data needed
to continue its work. How this data is gathered is explained in the next Chapter
5.2.2. However, the data gathered is a list of URIs present in the visited website
and the actual data body. If any such data are returned are two sets of routines
activated. The first routine is to update the visitation list. These links go through a

31

netloc switch that determines if the URI belongs to the current domain. Separate
handlers are devised to react to any link that follows relative paths, are part of the
domain or from an outside source. Any URI pointing to an outside source are simply
discarded, relative paths are united with the source URI and new URIs within the
domain gets added to the visitation list.

Discovery of a new URI that is supposed to be visited starts a routine that creates or
updates the URI Hierarchy. This is done by having a master hierarchy for the entire
domain that is constructed as a nested python dictionary. Keys in these dictionaries
are sub-paths from the URI discovered and the values are dictionaries with the
same scheme. In order to update or create this hierarchy scheme, a routine will
section the URI into several sub-paths that it recursively iterates. By diving into
the nested structure sub-path by sub-path can the routine confirm if the sub-path
is represented in the hierarchy. Any unrepresented sub-path will be added to the
dictionary at the current depth.

This hierarchy dictionary is further used to create an on-disk directory tree con-
structed to be outlined the same way as the hierarchy dictionary. This on disk
directory tree will be referred to as the physical dictionary.

Reaction to the data body is a set of routines that are queued after the URI list is
examined. How this data is managed can be determined by a set of flags set in the
configuration file. These flags are adjustable through the content switch. Some of
these reactions such as indexation of HTML files can take place at this point but are
described in the next Chapter 5.3. Routines react based upon the flags by storing
the data contents of the data body into files located in the physical dictionary. This
is done to index the files or to evaluate schema later. Files stored this way have
information documents created as supplementary information sources on a file by
file basis. These information files contain information on where the file came from
(URD), its type and subtype if any. Some of the files stored this way have a source
that is not represented by the URI it came from. This can for instance be XML
files where the documentation page is a separate website. The parenting website
is attempted to be found by iterating backward thorough the physical dictionary
until an HTML file is located. By assuming that this file is the source of the XML
file are the two connected for further unified examination.

Each URI source of any HTML file discovered will be stored in an HTML flag-table.
This flag-table show whether or not an HTML source have been indexed. Lastly, a
conversion tool translates XML file with the DTD subtype into XML Schema [18].

32

5.2.2 Coordinator

The real use of the Coordinator stems from the response it gets from the Commu-
nicator. This is done by forwarding a URI from the Hierarchy Constructor to the
Communicator that returns some response data. Response data include a content
type of the response body, a response body and status code from the communica-
tion. For each type of content type is there a content handler. Each of these content
handlers is included in a type switch that creates a different reaction for each type
of data body. These content handlers have each their own set of rules that deter-
mine what the crawler will do with the data body. The handlers that are of interest
are the application and text handlers as they react to HTML and XML code. One
of the jobs of the handlers are to determine the file extensions suitable for the data
bodies. This is done by using a translation table that translates the file type into
a file extension. Whenever a handler comes across an HTML file this way will a
routine that extracts links from the file begin. This is done by using regular expres-
sion to find any links in the data body. Additionally, every tag in the HTML code
is collected. Links located in these tags are extracted. The last step is to include
relative paths if there are any. Links found this way are the URIs that Hierarchy
Constructor examines later.

5.2.3 Communicator

Upon its initiation will the Communicator receive a URI from the Coordinator. Com-
munication with the URI endpoint is done through pythons urllib module that yield
the Communicator an http response. Any redirections that might occur are han-
dled by this module if any. The response is parsed by the Communicator to get the
response code and data body. Additionally, a handler extracts parameters, type,
subtype and charset for the data body.

5.3 Data Handler

Initiation of the Data Handler is done in a similar fashion to the initiation of the
crawler. However, the data handling is separated into three choices: schema eval-
uation, page indexing and key phrase search. Running the schema evaluation and
the page indexing will collectively create the key phrase database as discussed in
the design Chapter 4.4.3.

33

5.3.1 Page Indexing

Page indexing can either be initiated through the crawler when a data body form
an HTML file is discovered or through the content switch. In the case of the crawler,
the raw data is sent to the Page Indexer for examination.

While the content switch will open un-indexed HTML files located in the physical
dictionary. Data contents opened this way will be fed to the Page Indexer iteratively
so that every un-indexed HTML file gets indexed. The content switch gets hold of
any un-indexed file by looking them up through the HTML flag-table described in
Chapter 5.2.1

The first action of the Page Indexer is to look up the HTML in the flag-table to see
if the HTML file is previously indexed and if so, skip it. If it is established that the
HTML code is to be indexed will the Page Indexer load an indexation table into
memory. This table will be referred to simply as the table. This table is created
by the Page Indexer if there is no present table. The way the table is structured is
to have key-value pairs where the keys words from the indexed files. Values are a
new structure where a website is represented by the count of the word and URL of
the website. This table if it exists will contain key-value pairs for all the words that
occur in all the indexed HTML files.

Words from the HTML file is read from the file using Beautiful Soup. These words
or phrases include in some cases example URIs. In these cases are some of the
words, queries or other values connected. A separating scheme takes these URIs
and fine grains them by splitting them based on a list of separators. The originals
are however not lost. This concludes the preparatory work of the indexer.

The nltk module is used to get the vocabulary frequency of the words or phrases
collected from the splitting scheme and HTML text. Results from this practice is
then merged with the dictionary structure loaded from the table. The outcome
is then converted to JSON an object that is written to disk as the newly updated
indexation table. Upon completion will the HTML file be flagged as indexed in the
HTML flag-table.

During implementation was a custom JSON Schema utilizes to enforce correctness
in the indexation table. Use of this feature has since been dropped.

34

5.3.2 XML Evaluation

The XML Evaluation starts out by finding every information document created by
the Hierarchy Constructor see Chapter 5.2.1. This is done through recursive traver-
sal of the physical dictionary while picking out every file with a predetermined file-
name ending. These information documents include file type and subtype for the
XML and XML Schema documents that the evaluator intend to evaluate. This helps
the Evaluator skip the DTD files while picking up the translated counterpart of the
file. Additionally the parent source URI of the file is extracted, this lets the XMl
Schema score to be grouped with the parent HTML score.

An reader class is initiated that iterates through the XML files once the preparatory
work is finished. This class is constructed to do the entire evaluation of every file
imported. Evaluation done by the evaluator is primarily aimed at XML Schema
but some responses stored by the crawler have a pure ".xml" file extension. Files
ending with this file extension are also handled since some of these XML files in-
clude a source to their schema. By visiting their schema source some yield an XML
Schema that can be evaluated, and will be instead of the XML file. This feature
should have been included in the Coordinator as it forces the Evaluator to do web
communication that is not suited here.

Evaluation of an XML Schema is done by recursively iterating through the file and
extracting any raw text bodies form the file if any. These are added together as a
total master string. For every attribute throughout the search will be added to its
own list. These elements often contain combined words that the evaluator splits
so each sub word can be evaluated separately. A shaving routine will remove any
unwanted substrings from the text bodies once the word extractions are complete.

Resulting words and phrases are stored in a structure that keeps track on the
sources of each word. This structure is in the end converted to a JSON object
that gets written to disk.

5.3.3 Lookup Service

The Lookup Service can start once the API Documentation Acquisition is complete
and either or both of XML Schema evaluation and HTML Page Indexing is done.
Target words by the end user are extracted from the configuration file. These words
are sectioned into words or phrases used for input and output. A common list of
phrases is also devised that will be added to both the input and output register. A

35

-

[CR——

routine that finds synonyms and similarly spelled words goes over the lists in order
to expand the range of the words. The API used for this service is one of the API
sites used for testing and are called datamuse.?

Starting out with the indexed HTML data, the lookup service will start out by rank-
ing the pages previously indexed. This is done by initially reading the indexation
table into memory. A routine that iterates through every key phrase or word spec-
ified will follow after the table is in memory. During this routine will every word
close to the current search word be extracted from the indexation table. These
words are not always exactly the words used in the input list but are relatively sim-
ilar. A score based on the similarity between the words are calculated as a ratio
calculated by a sequence matcher. This calculation is then presented to the end
user that gets to chose to include the word. Automation of the last step is togglable
by the user so the end user does not have to answer as many questions. Turing it
off will however reduce the accuracy of the service.

Every word found this way are added to a dictionary that keeps a summary on each
HTML file that contains any occurrences of any words found. Each file represented
in the summary include a set containing words, with the words occurrence count
and similarity score. A new routine will go over these summaries and calculate a
score for each HTML page. The total HTML score calculation is oversimplified in
this pseudocode:

for HIML in summary:
for chosen word in HTML as W
HIML. score += W.count * W.similarity
HTML ranks = summary.HITML sort by scores

The very same process goes for the JSON structure created by the XML Evaluator.
Except that the number of times each word occurs are not used in the calculation
of the end score.

for Schema in summary:
for chosen_word in Schema as W
Schema.score += W.similarity
Schema ranks = summary.Schema sort by scores

The two ranking lists are ultimately combined and sorted by their total score. These
results are translated to DOT and then to a pdf that is presented to the end user.
An example on such an display can be seen in Appendix B.1 (the example does
not include hyperlinks)

2https://www.datamuse.com/api/

36

6 Experiments

This chapter explains how tests of the system are planned out and how these are
executed. Results from these experiments will be examined and discussed through-
out this chapter as well. The goal of this research is to get an understanding of how
well or poorly the implemented program from Chapter 5 serves as a solution to
the Problem statement 1.1.

6.1 Data Sources

A stable environment is required for a meaningful testing phase. So three docu-
mentation domains were chosen to keep the testing within bounds. To recap from
Chapter 5.1.2 where test domains were mentioned. Three domains were used for
testing and these are:
Gettyimages - Documentation for a stock image REST API by Getty images.
Apimet - Documentation for data collected by the Meteorological Institute.
Datamuse - Documentation for an API for word-finding query engine.

All the testing data that is used and every interaction comes from or are done with
these three. Naturally, the contents from these domains will not be identical and
Table 6.1 shows the relevant contents for the domains. This includes the total
amount of websites that the crawler needs to crawl, the amount of URIs that return
as HTML files and XML Schema.

After crawling all these domains, indexing every HTML and evaluating every XML
Schema do the system create a library of data that amount to 14.73 MB. While
out of a total of 170 HTML files will the indexer claim to index 172 pages. This
number is larger than the total number of files to index so this is clearly a bug.
This could imply that 2 pages get indexed twice which should favor them since the

37

API Sites | HTML Files | XML Schema
Gettyimages | 150 92 0
Apimet 270 75 28
Datamuse 10 3 0

Table 6.1: Test domain statistics.

occurrence-rate for the words gets doubled. What triggers this, when or why is
unknown.

6.2 Tests

Experiments carried out are labeled with three different tags. Firstly A, and H,
refers to tests that are aimed at checking the soundness of the solution. In other
words, these tests are devised to check if the different functionalities create results
that useful for any user or any subsequent module in the chain. A, are reserved
for tests on data acquisition i.e. the crawler. While H, are reserved for tests on
the Key Phrase Database and the API recommendations. The third set of tests are
labeled with the T, tag. These tests are aimed at checking out the performance of
the various components of the solution.

e Experiment A; - Comparison of hierarchical graphs to correspondent do-
mains.
Goal: Validate that web pages are nested the way the graph display them as.
This is done to make sure that the crawler actually crawls through the do-
mains in the intended fashion. It is also aimed at making sure that the phys-
ical hierarchy gets nested in a proper way. The problem with a poorly nested
physical hierarchy is that the XML Schema might get connected to unintended
HTML files. Which makes the scores for the API recommendations all wrong.
Experimental setup: Run crawler as deployer to create the URI hierarchy
graphs. Then manually iterate the domain and compare if the endpoints match.

* Experiment A, - Check that the HTML, XSD and XML files gathered are valid
and without errors.
Goal: Validate that the crawler handles response bodies correctly and stores
files with the correct file extensions. This is done to make sure that the data
that gets indexed or evaluated are structured in a way that can create a sound
Key Phrase Database.

38

Experimental setup: First run crawler without active indexation. Then run a
script that iterates every HTML in the physical hierarchy which is validated by
tidylib.? The same is done for XML files by parsing them with xml.2

* Experiment H; - Validation of Key Phrase Database.

Goal: Makes sure that data within the Indexation Table and the Schema Ta-
ble conform to a existing data format. This is done to make score calculations
more predictable.

Experimental setup: Use of the JSON Schema module to compare the Indexa-
tion Table to the JSON Schema file that can be seen in Appendix C.4. The same
process is done for the results from the XML Schema evaluation, JSON Schema
used for this purpose can be seen in Appendix C.5.

* Experiment H, - Locate search terms in API recommendations.
Goal: Make sure that the recommended APIs contain the search words ap-
plied by the user. A failure on this part reduces the solutions credibility and
overall usefulness.
Experimental setup: Manually visit HTML and XML Schema of the top recom-
mended APIs to count the occurrences of search words.

* Experiment T, - Profile function time.
Goal: Find out which functions that use the most amount of execution time.
This is useful for finding bottlenecks in the service and to locate areas that
can be optimized.
Experimental setup: Running the service as a deployer with pythons cProfile3
module active to get deterministic profiling on the crawler, indexer and schema
evaluator.

* Experiment T, - Check if components are IO or CPU bound.
Goal: Find out what if the components are I0(input/output) bound or CPU
bound. This information tell a great deal on where optimizations can be
made.
Experimental setup: Use the psutil* module to get CPU load percents for the
running components.

* Experiment T; - Profile memory use of segments.
Goal: Test the system for memory usage.
Try to locate memory leaks and check to see how the memory consumption

thttp://www.html-tidy.org/
2https://pypi.python.org/pypi/lxml
3https://docs.python.org/3.6/library/profile.html
“https://pypi.python.org/pypi/psutil

39

behaves during execution. Scalability will also be discussed in regard to mem-
ory consumption.

Experimental setup: Run each stage of the computational-chain with the
memory_profiler active.®

* Experiment T, - Crawler File Sizes.
Goal: Get an understanding on how the crawler behave when the data sizes
changes. How handling speed of the solution trends based on a range of fac-
tors can be used tell what causes slowdown.
Experimental setup: Logging time measurement between API responses, re-
sponse body size and Indexation Table size.

e Experiment T - Indexer File Sizes.
Goal: Get an understanding on how the indexer behave when the data sizes
changes. Experimental setup: Logging time spans between each indexed
HTML file, its size and the Indexation Tables size.

Tags Goals: Why the experiment was conducted.
Experiment A; | Validate domain crawl restrictions and hierarchy nesting.
Experiment A, | Make sure gathered data is fit for evaluation.

Experiment H;

Make sure the Key Phrase Database gets structured as intended.

Experiment H,

Check if API recommendations contain the search words.

Experiment T;

Find out which functions that use the most execution time.

Experiment T,

Identify H/W¢ improvements that would increase performance.

Experiment T’

Check for memory leaks and trending memory expense.

Experiment T,

Identify reasons for increased crawl time.

Experiment T5

Identify reasons for increased indexation time.

Table 6.2: Short summary on test goals.

6.3 Results

6.3.1 Experiment - A;

This test was done by manual traversal of the domains in question while simulta-
neously comparing the paths to hierarchical graphs. An example of such a graph

Shttps://pypi.python.org/pypi/memory_profiler

40

can be seen in Appendix A.2. The links embedded in the graphs directs the user to
the correct locations. Some branches of the graph direct to locations that are not
visible as hyperlinks in the websites visited. This is because the crawler finds links
that are written as comments in the HTML code or that are in other ways hidden
from the user. No link found in any graph direct any user to an outside domain.

6.3.2 Experiment - A,

Running every HTML file stored on disk through the tidylib module yielded the
collected results seen in Table 6.3. Through a total of 170 HTML were there 1318
warning and 0O errors. This means that every HTML file was written in an intelligible
way and that the data format is predictable. The high amount of warnings are less
of a concern as they pose more as a problem for the actual developers of the HTML
files in what they really try to convey.

| Warnings | Errors
HTML 1318 0
XML 0 0

Table 6.3: Summary of HTML
validation.

Every XML and XSD file stored on the disk was run through the Ixml module to find
errors in the files. Through a total of 76 files were there no errors. This means that
the files read by the XML Schema Evaluator are fit for evaluation.

6.3.3 Experiment - H;

The JSON Schema module is designed to throw an exception whenever an error
between the JSON document and the JSON schema occur. No such exceptions were
thrown while testing the Indexation Table. Additionally, jsonschemalint” were used
to make sure that the schema used for validation were written correctly. The linter
lets users check if their schema follows the JSON Schema conventions and can be
used to try it out in action against JSON documents.

The Indexation Table was inserted into the linters document section to find out
how lenient the schema really is. This was done by changing a wide variety of

7https://jsonschemalint.com

41

changes to value typings, key names and overall structure of the document. The
conclusion is that the schema is really strict and that leads to the conclusion that
the Indexation Table gets constructed in the designed way.

The same process was replicated for the output from the XML Schema evaluation
and no exceptions were thrown. Therefore the same conclusion was drawn from
this test as well.

6.3.4 Experiment - H;

The API documentation that was investigated in this experiment comes from the
top 4 recommended APIs from a run of the application as an end user. These re-
sults can be seen in Appendix B.1. Data seen in Table 6.4 comes from manually
looking up the keywords in both the HTML file and the XML Schema of each API
documentation listed. Words from the HTML files were counted while words from
the XML Schema were checked for presence.

HTML XML Schema
API (Hyperlinks) wind | latitude | latitudes | latitude | Wind | Score
locationforecast 3 1 0 True True | 7.000
extremeswwc 0 0 0 True True | 6.248
upperwindweather | 4 0 0 False | False | 5.000
spotwind 0 0 0 False | False | 4.417

Table 6.4: Word validation on recommended APIs.

It was clear when looking up the words in the files that the lookup is very strict. For
instance will "latitude," as a substring be overlooked when trying to find "latitude".
On the other hand, will the version with a comma in the end be presented as a
possible inclusion that the user might choose to include. Furthermore, a compari-
son between the words "latitude" and "latitude," creates a similarity score of 0.941
while "wind" and "wind," creates a similarity score of 0.889. So the calculation of
similarity score keeps the service from reliably taking decisions such as this on its
own. The proposed words "WindSpeed" and "spotWind" were included that pushed
the spotwind API onto the list while it contained none of the strict search words.

42

http://api.met.no/weatherapi/locationforecast
http://api.met.no/weatherapi/extremeswwc
http://api.met.no/weatherapi/upperwindweather
http://api.met.no/weatherapi/spotwind

6.3.5 Experiment - T;

note: Tables shown in this experiment are simplified versions of the profiler output.

Table 6.5 and Table 6.6 show execution time of the crawler when it crawled the
three test domains. The tables show profiled data from the use of the python cpro-
file module.® These tables contain a list of functions and their total runtime seen
as Cumtime. Functions displayed in this list are nested together where the top
function is the root function. The first function is in both cases the content switch
that feeds the crawler the URI seeds. Its called one time in both tables. Following
functions are child functions of a function located above in the listings. The next
function can be seen to run 3 times, this is because it is the main function of the
crawler that runs once for each domain. At the bottom is the communicator that
uses all of its time displayed as HTTP communication. As seen in the tables the
communicator attempts to communicate with 368 endpoints.

Table 6.5 was profiled with the inclusion of the JSON Schema feature, while Table
6.6 does not include the use of this utility. The inclusion of the JSON Schema
evaluator required a total execution time 157 seconds while it only took 48 seconds
to run the same set of functions excluding the evaluator. Out of the 157 seconds
were 96 seconds spent on validating schema. This left 30.5% of the execution
time to the rest of the crawler. A bottleneck this large led to the exclusion of the
JSON Schema validator. A compromise could have been to reduce the frequency of
the validations but the validator was removed completely. The curious this about
removing the validator is that the communication time also went down.

This could have been affected by alterations in memory consumption. The total
number of function calls went down to 2.3% of the original. This could imply a large
amount of stack tracing with many memory allocations and garbage collections.
Pythons garbage collection is triggered by a check that activates every time an
object gets allocated, referenced or dereferenced. Which should mean that the
GC(garbage collection) is run often in the case of the validator. Another thing to
note is that the GC runs on the same thread as the rest of the python program. So
memory should not be affected as much if there are no memory leaks. The thing
that could effect the communicator in regard to memory is if the memory used
for the communicator gets moved from one cache to another. All of this is mere
speculation and is not tested in any way.

Table 6.7 shows 20 consecutive runs of the indexer without the crawler involved,

8https://docs.python.org/3.6/library/profile.html

43

Function Calls: 96311214
Primitive Calls: 89966533
Ordered by: Cumulative Time, 157.731 seconds

Ncalls | Tottime | Percall | Cumtime | Percall | Function Description
1 0.001 0.001 | 157.742 | 157.742 | Crawls Domain List
3 0.018 0.006 | 153.862 | 51.287 | Crawls Single Domain
161 0.018 0.000 | 103.543 | 0.643 UPDA Indexation Table
79 0.230 0.003 | 102.132 | 1.293 UPDA HTMLindex List
78 0.078 0.001 | 101.809 | 1.305 Indexes HTML Code
155 0.003 0.000 | 96.808 0.625 Validates Index Table
368 0.003 0.000 | 48.231 0.131 HTTP Communication

Table 6.5: cProfile of indexed crawl with JSON Schema validation active.

Function Calls: 2224440
Primitive Calls: 2195275
Ordered by: Cumulative Time, 48.338 seconds

Ncalls | Tottime | Percall | Cumtime | Percall | Function Description

1 0.001 0.001 | 48.346 48.346 | Crawls Domain List

3 0.016 0.005 | 45.866 15.289 | Crawls Single Domain
368 0.003 0.000 | 39.479 0.107 | Reacts to HTML Response
368 0.002 0.000 | 35.937 0.098 | HTTP Communication

Table 6.6: cProfile of indexed crawl without JSON Schema validation active.

this is listed as the Content Switches 20 Ncalls (number of times the function is
called). The content switch set up to destroy the Indexation Table for each run
so the indexer can create a fresh table each time. The indexer will it examine 172
HTML files for each of these runs, which are the 3440 calls divided by 20. The JSON
Writer will run twice for each file that the indexer indexes. It runs twice since it
needs to update the Indexation Table and the table that keep track on indexed files.

Approximately 67% of the indexation time is spent on the JSON Writer and Reader.
This leaves only about a third of the execution time to the indexation itself. Keep-
ing the Indexation Table in memory over several indexation sessions could be an
effective way to reduce this bottleneck. And instead of writing it to disk when the
crawl ended or after a set amount of indexations. If this were to be implemented,
then it would be really important to handle the table of indexed files the same way.

Table 6.8 shows 20 consecutive runs of the Schema Evaluator. Out of each evalu-
ated schema were approximately 55% of the time used for traversing through the

44

Function Calls: 85095278
Primitive Calls: 85069419
Ordered by: Cumulative Time, 395.957 seconds

Ncalls | Tottime | Percall | Cumtime | Percall | Function Description
20 17.230 | 0.861 | 390.564 | 19.528 | Content Switch
3440 | 3.964 0.001 | 368.108 | 0.107 | Index Page

6920 | 0.203 0.000 | 145.592 | 0.021 | Write JSON

6860 | 0.131 0.000 | 101.918 | 0.015 | Read JSON

Table 6.7: cProfile of Indexing NO crawl.

file to extract the data. The function that does this is written recursively so an
attempt at reducing this time was committed. The attempt was to rewrite it itera-
tively, but the execution time did not go down, surprisingly. The fourth function in
the list is hard to gauge as it includes HTTP communication.

Function Calls: 24792987
Primitive Calls: 21221231
Ordered by: Cumulative Time, 216.152 seconds

Ncalls | Tottime | Percall | Cumtime | Percall | Function Description

20 0.078 0.004 | 216.152 | 10.808 | Content Switch

580 0.733 0.001 | 163.716 | 0.282 | Switch XML Schema

900 138.556 | 0.000 | 141.550 | 0.157 | Traverse XML

580 1.006 0.001 | 38.567 0.066 | Get XML Schema from source
1440 | 26.472 | 0.018 | 30.043 0.021 | Shave Text

900 0.017 0.000 | 21.240 0.024 | ElementTree parse

Table 6.8: cProfile of XML Schema evaluation NO crawl.

6.3.6 Experiment - T,

Figure 6.1 shows the CPU load on the crawler while running with active indexing.
Again this is run over three API documentation domains and the figure shows an
average of 20 runs on all of them. The y-axis shows the processing load of the thread
relative to one core. While the x-axis shows the CPU time of the process, not to be
confused with execution time. CPU time is the amount of time for which a CPU
was used for processing instructions of a thread. And Table 6.9 shows statistical
information in the same data.

45

100 . Indlexed Crawrl - CPU usage

Total CPU load, %

0 1) 1 | 1

0 5 10 15 20 25 30
Process Time, seconds.

Figure 6.1: CPU drain during indexed crawl over 3 domains.

We can see that the actual load on the CPU is not really near 100% which suggest
that the crawler is IO bound. This statement can be supplemented by looking at
the communication time from Table 6.5 where approximately 70% of the runtime
is used on HTTP communication. A solution to this could be to parallelize the code
and run HTTP pipelining [19] to reduce the communication time. If the code were
to be parallelized, then multiple APIs could also be crawled at the same time. This
could reduce any bottlenecks set in place by the API documentation sites.

Another room for improvement is to avoid using urllib that is currently used in this
implementation. The problem with urllib is that it doesn’t support persistent con-
nections. By changing it to http.client that support persistent connections trough
legacy http/1.0 keep-alive [20].

Figure 6.3 shows the average CPU load on the indexer over a set of 20 runs on
HTML files collected from all three test domains. The y-axis shows the processing
load of the thread relative to one core. While the x-axis shows the CPU time of the

46

CPU Memory
Mean 47.339 | 91.923
Standard Deviation | 16.882 | 5.138
Variance 285.022 | 26.409
Minimum 1.9 3.781
Maximum 90.9 97.714

Table 6.9: Statistical description of data from in-
dexed crawl

process, not to be confused with execution time. And Table 6.10 show statistical
information in the same data. Since the CPU load is so high can it be assumed that
the indexer is CPU bound. This is a little surprising as Table 6.7 show that 67% of
the computation time is spent on the JSON write and read functions.

This could make sense if the functions named "loads" and "dumps" from the JSON
module of python use a long time translating the python objects to JSON code.
An objous alternative to optimizing the code is to rewrite some code to make it
concurrent and then run indexation of several pages in parallel.

A new module was found that might help the program with the slow runtime of
the JSON translations. This module is named ujson® and is written for python and
claim to be a faster JSON encoder than the original. A minor experiment that test
ujson compared to json to see if it actually could help this system. The test uses
the formula 6.1 from Figure 6.2 that iterates through each time stamp from the
dataset described in the third stage of Experiment - T's which can be seen in Figure
6.11. The formula contains the sum mean time used for indexation for each size
variation of the Indexation Table. The result of the formula is the average time used
to index one megabyte of raw HTML data. The regular JSON module used 0.107
seconds in average and ujson used 0.084 or 78.5% of the original. This is deemed
a good improvemnt so the ujson module was left in. Upcoming data was collected
before the inclusion of the usjon module.

Speed = $172 Lx . 920 (6.1)

QIZO Sx
Figure 6.2: Equation 6.1: Speed calculation of json and usjon.

Note: CPU load is seen to go above 100% which means that some imported module
uses multithreading.

https://pypi.python.org/pypi/ujson

47

00 . Pure Indexatlorn - CPU usage _

150 ”

100

CPU load, %

50

0 | 1 -
0 5 10 15 20

Process Time, seconds.

Figure 6.3: CPU drain during pure indexation of HTML files from 3 domains.

6.3.7 Experiment - T

Each of the tested sections deals with files that will increase in size over time as
the crawler find new data to examine. Like for instance will the Indexation Table
increase in size as new HTML files get discovered. Because of this is it expected that
the modules that read these files into memory, will gain a great deal in memory con-
sumption as time goes by. Memory consupconsumptiontion to filesize comparison
test is however not conducted.

Experiment - T; Crawler

The first test carried out in this experiment was on the crawler with active indexing
during the crawl. Data collected for this test was done by repeatedly indexing
the three domains 20 times each while monitoring the memory consumption. The

48

CPU Memory
Mean 99.114 | 86.242
Standard Deviation | 9.283 | 7.292
Variance 86.181 | 53.174
Minimum 0.0 9.300
Maximum 198.7 | 92.832

Table 6.10: Statistical description of data from
pure indexation

results can be seen in Figure 6.4 with the statistical information listed in Table 6.9.
A cleanup of crawled data written to disk was executed between each new iteration
of the three domains. This made each iteration of the domains in theory identical.
During the first iteration was the memory allocated to the crawler around 75 to 80
Mb while entering the third iteration was the memory consumption up to around
90. Its expected that the first iteration should increase the memory consumption
but the drastic increase from the first iteration to the second is somewhat surprising.
The incremental step of memory consumption between iteration one and two are
larger than the increase between iteration two and nineteen. Furthermore, the
memory seems to creep upwards from when the point when it reaches 90 Mb. This
could lead to a problem when running over a longer period of time. The way the
Indexation Table is structured to be written also poses a problem down the line. As
its increase in size also will effect the memory consumption of the crawler when
indexation is active. This leads to the conclusion that the service has a scalability
problem.

Experiment - T; Indexer

The next test of this experiment was done on the indexer alone, the graph on the
data collected can be seen in Figure 6.5. 20 iterations over the three domains that
in total contain 172 HTML files, were conducted as a basis for the collection of data
on this test as well. Between each iteration can it be seen that the memory goes
down so the memory used occilates between 83 to 93 Mb. The indexer does not
appear to have problems with memory leaks as the level of memory consumption
seem stable.

49

100

Indexed Crawl - Memory consumption
T - T —

Memory use, MB.

70

0 200 400 600 800 1000
Execution time, seconds.

Figure 6.4: Memory consumption during indexed crawl over multiple domains.

Experiment - T; Schema Evaluator

The last step of experiment T3 was to test the schema evaluator. This was done
over 28 XML Schema all collected from api.met.no, data gathered was intended
to be from all three domains but api.met is the only one with XML Schema. Like
the other tests, this one has run over 20 iterations and the results can be seen in
Figure 6.6. Running schema evaluation in between other tasks seems to be working
without any real memory leak problems. The middle section has a longer execution
time than the rest. This happened because other processes in the background were
active.

50

100 Pure Indexation - Memory consumption

951 1

90 -

Memory use, MB.

80}

75+ B

70 L 1 | L 1 L L
0 50 100 150 200 250 300 350 400

Execution time, seconds.

Figure 6.5: Memory consumption during pure HTML indexation.

6.3.8 Experiment - T,

The first section of this test is to see how the size of the Indexation Table effects
the crawl time during crawl with active indexing. This was done by timing the
execution time on the crawler between each received HTTP response and storing
the time value together with the size of the Indexation Table at that moment. Re-
sponses containing filetypes other than HTML were not included, so every entry in
the plot have combined indexation and crawl time. Additionally, the response time
from the HTTP request was removed as well, so the execution time of the crawler
and indexer is the only process measured. The crawler iterated through 20 cycles
of three domain crawls in order to get the data for this experiment. The mean of
time span for each size variation can be seen in the graph in Figure 6.7. where the
x-axis show the size of the Indexation Table and the y-axis show the time it took to
crawl one website. Some data points are left out of the mentioned Figure as they
made the graph a lot harder to view. These can be seen in Appendix C.2 where

51

140 Pure Schema Evaluation - Memory Consumption.
130+ 4
120} 1
2
g 110t 4
(%]
]
>
g 100 !
[}
=
90 .
80} .
70 | 1 1 | 1 il
0 50 100 150 200 250 300 350
Execution time, seconds.

Figure 6.6: Memory consumption during schema evaluation.

the graph with the outliers is left in.

The graph from the Figure 6.7 can be argued to be somewhat linear with some
outliers here and there. An increase in executiontime is realy expected as the In-
dexation Table is written to disk and read between each indexation. Which should
take longer time based on the size of the Indexation Table. An exponential growth
had been way worse compared to the linear natrue of the system as we see here.
How the crawler act when the table grows outside the range of the Table is unknown
but this small sample range suggest that it might keep a linear progression.

The outliers are however troubling as they make the flow of the service somewhat
irregular. Each of these outliers come from the same domain and the sites were
they come from are also listed in the Appendix. The nice thing is that the outliers
allways came from the same sources. Exactly what the problem is, is not known
but one thought was that it could be the size of the return package that effected
the crawl time. Which naturally could be the case, so the next segment is on how

52

the return file size effects the crawler. The outliers will be further discussed there.

0.25 Crawl Time - Indexation Table Size.
0.20 g
[0
©
C
o
9 0.15} 1
1]
o
£
(@]
£ 010} g
©
C
©
T
0.05+ :
000 L | L 1 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600
Size of Lookup Table, kilobytes.

Figure 6.7: Runtime of indexed crawl based on Indexation Table size.

The same process for datacollection for the second segment of this experiment was
conducted the same way as the first but with some small changes. Active indexing
was turned off and the size of the returned HTML file were recorded instead of the
size of the Indexation Table. The data can be seen in the graph in figure Figure
6.8 where the x-axis shows the size of the HTML file received in kilobytes and the
y-axis show the time used to handle everything from when the previous packeage
was received. Recorded time used on the HTTP communication were subtracted
for each packet received. Some outlier were removed from this graph as well and
can be seen in Appendix C.3 where graph have the outliers included.

The outliers removed from this graph came from the same sources that got removed
from Figure 6.7 reasently discussed. So the packet size was not the reason for the
exatra delay for the outliers. And no test have been successfuly used to identify the
reason for the larger outliers.

53

Handle time increases as the response body increases as seen in Figure 6.8. How
the progression act can be hard to extract from the graph as it contains few entries
with higher response volumes.

0.020 . . Crayvl Tlmer- Reseonse §|ze.

—

— W/O Indexation
0.018 - 4

Handling time, seconds.
o
o
=
N
T
L

0.010} 1
0.008 | 1
0.006 4
0.004

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Response body size, bytes.

Figure 6.8: Runtime of pure crawl based on HTTP response size.

The third section of this experiment was to see how the total execution time ef-
fected crawl-time of single websites. The experiment was conducted by running
the crawler without active indexing through the three domains 10 times while
recording the total process time with the time between each crawled endpoint.
The results can be seen in Figure 6.9 where the x-axis shows the total process time
at that very moment and the y-axis shows the time between each file response from
any endpoint. Note that the x-axis actually shows process time and not execution
time, which is way higher. As seen in the Figure does the actual time between pack-
ets go down. This is because of a change in domain crawl during the total crawl
session. The mean of each tripple domain cycle cas calculated and cen be seen as
the red dots in the graph. The statistics on these dots eas calculates as well, with a
mean of 0.008, a standard deviation of 0.0002 and a variance of 4.07*10°®. This
makes the standard deviation around 2.4% of the mean which does not makes little

54

ground for any increase. The increase might be there but the data can not support
that claim.

0.040 _ Non Indgxed Crawl - Tlme usagg

0.035 - -

0.030F} 1

0.025 1

0.020

0.015

0.010

Time Between Responses, seconds

0.005

0000 L | ! L |
0 10 20 30 40 50 60 70 80

Process Time, seconds.

Figure 6.9: Runtime of pure crawl based on total runtime.

6.3.9 Experiment - T

This experiment is aimed at finding behavior patterns in the Indexer when changing
the size of IO components. First a test on how the HTML files affect the indexer
was conducted. This was done by running the indexer over HTML files from the
three domains 20 times and letting it index everything each time. The time span
between each indexed HTML file was recorded along with the size of the actual file.
In hindsight should the Indexation Table be altered in between each iteration so a
fixed table could be used for the experiment. Some additional variance is therefore
introduced since the size of the Indexation Table changed along with the execution
of the indexation. On the other hand, the order of HTML files was randomized
between each iteration so there is some merit to the graph, which can be seen in

55

Figure 6.10. The x-axis shows the size of the HTML files while the y-axis shows the
time it took to index that file in seconds. To be open about it, this graph does not
yield enough stable information to make any sound statement on how the indexer
react to the increase in HTML sizes. The variance is to high and the lack of data in
higher file sizes makes it inconclusive.

0.20 . . Indelxatlon ;I'lme -THTML §|ze.

-

0.18}

0.16

0.14

0.12}

0.10+

Time seconds

0.08 } 4

0.06 | .

0.04 .

0.02

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
HTML size, bytes.

Figure 6.10: Runtime of pure indexation based on HTML file size.

The second section of this test is to see how the size of the Indexation Table effects
the indexation time of the Indexer. This was done by timing the execution time on
the indexation of one HTML file and storing the time value together with the size of
the Indexation Table at the moment of completion. This was done for every HTML
file iteratively on all files collected from the three domains. This process was done
20 times where the HTML files that got indexed were indexed in a random order
for each time. This was done to keep the influence of the current HTML file size
from bearing a too large imprint on the test results. Results from the test can be
seen in Figure 6.11 where the x-axis shows the size of the Indexation Table and
the y-axis show the time it took to index one random HTML file.

56

The graph from the Figure 6.11 can be argued to be somewhat linear. An increase
in execution time is really expected as the Indexation Table is written to disk and
read between each indexation. Which should take longer time based on the size
of the Indexation Table. An exponential growth had been way worse compared
to the linear nature of the system as we see here. How the indexer act when the
table grows outside the range of the Table is unknown but this small sample range
suggest that it might keep a linear progression.

0.30 Indexation Time - Index Table Size.

0.20 -

0.15F

Time seconds

0.10}

0.05¢ 4

000 1 1 L L il il 1 L
0 200 400 600 800 1000 1200 1400 1600 1800

Indexation Table size, Kilobytes.

Figure 6.11: Runtime of pure indexation based on Indexation Table size.

57

7 Discussion

This chapter will reflect on the process of working on this thesis and how the re-
sulting end product stands in comparison to the Problem Statement 1.1: Design
a set of automatic overview mechanics presenting resource location and relevance on
key phrases related to open APIs as a mean to reduce development delay due to open
API documentation exploration. This will include discussion on how the project
evolved in regard to analysis of the project as a whole.

7.1 Project Evaluation

Let’s start out with a brief summary of what the solution is comprised out of. The
key set of features outlined in this thesis have all had one greater purpose, to reduce
the development delay for users that need to find APIs that fit their design. A pro-
posed solution has been to create a crawler that creates an overview on APIs that
can be presented to the user. These APIs were then rearranged based on the user’s
needs applied as a set of key phrases or words. Descriptions on API input were
extracted by normal HTML indexing and output for the API was located through
metadata located in schema, all of which are gathered by the crawler. These fea-
tures were separated into two sections that were termed Data Acquisition and Data
Handling which will be discussed now. Discussion on the Data Acquisition will be
on how viable the crawler can be in a deployed setting and how well the data gath-
ered suites the purpose of the Data Handler. Discussion on the Data Handler, on
the other hand, will analyze how well the Key Phrase Database act in a deployed
setting and how well the actual results presented to the user actually help the user
in discovery of suitable APIs.

58

7.1.1 Data Acquisition

Intermediary data collected by the crawler were absolutely crucial in the compu-
tational chain of the solution. This is truly the case since everything builds directly
upon the discovery of the crawler. Two experiments were devised to verify the data
gathered at this stage.

The first experiment; Experiment A; tested which websites within a domain the
crawler visit and how the representation of the URI hierarchy match the structure
of the domain visited. The test showed that the crawler, in fact, does its job as
intended in regard to domain traversal. Where the boundaries i.e. restriction to
keep traversal within the domain was held.

The validity of the data gathered by the crawler was tested in Experiment A, where
the HTML files stored to disk were verified to be written in a proper way. By re-
viewing the results can we see that there are some warning but no errors. This
means that the data gathered builds a sound foundation for the indexer and that
the indexed data comes from sources that would not direct any user to a dead end.
XML files and schema were also tested and the results.

The conclusion on the crawler is that it does as it is designed. Flaws in the de-
sign can, on the other hand, be scrutinized as the current implementation is held
back in terms of handling time of domains by a verity of reasons. The fact that
everything is single threaded and run as one single process makes the entire crawl
stop in its entirety whenever the crawler waits on HTTP communication as seen in
Table 6.6 from Experiment T; where only 69.5% of the execution time was spent
waiting. The implication this has on the system as an entire unit is that the rate
at which APIs can get applied to the Indexation Table is reduced. Which reduces
the range of APIs that can get represented to the end user. This is of course under
the assumption that the crawler will be applied URI seeds frequently enough to
run non stop. Another problem that the crawler will face when running without
interruption is that has a memory consumption that has an increasing trend as seen
in Figure 6.4 from Experiment T';. This increase in memory consumption can be a
problem but the memory consumption of the crawler without active indexing was
never conducted. So there is a chance that the increase in memory consumption is
a problem that arises solely from the fact that the Indexation Table takes up room
in memory that is included in the graph from Figure 6.4. By looking at Figure 6.9
from Experiment T, it would seem that the execution time does not really increase
much between domain switches. As seen in the same test the mean between the
cycles have a mean of 0.008 and a standard deviation of 0.0002 which makes it
seem that the scalability of the crawler as a separate instance is unproblematic.

59

That assumption is stated as a remark on the crawler separately from the indexer
that will be discussed momentarily. On the other hand, if the crawler would be set
loose on the entire web. Then it would definitely have a large scalability problem.
Additionally, the size of the domains used for testing are somewhat small so the
crawler might act differently under larger domain crawls.

One of the biggest drawbacks of the implemented crawler is that it requires manual
feeding of URI seeds to the seed list as mentioned in Section 4.3.1. This shifts the
burden from the end user to the deployer which in praxis should serve to make
the end user happy. But the hardship placed on the deployer makes the service
unattractive due to the lack of automation on their end. Whats really needed might
be an additional smaller and more lightweight crawler that finds domains that con-
tain API documentation that feeds the seed list. Such a feature have been thought
of but have not been a focal point in any way.

Much of the data on disk is really unnecessary in an actual deployed setting but
were written to disk for development and testing purposes.

7.1.2 Data Handling

Data collected for the crawler as seen in point 1. from Figure 4.2 in Chapter 4.4
creates the foundation of future work for the Data Handler as a whole. As seen
in the same Figure, two components utilize this information to collectively create
the Key Phrase Database (above 5.). The intermittent work sections are the Page
Indexer and the Schema Evaluator. These will be discussed as the first section of
the data handling process. The second section will discuss point 5 to 7 from the
same Figure.

The contribution by the Page Indexer was tested in Experiment H; where the val-
idation of the output structure was conducted. The test came out clean so the
Indexation Table gets written as intended. However, the design of the Table creates
a large scalability problem down the line for the entire service. It is structured to
contain every word, their count and the source of the word all within one file. This
single file gets written and read multiple times throughout the indexation phase,
during the crawl or otherwise. And the Table will take more and more room in
memory and the total disk use will continue to grow as the process goes on since
the Table only increases in size. The problem with this is many as the size increase
causes the reads and writes to take longer for every expansion of the file. This can
be seen clearly in Figure 6.8 from Experiment T, and even more firmly from Fig-

60

ure 6.11 from Experiment Ts. Ony can only imagine how low the service would
run when the memory consumption reaches the threshold of the cache. One possi-
ble solution would be to create several files where they only contain a fixed amount
of words so the read and write time would go down. The obvious problem with
this is that it only postpones the inevitable problem just recently addressed that
surely would arise all over again. It would be safe to assume that an entire infras-
tructure tailor-made for the Indexation Table would be required to turn make the
Data Handler scalable.

The same analysis can be applied to the Schema Evaluator that through Experi-
ment H; was shown to work as intended. The same scalability problem would,
of course, be the same as with the Indexer and would require similar treatment.
Fewer tests were made on the Schema Evaluator compared to the Indexer, but they
serve a similar purpose and gets the job done in a similar fashion. The Schema
Evaluator was made later in development and were written in a way that made it
hard to include in the active crawl. This is an oversight that should not have been
made as it made testing awkward and that it causes more work for the deployer.
Another missed opportunity with the Schema Evaluator is that it has access to the
element types of the values it extracts. These should have been coupled with the
words to signify what kind of response these fields actually yields.

The second stage of the Data Handler shown in Figure 4.2 in Chapter 4.4 as num-
ber 4. to 7. will suffer the same scalability problems that the Indexer and Schema
Evaluator suffer from. This section is not tested much in terms of performance but
it stands to reason that working on the same set of data as the previously men-
tioned would pose the same set of problems. Specifically, the Indexation Table and
the Table from the Evaluator would be read into memory in order to make the API
recommendations. The least compelling feature of this section of the Data Handler
is that the data required to make the API recommendations are not currently sepa-
rated from the end user. Which means that the end user actually needs to have the
datasets on their own drives to run the Lookup Service. This catch is easy to rectify
with small changes but the service in its current form is intended as a proof of con-
cept. One test was conducted on this feature and can be seen here Experiment H,.
This test was aimed at finding the search terms in the recommended APIs to verify
that the recommended APIs actually contain the terms the user is looking for. The
recommended API does indeed contain the search words but the algorithm is very
stiff and could need tuning to capture the essence of what the user truly is after.
The lack of type comparison also makes the results somewhat ambiguous.

61

7.2 User Service

So how well does the service serve the requirements of the end user? First and
foremost the input data gathered are used in a way that does not really distinguish
documentation text from queries. The result of this is that the score created for the
input is not representative for the required input arguments that the user might be
able to apply. What the input score actually might be able to represent is the nature
of the APIs it recommends but the URI query is still not known to the end user until
manually investigated. The positive side is that example queries get dissected so
smaller chunks of potential useful query keys get included in the representation.

The output assessment is fairer but the missed opportunity of coupling the key with
intended value typing lessens the accuracy and overall use. Additionally, the source
of the schema should be presented alongside the source of the API documentation
page if found.

What the representation of both input and output sorely lack is some kind of ex-
planation on how the score gets created through some kind of anchor text. The
anchor text should also give a brief overview of what the API does.

The positive side of the argument is that the service actually reduces the number
of documentation pages for the user and presents them in an orderly fashion. So it
can be used to reduce the development delay for developers that seek open APIs if
the discussed problems get addressed.

7.3 Future Work

There are features left out of the design and implementation that should help to
serve the service in a positive light.

One such feature would be to have a mechanism that reconstructs URI queries fit
for the given APIs. Much of the required information for this feature is present in
the HTML code through URI examples and through the question mark separator
with the ampersand and semicolon delimiters. The reconstructed URIs could be
tested with the Schema coupled with the API to verify that the return form is of
use to the end user.

Another feature could take advantage of the previous suggestion. This feature

62

would include a translation table that converts API specific queries into standard-
ized vectors. These vectors should be applicable both ways so a single query poten-
tially can reach out to a series of APIs with different queries with the same mean-
ing. An example of this would be two URIs with a single timestamp query key. The
first query could be given an arbitrary timestamp of "1994-11-05T08:15:30-05:00"
that corresponds to November 5, 1994, 8:15:30 am, US Eastern Standard Time.
This timestamp could be translated to a standardized form that the mechanism
translates to other queries acceptable for other URIs such as query 2 that accept
"1994-11-05T13:15:30Z" that corresponds to the same instant. The use of this for
the end user is that the mechanism could let the user run a single query search
that yield a series of possible responses that can be listed as possible outcomes. The
problem with this feature is that it requires a lot of manual work in order to get it
going without delving heavily into latent semantic analysis or machine-learning.

There are currently several similar variations of the exact same word present in the
Key Phrase Database such as "latitude" and "latitude,". A table of aliases should be
created that convert entries like these into a single entry where redirection is used
to store all information in a centralized location.

63

8 Conclusion

This thesis has had a focus on a design aimed at simplifying the development pro-
cess for developers in search of open APIs through reducing the span of API docu-
mentation exploration as the Problem Statement 1.1 declares: Design a set of au-
tomatic overview mechanics presenting resource location and relevance on key phrases
related to open APIs as a mean to reduce development delay due to open API documen-
tation exploration. In order to reduce their development delay, the design consist
of two main sections; the Crawler and the Data Handler. Where the Crawler is a
purpose-built web crawler that gathers API documentation and connected schema.
While the Data Handler treats the gathered data which gets utilized together with
input from an end user to create a set of API recommendations for that given user.

The findings of this thesis reveal that the structure of the design, in fact, can be
used to create a service that helps developers in search of APIs. As the resulting API
recommendations that get created at the end of the computational chain have been
verified to conform to a set of search keys. The service created a demonstration of
this claim is however not without flaws. An increase in crawled domain territories
increases the crawl time in tandem with the increased reach of the service, thus
causing a scalability problem. Mono threading of the service is also a culprit for
the prolonged execution time. Additionally, the separation between any deployer
and end user are not currently factual as every component of the service is currently
centralized.

Considering the aspects mentioned above and by keeping in mind that the imple-
mentation is a proof of concept have the thesis provided one possible solution to
reducing manual API documentation exploration time. And as a whole does the
solution show promise to become a viable option through some addressment of the
outlined problems.

65

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

ProgrammableWeb, “Chart of web api growth from 2005 through
2013 (source: Programmableweb.com).” https://www.slidesha
re.net/programmableweb/web-api-growthsince20057ref=https:
//www.programmableweb.com/api-research, Apr 2014. Accessed:
2017-16-11.

W. Santos, “Programmableweb api directory eclipses 17,000 as api
economy continues surge (source: Programmableweb.com).” https:
//www.programmableweb.com/news/programmableweb-api-directory-e
clipses-17000-api-economy-continues-surge/research/2017/03/13,
Mar 2017. Accessed: 2017-16-11.

M. Linares-Vasquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshyvanyk,
“How do api changes trigger stack overflow discussions? a study on the an-
droid sdk,” in Proceedings of the 22Nd International Conference on Program
Comprehension, ICPC 2014, (New York, NY, USA), pp. 83-94, ACM, 2014.
Accessed: 2017-11-15.

M. Masse, REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. " O’Reilly Media, Inc.", 2011.

T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-wide web:
The information universe,” Internet Research, vol. 20, no. 4, pp. 461-471,
1992.

R. T. Fielding and G. Kaiser, “The apache http server project,” IEEE Internet
Computing, vol. 1, no. 4, pp. 88-90, 1997.

V. Anand, “Creating a rest service using asp.net web api.” http:
//prideparrot.com/blog/archive/2012/3/creating_a_rest_servic
e_using_asp_net_web_api, Mar 2012. Accessed: 2017-11-15.

66

https://www.slideshare.net/programmableweb/web-api-growthsince2005?ref=https://www.programmableweb.com/api-research
https://www.slideshare.net/programmableweb/web-api-growthsince2005?ref=https://www.programmableweb.com/api-research
https://www.slideshare.net/programmableweb/web-api-growthsince2005?ref=https://www.programmableweb.com/api-research
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
http://prideparrot.com/blog/archive/2012/3/creating_a_rest_service_using_asp_net_web_api
http://prideparrot.com/blog/archive/2012/3/creating_a_rest_service_using_asp_net_web_api
http://prideparrot.com/blog/archive/2012/3/creating_a_rest_service_using_asp_net_web_api

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. T. Fielding and R. N. Taylor, Architectural styles and the design of network-
based software architectures. University of California, Irvine Doctoral disser-
tation, 2000.

R. T. Fielding and R. N. Taylor, “Principled design of the modern web archi-
tecture,” ACM Transactions on Internet Technology, vol. 2, pp. 115-150, May
2002.

S. Spetka, “The tkwww robot: beyond browsing,” in Proceedings of the 2nd.
WWW conference, vol. 94, 1994.

S. M. Mirtaheri, M. E. Dingtiirk, S. Hooshmand, G. V. Bochmann, G.-V. Jour-
dan, and I. V. Onut, “A brief history of web crawlers,” in Proceedings of the
2013 Conference of the Center for Advanced Studies on Collaborative Research,
pp. 40-54, IBM Corp., 2013.

T. Yoke Chun, “World wide web robots: an overview,” Online and CD-Rom
Review, vol. 23, no. 3, pp. 135-142, 1999.

A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts. New
York, NY, USA: McGraw-Hill, Inc., 6 ed., 2011.

P. A. Ly, C. Pedrinaci, and J. Domingue, “Automated information extraction
from web apis documentation,” in International Conference on Web Informa-
tion Systems Engineering, pp- 497-511, Springer, 2012.

T. Xie and J. Pei, “Mapo: Mining api usages from open source repositories,” in
Proceedings of the 2006 international workshop on Mining software repositories,
pp. 54-57, ACM, 2006.

C. Parnin and C. Treude, “Measuring api documentation on the web,” in Pro-
ceedings of the 2nd international workshop on Web 2.0 for software engineering,
pp. 25-30, ACM, 2011.

D. Crocker, “Standard for the format of arpa internet text messages,” 1982.

D. Connolly, B. Bos, Y. Koike, and M. Holstege, “A conversion tool from dtd to
xml schema,” Apr 2000.

H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie, and
C. Lilley, “Network performance effects of http/1.1, css1, and png,” in ACM
SIGCOMM Computer Communication Review, vol. 27, pp. 155-166, ACM,
1997.

67

[20] D. Gourley and B. Totty, HTTP: the definitive guide. " O’Reilly Media, Inc.",
2002.

68

Appendices

70

Appendix B.1 Contain results from the key phrase lookup: Key phrases used in
calculation of the Documentation Score: "wind", "latitude" and "latitudes". Key
phrases used in calculation of the XML Schema Score: "latitude" and "wind".

Appendix C.2 and Appendix C.5 contain outliers from these sources:

1. http://developers.gettyimages.com/api/docs/v3/downloads/videos/id/post
2. http://developers.gettyimages.com/api/docs/v3/downloads/images/id/post
3. http://developers.gettyimages.com/api/docs/v3/downloadworkflow.html

4. http://developers.gettyimages.com/api/docs/v3/oauth2.html

71

A Results: Data Acquisition

73

'URI hierarchy of: http://api.met.no

(a) Subfigure of Figure A.1

74

(b) Subfigure of Figure A.1

75

\‘\ S <

documentation

nowcast

‘weathericon

(c) Subfigure of Figure A.1

76

TG
@
@@
@D
(d) Subfigure of Figure A.1
77

vilkaar_tjeneste.html

tl_faseBCD.xml

license_data.html

faseB.xml

lisens_data.html
conditions_service.html

obsforecast.xml
\ t_faseD.xml
tl_faseB.xml

obsforecast_empty.xml

obsforecast_empty.xml

gale_nb.xml

obsforecast_lat.xml

Figure A.1: URI Hierarchy represenstaion of the api.met.no domain.

78

URI hierarchy of: http://developers.gettyimages.com/api/docs/
(= @
G
(D &
@ \ &=
E&—®
G
http://developers.gettyimages.com/api/docs/
&E—E—®
O &
® & /O
&
<
= &
©
G B &

Figure A.2: URI Hierarchy represenstaion of the developers.gettyimages.com domain.

79

URI hierarchy of: https://www.datamuse.com/api/

https://www.datamuse.com/api/

Coantm >
(O

Figure A.3: URI Hierarchy represenstaion of the crawling www.datamuse.com domain.

80

B Results: Data Handling

81

API Recommendations

Documentation Score: 3.000
XML Schema Score: 4.000 http://api.met.no/weatherapi/locationforecast
TOTAL Score: 7.000

Documentation Score: 0.000
XML Schema Score: 6.248 http://api.met.no/weatherapi/extremeswwc/1.2/schema
TOTAL Score: 6.248

Documentation Score: 5.000
XML Schema Score: 0.000 http://api.met.no/weatherapi/upperwindweather
TOTAL Score: 5.000

Documentation Score: 0.000
XML Schema Score: 4.417 http://api.met.no/weatherapi/spotwind
TOTAL Score: 4.417

http://api.met.no/weatherapi/temperatureverification

http://api.met.no/weatherapi/temperatureverification/1.0/schema

http://api.met.no/weatherapi/probabilityforecast

http://api.met.no/weatherapi/forestfireindex/1.1/schema

Documentation Score: 0.000
XML Schema Score: 4.000 http://api.met.no/weatherapi/uvforecast
TOTAL Score: 4.000

http://api.met.no/weatherapi/locationforecastlts

http://api.met.no/weatherapi/extremeswwc

http://api.met.no/weatherapi/forestfireindex

http://api.met.no/weatherapi/tidalwater

Documentation Score: 4.000
XML Schema Score: 0.000 http://api.met.no/weatherapi/verticalprofile
TOTAL Score: 4.000

Documentation Score: 3.000

XML Schema Score: 0.000 http://api.met.no/weatherapi/locationforecast/1.9/documentation

TOTAL Score: 3.000

http://api.met.no/weatherapi/textlocation

Figure B.1: Example results from the key phrase lookup.

82

C Misc

83

Installations of modules used for creation and use of the crawler and handler.

1.

2.

10.

11.

12.

13.

Install Ubuntu 16.04 or any appropriate substitution.
Python 3.5 or higher (bundled with Ubuntu, Required).

Graphviz installation(Required) e.g.:
pip install graphviz
pip install pygraphviz

Beautiful Soup installation(Required) e.g:
pip install beautifulsoup4

. Natural Language Toolkit installation(Required) e.g:

sudo pip install -U nltk

. JSON Schema installation e.g:

pip install jsonschema

. Tidy HTML tool installation e.g:

sudo apt install tidy

Memory Profiler installation e.g:
pip install -U memory _profiler
python setup.py install

. Psutil Process utility installation e.g:

sudo pip install psutil

NumPy matplotlib e.g:
sudo pip install -U matplotlib

NumPy installation e.g:
sudo pip install -U numpy

UJSON installation e.g:
pip install ujson

Lxml installation e.g:
pip install bxml

Figure C.1: Setup Installations

84

1.9 Crawl Time - Indexation Table size.

-

@® Removed outliers

1.0}]

o
(o0}
T
I

Handling time, seconds.
o o
N o
L T
1 1

) WW WMMJWWWMW

0 200 400 600 800 1000 1200 1400 1600
Size of Lookup Table, kilobytes.

0.0

Figure C.2: Outliers - Crawl Time, Indexation Table size.

85

1.0 Crawl Time - Response Size.

® ¢ — With Indexation
@® Removed outliers
0.8 ® 1
u
©
C
S o6l]
wn
)
£
(@]
£ 041 1
-
C
©
T
" M *
0.0

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Response body size, bytes.

Figure C.3: Outliers - Crawl Time, response body size.

86

w

O O N O b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

"$schema": "http://json-schema.org/draft-06/schema#",
"description":"QOuter list takes indexed words, Middle
list APIs and Inner list URLs and occurance',
"patternProperties": {
"[-TTgr: {
"type": "object",
"patternProperties": {
"[-TTxgt: {
"type": "object",
"patternProperties": {
"URL": {
"type": "string"
},
"occurance": {
"type": "number"
}
+,
"additionalProperties": false
}
+,
"additionalProperties": false
}
},
"additionalProperties": false

}

Figure C.4: JSON Schema for Indexation Table validation.

87

w

O © N O 1 b

10
11
12

"$schema": "http://json-schema.org/draft-06/schema#",

"description": "Outer list contain URIs for API and
Inner list show indexed words from XML Schema",
"type": "object",
"patternProperties": {
ERSET TR
"patternProperties": {
+
}
+,
"additionalProperties": false

Figure C.5: JSON Schema for XML Schema Table validation.

88

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Limitations
	Thesis Structure

	Background
	API
	REST
	REST API
	Web Crawling
	API Documentation Schema
	Features of good API Documentations
	Related work

	Approach
	Objectives
	Design Stage
	Implementation Stage
	Measurement, Analysis and Comparison Stage

	Design
	Key Realizations
	User To Service Relation
	Data Acquisition
	Data Handling

	Implementation
	Preparatory Work
	Crawler
	Data Handler

	Experiments
	Data Sources
	Tests
	Results

	Discussion
	Project Evaluation
	User Service
	Future Work

	Conclusion
	Bibliography
	Appendices
	Results: Data Acquisition
	Results: Data Handling
	Misc

