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Abstract

The memory in reconstructed records of Earth’s surface temperature and records from
paleoclimatic model simulations is investigated in this thesis using a variety of estimation
methods. For the Holocene period, the analyses reveal that many local and spatially
averaged paleoclimate time series exhibit long-range memory (LRM) on timescales from
a few years to centuries or millennia, with a positive spectral exponent β predominantly
less than unity, corresponding to a fractional noise process. In both local and large-scale
temperature reconstructions, the memory properties are likely affected by the choice of
reconstruction methods, proxy records and how the reconstruction is processed to obtain
even temporal resolution.

Furthermore, for ice core records extending beyond the Holocene, a second scaling
regime is identified. However, the concept of using only second order statistics to de-
scribe these long records is critically examined, since the variability associated with the
Dansgaard-Oeschger events and the deglaciation cannot be sufficiently described by a
simple fractional noise.

Finally, as the proxy noise and reconstruction techniques may alter the memory prop-
erties inherent to temperature proxies, the ability of one selected reconstruction technique
to preserve LRM-properties of proxy data has been assessed through pseudoproxy ex-
periments. Analyses demonstrate that for the ensemble mean, LRM is best preserved
in the field and spatial mean reconstructions if the input data are noise-free or weakly
perturbed by noise. However, the credibility of the confidence ranges of the reconstruc-
tions are more representative of the input data for high noise levels. The reconstruction
skill is found to decrease with increasing noise-levels of the input data, but is virtually
insensitive to the strength of the persistence.
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Chapter 1

Introduction

"One man’s noise is another man’s signal".

1.1 The concept of memory in the climate system

For the last 11700 years human civilization has developed under stable and warm climatic
conditions in the interglacial period called the Holocene. During the Pleistocene (2 588
000 years before present up to the Holocene), there were many glacial periods, followed
by shorter interglacials. Analyses of a number of climate proxies have revealed that the
climate exhibits variations on a broad range of time scales from months up to hundreds
of million years. There are different drivers of climate change operating on different time
scales, but the climate state is not just a simple function of the drivers, but rather the
result of a complex interaction between external forcing and internal processes in the
climate system.

There are numerous ways of modeling these interacting processes of the climate sys-
tem. The most complex climate models simulate the dynamics and physical processes
of the atmosphere and the ocean at a range of spatial scales, described by geophysical
fluid dynamic equations and parameterizations for numerous processes. Simpler models
represent the energy balance of the climate system in boxes and reduced number of di-
mensions, reducing drastically the initially infinite number of system dimensions. The
climate system is complex, and simplifying assumptions must be used for all types of
models when describing the dynamics.

Another viewpoint on modeling climate variability is to describe it as a noise back-
ground with superposed trends, where the noise background is described as a stochastic
process. In this thesis the main focus will be on surface temperature, but the same con-
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CHAPTER 1. INTRODUCTION

cept can be used for other variables such as e.g. precipitation. Statistical modeling is
extremely simplified compared with state-of-the-art general circulation models (GCM’s),
and it may seem pointless to represent Earth’s surface temperature by random numbers
drawn from a statistical distribution. On the other hand, the parameters of such simple
models are estimated from real surface temperature data, and the models thereby rep-
resent possible realizations of a process with the same statistical properties as the true
climate system. One motivation for using statistical modeling is that mean estimates such
as the global mean surface temperature (GMST) can be estimated on a regular desktop
computer in less than a second, giving projections of future temperature changes with
similar uncertainties as those achieved from GCM simulations run on supercomputers.
In order to achieve such estimates it is necessary to learn about the statistics of natural
climate variability and about the nature and timescales involved for the temperature
response to external forcing.

The noise background for surface temperature is not white in time, as the interacting
subsystems respond on different timescales and introduce inertia in the climate system.
A common assumption is that the noise is red, modeled with the autoregressive model of
order one, the AR(1) process (Hasselmann, 1976), (Bindoff et al., 2013, Chapter 10). The
AR(1) process is dominated by strong temporal correlations on timescales shorter than
some characteristic timescale τc. There is no temporal dependence on longer timescales.
In statistical modeling terms we may describe the AR(1) process as exhibiting short-
range memory (SRM) or short term persistence/correlations. Another perception on the
nature of climate variability is that the noise has correlations on all timescales. This
noise background can be modeled as a long-range memory (LRM) stochastic process, for
instance the fractional Gaussian noise (fGn).

To understand the relevance of the memory in a time series, consider the significance
of a trend. This is a very common issue for climate studies, which is typically also
requested by stakeholders outside the scientific community. If the noise background
exhibits natural variability on all timescales, it is more difficult to establish significance
of a trend than if the noise is purely white. In the following, the background noise in the
climate system is assumed to represent internal variability. Superposed trends arise from
the response to external forcing, but also due to certain nonlinear internal dynamics such
as the El Niño Southern Oscillation (ENSO).

It is well known that the fundamental assumptions and statistical methods applied
to proxy data introduce uncertainties and biases that are not applicable to instrumen-
tal data. For instance, regression-based reconstruction techniques may produce recon-
structions exhibiting variance loss and a mean value bias for the preindustrial period
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1.2. THESIS OUTLINE

(Christiansen et al., 2009). Other reconstruction methods are based on fundamental
assumptions about the serial correlations of the data, e.g. that they follow an AR(1)
structure, (Tingley and Huybers, 2010a). The persistence in proxy-based reconstruc-
tions and paleoclimate simulations will be studied in detail in the following, emphasizing
how uncertainties and biases may introduce artifacts in the variability levels of time series
at different time scales.

The work in this thesis is mainly focused on late-Holocene surface temperature, but
in Paper 2 the full Holocene period and the last glacial period are also considered. As
a rule of thumb the temperature of interest is averaged over a larger area such as the
Northern Hemisphere, but sparseness of proxy data sometimes makes it necessary to
study local or regionally confined data.

1.2 Thesis outline

Chapters 2 and 3 cover the background information on the most relevant subjects neces-
sary to comprehend the information in the three papers attached. Chapters 4-7 elaborate
and discuss further details that may affect the scaling properties of paleoclimate recon-
structions. Relevant literature is reviewed by topic. An important criterion for choosing
the topics for discussion and literature review is that they are relevant for scaling anal-
ysis specifically of paleoclimate reconstructions and/or model simulations. An extensive
introduction and discussion of LRM analysis in instrumental temperatures was presented
earlier in Østvand (2014).

Chapter 2 describes the fundamental statistics we rely on for time series analysis
and statistical modeling of climatic records. In particular, this chapter describes the
concept of stochastic processes, self-similarity and scaling. The statistical methods used
for scaling analysis are also introduced.

The theory of proxies and proxy-based temperature reconstructions is introduced in
Chapter 3. Some well-known proxy archives are described, which are frequently used to
reconstruct surface temperature. The radiocarbon dating method is also mentioned, and
the concept of larger-scale reconstructions is briefly introduced.

Paleoclimate reconstruction techniques are discussed in depth in Chapter 4. Here,
some caveats of using regression-based reconstruction techniques are pointed out, which
may influence the scaling properties of temperature reconstructions. The reconstruction
methods applied in Mann et al. (1998, 1999, 2008, 2009); Luterbacher et al. (2016);
Werner et al. (2017) are presented, as well as the reconstruction procedure of Moberg
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et al. (2005).

Chapter 5, 6 and 7 summarize the three papers included in this thesis, together
with a discussion and literature review of each paper. The first and second manuscripts
(Østvand et al., 2014; Nilsen et al., 2016) are published in Earth System Dynamics, where
the review process is public and available online. Reading the discussion documents
provides supplementary insight into the issues dealt with in the papers. In particular
for Paper 2 there was a lengthy review process, and the discussion reflects the different
points of view on the subject within the scientific community. A summary of the review
process is included in the discussion of Chapter 6. The last manuscript (Nilsen et al.,
2017) is under preparation and will be submitted to Climate of the Past.

1.3 List of publications

Papers

Paper 1
Østvand, L., T. Nilsen, K. Rypdal, D. Divine, and M. Rypdal. Long-range mem-
ory in internal and forced dynamics of millennium-long climate model
simulations, Earth Sys. Dyn., 5, 295-308, 2014. doi:10.5194/esd-5-295-2014.

Paper 2
Nilsen, T., K. Rypdal and H.-B. Fredriksen. Are there multiple scaling regimes
in Holocene temperature records?, Earth Sys. Dyn., 7:419-439, 2016. doi:10.5194/esd-
7-419-2016.

Paper 3
Nilsen. T., J. P. Werner and D. V. Divine. How wrong are climate field
reconstruction techniques in reconstructing a climate with long-range
memory?, Manuscript in preparation, to be submitted to Climate of the Past
November 2017.

Other publications and presentations

First author:
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1.3. LIST OF PUBLICATIONS

Nilsen, T., K. Rypdal, H.-B. Fredriksen, D. Divine, Is there a break in scaling
on centennial time scales in Holocene temperature records? Poster pre-
sentation at International Partnerships in Ice Core Sciences (IPICS) second open
science conference, Hobart, March 2016.

Nilsen, T., K. Rypdal, H.-B. Fredriksen, Little evidence for multiple scaling
regimes in Holocene surface temperatures. Oral presentation at conference
on Scales and scaling in the climate system: bridging theory, climate models and
data’, Jouvence, October 2015.

Nilsen, T., K. Rypdal, H.-B. Fredriksen, M. Rypdal, O. L øvsletten, Is there
a break in scaling on centennial time scale in Holocene temperature
record? Oral presentation at European Geosciences Union General Assembly,
Vienna, April 2015.

Nilsen, T., Long-range memory in Earth’s climate response - analysis
of paleoclimate records and climate model simulations. Oral presentation
at Arctic Marine Geology and Geophysics Research School (AMGG) annual meet-
ing, Tromsø, March 2015.

Nilsen, T., H.-B. Fredriksen, K. Rypdal, Long-range memory in tempera-
ture reconstructions from ice cores: glacial vs interglacial climate con-
ditions. Poster presentation at Norwegian Research School in Climate Dynamics
(ResCLIM) All Staff Meeting, Hurtigruten, March 2015.

Nilsen, T., H.-B. Fredriksen, K. Rypdal, Long-range memory in temperature
reconstructions from ice cores: glacial vs interglacial climate conditions.
Poster presentation at American Geophysical Union Fall Meeting, San Francisco,
December 2014.

Nilsen, T., Long-Range Memory in Millennium-Long ESM and AOGCM
Experiments. Poster presentation at Norwegian Research School in Climate Dy-
namics (ResCLIM) All Staff Meeting, Oscarsborg, March 2014.
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Chapter 2

Persistence and time series analysis

2.1 Concepts and definitions

A time series X = (X1,X2, ...) is a sequence of discrete-time data with the first
two moments defined as the mean µ ≡ E[X], and the variance σ2 ≡ (E[(X− µ)2]).
Higher-order moments include the skewness γ and the kurtosis κ.

Time series analysis is used to extract relevant statistical information from the
data, either in the time domain or in the frequency domain. Such analyses may
include estimating the first central moments, studying the cyclic/quasi-periodic
behavior of the record and examining the serial dependence in time. Furthermore,
this information may facilitate statistical modeling of the data using stochastic
processes.

A stochastic process {X(t)}∞t=1 is a collection of random variables associated
with an indexed set of numbers, usually interpreted as points in time. If the num-
ber of points is finite the process is said to be discrete in time, while it is continuous
if the index set is considered as an interval of the real line. In the following the
curly braces will be dropped when the different stochastic processes are defined.
It will be made clear from the context whether it is referred to the stochastic pro-
cess or the one dimensional marginals (the random variables X(t)). A variety of
different stochastic processes are available, a selection is presented below and are
relevant for my work:

The Gaussian white noise: w(t) ∼ N(µ, σ2), with independent and identi-
cally distributed (iid ) normal draws.
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CHAPTER 2. PERSISTENCE AND TIME SERIES ANALYSIS

The autoregressive model of order 1 (AR(1)): Z(t) = φZ(t− 1) +w(t),
where φ is the AR(1) parameter, and w(t) is Gaussian white noise with variance
σ2
w. Stationarity requires |φ| < 1. The AR(1) process is discrete in time, while the

continuous equivalent is the Ornstein-Uhlenbeck process.

The Wiener process (Brownian motion): W (t) is the integral of a white
noise process w(τ) on τ ∈ [0, t]:

W (t) =

∫ t

0

w(τ)dτ

W (t) has the following properties:

1. W (0) = 0

2. W (t) has independent and Gaussian increments

3. The paths of W (t) are continuous

Hence, each value of a Wiener process is given by the previous value plus a random
number drawn from a normal distribution with zero mean.

Fractional brownian motion (fBm): a generalization of a Brownian motion,
where the increments need not be independent. The covariance structure of the
fBm BH(t) is:

E[BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
,

where H is the self-similarity exponent. For a nonstationary process, H is a real
number 0 < H < 1. The fractional Brownian motion is continuous, the sample
paths are almost nowhere differentiable. The process itself is nonstationary, but
the increments are stationary.

Fractional Gaussian noise (fGn): the increment process of an fBm XH(t) =

BH(t+ 1)−BH(t). This process is stationary. For the increment process, the self-
similarity exponent H is called the Hurst exponent (0 < H < 1). In the following
we will only consider persistent time series, which limits H to (1

2
< H < 1). The
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2.1. CONCEPTS AND DEFINITIONS

case 0 < H < 1
2
is referred to as antipersistent.

The main difference between a motion and a noise is that a motion is character-
ized by increased variance over time. The noise on the other hand has a stationary
variance. The Gaussianity of a time series can be investigated by hypothesis test-
ing such as the Kolmogorov-Smirnov test or the Shapiro-Wilk test, in addition to
graphical inspection of the quantile-quantile plot (Q-Q plot). Establishing Gaus-
sianity in a time series allows statistical modeling using the stochastic processes
introduced above.

2.1.1 Self-similarity and memory

A self-similar object is exactly or approximately similar to a part of itself. A
stochastic process BH(t) is self-similar if

∀a > 0 : BH(at)
d
= aHBH(t),

Where d
= means equality in distribution and H is the self-similarity exponent in-

troduced in Sect 2.1. The fBm is self-similar. The terms scale-invariance or simply
scaling are also used to describe this statistical property.

The variance σ2 and the Hurst exponent H constitute the parameters pre-
scribed for the fGn process. This process exhibits long-range memory (LRM), also
known as long-range dependence/persistence if H is in the range 1

2
< H < 1. An

example of a discrete-time LRM process is the fractional autoregressive integrated
moving average (FARIMA) process. Other types of LRM-processes also exist, but
will not be further discussed. The memory terminology is related to the fact that
the value at time t depends not only on the previous value at time t − 1 but on
all previous values [−∞, t− 1]. LRM of fGns is characterized by an algebraically
decaying autocorrelation function (ACF):

lim
t→∞

C(t) ∝ tβ−1 (2.1)

such that
∫∞

0
C(t)dt =∞, i.e., 0 < β ≤ 1. The power spectral density (PSD) also

has a power law dependence in the asymptotic limit:
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CHAPTER 2. PERSISTENCE AND TIME SERIES ANALYSIS

lim
f→0

S(f) ∝ f−β (2.2)

It can be shown that β = 2H− 1 and 0 < β < 1 indicates positive persistence. In
the following we will use the spectral parameter β when referring to the memory
parameter instead of H. β = 0 corresponds to a white noise process, exhibiting no
memory. Equations 2.1 and 2.2 also hold for fBms BH(t). For an fBm we have
β = 2H + 1, 1 < β < 3. The limit β = 1 marks the transition from a fractional
Gaussian noise to a fractional Brownian motion. The value β = 2 corresponds to
the Brownian motion.

2.1.2 Fractality

Another description often met when working with self-similar patterns or pro-
cesses is fractality. Investigating fractality in geophysical time series is relevant
when choosing the statistical model used to represent the data at hand. The need
to introduce this terminology arises from the possible pitfall of erroneously cat-
egorizing geophysical time series, or their cumulative sums, as self similar, when
in reality they belong to another class of processes that are not self-similar. This
class includes the multifractals. Careful analysis also prevent us from making the
mistake of interpreting data that are not multifractal as multifractal.

In the statistical sense, monofractality implies self similarity. The details in a
pattern appear to exhibit the same statistical properties independent of the scale
at which it is studied. A classical example of a monofractal structure is a coastline
(Mandelbrot, 1967), where the length of the coastline increases as the length of
the measuring stick is decreased.

The scaling function ζ(q) can be used to distinguish monofractal and multifrac-
tal records, given power-law shape of the structure functions Sq(∆t). To investigate
the shape of the structure- and scaling function of a stationary process X(t) it is
necessary to form the cumulative sum

Y (t) =
N∑

i=1

X(i)

The structure functions of the nonstationary process Y (t) as a function of time
scale ∆t is:

10
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Sq(∆t) ≡ E |Y (t+ ∆t)− Y (t)|q (2.3)

Which can be estimated as:

Ŝq(∆t) =
1

(N −∆t)

N−∆t∑

i=1

|Y (i+ ∆t)− Y (t)|q (2.4)

It is required that the qth moment is finite. A process is monofractal or mul-
tifractal only if the structure functions are power-law functions of time. In that
case, we can define a scaling function ζ(q) by the relation:

E |Yt|q ∝ tζ(q) (2.5)

Self-similarity implies a linear scaling function, while multifractal processes
have well-defined and strictly concave scaling functions (Bacry and Muzy, 2003).
Note that if the structure functions of the nonstationary process are not power-
laws, then the process is neither monofractal or multifractal. Section 2.5 of Rypdal
and Rypdal (2016) present an example of a process which has a power-law struc-
ture function only for q = 2, but not for other moments. This process is a type
of Lévy noise, the jump-diffusion process. It has independent draws and is non-
Gaussian, but should not be mistaken for a multifractal process since the structure
functions of the cumulative sum for the first and third moment are not power-laws.
This example illustrates the usefulness of employing higher-order statistics in time
series analysis. Additional information is revealed about the data, and the degree
of ambiguity is reduced.

The above mentioned properties are used in Sect. 3.3 of Paper 2 to demonstrate
that the global mean surface temperature (GMST) record for the period 1880-
2010 is monofractal. The demonstration requires that the strong trend associated
with anthropogenic warming is removed, and that the cumulative sum of the time
series is used. Rypdal and Rypdal (2010) showed that the GMST is Gaussian,
and the fGn is therefore a suitable model for this temperature record. For data
extending beyond the instrumental period, similar analyses can be done to justify
the use of a monofractal Gaussian model. The multiproxy reconstruction for the
Northern hemisphere (Moberg et al., 2005) is used to investigate the Gaussianity
and structure functions of the temperature for the past two millennia. Figure
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2.1a shows the temperature reconstruction, 2.1(b) shows the pdf of the record
compared to a normal distribution plotted on a logarithmic axis. 2.1c shows the
quantile-quantile plot (Q-Q plot) of the data versus a normal distribution.

Figure 2.1: (a) The Moberg temperature time series for AD 1-1978. (b) The pdf for the record,
in log plot. (c) The Q-Q plot of the record.

The pdf in Fig. 2.1b reveal a small deviation from Gaussianity for the tails
of the distribution. The discrepancies are due to the volcanic responses in the
temperature signal, which are manifested as sharp and abrupt drops in the tem-
perature over 1-2 years following a volcanic eruption. The volcanic forcing is from
our point of view not considered as part of the internal climate variability. The
Gaussian model is therefore appropriate to represent the internal variability of for
the temperature reconstruction of Moberg et al. (2005). The structure functions
for moments q = 1 − 6 are plotted in Fig. 2.2a, which is a log-log plot. They
are linear up to a time scale of approximately 300 years. The scaling function for
q = 1 − 15 is plotted in Fig. 2.2b for time scales 4-256 years. The scaling func-
tion is close to linear, indicating that the Moberg record is monofractal and that
a self-similar process is suitable for statistical modeling. The fGn is appropriate
because the estimated scaling exponent β = 0.74.

On even longer time scales, the paleotemperature records from the Greenland
ice core records can be used to test Gaussianity and study the structure functions.
The δ18O ratio is used as a paleotemperature measure, and the time series have
been interpolated to obtain even time steps. The time series in Fig. 2.3a is plotted
on a reversed time axis, with the abbreviation "BP" indicating before present (year
0 in this terminology is set to 1950 AD). The section of the Holocene period selected
here is the past 10 000 years. The negative tail of the Q-Q plot in Fig. 2.3c is not
perfectly in line with the normal distribution, but this is due to smoothing and
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Figure 2.2: (a) The structure functions for the Moberg record for q = 1 − 6. (b) The scaling
function.

noise effects on the high-frequency variability of the record. The deviation from
normality observed in the pdf of Fig. 2.3b is to some extent due to the volcanic
activity as mentioned for the Moberg et al. (2005) record above, but is also related
to the cooling event observed around 8200 years BP. This event is known as the
8.2 kiloyear event, and is described further in Sect. 2.2. Truncating the GRIP
Holocene record before this event gives a pdf and a q-q plot which is consistent
with a Gaussian. For further details this is demonstrated in the online discussion
of Paper 2 in our first response to reviewer Shaun Lovejoy.

The Gaussian model is assumed to be approximately representative for the
Holocene GRIP section. The structure functions for moments q = 1 − 7 are
plotted in the log-log plot of Fig. 2.4a. They are linear up to a time scale of
approximately 1000 years. The scaling function for q = 1 − 15 is plotted in Fig.
2.4b for time scales 8-1024 years.

Figure 2.3: (a) The GRIP Holocene record . (b) The pdf for the record. (c) The Q-Q plot of
the record.

For the last glacial period it is demonstrated that the distribution of δ18O values
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Figure 2.4: (a) The structure functions for the GRIP Holocene record for q = 1 − 7. (b) The
scaling function.

is not Gaussian, and that the structure functions are not power-laws. Figure 2.5a
shows the GRIP δ18O anomaly time series for a section of the last glacial period
including the last glacial maximum, spanning approximately 32 00 - 13 000 years
BP. Fig. 2.5b shows the pdf, which is skewed and deviating significantly from the
normal distribution. The structure functions in Fig. 2.5c are not linear in the
log-log plot, and the scaling functions are therefore not shown.

Figure 2.5: (a) The GRIP time series for a section of the last glacial period. (b) The pdf for
the record. (c) The structure functions for the GRIP glacial record.

2.2 Toolbox for scaling analysis of geophysical timeseries

In principle, the information of LRM in a time series can be extracted from the fat
tail of the autocorrelation function. Unfortunately, most data sets are limited in
size, and hence this tail will be so contaminated by noise that a slope of this tail in
a log-log plot cannot be identified. Fortunately, there are a number of other tech-
niques available for investigating the scaling properties of a time series. A simple
estimator for the power spectral density has been used in all three papers, Paper 1
and 2 also use other estimators to investigate the scaling properties. The methods
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have individual strengths and sensitivities, it might therefore be advantageous to
use a multi-method approach for specific data sets.

All methods study in some sense the same measure, namely how the variability
in the record at hand varies on a range of time scales. The spectrum presents this
variability in the frequency domain. Proxy-based reconstructions are sometimes
available only with an age model with uneven time steps, making interpolation
to annual or otherwise even sampling necessary. The techniques listed below are
designed to be used for data with even time steps. There are also possibilities for
analyzing records with uneven time-steps directly, although these techniques are
less well established in the community working with climatic time series.

To estimate the power spectral density we use the periodogram, which for
the evenly sampled time series x(1), x(2), . . . , x(n) is defined in terms of the discrete
Fourier transform Hm as

Sm =
2|Hm|2
N

, m = 1, 2, . . . , N/2,

where N is the length of the time series. The frequency measured in cycles per
time unit is fm = m/N . The smallest frequency which can be represented in the
spectrum, and the frequency resolution, is 1/N . The periodogram is described in
Sect. 2.1 of Paper 1, Sect. 3.1 of Paper 2 and Sect. 2.3 of Paper 3. Power spectra
are visualized in log-log plots. If the record exhibit scaling, the scaling parameter
β can be estimated through a linear fit. If the record has short-range memory
(SRM) and follow an AR(1) structure, the PSD is Lorentzian in shape. The raw
and log-binned periodograms are plotted, where log-binning implies that the spec-
tral power is averaged over frequency ranges that are equidistant. The log-binned
spectrum is less noisy than the raw counterpart, and β is therefore estimated from
the log-binned periodogram unless otherwise stated. The raw periodogram is very
noisy, and for many types of spectral analyses it is common to use windowing
techniques to improve the statistical properties. This is relevant for instance if the
task is to determine significance of spectral peaks against the background contin-
uum. However, for scaling analyses we are interested in the overall shape of the
spectrum, and the noise is reduced when we use log-binning to estimate β. The
Lomb-Scargle periodogram is introduced in paper 2 as an alternative spectral
technique that can be used directly on the unevenly spaced ice-core paleotemper-
ature records. This method was found to perform well but not significantly better
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than if interpolation and the standard periodogram was used.

All remaining techniques used for scaling purposes are defined in the time do-
main. The wavelet variance technique is described in Sect. 2.3 of Paper 1.
This technique is sensitive to oscillations if the mother wavelet is oscillatory, and
may be used specifically to identify such variability in the records studied. The
resulting wavelet variance will vary depending on which mother wavelet is used.
The Mexican Hat wavelet (second derivative of a Gaussian) is real valued and of-
ten used for analysis of geophysical data sets. Methods for handling missing data
are presented in Mondal and Percival (2010), but were not used further in my
work. The wavelet scalogram is described in Sect. 3.2 of Paper 2. This mea-
sure is plotted against time and time scale, and thereby provides supplementary
information to the spectral analysis. The supplement is particularly useful if there
are time-localized features in the time series that may cause increased/decreased
power on specific frequencies. This is true for instance for the GRIP δ18O record
for the Holocene period, illustrated in Fig. 2.4. The abrupt decrease in δ18O

around 8200 years BP is related to dynamics affecting temperatures in the North
Atlantic Ocean. Probably, the event was caused by a large pulse of freshwater into
the North Atlantic associated with the collapse of the Laurentide ice sheet (Alley
and Ágústdóttir, 2005). The effect of this event on the low-frequency spectrum
power is shown by the wavelet scalogram in Fig. 11 of Paper 2.

The detrended fluctuation analysis (DFA) is introduced in Sect. 2.2 of
Paper 1, and in Sect. 3.5 of Paper 2 it is demonstrated that the technique is
unsuitable for detecting breaks in the scaling. The method will essentially shift
a break to longer time scales, as illustrated in Fig. 4 of Paper 2. There exists
a multifractal version of the DFA analysis, which has been used e.g. on climate
data from the last glacial period (Shao and Ditlevsen, 2016). Løvsletten (2017)
presents a modified DFA fluctuation function that handles missing data.

Finally, the Haar fluctuation function is described in Sect. 3.4 of Paper
2 and in Lovejoy and Schertzer (2012a,b). The standard fluctuation function is
the square root of the second order structure function (Rypdal et al., 2013). The
fluctuations are scaling with scale τ if the fluctuation function F(τ) ∼ τ (β−1)/2.
The Haar fluctuation analysis is a modification where the data record is convolved
with the Haar wavelet.
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Since there is only one realization of each climatic observation series available,
which is finite and discretized, all estimators used to analyze scaling properties are
subject to finite size effects when used on single time series. By this we refer to the
fact that that the variance estimates on the longest time scales/lowest frequencies
are based on very few data points, which results in larger uncertainties than on
shorter time scales /higher frequencies where more data is available. The finite
size effect is observed as a widening of the estimated measure for longer time
scales/lower frequencies, as illustrated by Fig. 2.6b and 2.6c. The first panel
shows an arbitrary realization of a synthetic fGn with β = 0.7 and n=2000 data
points. The middle panel shows the 95% confidence range of the log-binned PSD
for a Monte Carlo ensemble of realizations such as in (a). Panel (c) shows a similar
log-log plot but for the DFA2 fluctuation function.

Figure 2.6: (a) An fGn time series with scaling exponent β = 0.7 and n=2000 data points.
(b) The log-binned power spectra for the 95% confidence range of a Monte Carlo
ensemble of fGn generated as in (a). The red, dashed line is the ensemble mean.
(c) The DFA fluctuation function for the 95% confidence range of a Monte Carlo
ensemble of fGn estimated as in a. The blue, dashed line is the ensemble mean,
and the black crosses are fluctuation function values for a random realization of
fGn.

By comparing Fig. 2.6b and 2.6c it appears that the finite size effect is more
pronounced for the PSD than for the DFA function. However, we stress that
the DFA variance associated with a time scale τ does not measure the variance
specifically at this time scale, but is rather a weighted sum of the variances on
time scales shorter than τ . The shorter time scales have more data, and hence the
low uncertainties result from this artifact.
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Chapter 3

Proxies and proxy-based
temperature reconstructions

To learn more about the complex interplay of the climate system, we need reliable
quantitative estimates of climates of the past. This chapter deals with the most
used proxies involved in such studies, and the methods employed to extract climate-
related information from them. The following text is partly based on Lowe and
Walker (1997) and de Wit et al. (2015) [Chapter 3.1].

Apart from instrumental data and historical documents, the available data on
climate variability in the past is limited to proxies that contain indirect information
on environmental variables of interest. In relation to climate, the word “proxy” is
often used interchangeably for a natural archive such as an ice core, or a physical
measurement made from the archive such as a geochemical analysis. In fact, a
number of proxy records may be extracted from a single archive in addition to an
age model. Figure 3.1a shows the cross section of an ice core, which is divided into
a number of segments used for a variety of analyses. This type of cut plan is typical
for large ice coring projects. Figure 3.1b shows an ice core segment with visible
annual layers and a volcanic ash layer that settled on the ice sheet approximately
21 000 years ago (National Science Foundation, 2015).

The proxy growth/deposition is influenced by climatic conditions, but the pre-
cise relationship is generally unknown. The hypothesis of a relationship between a
proxy and an environmental variable is therefore built on scientific knowledge and a
number of simplifying assumptions. Uncertainties arise from a number of sources,
but first and foremost from the lack of understanding of the physical mechanisms
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building the proxies. It is generally unknown how these mechanisms and processes
have changed in the past. The uniformitarian principle is therefore fundamental
for interpreting proxies, implying that the physical relationship between a proxy
and an environmental variable is stationary in time. This is a an important source
of error, the principle has certainly been violated as observed from evolution of
living organisms and landscapes. The violation of the uniformitarian principle is
nevertheless ignored for most proxy-variable relationships, because the evolution
is hard to identify and quantify on the shorter time scales.

A proxy is considered an imperfect recorder of environmental conditions, cap-
turing some aspects of variability but with possible discontinuities and time-
dependent sensitivity. In addition, the proxy signal is noisy, meaning it reflects
climate conditions in combination with some aspect of local weather variability
and/or non-climate effects such as food supply and biological factors. In gen-
eral, proxies must be calibrated against modern instrumental records to yield a
quantitative reconstruction of past climate.

3.1 Annually banded archives

Selected proxy archives grow or are deposited following the seasonal cycle. They
develop seasonal/annual bands that can be distinguished with the naked eye. The
bands can be counted manually or using automated software, resulting in remark-
ably accurate chronologies. Such high-resolution records are highly valued as they
can be used for cross-verification with other records where the age-model is less
well constrained.

3.1.1 Tree rings

Dendroclimatology is the science of determining past climates from properties of
the annual tree rings. Rings are wider when conditions favor growth, narrower
for poor growth seasons. Another property of the annual rings, the maximum
latewood density is also used as a proxy in addition to simple ring width. Using
tree rings, local climates can be reconstructed for hundreds to thousands of years.

3.1.2 Ice cores

Ice cores are recovered by drilling through the Greenland and Antarctic ice sheets,
glaciers in North American regions, islands of the North Atlantic and Arctic
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Oceans, and alpine, tropical and sub-tropical locations. Measuring oxygen iso-
tope ratios in water molecules allows estimation of past temperatures and snow
accumulations. Isotopic fractionation makes the heavier isotope 18O precipitate
more easily as temperatures decrease than the lighter isotope 16O. In addition
to oxygen isotopes, water contains the hydrogen isotopes 1H and 2H, which are
also used as temperature proxies. The best dated series are based on sub-annual
sampling of ice cores and the counting of seasonal ice layers. Such series may
have absolute dating errors as small as a few years in a millennium. Absolute
age-markers in ice cores include volcanic ash layers, these are used as tie-points
when the age-models are generated.

3.1.3 Corals

Paleoclimate reconstructions from corals provide insights into the past variability
of the tropical and sub-tropical oceans and atmosphere, making them a key ad-
dition to terrestrial information. The corals used for paleoclimate reconstruction
grow throughout the tropics in relatively shallow waters, often living for several
centuries. Accurate annual age estimates are possible for most sites using a combi-
nation of annual variations in skeletal density and geochemical parameters. Paleo-
climate reconstructions from corals generally rely on geochemical characteristics of
the coral skeleton such as temporal variations in trace elements or stable isotopes.

3.2 Archives with dating uncertainties

A number of proxy archives are controlled by other factors than the seasonal cycle,
and thereby exhibit larger age uncertainties. Typically, the deposition is irregular
and simplifying assumptions are used to quantify the sedimentation/growth rate.

3.2.1 Sediment cores

Marine sediment cores are widely used for reconstructing past climate. One of
the common approaches is to extract and study the marine microfossils that are
preserved in the sediments. Carbonate deposits from foraminifera and coccol-
ithophores are examples of abundant microfossils found in seafloor sediments that
are good indicators of past environmental conditions. Diatoms are also of great
importance for reconstructing past climate. They are unicellular, photosynthetic
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algae with a siliceous shell. The general assumption is that the down-core compo-
sition of diatomic microfossil assemblages is related to past environmental condi-
tions at the core site. A number of statistical techniques are elaborated to convert
assemblages to past estimates of hydrographic conditions, including sea-surface
temperature at the study site. In lake sediment cores, remains of microorganisms
such as diatoms, foraminifera, microbiota, and pollen within sediment can indi-
cate changes in past climate, since each species has a limited range of habitable
conditions.

3.2.2 Speleothems

Speleothems are mineral deposits formed from groundwater within underground
caverns. Stalagmites, stalactites, and other forms may be annually banded or
contain compounds that can be radiometrically dated. Thickness of depositional
layers or isotopic records can be used to determine past climate conditions.

3.2.3 Borehole measurements

Borehole data are direct measurements of temperature from boreholes drilled into
the Earth’s crust. Departures from the expected increase in temperature with
depth can be interpreted in terms of changes in temperature at the surface in
the past, which have slowly diffused downward, warming or cooling layers below
the surface. Reconstructions show substantial sensitivity to assumptions that are
needed to convert the temperature profiles to ground surface temperature changes,
hence borehole data are most useful for climate reconstructions over the last five
centuries.

3.3 Dating

Determining the age of paleoclimate proxy samples is based on either radiometric
dating techniques, and/or incremental dating for proxies with seasonal or annual
layers. Furthermore, Stratigraphic age markers such as layers of tephra (volcanic
ash) can be used to constrain age models. With radiometric dating, point estimates
are obtained that are typically interpolated to construct a complete age model. A
number of naturally occurring radioactive isotopes exist in nature, and some are
incorporated into proxy material. Radiocarbon (14C) and Uranium-series dating
are two well-known methods used to construct paleoclimatic age models. The
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choice of dating method depends on the available material and also on the relevant
timescales for the study.

3.3.1 Radiocarbon dating

14C is constantly replenished in the atmosphere through cosmic rays. The ratio of
14C/12C in the atmosphere is therefore known, and through biological/geochemical
processes the carbon is incorporated into living organisms. When the organisms
die, the ratio of 14C/12C will decrease because the isotope 14C is subject to ra-
dioactive decay. Geochemical measurements of 14C in a sample of organic material
of known volume are converted to age estimates with associated uncertainties by
using a calibration curve. The calibration takes into account a number of fac-
tors, including the fact that the ratio of 14C/12C in the atmosphere has not been
constant over time. This is an example where the violation of the uniformitarian
principle is taken into account, and it has been shown to improve the age model
considerably. The term radiocarbon years is used for ages estimated without this
correction, and they may differ significantly from calendar years.

Radiocarbon dating require the presence of organic material, which is not al-
ways preserved in proxy archives such as e.g. ice cores. The dating technique is
applicable to data with a maximum age of ∼45 000 years, since the radiocarbon
decays over this time range. Probabilistic methods for calibration have been de-
veloped for radiocarbon dating, because the calibrated calendar ages do not have
normally distributed PDF’s. Bayesian statistical models are formulated so that
relative dating information, if available, is implemented in the prior distribution,
while the radiometric dating is expressed through the likelihood. Finding appro-
priate priors is the main challenge for this type of probabilistic models. Details can
be found in Ramsey (2009), where the methodology used in the OxCal computer
software is described. In this computer package, drawing from the posterior is
done by using the MCMC algorithm called Metropolis-Hastings.

3.4 Larger scale reconstructions

If we want to understand the climate impact of external forcings like solar irra-
diance and volcanic aerosols, we cannot be satisfied with local reconstructions of
the climate at the proxy sites. It is necessary to reconstruct a large-scale climate
field and/or or mean index by employing reconstruction techniques such as mul-
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tivariate regression methods or Bayesian models. Up till recently, reconstructions
of climate fields and mean temperatures on global scale have mainly been lim-
ited to the Northern hemisphere (NH). This is because the main landmasses and
the majority of proxy archives are located in this hemisphere. The first NH re-
constructions published in the late 1990s were obtained by techniques involving
Principal Component Analysis (PCA) and relied heavily on tree-ring series. They
were criticized for suppressing variance on long time scales. This was an issue be-
cause the methods could potentially suppress the temperature difference between
the Medieval Warm Period (AD 800 - 1100) and the Little Ice Age (AD 1550 -
1850). A large number of millennium-long NH reconstructions based on different
sets of proxy archives and statistical methods have been published later.

The past 2000 years of climate change have been reconstructed in more de-
tail than ever before by the PAGES 2k project. The 2k Network of the Past
Global Changes (PAGES) project aims to generate a globally encompassing, high-
resolution regional synthesis of climate variability for the last 2000 years. The
results presented in PAGES 2k Consortium (2013) reveal interesting regional dif-
ferences between the different continents, but also important common trends. The
global average of the global reconstruction is based on 511 climate archives from
around the world. The two main results are a confirmation that current global sur-
face temperatures are higher than at any time in the past 1400 years, and that the
Medieval Warm Period and Little Ice Age were not globally synchronized events.
The period from around AD 830 to 1100 generally encompassed a sustained warm
interval in the Northern Hemisphere, but in South America and Australasia it
occurred from around AD 1160 to 1370.

A new generation of PAGES2k reconstructions are currently under develop-
ment, now generated from 692 records as described in PAGES 2k Consortium
(2017). The reconstruction techniques have been updated and are even more so-
phisticated. The reconstructions are published in Climate of the Past special issue
(McGregor et al., 2016).
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(a) Cross section of an ice core with core processing line cut plan.

(b) Ice core segment with visible annual layers and volcanic ash deposits

Figure 3.1: Source: U.S. National Ice Core Laboratory
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Chapter 4

Paleoclimate reconstruction
techniques

4.1 Overview

There are two main types of paleoclimatic reconstructions available: those based
on climate field reconstruction (CFR) techniques and those based on index meth-
ods. CFR methods generate a spatiotemporal field of the reconstructed variable
of interest, here surface temperature. The index methods generate a mean value
for the considered area. Common for all methods is that the reconstruction is cali-
brated against instrumental temperature for a common period of overlap, known as
the calibration period. A segment of the instrumental period which is withdrawn
from the calibration can be used for verification/validation purposes. However,
this period is short and associated with the strong anthropogenic warming. The
use of pseudoproxies is therefore useful for additional testing of reconstruction
techniques. More on this in Sect. 7.1.

Many index and CFR techniques are based on univariate, multivariate, or mul-
tiple regression techniques. Proxies are regressed onto temperatures, or opposite.
The direct regression using proxies as the independent variable is simpler, but is in
conflict with the underlying physics: that the proxies are functions of temperature
and not the other way around. As elaborated below, this choice is important, and
the effect of error in variables (EIV) poses an additional challenge. Some types
of proxy records are known to have a nonlinear relationship with temperature, for
instance varve thickness of lake sediment records (Emile-Geay and Tingley, 2016).
Transformation algorithms are developed that takes this nonlinearity into account,

27



CHAPTER 4. PALEOCLIMATE RECONSTRUCTION TECHNIQUES

so that transformed records can be used for linear regression with temperature.

4.2 Notes on regression-based reconstruction methods

Ordinary linear regression relates a dependent variable y to an independent vari-
able x through:

y = λx+ ε (4.1)

Where ε is an error term. Whether direct or indirect regression is chosen for
reconstruction purposes has effects on the resulting reconstruction, as stated in e.g.
Christiansen et al. (2009); Christiansen (2011). The direct regression effectively
underestimates the regression slope and the magnitude of the predicted values
due to errors in the independent variable, producing a reconstruction which is
biased towards zero and with underestimated low-frequency variance. This bias is
known as regression dilution, and can be corrected for univariate regression but not
multiple regression by an "inflation" technique. The inflation method compares
the variance of the reconstruction and the instrumental observations during the
calibration interval, and scales the reconstruction with a factor depending on this
ratio. Indirect regression is more physically intuitive, but involves an extra step
of inversion. The high-frequency variability with small amplitudes will, however,
be more influenced by noise than the direct regression counterpart. An additional
choice to make is whether to perform the indirect regression between each proxy
record and the local or the global temperature. The former approach is used in
Christiansen (2011), where the large-scale reconstruction is taken as the average
of the local reconstructions. On the other hand, Mann et al. (1998, 1999) perform
the regression between each proxy record and the large-scale patterns of global
temperature.

For the temperature reconstruction problem, the inherent errors in both the
dependent and independent variables can be partly circumvented by applying
error-in-variables (EIV) regression techniques. This methodology uses the ob-
served noisy measures of proxies and instrumental temperatures instead of the
true variables. The EIV model is not identifiable under normality, i.e. additional
assumptions or information is needed to correct for the underestimated regression
slope. This information may concern the fraction of variance for the proxy and
instrumental temperature error terms. The total least squares (TLS) regression
is an example of a regression model that takes into account the error in both
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dependent and independent variables, and is used for reconstruction of the North-
ern hemisphere decadal temperature by Hegerl et al. (2007); Mann et al. (2008).
Mann et al. (2008) present one global field and two different variants of spatial
mean reconstructions with decadal resolution.

Last but not least, the regression-based reconstruction problem is further com-
plicated by the effect of the anthropogenic warming trend in the calibration period.
Common statistical practice is to remove nonstationarities from the data before
processing, but a caveat is that the trend could contain important information
about low-frequency variability. The effect of removing this trend from the data
prior to the calibration has been tested by Christiansen et al. (2009). Detrending of
proxies and instrumental temperatures results in substantially worse performance
for all of the seven reconstruction techniques considered in that paper.

4.3 Index reconstruction methods

The simplest index reconstructions are composite-plus scale (CPS) methods, where
a collection of temperature proxies are averaged and then scaled so that the mean
and variance is consistent with that of instrumental data for an overlapping cali-
bration period. The contribution from each proxy is typically weighted according
to the area or according to the correlation with local or large scale instrumental
temperature. Other index methods use regression to estimate the scaling factors.

Examples of large-scale surface temperature reconstructions constructed by
some form of the CPS method are Jones et al. (1998); Esper et al. (2002); Moberg
et al. (2005) and one of the reconstructions in Mann et al. (2008).

4.4 CFR reconstruction techniques

Most CFR techniques are based on multivariate linear regression. For surface
temperature, these techniques relate a matrix of temperature proxies to a matrix
of instrumental temperature data during a calibration interval.

If P ∈ Rm×n is the matrix of the proxy network, and T ∈ Rr×n is the matrix of
the instrumental temperatures, the relationship found through direct multivariate
linear regression is

T′ = BP′ + ε (4.2)

Matrix dimension m is the number of proxies, n is the length of the instrumental
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period and r is the number of spatial locations in the instrumental field. The
prime indicates that P and T are standardized by subtracting the mean and
normalizing by the standard deviation. B is a matrix of regression coefficients,
and ε is the residual error. Using the ordinary least-squares (OLS) approach we
seek to minimize the mean squared error by choosing B as:

B = (T′P′T)(P′P′T)−1 (4.3)

Where T indicates the matrix transpose. In CFR applications, the number of
spatial grid points is typically larger than the temporal dimension in the instru-
mental period, making the system of equations underdetermined. In this case, the
inverted matrix (P′P′T)−1 does not exist without regularization. The available
CFR techniques based on multivariate regression differ in how they regularize the
problem. Principal component analysis (PCA) is one approach for regularization,
described further in Sect. 4.5.

For the ridge regression method (Tikhonov and Arsenin, 1977), a regularization
term Γ is added so that the matrix (P′P′T) is invertible:

B = (T′P′T)(P′P′T + ΓTΓ)−1 (4.4)

The regularization term is often chosen to be a multiple of the identity matrix.
The Ridge regression technique is presented in e.g. Schneider (2001) as a means
of regularization in the multivariate linear regression technique for climate field
reconstruction known as RegEM, discussed in further detail in Sect. 4.6.

Another CFR method include the canonical correlation analysis (CCA) (Smer-
don et al., 2011). The CCA method is related to the PCA in the sense that while
PCA constructs a new orthogonal coordinate system through a transformation
which optimally describes variance in one data set, the CCA method defines co-
ordinate systems that optimally describe the cross-covariance between two data
sets.

Yet another category of CFR reconstruction techniques does not rely on multi-
variate linear regression, but is based on Bayesian hierarchical modeling and infer-
ence, introduced in Sect. 4.7. The BARCAST reconstruction technique (Tingley
and Huybers, 2010a) was used in pseudoproxy experiments in Paper 3.
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4.5 Regression using principal component analysis (PCA)

The matrices (P′P′T) and (T′T′T) are the covariance matrices of the proxies and
instrumental temperatures, respectively. One form of regularization for regression
methods is to exploit the information in the latter matrix so that only the major
patterns of variability is retained and used in the regression. The "hockey stick"
temperature reconstructions in Mann et al. (1998, 1999) are based on this PCA ap-
proach. A truncated set of principal components for the instrumental temperature
field is used as the independent variable, and the set of proxies is the dependent
variable. First, the temperature at each grid point is standardized by subtracting
the mean and normalizing by the standard deviation. The standardized matrix
T is then constructed by weighting each grid point by the cosine of the central
latitude. The orthogonal transformation results in:

T =
K∑

k=1

λkukvk (4.5)

Where the empirical orthogonal function (EOF) vk describes the spatial pattern
of eigenvector k. The principal component (PC) uk describes the variability in the
time domain. The scalar λk comprises the fraction of resolved data variance which
is standardized and weighted.

The selection of which eigenvectors to retain for the regression analysis is based
on the ability to explain variance in the proxy network during a calibration interval,
taking into account the spatial correlation with the multiproxy data set. TheNEOFs

eigenvectors are then trained against each single proxy indicator using multiple
regression during the calibration period, see further details in (Mann et al., 1998).
The resulting reconstructed principal components are converted to reconstructed
temperatures through eigenvector expansion:

T̂ =

NEOFs∑

k=1

λkukvk. (4.6)

The temperature reconstruction in Mann et al. (1998) covers the period AD
1400-1995. The best spatial coverage of proxy data is in the Northern Hemisphere.
Mann et al. (1999) extend the reconstruction to AD 1000. Later studies have
pointed to a weakness in the reconstruction technique, causing underestimated
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low-frequency variability (Zorita et al., 2003; von Storch et al., 2004; Bürger et al.,
2006; Zorita et al., 2007).

4.6 RegEM CFR - regularized expectation maximum cli-
mate field reconstruction

Schneider (2001) presents an CFR technique which also exploits the proxy data
prior to the instrumental period, in addition to using a calibration interval for esti-
mation of regression coefficients. The expectation maximization method estimates
parameters from incomplete data such that the likelihood of the available data is
maximized iteratively given that the data is a function of the model parameters.
The RegEM algorithm is used for estimation of the mean and covariance matrix
for the incomplete data set, and imputation of missing values. A linear regression
model relates missing "m" and available "a" values. Each record (instrumental
grid cell or proxy record) x (consisting of missing and available values) is repre-
sented as a row vector within a data matrix X ∈ Rn×p that describes the full
multivariate data set with n records and p variables. Missing values are related to
available values within the same record or in other records by:

xm= µm + (xa − µa)B + e

where B is the matrix of regression coefficients relating available and missing
values within the multivariate data set. The residual vector e is a random error
vector with mean zero and covariance matrix C to be determined.

The rows x of the data matrix X can be weighted to account for differing area
representation of grid box data, or differing error variances.

The iterative algorithm can be summed up as follows:

1. Missing values are filled into the matrix X based on some initial guess.

2. Estimates of the mean and covariance matrix are calculated, based on the
complete dataset.

3. New estimates for the infilled values are inserted.
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4. Iteration until convergence

Because the number of grid cells is typically greater than the number of records
when reconstructing climate variables, regularization is necessary. Ridge regression
is applied in the standard RegEM procedure (Schneider, 2001). The conditional
maximum likelihood estimate of B is replaced by a regularized estimate.

When using the full RegEM CFR procedure, one starts by filling in the miss-
ing data points in the instrumental dataset using the RegEM algorithm. The
full RegEM CFR algorithm is then applied to the combined proxy- and infilled
instrumental data set. A calibration interval is chosen, and the temperature re-
constructions from the proxies are calibrated to correspond with the instrumental
data. (e.g. 1856-1995). Moving backwards in time, the RegEM algorithm is first
used to fill in missing values for the time period 1800-1995, then 1700-1799 and
stepwise further back in time until the desired start of the reconstruction. Note
that RegEM requires that there is at least one observation at each reconstructed
grid cell.

The standard RegEM procedure was used in a pseudoproxy study by Mann
and Rutherford (2002). It was later modified and used in Rutherford et al. (2005);
Mann et al. (2005) in a so-called "hybrid" variant, where the variability in the
calibration period is separated at a time scale of 20 years. The low- and high-
frequency components are subsequently composited into a single reconstruction.
Furthermore, Mann et al. (2007, 2008) has abandoned the ridge regression reg-
ularization in favor of the truncated total-least squares (TTLS) approach. Both
ridge regression and TTLS account for observational errors in the data. The TTLS
method computes the regression coefficients by means of principal components of
the covariance matrix Σ. Mann et al. (2007) argue that this regularization gives
more robust estimates, and that it makes the algorithm faster.

4.7 Bayesian hierarchical modeling

Another type of CFR methods are based on Bayesian hierarchical models (BHM).
The Bayesian methodology is different from the common frequentistic way of think-
ing in the sense that parameters are not estimated by repeated experiments, but
are included in probability statements that represent the current state of knowl-
edge of a hypothesis given data. Bayes’ theorem can be stated as:

p(t|y) = p(y|t)p(t)
p(y)
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where t is a hypothesis, typically including a set of parameters, and y is the collec-
tion of observations or data available. p(t) is the prior probability, and comprises
information about the hypothesis before observations are made. p(y|t) is the
likelihood function, describing the probability of the observations given a set of
parameters. Finally, p(t|y) is the posterior probability describing the hypothesis
given the observations. The posterior includes the probability distributions for
the parameters and hypothesis under study. The available information about the
prior and likelihood is typically used to form probability density functions (PDF’s)
for the two terms. A well-defined PDF for the posterior can in simple cases be
calculated directly, but when the number of possible outcomes is very large, it-
erative algorithms are typically used to estimate a representative distribution for
the posterior. Such algorithms are called Markov Chain Monte Carlo (MCMC)
methods.

Tingley and Huybers (2010a) present a reconstruction technique called BAR-
CAST based on a BHM. The algorithm is described in detail Sect. 2.1 of Paper
3. The BARCAST model consists of three levels. A model for the true structure
of the target variable is formulated at the process level, this is the field that will
be reconstructed. Details on the observational data (instrumental and proxy) is
described at the data level together with formulated observation equations. The
relationship between proxy and target variable is formulated through a multivari-
ate linear regression equation. At locations where there are no observations it is
assumed true target variable values. At the prior level, prior probability distri-
butions are formulated for each parameter in addition to likelihood functions for
the data given the true field values and all parameters. Bayes’ rule is applied, and
samples are drawn from the posterior probability distribution using an MCMC
algorithm known as the Gibbs sampler until convergence of the posterior. The
reconstruction skill of BARCAST was tested using synthetic proxy data (Tingley
and Huybers, 2010b), and was shown to provide skillful reconstructions and out-
performing RegEM. BARCAST has the opportunity to estimate a complete field of
the variable of interest, while RegEM requires a minimum number of available val-
ues for each location where missing values are to be imputed. On the other hand,
BARCAST is more computationally demanding, (Tingley and Huybers, 2010a).

BARCAST has been used to reconstruct surface temperature over Europe
(Luterbacher et al., 2016), and the Arctic (Tingley and Huybers, 2013; Werner
et al., 2017). The method has also been tested and compared with the CCA
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method using pseudoproxy experiments (Werner et al., 2013).

4.8 Methodology and details using a single temperature re-
construction as an example

The scaling properties in a selection of hemispheric mean multiproxy temperature
reconstructions have been analyzed in Paper 2. Earlier, Rybski et al. (2006); Mills
(2007); Lovejoy and Schertzer (2012b) have also used regional and hemispheric
multiproxy temperature reconstructions for LRM analyses. An important caveat
when performing such analyses is that the variability-level in the considered re-
constructions may be altered in some sense due to the above mentioned regression
dilution, or the selection of proxy records, or due to filtering techniques used.
These effects are not related to the climate variability, and one should therefore
be careful when interpreting the resulting curves as simply scaling or non-scaling.
In fact, the curves could reflect climate variability in combination with other arti-
facts due to biases and noise. To gain insight into these details, the section below
describe the reconstruction procedure for a temperature reconstructions which has
been central in my work, Moberg et al. (2005).

4.8.1 The Northern hemisphere index temperature reconstruction by
Moberg et al. (2005)

The reconstructed temperature presented in Moberg et al. (2005) is a Northern
Hemisphere reconstruction covering the time period 1-1979 AD. The reconstruc-
tion was constructed to preserve low-frequency, and circumvents the regression
dilution problem by applying a wavelet filtering technique. It is created from 11
low-resolution proxy time series (e.g. ice-melt records, pollen data, lake sediments,
1-180 year resolution) and 7 tree-ring records (annual resolution). The algorithm
for reconstruction consists of first dividing the 18 local reconstructed temperature
time series into an eastern and a western part. Linear interpolation was then ap-
plied to all time series in order to create annual mean values. The beginning and
end of the time series were padded with surrogate data so that they all covered the
time period; 300 BC - 2300 AD. The Mexican hat wavelet with 22 scales was then
applied to each series, creating 22 time series with wavelet transforms (WT). For
each scale 1-9 (Fourier timescales <80 years), the WT from the tree-ring proxy
series were averaged. For the scales 10-22 (Fourier timescales >80 years), the WT
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from the low-resolution proxy series were averaged. Scale 1-22 were then merged,
creating two full WT time series, one for the Eastern and one for the Western
Northern hemisphere. The two subsets were then averaged, and the inverse WT
was calculated, creating a dimensionless NH temperature reconstruction. Finally,
the mean and variance of the reconstructed temperature time series were calibrated
to correspond to the instrumental data available for the time period 1856-1978.

The wavelet-filtering technique used in Moberg et al. (2005) results in a re-
construction with effective temporal resolution of four years. The high-frequency
variability corresponding to time scales 1-4 years should therefore not be used for
scaling analysis, as it is smoothed and not representative of the true variability
on these time scales. as shown in Paper 1 and 2, the record shows excellent scal-
ing with β ∼ 0.7 on time scales from 4 years up to centennial or millennial time
scales. However, caution should be taken when interpreting this reconstruction
as representative for the full Northern hemisphere, as the majority of the local
records are terrestrial, and only a handful represent coastal marine sites. Fur-
thermore, (Mann et al., 2005) criticized the reconstruction and suggested that the
low-frequency variability may be inflated. Moberg et al. (2008) used pseudoproxy
experiments to test the reconstruction skill after this criticism. The reconstruc-
tion technique was compared against the CPS procedure, and the results showed
that the wavelet-based reconstruction method performed better for pseudoproxies
generated from a forced climate simulation than for a control run simulation. The
results also depended on the noise type and level, which is natural and expected.
After the reconstruction was first published in 2005, the understanding about
proxy-temperature relationships have been improved. The proxy data quality and
dating has also been refined, and the overall proxy database has been updated and
expanded. The Moberg et al. (2005) temperature reconstruction is still considered
as an important contribution to the ensemble of millennium-long reconstructions,
but some of the proxy records it is based on are less relevant today.
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Discussion and summary of Paper 1

5.1 Paleoclimate model simulations

State-of-the-art climate models are based on physical processes observed in the era
of instrumental observations, and parameterizations are calibrated from present
climate conditions. It is therefore important to test the skill of such models for
conditions that are significantly different from the present climate. The purpose is
to find out if the models respond correctly and are able to simulate future climate
change in a realistic manner. Paleoclimate simulations are used for such testing
since they can be evaluated and compared with proxy-based observations. Since it
became known in the 1980s that response to forcing is model dependent, systematic
model intercomparison became an important part of the model evaluation and de-
velopment. Earlier intercomparison projects for paleoclimate simulations focused
on the last glacial maximum (LGM) and the Mid-Holocene period, where climate
conditions were significantly different from the present climate. The most recent
Paleoclimate Modelling Intercomparison Project (PMIP3) also include forced sim-
ulations for the last millennium (Braconnot et al., 2012). The climate during this
time period was more similar to the present, but the intercomparison value of these
simulations is that the modeled variability can be compared with a wide range of
accurately dated proxy-based reconstructions. Inconsistencies between simulations
and observations may indicate model deficiencies or errors in the reconstructions.
There is a wide range of complexity levels for models used for paleoclimate simu-
lations. Potential sources of discrepancies include e.g. errors in the forcings used
by the models, incorrect representation of modeled responses and feedbacks, or
the interpretation of proxies dominated by noise/uncertainties. Standardization
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of the forcing data sets used in all model runs of PMIP3 facilitates intercomparison
between models and thereby quantifies potential model-dependent uncertainties

5.2 Paper one: Long-range memory in internal and forced
dynamics of millennium-long climate model simulations

5.2.1 Summary

The memory properties in selected paleoclimate simulations were investigated in
a systematic manner in this paper, and compared with the memory properties of
climate reconstructions. The different simulations were based on GCM models or
models of intermediate complexity, with and without Earth-system modules and
external forcing. The representation of physical processes and interactions in the
climate system must necessarily be simplified in climate models. The degree of
simplification is dependent on the model complexity. It is important to investigate
if and what types of model configurations that facilitate LRM, and if the level of
complexity and/or the inclusion of Earth System Modules or external forcing is
essential for the memory. Vyushin et al. (2004) studied ensemble experiments of
the NCAR PCM using a variety of forcing configurations, and found that inclusion
of volcanic forcing greatly improved the model scaling behavior.

The advantage of working with data from climate model simulations is that
the data sets are provided with high spatiotemporal resolution, they cover long
periods in time and have no gaps in space or time. Two proxy-based temperature
reconstructions were also analyzed with the same techniques as the model data
for comparison. One of them represent the Northern Hemisphere (Moberg et al.,
2005), and is a multiproxy temperature reconstruction based on seven tree-ring
records and 11 low-resolution records. The other reconstruction is based on di-
atoms from marine sediments, Miettinen et al. (2012), and represent a local site
in the Northern North Atlantic. The simulated temperature data were extracted
to replicate the reconstruction regions.

Four model configurations were selected where one is included in PMIP3,
(HadCM3). Three of the models are fully coupled atmosphere-ocean general circu-
lation models (AOGCMs): COSMOS ESM, ECHO-G and HadCM3, and the last
one is an Earth system model of intermediate complexity (EMIC): LOVECLIM.
For COSMOS and ECHO-G there was a control run available in addition to the
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forced run.

The scaling parameter β was estimated using three different techniques: the
power spectrum, DFA and wavelet variance analysis. The results showed scaling
in all simulated data sets, and no systematic difference between control run/forced
run or the level of complexity. For the forced runs we found 0.8 < β < 1.2 on
timescales from decades to centuries. The corresponding results for the Moberg
et al. (2005) multiproxy temperature reconstruction were 0.6 < β < 0.69. The
control runs had scaling parameters 0.82 < β < 0.87. The scaling analyses were
also conducted on residual data sets, where the theory of the stochastic-dynamic
model described in Rypdal and Rypdal (2014) was applied to the model timeseries
and the Moberg et al. (2005) temperature reconstruction. The general idea of the
stochastic-dynamic model is that the temperature signal is a superposition of a
linear response to external forcing, and a response to stochastic forcing from un-
resolved spatiotemporal turbulence. The latter term represent internal variability
in the climate system, which can be modeled as a scaling process such as the fGn
using an LRM hypothesis. Subtracting the response to external forcing from the
full temperature signal leaves a detrended residual. The scaling of the residual
can then be investigated. This was done for the forced runs in our study and the
Moberg et al. (2005) reconstruction. The temperature response to the external
forcing was estimated using available forcing timeseries. All residuals were scal-
ing with 0.6 < β < 1.1. The individual scaling parameters are lower than what
was estimated from the forced runs, but the small differences simply indicates a
strengthening of the memory when external forcing is included.

Through our study it has been demonstrated that state-of-the-art AOGCMs
and EMICs are able to generate output temperature data exhibiting LRM. The
memory is intrinsic in the modeled internal variability, but increase slightly when
taking into account the temperature response to external forcing. The strength of
the memory is similar to that observed in the milliennium-long mean temperature
reconstruction for the Northern Hemisphere (Moberg et al., 2005). The scaling
parameter estimated from DFA-2 of the local SST reconstruction of Miettinen
et al. (2012) was also compared with that estimated from modeled temperature
of ECHO-G from the same location. The scaling was found to be similar on
timescales from years to centuries, with 0.45 < β < 0.67.
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5.3 Climate response in proxy-based climate reconstructions
and climate simulations

This section summarises additional relevant aspects of the scientific discussion
around scaling in paleoclimate model simulations versus observations. The choice
of literature reflect the many sources of uncertainty that needs to be considered
when interpreting LRM in model simulations.

5.3.1 The role of volcanic forcing

There is no clear consensus yet on the role of volcanic eruptions in the generation
of LRM. The global instrumental temperature response to large and explosive
tropical volcanic eruptions is apparent as a sharp peak in the temperature record
over the subsequent two years only, (Robock and Mao, 1995). The long-term
effects are less pronounced, but there are indications that the surface temperature
may also be more indirectly affected for decades due to shifts in oceanic circulation
(Miller et al., 2012; Schleussner et al., 2015). Such atmosphere-ocean interaction
is an example of a mechanism that introduce LRM into the climate system. As
mentioned, Vyushin et al. (2004) found that volcanic forcing improved the scaling
in model temperature record significantly, while Østvand et al. (2014) found that
the external forcing did not have any substantial influence on the scaling. The
contradicting results gives reason to elaborate more systematically on the model
skill in representing the temperature response to strong, volcanic eruptions.

Many of the small-scale physical processes associated with volcanic eruptions
have traditionally been parameterized in climate models. The actual dynamical
processes are highly complex and involve atmospheric and oceanic interaction and
teleconnections. The spatiotemporal evolution of the temperature change associ-
ated with a specific eruption depends on a number of factors such as the season
and location of the eruption, the chemical composition of the ash plume, and the
size distribution of sulphate particles. Observational data from large, tropical,
explosive volcanic eruptions with global impact on the climate is needed to model
the dynamical processes and calibrate the response in climate models. For ob-
vious reasons, the amount of such observational data is limited. The Pinatubo
eruption in 1991 was monitored closely using modern in-situ and remote-sensing
instruments, but further back in time the observational data basis is sparse and
based on indirect measurements.
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Driscoll et al. (2012) demonstrated discrepancies in the spatially distributed
surface temperature anomaly between CMIP5 model simulations and instrumen-
tal observations after recent, major tropical volcanic eruptions. The reanalysis
data set of the 20th Century version 2 (20CRv2) Compo et al. (2011), was used to
represent observations. The study points to well-known dynamical features that
the models fail to reproduce after large eruptions, including a strengthened NH
polar vortex, positive NAO and a pattern of warming across Eurasia. The spa-
tial pattern of modeled cooling was shown to be substantially stronger than the
observed.

Mann et al. (2012) revealed a similar problem for historical eruptions by com-
paring the Northern Hemisphere mean surface temperature for one AOGCM, one
EBM and one tree-ring reconstruction. For three major eruptions the modeled
temperature decrease was significantly stronger than the reconstructed, e.g. ∼ 2◦C
cooling versus ∼ 0.6◦ for the 1258/1259 eruption. It is not trivial to find out how
such large volcanic spikes in the temperature response affect the LRM. Mann
et al. (2012, 2013) hypothesized that trees near the tree-line might have a re-
duced sensitivity to cooling, so that the strong cooling was simply not recorded
in the tree-rings after abrupt, explosive volcanic eruptions. This effect was fur-
ther demonstrated using a biological growth model. However, Anchukaitis et al.
(2012) pointed to a number of factors that contradict this hypothesis, including
the improper choice of tree-ring growth model and assumptions about temperature
thresholds for growth and length of growing season. By changing the tree-growth
model and replacing the parameters with more realistic measures, they demon-
strated that trees near the tree-line do indeed record the temperature change asso-
ciated with explosive volcanic eruptions. It was pointed out that large-scale tree-
ring based reconstructions may suffer from lagged effects from prior-year weather
on subsequent ring formation, and also that the spatial distribution of the tree-ring
network may influence the mean temperature variability.

Another possible explanation for the deviation between the modeled tempera-
ture response and the observed temperature data is that volcanic forcing for the
past millennium is generally poorly constrained with respect to magnitude prior
to the instrumental period (Fernández-Donado et al., 2013). The volcanic forcing
is primarily reconstructed from sulphate in ice cores. However, the ice core records
have higher age uncertainties than tree-ring records, where the enrichment of 14C in
tree-rings following an eruption provides an absolute age marker (Sigl et al., 2015).
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Consistency between tree-ring and ice-core chronologies is therefore crucial to con-
struct a coherent age model for the volcanic forcing. The exact timing of volcanic
eruptions prior to 1250 CE is debated because of such chronological discrepancies
between ice cores and tree ring records. Sigl et al. (2015) constrained and revised
the Greenland and Antarctic ice core chronologies using age markers linking the
age models of ice-cores and tree-rings. The revision of the ice core chronologies be-
fore 1250 AD implies necessary updates to the reconstructed volcanic forcing, and
it also means that the magnitude of high-to mid frequency temperature variability
(annual to a few years) may be biased in multiproxy climate reconstructions where
ice core records are used together with other proxy types.

If the volcanic forcing used as input in climate models is poorly constrained
as described in Fernández-Donado et al. (2013); Sigl et al. (2015), and the models
cannot simulate the dynamics associated with volcanic eruptions, (Driscoll et al.,
2012), it seems challenging to test the long-term temperature response to a single
eruption. A new generation of climate model simulations is currently under plan-
ning and preparation (Zanchettin et al., 2016), the “Model intercomparison project
on the climatic response to volcanic forcing”, (VolMIP). This set of experiments
is part of the CMIP6 initiative, and includes short simulations to investigate the
short-term seasonal to interannual dynamical response to a Pinatubo-like eruption,
longer simulations to study long-term effects of a single eruption, and experiments
on volcanic clusters. By performing idealized, ensemble-based experiments it is
possible to pin down the climate response in different layers of the atmosphere and
the ocean, and to observe how the internal variability contributes to the response.
The intention of the VolMIP experiments is to assess the coherence between cli-
mate models in simulating the response to volcanic forcing starting from similar
initial conditions and using the same set of external forcing, and identify causes
why such robustness is not achieved.

5.3.2 Multi-scale climate variability in proxy-based reconstructions and
paleoclimate simulations

Laepple and Huybers (2014a) demonstrate significant differences in the magnitude
of regional sea surface temperature (SST) variability on multidecadal time scales
for climate models and instrumental measurements. The power spectrum shows
that models have substantially underestimated power on decadal time scales and
longer compared with observation temperature. The instrumental data are cor-
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rected for different sources of noise prior to spectral analyses. The authors suggest
that the deviation is a result of models systematically underestimating regional
sea surface temperature variability, and that the mismatch is most evident on long
time scales. On the global level the consistency is much better, which may be
due to stronger spatial covariance in the models than in the observations (PAGES
2k-PMIP3 group, 2015).

Laepple and Huybers (2014b) compare the level of variability for SST in proxy-
based reconstructions and simulations. Again, the spectra show a clear difference
on the multidecadal and longer time scales, but longer time periods are available
for study than in Laepple and Huybers (2014a). For the proxy records, a contin-
ued increase in power is observed for frequencies corresponding to decadal time
scales and longer, while the models show a flat spectrum on the lowest frequencies
available. The proxy records are corrected for different sources of noise before
comparison, which are different and less well constrained than the sources of in-
strumental noise. The proposed explanations are that modeled internal variability
may be underestimated, or the external forcing or the responses in the models may
be too weak.

The issue of continental-scale temperature variability in models and proxy re-
constructions was the focus of (PAGES 2k-PMIP3 group, 2015). The variability
in PMIP3 simulations and PAGES 2k regional temperature reconstructions were
compared for the past millennium. Reconstructions cover the landmasses of the
Arctic, Europe, North America, Asia, South America, Australasia and Antarctica.
The simulations were required to fulfill certain criteria, leading to exclusion of
some PMIP3 past millennium simulations and inclusion of some pre-PMIP3 sim-
ulations. Direct observation of the time series indicate stronger long-term trends
and more variability on centennial and longer time scales in the reconstructions
than in the simulations. Spectral analysis shows that most of the models exhibit
more variance than the reconstructions at high frequencies, and for three out of
seven regions the models show less variability than the reconstructions on multi-
decadal time scales and longer. At the same time, the spatial correlation structure
was demonstrated to be considerably stronger for the simulations than the recon-
structions. Response to volcanic forcing is considerably stronger in the simulations
than in the reconstruction, with cooling of -0.5 to -1 ◦C in the models in contrast
to -0.1 to -0.25 ◦C for the reconstructions.

Franke et al. (2013) estimate local spectral exponents from power spectra for
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instrumental, reanalysis, proxy and simulated data. The proxy data material
is dominated by tree-ring width (TRW) and tree ring density (MXD), and it is
demonstrated that the proxy data have a larger spread in beta-values than the
instrumental data, biased towards higher values. It is suggested that the low-
frequency variability in tree-ring records is overestimated compared with instru-
mental, reanalysis and model temperature. The bias in local beta values may
propagate into multiproxy reconstructions that heavily depends on tree-ring data.
This is illustrated by estimating local spectral exponents for the global climate field
reconstruction by Mann et al. (2009). This reconstruction is dominated by tree-
ring records, and local values of beta are mainly 1 < β < 2 (Franke et al., 2013),
supplementary material. In contrast, local β values for the CRU TS3 dataset are
0 < β < 1.
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Discussion and summary of Paper 2

6.1 Paper two: Are there multiple scaling regimes in Holocene
temperature records?

There are different views on how scaling models can be used to describe the Earth’s
surface temperature. One perception is presented in Rypdal (2012); Rypdal and
Rypdal (2014); Rypdal et al. (2015); Rypdal and Rypdal (2016). The surface
temperature is considered as a superposition of internal variability (the response
to stochastic forcing) and a forced signal which is the linear response to external
forcing. The background variability may be modeled using a stochastic process
such as the fGn or fBm, or a different process that incorporates non-gaussianity
if this is considered more appropriate. The response to external forcing can be
modeled using periodic functions with superposed trends.

The concept of a break in scaling implies a different model for surface tem-
perature. Spectral analysis of temperature proxy data representing time periods
longer than the Holocene typically gives a spectrum with a characteristic break
in scaling around centennial timescales. Lovejoy and Schertzer (2012b) use this
property to construct a conceptual framework where temperature variability is
divided into different categories associated with the time scales involved. Temper-
ature variability on time scales shorter than 10 days is “weather”, while variability
between 10 days to a century is “macroweather”. For time scales longer than cen-
tennial the variability is categorized as “climate”. So far, these terms have not
gained general acceptance. The variability associated with "climate" is typically
dominated by data from the last glacial period or even further back in time. The
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Earth’s climate is nonstationary over such long timescales, and the concept of
scaling may be considered less meaningful for these types of records without an
associated statistical model. For the present, Holocene climate there is no scale
break in detrended temperature records, and it may be argued that the simpler
model with one single scaling regime is more suitable for describing variability up
to a few millennia. From an information criteria perspective the simpler model has
fewer parameters, and should therefore be preferred. it is possible to use a single
model with separate scaling regimes to describe the Earth’s surface temperature
over a range of time scales. However, the proxy temperature records from the
last glacial climate state are characterized by strong nonlinearities. The same is
true for the interglacial-glacial transitions. Describing this variability by a single
scaling regime is an extreme simplification, and it can therefore be debated how
useful the scale-break model is.

6.1.1 Summary

The Earth’s surface temperature record is highly nonstationary on timescales be-
yond the Holocene. Ditlevsen et al. (1996); Huybers and Curry (2006) and Lovejoy
and Schertzer (2012b) all present log-log power spectra for temperature and/or
temperature proxies covering the Holocene and the last glacial period, with esti-
mated scaling parameters β. The three studies all identify a break in scaling at
centennial time scales, and β changes from approximately 0 < β < 0.6 on the
shorter scales to β > 1 on the longer. Huybers and Curry (2006) suggest that
the power-law continuum in the spectrum of surface temperature on time scales
between one year and a century is a result of an inverse cascade in frequency space
driven by the seasonal cycle forcing.

The alternative view of Rypdal (2012); Rypdal and Rypdal (2014); Rypdal
et al. (2015); Rypdal and Rypdal (2016) is that a linear power-law response to
stochastic forcing yields the β < 1 scaling, and the power-law response is inter-
preted from an energy balance perspective where energy is exchanged between
different parts of the climate system with different heat capacities and response
times. The fGn has been frequently used to model the Earth’s surface tempera-
ture. When 0 < β < 1, this process is persistent. If we want to model a process
with β > 1, an fBm is used.

It is necessary to study proxy records that extend into the last glacial pe-
riod to detect the observed scaling transition around centennial time scales with
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significance. In Huybers and Curry (2006); Lovejoy and Schertzer (2012b), the
scale break appears in composite power spectra. The high-frequency variability
is represented by recent high-resolution temperature records and -proxies, while
low-frequency variability is represented by temperature proxies with lower tem-
poral resolution covering time periods longer than the Holocene. This means the
scale-break only appears when considering proxy types of different nature and two
climate states that are very different from each other.

If the scale-break is a universal feature, it should also be observed in records for
the Holocene only. Assume that the centennial time scale is chosen as an arbitrary
boundary between high- and low frequency temperature variability. Then, due
to the temporal coverage of instrumental and reanalysis temperature records, and
the nature of proxy-based reconstructions, most records represent either high- or
low frequency variability, but very few can be used to actually identify the claimed
scale break at this transition.

The existence of a potential scale-break at centennial time scales in the Holocene
was investigated using statistical hypothesis testing. This involves formulating a
conservative null hypothesis, in our case that the Holocene temperature variabil-
ity can be described using a stochastic process with a single scaling regime. The
alternative hypothesis is that a two-regime model with a break at centennial time
scales is a better description. A significance level of 5% is chosen for rejection of
the null hypothesis. If the temperature records are unlikely to be realizations of
fGn processes with a single scaling regime, the null hypothesis is rejected.

The Greenland and Antarctic ice core records have high enough temporal res-
olution, and long enough coverage in time to detect and test the significance of
a potential scale break. For simplicity, and due to the sampling rate, data from
the Holocene and the last glacial period was analyzed, but not further back in
time. Two different approaches were used; to separate the ice core records into a
Holocene and a glacial part, and to analyze the full record in search for a signifi-
cant break. The results showed that for the Holocene-only records, an increase in
spectral power was observed at millennial time scales, but not at centennial. On
the other hand, a centennial scale break was detected in the glacial record, and also
in the full record. This scale-break was significant, and appears to be associated
with the difference in glacial/interglacial variability, manifested for instance as the
presence of Dansgaard-Oeschger (DO) events in Greenland and North Atlantic
records from the last glacial period.
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Six late-Holocene multiproxy reconstructions were also analyzed in search for
a potential scale break, but the records were too short to claim any significant
break. One multiproxy reconstruction covering the full Holocene period was also
included. However, it was demonstrated that the high-frequency variability was
artificially low in this record due to the selection of proxy data and the reconstruc-
tion technique.

Our conclusion is that the available temperature data from the Holocene is
insufficient to justify the notion of separate scaling regimes for Earth’s surface
temperature on time scales longer and shorter than centennial. Only when data
from the last glacial period were included in the analyses, the scale-break appeared
to be significant. The notion of multiple scaling regimes is illustrative of the
temperature variability on a large span of time scales: epochs, periods, eras and
eons. The Earth’s surface temperature variability is non-stationary over this range
of time scales, so the scaling properties will depend on the time period, and what
the dominating dynamics are. As a simple example, consider a conceptual model
of the Greenland paleotemperature records for the Holocene and the last glacial
period. The Holocene is similar to a white noise process of length N, connected
at the end with the last glacial period, represented as a highly intermittent record
of length ∼ 10*N with a higher standard deviation. It is possible to estimate
the power spectrum of this combined record and study the scaling properties,
but note that the very different characteristics of the two time periods will be
merged together. The power spectrum will be dominated by the variability in the
last glacial period, and the shorter Holocene period will essentially be suppressed.
This is acceptable only if the longer time scales are considered more important.
If the two-regime model is considered universal, prediction based on this model
would include the transition to a new glacial period at centennial time scales,
simply because the model required this. This does not comply with recent findings
summarised in Masson-Delmotte et al. (2013, Chapter 5), where it is stated that “It
is therefore virtually certain that orbital forcing will not trigger a glacial inception
before the end of the next millennium”.

In the end, the problem at hand is about model selection. The problem-solving
principle known as “Occam’s razor” states that “Among competing hypotheses, the
one with the fewest assumptions should be selected”. Without doubt, the simplest
model for the Holocene climate is the one with a single, monofractal scaling regime,
which should be used as the null hypothesis.
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6.1.2 The review process

The manuscript was submitted to Earth System Dynamics. Since there was a
lengthy review process and numerous disagreements, the discussion phase is sum-
marized below.

6.1.3 The scope

The centennial scale-break appeared in our analyses of ice core records only when
the last glacial period was included. We did, however, observe an increase in
power at the lowest frequencies for some of the Holocene records, but this was
not a statistically significant break in scaling. To test the statistical significance
we performed numerical experiments with idealized long-range memory processes.
The null hypothesis of a single scaling regime could not be rejected. It was also
demonstrated that spurious increases/decreases in power appeared even in realisa-
tions of idealized processes defined by a single scaling parameter. Such deviations
from scaling occur simply as artifacts.

Our conclusion was therefore that the one- and two-regime model were both
possible descriptions for the Holocene temperature, but the one-regime model
should be preferred. information-theoretic criteria are used for model selection
in modern science, with the intention of finding a suitable description that does
not lead to overfitting. Our main results were therefore of a negative type, which is
unconventional in the peer-reviewed literature. The results revealed possible type
1 statistical errors (false positives) in the existing literature on this specific topic.

It appears that the intermittency associated with deglaciation and the DO
events/Southern Hemisphere teleconnections causes the centennial scale break ob-
served in the ice core records. This variability associated with nonlinear dynamics
is important, but we question the relevance to describe it as a second scaling
regime. The physical processes are poorly understood, and assigning a scaling
parameter has little value without an associated statistical model. In Rypdal and
Rypdal (2016), the scaling in the Greenland ice core records for the last glacial
period are investigated. It is suggested that the underlying climate variability can
be described as a 1/f noise, that is, when only the intervals between the DO-events
are analyzed. The events themselves, in addition to the deglaciation, are separated
from the noise background.
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6.1.4 Remarks about method selection

Time series for proxy reconstructions typically have uneven sampling in time,
which cannot be handled directly by standard techniques for scaling analysis. Lin-
ear interpolation can be used to obtain even sampling, or alternatively one can
use a method that works for unevenly spaced data. Linear interpolation will by
definition change the PSD of the signal, in some cases producing underestimated
high-frequency variability. The “red-bias” in the power spectrum is an artifact
which is observed as a steep decrease in spectral power at high frequencies in a
log-log plot, and may be misinterpreted as a separate scaling regime. In our work
it was important to distinguish true scale breaks in the spectra from artifacts and
biases. For some of the evenly sampled time series such a bias was already ob-
served, such as Moberg et al. (2005); Mann et al. (2009). A method known as the
Lomb-Scargle periodogram was investigated since it can be used directly on un-
evenly sampled data. We were not certain beforehand that the method would be
suitable for our purpose, since it was originally designed to handle periodic data
with random missing values. There were few earlier studies where this method
was used for paleoclimate data, one example is (Pelletier, 1998). After testing the
Lomb-Scargle periodogram and the first round of reviews, it was decided to use in-
terpolation and the standard periodogram in the main paper, and include the test
results for the Lomb-Scargle periodogram in supplementary material. Contrary to
the red bias observed in the standard periodogram, the Lomb-Scargle periodogram
exhibit a blue bias for high frequencies. The skill of this estimator depends on the
skewness of the distribution of sampling intervals. It was found to perform well
but not significantly different from using linear interpolation in combination with
the standard periodogram.

The Mexican Hat and Morlet wavelet scalograms were plotted for illustrative
purposes for some of the interpolated time series versus time and time scale. Us-
ing this technique, it is possible to detect systematic differences in power over
the length of the record. This was the case for the Marcott et al. (2013) recon-
struction. The wavelet scalogram was also used to pin down time-localised events
that caused changes in power in one ice core record. We demonstrated that the
increase in power observed at millennial time scales in the Holocene GRIP record
occurred due to the 8.2 kiloyear event. This was an abrupt cooling event caused
by sudden drainage of the proglacial lake Agassiz into the North Atlantic (Alley
and Ágústdóttir, 2005).
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In the accepted manuscript, only selected wavelet scalograms were included.
These plots were used as supplements to the main results from the spectral anal-
yses.

DFA of order n was shown to be insensitive to scale breaks, and to shift the
scale where breaks are observed. The performance of the Haar wavelet fluctuation
analysis was tested and compared to the power spectrum, and the two methods
appeared to give similar results and uncertainties. However, breaks in scaling
appeared more pronounced in plots of the Haar fluctuation function versus the
power spectrum, even if they were not statistically significant. Structure- and
scaling functions were introduced to demonstrate that the Holocene temperature
records at hand are monofractal. The fGn model was thereby justified, and us-
ing the Haar fluctuation it was shown that a one-regime model plus a trend has
significantly lower uncertainties on the longest time scales than the two-regime
model.

6.1.5 How should proxy-based reconstructions be used for scaling anal-
yses?

When working with scaling in paleoclimatic temperature, the limitations and
uncertainties of proxies and proxy-based reconstructions have to be taken into
account. The proxy-based data go through a number of processing steps and
are based on fundamental assumptions not relevant to instrumental temperature.
These assumptions arise from e.g. the complexity of physical and/or biological
processes associated with the climate proxy formation. Although physically or
biologically based models (forward proxy models) have been evolving during the
recent years, the relation between the proxy and the variable it is assumed to record
is generally unknown. It is also unknown how the proxy-variable relation changes
with time. The uniformitarian principle is therefore used, i.e. that the relation
is assumed to be stationary in time. The scaling does not necessarily reflect only
the true climate variability, and the low versus high frequency variability is often
misrepresented. In addition, the sampling site of local/regional proxy records is
generally carefully chosen to investigate a specific phenomena or type of variabil-
ity, and is not necessarily representative of the variability over a larger region. All
things considered, the proxy-related uncertainties makes it harder to draw firm
conclusions about scaling from these types of data than from instrumental mea-
surements. Proxy-based reconstructions should not be used uncritically for scaling
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analyses, as is demonstrated in this paper. Nevertheless, even if the reconstruc-
tions are poor compared to actual instrumental measurements, the scaling might
provide useful information. We argue that the noise and uncertainties associated
with the proxies makes it even harder to justify a scaling model with two regimes,
separated at centennial time scales. Given the uncertainties, inference based on
proxy-based reconstructions should be taken with more caution than the one in-
ferred from instrumental data.

6.1.6 Principles of data selection

The scaling properties in paleotemperature reconstructions have been analyzed in
e.g. Pelletier (1998); Blender et al. (2006); Rybski et al. (2006) in addition to the
papers mentioned above. Some of the data sets were re-analyzed since we were
interested in a potential scale-break in addition to general scaling properties. Six
high-resolution ice core paleotemperature records from Greenland and Antarctica
were selected: GRIP, GISP2, NGRIP, EPICA Dome C, Taylor Dome and Vostok.
In addition, six proxy/multiproxy reconstructions from the late Holocene and one
multiproxy reconstruction covering the full Holocene period were analyzed: Jones
et al. (1998); Briffa et al. (2001); Esper et al. (2002); Huang (2004); Moberg et al.
(2005); Mann et al. (2008); Neukom et al. (2014). The late-Holocene records were
too short to detect any significant break, while an increase in power at millennial
time scales could be detected in the Holocene part of the ice core records. For the
full-Holocene multiproxy record of Marcott et al. (2013) it was demonstrated that
the high-frequency variability is incorrectly represented in the earlier part of the
record. This is an example of a bias associated directly with the particular multi-
proxy reconstruction procedure and data selection. The bias should be accounted
for before doing scaling analysis on the record.

Lovejoy and Schertzer (2012b) claimed that the Holocene paleotemperatures
from Greenland ice cores are exceptionally stable, and should therefore be given
less credit. He refers to a paleotemperature record in Berner et al. (2008) that
should be considered more realistic for Northern Hemisphere, Holocene climate.
This record has considerably higher fluctuation levels, and scaling analysis give
β > 1 as opposed to the ice core data which have β ∼ 0. The reconstruction
referred to is based on diatoms from a marine sediment core, sampled at Reyk-
janes Ridge Southwest of Iceland. Lovejoy and Schertzer (2012b) do not mention
that the sampling site in Berner et al. (2008) was chosen specifically because it is
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optimal for detecting effects of quasi-cycle ice rafting pulses, sometimes denoted
as Bond events. The authors report that such periodic cooling events are indeed
detected in the record. They are known to be localised to the North Atlantic re-
gion and are therefore not global/hemispheric features. Even if the sampling sites
of the ice cores and marine sediment cores are just 1500 km apart, they belong
to different realms and have different seasonality. The observed differences in the
scaling parameters for the ice core/marine sediment data is therefore unsurpris-
ing. In particular, Fredriksen and Rypdal (2016) demonstrate that the land/ocean
difference in heat capacity influences local values of the scaling parameter. Specif-
ically, βsea > βland. This does not necessarily involve the existence of two different
scaling regimes on different timescales.

6.1.7 Concluding discussion about the scale break and its validity

Though our study we have demonstrated that the scale break observed at cen-
tennial time scales in composite spectra in Ditlevsen et al. (1996); Huybers and
Curry (2006); Lovejoy and Schertzer (2012b) appears to be an artifact of com-
positing high-resolution temperature records from the present, Holocene climate,
and low-resolution proxy records from the last glacial period and even further back
in time. On longer timescales than 10 00 years the Earth’s surface temperature
variability represents a manifestation of a nonstationary and nonlinear process
with the nonlinearity being largely a result of transitions between different climate
attractors. Using scaling to describe such an evolving system implies a substantial
simplification with a loss of crucial information on the mechanisms and behaviour
of the climate system. Due to a substantial difference in the variance of the cli-
mate related signal for the last glacial period and the Holocene, fitting a single
parameter model to a composite record will result in a dominance of the glacial
period data in the model fitting procedure.

Statistical hypothesis testing and employing information principles cannot be
used to favor a statistical model with two scaling regimes using available tem-
perature records from the Holocene alone. Furthermore, the estimation of differ-
ent scaling parameters from different records does not indicate different scaling
regimes, but may very well be a result of different climate dynamics dominating
locally, as well as effects of uncertainties in proxy-based reconstructions.
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Chapter 7

Discussion and summary of Paper 3

7.1 Testing the skill of reconstruction methods

The “skill” of a reconstruction method is commonly quantified through statistical
measures related to the mean-squared error between reconstructed and true target
variables during a validation interval. If instrumental data represent the target
data used for validation, then the testing is performed over a very short inter-
val in time, typically less than 100 years that are withheld from the calibration
period. Another option is to use synthetic temperature data for these valida-
tion exercises, performing so-called pseudoproxy experiments. Target values are
typically extracted from millennium-long paleoclimate GCM simulations or from
instrumental data sets, and pseudoproxies are constructed by adding synthetic
noise to simulate real proxy uncertainties. The target values are extracted in a
spatial pattern simulating real-world multiproxy networks. The calibration inter-
val is again chosen to be in modern time, but instead of true instrumental data it
is also possible to use pseudoinstrumental data for regression purposes. Pseudoin-
strumental data are obtained by extracting modeled target data from a spatial
complete field for the modern period. The pseudoproxy-based reconstruction can
be compared with the true model target for the remaining reconstruction period,
which is now typically hundreds of years long. A pseudoproxy experiment can be
used to assess/compare skill of one or a number of reconstruction methods, or to
validate a particular reconstruction. A review on the topic is found in (Smerdon,
2012).

Through different experiment designs, pseudoproxy experiments are used to
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investigate the sensitivity of a reconstruction method to some types of uncertainties
in an idealized fashion. A number of experiments are typically conducted for a
single model simulation and target variable, and the reconstruction skill for each
experiment is estimated. For instance, a known proxy uncertainty is noise color and
level. In pseudoproxy experiments, separate experiments can be conducted using
white or red proxy noise, and the signal to noise ratio (SNR) can be varied between
∞ and zero, spanning the range from a perfect proxy signal to a signal masked
completely by noise. Varying the SNR is how proxy data quality is modeled. The
SNR is related to the correlation between proxy and target variable:

SNR =
|ρ|√

1− ρ2

Where ρ is the Pearson’s correlation coefficient. Note that different correlation
measures can be applied. The local correlation refers to the correlation between
a proxy signal and the instrumental variable in close proximity. In real-world
proxy networks, the SNR in proxies has been estimated to 0.5-0.25 based on local
correlation, (Smerdon, 2012). Maximum correlation refers to the highest correla-
tion estimated between a proxy and any of the spatially distributed instrumental
variables for a given year, (Wang et al., 2014). Other pseuodoproxy experiments
handle uncertainties in the spatiotemporal distribution of the proxy network, sea-
sonality or nonlinear aspects of the proxy-variable relationship. It is possible to
use different models and/or model realizations to test robustness of the results.
Because reconstruction methods may be sensitive to the individual noise realiza-
tions used for the pseudoproxies, an ensemble of the same experiment is typically
used to obtain statistical uncertainties associated with this factor.

7.2 Paper 3: How wrong are climate field reconstruction
techniques in reconstructing a climate with long-range
memory?

7.2.1 Summary

In Paper 3 we study the performance of the Bayesian hierarchical model BAR-
CAST described in Tingley and Huybers (2010a) through pseuodoproxy experi-
ments. Target data are generated as stochastic LRM fields with prescribed spa-
tiotemporal covariance structures. In contrast to the LRM structure of the input
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data, the underlying assumption of the BARCAST reconstruction method to be
tested is that the data follow an AR(1) structure in time. Pseudoinstrumental
and pseudoproxy data were constructed by sampling the data in a spatiotemporal
idealized pattern, and adding different levels of white noise to generate pseudo-
proxy data. The data were then used as input for the BARCAST reconstruction
technique, and a number of analyses were performed on the resulting ensemble of
reconstructions to compare it with the target.

One of the goals of this study is to investigate if BARCAST preserves the LRM
properties of the target data. For this purpose, the spectra of the local and spatial
mean reconstructions and target data are estimated using the periodogram, and
hypothesis testing is performed. The reconstructed spectra are estimated on an
ensemble member basis, and it is tested whether the average spectrum is consis-
tent with the spectrum of the theoretical LRM model for the target data. The
results show that the LRM-scaling of the local reconstructions are slightly better
if measured between proxy sites than if measured directly at a proxy site. When
the local reconstructions are based on noisy input data, they are not consistent
with the LRM-hypothesis at the proxy site. However, for low noise-levels they
are scaling between proxy sites. The spatial mean reconstructions show better
scaling properties than the local reconstructions. Hypothesis testing was also per-
formed in the spectral domain using the null hypothesis that the reconstructed
data follow the AR(1) model with parameters estimated from BARCAST. This
null-hypothesis was rejected for all experiments both for the local and spatial mean
reconstructions.

The reconstruction skill was additionally tested using selected skill measures:
the correlation, the root mean squared error and the continuous ranked probability
score. The skill was found to be positive for all experiments both for local recon-
structions and the spatial mean, and decreasing in the expected manner when the
signal-to-noise ratio was decreased.

7.3 Other studies using pseudoproxy experiments

The Mann et al. (2007) pseudoproxy study includes a suite of experiments per-
formed to validate the RegEMmethod. Target data is extracted from two millennium-
long GCM simulations. Addition of white/red proxy noise is tested, and also
varying the SNR and using temporally variable number of proxy records. The
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study is a response to former criticism of CFR methods, and it is concluded in the
pseudoproxy study that RegEM provide robust results.

Tingley and Huybers (2010a) use real instrumental values as targets for pseudo-
proxies and thereby restrict the reconstruction of spatial fields of surface temper-
ature over North America to cover the instrumental period. Experiments are con-
ducted using varying SNR and varying the total number of pseudoproxy records.

Wang et al. (2014) compares four different CFR methodologies for modeling
surface temperature using PPE’s. Target data is extracted from one model, and in
order to compare with past PP studies, this is the same model as most of the results
and discussion in Mann et al. (2007) are based on. The CFR techniques tested
in Wang et al. (2014) are: the RegEM algorithm described by Schneider (2001)
(regularized by ridge regression), the hybrid version of RegEM applied in Mann
et al. (2009) (regularized by TTLS), canonical correlation analysis (CCA) and
GraphEM. Experiment design involves varying SNR, but only using white proxy
noise. Separate experiments are performed for networks with uniform/varying
number of records in time. Using pseudoproxy records that are uniform in time is
highly unrealistic, as observed in Fig.1 (b) in Wang et al. (2014). The unknown
proxy-target variable relationship was also tested, and modeled differently in two
additional experiments. Testing involved calculating the correlation coefficient ρ
between each proxy in the Mann et al. (2008) network and the instrumental surface
temperature field for each year between 1850-2006 AD. The results showed that
some types of proxies were highly correlated with the local target, while a large
fraction of other proxies had maximum correlation with a target value at great dis-
tance from the proxy location. To account for this bimodal distribution, separate
experiments were conducted where the pseudoproxy networks were spatially dis-
tributed to simulate the locations with local/maximum correlation, respectively.
The latter type of correlation exploits teleconnections or long-range dependence
in space.

The results from Wang et al. (2014) show that when SNR is estimated from
the maximum correlation network, average SNR is 0.47, but a few high-quality
proxies have SNR higher than 1 and contribute largely to improving the total re-
construction skill. When temporal heterogeneities of the proxy network are taken
into account, the reconstruction skill does not decrease monotonically back in time
as might be expected. The type of climate variability (forced/internal) is also im-
portant for the skill, where for instance the higher solar/volcanic forcing during
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the medieval warm period (MWP) contributes to increased skill. Regarding spatial
skill, modeled teleconnections are shown to contribute to higher skill than expected
in regions with low proxy coverage. Sensitivity to the reconstruction methodology
is found to be low when data quality is high, and data quality is generally more im-
portant for the skill than varying availability of proxies with time. The Mann et al.
(2009) implementation of RegEM provides the most skillful estimate of global mean
surface temperature for both the local and maximum correlation experiments. For
the spatial skill, CCA and GraphEM have the highest skill throughout the re-
construction period for the maximum correlation experiment, while for the local
correlation, the Mann et al. (2009) and the TTLS RegEM implementations were
most skillful. The variable skill estimates reflect that the four techniques have dif-
ferent sensitivity to input data and how the data are processed differently. Since
there are many uncertainties associated with the proxies in a particular network,
it is therefore suggested to use different techniques for reconstructing a climate
field from a single proxy network.
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Concluding remarks

Data from forced runs and control runs of paleoclimate model simulations exhibit
LRM properties on time scales from years to centuries, with a spectral exponent
β ranging from 0.6 < β < 1.1. No systematic differences in scaling were found be-
tween forced runs and control runs of the millennium-long GCM and EMIC model
simulations. The strength of persistence estimated from the model simulation time
series is in line with that estimated from instrumental temperature records and
paleoclimate reconstructions.

Analyzing selected temperature reconstructions, a centennial-scale change in
scaling properties from β ∼ 0 to β > 1 was not found for data covering only the
Holocene time period. However, the break was evident when including data from
the last glacial period. The issues of trends and universal scaling are problematic,
since scaling analysis then must be performed on a signal which has time-dependent
statistical properties.

Fields of LRM-processes with prescribed spatiotemporal covariance structure
have been constructed using a novel technique, and pseudoproxy experiments show
that a state-of-the-art climate field reconstruction (CFR) technique contributed to
altered scaling properties in the resulting field and spatial mean reconstruction.
The background assumption of the Bayesian BARCAST CFR technique, that the
temperature follows an AR(1) structure, results in biased parameter estimates
and thereby partly incorrect temperature reconstructions both locally and for the
global mean.

61



CONCLUDING REMARKS

62



Bibliography

Alley, R. B. and Ágústdóttir, A. M. The 8k event: cause and consequences of
a major Holocene abrupt climate change. Quaternary Science Reviews, 24(10),
1123 – 1149, 2005. doi:http://dx.doi.org/10.1016/j.quascirev.2004.12.004.

Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A., Buntgen, U.,
Cook, E. R., D’Arrigo, R. D., Esper, J., Evans, M. N., Frank, D., Grudd, H.,
Gunnarson, B. E., Hughes, M. K., Kirdyanov, A. V., Korner, C., Krusic, P. J.,
Luckman, B., Melvin, T. M., Salzer, M. W., Shashkin, A. V., Timmreck, C.,
Vaganov, E. A. and Wilson, R. J. S. Tree rings and volcanic cooling. Nature
Geosci., 5(12), 836–837, 2012. doi:10.1038/ngeo1645.

Bacry, E. and Muzy, J. Log-Infinitely Divisible Multifractal Processes. Commu-
nications in Mathematical Physics, 236(3), 449–475, 2003. doi:10.1007/s00220-
003-0827-3.

Berner, K. S., Koc, N., Divine, D., Godtliebsen, F. and Moros, M. A decadal-scale
Holocene sea surface temperature record from the subpolar North Aatlantic con-
structed using diatoms and statistics and its relation to other climate parameters.
Paleoceanography, 23, 2008. doi:10.1029/2006PA001339.

Bindoff, N., Stott, P., AchutaRao, K., Allen, M., Gillett, N., Gutzler, D., Hansingo,
K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I., Overland, J., Perlwitz, J., Sebbari,
R. and Zhang, X. Detection and Attribution of Climate Change: from Global to
Regional, book section 10, pp. 867–952. Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013. ISBN ISBN 978-1-107-66182-0.
doi:10.1017/CBO9781107415324.013. URL www.climatechange2013.org.

Blender, R., Fraedrich, K. and Hunt, B. Millennial climate variability: GCM-

63

www.climatechange2013.org


BIBLIOGRAPHY

simulation and Greenland ice cores. Geophys. Res. Lett., 33(4), 2006. doi:
10.1029/2005GL024919.

Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B. and Zhao, Y. Evaluation of climate models
using palaeoclimatic data. Nature Clim. Change, 2(6), 417–424, 2012. doi:
10.1038/NCLIMATE1456.

Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones, P. D.,
Shiyatov, S. G. and Vaganov, E. A. Low-frequency temperature variations from
a northern tree ring density network. J. Geophys. Res.-Atmos, 106(D3), 2929–
2941, 2001. doi:10.1029/2000JD900617.

Bürger, G., Fast, I. and Cubasch, U. Climate reconstruction by regression - 32
variations on a theme. Tellus, 58, 227–235, 2006. doi:10.1111/j.1600-0870.2006.
00164.x.

Christiansen, B. Reconstructing the NHMean Temperature: Can Underestimation
of Trends and Variability Be Avoided? Journal of Climate, 24(3), 674–692, 2011.
doi:10.1175/2010JCLI3646.1.

Christiansen, B., Schmith, T. and Thejll, P. A Surrogate Ensemble Study of
Climate Reconstruction Methods: Stochasticity and Robustness. Journal of
Climate, 22(4), 951–976, 2009. doi:10.1175/2008JCLI2301.1.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin,
X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D.,
Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli,
Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D. and Worley, S. J.
The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal
Meteorological Society, 137(654), 1–28, 2011. doi:10.1002/qj.776.

de Wit, T. D., Ermolli, I., Haberreiter, M., Kambezidis, H., Lam, M. M., Lilensten,
J., Matthes, K., Mironova, I., Schmidt, H., Seppälä, A., Tanskanen, E., Tourpali,
K. and Yair, Y., editors. Earth’s climate response to a changing Sun: A review
of the current understanding by the European research group TOSCA. EDP
Sciences, Les Ulis Cedex A, France, 2015. 345 pp.

64



BIBLIOGRAPHY

Ditlevsen, P. D., Svensmark, H. and Johnsen, S. Contrasting atmospheric and
climate dynamics of the last-glacial and Holocene periods. Nature, 379(6434),
810–812, 1996. doi:10.1038/379810a0.

Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. and Stenchikov, G. Coupled Model
Intercomparison Project 5 (CMIP5) simulations of climate following volcanic
eruptions. Journal of Geophysical Research: Atmospheres, 117(D17), n/a–n/a,
2012. doi:10.1029/2012JD017607.

Emile-Geay, J. and Tingley, M. Inferring climate variability from nonlinear proxies:
application to palaeo-ENSO studies. Climate of the Past, 12(1), 31–50, 2016.
doi:10.5194/cp-12-31-2016.

Esper, J., Cook, E. R. and Schweingruber, F. H. Low-Frequency Signals in Long
Tree-Ring Chronologies for Reconstructing Past Temperature Variability. Sci-
ence, 295(5563), 2250–2253, 2002. doi:10.1126/science.1066208.

Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Ammann, C. M.,
Barriopedro, D., García-Bustamante, E., Jungclaus, J. H., Lorenz, S. J., Luter-
bacher, J., Phipps, S. J., Servonnat, J., Swingedouw, D., Tett, S. F. B., Wagner,
S., Yiou, P. and Zorita, E. Large-scale temperature response to external forc-
ing in simulations and reconstructions of the last millennium. Clim. Past, 9(1),
393–421, 2013. doi:10.5194/cp-9-393-2013.

Franke, J., Frank, D., Raible, C. C., Esper, J. and Bronnimann, S. Spectral
biases in tree-ring climate proxies. Nature Clim. Change, 3(4), 360–364, 2013.
doi:10.1038/NCLIMATE1816.

Fredriksen, H.-B. and Rypdal, K. Spectral Characteristics of Instrumental and
Climate Model Surface Temperatures. Journal of Climate, 29(4), 1253–1268,
2016. doi:10.1175/JCLI-D-15-0457.1.

Hasselmann, K. Stochastic climate models Part I. Theory. Tellus, 28(6), 473–485,
1976. doi:10.1111/j.2153-3490.1976.tb00696.x.

Hegerl, G. C., Crowley, T. J., Allen, M., Hyde, W. T., Pollack, H. N., Smerdon,
J. and Zorita, E. Detection of Human Influence on a New, Validated 1500-
Year Temperature Reconstruction. Journal of Climate, 20(4), 650–666, 2007.
doi:10.1175/JCLI4011.1.

65



BIBLIOGRAPHY

Huang, S. Merging information from different resources for new insights into
climate change in the past and future. Geophys. Res. Lett., 31, 2004. doi:
10.1029/2004GL019781.

Huybers, P. and Curry, W. Links between annual, Milankovitch and continuum
temperature variability. Nature, 441(7091), 2006. doi:10.1038/nature04745.

Jones, P. D., Briffa, K. R., Barnett, T. P. and Tett, S. F. B. High-resolution palaeo-
climatic records for the last millennium: interpretation, integration and compar-
ison with General Circulation Model control-run temperatures. The Holocene,
8(4), 455–471, 1998. doi:10.1191/095968398667194956.

Laepple, T. and Huybers, P. Global and regional variability in marine surface
temperatures. Geophysical Research Letters, 41(7), 2528–2534, 2014a. doi:10.
1002/2014GL059345.

Laepple, T. and Huybers, P. Ocean surface temperature variability: Large model-
data differences at decadal and longer periods. P. Natl. A. Sci., 111(47), 16682–
16687, 2014b. doi:10.1073/pnas.1412077111.

Lovejoy, S. and Schertzer, D. Haar wavelets, fluctuations and structure functions:
convenient choices for geophysics. Nonlinear Proc. Geoph, 19(5), 513–527, 2012a.
doi:10.5194/npg-19-513-2012.

Lovejoy, S. and Schertzer, D. Low Frequency Weather and the Emergence of the
Climate, pp. 231–254. 196. American Geophysical Union, 2012b. doi:10.1029/
2011GM001087.

Løvsletten, O. Consistency of detrended fluctuation analysis. Phys. Rev. E, 96,
012141, 2017. doi:10.1103/PhysRevE.96.012141.

Lowe, J. J. and Walker, M. J. C. Recontructing Quaternary Environments. Addi-
son Wesley Longman, Harlow, England, 1997. 446 pp.

Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-
Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wag-
ner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Bar-
riendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný,
P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J.,

66



BIBLIOGRAPHY

Hao, Z., Hegerl, G. C., Holmgren, K., Klimenko, V. V., Martín-Chivelet, J., Pfis-
ter, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L.,
Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang,
H. and Zerefos, C. European summer temperatures since Roman times. Envi-
ronmental Research Letters, 11(2), 2016. doi:10.1088/1748-9326/11/2/024001.

Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension. Science, 156(3775), 636–638, 1967.

Mann, M. E., Bradley, R. S. and Hughes, M. K. Global-scale temperature patterns
and climate forcing over the past six centuries. Nature, 392(6678), 779–787, 1998.
doi:10.1038/33859.

Mann, M. E., Bradley, R. S. and Hughes, M. K. Northern Hemisphere temper-
atures during the past millennium: Inferences, uncertainties, and limitations.
Geophys. Res. Lett., 26(6), 759–762, 1999. doi:10.1029/1999GL900070.

Mann, M. E., Fuentes, J. D. and Rutherford, S. Underestimation of volcanic
cooling in tree-ring-based reconstructions of hemispheric temperatures. Nature
Geosci, 107(3-4), 202–205, 2012. doi:10.1038/NGEO1394.

Mann, M. E. and Rutherford, S. Climate reconstruction using ?Pseudoprox-
ies? Geophysical Research Letters, 29(10), 139–1–139–4, 2002. doi:10.1029/
2001GL014554.

Mann, M. E., Rutherford, S., Schurer, A., Tett, S. F. and Fuentes, J. D. Dis-
crepancies between the modeled and proxy-reconstructed response to volcanic
forcing over the past millennium: Implications and possible mechanisms. Jour-
nal of Geophysical Research: Atmospheres, 118(14), 7617–7627, 2013. doi:
10.1002/jgrd.50609.

Mann, M. E., Rutherford, S., Wahl, E. and Ammann, C. Testing the Fidelity
of Methods Used in Proxy-Based Reconstructions of Past Climate. Journal of
Climate, 18(20), 4097–4107, 2005. doi:10.1175/JCLI3564.1.

Mann, M. E., Rutherford, S., Wahl, E. and Ammann, C. Robustness of proxy-
based climate field reconstruction methods. J. Geophys. Res., 112, 2007.

Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Ruther-
ford, S. and Ni, F. Proxy-based reconstructions of hemispheric and global sur-

67



BIBLIOGRAPHY

face temperature variations over the past two millennia. Proceedings of the
National Academy of Sciences, 105(36), 13252–13257, 2008. doi:10.1073/pnas.
0805721105.

Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell,
D., Ammann, C., Faluvegi, G. and Ni, F. Global Signatures and Dynamical
Origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326,
1256–1260, 2009. doi:10.1126/science.1177303.

Marcott, S. A. a. D. S., Clark, P. U. and Mix, A. C. A Reconstruction of Regional
and Global Temperature for the Past 11,300 Years. Science, 339(6124), 1198–
1201, 2013. doi:10.1126/science.1228026.

Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A.,
González-Rouco, J., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Os-
born, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X.
and Timmermann, A. Information from Paleoclimate Archives, book sec-
tion 5, pp. 383–464. Cambridge University Press, Cambridge, United King-
dom and New York, NY, USA, 2013. ISBN ISBN 978-1-107-66182-0. doi:
10.1017/CBO9781107415324.013. URL www.climatechange2013.org.

McGregor, H. V., Francus, P., Abram, N., Evans, M. N., Goosse, H., von Gunten,
L., Kaufman, D., Linderholm, H., Loutre, M. F., Neukom, R. and Turney, C.,
editors. Climate of the past 2000 years: regional and trans-regional syntheses.
Climate of the Past, issued by Copernicus Publications on behalf of the European
Geosciences Union, Göttingen, Germany, 2016.

Miettinen, A., Divine, D., Koç, N., Godtliebsen, F. and Hall, I. R. Multicentennial
Variability of the Sea Surface Temperature Gradient across the Subpolar North
Atlantic over the Last 2.8 kyr. Journal of Climate, 25(12), 4205–4219, 2012.
doi:10.1175/JCLI-D-11-00581.1.

Miller, G. H., Geirsdóttir, A., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Hol-
land, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R.,
Anderson, C., Björnsson, H. and Thordarson, T. Abrupt onset of the Little
Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geo-
physical Research Letters, 39(2), n/a–n/a, 2012. ISSN 1944-8007. doi:10.1029/
2011GL050168. L02708, URL http://dx.doi.org/10.1029/2011GL050168.

68

www.climatechange2013.org
http://dx.doi.org/10.1029/2011GL050168


BIBLIOGRAPHY

Mills, T. C. Time series modelling of two millennia of northern hemisphere
temperatures: long memory or shifting trends? Journal of the Royal Sta-
tistical Society: Series A (Statistics in Society), 170(1), 83–94, 2007. doi:
10.1111/j.1467-985X.2006.00443.x.

Moberg, A., Mohammad, R. and Mauritsen, T. Analysis of the Moberg et al.
(2005) hemispheric temperature reconstruction. Climate Dynamics, 31(7), 957–
971, 2008.

Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. and Kar-
lén, W. Highly variable Northern Hemisphere temperatures reconstructed
from low-and high-resolution proxy data. Nature, 433, 613–617, 2005. doi:
10.1038/nature03265.

Mondal, D. and Percival, D. B. Wavelet variance analysis for gappy time series.
Annals of the Institute of Statistical Mathematics, 62(5), 943–966, 2010. doi:
10.1007/s10463-008-0195-z.

National Science Foundation. NSF Press release 15-048. 2015. Accessed: 08-09-
2017, URL http://icecores.org/indepth/2015/spring/antarctic-ice-
core-reveals-how-sudden-climate-changes-in-north-atlantic-moved-
south.shtml.

Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J.,
Gonzalez-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., Raible, C. C., Steig,
E. J., van Ommen, T., Vance, T., Villalba, R., Zinke, J. and Frank, D. Inter-
hemispheric temperature variability over the past millennium. Nature Climate
Change, 4(5), 362–367, 2014. doi:10.1038/nclimate2174.

Nilsen, T., Divine, D. and Werner, J. P. Pseudoproxy experiments using LRM
processes, 2017. To be submitted to Climate of the Past.

Nilsen, T., Rypdal, K. and Fredriksen, H.-B. Are there multiple scaling regimes
in Holocene temperature records? Earth System Dynamics, 7(2), 419–439,
2016. doi:10.5194/esd-7-419-2016. URL https://www.earth-syst-dynam.
net/7/419/2016/.

Østvand, L. Long Range Memory in Time Series of Earth Surface Temperature.
Ph.D. thesis, University of Tromsø, the Arctic University of Norway, 2014.

69

http://icecores.org/indepth/2015/spring/ antarctic-ice-core-reveals-how-sudden-climate-changes-in-north -atlantic-moved-south.shtml
http://icecores.org/indepth/2015/spring/ antarctic-ice-core-reveals-how-sudden-climate-changes-in-north -atlantic-moved-south.shtml
http://icecores.org/indepth/2015/spring/ antarctic-ice-core-reveals-how-sudden-climate-changes-in-north -atlantic-moved-south.shtml
https://www.earth-syst-dynam.net/7/419/2016/
https://www.earth-syst-dynam.net/7/419/2016/


BIBLIOGRAPHY

Østvand, L., Nilsen, T., Rypdal, K., Divine, D. and Rypdal, M. Long-range
memory in internal and forced dynamics of millennium-long climate model sim-
ulations. Earth Sys. Dyn., 5, 295–308, 2014. doi:10.5194/esd-5-295-2014.

PAGES 2k Consortium. Continental-scale temperature variability during the past
two millennia. Nature Geosci, 6(5), 339–346, 2013. doi:10.1038/ngeo1797.

PAGES 2k Consortium. A global multiproxy database for temperature recon-
structions of the Common Era. Scientific Data, 4, 170088 EP –, 2017. doi:
10.1038/sdata.2017.88.

PAGES 2k-PMIP3 group. Continental-scale temperature variability in PMIP3
simulations and PAGES 2k regional temperature reconstructions over the past
millennium. Clim. Past, 11(12), 1673–1699, 2015. doi:10.5194/cp-11-1673-2015.

Pelletier, J. D. The power spectral density of atmosphereic temperature from time
scales of 10−2 to 106 yr. Earth and Planetary Science Letters, 158, 157–164,
1998. doi:10.1016/S0012-821X(98)00051-X.

Robock, A. and Mao, J. The Volcanic Signal in Surface Temperature Ob-
servations. Journal of Climate, 8(5), 1086–1103, 1995. doi:10.1175/1520-
0442(1995)008<1086:TVSIST>2.0.CO;2.

Rutherford, S., Mann, M. E., Osborn, T. J., Briffa, K. R., Jones, P., Bradley, R. S.
and Hughes, M. K. Proxy-Based Northern Hemisphere Surface Temperature
Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and
Target Domain. Journal of Climate, 18(13), 2308–2329, 2005. doi:10.1175/
JCLI3351.1.

Rybski, D., Bunde, A., Havlin, S. and von Storch, H. Long-term persistence in
climate and the detection problem. Geophys. Res. Lett., 33, 2006. doi:10.1029/
2005GL025591.

Rypdal, K. Global temperature response to radiative forcing: Solar cycle ver-
sus volcanic eruptions. J. Geophys. Res., 117, D06115, 2012. doi:10.1029/
2011JA017283.

Rypdal, K., Østvand, L. and Rypdal, M. Long-range memory in Earth’s surface
temperature on time scales from months to centuries. J. Geophys. Res., 118(13),
7046–7062, 2013. doi:10.1002/jgrd.50399.

70



BIBLIOGRAPHY

Rypdal, K., Rypdal, M. and Fredriksen, H.-B. Spatiotemporal Long-Range Per-
sistence in Earth’s Temperature Field: Analysis of Stochastic–Diffusive En-
ergy Balance Models. Journal of Climate, 28(21), 8379–8395, 2015. doi:
10.1175/JCLI-D-15-0183.1.

Rypdal, M. and Rypdal, K. Testing Hypotheses about Sun-Climate Complexity
Linking. Phys. Rev. Lett., 104(12), 128501–4, 2010. doi:10.1103/PhysRevLett.
104.128501.

Rypdal, M. and Rypdal, K. Long-memory effects in linear-response models of
Earth’s temperature and implications for future global warming. J. Climate,
27(14), 2014. doi:10.1175/JCLI-D-13-00296.1.

Rypdal, M. and Rypdal, K. Late Quaternary temperature variability described as
abrupt transitions on a 1/f noise background. Earth Sys. Dynam., 7, 281–293,
2016. doi:10.5194/esd-7-281-2016.

Schleussner, C.-F., Divine, D. V., Donges, J. F., Miettinen, A. and Donner, R. V.
Indications for a North Atlantic ocean circulation regime shift at the onset of the
Little Ice Age. Climate Dynamics, 45(11), 3623–3633, 2015. doi:10.1007/s00382-
015-2561-x.

Schneider, T. Analysis of Incomplete Climate Data: Estimation of Mean Values
and Covariance Matrices and Imputation of Missing Values. Journal of Cli-
mate, 14(5), 853–871, 2001. doi:10.1175/1520-0442(2001)014<0853:AOICDE>
2.0.CO;2.

Shao, Z.-G. and Ditlevsen, P. D. Contrasting scaling properties of interglacial and
glacial climates. Nature Communications, 7, 2016. doi:10.1038/ncomms10951.

Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow,
F., Buntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D., Fischer, H., Kipf-
stuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler,
R., Pasteris, D. R., Pilcher, J. R., Salzer, M., Schupbach, S., Steffensen, J. P.,
Vinther, B. M. and Woodruff, T. E. Timing and climate forcing of volcanic
eruptions for the past 2,500 years. Nature, 523(7562), 543–549, 2015. doi:
10.1038/nature14565.

71



BIBLIOGRAPHY

Smerdon, J. E. Climate models as a test bed for climate reconstruction methods:
pseudoproxy experiments. Wiley Interdisciplinary Reviews: Climate Change,
3(1), 63–77, 2012. doi:10.1002/wcc.149.

Smerdon, J. E., Kaplan, A., Chang, D. and Evans, M. N. A Pseudoproxy Eval-
uation of the CCA and RegEM Methods for Reconstructing Climate Fields
of the Last Millennium. Journal of Climate, 24(4), 1284–1309, 2011. doi:
10.1175/2010JCLI4110.1.

Tikhonov, A. and Arsenin, V. Solutions of ill-posed problems. Scripta series in
mathematics. Winston, 1977. ISBN 9780470991244.

Tingley, M. P. and Huybers, P. A Bayesian Algorithm for Reconstructing Cli-
mate Anomalies in Space and Time. Part I: Development and Applications to
Paleoclimate Reconstruction Problems. Journal of Climate, 23(10), 2759–2781,
2010a. doi:10.1175/2009JCLI3015.1.

Tingley, M. P. and Huybers, P. A Bayesian Algorithm for Reconstructing Climate
Anomalies in Space and Time. Part II: Comparison with the Regularized Expec-
tation Maximization Algorithm. Journal of Climate, 23(10), 2782–2800, 2010b.
doi:10.1175/2009JCLI3016.1.

Tingley, M. P. and Huybers, P. Recent temperature extremes at high northern
latitudes unprecedented in the past 600 years. Nature, 496(7444), 201–205, 2013.

von Storch, H., Zorita, E., Jones, J. M., Dimitriev, Y., González-Rouco, F. and
Tett, S. F. B. Reconstructing Past Climate from Noisy Data. Science, 306(5696),
679–682, 2004. doi:10.1126/science.1096109.

Vyushin, D., Zhidkov, I., Havlin, S., Bunde, A. and Brenner, S. Volcanic
forcing improves Atmosphere-Ocean Coupled General Circulation Model scal-
ing performance. Geophysical Research Letters, 31(10), n/a–n/a, 2004. doi:
10.1029/2004GL019499. L10206.

Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E. and Rajaratnam, B. Evalu-
ating climate field reconstruction techniques using improved emulations of real-
world conditions. Climate of the Past, 10(1), 1–19, 2014. doi:10.5194/cp-10-1-
2014.

72



BIBLIOGRAPHY

Werner, J. P., Divine, D. V., Ljungqvist, F. C., Nilsen, T. and Francus, P. Spatio-
temporal variability of Arctic summer temperatures over the past two millennia:
an overview of the last major climate anomalies. Climate of the Past Discussions,
2017, 1–43, 2017. doi:10.5194/cp-2017-29.

Werner, J. P., Luterbacher, J. and Smerdon, J. E. A Pseudoproxy Evaluation of
Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate
Field Reconstructions over Europe*. J. Climate, 26(3), 851–867, 2013. doi:
10.1175/JCLI-D-12-00016.1.

Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber,
E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E.,
Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills,
M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke,
A., Tsigaridis, K. and Tummon, F. The Model Intercomparison Project on the
climatic response to Volcanic forcing (VolMIP): experimental design and forcing
input data for CMIP6. Geoscientific Model Development, 9(8), 2701–2719, 2016.
doi:10.5194/gmd-9-2701-2016.

Zorita, E., González-Rouco, F. and Legutke, S. Testing the Approach to Paleocli-
mate Reconstructions in the Context of a 1000-Yr Control Simulation with the
ECHO-G Coupled Climate Model. Journal of Climate, 16(9), 1378–1390, 2003.
doi:10.1175/1520-0442(2003)16<1378:TTMEAA>2.0.CO;2.

Zorita, E., González-Rouco, F. and von Storch, H. Comments on “Testing the
Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate”.
Journal of Climate, 20(14), 3693–3698, 2007. doi:10.1175/JCLI4171.1.

73



74


	Abstract
	Acknowledgements
	Introduction
	The concept of memory in the climate system
	Thesis outline
	List of publications

	Persistence and time series analysis
	Concepts and definitions
	Self-similarity and memory
	Fractality

	Toolbox for scaling analysis of geophysical timeseries

	Proxies and proxy-based temperature reconstructions
	Annually banded archives
	Tree rings
	Ice cores
	Corals

	Archives with dating uncertainties
	Sediment cores
	Speleothems
	Borehole measurements

	Dating
	Radiocarbon dating

	Larger scale reconstructions

	Paleoclimate reconstruction techniques
	Overview
	Notes on regression-based reconstruction methods
	Index reconstruction methods
	CFR reconstruction techniques
	Regression using principal component analysis (PCA)
	RegEM CFR - regularized expectation maximum climate field reconstruction
	Bayesian hierarchical modeling
	Methodology and details using a single temperature reconstruction as an example
	The Northern hemisphere index temperature reconstruction by Moberg


	Discussion and summary of Paper 1
	Paleoclimate model simulations
	Paper one: Long-range memory in internal and forced dynamics of millennium-long climate model simulations
	Summary

	Climate response in proxy-based climate reconstructions and climate simulations
	The role of volcanic forcing
	Multi-scale climate variability in proxy-based reconstructions and paleoclimate simulations


	Discussion and summary of Paper 2
	Paper two: Are there multiple scaling regimes in Holocene temperature records?
	Summary
	The review process
	The scope
	Remarks about method selection
	How should proxy-based reconstructions be used for scaling analyses?
	Principles of data selection
	Concluding discussion about the scale break and its validity


	Discussion and summary of Paper 3
	Testing the skill of reconstruction methods
	Paper 3: How wrong are climate field reconstruction techniques in reconstructing a climate with long-range memory? 
	Summary

	Other studies using pseudoproxy experiments

	Concluding remarks
	Bibliography
	Paper 1
	Paper 2
	Paper 3

