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Methane- and dissolved organic carbon-fueled
microbial loop supports a tropical subterranean
estuary ecosystem
D. Brankovits 1, J.W. Pohlman 1,2, H. Niemann 3,4,10, M.B. Leigh 5, M.C. Leewis 5,6,

K.W. Becker 7, T.M. Iliffe1, F. Alvarez8, M.F. Lehmann 3 & B. Phillips9

Subterranean estuaries extend inland into density-stratified coastal carbonate aquifers con-

taining a surprising diversity of endemic animals (mostly crustaceans) within a highly oli-

gotrophic habitat. How complex ecosystems (termed anchialine) thrive in this globally

distributed, cryptic environment is poorly understood. Here, we demonstrate that a microbial

loop shuttles methane and dissolved organic carbon (DOC) to higher trophic levels of the

anchialine food web in the Yucatan Peninsula (Mexico). Methane and DOC production and

consumption within the coastal groundwater correspond with a microbial community capable

of methanotrophy, heterotrophy, and chemoautotrophy, based on characterization by 16S

rRNA gene amplicon sequencing and respiratory quinone composition. Fatty acid and bulk

stable carbon isotope values of cave-adapted shrimp suggest that carbon from methano-

trophic bacteria comprises 21% of their diet, on average. These findings reveal a heretofore

unrecognized subterranean methane sink and contribute to our understanding of the carbon

cycle and ecosystem function of karst subterranean estuaries.
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Recognition that chemosynthetic biological communities
capture energy and synthesize organic matter (OM) from
chemicals emitted from the seafloor1, 2 reshaped our

understanding of life on Earth3 and the oceanic carbon cycle4.
OM produced by chemosynthetic pathways and expelled from
seafloor hydrothermal vents and cold seeps may exceed 10% of
surface ocean productivity4, 5. Submarine groundwater discharge
is another important source of nutrients and carbon to the
ocean6, in some instances exceeding that of rivers7, and therefore
represents a critical exchange vector between continental land-
masses and the ocean8. However, much more is known about the
magnitude of submarine groundwater discharge to the coastal
ocean than the genesis of the material expelled7, 9. Evidence that a
coastal aquifer food web in the Yucatan peninsula (YP) (Mexico)
is partially dependent on a chemosynthetic food source10 suggests
mutual biogeochemical reactions govern the ecology of these
Earth–Ocean transition zones, yet the basic carbon cycle in this
widely distributed coastal aquifer ecosystem remains largely
unexplored. In the present study, we adapt methods previously
used to investigate continental-margin cold seeps11–13 to deline-
ate the biogeochemistry and functional ecology of this coastal
aquifer.

Mixing of terrestrial meteoric water with saline groundwater
(SGW) in coastal aquifers resembles the two-layered circulation
of surface estuaries such that they have been termed subterranean
estuaries14. Subterranean estuaries are found globally along sili-
ciclastic, basaltic, and karstic (carbonate) coastlines7, 9, 15. The
most prevalent and human-accessible estuary type is found
within porous limestone of karst coastlines, where marine-derived
groundwater extends inland beneath the meteoric lens flooding
extensive cave passages16, 17. Karst coastlines account for ~25% of
coastlines globally15 and ~12% of all submarine groundwater
discharge9. Research conducted by scientific divers within cave
conduits of coastal aquifers has led to a basic understanding of
stygobitic (cave-limited) macrofaunal biodiversity18, 19 within this
globally distributed ecosystem (termed anchialine, meaning near
the sea)20, the food web structure10, how sea level change during
the Holocene affected the habitat development21, and hydrologic
controls that govern the mixing of fresh and marine waters within
the subterranean estuary17.

The seminal investigation of anchialine ecosystems suggested
OM supporting consumers of the food web in a tropical sub-
terranean estuary was partially derived from a chemoautotrophic
source10. This conclusion was based on the bulk stable carbon
isotopic composition of several crustacean species that were dis-
tinct (13C-depleted) from available photosynthetic sources and
similar to invertebrates from deep sea vent communities that rely
on a chemoautotrophic food base. Comparable isotopic values
were reported for invertebrates from a thermomineral cave in
Romania with clear evidence that mantle-derived hydrogen sul-
fide (H2S) was the primary energetic source22. The anchialine
ecosystem investigated by Pohlman et al.10 contained no H2S or
other evidences of mantle derived material, suggesting that non-
sulfurous reduced compounds (e.g., ammonium or methane)
liberated during OM decomposition support microbial commu-
nities. However, they were unable to definitively constrain the
nutritive OM source. Subsequent studies from a freshwater karst
aquifer23, a sunlit anchialine sinkhole24, an alluvial aquifer25, and
freshwater lakes26 also suggest higher trophic level invertebrates
utilize chemoautotrophic products generated from OM degra-
dation, supporting the possibility that ecosystems deep within a
coastal aquifer are sustained by similar processes.

In this study, we investigated the carbon cycle and food web
dynamics of a pristine anchialine ecosystem within a tropical
karst subterranean estuary in Mexico’s YP. The YP is a limestone
platform that contains more than 1000 km of mapped cave

conduits within the coastal region of the Holbox fracture zone27

(Fig. 1). These cave passages prevail within the inland portion of
the subterranean estuary over an area (~1100 km2) comparable to
surface estuaries like Galveston Bay (Texas) (~1500 km2), the 7th
largest estuary in the U.S. Natural sinkholes, locally known as
cenotes, provide scientists direct access to the flooded caves. The
site we investigated (Cenote Bang) is located ~8 km inland within
a mature dry tropical forest, and is one of the entrances to the Ox
Bel Ha cave network (Fig. 1c; Supplementary Fig. 1).

Based on the observation that a complex food web exists in
coastal karst aquifers with limited particulate OM, we tested the
hypothesis that dissolved organic carbon (DOC)—including
methane—formed from decomposition of terrestrial vegetation
within water saturated limestone beneath the tropical forest
provides carbon and energy for a microbial loop that, in turn,
supports the subterranean food web28. We identified carbon
sources and inferred biogeochemical cycles based on the dis-
tribution, concentration, and isotopic composition of organic and
inorganic carbon compounds, and electron acceptor availability.
We characterized the microbial community by sequencing of 16S
ribosomal RNA (rRNA) genes and identifying quinone lipid
biomarkers from environmental water samples. To link the
microbes to the food web, we performed compound-specific
isotopic analysis of membrane-derived fatty acids (FAs) extracted
from filter-feeding cave-adapted shrimp. This multifaceted study
provides a broad perspective for carbon transformations and
exchange between the terrestrial and marine realms of a tropical
karst subterranean estuary.

Results
Water column properties. To characterize the physical and
chemical environment of caves accessed from Cenote Bang
(Fig. 1), we collected sonde profiles during four sampling cam-
paigns (Fig. 2) between 2013 and 2016 in the Ox Bel Ha Cave
System. For all events, we observed three distinct water masses
separated by thin (20–60 cm) haloclines (H1 and H2) that were
relatively constant in depth (Fig. 2). Salinity in the layer nearest
the cave ceiling of the shallowest passages (~3 m water depth)
ranged from 0.3 to 0.7 psu, which was slightly less than the cenote
pool (0.9–1.8 psu). Salinity ranged from 2.0 to 2.5 psu in the
middle layer, and from 34.8 to 37.6 psu in the deepest layer.
Sampling of the deep SGW was restricted to 22 m depth below
groundwater table due to the geometry of the cave passages. To
differentiate the subterranean water masses, we hereafter refer to
the low salinity water mass as meteoric freshwater (MFW), the
intermediate salinity water mass as meteoric brackish water
(MBW), and the deep water layer underlying the meteoric lens as
SGW. Moreover, we refer to the coastal sea water as SEA and the
open-to-air sinkhole/cenote as POOL, recognizing that the POOL
is part of the meteoric lens (Fig. 1e).

Dissolved oxygen in the MFW was at or near anoxia (0–15 µM)
and constant in the vertical extent for each campaign. The SGW
displayed the highest dissolved oxygen (DO) content (45–55 µM)
(Fig. 2), but was still always hypoxic (<60 μM). The MBW
showed two distinct profile types. During August 2014 and
January 2015, DO was mostly invariant with depth in the MBW
(22–29 µM). By contrast, during December 2013 and January
2016, MBW was anoxic near the shallow halocline (H1) and
increased gradually with increasing depth toward the deeper
halocline (H2). During the days preceding the sonde profilings,
there was substantially more rainfall in December 2013 (457 mm)
and January 2016 (253 mm) than during August 2014 (52 mm)
and January 2015 (39 mm) (Supplementary Table 1). DO in the
POOL was consistently low (10–37 µM), but always elevated
relative to the MFW and MBW during each event.
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Aqueous biogeochemistry. To investigate the distribution,
sources, and turnover of dissolved and particulate carbon in the
water masses, we collected 63 samples from the three water layers
and analyzed them for concentration and δ13C values of dissolved
inorganic carbon (DIC), particulate organic carbon (POC), DOC,

and methane (CH4), as well as sulfate and chloride concentrations
(Supplementary Data 1). Table 1 provides average values for each
parameter measured during the course of the study as a baseline
for characteristic concentrations and carbon isotopic contents for
each water mass, including the open-to-air cenote pool and the
coastal ocean (additional details in Supplementary Tables 2, 3).

The anoxic-MFW had the highest methane concentrations
(3550–9522 nM) with δ13C-CH4 values (−66.3± 0.7‰; Fig. 3a, b;
Supplementary Fig. 2) that are characteristic of microbial
methane29. Methane concentrations in the hypoxic-MBW
(43–275 nM) were lower than those from the POOL (100–890
nM), and about an order of magnitude less than the MFW. MBW
(−52.7± 1.9‰) and POOL (−50.6± 4.9‰) δ13C-CH4 values
were similar to each other, but substantially more 13C-enriched
than observed for the MFW. The δ13C-CH4 values from
December 2013, following a period of exceptional precipitation
(Supplementary Table 1), were the most 13C-enriched. The
hypoxic-SGW had the lowest methane concentrations in the
aquifer (37–208 nM) and were similar to the coastal sea values
(43–235 nM). The δ13C-CH4 values in the SGW (−56.3± 1.5‰)
were comparable to those in nearby coastal ocean waters (−59.0
± 2.1‰) and were 13C-enriched relative to the MFW. Compared
to the concentration and carbon isotopic ranges predicted from
conservative (non-reactive) mixing models that use MFW and
deep SGW methane end member values (Fig. 3a, b), the
intermediate depth MBW CH4 concentrations were lower and
δ13C-CH4 values were higher, indicating methane removal by
oxidation29.

Like methane, DOC concentrations were highest in the anoxic-
MFW (402–834 µM), an order of magnitude lower in the MBW
(37–203 µM), and lowest in the deep SGW (15–80 µM; Fig. 3c, d;
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Supplementary Fig. 2). The MFW δ13C-DOC values (−28.0±
0.1‰) were consistent with a terrestrial C3 plant origin30, the
dominant vegetation in the overlying tropical forest. The SGW
δ13C-DOC values (−26.6± 0.4‰) were slightly higher due to
contributions from the coastal ocean31. Similar to methane, DOC
concentrations in the MBW were much lower when compared to
predictions from the conservative mixing model, indicating
removal of DOC (Fig. 3c, d). However, for August 2014, the
majority of the DOC samples displayed low δ13C values (Fig. 3d),

opposite of the effect expected for oxidation. Consistent with the
distribution of DOC, the highest POC concentrations occurred in
the anoxic-MFW (3.3–14.6 μM). However, POC does not
contribute significantly to the total organic carbon pool, with
average concentrations only 1.6% of the DOC. The δ13C-POC
values in the MFW (−28.5± 0.5‰) are consistent with a forest
vegetation origin30.

DIC was the largest pool of carbon in the cave waters (Fig. 3e, f;
Supplementary Fig. 2). Biological respiration, carbonate
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Table 1 Aqueous biogeochemistry

Meteoric freshwater
MFW

Meteoric brackish water
MBW

Saline groundwater SGW Sinkhole (cenote)
POOL

Coastal water SEA

Salinity (psu) 0.26± 0.03 (8) 1.81± 0.04 (29) 32.87± 0.94 (13) 0.94± 0.09 (6) 35.45± 0.39 (6)
[SO4

2−] mM 0.3± 0.1 (7) 1.6± 0.1 (27) 26.4± 1.0 (11) 0.8± 0.1 (6) 28.4± 0.6 (4)
[CH4] nM 6466± 659 (8) 157± 16 (28) 110± 17 (12) 495± 148 (6) 121± 28 (6)
δ13C-CH4 ‰ −66.3± 0.7 (7) −52.7± 1.9 (25) −56.3± 1.5 (11) −50.6± 4.9 (6) −59.0± 2.1 (5)
[DOC] µM 661± 132 (3) 131± 16 (16) 41± 20 (3) – –
δ13C-DOC ‰ −28.0± 0.1 (3) −28.3± 0.2 (16) −26.6± 0.4 (3) – –
[DIC] mM 4.4± 0.2 (6) 7.1± 0.2 (24) 2.4± 0.2 (10) 5.3± 0.2 (3) 2.0± 0.1 (3)
δ13C-DIC ‰ −16.4± 1.0 (7) −11.1± 0.7 (25) −6.3± 1.0 (11) −9.4± 2.1 (3) −4.3 (2)
POC µM 10.9± 3.8 (3) 5.0± 2.3 (3) 3.0± 0.9 (3) 32.3± 14.9 (3) 5.8 (1)
δ13C-POC ‰ −28.5± 0.5 (3) −27.6± 0.7 (3) −27.1± 1.0 (3) −28.0± 0.3 (3) −20.1 (1)

Values of water column constituents, presented as average± std. error (n), from the different regimes of the groundwater system and the adjacent coastal sea. Values were calculated from all
measurements within a water mass across all sampling events. For further information regarding data obtained during the separate sampling events, see the supplement (Supplementary Tables 2, 3)
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dissolution, and chemolithotrophic CO2 assimilation have the
potential to alter DIC concentration and carbon isotopic ratios.
High concentrations of DIC in the MBW require the addition of
DIC from a 13C-enriched source. The most likely source for such
a large input of DIC is dissolution of carbonate, which occurs
within this groundwater mixing zone32 and has δ13C values that
are ~0‰33. Sulfate, a potential electron acceptor for OM
respiration and/or the anaerobic oxidation of methane, did not
vary in concentration relative to the conservative mixing diagram
(Supplementary Fig. 3).

Microbial community. To characterize the microbial community
structure in the density-stratified aquifer, the open-water cenotes,
and the coastal ocean, we sequenced 16S rRNA genes and ana-
lyzed respiratory quinone biomarkers from January 2016 water
samples (Fig. 4). Phylogenetic affiliations were assigned based on
16S rRNA gene sequences and were clustered into metabolic
groups by inferred phenotypes of representative sequences within
each operational taxonomical unit. These functional groups were
determined to identify microbes capable of mediating biogeo-
chemical pathways inferred from geochemical analyses (Fig. 4a).
Because the water samples were collected within the water masses
and not at the interfaces between water masses (where we
hypothesize carbon consumption to be most active), the sequence
data are a qualitative indicator of the microbial community
composition. Nevertheless, the cenote pool, MFW, and MBW

showed relatively high abundances of sequences from type I
(1.2–2.3%) and type II (<0.3%) methanotrophic bacteria, sulfur-
oxidizing bacteria, and other archaeal and bacterial functional
groups involved in methylotrophy, as well as chemoautotrophic
nitrogen and sulfur cycling processes. The relative abundance of
methanogenic archaea was below 1%, with highest abundance in
the SGW, where ammonia-oxidizing microbes were also present
(Fig. 4). Numerous other microbes capable of utilizing a wide
range of organic compounds were identified (“Others” in Fig. 4a;
Supplementary Fig. 4; Supplementary Data 2).

Quinone biomarkers offer DNA-independent detection and
quantification of microbial biomass in samples from the natural
environment34, 35. In our samples, the occurrence and relative
distribution of quinones were distinct for the meteoric and saline
water regimes (Fig. 4b). The major quinone types in all samples
were ubiquinones (UQs) containing 7–10 isoprenoid units and 1
double bond per isoprenoid unit (see quinone nomenclature in
Methods). Additionally, in the samples from the POOL, the
MFW and MBW methylene-ubiquinone (MQ8:7) was detected,
which structurally differs from regular UQs by the presence of a
methylene group in the isoprenoid side chain. In the samples
from the POOL and MFW, UQ8:8 was the dominant quinone
(72% relative abundance), while in the samples from the MBW,
UQ8:8 and UQ9:9 contribute 40% and 41% to total quinones,
respectively. UQ8:8, UQ9:9, and UQ10:10 were equally distributed
in the deep SGW, while UQ10:10 was the dominant quinone with
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62% in the coastal sea water. Highest quinone concentrations
occurred in the POOL with 31 ng l−1. In the cave, the
concentrations decreased with increasing salinity across the
different water regimes (MFW, MBW, SGW) (Fig. 4b). The
quinone MQ8:7 is diagnostic for type II methanotrophs and UQ8:8

has been shown to be the dominant quinone in type I
methanotrophs36, but the latter is also widespread among other
aerobic bacteria34. The SGW and coastal ocean (SEA) samples, in
contrast, mainly contained UQ9:9 and UQ10:10, which occur in
diverse aerobic bacteria.

Bulk stable isotopes. To determine the trophic relationships
between potential food sources and consumers, specimens (n=
29) of stygobitic Typhlatya spp., a free-swimming atyid shrimp
with feeding appendages capable of capturing bacteria-sized
particles10, 37 and insects (n= 4) from the surface jungle, were
measured for stable carbon and deuterium isotopic content
(Fig. 5a). Twelve shrimp were obtained from the MBW of Cenote
Bang cave. The remaining specimens (n= 17) were collected from
the MBW and SGW of three locations connected (via cave con-
duits) with the main research site and two caves at greater dis-
tance that are not likely linked to Cenote Bang (Supplementary
Fig. 5). Shrimp stable carbon isotope values ranged from −22.5 to
−49.1‰, and the stable hydrogen isotope values ranged from
−95.7 to −223.6‰ (Fig. 5a). These isotope values were between
the terrestrial soil/insect values and those expected for microbial
methane29. The measured δ13C-CH4 values from the cave were
typical for microbial methane, and the δ13C-DOC values were
similar to those of the soil OM.

Fatty acid biomarkers. We report fractional abundances and
stable carbon isotope values of FAs extracted from two shrimp

specimens (collected from Cenote Bang) with relatively small
(3%) and large (55%) contributions of methane carbon to the
specimen’s biomass, as calculated from a two-source mixing
model25, 38. We observed a range of C14-C18 FAs, all of which
displayed δ13C values similar to the specimen’s bulk δ13C
(Fig. 5b; Supplementary Table 4). FA compounds extracted from
the shrimp with relatively high methane contribution to its bio-
mass (Shrimp 1; Fig. 5b) displayed more negative δ13C values
than FAs from the tissue of Shrimp 2 (Fig. 5b). Both shrimp
contained generic, saturated FAs with an even number of carbon
atoms (C14:0, C16:0, and C18:0), as well as odd number unsaturated
and methylated lipid compounds.

Discussion
The results presented above demonstrate that methane and DOC
derived from degraded terrestrial OM are the primary carbon and
energy sources for a karst subterranean estuary ecosystem
beneath an undisturbed tropical forest (Fig. 6). Variability in the
DO profiles (Fig. 2b) and carbon chemistry (Fig. 3) of the water
column suggests external factors influence the spatial and tem-
poral dynamics of the aquifer biogeochemistry. However, the
emphasis of this study and the following discussion is to identify
unifying characteristics for developing a generic model of eco-
system function for this terrestrially influenced subterranean
estuary to be applied to other anchialine ecosystems.

The most basic physical characteristic for this coastal aquifer
and others17, 24 is the uniform and extreme density stratification
of the 25 m water column. The three distinct water masses
separated by two sharp haloclines were present in the cave con-
duits during all sampling campaigns (Fig. 2a). The physico-
chemical characteristics of the MFW in the cave were distinct
from the POOL, which had slightly higher salinity (~ 1.0 psu) and
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oxygen (10–37 µM) contents. MFW occurs throughout the
permeable karst aquifer (Fig. 1e); however, access to that portion
of the aquifer was restricted to shallow, domed cave passages that
extend vertically upward to water depths of 5 m or less. Herein,
we argue the MFW is of critical importance to the carbon cycle of
terrestrially influenced habitats in the anchialine ecosystem.

The shallowest portion of the aquifer is in contact with soil OM
within saturated fissures and pores of the carbonate rock15.
Anaerobic decomposition of this soil OM from the overlying
tropical jungle is the most likely source of the high concentrations
of DOC (665± 132 μM) and methane (6466± 659 nM) measured
in the cave-accessible MFW. The stable carbon isotopic compo-
sition of the DOC (−28.0‰) is consistent with an origin from C3
vegetation of the overlying tropical forest30. An exponential
relationship (r2= 0.87) between DOC and methane concentration
suggests that methane and DOC originate from a similar source
(Supplementary Fig. 6); one that likely involves syntrophic
interactions between fermentative bacteria and methanogenic
archaea. The average MFW δ13C-CH4 value (−66.3‰) is con-
sistent with a microbial methane origin by chemoautotrophic
CO2 reduction or acetoclastic methanogenesis29. Limited but
detectable abundance of 16S rRNA gene sequences from
methanogenic archaea in the MFW (Fig. 4) suggests that methane
production takes place elsewhere. This further supports the
hypothesis that the saturated zone within the permeable rock
matrix15, 16, a portion of the aquifer that was inaccessible to
divers, was the most likely source of DOC in the MFW.

The juxtaposition of OM-charged, near-anoxic MFW against
OM-poor, hypoxic-MBW is analogous to redox transitions pre-
sent near sediment–water interfaces39, the chemocline of mer-
omictic lakes40 and oxygen-minimum zones in the ocean41, with
the important exception that the relative positioning of the water
masses within this coastal aquifer is inverted, or “upside-down”,
relative to open-water systems. High-OM, low-oxygen regimes in

sediments, and the water column of lakes and oceans are driven
by pulses of sinking particulate detritus produced in surface
waters or within the watershed basin. The accumulation and
consumption of organic detritus depletes oxygen below the che-
mocline. For OM oxidation to continue, oxygen or alternate
electron acceptors (e.g., sulfate, nitrate, etc.) must be replenished
by mixing. By contrast, in the tropical karst aquifer we investi-
gated, depleted oxygen (Fig. 2b) co-occurred with concentrated
methane (Fig. 3a) and DOC (Fig. 3c) above the shallow chemo-
cline (H1). The relatively high concentrations of oxygen in the
deepest sampled portion of the aquifer (SGW) is consistent with
the transport of DO with sea water moving inland from the coast
below the deeper halocline17 (H2 in Fig. 2). Distinct DO profiles
preceded by periods of high and low rainfall (Fig. 2b) suggest
precipitation is the key external factor regulating electron
acceptor availability in the meteoric portion of the aquifer. We
hypothesize that rainfall injects oxygenated water into the MBW
at discrete entrances by point recharge, and drives DOC-enriched
water from the anoxic saturated portion of the aquifer (the MFW)
into the caves by diffuse recharge15.

Previous studies in caves suggest POC concentrations are
limited in karst groundwater42, 43. To evaluate POC bioavail-
ability and origin in this coastal karst aquifer, we measured
concentrations and δ13C values of POC for June 2015 and Jan-
uary 2016 (Supplementary Table 3) and compared them to DOC
concentrations and δ13C values in the cave environment. Like
DOC, POC is most abundant in the MFW (10.9 μM) and derived
from the tropical forest vegetation, as indicated by its stable
carbon isotopic composition (δ13C= −28.5‰). However, on
average, DOC in the MFW is 60 times more abundant than POC.
By comparison, DOC:POC ratios range between 6 and 10 in the
surface ocean, rivers, and streams44. In the oligotrophic Atlantic
Ocean, where DOC:POC ratios from 300 m water depth31 are
comparable to the MFW, DOC is the primary source of carbon
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available to a microbial loop that supports the pelagic ecosys-
tem45. We conclude, as others have for cave streams43, some
riverine systems46 and oligotrophic oceans45, that DOC is a more
important source of carbon and energy than POC for this coastal
aquifer ecosystem.

Carbon-based concentration and isotopic mixing models
(Fig. 3) provide insight into evaluating if and where different
carbon stocks are created or consumed within a mixing system.
This approach has been used to investigate carbon dynamics in
estuaries47 and high-salinity marine pore waters11. We applied
this concept to this subterranean estuary, and calculate using
equation (4) that, on average, 93% of the methane (Fig. 3a) and
76% of the DOC (Fig. 3c) were removed within the MBW. The
methane concentration reduction was 6300 nM and the DOC
reduction was 530 µM, on average, suggesting there is an active
sink for methane and bulk DOC. During oxidation of methane
and DOC, CO2 is certainly produced, however, production of
13C-enriched DIC in the MBW resulting from carbonate dis-
solution32 (Fig. 3e, f) overwhelms the isotopic effect from the
respired CO2.

Enrichment of 13C in the methane within the MBW is con-
sistent with microbial oxidation being the removal mechanism.
During enzymatic oxidation of methane, there is a bias toward
utilization of the 12C-isotope, leaving the residual methane 13C-
enriched29, as observed here. By contrast, although the
concentration-based mixing model for DOC indicates removal
(Fig. 3c), a large positive carbon isotopic shift was not observed
for the December 2014 data (Fig. 3d). This observation does not,
however, conflict with the model evidence because isotopic
fractionation of DOC during aerobic oxidation48 is less than what
occurs during methane oxidation29. The negative shift in the δ13C
of DOC for the August 2014 sampling event suggests production
of DOC from methane carbon13. Conservative mixing of sulfate
during all sampling events (Supplementary Fig. 3) indicates that
sulfate reduction did not considerably contribute to the dissolved
OM oxidation, but this analysis may not be sufficiently sensitive
to detect changes of sulfate relative to carbon pools with orders of
magnitude lower concentrations. The presence of DO in the
MBW is additional evidence that methane and DOC oxidation
were aerobic.

Analyses of microbial community structure (16S rRNA) and
respiratory quinones reveal a diverse microbial community with
distinct structuring within the karst subterranean estuary, the
open-water cenote and the coastal ocean (Fig. 4; Supplementary
Fig. 4; Supplementary Data 2). Sequences representing microbes
that consume methane, utilize sulfur-and nitrogen-based electron
acceptors to oxidize OM, as well as sulfur-oxidizers were rela-
tively abundant in the freshwater portion of the aquifer (MFW)
and sinkhole (POOL). In particular, type I methanotroph
sequences from the genus Methlyococcacea were present in the
POOL, as well as the MFW and MBW water masses, where
geochemical data clearly indicate methane oxidation (Fig. 3).

The presence of respiratory quinones, which are lipid-soluble
components of the electron transport chain35, 49, provide evi-
dence for metabolically active microbial functional groups in the
subterranean estuary. The most prevalent quinones are affiliated
with aerobic heterotrophic bacteria (Fig. 4b), which is consistent
with the metabolic capacity of most microbes observed (“Others”
in Fig. 4a) and with DOC being the most abundant form of OM
consumed. In the meteoric water masses, the predominant qui-
none was UQ8:8, which only occurs in strictly aerobic and
facultatively anaerobic (grown under aerobic conditions) organ-
isms and is the dominant quinone in type I methanotroph cul-
tures36. This compound peaked in abundance in the MFW and
POOL locations, where we also found highest 16S rRNA
gene copy numbers of type I methanotrophs (Fig. 4). Detectable

concentration of the quinone biomarker MQ8:7, which has only
been found in type II methanotrophs36, was also present in the
portion of the groundwater where methane was oxidized. The
dominance of type I over type II methanotrophs is not surprising,
because they are generally more prevalent in environments with
low oxygen50, like those observed in this subterranean estuary,
and are more efficient at converting methane carbon to biomass
than are type II methanotrophs51.

Sequences from numerous genera that mediate chemoauto-
trophic carbon fixation and utilization through oxidation and
reduction of sulfur- and nitrogen-based compounds were also
present in the open-air cenote and cave (Fig. 4). However, we
presently have no evidence that these microbes contribute to the
carbon cycle or food web of the caves we investigated. A sulfate
mixing model similar to the carbon mixing models (Fig. 3) did
not indicate removal of sulfate in the cave (Supplementary Fig. 3).
Furthermore, none of the passages we investigated contained
detectable H2S. By contrast, deep open-water cenotes found in the
YP, where organic debris accumulates near the deeper halocline
(H2 in Fig. 2a) are most certainly settings where the carbon and
sulfur cycles are intertwined52. Microbes from those areas may
have been transported into the interior of the YP limestone
platform. Alternatively, a cryptic sulfur cycle is active41 or the
mixing model lacks the sensitivity required to detect changes in
sulfate concentration. Nitrification within the mixing zone of the
MBW and SGW has been suggested as another potential che-
moautotrophic source of OM in a YP anchialine ecosystem10.
Near this interface, we found the coexistence of ammonia oxi-
dizers typically found in either marine (Nitrosopumilus) or ter-
restrial environments (Nitrososphaera) (Fig. 4). However, given
the relatively low concentrations of nitrate (18.6 μM) accumu-
lated near the MBW–SGW interface10 relative to the amount of
DOC consumed (530 μM), and the low carbon assimilation effi-
ciency of nitrifying bacteria, the likelihood that nitrification
contributes meaningful nutritive carbon to the food web remains
speculative10. Nevertheless, the sequence data are consistent with
the hypothesis that multiple biogeochemical cycles utilizing all
available electron donors and acceptors are active in these oli-
gotrophic and anoxic/hypoxic habitats28. Additional studies are
required to evaluate their importance for the food web. Our data
support that DOC (including methane) derived from decom-
position of terrestrial OM is the prevalent source of nutritive
carbon that sustains the ecosystem.

Bulk stable carbon and hydrogen isotopic data from Typhlatya
spp. shrimp adapted to feed on bacteria-sized, suspended matter
in the water column10 are consistent with a mixed dietary
dependence on methane- and DOC-derived carbon (Fig. 5a) via
the consumption of microbial biomass. Considering the range of
shrimp tissue δ13C values (−23 to −49‰), and the average MFW
δ13C values of methane (−66.3‰) and DOC (−28.0‰) (Table 1)
as potential end members of the shrimp’s dietary carbon source,
the contribution of methane carbon for the shrimp ranges from 0
to 55%, with an average contribution of 21% (Supplementary
Table 5). Studies from a humic lake53 and an alluvial aquifer25

report methane carbon contributions to zooplankton and insects
ranging from 5 to 67%. Because the low δD values in the shrimp
are distinctive for methane carbon incorporation54, we used the
shrimp bulk isotope values to estimate the δD signature of the
methane source. By extrapolating the carbon and deuterium
stable isotope values from the cave shrimp to the average MFW
δ13C-CH4 source value (−66.3‰), we estimated the δD-CH4

signature was about −390‰, which allowed us to constrain that
the microbial methane was produced by acetoclastic
methanogenesis29.

Methane and DOC-derived carbon flow into the anchialine
food web is facilitated by trophic interactions between the shrimp
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and its microbial food source. To examine the biochemical origins
of the 13C-depleted values of the bulk shrimp tissue, we analyzed
the composition and carbon isotopic content of FA biomarkers
extracted from shrimp with the largest (55%) and smallest (3%)
calculated methane contributions (Fig. 5b; Supplementary
Table 4). The composition and δ13C values of FAs differed sub-
stantially between the two shrimp, which is consistent with
assimilation of different food and carbon sources. In addition, in
both specimens, individual FAs differed in their stable carbon
isotopic composition, which is indicative of different biochemical
pathways for FA synthesis12. Even-chained saturated FAs (C14:0,
C16:0, and C18:0) had compound-specific δ13C values closely
matching the bulk tissue (Fig. 5b), suggesting the shrimp syn-
thesized these compounds de novo from their dietary carbon
sources. In contrast, several monounsaturated FAs in both shrimp
and methylated FAs in shrimp 1, showed substantially more
negative δ13C values than the bulk tissue (Fig. 5b), which provides
evidence for a dietary source of these compounds through the
direct transfer of FAs from ingested bacteria12, 55. Given the
strong geochemical evidence for aerobic methane oxidation
(Fig. 3) in the hypoxic environment, we attribute the source of
13C-depletion in the FAs primarily to methane carbon derived
from methanotrophs. Stable isotope probing experiments using
Arctic lake sediments have shown that several compounds pre-
sent in the shrimp tissue (C14:0, C16:1ω7 and C18:1ω7) are synthe-
sized from methane carbon by methanotrophs that were also
present in the cave waters (e.g., Methylococcaceae and Methylo-
cystacea)51. These FAs and the methylated FAs are also found in
other organisms, but are not likely to have the 13C-depleted
isotope signatures observed here. A symbiotic source56 of the
incorporated bacterial biomass might also explain the observed
FA profiles. However, Typhlatya shrimp appendages capable of
direct filter-feeding of bacteria-sized particles10 suggest the
methanotrophic biomass is incorporated from the environment
rather than from symbiotic sources. These observations have
significant implications for understanding energy transfer within
the anchialine food web. Considering that Typhlatya spp. are one
of the most abundant macrofaunal populations in this habitat19,
and they are the primary prey for predators in the subterranean
food web57, it is reasonable to assume they have a significant role
in transferring methane- and DOC-derived carbon to higher
levels of the food web.

The geochemical, genomic, and biomarker evidence from this
study supports the hypothesis that a microbial loop is active in a
karst subterranean estuary ecosystem (Fig. 6). We demonstrated
that DOC and methane produced from soil OM degradation
within the shallow, anoxic saturated zone of the karst are trans-
ported downwards into hypoxic cave conduits, where methano-
trophs and heterotrophs consume these reduced OM forms and
co-exist with a host of chemoautotrophs. The presence of FAs in
somatic tissues of filter-feeding shrimp that could only originate
from microbes is strong evidence that microbial biomass is
directly transferred to higher-order metazoans. This microbial
loop is unique from that of the oligotrophic oceans in that it
contains a methane sink, but is likely to be similar to other
groundwater systems, where evidence for a similar biogeochem-
istry has been reported23, 25, 58. The generic model of ecosystem
function presented here provides baseline information for future
studies aiming to quantify the magnitude of this unaccounted for
“upside-down” methane sink and to describe the external factors
that alter the internal biogeochemistry of subterranean estuaries
within karst coastal aquifers.

Methods
Study sites and seasons. Between 2013 and 2016, five field campaigns were
conducted to investigate flooded cave networks accessible through Cenote Bang

(the primary study site; Fig. 1; Supplementary Fig. 1) within the Ox Bel Ha Cave
System and secondary locations (Supplementary Fig. 5). A comprehensive listing of
the samples collected as part of this study is provided in Supplementary Data 1.
Three sampling events took place during the dry season (typically December
through April) and two during the rainy season (typically May through Novem-
ber). There was no visible evidence that any of the sites had been altered by direct
or indirect human activity. Access to Cenote Bang was restricted to research team
members during the study. All divers involved with the project followed protocols
established by the American Academy of Underwater Sciences and the National
Speleological Society Cave Diving Section.

Physicochemical water column parameters. Temperature, salinity, and DO were
measured along vertical profiles in the water column of the caves and cenotes using
a YSI XLM-600 and EXO-02 multi-parameter data sonde with a measurement
frequency of 0.25–1 Hz. The sonde was carried by the lead diver, slowly descending
(2−4 cm sec−1) and advancing with the probes projecting forward to ensure an
undisturbed profile of the water column.

Sample collection and processing. Water samples for geochemical analysis of
dissolved materials were collected near the sonde profile locations in plastic 60 ml
syringes fitted with 3-way stopcocks. The syringes were rinsed with distilled water
and dried prior to the dive, and flushed with sample water prior to closing the
stopcock. Samples for POC and lipid analyses were collected in 10 liters collapsible
Nalgene carboys rinsed with distilled water prior to the dive. Samples for microbial
DNA sequencing were collected in 1 liter collapsible Nalgene carboys acid washed
prior to the expedition. It was not possible to rinse the carboys with sample water
while underground. Because the water column in the subterranean estuary is
extremely stratified (Fig. 2), data from samples collected in this study represent the
water masses, not the interfaces between them where the carbon-transforming
biogeochemical reactions are expected to be most active.

Samples were kept cool during transport to the field lab and processed within 8
h of collection. Samples for aqueous geochemistry were handled and stored as
indicated in Supplementary Table 6. Among those, the serum vials for methane
water samples were prepared prior to sample collection by adding the preservative
(0.2 ml 1 M NaOH) into the empty vial, sealing the container with 1 cm thick butyl
septa, and vacating the vial of air with a pump. The water sample was then
transferred through the septum with a 20-gauge syringe needle. Water samples for
POC, lipid, and rRNA analyses were vacuum filtered through 47 mm diameter
glass fiber filters (Gelman GF/F; 0.7 μm mesh or nominal pore size), 47 mm
diameter PVDF membrane filter (Millipore hydrophilic Durapore; 0.2 µm pore
size), and 47 mm diameter PES membrane filter (Pall Supor membrane; 0.2 μm
pore size), respectively, until the sample was exhausted or until a reduced filtration
rate indicated sufficient material was collected (2–9.5 l). The filters were
transported on dry ice and stored frozen at –20 °C until further analysis. Specimens
of stygobitic (cave-limited) filter-feeding atyid shrimp from the genus Typhlatya (T.
pearsei, T. mitchelli, and one specimen of T. dzilamensis) were collected from six
locations (Supplementary Fig. 5; Supplementary Table 5). Surface dwelling insects
were collected from the forest floor around the Cenote Bang. Within 6 h of
collection, shrimp specimens were taxonomically identified, wrapped and stored at
0 °C in prebaked (450 °C for 4 h) aluminum foil. The specimens were transported
frozen on dry ice, and then stored in the laboratory at −20 °C.

Geochemical analysis. Geochemical analyses were performed at the Woods Hole
Oceanographic Institution (WHOI) and U.S. Geological Survey (USGS) in Woods
Hole, MA, USA. Headspace methane concentrations were determined using a
Shimadzu 14-A gas chromatograph (GC) equipped with a flame ionization
detector. Methane was isothermally (50 °C) separated from other headspace gases
with a Poraplot-Q stainless steel column (8 ft × 1/8′′ OD) packed with 60/80 mesh
and quantified against certified gas standards with a relative standard deviation
(RSD) of 2.8% or less. Headspace concentrations were converted to dissolved
concentrations using the method of Magen et al.59 The stable carbon isotope
composition of methane from the headspace of the serum vials was determined
using a Thermo-Finnigan DELTAPlus XL isotope ratio mass spectrometer (IRMS)
coupled to an Agilent 6890 Gas Chromatograph (GC) via a Finnigan GCCIII
combustion interface. Variable volume (1–15 ml) gas samples, depending on
concentrations, were introduced through a gas sampling valve into a 1 ml min−1 He
carrier gas stream. Methane and other condensable gases were trapped on fused
silica capillary packed with 80/100 mesh Poraplot-Q immersed in liquid nitrogen.
The gases were thermally desorbed from the column at 150 °C and separated on a
30 m, 0.32 mm ID Poraplot-Q column at −40 °C prior to being oxidized to CO2

and analyzed by IRMS. The 13C/12C ratios of methane are expressed in the stan-
dard δ-notation using tank CO2 referenced to the Vienna Pee Dee Belemnite
(VPDB) standard. The standard deviation (1σ) of a 1% CH4 standard analyzed at
least every eight samples was 0.3‰.

For the DOC subsamples, 1:1000 trace metal grade 12 N HCl:H2O volume60

ratio was added prior to analysis to achieve pH< 2. DOC concentration and δ13C
were analyzed by high-temperature combustion-isotope ratio mass spectrometry
(HTC-IRMS) at the USGS-WHOI dissolved carbon isotope lab (DCIL). The DCIL
HTC-IRMS system consists of an OI 1030C total carbon analyzer and a Graden
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molecular sieve trap interfaced to a Thermo-Finnigan DELTAplus XL IRMS. Stable
carbon isotope ratios are reported in the standard δ notation relative to VPDB and
were corrected by mass balance to account for the analytical blank, which was less
than the equivalent of 15 μM DOC in the sample. By comparison, the blank-
corrected sample DOC concentrations ranged from 15.3 to 851 μM. Thus, the
blank correction ranged from 6–50% of sample concentrations. DOC
concentration was calculated using a standard curve consisting of four potassium
hydrogen phthalate (KHP) calibration standards quantified against the mass-44
peak on the IRMS60. Peak areas were corrected for analytical blanks determined
from ultrapure lab water injections. The concentration RSD was 5.5% during run 1
and 12.5% during run 2. The analytical error of the δ13C-DOC analysis ranged
from <0.3 to 0.6‰.

DIC concentrations were determined with a Model 5011 UIC coulometer and
quantified relative to a sea water certified reference material (CRM). After the
addition of 100 μl 20% phosphoric acid, CO2 was stripped with UHP N2, delivered
to the analyzer and measured with an RSD of 4% relative to the CRM value (2.2
mM). Prior to the stable carbon isotope analysis of DIC, 50 μl of 85% phosphoric
acid was added to the headspace of the sample vial to allow the DIC to transfer into
the headspace as CO2. Samples were shaken vigorously at least once every 15 min
for 2 h. Headspace gas from the sample vial was transferred and injected with a 100
μl glass syringe into a Hewlett Packard 5890 GC, where the CO2 was separated
isothermally (50 °C) on a Poraplot-Q capillary column (30 m, 0.32 mm ID) before
isotopic analysis with the Thermo-Finnigan DELTAplus XP IRMS, as described
above, with analytical error (1σ) of 1.1‰.

Sulfate and chloride concentrations were determined using a Metrohm 881
Compact Plus ion chromatograph (IC) equipped with a Metrosep A Supp 5-250
anion column. Samples from the MFW, MBW, and SGW were diluted by factors of
31, 61 and 101, respectively. Peak areas for sulfate and chloride were quantified
against equivalently diluted International Association for the Physical Sciences of
the Oceans (IAPSO) standard sea water analyzed at the beginning of the run and
after every fifth sample. Chloride concentrations (mM) were converted to mg l−1

and multiplied by 0.0018066 to determine salinity (psu). The analytical error for
dissolved constituents was ±3.5% of the IAPSO standard sulfate and chloride
values.

Conservative mixing calculations. Similar to other studies11, 47, conservative
mixing models were used to differentiate the roles of physical mixing and in situ
reactions on the concentration and isotopic composition of biogeochemically
reactive species through the salinity gradient of the subterranean estuary. Internal
production yields an excess of the constituent relative to conservative mixing
between freshwater and saline end members, while consumption results in
depletion. Conservative mixing calculations for methane, DOC, DIC, and sulfate
between the shallow low salinity (MFW) and deep high-salinity (SGW) ground-
water layers were done using an established approach38, adapted for the density-
stratified groundwater:

CMIX ¼ fMFWCMFW þ 1� fMFWð ÞCSGW ð1Þ

Here C denotes concentration of the relevant chemical constituent and
subscripts MFW and SGW represent the respective water masses used as end
members, whereas the subscript MIX denotes the water mixture consisting of the
two end members. fMFW is the fraction of the fresh end member present in the
mixture calculated from the chloride concentration:

fMFW ¼ ½Cl��SGW � ½Cl��MIX

½Cl��SGW � ½Cl��MFW
ð2Þ

where [Cl−] denotes chloride concentrations, and the subscripts are the same as
above. Using equations (1) and (2), we calculate the conservative mixing regimes
for methane, DOC, DIC, and sulfate, adopting as end member concentrations the
values from the low salinity water mass at shallow depths (in MFW) and high-
salinity water mass at the deepest accessible parts of the cave (in SGW). The large
chloride concentration differences between the shallow portion of the groundwater
and the deeper part permits application of the method over a vertical length scale
of meters in the subterranean estuary, in contrast to a horizontal length scale of
kilometers typical of surface estuaries. In this study, chloride content was converted
to and expressed as salinity (psu) by multiplying chloride concentrations (mg l−1)
by 0.0018066. Conservative mixing was calculated between the lowest CMFW and
lowest CSGW, as well as between the highest CMFW and highest CSGW end members
for each sampling event. These calculations are represented as conservative mixing
lines (CMLs) on the salinity-property diagrams. We report the absolute highest and
absolute lowest results of the mixing calculations for each constituent across all
seasons. The area in between the two reported mixing calculations is considered the
general mixing field that incorporates all mixing lines (CMLarea), where the
distribution of the constituent is most likely determined by physical mixing.
Positive excursion from the CMLarea shows in situ production of a chemical
species, whereas negative excursion demonstrates consumption.

Stable carbon isotope mixing diagrams for methane, DOC, and DIC were used
to identify the isotopic composition of constituents produced in the mixing field or
isotopic fractionation associated with their removal. Conservative stable isotope

mixing models were calculated using described methods47, also adapted for
density-stratified groundwater:

δMIX ¼ fMFWCMFWδMFW þ 1� fMFWð ÞCSGWδSGW
CMIX

ð3Þ

where the subscripts are the same as in previous equations, and δ denotes δ13C values
of the constituents. Similar to the conservative approach taken above, the mixing field
is determined by the two extreme CMLs that were observed when generating an
ensemble of the mixing lines based on solute concentration data for all samplings.

All concentration and isotope mixing diagrams were constructed with log scale
on the y-axis to illustrate the full extent of the vertical salinity gradient through the
three water masses (MFW, MBW and SGW). Log scale was also applied on the x-
axis of methane and DOC because of the extreme differences in their
concentrations across the salinity gradient.

Comparing the measured values within the mixing region to the conservative
mixing models allowed us to estimate the percentage of methane and DOC
removed in the shallow portion of the coastal aquifer. For this model, we assume:
(1) environmental conditions (e.g., overlying vegetation, permeable bedrock
matrix, passage morphology, and groundwater flow) do not change laterally in the
inland portion of aquifer; (2) each sampled water layer (MFW, MBW, SGW) is
representative in terms of general redox and OM conditions in that salinity regime
across the inland portion of the aquifer; and therefore (3) the variation observed
along the vertical salinity gradient is primarily the result of biogeochemical
processes whose activity is horizontally homogenous; (4) the primary
biogeochemical processes influencing the concentrations of DOC and methane are
resulting in the production (OM degradation or methanogenesis) in the MFW and
consumption (heterotophy or methanotrophy, respectively) in the MBW. With
these assumptions, we calculated the net percent loss of reduced organic carbon
due to biological oxidation of methane (methanotrophy) and DOC (heterotrophy)
with respect to concentrations expected if physical mixing were the only process
that modulates the distribution of CH4 and DOC in the water column, using the
following equation:

% constituent consumed due to oxidation ¼ CMIX � CMBW

CMFW
´ 100 ð4Þ

where (CMIX − CMBW) determines the reduction in the concentration of the
constituent due to microbial oxidation. CMBW and CMFW are the averaged
measured constituent concentrations in the MBW and MFW.

Environmental lipid biomarkers. Respiratory quinones were extracted using a
modified Bligh and Dyer extraction61, 62 with DNP-PE-C16:0/C16:0-DAG (2,4-
dinitrophenyl phosphoethanolamine diacylglycerol; Avanti Polar Lipids, Inc.,
Alabaster, AL) as internal standard and analyzed using a Thermo Q Exactive
Orbitrap high-resolution mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) equipped with an electrospray ion source (ESI) connected to an Agilent
1200 high-performance liquid chromatography (HPLC) system (Agilent, Santa
Clara, CA, USA). Detection of quinones was achieved using positive ion ESI, while
scanning a m/z range from 100 to 1500. The mass spectrometer was set to a
resolving power of 140,000 (FWHM atm/z 200) and to 17,500 for MS2 scans. Every
analysis was mass calibrated by lock mass correction. The full scan mass resolution
setting corresponded to an observed resolution of 75,100 at the m/z 875.5505 of our
internal standard, DNP-PE. Ion source and other full scan mass spectrometry
parameters were set according to established protocols63. MS2 spectra were
obtained in data dependent mode. For each MS full scan, five ions of highest
intensity were selected in series using the quadrupole for MS2 fragmentation (4 Da
isolation window) with a Stepped Normalized Collision Energy of 20, 50, and 80.
Analytes were separated using reversed phase HPLC on an C8 XBridge column
(2.1 × 150 mm, 5 µm particle size, Waters Corp., Milford, MA, USA) as described
in Collins et al.63, modified after Hummel et al.64 Quinones were identified by
retention time, as well as accurate molecular mass of proposed sum formulas in full
scan mode and tandem MS fragment spectra (Supplementary Fig. 7). Integration of
peaks was performed on extracted ion chromatograms using an isolation width of 4
ppm and included the [M +H]+, [M + NH4]+, and [M +Na]+ ions. Quinone
abundances were corrected for the relative response of ubiquinone (UQ10:10)
standard (Sigma Aldrich, St. Louis, MO, USA) vs. the DNP-PE standard.

Bulk stable isotopic analysis. Prior to stable carbon isotopic analyses, particulate
OM filters, soil, and invertebrate samples were exposed to 10% HCl to remove
inorganic carbon, rinsed with ultrapure water, dried, and wrapped in baked (at
450 °C for 4 h) aluminum cups30. Fauna and soil samples were analyzed for 13C
and D (2H), and POC for 13C at the University of Alaska Fairbanks (UAF) Stable
isotope facility using established internal protocols δ13C values were measured by
Elemental Analyzer Isotope Ratio Mass Spectrometry (EA-IRMS) using a Thermo
Fisher Scientific Elemental Analyzer (Flash 2100) combined with Thermo Fisher
Scientific DeltaVPlus isotope ratio mass spectrometer and a Conflo IV interface.
δ13C values are reported in reference to international isotope standards. The 44m/z
peaks were used to quantify the C content of the sample. Samples for δ2H values
were analyzed on an ANCA-GSL elemental analyzer (Sercon, Crewe, UK) coupled
to a Geo20–20 continuous flow IRMS at Iso-Analytical and on a Finnigan
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ThermoQuest thermochemical reactor elemental analyzer (TCEA; Finnigan
ThermoQuest, Bremen, Germany) attached via a Conflo III to a Thermo-Finnigan
DeltaPlus IRMS. The analytical procedures for D analysis followed previously
published protocols26, 65. All stable isotope ratios are reported using the delta (δ)
notation expressed in units per mill (‰) and D results are expressed relative to
Vienna Standard Mean Ocean Water (V-SMOW). Standard deviation of δ13C was
±0.04‰, and of δD was better than ±1.9‰. POC concentrations were quantified
by comparing the response of the mass-44 peak area from the samples to peptone
standards of known carbon content.

Contribution of methane-derived carbon to the biomass. A simple two-source
mixing model38 was used to calculate relative contributions of methane-derived
carbon and the soil-derived carbon (DOC and POC) in the shrimp tissue. The
following equation was used for this calculation:

%methane carbon contribution in biomass ¼ δshrimp � δOM
δmethane � δOM

´ 100 ð5Þ

where δshrimp is the measured δ13C value of the shrimp, δmethane is the average
δ13C-CH4 value of methane in the MFW (−66.3 ± 0.7‰, Table 1), δOM is the
average δ13C value of DOC in the MFW (−28.0± 0.1‰), which is assumed to
represent the isotopic content of soil-derived OM. This calculation does not con-
sider carbon isotope fractionation by methanotrophic bacteria66, the presumed
dietary source of methane-derived carbon for the shrimp.

Lipid biomarkers from fauna. We performed compound-specific stable carbon
isotopic analysis of membrane-bound FAs extracted from tissue of Typhlatya
specimens. The examined tissue was removed from under the carapace and did not
contain gut material. Lipid biomarkers were extracted according to a modification
of established methods67. Double bond positions were determined through analysis
of their dimethyl–disulfide adducts68. Two specimens were selected for this study,
one with the lowest (3%) and another with highest (55%) calculated contribution of
methane-derived carbon to their biomass. The δ13C values of FA biomarkers and
their percentage contributions to the total FA pool extracted from the tissue of the
two shrimp specimens are listed in Supplementary Table 5. Reproducibility was
monitored by repeated injections and monitoring of internal standards. Reported
δ13C values have an analytical error of ±1%.

Phylogenetic analysis and sequence processing. DNA was extracted from ¼ of
a 47 mm diameter 0.2 µm pore size filter (Pall Supor) using a PowerViral Envir-
onmental RNA/DNA Isolation Kit (MoBio, Carlsbad, CA) following the manu-
facturer’s recommendations. DNA was eluted into 50 µl of elution buffer and
stored at −20 °C. Eluted DNA quality and quantity were evaluated on a NanoDrop
ND-100 Spectrophotometer (Thermo Fischer Scientific, USA). The hypervariable
V4 region of 16 S rRNA was amplified using modified 515F and 806R primers
(Earth Microbiome Project; April 2015). Primers for two-step PCR amplicon
barcoding library preparation were designed using the TaggiMatrix spreadsheet.
Briefly, internal fusion PCR primers were constructed with the priming region for
the 16S rRNA locus, a variable length tag (5–8 bp), and a 5′ sequence to target for
further TruSeq library preparation. The resulting PCR1 products were purified
using AMPure XP Beads (Agencourt, Beckman Coulter, USA). PCR2 was used on
cleaned PCR1 products to complete TruSeq library fragment and Illumina
indexing. Ampure XP cleanup was conducted, libraries were assessed for quality on
a BioAnalyzer 2100, quantified on Qubit 2.0 and qPCR was conducted using the
New England Biolabs Illumina Library Quantification kit. The library was
sequenced on an Illumina MiSeq at the Core Facility for Nucleic Acid Analysis at
the University of Alaska Fairbanks. Amplicons derived from sequencing were
processed using the DADA2 R-package69. This package implements filtering of
low-quality sequences using Q20 individual nucleotide cutoff, merging of paired-
end reads, and chimera identification. Reads <150 bp were removed from the
analysis and only samples with more than 3000 high-quality reads were included in
down-stream analyses. Taxonomic identification was assigned also in the DADA2
package using RDP70 as the reference database. We determined functional
(metabolic) groups by using RDP to search for representative sequences from each
of the operational taxonomical unit.

Data availability. Demultiplexed reads were deposited in NCBI Sequence Read
Archive (SRA) database under accession number SRP109857. Additional data
referenced in this study are tabulated in Supplementary Tables, and available
through the USGS ScienceBase-Catalog at https://doi.org/10.5066/F7DJ5DJW, or
on request from the corresponding author (D.B.).
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