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ABSTRACT  
ϒ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the central nervous 

system (CNS). GABA exert is function by binding to three different receptor subtypes, the 

GABAA, GABAB and GABAC receptor.  The GABA level in different brain regions are 

regulated by four GABA transporters (GATs); GAT-1, GAT-2, GAT-3 and BGT-1. GAT-3 is 

located in glial cells that is controlling GABA function in the synapses.  

A study has shown that Alzheimer’s disease (AD) patients have an elevated GABA levels in 

the cerebrospinal fluid, while a transgenic mouse model of AD showed an unusual high 

GABA content in dentate gyrus (DG) and enhanced inhibition. The high GABA content in 

DG is a result of transport by the GABA transporter, GAT-3, and it is suggested that GAT-3 

inhibitors may be a novel therapy. AD is the most common form of dementia, and is a 

worldwide disease with increasing incidence with age. There is no treatment that can cure the 

AD today and GAT-3 inhibitors may represent a new direction in the search for new 

therapeutic strategies. 

 

The three dimensional (3D) structure of GAT-3 is unsolved. Therefore, X-ray structures of 

the drosophilia dopamine transporter (dDAT) and the human serotonin transporter (hSERT) 

were used to construct homology models of GAT-3. The homology models were evaluated by 

docking a set of known inhibitors, substrates and decoys, and the best performing models 

were used in combined ligand-based virtual screening (LBVS) and structure-based virtual 

screening (SBVS) in order to identify potential GAT-3 inhibitors compounds from the 

ENAMINE database.  

 

Four homology models were selected based on their ability to separate binders from non-

binders by BEDROC calculation. 40 hit compounds from ENAMINE were selected with 

good docking score that may be potential GAT-3 inhibitors drug candidates. These hit 

compounds need evaluation by experimental testing.  
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1 INTRODUCTION  
 

1.1 Alzheimer’s disease 
Alzheimer’s disease (AD) is a neurodegenerative disease known as the most common form of 

dementia constituting about 60% of all types of dementias (1). According to the world 

Alzheimer Report 2016 (Alzheimer’s International), 47 million people worldwide are affected 

by dementia, which is considered to rise to 131 million by 2050 (2). AD is named after Dr. 

Alois Alzheimer who described this disease for the first time in 1906 (3).   

AD is an irreversible disease that particularly affects most elderly and develops gradually 

until symptoms become perceptible. The first sign of AD is memory problems. AD is 

categorised in three main stages: mild (early-stage), moderate (middle-stage) and severe (late-

stage). In the early-stage the patient can function independently but has problems with 

remembering names of new people, getting lost and having personality changes. The middle-

stage is the stage when a patient has trouble with elementary actions such as language and 

recognizing familiar persons and the memory gets worse. In the late final stage of the disease, 

patients can have no communication and need daily care (4).  

 

  

 

1.1.1 Pathogenesis of AD 
The cause of AD remains unknown, but we know that there are two pathological hallmarks 

for AD. The first hallmark is amyloid plaques, protein containing β-amyloid (Aβ) from an 

amyloid precursor protein (APP). The second hallmark is neurofibrillary tangles that 

accumulate in the brain in Alzheimer’s disease patient. Neurofibrillary tangles are also 

proteins that are part of microtubule-associated protein (tau). These proteins cause damage to 

the activity between nerve cells in the brain and death of nerve cells in the hippocampus that 

have functions such as memory and other symptoms such as speech problems, mood swings 

and confusion (4-6).  

The risk of AD increases with age, from about 5% at 65 years to 90% or more at 95 years. 

Other risk factors that affect this disease are genetic mutation, health, environmental, lifestyle 

and many others factors (5).  
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1.1.2 Treatment of AD 

At present, there is no treatments for AD, but there are some drugs that can treat symptoms of 

the disease. Drugs such as chlolinesterase inhibitors and NMDA receptor antagonists are 

approved for treatment of AD symptoms (7). γ-secretase inhibitors that reduce Aβ production 

were considered promising, but clinical studies showed limited efficacy, and they even 

worsened the AD symptoms in some patients (8). New drugs are therefore urgently needed. 

New research has proposed GAT-3 inhibitors as new drug candidates for treatment of AD.  

 

Recent research shows that AD patients have a very high level of ϒ-aminobutyric acid 

(GABA) in the cerebrospinal fluid and that the high GABA content is caused by the GABA 

transport, GAT-3 (8). Compounds inhibiting the GAT-3 transporter are therefore suggested to 

be promising drug candidates in AD treatment.   

 

 

 

1.1.3 Drugs crossing the blood brain barrier 

Drugs for AD need to cross the blood brain barrier (BBB), which is a layer of endothelial 

cells with in the brain capillaries and has a protective function. Development of drug that 

should reach the brain in a challenging, and today there are few drugs that are able to cross 

the BBB. Today 98% of all small molecular drugs and 100% of large drug molecules do not 

cross the BBB (9).  

 

There are two putative mechanisms for drugs to pass the BBB: active transport or passive 

transport. Active transport is an energy-requiring process that moves molecules against a 

concentration gradient from low to high concentration and is able to transport polar molecules 

through the BBB. Passive transport is a transport that moves molecules through the cell 

membrane down the concentration gradient and is able to transport lipophilic drugs through 

the BBB. For passive transport of lipophilic drugs cross the BBB the drugs need to have 

favourable pharmacokinetic properties for transport connected to the molecular weight (MW), 

hydrophobocicity/calculated oil/water distribution coefficient (ClogP), number of hydrogen 

bond donors (HBD), and hydrogen bonding acceptors (HBA), polar surface area (PSA) and 

molecular flexibility (number of rotatable bonds) (Table 1). These properties are described by 

the Lipinski’s “rule of five”, or the Veber rules/suggestions that gives drugs drug-like 
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properties to avoid absorption-distribution-metabolism-excretion-toxicity (ADMET) issues. 

Studies have shown that a successful central nervous system (CNS) drugs have lower ClogP 

value and lower MW, HBD, HBA, PSA and rotatable bonds than other therapeutic indications 

(10). These properties need to be taken into account early in the phase of drug development 

(Table 1).  

 

 

 

Table 1: An overview of  Lipinski’s “rule of five”  and Veber for other therapeutic indications and CNS 

drugs.  

Properties Physicochemical properties Other therapeutic CNS drug 

 

 

Lipinski’s  

“rule of five”   

MW < 500 < 450 

ClogP < 5 < 5* 

HBD  < 5 < 3 

HBA < 10 < 7 

Veber PSA < 140 Å2 < 60-70 Å2 

Rotatable bonds < 10 < 8 

MW: Molecular weight, ClogP: calculated oil/water distribution coefficient (hydrophobicity), HBD: Number of 

hydrogen bond donor, HBA: Number of hydrogen bond acceptor, PSA: Polar surface area, rotatable bonds: 

number of molecular flexibility. * clogp as low as possible  

 

 

 

1.2 GABA neurotransmission 
GABA is the main inhibitory transmitter in the brain. GABA is synthesized from the amino 

acid glutamate by the enzyme glutamic acid decarboxylase (GAD) in the presynaptic neuron. 

GABA is stored into synaptic vesicles by a vesicular transporter in presynaptic neuron. The 

neurotransmitter is released from synaptic vesicles into the synaptic cleft and binds to 

receptors in the postsynaptic neuron, which triggers a response. The remaining GABA 

molecules in the synaptic cleft must be cleared and this occurs by reuptake into presynaptic 

neuron and glia cells by GABA transporters (11). The GABA transporter belongs to the solute 

carrier family 6 (SLC6) family of transporter proteins(12).  
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GABA is the main inhibitory neurotransmitter in the brain. GABA act as a neurotransmitter at 

approximately 40% of all synapses in the brain (13), and in many brain regions GABA is 

found in a concentration 1000 times higher than that of the monoamine neurotransmitters. 

GABA is involved in several neurological and psychiatric disorders in the CNS such as 

mental retardation, development malfunctions, epilepsy, sleep disorders, anxiety, depression, 

drug dependence, sensorimotor processing and motor coordination disorders (11). GABA is 

also found in other tissues of the body such as the liver, spinal cord, eyes, bladder and 

parathyroid (12) 

 

GABA has a major function in CNS and abnormal GABA levels can result in different brain 

diseases. Protein implicated in GABA neurotransmission can therefore be valuable drug 

candidates (14). The development of GABA transport inhibitors as drugs is limited, and 

Tiagabine (GAT-1 inhibitor) is the only drug available on the market inhibiting GABA 

transport. Tiagabine is approved for the treatment of epilepsy (15).  

 

 

 

 

  

 

 

 

 

1.2.1 GABA receptors 
There are three main types of GABA receptors: GABA-A, GABA-B and GABA-C receptors. 

The GABA-A receptor is a ligand-gated chloride-ion channel receptor located on the 

postsynaptic membrane. GABA-A receptors are pentamers consisting of 5 subunits (α-β-α-β-

γ) with a GABA binding site between the α and β subunits giving a total of two GABA 

binding sites on each GABA-A receptor complex. Activation of GABA-A receptor causes 

membrane hyperpolarisation by opening of chloride (Cl-) channels between the subunits. By 

Cl- ions influx into postsynaptic cell, the membrane potential increases, which cause the cell 

to become less excitable. Many CNS drugs have GABA-A receptors as their target, including 

barbiturates and benzodiazepines.  

Figure 1: 2D structure of GABA 



	 5	

The GABA-B receptor is a G-protein-coupled receptors of family C located both on 

presynaptic and postsynaptic neurons. Stimulation of GABA-B receptors reduces cAMP that 

decreases the Ca2+ influx by votage-gated calcium channels and increase the K+ efflux by 

inwardly rectifying postassium channels, which results in reducing postsynaptic excitability. 

GABA-C is a ligand-gated chloride-ion channels receptor containing ρ subunits (ρ1-ρ3) (11, 

16).  

 

 

1.3 The solute carrier family 6 
Among solute carrier (SLC) families, SLC6 is the family containing most members of the 

human genome (20 transporters) (17).  SLC6 is also recognized as the neurotransmitter 

sodium symporter family (NSS) or Na+/Cl- neurotransmitter transporter family (18, 19), 

which includes four groups of transporters: GABA, monoamine, amino acid (I) and amino 

acid (II) (Figure 2). The SLC6 transporters have important roles in removal of 

neurotransmitters from the synaptic cleft by transporting them into the presynaptic neurons 

and glial cells, but they also have essential role in other tissues, such as liver, kidney, 

pancreas, intestine etc. (20, 21).  

 

 

 
Figure 2: Overview of SLC6 transporters (12). 
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In 2005 the first X-ray crystal structure of a prokaryotic SLC6 member was published. The 

structure was of the Aquifex aerolicus leucine transporter (LeuT), at resolution of 1.65 Å (21). 

Aquifex aerolicus is a thermophilic bacterium. More recently, X-ray crystal structures of the 

dopamine (DAT) and serotonin transporter (SERT) have been determined. These X-ray 

crystal structures can be used as templates for homology modeling of GAT-3. Today, around 

177 eukaryotic and 167 prokaryotic transporters of the SLC6 family have been classified (22).  

 

Almost all of the SLC6 family members use the electrochemical gradient of Na+ and Cl- for 

co-transport of GABA into the cell. The serotonin transporter (SERT) is the only family 

member that in addition to influx of Na+ and Cl- transports K+ out of the cell (23). Although 

these transports: GABA, monoamine, amino acid (I), amino acid (II)) belong to the same 

family, the stoichiometry between substrate, Na+ and Cl- varies between family members (12, 

21). 

 

 
 

1.3.1 GABA transporters  
The subfamily of GABA transporters consists of four transporters (GATs): GAT-1, GAT-2, 

GAT-3 and betaine (BGT-1) that all are located in the brain (24). Substrates for all the GABA 

transporters containing a C-terminal carboxyl group (COOH). Substrrated for three of the 

transporters (GAT-1, GAT-2 and GAT-3) have an amino group (NH2) N-terminally, while 

the BGT-1 in addition has the amino group methylated. Most of GABA transporters 

cotransport two Na+ ions, one substrate molecule and one Cl- ion, except for BGT1, which 

cotransport one substrate molecule, three Na+-ions and one Cl-ion (Table 1) (12). GAT-1, 

GAT-2, GAT-3 and BGT-1 consist of 599, 602, 631 and 614 amino acids, resepectively, with 

the differences in the length of the loops. These transporters are expressed in CNS, but they 

are also expressed in other tissues (21) (Table 2).   
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Table 2: Overview of the four GATs (12). 

Endogenous 

substrate 

Transporter Stoichiometry 

(Substrate/ Na+/Cl-) 

Tissue distribution 

GABA SLC6A1/GAT-1 1:2:1 Brain, bladder, liver, 

parathyroid 

GABA SLC6A13/GAT-2 1:2:1 Brain, kidney, liver, eye 

GABA SLC6A11/GAT-3 1:2:1 Brain, eye, spinal cord 

GABA, Betaine SLC6A12/BGT-1 1:3:1 Brain, kidney, liver 

 
 

	
	
	
1.3.2 GAT-3 transporter 

The GAT-3 transporter regulates the extracellular GABA level in CNS.  The GAT-3 levels 

are high in the CNS and is primarily expressed in glial cells, and also expressed in glomerular 

layer of the olfactory bulb, the inner nucleus of the retina, the thalamic paraventricular 

nucleus, and the globus pallidus (25). The GAT-3 transporter is located in glial cells and the 

glial cell uptake of GABA has an important role for controlling the accessibility of GABA 

neurotransmitter in the synapses, which has potential clinical relevance in epilepsy and stroke 

(14, 26). The physiological roles and therapeutic potential of the GAT-3 transporter can be 

further investigated by developing GAT-3 inhibitors (14). As previously stated, recent 

research indicate that the inhibitors of the GAT-3 transportes also may have a therapeutical 

potential in AD (8). 

 

The detailed structure of the GAT3 transporters has not been resolved by X-ray 

crystallography. As shown in Figure 3, the GAT-3 contains 12 transmembrane α-helices 

(12TMs) spanning the membrane connected with intracellular and extracellular loops, while 

the N- and C-terminals are located intracellularly. The extracellular loop between TM3 and 

TM4 contains N-linked glycosylation sites (21).   
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Figure 3: The GAT-3 amino acid sequence. Snake-like plot showing the membrane topology of human GAT-3 

amino acid sequence. The figure has been generated by using the tool http://wlab.ethz.ch/protter/start/ Uniprot 

kode: p48066 for the transporter.  

	
	
	

1.4 Molecular modeling  

Molecular modelling studies molecular structures and properties by using techniques such as 

computational chemistry, molecular dynamics simulations and structure and sequences 

analysis methods. Molecular modelling is often used for the discovery of new compounds 

with desired activity, and in drug development. The two main computational approaches for 

molecular modelling are molecular mechanics (MM) and quantum mechanics (QM). 

However, today also a combination of these two methods may be used. Very often choosing 

MM or QM is dependent on the size of the molecular system to be calculated (27, 28).  

 

MM is used for large molecules and is suitable for doing energy minimization, identifying 

stable conformations, energy calculations for specific conformations, generating different 

conformations and studying molecular motion. MM calculates the total potential energy (Etot) 

from the sum of all bonded (Ebonded) and non-bonded (Enon-bonded) molecular interactions. 

Ebonded is the sum of the bond stretching energy (Ebond), angle binding energy (Eangle) and 

torsional energy (Edihedral). Enon-bonded is the sum of Van der Waals energy (Evdw) and 
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electrostatic energy (Eelec) (27-29). The total energy form is described by the following 

equation (equation 1):   

Etot = Ebonded + Enon-bonded; or 

Etot = (Ebond + Eangle + Edihedral) + (Evdw + Eelec) 

 

QM takes into account the electronic nature of each atom, and is used to model small 

molecules. The QM method is more accurate but also more time consuming than MM and is 

well qualified for calculating heat of formation for specific conformations, partial atomic 

charges calculated from molecular orbital coefficients, electrostatic potential, molecular 

orbital energies and coefficients (27).   

  

 

	
1.4.1 Homology modeling  
Proteins are large molecules with several functions in our body such as transporters, enzymes, 

antibodies, and structural components. The shape of the protein decides the function of the 

protein, and therefore it is important to have a knowledge and understanding of the three 

dimensional (3D) protein structure. The human genome consists of about 8000 membrane 

proteins and to understand their 3D structure and drugability is very important for drug 

discovery and development (30). But a problem with membrane proteins for 3D structure 

determination is their hydrophobic surface, which leads to poor amount of protein expressing 

in the cellular membrane. Proteins are flexible and unstable which create difficulties for 

keeping the protein functional after solubilisation and purification, and for keeping the 

membrane protein in one stable conformational state long enough to be able to crystallize the 

protein (31). NMR spectroscopy and X-ray crystallography are the two main techniques for 

experimental determination, and examines small macromolecules in solution. X-ray 

crystallography gives atomic resolution rigid structures and about 90% of the known 3D 

protein structures have been solved by X-ray crystallography. Today NMR and X-ray 

crystallography have solved total 11808 and 116306 structures of proteins, nucleic acids, 

protein/nucleic acid complexes and others (http://www.rcsb.org/pdb/home/home.do). Both 

those techniques are laborious, time-consuming and have some common problems 

particularly with membrane proteins (32).   
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Homology modeling can be utilized to construct 3D models of the proteins of unknown 

structure if there are 3D structures of related proteins available. The protein of interest is the 

“target”, while the protein homologue with known 3D structure is the template. Homology 

models of proteins are useful for understanding their structures and functions (32), and are 

predicted structures of the protein of interest. The assumption for this technique is that 3D 

structures of protein homologues will have a similar overall 3D fold. Homology modelling 

contains several steps for constructing the 3D structure of a protein based on a template (28).  

 
 
 

 
.Figure 4: The main steps in homology modeling.    
 

 

 

1.4.1.1 Template identification  

Template selection is the first step of homology modeling. In this step it is important to find 

suitable template with similar 3D-structure as the target. Suitable templates for modelling the 

target can be search for by using tools such as FAST and Basic Local Alignment Search Tool 

(BLAST). The template that are selected should have as high amino acid similarity as 

possible to the target sequence and also high crystallographic resolution (33).   
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1.4.1.2 Target-template Alignment  

Target-template alignment is the second step of homology modelig. It may be necessary too 

manually adjust the sequence alignment between target and template in order to avoid gaps in 

secondary structures in the alignment. If you have more than one possible template, the 3D 

structures of the templates may be superimposed and the alignment may be adjusted based on 

the structural superimposing. It may also be important to include many homologues 

sequences in the alignment (multiple sequence alignment) in order to more easily identify 

structurally homologues regions. A correct sequence alignment is very important for the 

model, otherwise the result of homology modelling will be inaccurate (33).  

 

1.4.1.3 Building the model  

The 3D structure of a target is build on the background of the target-template sequence 

alignments. Model building include three stages: (1) generation of amino acid backbone of 

structurally conserved regions, (2) generation of the non-conserved loop regions, and (3) 

optimization of side chains (33). Modelling of loops is the most challenging in spite of high 

sequence high sequence similarity and maestro has two methods to overcome the loop region: 

knowledge-based and energy-based. Knowledge based is an approach that searching in 

Protein Data Bank (PDB) for matching residue that can be placed in the loop regions. Energy 

based is an approache that minimize the energy function to obtain the best loop conformation 

by using Monte Carlo or molecular dynamics (33).   

 

 

1.4.1.4 Model Refinements  

Model refinement is used to optimize and corrects the structure of 3D models. In this step, 

energy minimisation, Monte Carlo Simulation and/or molecular dynamics calculations can be 

used to help the model to optimize the interactions between amino acids (33).     

 

 

1.4.1.5 Model validation of stereochemical quality  

Model validation is the last step of homology modeling. This step is to check the quality of 

the model by using the structural Analysis and verification server (SAVES; 

http://nihserver.mbi.ucla.edu/SAVES/). Molecular docking can also be used to evaluate if the 

model is able to distinguish between the known binders and compounds that not bind (non-

binders).  
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1.4.2 Virtual ligand screening  

Virtual ligand screening (VLS) is an in silico technique of drug discovery used for screening 

of huge compounds libraries. The main goal with virtual ligand screening is to identify new 

lead molecules by searching database containing million of molecules (e.g ENAMINE). 

There are two main approaches of virtual ligand screening: ligand-based virtual screening 

(LBVS) and structure-based virtual screening (SBVS). The LBVS approach is using 

information about known compounds for the target and, is often used when detailed structural 

information about the target is lacking. The SBVS approach is used when the 3D structure of 

target is known, and the structure is used for docking the compound library and calculate the 

score of each compound (34). Both VLS techniques can be combined as long as the structure 

of ligands and target are known. 

 

  

 

 
Figure 5: Overview of the two main approaches of virtual ligand screening: ligand-based virtual screening 

(LBVS) and structure-based virtual screening (SBVS).   
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1.4.2.1 Ligand-based virtual screening  

Ligand-based virtual screening (LSVS) is based on structural similarity between compounds 

binding to the target. The method is searching for new molecules intended to bind to the 

target by using information about the properties of a known active ligands. It is assumed that 

compounds with similar structure are likely to have similar activity and are affected in the 

same manner at the target (35).  

 

LSVS include pharmacophore methods, machine learning methods (including QSAR) and 

similarity methods (2D-fingerprints) (Figure 5). Pharmacophore methods use the structural 

knowledge about active ligands and identify what they have in common for optimal target 

interactions. Quantitative structure-activity relationship (QSAR) methods calculate the 

relationship between chemical structure and pharmacological activity of known compounds 

and use that to find new compounds in a database. The similarity methods such as 2D 

fingerprints are based on calculating the structural similarity between an active reference 

compound and compounds in a database. The 2D fingerprints calculations are performed by 

screening a database of compounds against active reference compounds. There are several 

metrics that can be a measure of the degree of similarity between two molecules, and 

Tanimoto similarity is the most used metric (36, 37). The general form of Tanimoto similarity 

metric can be written as (equation 2):  

 

      

 

 

 

Where a is number of fragments in compound 1, b is number of fragments in compound 2 and 

c is the number of fragments in compound 1 and compound 2 (36).  

 

 

 

 

	Tanimoto	similarity	=										c	
																																													(a	+	b	–	c)	
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1.4.2.2 Structure-based virtual screening  

Structure-based virtual screening (SBVS) is a method that uses the knowledge about the 3D 

structure of the target to identify compounds that can be developed into drugs.  SBVS 

includes, both de novo design and docking. De novo design is based on building the ligand 

molecule step-by-step into the binding pocket. Docking is a technique where the goal is to 

find the correct fit between a ligand and a target and it is the most used computational tool for 

structure-based drug design in research-based pharmaceutical industry (38).  

 

In order to perform docking, the program requires atomic resolution structures of a target and 

ligand(s) and also an idea of where the binding site is. It is up to the docking programs to 

solve where to exactly fit the ligand(s), the conformation of the ligand and target and to 

evaluate the interacting energies and relate that to activity. It is possible to generate different 

complexes between the ligand and the binding site. A combination of a search algorithm that 

intend to suggest several possible ligand poses, and a scoring function aiming to identify the 

true (native) binding pose is used by the program. Most docking programs today treat the 

ligand as flexible and the target rigid (semi-flexible docking), but there are other approaches 

like induced fit docking (IFD) that also include flexibility into the target. The scoring 

calculates the strength of the interaction between a ligand and the target. The molecular 

docking software docks the ligands into the binding site and then calculate the free energy of 

binding between ligand and target. After running the calculation, the software lists up the 

compounds ranked based on their score from the highest to lowest score. The aim of the 

scoring function is to identify the most reliable binding pose and to distinguish the active 

ligands from the inactive and decoys. In molecular docking the scoring functions have three 

essential applications, first to identify the binding site and binding mode of the ligand in the 

target, second predict the binding affinity between ligand and target, and third is searching for 

potential drug hit/lead compounds that bind to the target by using virtual screening (39).  The 

calculated free energy of binding is defined by the Gibbs-Helmholtz equation (equation 3):  

 

  

ΔG = ΔH – TΔS 

 

ΔG is the free energy of the binding, ΔH is the enthalpy, T is the temperature in Kelvin and 

ΔS is the entropy. Entropy is the degree of disorder in a system, when a system becomes more 
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disordered, the entropy increases, while the enthalpy is order. The relation between the ΔG 

and the affinity between a ligand and a target (Ki) is described by (equation 4):  

 

ΔG = -RTInKi 

R is the gas constant, T is the temperature in Kelvin and Ki is the inhibition constant. 

 

There are four types of scoring functions in molecular docking: Force-field scoring functions, 

empirical scoring functions, knowledge-based scoring functions and consensus score 

functions. The force field functions are based on molecular mechanical energy of receptor-

ligand interaction and internal ligand energy and is based on non-bonding interactions such as 

vdW interactions and electrostatic interactions and bonded interactions such as 

stretching/bending/torsional forces. Empirical is based on interactions such as vdW, hydrogen 

bond (H-bond), hydrophobicity, electrostatics, desolvation, entropy, etc. Knowledge-based 

scoring is statistical potential of ligand-target complexes from structural information of 

experimentally determined structures. Consensus score apply a combination of the three 

mentioned types of score functions to adjust their inaccurate score functions (39).  
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2 AIM  
The GAT-3 transporter is responsible for the elevated levels of GABA in the dentate gyrus 

(DG) of transgenic AD mouse. The main aim of this project was to use a combination of 

LBVS and SBVS to predict GAT-3 inhibitors that may be drug candidates in AD. 

Constructed homology models help in the understanding of the binding site of the target and 

docking of known compounds will help to understand the molecular interactions at the 

binding site.  

 

The specific aims of the study were to: 

1. Use different fingerprint types to identify putative GAT-3 inhibitors from the 

ENAMINE database by using the knowledge of known active ligands. 

2. Construct homology models by using drosophilia DAT (dDAT) and human SERT 

(hSERT) X-ray structures as templates. 

3. Perform molecular docking of known active ligands and decoys. 

4. Evaluate the homology models by using BEDROC to select good performing 

models of the orthosteric and the allosteric binding sites. 

5. Use SBVS to dock all compounds from LBVS into slected models and identify 

putative GAT-inhibitors.  

 

 
 



	 17	

3 METHODS 
 

3.1 Software and databases 
	
3.1.1 Software 
 

Schrödinger Release 2016-3 

The Schrödinger software is a computational technology software package, used for 

molecular modelling in pharmaceutical, chemical, biotechnology and materials sciences 

research, and is also the leading software for drug design and development 

(https://www.schrodinger.com/maestro). In this study the Schrödinger software was used for 

homology modelling, sketching of active ligands, docking (Glide), induced fit docking (IFD), 

preparation of ligands before docking (Ligprep), preparation of proteins before docking 

(protein preparation wizard), and for virtual screening (virtual screening workflow).    

 

 

Schrodinger Canvas  

Canvas is a cheminformatics package of Schrödinger used for structural and data analysis. 

Canvas can be used for ligand fingerprinting and similarity searching, substructure searching, 

selection of compounds by diversity, structural clustering of compounds, and building 

regression and classification models (40). The software was used for 2D fingerprinting and 

clustering of 72 known active ligands and 100 best scoring hits from the ligand based 

screening in the ENAMINE database. Similarity matrixes were also generated using this 

application.  

 

 

Molsoft Internal Coordinates Mechanics Software (Version  

The Internal Coordinate mechanics (ICM) is a software with different application for 

molecular modelling and drug design (http://www.molsoft.com/technology.html). In this 

project the ICM software was used to convert decoys, from SMILES code to 2D structures.  
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3.1.2 Databases 

	
Protein Data Bank  

The Protein Data Bank (PDB) is a worldwide and freely available database that contains 3D 

structures of macromolecules obtained by X-ray crystallography, NMR spectroscopy, or 

electron microscopy. The 3D structures in the PDB are large biological molecules of proteins 

and nucleic acid from a variety of organisms. The PDB has many users from biologists, 

chemists, scientists, students, educators, media writers, illustrators, textbook authors, and to 

the general public (41). In this study, the X-ray crystal structures of the templates used for 

homology modeling were downloaded from the PDB database 

(http://www.rcsb.org/pdb/home/home.do).  

 

 

The Universal Protein Resource Knowledgebase  

The Universal Protein Resource Knowledgebase (UniProtKB) is a database that provides 

information about protein sequences and their functions. UniProtKB consisting of two 

different section: Manually annotated (UniProtKB/Swiss-Prot) and computationally analyzed 

(UniProtKB/TrEMBL) sequenced. UniProtKB/Swiss-Prot was used to download the amino 

acid sequences of GAT-1, GAT-2, GAT-3 and BGT-1 prior to building homology models of 

GAT-3 and construction of a multiple sequence alignment (http://www.uniprot.org/).  

 

 

Databased of Useful Decoys: Enhanced  
Databased of Useful Decoys: Enhanced (DUD.E) is a database with useful decoys. Decoys 

are molecules that have similar physiochemical properties as active compounds, but with 

different chemical structures so that they are assumed to be non-binders. In this study the 

DUD.E database was used to generate decoys for each of the 72 active ligands in a ratio 50:1 

(50 decoys for each active compound) (http://dude.docking.org/generate).   

 

ENAMINE database 
The ENAMINE database is collection of known active compounds for biological targets, and 

is often utilized in the drug discovery process. The Enamine subset of advanced Collection 

with 294 995 active compounds was used in this study (http://www.enamine.net/).  
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3.2 Workflow of the study  
An approach combining LBVS and SBVS were performed in order to predict new putative 

GAT-3 inhibitors. The 72 known active ligands were clustered into five structural groups, and 

four types of fingerprint were calculated and the cut-off value was determined. The cut-off 

value is the minimum value of that fingerprint among the known binders. The calculated 

fingerprints were used to search the ENAMINE database for similar structures. This resulted 

in 2150 compounds identified by using ligand fingerprinting. Homology models of human 

GAT-3 were built based on different templates, and 72 active ligands and decoys were docked 

into the homology models to select the most appropriate models for the SBVS approach. 

Boltzmann-Enhanced Discrimination of Receiver-Operation Characteristics (BEDROC) 

statistical analyses and the number of known actives docket were used to select among the 

different models. The selected models were improved by IFD and active ligands and decoys 

were re-docked into the new ligand-optimized conformations of the different GAT-3 models, 

and BEDROC calculations were repeated. Based on the docking, four models were selected 

for docking of the ENAMINE compounds. The 2150 compounds from the ligand based 

search in ENAMINE were prepared for docking by Ligprep (increased to 5876 compounds) 

and docked by virtual screening. The 100 compounds with the best docking score in each 

model were clustered into ten structural clusters and studied more in details. A workflow of 

the study is presented in Figure 6.  
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Figure 6: Workflow of the study  
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3.3 Selection of active compound of GAT-3 and decoys  
A set of known binders of GAT-3 was obtained from the literature. A total of 72 active 

ligands were selected based on appropriate inhibition of GABA uptake (Appendix 1). As the 

structure of the compounds could not be found in any database, they were manually sketched 

in Maestro using 2D sketch (version 2016-3).  

A total of 3849 decoys were generated by using the 72 active ligands as references and 

retrieved from DUD.E (http://dude.docking.org/generate). The decoys were downloaded as 

SMILES and converted into 2D structures by the ICM software and then imported to Maestro.  

 

 

3.4 Ligand-based virtual screening 
 

3.4.1 Clustering of active ligands  

All the 72 active ligands were imported into Canvas to perform structural similarity 

clustering. In this study the Hierarchical clustering method with the radial fingerprint type 

was used to cluster the active ligands. Hierarchical clustering is a method that cluster up to 

5000 compounds based on their structural similarity and present them in a dendrogram. The 

dendrogram has three methods for clustering the compounds. The compounds can be 

clustered by the number of clusters, by the Kelly criterion or by the merging distances.   

The 72 active compounds were clustered into five groups based on Kelley criterion with some 

manual modifications. The Kelly criterion is a measure that finds the most adequate specific 

clustering numbers for the input compounds. The similarity matrix based on the chosen 

fingerprint was performed to calculate and appraise the selected radial fingerprint.  

 

 

3.4.2 Calculation of model fingerprints 
Linear, Radial, Dendritic and MOLPRINT2D fingerprints were generated with the purpose of 

selecting the most appropriate for this particular set of ligands (40). The active ligands and 

decoys for each cluster were imported to Canvas and the four fingerprint types were 

calculated by using binary fingerprints from of known structures of all five clustered. The 

modal fingerprints were used to calculate average fingerprints of active ligands, which collect 

information from several query molecules into a single fingerprint (40). Active ligands in 

each cluster were used to create modal fingerprints for all five clusters.  
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3.4.3 Determination of screening cut-off values 

Modal fingerprints for each of the five clusters of known compounds were calculated to 

screen the generated decoys. Canvas has 24 different indices to calculate similarity between 

the modal fingerprints and the structures in the active ligands and decoys, but in this study 

only Tanimoto similarity metrics was used. The structures of active binders and decoys for 

each cluster were sorted by their similarity to the modal fingerprints. Those with the highest 

similar value (max binder) to the modal fingerprints were sorted at the top and those with the 

lower value (min binder) were sorted below. The cut-off values (minimum binder values) are 

the minimum similarity to the modal fingerprints of the active ligands.  

 

 

3.4.4 Screening of ENAMINE database  
The 294 995 compounds of the ENAMINE database advanced collection were downloaded, 

and the modal fingerprints calculated for the active ligands were used to screen the 

compounds. The cut-off value (min binder) from active ligands for each fingerprint types and 

cluster were used to select ENAMINE structures that were above or equal to the cut-off 

values. All structures that had a value above or equal to the cut-off were exported and 

collected. The procedure comprised duplicate compounds that were removed.  

 

 

3.5 Homology modeling 

The 3D structure of GAT-3 has not been resolved. Homology modelling was used to 

construct 3D models of human GAT-3 based on the resolved X-ray crystal structures of 

drosophilia DAT (dDAT) and human SERT (hSERT) for later use in the discovery of putative 

new GAT-3 inhibitors.  

 

 

3.5.1 Template identification  
Available X-ray crystal structures of dDAT and hSERT were downloaded from the PDB 

database (http://www.rcsb.org/pdb/home/home.do). Today there are several X-ray crystal 

structures of dDAT, but only the four dDAT (4XP4, 4XP9, 4XPA, 4XNU and 4XNX) with 

highest resolution were selected. We were mainly interested in inhibitor induced template for 
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our screening. However, the dDAT complex with a substrate having highest resolution was 

included.  

Only two of the available hSERT structures (PDB ID: 5I6X and 5I73) were selected for this 

study. 5I6X was the one with the highest resolution, while the 5I73 crystal structure was 

selected as a template because it has ligands co-crystallized both in the orthosteric and 

allosteric binding site.  

 

 
Table 3: X-ray crystal structures that were utilized as the templates in homology modeling of GAT-3.  

PDB Receptor Ligand Resolution      

(Å) 

Binding site 

occupied by  

ligand 

4XP4 dDAT Cocain (inhibitor) 2.8 Orthosteric 

4XP9 dDAT D-amephetamine (Substrate) 2.8 Orthosteric 

4XPA dDAT 3.4dichlorophenethylamine 

(Substrate) 

2.95 Orthosteric 

4XNU dDAT Nisoxetine (NRI*) 2.98 Orthosteric 

4XNX dDAT Reboxetine ( NRI*) 3.0 Orthosteric 

5I6X hSERT Paroxetine (SSRI*) 3.14 Orthosteric 

5I73 hSERT Citalopram (SSRI*) 3.24 Orthosteric & 

allosteric 

NRI*: Norepinephrine reuptake inhibitor, SSRI*: Selective serotonin reuptake inhibitor 

 

 

 

3.5.2 Target-template Alignment  
The complete amino acid sequence of GAT1, GAT2, GAT3 and BGT-1 were obtained from 

the UniProt databse (www.uniprot.ord) with accession numbers: P30531, Q9NSD5, P48066 

and P48065, respectively. GAT-3 with P48066 Uniprot accession number was used as the 

query protein (target). The amino acid sequence of the four GATs was aligned with the 

template sequences by using the multiple sequence alignment in Maestro (version 2016-3).  
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3.5.3 Building the model 

GAT-3 homology models were built based on the obtained alignment of the GATs and crystal 

structure (PDB ids) 4XP4, 4XP9, 4XPA, 4XNU, 4XNX, 5I6X and 5I73. The models were 

built by using the knowledge-based method of the Maestro software (version 2016-3), that use 

segments from known PDB structures for closing the alignment gaps. The ions present in the 

different template were included in the models. 5I73 was the only template with both an 

allosteric and an orthosteric binding site.  

 

 

3.5.4 Evaluation of models 
The constructed homology models were evaluated using the SAVES metaserver. The 

programs PROCHECK, ERRAT and Verify_3D were used to validate the models. 

PROCHECK is a program that evaluates the stereochemical quality of the protein structures 

and the residue geometry. The result of PROCHECK analysis may be represented on a 

graphical Ramachandran plot that shows the backbone dihedral angles phi (Ψ) and psi (Φ) of 

the structure and amino acids in allowed and disallowed regions. ERRAT calculates the non-

bonded interactions between different atom types. Verify_3D evaluates the compatibility of 

the 3D structure with own amino acid sequence (1D) and comparing the result of the model 

with a good quality model (SAVES; http://nihserver.mbi.ucla.edu/SAVES/).  
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3.6 Structure-based virtual screening  
 

3.6.1 Active ligands and decoys preparation  

The active ligands and the generated decoys were prepared by using LigPrep before the 

docking procedure in Maestro. Despite chemically correct input structures, the geometry of 

the compounds may not be correct, and in addition to protonation states need attention. 

LipPrep was used to adjust the geometry by minimize the energy with correct chiralities of 

ligands and decoys (42). In this study, ligands and decoys were ionized at pH of 7.2 +/- 0.2 to 

conform the physiological conditions, and at most 1 stereoisomer per ligand.  

 

 

 

3.6.2 Semi-flexible docking  
Before docking calculations, the Receptor Grid Generation in maestro was used to define 

binding sites in the homology models. The Receptor Grid Generation has several options and 

the van der Waals radius scaling factor was set to 1.0 and partial charge cutoff 0.25 was used 

to avoid close contacts of atoms. The co-crystallized ligand of the template was used to 

specify the binding site in the homology models generated based on the template. In this 

study, the grid box was selected around the ligand in each model with an inner box of 10 Å 

and an outer box of 25 Å. The calculated receptor grids (grid maps) for each target were used 

to dock the prepared 72 active binders and 3849 decoys.   

 

 

 

3.6.3 Induced fit docking  
In a standard docking calculation the ligands are flexible and the target homology model rigid 

(semi-flexible docking). Protein structures have side-chain or backbone motion and are very 

flexible in nature, but with rigid binding sites in the docking process, this flexibility is not 

taken into account. Induced fit docking (IFD) treats the ligand as flexible and also include 

flexibility of the amino acids in the binding pocket of the target. A strategy is therefore to do 

an initial semi-flexible docking followed by IFD that optimize the receptor conformation in 

the presence of a ligand. Before starting the IFD process, the protein structures were 
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preparaed using the Protein Preparation Wizard in Maestro. Hydrogen bond were optimized, 

and the proteins were minimized in terms of energy.   

 

The binding site for each model was defined by selecting all the residues within 4 Å sphere 

radius around the ligand, using the ligand co-crystallized with the template as a reference. For 

each cluster the ligand with highest binding affinity from ligand binding studies, and the 

ligand which obtained the highest docking score from the initial semi-flexible glide docking 

were selected for the IFD, giving altogether 13 complexes for IFD. After IFD, the binding site 

of the 13 complexes was defined by the active ligand that was used in IFD to re-dock the 

active ligands and decoys into receptor obtained by IFD.  

 

 

 

3.6.4 Evaluation of homology models with BEDROC  

BEDROC was used to evaluate the homology models ability to distinguish between active 

compounds and decoys on a graphical illustration. The BEDROC calculation was first 

performed with a semi-flexible docking protocol, but the BEDROC score was so low that 

models had to be improved with IFD protocol in maestro (version 2016-3) before selection of 

models for use in the virtual screening. BEDROC calculations were also performed after re-

docking into the conformations from IFD (Figure 10 and 11).  

 

 

 

3.6.5 Docking the compounds obtained by the ligand based approach  
The models with the best BEDROC score were selected for virtual screening of the 

compounds obtained by the ligand-based approach. The selected models that included the 

orthosteric binding site were generated from the following template; 4XPA, 4XP4, and 5I73, 

while the selected model of the allosteric binding site that was generated from the 5I73 

template. LigPrep was used to prepare the 2151 compounds (obtained by ligand-based 

screening) from ENAMINE in the same manner as active ligands and decoys. At most ten 

stereoisomers were generated giving a total of 5876 ligands for docking. The virtual screening 

workflow has three different docking stages: high thoroughput virtual screening (HTVS), 

standard precision (SP) and extra precision (XP). HTVS is the fastest screening method and 

can be used for a very large numbers of compounds. SP docking has more conformational 
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arrangements than HTVS docking and is used for screening of a large number of compounds 

with unknown quality. XP is the slowest, but a powerful method with more strict procedures 

and many scoring functions (43).  

 

The 5876 compounds were used as a source of ligands for docking into the orthosteric 

binding site of 4XPA, 4XP4 and 5I73 based models, and the allosteric binding site of the 5I73 

based model. For each model grids for the receptor had to be specified to be able to dock the 

5876 compounds. All the three docking stages were used in this study. The first stage was 

HTVS docking, the second was SP docking and the last was XP docking. In each docking 

stages 100% of best compounds where kept after docking.  

 

After virtual screening, the 100 compounds with highest docking score in each model were 

clustered into ten clusters by calculation their radial fingerprints. The compound with the best 

docking score in each model was also selected for IFD to optimize the interactions. The 

chosen compounds were prepared by using the Protein Preparation Wizard before IFD was 

performed.  
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4 RESULTS 
 

4.1 Ligand-based virtual screening 

 

4.1.1 Clustering of active ligands 

Hierarchical clustering with 2D fingerprints were used to cluster 72 active GAT-3 binders 

retrieved from the scientific literature (Appendix 1) and 3849 property matched compounds 

that were used as decoys. The 72 active compounds used as reference ligands consisted both 

of substrates and inhibitors. In addition, it is also reasonable to belive that some of them bind 

solely to the orthosteric site and others to the allosteric site, while some may bind to both 

sites. However, most probably most of them are orthosteric binders. Four types of fingerprints 

(Linear, Radial, Dendritic, MOLPRINT2D) were calculated for the active ligands and decoys. 

However, the Radial fingerprints and application of the Kelly criterion were used to cluster 

the 72 active ligands and the 3849 decoys into five clusters: cluster 1, cluster 2, cluster 3, 

cluster 4 and cluster 5 (Table 4). Most of the active ligands were in cluster 2 and only three 

compounds were in cluster 5. These three active ligands were outliers with different structures 

that did not fit with any of the other clusters and therefore they were clustered together 

manually. 
 

	
Table 4:	Five clusters of  active ligands. The 72 active ligands and their 3849 property matched decoys 
clustered into five groups by radial fingerprints. One representative active ligand from each cluster is shown.	

   Reference active ligands 
  Cluster 1 Cluster 2 Cluster3 Cluster 4 Cluster 5 

Structures 

  
  

 
# active 
ligands 

21 32 9 7 3 

# decoys 1100 1699 550 350 150 
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In addition the Tanimoto similarity metrics of the 72 active ligands were calculated to 

examined the similarity between the five clusters. The Tanimoto similarity metrics values 

ranges between 0 and 1, where 0 means most dissimilar compounds, while 1 means most 

similar compounds, but it does not mean that the compounds are identical. Some of the active 

ligands have R and S enantiomers that are classified as similar to each other, but otherwise 

none of the active binders were identical to each other. 

 

 

 

4.1.2 Determination of screening cut-off values 
The modal values of the four fingerprint types were calculated for each cluster of compounds 

and are shown in Table 5. These modal values (screening cut-off values) were used to 

perform the 2D-fingerprint screening in the ENAMINE database. Each cluster and fingerprint 

type had cut-off value (min binder). Table 5 shows that only three decoys in cluster 2 had 

values (Dendritic fingerprint) above the min value for active (three false positives). 
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Table 5: Determination of screening cut-off values for the 2D fingerprints: min - the minimum fingerprint 

value within the particular cluster, max - the maximum fingerprint value within the particular cluster and 

numbers of decoys (# decoys) that are above the cut-off value for each fingerprint type. 

                                                                                        Fingerprint type 

Reference ligand group Value Linear Radial Dendritic MOLPRINT2D 

Cluster 1 Max active 

Min active 

Max decoys 

# decoys 

0.193 

0.095 

0.041 

   0 

0.108 

0.064 

0.035 

   0 

0.233 

0.157 

0.073 

   0 

0.198 

0.136 

0.056 

   0 
Cluster 2 Max active 

Min active 

Max decoys 

# decoys 

0.284 

0.046 

0.041 

   0 

0.098 

0.040 

0.028 

   0 

0.271 

0.071 

0.091 

   3 

0.235 

0.096 

0.092 

   0 
Cluster 3 Max active 

Min active 

Max decoys 

# decoys 

0.598 

0.171 

0.135 

   0 

0.310 

0.172 

0.135 

   0 

0.493 

0.155 

0.117 

    0 

0.310 

0.207 

0.029 

   0 
Cluster 4 Max active 

Min active 

Max decoys 

# decoys 

0.374 

0.144 

0.071 

   0 

0.261 

0.148 

0.071 

   0 

0.400 

0.148 

0.068 

   0 

0.273 

0.182 

0.048 

   0 
Cluster 5 Max active 

Min active 

Max decoys 

# decoys 

0.366 

0.350 

0.062 

   0 

0.480 

0.293 

0.081 

   0 

0.492 

0.258 

0.108 

   0 

0.522 

0.348 

0.100 

   0 

 

 

 

4.1.3 Screening of ENAMINE database 

The modal fingerprints values (Table 5) were used for screening of the ENAMINE database, 

selecting compounds with fingerprint values above the min value of the active compounds. A 

subset of the ENAMINE database consisting of 294 995 drug like compounds were screened. 

Cluster 2 was the cluster with the highest number of identified compounds in the ENAMINE 

database. 1840 compounds had Dendritic fingerprint above the min value of cluster 2, while 

no compounds of the screened dataset had fingerprint values above the min value of cluster 5. 

Dendritic fingerprints gave the highest number of hits compared to the others. After removing 

of duplicates, a total 2151 compounds were identified by the ligand-based approach (Table 6). 
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This corresponds to 0.73% of the screened ENAMINE dataset of compounds. These 

compounds were than used for the structure-based virtual screening. 

	
	
	
Table 6: Number of hits from the ligand-based screening. The cut-off values for each fingerprint type (min 

active in Table 5) were used to identify compounds with higher or equal value in the dataset. The sum of hit 

compounds was reduced because the duplicates were removed.  

Reference ligand group  Fingerprint type Fingerprint threshold Number of compounds 

 

Cluster 1 Linear 

Radial 

Dendritic 

Molprint2D 
 

0.095 

0.064 

0.157 

0.136 

9 

2 

14 

10 

Cluster 2 Linear 

Radial 

Dendritic 

Molprint2D 
 

0.046 

0.040 

0.071 

0.096 

354 

0 

1840 

154 

Cluster 3 Linear 

Radial 

Dendritic 

Molprint2D 
 

0.171 

0.172 

0.155 

0.207 

74 

0 

173 

0 

Cluster 4 Linear 

Radial 

Dendritic 

Molprint2D 
 

0.144 

0.148 

0.148 

0.182 

11 

0 

21 

0 

Cluster 5 Linear 

Radial 

Dendritic 

Molprint2D 

0.350 

0.293 

0.258 

0.348 

0 

0 

0 

0 

 

SUM (non-redundant)   2662 (2151) 
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4.2 Homology modeling 

Homology modeling was used to build seven 3D models of the target GAT-3 using the 

resolved crystal structures of dDAT (PDB ID: 4XP4, 4XP9, 4XPA, 4XNU, 4XNX) and 

hSERT (PDB ID: 5I6X, 5I73) as templates. In addition to the target (GAT-3) and the 

template, the sequences of GAT-1, GAT-2 and BGT-1 were also included in the multiple 

sequence alignments used for building the models (Figure 7 and 8). Multiple sequence 

alignments were performed, and the amino acid sequence identity between the template and 

the different targets were calculated. The sequence identities with GAT-3 were 40% for 

dDAT (4XP4, 4XP9, 4XPA, 4XNU, 4XNX) and 38% for hSERT (5I6X and 5I73). All the 

build models had characteristic the SLC6 transporters including the 12 TMs with extracellular 

and intracellular loops. The extracellular loop between TM3 and TM4 and the intracellular N- 

and C-terminals had N-linked glycosylation sites. 
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Figure 7: Homology model of 5I73-based model with orthosteric binding site (purple) and allosteric 

binding site (orange) defined by the co-crystallized ligand of the template. The extracellular side is up in the 

figure.    
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Figure 8: Multiple sequence alignment of GAT-3, GAT-1, GAT-2 and BGT-1 and dDAT (4XP4). The dark 

green color indicates identical residues. The red cylinders are a-helices, the blue arrows are b-sheets and the 

black box is a disulphide bond in the structure of the template. 
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Figure 9: Multiple sequence alignment of GAT-3, GAT-1, GAT-2 and BGT-1 and hSERT (5I73). The dark 

green color indicates identical residues, the red cylinders are a-helices, and the black box is a disulphide bond in 

the structure of the template. 
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The stereochemistry and geometry of the homology models were evaluated by PROCHECK, 

ERRAT and Vertify (Table 7). The PROCHECK results were presented by Ramachandran 

plots that shows the amount (%) of residues in most favoured, additionally allowed, 

generously allowed and disallowed regions. According to PROCHECK, a model with over 

90% of amino acid in the most favoured regions is a model with good quality. 4XP4, 4XP9, 

4XPA, 4XNX based models had more than 90% of the amino acid in the most favoured 

regions and 4XNU, 5I6X, 5I73 had less than 90% in most favoured regions, but the 5I73-

based model was close to the acceptable value. Based on these results, we can conclude that 

4XP4, 4XP9, 4XPA, 4XNX, 5I73- based models were satisfactory quality models. 
 

The ERRAT program was also used for quality check. A model with an ERRAT value higher 

than 50 is consider to be a high quality model (44). The higher the score of ERRA is, the 

better is the quality of the model and all the models had an ERRAT score above 70.2, which 

are better than the acceptable range. The table also shows the Verify_3D value of all models. 

Except for 5I73-based models, at least 80% of the amino acids had an average 3D-1D score > 

0.2. 

 

 
 

Table 7: Homology model evaluation. The table shows a summary of the Ramachandran plot statistics and the 

ERRAT, and Vertify_3D values in percent for all the homology models that were build in this study. 

Homology Models PROCHECK ERRAT Vertify_3D 

 
Most 

favored 

regions 

Additionally 

allowed 

regions 

Generously 

allowed 

regions 

Disallowed 

regions 
  

4XP4-based model 92% 6.1%, 1.5%, 0.4% 76.1 87.4% 

4XP9-based model 92.3% 6.7% 0.4% 0.6% 85.4 85.0% 

4XPA-based model 91.8% 6.5% 1.1% 0.6% 85.7 88.1% 

4XNU-based model 88.6% 10.1% 0.8% 0.4% 82.0 85.2% 

4XNX-based model 92.7% 6.5% 0.2% 0.6% - 88.5% 

5I6X-based model 88.8% 8.6% 1.5% 1.1% 75.0 83.03% 

5I73-based model 89.5% 9.1% 0.6% 0.8% 76.0 79.0% 

- The program ERRAT score was not obtained.  
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4.3 Structure-based virtual screening 
 

4.3.1 Semi-flexible docking 
The seven homology models were evaluated by docking the library 72 active binders and the 

3849 property matched decoys. The active ligands were clustered into five structural cluster 

during the LBVS, and the same ligand clustering was used in the docking evaluation of the 

models in order to select models for SBVS. The binding site of the models was identifed by 

using the ligand in the co-crystallized complex with the template to define the binding pocket. 

The initial docking of the library gave bad BEDROC values, and 12 complexes were 

therefore selected for IFD (Table 8). These complexes were four 4XPA-based complexes, 

three 4XP4-based complexes, one 4XP9- based complex, and one 5I73-based with ligands in 

the orthosteric sites, and three 5I73-based complexes with ligands in the allosteric sites. 
 

From each cluster, the complex with highest docking score and the complex with the ligand 

with highest experimental detected activity (Appendix 1) were selected. The selected 4XPA-

based model, 4XP4-based model, the orthosteric 5I73-based model, the allosteric 5I73-based 

model and 4XP9-based model were able to dock respectively 36, 71, 65, 72 and 46 of the 

active ligands. In cluster 2, the complex with the ligand NNC05-0341 in the allosteric site was 

included for IFD since the complex had the best docking score in the allosteric site of that 

cluster and the model was able to dock all the 72 active ligands in the allosteric site.  In 

cluster 4, GABA was the ligand with the highest experimental activity and had the highest 

docking score in 5I73 orthosteric model. The allosteric site of this model was therefore also 

further tested with GABA. The docking indicated that GABA has higher score in the 

orthosteric binding site than in the allosteric, but quite low docking score in both. The 

complexes selected from cluster 1 had the highest ligand docking score of all. 
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Table 8: Complexes selected for IFD. From each cluster, the complex with highest docking score and the 

complex with the ligand with highest experimental detected activity were selected. However, only one complex 

with cluster 5 compounds in the orthosteric site was selected. Uptake inhibition corresponds 50% inhibition of 

substrate transport. 

Ligand 
cluster 

Model Active ligand Docking 
score 

Uptake 
inhibition 
(µm) 

Reference 

Cluster 1 4XPA-based model 
 

4XPA-based model 

Compound 16 
 

Compound 20 

-8.97 
 

-8.45 

15 
 
6 

(14) 
 

(14) 
Cluster 2 4XP4-based model 

 
4XP4-based model 

 
5I73 allosteric-based 

model-I 

(R)-5d 
 

DDPM-1457 
 

NNC05-0341 

-7.99 
 

-5.81 
 

-7.56 

11.2 
 

5.87* 
 

2.8** 

(45) 
 

(46) 
 

(47) 

Cluster 3 4XPA-based model 
 

4XPA-based model 

(R)-nipecotic-acid 
 

(R)-Isoserine 

-6.44 
 

-6.41 

14 
 

4.3 

(48) 
 

(48) 
Cluster 4 

 
4XP9-based model 

 
5I73 orthosteric-based 

model 
 

5I73 allosteric-based 
model 

Beta_alanine 
 

GABA 
 
 

GABA 

-5.73 
 

-4.70 
 
 

-4.02 

12 
 

1.4 
 
 

1.4 

(48) 
 

(14) 
 
 

(14) 

Cluster 5 4XP4-based model 
 

5I73 allosteric – based 
model 

Clomipramine 
 

Compound18 

-6.84 
 

-5.42 

40.2 
 

8.5 

(49) 
 

(50) 

* pIC50: Logarithmic half maximal inhibitory concentration.  
** Ki: Binding affinity constant  
 
 
4.3.2 Induced fit docking scores 

The IFD was performed for complexes selected based docking score (the complex with 

highest score in each cluster) from the initial semi-flexible docking and the complex with the 

most active ligand (best experimental value). The IFD optimize the binding site and ligand 

interactions of the selected complex, and generates additional conformations of the binding 

site. The IFD improved the docking score of most of the selected ligands. The active ligands 

in cluster 2 had the highest docking score and the selected cluster 4 ligands had the lowest 

docking score after IFD. The docking score of Beta-alanine was lower after performing IFD 

than before, while the docking score of GABA in 5I73-allosteric did not improve much 
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during IFD. The active ligand Compound 18 in cluster 5 did not fit into the orthosteric 

binding site in the initial semi-flexible docking, but after IFD the ligand was re-docked and 

obtained the highest docking score of all the ligands in that clusters (Table 9). That complex 

was therefore further evaluated, and the model conformation was used in re-docking of the 

active and decoys.  

 
 

Table 9: Docking score and IFD score after IFD of the selected complexes. IFD generates new models that 

were used for docking. For five clusters with each one active ligand with high binding affinity from ligand 

binding studies, and one binder which obtained high docking score from the initial semi-flexible glide docking 

with the selected models. Uptake inhibition corresponds 50% inhibition of substrate transport. 

*pIC50: Logarithmic half maximal inhibitory concentration.  
** Ki: Binding affinity constant  
 

Ligand 
cluster 

Model Active ligand Docking 
score 

IFD  
score 

Uptake 
inhibition 

(µM) 

Cluster 1 4XPA-based model-I 
 

4XPA-based model-II 

Compound 16 
 

Compound 20 

-10.38 
 

-10.36 

-998.82 
 

-997.67 

15 
 
6 

Cluster 2 4XP4-based model-I 
 

4XP4-based model-II 
 

5I73 allosteric-based 
model-I 

(R)-5d 
 

DDPM-1457 
 

NNC05-0341 

-12.06 
 

-12.08 
 

-9.48 

-1004.75 
 

-10005.16 
 

-879.23 

11.2 
 

5.87* 
 

2.8** 

Cluster 3 4XPA-based model-III 
 

4XPA-based model-IV 

(R)-nipecotic-acid 
 

(R)-Isoserine 

-8.15 
 

-6.18 

-994.32 
 

-988.90 

14 
 

4.3 
Cluster 4 

 
4XP9-based model-I 

 
5I73 orthosteric-based 

model-I 
 

5I73 allosteric-based 
model-II 

Beta-alanine 
 

GABA 
 
 

GABA 

-4.64 
 

-6.01 
 
 

-4.68 
 

-990.92 
 

-860.27 
 

 
-859.01 

 

12 
 

1.4 
 
 

1.4 

Cluster 5 4XP4-based model-III  
 
5I73 allosteric – based 

model-III 
 

5I73 orthosteric–based 
model-II 

 

Clomipramine 
 

Compound18 
 
 

Compound18 
 

8.71 
 

-8.56 
 
 

-12.36 
 

-996.94 
 

-943.32 
 
 

-944.34 
 

40.2 
 

8.5 
 
 

8.5 
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4.3.3 Semi-flexible docking of active ligands into receptor obtained by IFD 

After IFD, the selected models were evaluated based on docking of all the 72 active ligands 

and 3849 property matched decoys by using the ligand in the IFD complexes in each cluster 

to define the binding pocket of the model (Table 10). Good performing models should select 

the known binders in front of the decoys.  The selected models based on cluster 2 and cluster 

5 ligands were able to dock 71-72 active ligands, while the 4XPA-based model-III in cluster 3 

was able to dock only 29 active ligands (Table 10). Cluster 2 had ligands with highest 

docking score and cluster 4 had active ligands with the lowest docking score. Figure 12-15 

shows active ligands with the highest docking score for 4XPA-based model, 4XP4-based 

model, 5I73 allosteric-based model and 5I73 orthosteric-based model. The BEDROC scores 

for all models in each cluster were calculated and the models with the best BEDROC score 

were selected for docking the ENAMINE compounds.  
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Table 10: The docking evaluation of the models from Table 9. The table shows the docking score of the 

compounds from table 8 and 9 with their experimental uptake inhibition, and the number of active docked to the 

particular GAT-3 conformation and the experimental uptake inhibition. 

Cluster Model Active ligand Docking 
score 

#Ligands 
docked 

Uptake 
inhibition 

(µM) 
Cluster 1 4XPA-based model-I 

 
4XPA-based model-II 

Compound 16 
 

Compound 20 

-10.43 
 

-9.74 

38 
 

38 

15 
 

6 
Cluster 2 4XP4-based model-I 

 
4XP4-based model-II 

 
5I73 allosteric-based 

model-I  

(R)-5d 
 

DDPM-1457 
 

NNC05-0341 

-13.15 
 

-10.97 
 

-9.44 

72 
 

72 
 

71 

11.2 
 

5.87* 
 

2.8** 

Cluster 3 4XPA-based model-III 
 

4XPA-based model-IV 

(R)-nipecotic-acid 
 

(R)-Isoserine 

-7.83 
 

-5.59 

29 
 

48 

14 
 

4.3 
Cluster 4 

 
4XP9- based model-I 

 
5I73 orthosteric-based 

model-I 
 

5I73 allosteric-based 
model-II 

Beta-alanine 
 

GABA 
 
 

GABA 

-4.52 
 

-6.11 
 
 

-4.34 

48 
 

45 
 
 

67 

12 
 

1.4 
 
 

1.4 

Cluster 5 4XP4-based model-III 
 

5I73 orthosteric–based 
model-II 

 
5I73 allosteric – based 

model-III 

Clomipramine 
 

Compound18 
 
 

Compound18 

-8.75 
 

-11.52 
 
 

-8.72 

71 
 

72 
 
 

72 

40.2 
 

8.5 
 
 

8.5 

* pIC50: Logarithmic half maximal inhibitory concentration.  
** Ki: Binding affinity constant  
 
 
 
 
4.3.4 Evaluation of the models, BEDROC scores  
BEDROC were performed to evaluate the ability of the models to separate between active 

ligands and the decoys. The BEDROC was first calculated for the initial semi-flexible 

docking (results not shown) and then for the finally selected models (Table 11). The 

BEDROC values are between 1 and 0, where 1 indicates best performance to separate 

between the active ligands and decoys and 0 indicates that the model do not separate decoys 

from active ligands. The BEDROC value was calculated with α=20, that weights the first ~ 

8% of the screen results. The 5I73 orthosteric–based model was the best model with 

BEDROC value of 0.995, which mean that the model had better distinguishing properties 
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between active and decoys than the other models. The 4XPA-based model-IV had the lowest 

BEDROC score. Based on this evaluation, models were selected for the structure-based 

screening of the 2151 hits from the ligand-based approach that were prepared by Ligprep, and 

most ten stereoisomers of each were included giving a total of 5876 compounds for screening. 
 

 

Table 11: BEDROC score of models after IFD. Four were finally selected for the structure based virtual 

screening for the 5876 compounds obtained by ligand-based screening. 

Cluster Model BEDROC score 
(α=20) 

Cluster 1 4XPA-based model-I 
 

4XPA-based model-II 

0.261 
 

0.216 
Cluster 2 4XP4-based model-I 

 
4XP4-based model-II 

 
5I73 allosteric-based model-I 

0.368 
 

0.369 
 

0.116 
Cluster 3 4XPA-based model-III 

 
4XPA-based model-IV 

0.175 
 

0.047 
Cluster 4 4XP9- based model-I 

 
5I73 orthosteric-based model-I 

 
5I73 allosteric-based model-II 

0.084 
 

0.095 
0.054 

Cluster 5 4XP4-based model-III 
 

5I73 orthosteric–based model-II 
 

5I73 allosteric – based model-III 

0.147 
 

0.995 
 

0.049 
 

Four final models were selected based on best BEDROC score and docking score to perform 

virtual screening of the 5876 ENAMINE compounds. These four models were selected: the 

4XPA-based model-I, 4XP4-based model-I, 5I73 allosteric-based model-I and 5I73 

orthosteric–based model-II. The 5I73 allosteric-based model-I from cluster 2 docking was 

selected as a model to represent the allosteric binding site although the BEDROC score was 

low, which may reflect that most of the known binders presumably are othosteric binders. 
 

The BEDROC scores of the four final models were presented as enrichment plots (Figure 10 

and 11). The Enrichment plot shows the sensitivity rate in Y-axis, specificity in X-axis, a 

black diagonal line and blue area. The sensitivity rate indicate the active ligands as true 
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binding ligands (true positive), the specificity indicate the decoys as true binding compounds 

(false positive), the black diagonal line indicate random results and the blue area indicate 

compounds that were docked into the model. 

 

 

 
Figure 10: Enrichment plot of 4XPA-based model-I (left) and 4XP4-based model-I (right). Both are dDAT-

based models but 4XP4-based model have higher BEDROC score, which mean that the model have better 

distinguishing properties between active and decoys than 4XPA-based model. 

 

 
Figure 11: Enrichment plot of 5I73 allosteric-based model-I (left) and 5I73 orthosteric-based model-II 

(right). Both are hSERT based models, but 5I73 orthosteric-based model have higher BEDROC score, which 

mean that the model have better distinguishing properties between active and decoys than 5I73 allosteric-based 

model and also than the other models. 
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4.3.5 Docking the compounds obtained by the ligand based approach 

SBVS was performed with four selected models in order to identify compounds that may be 

GAT-3 inhibitors. These models were able to dock and created reliable ligand-receptor 

interactions for the active ligands. Of the selected models, three models were representing the 

orthosteric site (4XPA-, 4XP4- and 5I73-based model) and one model was representing the 

allosteric site (5I73-based model). Ligprep was used to prepare the 2151 compounds from 

ENAMINE database for docking. At most ten stereoisomers of each compound were 

generated, which gave a total of 5876 compounds. Negative value of docking score indicates 

good docking score, and a more negative value for the docking score represents a stronger 

binding of the ligand to the target. For each model, the 100 compounds with the best docking 

score were selected and structurally clustered into 10 structurally clusters. The clustering was 

done in order to support the identification of compounds with favourable docking score and 

structural divergence for further experimental testing (Tables 12-15). The aim was that 

selected compounds should as much as possible represent the “conformational space” of 

GAT-3 ligands. For each model, one compound from each of the 10 clusters was selected and 

compared with the 72 active reference ligands. 
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4.3.5.1 4XPA-based model-I 

The 100 compounds in 4XPA-based model had a docking score in the range of  -7.97 to -9.78 

. IFD was performed for compound Z1428205595 from cluster 7, which had the highest 

docking score of the ENAMINE compounds in the model. The IFD improved the docking 

score to -11.21. For the 4XPA-based model-I, 60 out of the 100 selected compounds were 

from cluster 7 of the 10 clusters, while cluster 1 and cluster 4 had fewest compounds. Of the 

10 clustered compounds after SBVS (Table 12), one compound (Z1315871150) was similar 

to the original cluster 1 of the 72 actives, while one compound (Z1836338785) was similar to 

initial cluster 3 compounds, while the other eight compounds were similar to cluster 2 

compounds of the 72 active compounds. 

 
 
 

Table 12: Clustering of ENAMINE compounds in 4XPA-based model-I: 100 compounds were clustered into 

10 clusters and the highest scoring ligand in each cluster is shown together with docking score 

Ligand 
Cluster 

ENAMINE 
compounds 

Structure Docking 
score 

Cluster 1 Z1315871150 

 

-8.24 

Cluster 2 Z57171798 

 

-9.62 

Cluster 3 Z57300275 

 

-8.78 
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Cluster 4 Z227830852 

 

-8.54 

Cluster 5 Z2012456444 

 

-8.80 

Cluster 6 Z1499005107 

 

-8.79 

Cluster 7 Z1428205595 

 

-9.78 

Cluster 8 Z1838185187 

 

-8.29 

Cluster 9 Z1836338785 

 

-8.04 

Cluster 10  Z286789012 

 

-8.70 
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4.3.5.2 4XP4-based model-II 

The 100 best compounds in 4XP4-based model-II had a docking scores in the range of -10.13 

to -12.00. Compound Z31336192 from cluster 5 had the best docking score and IFD was 

performed for this compound, but the docking score did not improve after IFD (reduced from 

-12.00 to -11.40). Among the 100 selected, 22 were from cluster 6 and 21 were from cluster 5. 

Cluster 8 and cluster 9 had the fewest compounds (1 compound) among the 100 compounds. 

All the 10 selected compounds were similar to initial cluster 2 of the 72 active compounds 

(Table 13). 

 
Table 13: ENAMINE compounds in 4XP4-based model-II: 100 compounds were clustered into 10 clusters 

and the best scoring ligand in each cluster is shown together with docking score.  

Ligand 
cluster 

ENAMINE 
compound 

Structure Docking 
score 

Cluster 1 Z245181750 

 

-10.90 

Cluster 2 Z1443622037 

 

-11.25 

Cluster 3 Z31371297 

 

-11.21 

Cluster 4 Z31336192 

 

-11.88 
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Cluster 5 Z31336192 

 

-12.00 

Cluster 6 Z31381824 

 

-11.28 

Cluster 7 Z225290664 

 

-10.55 

Cluster 8 Z1203859376 

 

-10.21 

Cluster 9 Z105892372 

 

-10.21 

Cluster 10 Z227830852 

 

-10.53 
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4.3.5.3 5I73 based model-I, allosteric binding site  

The 100 selected compounds from the screening with the 5I73 allosteric-based model had 

docking scores in the range of -8.64 to -10.71. Z31371528 in cluster 3 was the compound 

showing best docking score and the scoring improved to -12.08 after IFD. Of the 100 

compounds, 60 were from cluster 3, which was the cluster with the most compounds, while 

fewest compounds were from cluster 2 (1 compound), cluster 8 (1 compound) and cluster 10 

(1 compound). All of the 10 selected compounds were most similar to cluster 2 from the 

initial clustering of active compounds (Table 14). 
 

 

Table 14: ENAMINE compounds in 5I73 allosteric-based model-I: 100 compounds were clustered into 10 

clusters and the highest docking score in each cluster is shown together with docking score. 

Ligand 
cluster 

ENAMINE 
compound 

Structure Docking 
score 

Cluster 1 Z29078160 

 

-9.37 

Cluster 2 Z51885185 

 

-9.71 

Cluster 3 Z31371528 

 

-10.71 

Cluster 4 Z106741288 

 

-10.46 
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Cluster 5 Z1443622037 

 

-8.84 

Cluster 6 Z103858668 

 

-9.45 

Cluster 7 Z1748616736 

 

-9.08 

Cluster 8 Z1498356784 

 

-8.96 

Cluster 9 Z16336862 

 

-10.35 

Cluster 10 Z961016376 

 

-8.72 
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4.3.5.4 5I73 based model- II, orthosteric binding site 

The 5I73 based model-II (orthosteric binding site) had a docking scores in range of -9.17 to -

11.08 and Z103085506 from cluster 6 had the best docking score (Table 15). The docking 

score of Z103085506 was improved from -11.08 to -12.19 with IFD. Among the top 100 hits, 

24 were from cluster 6 and that was the cluster with third most compounds among the 

100.  Cluster 3 was the cluster with most compounds, with 34 out of the 100 compounds, 

while cluster 7 and cluster 8 were those with fewest compounds (1 compound each). All of 

the 10 compounds (Table 15) were similar to cluster 2 from the clustering of actives. 

 
Table 15: ENAMINE compounds in 5I73 orthosteric-based model: 100 compounds were clustered into 10 

clusters and the highest docking score in each cluster is shown together with docking score.  

Ligand 
cluster 

ENAMINE 
compound 

Structure Docking 
score 

Cluster 1 Z102451230 

 

-9.78 

Cluster 2 Z126620738 

 

-10.28 

Cluster 3 Z1608250902 

 

-10.06 

Cluster 4 Z168960054 

 

-9.66 
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Cluster 5 Z1499005107 

 

-9.69 

Cluster 6 Z103085506  -11.08 

Cluster 7 Z785615210  -9.17 

Cluster 8 Z56783608 

 

-9.18 

Cluster 9 Z1704011730 

 

-10.00 

Cluster 10 Z237524118 

 

-9.51 
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Figure 12:  The binding mode of ENAMINE Z1428205595 (blue carbons) and the active ligand Compound 

16 (Dark green carbons) in the binding site of 4XPA-based model-I. Hydrogen bonds interactions are 

represented in purple dashed lines and aromatic interactions in green dashed lines. Residues interactions within 

5Å sphere radius around the ligands are displayed. 

 

 
Figure 13: The binding mode of ENAMINE Z31336192 (blue carbons) and the active ligand (R)-5d (dark 

green carbons) in the binding site of 4XP4-based model-II. Hydrogen bonds interactions are represented in 

purple dashed lines and aromatic interactions in green dashed lines. Residues interactions within 5Å sphere 

radius around the ligands are displayed. 
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Figure 14: The binding mode of ENAMINE Z31371528 (blue carbons) and the active ligand NNC05-0341 

(dark green) in the binding site of 5I73 allosteric-based model-I. Hydrogen bonds interactions are 

represented in purple dashed lines and aromatic interaction in green dashed lines. Residues interactions within 

5Å sphere radius around the ligands are displayed. 

 

	
Figure 15: The binding mode of ENAMINE Z103085506 (blue carbons) and the active ligand Compound 

18 (green carbons) in the binding site of 5I73 orthosteric-based model-II. Hydrogen bonds interactions are 

represented in purple dashed lines and aromatic interactions in green dashed lines. Residues interactions within 

5Å sphere radius around the ligands are displayed. 
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5 DISCUSSION  
	
In the present project, we were aiming to predict GAT-3 inhibitors. GAT-3 inhibitors may 

target a newly discovered abnormality in AD, the increased tonic inhibition in DG of 

hippocampus as a result of elevated GABA levels. The high GABA content is released from 

astrocytes and increase the GABA content in DG cells, and enhanced tonic inhibition of DG 

(8). GAT-3 inhibitors will decrease GABA in DG cells, and have a putative therapeutic value 

in AD. GAT-3 is one of the GABA transporters that has an essential role in the reuptake of 

the neurotransmitter GABA from the synaptic cleft into glial cells (21). 

 

In general, experimental investigation of a new drug in the first stage can both be time 

consuming, and costly and requires huge resources. However, the use of computational drug 

design such as virtual screening that can screen large compound databases in a time and cost 

effective manner may reduce the time range and economical costs of the preclinical phase of 

drug development. In this study, a combination of LBVS and SBVS was performed to predict 

GAT-3 inhibitors. In the LBVS, 2D fingerprints was used for clustering of 72 active ligands 

(reference compounds) and for screening of 294 995 drug like compounds from the 

ENAMINE database. The hits from the LBVS were then used for structure-based virtual 

screening by docking the hits into selected GAT-3 homology models that could enrich the 

known 73 active ligands (Figure 6). Four homology models were selected based on BEDROC 

score and docking score of the active ligands. 
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5.1 Ligand-based virtual screening 
 

5.1.1 Clustering of active ligands 

In this study, 2D fingerprints of 72 known active ligands were used to predict new putative 

GAT-3 inhibitors. The selected 72 active GAT-3 binders and were clustered into five different 

groups based on their structural similarities. Generally, each molecule has unique set 

characteristics of physicochemical and biological properties. It is more uncomplicated to find 

information about structural molecules of compounds than their biological activities. 

Clustering of compounds that share mutual properties can help us to identify and understand 

groups of compounds with structural similarities that are assumed to share common biological 

activity without testing all of them. The principle with clustering of compounds is also to 

minimize searching of compounds with undisclosed biologically activity, but we also should 

take into account that slight structural change of a compound can lead to huge changes in their 

biological activities (35). 

 

There are many fingerprint types that can be used to cluster compounds. In this investigation, 

the radial fingerprint type as based of the Kelly criterion was used, which gave an ideal 

number of clusters of the input compounds. Before choosing the radial fingerprint, all the 

fingerprint types were tested to find the type which was best suitable for the 72 active ligands 

in this study. When other fingerprint types were chosen, the 72 active ligands were divided 

into several clusters and some of the clusters with quite a few compounds. The radial 

fingerprint type gave less number of clusters and several compounds in each cluster, and the 

merging distance was greater than of the other fingerprint types. In addition, the similarity 

matrix showed that the active ligands were not wrongly clustered. Cluster 5 was a cluster with 

only three compounds (Table 4). These three active ligands were outliers with different 

structural and physicochemical properties and were not similar to the other clusters. 

 

 

5.1.2 Use of known active ligands in searching for GAT-3 inhibitors 
Choosing the wrong fingerprint type can affect the result of a study. Previous studies have 

investigated 2D virtual screening in Canvas by using different fingerprint types and similarity 

metrics to find the most appropriate fingerprint. These studies concluded that MOLPRINT2D 

is the best to use when you are uncertain about the correct fingerprint type for your set of 
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ligands (36, 37). These studies also suggested that none of the fingerprint types is ideal for all 

the active compounds and they recommended using several fingerprint types for the set of 

ligands (36, 37). In this study Linear, Dendritic, Radial and MOLPRINT2D fingerprint types 

were used to screening the active ligands against decoys and the to determine cut-off values 

for the ENAMINE compounds. From Table 6 we can see that dendritic fingerprint gave a 

higher number of hits than the others. Most of the active compounds were clustered in cluster 

2 and that may be the reason for that the hits from the screening of ENAMINE was most 

similar to cluster 2. Cluster 5 contained only three compounds with different structures and 

this may be the reason that compounds similar to cluster 5 were not identified in the 

screening. The ADMET-filtering was not performed for 2151 screened compounds (Table 6), 

because all of them were from ENAMINE and therefore within the rule of five for CNS drugs 

(Table 1). 

The use of known ligand structures in the LBVS approach will increase the hit rate, but it is of 

course a possibility that the hits will be too similar to the compounds already known for 

target. 

 

 
 

5.2 Homology modeling 

The 3D structure of GAT-3 is unknown and homology modelling was used to build 3D 

models of this target. Most often X-ray structures are used in SBVS approaches, but the 

homology models are often sufficient for SBVS (51). Due to the protein folding, it is not 

possible to determine the entire 3D structure of a protein based on the primary or secondary 

structure, and thus virtual screening has to relay on homology models using experimentally 

determined structures as templates when the structure is unknown. X-ray crystallography is 

the most widely used technique, and in this study X-ray structures of dDAT and hSERT X-ray 

were used as templates. GAT-3 is a GABA transporter that belongs to the SLC6 family of 

transporters (21). dDAT and hSERT also belong to the SLC6 family and therefore they were 

used as templates to build the homology models. The amino acid sequence of GABA 

transporters; GAT-1, GAT-2 and BGT-1 were also included in multiple alignments to 

increase accuracy of the homology models. Both dDAT and hSERT based models have a 

typical SLC6 structures. 
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The sequence identity between the target and template were calculated. The sequence identity 

of GAT-3 with dDAT was 40% and 38% with hSERT. Studies have concluded that the 

quality of the obtaiined model depend on high sequence identity between the target and 

template. An acceptable sequence identity for highly reliable models is believed to be more 

than 30%. Amino acid sequence identity below 20% can cause some problems such as gaps in 

the alignment, but due to high conservation of important regions, still quite reliable models 

may be constructed (33). The sequence identities of GAT-3 with dDAT and hSERT indicate 

high quality models. The homology models were also evaluated by PROCHECK, ERRAT 

and Vertify (Table 7). The evaluation results also indicate that we have high quality 

homology models, and that the models may be used to study GAT-3 ligand binding 

interactions. 

 

 

 

5.3 Structure-based virtual screening 
 

5.3.1 Evaluation of the selected final models, BEDROC score 

The selected models were evaluated based on docking score and BEDROC score. The 

BEDROC score was calculated for each selected model to see if the model is able to 

distinguish between active GAT-3 ligands and decoys. The active ligands that were used as a 

reference were substrates or inhibitors and they all were clustered into five groups based on 

their structural similarity (from LBVS). In addition, we do not know for all of them if they are 

allosteric or orthosteric (or both) and that can affect our results. But, we assume most of them 

are orthosteric binders, and therefore we also calculated the BEDROC and included that as an 

evaluation of our models. The generated decoys of the active ligands have the same 

physiochemical properties, but structurally different from the active ligands and they are 

assumed to be non-binders. 

 

The active ligands in this study had quite different molecular structures, some of them were 

quite large molecules (cluster 2 and 5) and some of them were quite small molecules (cluster 

1, 3 and 4). The final four selected models had BEDROC score from 0.116 to 0.995 (Figures 

10 and 11). Not all the active ligands could be docket into all selected models and this may be 
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because of the size of the defined binding pocket. However, all active ligands could be 

enriched by one or more of the selected models. Some of the models were quite specific for a 

particular cluster. Tables 10 and 11 show that the models that were able to dock all the active 

ligands had higher BEDROC score than the others. The 4XPA-based model-I was able to 

dock only 38 of active ligands and the binding site of the model was defined by Compound 16 

from cluster 1. The model was able only to dock active ligands from cluster 1, cluster 3 and 

cluster 4 and which are quite small molecules. If the binding site of this model was defined by 

a large active ligand then the model most probably also could dock some or all of the other 

active ligands, but also the non-binders (decoys). The 4XP4-based model-I and 5I73 

orthosteric-based model-II was able to dock all the 72 active ligands and the binding site was 

defined by active ligand ((R)-5d and Compound18) from cluster 2 and cluster 5, which is 

large molecular structures, but 5I73 orthosteric had higher BEDROC score. The 5I73 

allosteric-based model-I model from cluster 2 was able to dock almost all the active ligands 

except Compound 18, which was too large to fit into the binding site. The binding site of the 

model was defined by the active ligand (NNC05-0341) that is a large molecule from cluster 2, 

but the model had the lower BEDROC score than the four selected models. This may be 

because of the large defined binding pocket of the model, but this was not surprising, since 

most of the active ligands most probably are orthosteric binders. The larger the binding site, 

the more active ligands the model will adopt, but it will also be easier for non-binders 

(decoys) to be docked into the model. If the models had a closed binding site, larger active 

ligands would not be fit into the binding site. Studies have shown that the binding pockets of 

this type of transporters are quite open. Therefore, in our theoretical studies it may be difficult 

to distinguish between binders and non-binders and that can lead to many false positives 

result (51). The disadvantage of BEDROC metric is that is does not have power to check if 

the defined binding pocket is optimal or not, and the metrics is also not capable for a binding 

site with only few docked active ligands, the binding site of the model should be able to have 

at least 50 known active ligands. A high BEDROC score is automatically considered as a 

good model, but it may be a good model even if the BEDROC is quite bad. 
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5.3.2 Docking the compounds obtained by the ligand based approach 

The better the fit of the ligand is to the binding pocket, the better is the affinity of the ligand 

to the target and the ligand may be a good drug candidate. We assume that similar molecules 

have similar interaction partners in the target. From the LBVS we found that 2151 screened 

compounds have quite similar structure to the active ligands. After Ligprep the number of 

compounds increased to 5876 that were docket into the selected homology models. 10 

compounds from each model were studied more in detail (Tables 12-15). The problem with 

SBVS is that you may get many false positives that are not binders, because the model is not 

in a condition to distinguish between binders and non-binders. Thus, we can use the 

knowledge about the structure of known binders to obtain a structurally more narrow library 

prior to the docking by using a ligand based approach. Most probably that will reduce the 

number of false positives.  The binding poses of the models were defined by the structure of 

active ligands, and thus were adopted to the structure of the active ligands. When it comes to 

docking score, none of the ENAMINE compounds had higher docking score than known 

compound. However the models were not trained for the ENAMINE compounds, and IFD of 

the ENAMINE compounds would most probable improve their scoring values. 

 

It is essential to identify the residue interactions in the binding sites to know how well a 

ligand binds to the intended molecular target. We assumed that good binders must bind in the 

same manner as the known binders, but we also have to take into account that the binding 

sites of the constructed homology models are optimized for the known active ligands and not 

for the hit compounds, and we also need to have the difference in compound size in mind. 

 

 

The 10 selected hit compounds in 4XPA-based model-I were large molecules (Table 12). In 

4XPA-based model-I, only small active ligands from cluster 1, 3 and 4 were able to dock. The 

4XPA-based model-I was the only model among the four final models that selected 

ENAMINE compounds similar to the initial clusters 1, 2 and 3. The active ligands from 

cluster 1 were small molecules and the selected ENAMINE compound Z1315871150 (cluster 

1) is much larger than the active ligands of cluster 1 (Appendix 1). The active ligands of 

cluster 3 are mainly substrates and quite small molecules (Appendix 1), and that is reflected in 

that quite small ENAMINE compounds also were selected. A representative is Z1836338785 

(ENAMINE) with a structure corresponding to the initial cluster 3. Eight of the selected 

ENAMINE compounds for this model corresponded to the initial cluster 2. However, in 
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Figure 13 the docking pose of the selected ENAMINE compound Z1428205595 is compared 

with the known active Compound 16 (cluster1), since Compound 16 was the active with best 

scoring in the 4XPA-based model-I. The Figure indicates that their binding mode is quite 

similar. Figure 12 show that the ENAMINE compound is much larger than Compound 16, but 

both compounds formed H-bond with residue Ser309, although they have different size and 

belong to different cluster groups. In addition, Compound 16 formed H-bond with residue 

Gly71 and Ile67, while Z1428205595 formed H-bond with Trp74. 

 

 

The 10 selected ENAMINE compounds in 4XP4-based model-II (Table 13) were similar to 

the initial cluster 2. The docking pose of the selected Z31336192 ENAMINE compound 

(cluster 5) with the best docking score in 4XPA-based model-II was compared with the active 

ligand (R)-5d, from cluster 2. Figure 13 shows that Z31336192 is smaller than (R)-5d, but 

both compounds have similar H-bonds and aromatic interactions with the binding site. 

Compound Z31336192 and (R)-5d both have H-bonding interaction with residue Gly71 and 

aromatic interaction with residue Tyr147. In addition, Z31336192 has H-bonding interaction 

with Glh66, while (R)-5d has H-bond interaction with Ser410. 

 

 

All the 10 selected ENAMINE compounds in 5I73 allosteric-based model-I (Table 14) were 

corresponded to the initial cluster 2. The binding mode of the selected Z31371528 ENAMINE 

compound (cluster 3) and the active ligand NNC05-0341 (cluster 2) with the highest docking 

scores was compared (Figure 14). Z31371528 is smaller than NNC05-0341, but both formed 

aromatic interaction with Arg75. In addition, Z31371528 formed H-bonding with Gly71, 

while NNC05-0341 formed a H-bond with Arg75 and Asp467. 

 

The 10 selected ENAMINE compounds in 5I73 orthosteric-based model-II (Table 15) were 

similar to the initial cluster 2. The docking pose of the selected Z103085506 ENAMINE 

compound (cluster 6) and the active ligand Compound 18 from cluster 5 of the clustering of 

actives were compared (Figure 15). Compound 18 were the compound with the best docking 

score in the model. Both compounds formed aromatic interaction with Tyr147, in spite of that 

Z103085506 was not similar to the initial cluster 5. Z103085506 also formed H-bonding 

interactions with Gly71 and Ile67, while Compound 18 formed a H-bond with Asp467.  
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Z103085506 had more favourable interactions with the model than the known active 

compound. 

 

 

The comparisons of the compounds shows that all selected ENAMINE compounds bind in the 

same area as the known binders, but because of different compound size and not optimized 

binding site of the ENAMINE compounds there are differences in the binding interactions. 

Some compounds had quite similar interactions in spite of that they did not correspond to the 

same initial structural cluster. According to the comparision of known active ligands and the 

selected ENAMINE compounds, the residues that may be most important at the orthosteric 

binding site are Ser309, Gly71 and Tyr147, while Arg75 seems most important at the 

allosteric site (Figures 12-15). We also need to take into accunt that this comparison was only 

based on four known active ligands and the four ENAMINE compounds with high docking 

score. But other active ligands (Table 10) and the 40 hit compounds (Tables 12-15) also have 

other similar beneficial H-bonding interactions with Phe308, Arg75 and Asp467 in the 

orthosteric site and Gly71 and Phe308 in the allosteric site (results not shown). However, 

there are no available mutagenesis data showing the importance of GAT-3 amino acids for 

ligand binding. The present study may be used to design site directed mutagenesis studies 

identifying important amino acids for ligand binding. 
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6 CONCLUSION 
Homology modeling was used to build seven 3D models of GAT-3 based on dDAT and 

hSERT. The evaluations indicate that the models were of high quality and four of them were 

selected for SBVS based on the BEDROC score. LBVS and SBVS methods were used to 

identify 40 hit compounds with high docking score. A general problem with computational 

screening is that the results depend on the geometry/nature of the binding site and the ligands. 

An open binding site may adopt several false positive hits and not distinguish between binders 

and not binders. Based on the screening we have identified putative hits from the ENAMINE 

dataset (Table 12-15) that need to be tested experimentally in order to check if they are GAT-

3 inhibitors. 
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7 FUTURE DIRECTIONS  
In this study, only docking and scoring and molecular mechanics were used to assist in the 

selection of compounds, which often is the first step in drug discovery and development 

process. We have identified 40 hit compounds and the next step is to identify lead 

compounds. The 40 hit compounds should be evaluate by experimental methods, to confirm if 

the hit compounds have the binding affinity to the target as demonstrated in this study. The 40 

hit compounds have drug-like properties and to develop a drug from lead compounds the 

affinity of the leads must be improved without hampering the ADMET properties of the leads 

from the ENAMINE database. The studied hit compounds were treated as semi-rigid in the 

binding site by the selected models that are were trained for the known active ligands. By 

performing IFD with the hit compounds, the interactions between the hits and the target could 

be improved, and that may support future selection for experimental verification. 

 

 

 

 



	 65	

8 REFERENCE 
 
1. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s 
disease. Therapeutic Advances in Neurological Disorders. 2013;6(1):19-33. 
 
2. Rees G. World Alzheimer Report 2016 [Internet] London: Alzheimer’s Disease 
International (ADI); 2016 [2016 Sep 05]. Available from: 
https://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf. 
 
3. Zhagn L, Li Z. [Alzheimer and the discovery of Alzheimer's disease]. Zhonghua yi shi 
za zhi (Beijing, China : 1980). 2014;44(5):288-90. 
 
4. Alzheimer's Disease Fact Sheet USA: The National Institute on Aging at the National 
Institutes of Health (NIH); 2016 [updated 2016 Aug 16. Available from: 
https://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-fact-sheet - changes. 
 
5. H.P.Rang JMR, R.J.Flower,G.Henderson. Rang&Dale’s Pharmacology. 8th ed: 
Elseveier Churchill Livingstone; 2016. p. 487-9. 
 
6. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. 
Lancet (London, England). 2011;377(9770):1019-31. 
 
7. Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological 
strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. British 
journal of clinical pharmacology. 2012;73(4):504-17. 
 
8. Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-
term potentiation and memory in an Alzheimer's [corrected] disease model. Nature 
communications. 2014;5:4159. 
 
9. Pardridge WM. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. 
NeuroRx. 2005;2(1):3-14. 
 
10. Pajouhesh H, Lenz GR. Medicinal Chemical Properties of Successful Central Nervous 
System Drugs. NeuroRx. 2005;2(4):541-53. 
 
11. Richard W. Olsen G-DL. Chapter 18-GABA: Academic Press; 2012 [Scott T. Brady, 
George J. Siegel, R. Wayne Albers and Donald L. Price:[Available from: 
http://www.sciencedirect.com/science/article/pii/B9780123749475000183. 
 
12. Broer S, Gether U. The solute carrier 6 family of transporters. British journal of 
pharmacology. 2012;167(2):256-78. 
 
13. Hack S, Worlein B, Hofner G, Pabel J, Wanner KT. Development of imidazole 
alkanoic acids as mGAT3 selective GABA uptake inhibitors. European journal of medicinal 
chemistry. 2011;46(5):1483-98. 
 



	 66	

14. Damgaard M, Al-Khawaja A, Vogensen SB, Jurik A, Sijm M, Lie ME, et al. 
Identification of the First Highly Subtype-Selective Inhibitor of Human GABA Transporter 
GAT3. ACS chemical neuroscience. 2015;6(9):1591-9. 
 
15. Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White 
HS. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. Journal 
of neurochemistry. 2009;109 Suppl 1:139-44. 
 
16. Kowalczyk P, Kulig K. GABA system as a target for new drugs. Current medicinal 
chemistry. 2014;21(28):3294-309. 
 
17. Broer S. The SLC6 orphans are forming a family of amino acid transporters. 
Neurochemistry international. 2006;48(6-7):559-67. 
 
18. Nelson N. The family of Na+/Cl- neurotransmitter transporters. Journal of 
neurochemistry. 1998;71(5):1785-803. 
 
19. Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based 
alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the 
use of the LeuT structure to probe NSS structure and function. Molecular pharmacology. 
2006;70(5):1630-42. 
 
20. Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and 
chloride-dependent neurotransmitter transporter family SLC6. Pflugers Archiv : European 
journal of physiology. 2004;447(5):519-31. 
 
21. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. 
SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacological 
reviews. 2011;63(3):585-640. 
 
22. Gabrielsen M, Ravna AW, Kristiansen K, Sylte I. Substrate binding and translocation 
of the serotonin transporter studied by docking and molecular dynamics simulations. Journal 
of molecular modeling. 2012;18(3):1073-85. 
 
23. Rudnick G. Bioenergetics of neurotransmitter transport. Journal of bioenergetics and 
biomembranes. 1998;30(2):173-85. 
 
24. Nakada K, Yoshikawa M, Ide S, Suemasa A, Kawamura S, Kobayashi T, et al. 
Cyclopropane-based conformational restriction of GABA by a stereochemical diversity-
oriented strategy: identification of an efficient lead for potent inhibitors of GABA transports. 
Bioorganic & medicinal chemistry. 2013;21(17):4938-50. 
 
25. Jin X-T, Galvan A, Wichmann T, Smith Y. Localization and Function of GABA 
Transporters GAT-1 and GAT-3 in the Basal Ganglia. 2011;5(63):10. 
 
26. Kim DU, Kim MK, Cho YW, Kim YS, Kim WJ, Lee MG, et al. Association of a 
synonymous GAT3 polymorphism with antiepileptic drug pharmacoresistance. Journal of 
human genetics. 2011;56(9):640-6. 
 



	 67	

27. Patrick GL. An introduction to medicinal chemistry. 5th ed. United Kingdom: Oxford 
university press; 2013. 
 
28. Gabrielsen M. Structure, function and inhibition of the serotonin transporter studied by 
molecular docking,-dynamics and virtual screening Tromsø: University of Tromsø.Faculty of 
health sciences deprartment of medical biology 2011 [Available from: 
http://munin.uit.no/bitstream/handle/10037/6403/thesis.pdf?sequence=6&isAllowed=y. 
 
29. Gabrielsen M. Structure, function and inhibition of the serotonin transporter studied by 
molecular docking, -dynamics and virtual screening Tromsø University of Tromsø 2011. 
 
30. Lindert S, Maslennikov I, Chiu E, Pierce LC, McCammon JA, Choe S. Drug screening 
strategy for human membrane proteins: from NMR protein backbone structure to in silica- 
and NMR-screened hits. Biochem Biophys Res Commun. 2014;445(4):724-33. 
 
31. Carpenter EP, Beis K, Cameron AD, Iwata S. Overcoming the challenges of 
membrane protein crystallography. Current opinion in structural biology. 2008;18(5):581-6. 
 
32. Breda A, Valadares NF, Souza ONd, Garratt RC. Chapter A06 Protein Structure, 
Modelling and Applications: National Center for Biotechnology Information (US); 2008. 
 
33. Ravna AW, Sylte I. Homology modeling of transporter proteins (carriers and ion 
channels). Methods in molecular biology (Clifton, NJ). 2012;857:281-99. 
 
34. Willett P. Similarity-based virtual screening using 2D fingerprints. Drug discovery 
today. 2006;11(23-24):1046-53. 
 
35. László A Zahoránszky GYK, Péter Hári, András Málnási-Csizmadia, Katharina A 
Zweig, and Gergely Zahoránszky-Köhalmi. Breaking the hierarchy - a new cluster selection 
mechanism for hierarchical clustering methods. Algorithms Mol Biol. 2009. 
 
36. Duan J, Dixon SL, Lowrie JF, Sherman W. Analysis and comparison of 2D 
fingerprints: insights into database screening performance using eight fingerprint methods. 
Journal of molecular graphics & modelling. 2010;29(2):157-70. 
 
37. Sastry M, Lowrie JF, Dixon SL, Sherman W. Large-scale systematic analysis of 2D 
fingerprint methods and parameters to improve virtual screening enrichments. Journal of 
chemical information and modeling. 2010;50(5):771-84. 
 
38. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and 
structure-based drug design strategies. Molecules (Basel, Switzerland). 2015;20(7):13384-
421. 
 
39. Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for 
protein-ligand docking: recent advances and future directions. Physical chemistry chemical 
physics : PCCP. 2010;12(40):12899-908. 
 
40. Canvas, version 2.4,  Schrödinger, LLC,. New York, NY 2012. 



	 68	

41. RCBS PDB. About the PDB Archive and the RCSB PDB RCBS PDB [cited 2017 Nov 
28]. Available from: 
http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/index.html  
 
42. LigPrep, version 2.3, Schrödinger, LLC. New York, NY, 2009. 
 
43.  Glide, version 5.5, Schrödinger, LLC,. New York, NY 2009. 
 
44. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of 
protein structure coordinates. Proteins. 1992;12(4):345-64. 
 
45. Fulep GH, Hoesl CE, Hofner G, Wanner KT. New highly potent GABA uptake 
inhibitors selective for GAT-1 and GAT-3 derived from (R)- and (S)-proline and homologous 
pyrrolidine-2-alkanoic acids. European journal of medicinal chemistry. 2006;41(7):809-24. 
 
46. Sitka I, Allmendinger L, Fulep G, Hofner G, Wanner KT. Synthesis of N-substituted 
acyclic beta-amino acids and their investigation as GABA uptake inhibitors. European journal 
of medicinal chemistry. 2013;65:487-99. 
 
47. Thomsen C, Sorensen PO, Egebjerg J. 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-
methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II 
GABA-transporter. British journal of pharmacology. 1997;120(6):983-5. 
 
48. Kragler A, Hofner G, Wanner KT. Novel parent structures for inhibitors of the murine 
GABA transporters mGAT3 and mGAT4. European journal of pharmacology. 2005;519(1-
2):43-7. 
 
49. Gerile, Sogawa C, Ohyama K, Masuko T, Kusama T, Morita K, et al. Inhibitory action 
of antidepressants on mouse Betaine/GABA transporter (BGT1) heterologously expressed in 
cell cultures. International journal of molecular sciences. 2012;13(3):2578-89. 
 
50. Salat K, Wieckowska A, Wieckowski K, Hofner GC, Kaminski J, Wanner KT, et al. 
Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacological 
reports : PR. 2012;64(4):817-33. 
 
51. Gabrielsen M, Kurczab R, Siwek A, Wolak M, Ravna AW, Kristiansen K, et al. 
Identification of novel serotonin transporter compounds by virtual screening. Journal of 
chemical information and modeling. 2014;54(3):933-43. 
 
52. Dhar TG, Borden LA, Tyagarajan S, Smith KE, Branchek TA, Weinshank RL, et al. 
Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA 
uptake inhibitors: identification of a ligand with moderate affinity and selectivity for the 
cloned human GABA transporter GAT-3. Journal of medicinal chemistry. 1994;37(15):2334-
42. 
 
53. Faust MR, Hofner G, Pabel J, Wanner KT. Azetidine derivatives as novel gamma-
aminobutyric acid uptake inhibitors: synthesis, biological evaluation, and structure-activity 
relationship. European journal of medicinal chemistry. 2010;45(6):2453-66. 



	 69	

54. Schaffert ES, Hofner G, Wanner KT. Aminomethyltetrazoles as potential inhibitors of 
the gamma-aminobutyric acid transporters mGAT1-mGAT4: synthesis and biological 
evaluation. Bioorganic & medicinal chemistry. 2011;19(21):6492-504. 
 
55. Zhao X, Pabel J, Hofner GC, Wanner KT. Synthesis and biological evaluation of 4-
hydroxy-4-(4-methoxyphenyl)-substituted proline and pyrrolidin-2-ylacetic acid derivatives 
as GABA uptake inhibitors. Bioorganic & medicinal chemistry. 2013;21(2):470-84. 
 
56. Kerscher-Hack S, Renukappa-Gutke T, Hofner G, Wanner KT. Synthesis and 
biological evaluation of a series of N-alkylated imidazole alkanoic acids as mGAT3 selective 
GABA uptake inhibitors. European journal of medicinal chemistry. 2016;124:852-80. 
 
57. Vogensen SB, Jorgensen L, Madsen KK, Jurik A, Borkar N, Rosatelli E, et al. 
Structure activity relationship of selective GABA uptake inhibitors. Bioorganic & medicinal 
chemistry. 2015;23(10):2480-8. 
 
 
 



	 70	

9 APPENDIX   
	
Appendix 1: Overview of the 72 known active ligands  

Name 

 
 

Structure Uptake 

inhibition 

GAT3/GAT1 

selectivity 

ration 

Reference 

Cluster 1 
Compound 6 

 

18µM 11µM (14) 

Compound 7 

 

17µM 6.7 µM (14) 

Compound 8 

 

18µM 60µM (14) 

Compound 9 

 

16µM 11µM (14) 

Compound 10 

 

25µM 8.7µM (14) 

Compound 11 

 

55µM 4.2µM (14) 
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Compound 12 

 

22µM 17µM (14) 

Compound 13 

 

9µM 5.1µM (14) 

Compound 14 

 

10µM 8.5µM (14) 

Compound 15 

 

49µM 11µM (14) 

Compound 16 

 

15µM 16µM (14) 

Compound 17 

 

8µM 110µM (14) 

Compound 19 

 

17µM 4.8µM (14) 

Compound 20 

 

6µM 10µM (14) 

Compound 21 

 

22µM 3.5µM (14) 
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Compound 22 

 

35µM > 29µM (14) 

Compound 23 

 

24µM > 42µM (14) 

Compound 31 

 

52µM 4.8µM (14) 

Compound 32 

 

46µM 10µM (14) 

Compound 33 

 

53µM 3.5µM (14) 

Compound 34 

 

29µM > 34µM (14) 

Cluster 2 
(S)-Compound 1 

 

17µM 0.1µM (52) 

(R)-Compound 1 

 

17µM 0.1µM (52) 
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(S)-Compound 3 

 

25µM 1.7µM (52) 

(R)-Compound 3 

 

25µM 1.7µM (52) 

Compound 4 
(R)-SNAP-5114 

 

86µM 5.1µM (52) 

Compound 4 
(S)-SNAP-5114 

 

5µM 77.6µM (52) 

(S)-Compound 5 

 

20µM 7.1µM (52) 

(R)-Compound 5 

 

20µM 7.1µM (52) 

(S)-Compound 9 

 

29µM 4.2µM (52) 

(R)-Compound 9 

 

29µM 4.2µM (52) 
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(S)-Compound 10 

 

25µM 0.8µM (52) 

(R)-Compound 10 
 

 

25µM 0.8µM (52) 

Compound 12d 

 

15.3µM 76µM (53) 

Compound 18e 

 

31µM 31.3µM (53) 

SNAP-5294 

 

142µM 0.9µM (13) 

Compound 45 

 

5.09 pIC50 13.8 pIC50 (54) 

(2S,4R)-10d 

 

29.7µM 1.6µM (55) 

(2R,4S)-10d 

 

38µM 1.5µM (55) 
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(2R,4S)-9d 

 

19µM 5µM (55) 

Comp12e 

 

5.13 pIC50 0.9 pIC50 (56) 

DDPM-1457 

 

5.87 pIC50 0.7 pIC50 (46) 

(S)-3d 

 

57.7µM 2.1µM (45) 

(R)-3d 

 

18.5µM 7.7µM (45) 

(S)-4d 

 

28.7µM 1.2µM (45) 

(R)-4d 

 

3.1µM 21.9µM (45) 
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(R)-5d 

 

11.2µM 9µM (45) 

Comp9d 

 

58µM 2.8µM (57) 

NNC05-0341 

 

2.8 7.1Ki (47) 

NNC05-1965 

 

2.8 8.2Ki (47) 

NNC05-1973 

 

5.2 8.3Ki (47) 

NNC05-2045 

 

6.1 4.4Ki (47) 

NNC05-2090 

 

15 1.3Ki (47) 
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Cluster 3 
(S)-(-)4-amino-2-

hydroxybutyric-

acid 

 

20µM 0.2µM (48) 

(S)-Isoserine 

 

4.3µM 581.4µM (48) 

(R)-Isoserine 

 

4.3µM 581.4µM (48) 

(S)-2,3-diamino-

propionic-acid 

 

11µM 29.1µM (48) 

(R)-2,3-diamino-

propionic-acid 

 

11µM 29.1µM (48) 

(S)-2-amino-3-

methyl-

aminopropionic-

acid  

35µM 7.4µM (48) 

(R)-2-amino-3-

methyl-

aminopropionic-

acid  

35µM 7.4µM (48) 

(R)-nipecotic-acid 

 

14µM 0.2µM (48) 

Hypotaurine 

 

4.9µM 34.7µM (48) 
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Cluster 4 
Trans-4-

aminocrotonic-acid 

 

7.2µM 0.5µM (48) 

Cis-4-

aminocrotonic-acid 

 

9.5µM 29.5µM (48) 

ZAPA 

 

51µM 0.2µM (48) 

Beta-alanine 

 

12µM 55µM (48) 

3-guanidino-

propionic-acid 

 

3.6µM 7.2µM (48) 

IIa 

 

13.9µM > 7.2µM (24) 

GABA 

 

1.4µM 1.8µM (14) 

Cluster 5 
Compound18 

 

8.5 4.5µM (50) 

Clomipramine 

 

40.2µM 2.3µM (49) 

EGYT-3886 

 

46µM 0.6µM (52) 
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