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Abstract. This paper is devoted to giving a generalization from linear
codes to the larger class of almost affine codes of two different results.
One such result is how one can express the relative generalized Hamming
weights of a pair of codes in terms of intersection properties between the
smallest of these codes and subcodes of the largest code. The other result
tells how one can find the extended weight polynomials, expressing the
number of codewords of each possible weight, for each code in an infinite
hierarchy of extensions of a code over a given alphabet. Our tools will
be demi-matroids and matroids.
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1 Introduction

We will focus on almost affine codes as defined in [14], that is: C ⊂ Fn for some
finite alphabet F , and the projection CX has cardinality |F |s for a non-negative
integer s for each X ⊂ {1, · · · , n}. It is well known that this is a class of codes,
which contain linear codes over fields F as a proper subclass. The intermediate
class of affine codes are translates of linear codes. Another intermediate class is
that of multilinear codes. It is also well known ([14]) that C defines a matroid
MC through the rank function

r(X) = log|F | |CX |.

Such codes were studied in connection with access structures over E = {1, 2, · · · , n}
and are strongly related to ideal perfect secret sharing schemes for such access
structures. See e.g. [14].

In this note we will demonstrate how two different results for linear codes
can be generalized to find analogous results for almost affine codes in general.

First, we will recall some known results and terminology for almost affine
codes in Section 2. Then, in Section 3, we will study generalized Hamming weight
(RLDP, in the sense of [2]) of pairs C2 ⊂ C1 of almost affine codes, and we will
investigate to which extent it is possible to generalize the results in [12] and [15],



where one only treats linear codes. There one expresses these relative generalized
weights as the minimum weights of subcodes of C1 of various dimensions, inter-
secting C2 only in the zero element. In one of our two main results, Theorem 2,
we show an analogue of this result for almost affine codes. In Remark 3 we show,
however, that the situation is not completely like in the case of linear codes.

There are many applications of relative generalized Hamming weights, as
referred to in [12] and [15], for pairs of linear codes. In addition, relating to secret
sharing schemes, which is a particularly natural topic, when working with almost
affine codes, we would like to mention the significance of relative generalized
Hamming weights described in [11] and [3].

In the last chapter, Section 4, we study another aspect of the relationship
between almost affine codes and matroids. In [6], and in [5, p. 323], one points
out that for linear block codes of length n over a finite field Fq, one can produce
an infinite series of codes by extending the alphabet to Fqs , for s = 1, 2, · · · , and
nevertheless find polynomials A0, · · · , An, such that Aj(q

s) computes the num-
ber of codewords of weight j, for all s simultaneously, for each of j = 0, · · · , n.
We will show that a corresponding result holds for almost affine codes, and we
use the arguments in [7, Section 3] as a stepping stone to find weight polynomi-
als for a similar infinite series of almost affine codes Cs, all of the same block
length, but over growing alphabets F s as s grows. A main point in the linear
case is that the polynomials Aj are only dependent on the associated matroid of
C, and that we have matroids that play a completely analogous role, and that
are equally simple to handle in the general case of almost affine codes.

2 Matroids, demi-matroids and almost affine codes

In this section, we essentially recall relevant material that will be needed in the
sequel, and we do not claim to have any new results here. We refer to [13] for
the theory of matroids, to [1] for an introduction on demi-matroids and to [14]
for an introduction on almost affine codes, and we will use their notation.

2.1 Matroids and demi-matroids

A matroid is a combinatorial structure that extend the notion of linear (in)dependency.
There are many equivalent definitions, but we will give just one here.

Definition 1. A matroid is a pair M = (E, r) where E is a finite set, and r a
function on the power set of E into N satisfying the following axioms:

(R1) r(∅) = 0,
(R2) for every subset X ⊂ E and x ∈ E, r(X) 6 r(X ∪ {x}) 6 r(X) + 1,
(R3) for every X ⊂ E and x, y ∈ E, if r(X) = r(X ∪ {x}) = r(X ∪ {y}), then

r(X ∪ {x, y}) = r(X).

Demi-matroids were introduced in [1]. They are a generalization of matroids
in the following way:



Definition 2. A demi-matroid is a pair M = (E, r) where E is a finite set,
and r a function on the power set of E into N satisfying axioms (R1) and (R2)
above. The rank of M is r(E).

Matroids and demi-matroids have duals defined in the following way:

Proposition 1. Let M = (E, r) be a matroid (respectively a demi-matroid).
Then M∗ = (E, r∗) with r∗ defined as

r∗(X) = |X|+ r(E\X)− r(E)

is a matroid (respectively a demi-matroid). Moreover, (M∗)
∗

= M .

The matroid (respectively demi-matroid) M∗ is called the dual (respectively
the dual or first dual) of M . It has rank |E|−r(M). Demi-matroids have another
dual, called the supplement dual or second dual. See [1, Theorem 4]:

Proposition 2. Let M = (E, r) be a demi-matroid. Then M = (E, r) with r
defined as

r(X) = r(E)− r(E\X)

is a demi-matroid. Moreover, we have M = M and M∗ = M
∗
.

2.2 Almost affine codes

Almost affine codes were first introduced in [14], and are a combinatorial gener-
alization of affine codes.

Definition 3. An almost affine code over a finite alphabet F , of length n and
dimension k, is a subset C ⊂ Fn such that |C| = |F |k and such that for every
subset X ⊂ E = {1, · · · , n},

log|F | |CX | ∈ N,

where CX is the puncturing of C with respect to E\X.

An almost affine subcode of C is a subset D ⊂ C which is itself an almost
affine code over the same alphabet.

Remark 1. Any linear or affine code is obviously an almost affine code.

To any almost affine code C of length n and dimension k on the alphabet
F , we can associate a matroid MC on the ground set E = {1, · · · , n} and with
rank function

r(X) = log|F | |CX |,

for X ⊂ E.



Definition 4. Let C be a block code of length n, and let c ∈ C be fixed. The
c-support of any codeword w is

Supp(w, c) = {i, ci 6= wi}.

The c-support of C is

Supp(C, c) =
⋃

w∈C
Supp(w, c).

Note that the c-support of an almost affine code is independent of the choice
of c ∈ C (see [8, Lemma 1]), and it will therefore be denoted by Supp(C) without
reference to any codeword. This observation gives rise to:

Definition 5. The weight of an almost code C is w(C) = |Supp(C)|.

Definition 6. Let C be an almost affine code of length n, and let c ∈ Fn be
fixed. Then

C(X, c) = {w ∈ C,wX = cX},
where cX is the projection of w to X. Such a subcode of C is called a standard
subcode.

This might be empty, or not be an almost affine code, but when we take
c ∈ C, we get the following ([14, Corollary 1]):

Proposition 3. Let C be an almost affine code of length n and dimension k
over the alphabet F . Let c ∈ C. Let X ⊂ {1, · · · , n}. Then C(X, c) is an almost
affine subcode of C. Its asscociated matroid MC(X,c) is the contracted matroid
MC/X with rank function ρ given by

ρ(Y ) = r(X ∪ Y )− r(X)

where r is the rank function of the matroid MC . In particular,

|C(X, c)| = |F |k−r(X).

Remark 2. Not all subcodes of C are of the form C(X, c), i.e. not all subcodes
are standard subcodes.

Corollary 1. Every almost affine code C of dimension k has almost affine sub-
codes of dimension 0 6 i 6 k.

2.3 Generalized Hamming weights

For a demi-matroid D = (E, r) of rank n− k we define:

Definition 7. The generalized Hamming weights for a demi-matroid of dimen-
sion k are

mi(D) = min{|X|, n(X) = |X| − r(X) = i}
for 1 6 i 6 k.



Definition 8. The generalized Hamming weights for an almost affine code C of
dimension k are

di(C) = mi(M
∗
C) = min{|X|, |X| − r∗(X) = r(X) = i}

for 1 6 i 6 k, where r∗ is the rank function of M∗C , and r is the rank function
of MC .

In fact the following was proved in [9]:

Theorem 1. Let C be an almost affine code of length n and dimension k on
an alphabet F of cardinality q, and let c ∈ C. Then the generalized Hamming
weights for C are

di(C) = min{|Supp(D)|, D is an almost affine subcode of dim. i of C} =

min{|Supp(D)|, D is a standard subcode of dim. i of C} =

n−max{|X|, |C(X, c)| = qj},
for 1 6 i 6 k.

3 Equivalent formulations of some Hamming weights of
pairs of codes

From [10] we have:

Proposition 4. Let C2 ⊂ C1 be two almost affine codes with rank functions r2
and r1. Then the pair (E, ρ) is a demi-matroid, for ρ = r1 − r2.

Definition 9. For 0 6 i 6 dimC1 − dimC2, we define the RLDP (Relative
Length/Dimension Profile), or relative generalized Hamming weight, of the pair
(C1, C2) as follows:

mi = min{|X|, ρ(X) = i}.

We observe that if C2 = 0, this is the di associated to C1.
For linear codes the most usual way in the literature (see e.g. [12]) to express

the mi is perhaps as

min{|X||dim(C1(E\X, 0)− dim(C2(E\X, 0) > i}.

It is easy to see that our Definition 9 above of the mi gives the same values
for linear codes. In [12, Lemma 1], and [15, Prop. 2], however, one gives an
alternative, and less trivial reformulation of the mi for linear codes. This is as:

min{w(D), |D ∩ C2| = 1, D ⊂ C1 is a linear subcode with dimD = i}.

Another, similar variant is given in [15, Prop.4]. We will now investigate the
possibility of a reformulation of the mi in analogous ways, not only for linear
codes, but for almost affine codes in full generality. Our result is given in the
theorem below:



Theorem 2. Let C2 ⊂ C1 be a pair of almost affine codes with associated demi-
matroid (E, ρ). Then for 0 6 i 6 dimC1 − dimC2,

mi = min{w(D), |D∩C2| = 1, D ⊂ C1 is a standard subcode with dimD = i}.

Proof. Let bi be the right hand side of the above equality. We fix v ∈ C2. All the
standard subcodes, and all supports, considered in this proof, are with respect
to v, and we omit its reference in the rest of the proof. For simplicity, denote
kj = dimCj and rj = rCj

for j = 1, 2.
Let X ⊂ E be such that |X| = mi and ρ(X) = i, that is

k1 − r1(E\X)− k2 + r2(E\X) = i

or equivalently
dimC1(E\X)− dimC2(E\X) = i.

We have the obvious inclusions

Supp(C2(E\X)) ⊂ Supp(C1(E\X)) ⊂ X.

We claim that the second inclusion is actually an equality. Indeed, if not, let
y ∈ X\Supp(C1(E\X)) and consider Y = X\{y}. Then, for j = 1, 2, if w ∈
Cj(E\X), wy = vy since y is not in the support, and in turn, the natural
inclusions

Cj(E\Y ) ⊂ Cj(E\X)

are equalities. This contradicts the minimality of X since Y also satisfies ρ(Y ) =
ρ(X) = i.

Let Z ⊂ E\X be a maximal independent subset of E\X for the matroid
MC2

, that is
|Z| = r2(Z) = r2(E\X).

Let Z ′ ⊂ X be such that Z ∪ Z ′ is a basis of MC2 . Obviously, we have

r2(Z ′) = |Z ′| = k2 − |Z| = k2 − r2(E\X).

Let W = X − Z. Note that Z ∪ Z ′ ⊂ E\W . Then

C2 ∩ C1(E\W ) = {v}.

Namely,
v ∈ C2 ∩ C1(E\W ) = C2(E\W )

and
dimC2(E\W ) = k2 − r2(E\W ) = 0.

Moreover, we have

r1(E\W ) > r1(E\X) + |Z ′|
6 k1 − k2 + r2(E\X)− i+ k2 − r2(E\X)

6 k1 − i



that is,
dimC1(E\W ) > i.

Take now any standard subcode of C1(E\W ) of dimension i. Then of course we
have

v ∈ D ∩ C2 ⊂ C1(E\W ) ∩ C2 = {v}

and
Supp(D) ⊂ Supp(C1(E\W )) ⊂ Supp(C1(E\X)) = X,

which implies that
bi 6 Supp(D) 6 |X| = mi.

For the converse, let Y ⊂ E be such that |C1(Y )∩C2| = 1. Then C1(Y )∩C2 =
{v}. Assume that w(C1(Y )) = bi and dimC1(Y ) = i. Let Y ′ = E\Supp(C1(Y )).
Obviously, Y ⊂ Y ′. Let w ∈ C1(Y ). For any y ∈ Y ′, y 6∈ Supp(C1(Y )) so that
wy = vy, and in turn w ∈ C1(Y ′). Hence, the natural inclusion C1(Y ′) ⊂ C1(Y )
is actually an equality.

Let X = E − Y ′. Then we have

|X| = |E\Y ′| = |E\(E\Supp(C1(Y ))| = |Supp(C1(Y ))| = bi

and
C2(E\X) = C2(Y ′) = C2 ∩ C1(Y ′) = C2 ∩ C1(Y ) = {v},

which implies that

dimC1(E\X)− dimC2(E\X) = dimC1(Y ′)− 0 = dimC1(Y ) = i

and finally
mi 6 |X| = bi.

3.1 An open question concerning subcodes

Remark 3. Let

b′i = min{w(D), |D ∩ C2| = 1, D ⊂ C1 is a subcode with dimD = i},

that is we allow D to be any subcode, not only a standard subcode. Obviously,
for 1 6 i 6 k1 − k2, we have

mi = bi > b′i.

It is an open question whether the last inequality is an equality, and will be the
topic of further research. For linear codes, [15, Proposition 2] gives an analogous
statement with equality. On the other hand, while bi is defined just for 0 6 i 6
k1−k2 (for i > k1−k2 it is not difficult to show that any standard subcode of C1

will have a non-trivial intersection with C2), b′i might be defined for i > k1− k2.
Consider namely the following codes: let F = {0, 1, 2, 3} and C1 = F 3. Let C2

and D be the subcodes

{000, 012, 023, 031, 103, 110, 121, 132, 201, 213, 222, 230, 302, 311, 320, 333}



and

{000, 011, 022, 033, 102, 113, 120, 131, 203, 210, 221, 232, 301, 312, 323, 330}

respectively. Both subcodes have dimension 2, while C1 has dimension 3. But
we have C2 ∩D = {000} and dimD > dimC1 − dimC2 = 1. Hence b′2 is defined
(and is at most 3), while m2 and b2 could be said to be ∞ if one insists on
defining them.

4 Extended weight polynomials of almost affine codes

In [6], and in [5, p. 323], one points out that for linear block codes of length n
over a finite field Fq, one can produce an infinite series of codes by extending the
alphabet to Fqs , for s = 1, 2, · · · , and nevertheless find polynomials A0, · · · , An,
such that Aj(q

s) computes the number of codewords of weight j, for all s si-
multaneously, for each of j = 0, · · · , n. Hence knowledge of a finite number of
coefficients of the Aj compute an infinite number of weights. We will show that
a corresponding result holds for almost affine codes, and we will mimick the
arguments in [7, Section 3] to find weight polynomials for an infinite series of
almost affine codes Cs, which we will now define.

Let q = |F |, where F is the alphabet over which an almost affine code C of
block length n is defined. Then Cs is a code of block length n over the alphabet
F s, if an element ((c1,1, · · · , c1,n), · · · , (cs,1, · · · , cs,n)) instead is interpreted as:

((c1,1, · · · , cs,1), · · · , (c1,n, · · · , cs,n)). (1)

It is then automatic that |(Cs)X | = (qs)r if |CX | = qr, for some X ⊂ E =
{1, 2, · · · , n}, and natural number r. Hence Cs is an almost affine code over F s,
since C is an almost affine code over F . Moreover the matroid MCs = MC since
the rank functions are the same. Call the rank function r. Put k = r(E).

Let U ⊂ E, and let cQ be a fixed codeword in Cs. Similarly as in [7] we
define: SU (s) is the subset of Cs, viewed over F s, with the same coordinates
as cQ in the positions corresponding to U , in other words SU (s) = Cs(U, cQ).
But, since Cs is an almost affine code we see that |SU (s)| = (qs)k−r(U). In the
next definition, there is no explicit reference to the codeword cQ, since this is
independent of the word chosen.

Definition 10. For each j = 1, · · · , n let AC,j(s) be the number of codewords
of weight j in Cs.

Using the exclusion/inclusion principle we we obtain the same formula as
in [7, Formula (9) p. 638]:

AC,n(s) = (−1)n
∑
U⊂E

(−1)|U |(qs)n
∗(U).

Here n∗(Y ) = |Y | − r∗(Y ) is the nullity function associated to the dual matroid
(E, r∗) of MC .
For each X ⊂ E let aX,C(s) be the number of codewords with support exactly
X. We then obtain in a similar way:



Lemma 1.
aX,C(s) = (−1)|X|

∑
U⊂X

(−1)|U |(qs)n
∗
X(U),

where n∗X is the nullity function of the dual of the rank function associated to
the code C(E\X, cQ).

A refined study, using Proposition 3, also gives

Lemma 2. For any U ⊂ X we have: n∗X(U) = n∗(U).

Combining Lemmas 1 and 2 we then obtain an analogous formula as in [7,
p. 638], and obtain:

This gives:

Proposition 5. For each j = 0, 1, · · · , n there are polynomials

AC,j(s) = (−1)j
∑
|X|=j

∑
Y⊂X

(−1)|Y |(qs)n
∗(Y ).

counting the number over codewords of weight j in Cs.

In [7, Sections 4 and 5], one shows how this matroid expression can be expressed
by N0-graded Betti numbers of the Stanley-Reisner rings of the matroid M∗C
and its elongations, viewed as simplicial complexes via their independence sets
([7, Theorem 5.1]). From the arguments above we now see that its concequence,
[7, Corollary 5.1], formulated for linear codes in that corollary, carries over to
almost affine codes, except that the matroid M(H) appearing in [7, Corollary
5.1], must be replaced by the matroid dual M∗C . See also [7, Proposition 4.1],
which can be applied to determine the generalized Hamming weights for almost
affine codes from the degrees of the polynomials Aj(s).

We also observe:

Example 1. As one sees from Proposition 5 the formula for AC,j(s) is only de-
pendent on the polynomial (in the variable Q)

Pj(Q) = (−1)j
∑
|X|=j

∑
Y⊂X

(−1)|Y |(Q)n
∗(Y ),

which is defined for any (demi-)matroid, since it only uses its dual nullity func-
tion.

Let C be the almost affine code in [14, Example 2]. This is a code of rank 3
over the alphabet F2

3 of cardinality 9. Its length is also 9, and its well known ([14,
Example 2]) that its associated matroid MC is the non-Pappus matroid. In [4,
p. 102] one calculated the polynomials Pj(Q), for j = 0, · · · , 9 without relating
them to any code, since one knew that this matroid is not linearly representable.
The results, however, automatically carry over to determining the AC,j(s) for
the non-linear almost affine code C, and we obtain from [4, p. 102], or from
usual inclusion/exclusion methods:

AC,0(s) = 1,



AC,1(s) = AC,2(s) = AC,3(s) = AC,4(s) = AC,5(s) = 0,

AC,6(s) = 8qs − 8,

AC,7(s) = 12qs − 12,

AC,8(s) = 3q2s − 18qs + 15,

AC,9(s) = q3s − 9q2s + 28qs − 20.

q3s = |Cs|.
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