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The dynamics from nonlinear discrete age-structured population models is under consideration. Focus is on bifurcations, as well
as nonstationary and chaotic dynamics. We also explore different mechanisms which may lead to periodic phenomena. Some new
results are also presented, in particular from models where both fecundity and survival terms contain nonlinear elements.

1. Introduction

As it is well known (cf. [1–4]), simple one-dimensional
maps of biological relevance can exhibit an extraordinary
rich dynamical behaviour ranging from stable fixed points
to chaotic oscillations. The review paper [5] provides an
excellent summary of results from the papers quoted above.

However, there are several important biological factors
which are not possible to include in one-dimensionalmodels.
Therefore amore realistic approach is to apply age-structured
models. In the discrete case, such matrix models (often
referred to as Leslie matrix models) were independently
developed in the 1940s (see [6–9]), but perhaps somewhat
strange not adapted by ecologists until the 1970s (cf. [10]
for a counterexample). The papers referred to above mainly
consider linear models. In the 1970s and later, it has been
more and more common to consider nonlinear (density
dependent) terms too, as accounted for in the classical papers
[11, 12], as well as in [13–20]. Some of these papers scrutinize
the dynamics of concrete species, and others deal with
theoretical aspects exclusively.

Additionally it should be emphasized that matrix models
may serve as basic tools for related problems like migration
[21, 22], harvest [23–25], prey-predator systems [26–29],
ergodicity [30, 31], and permanence [32]. Finally, we will
also want to stress that several papers have been pub-
lished recently where continuous systems of fractional order
together with their discretizations have been analyzed and

compared from different perspectives. Excellent examples
may be obtained in [33–35]. The purpose of this paper is, by
way of examples, to give a thorough description of different
nonlinear phenomena which may occur in models quoted
above. Focus is on bifurcations and nonstationary behaviour
and parts of the content have a certain review component.

Thepaper is structured as follows: in Section 2, we present
the model and analyze equilibria and stability. In Section 3,
we provide several examples of nonstationary and chaotic
dynamics while we in the last section state some concluding
remarks.

2. The Model, Fixed Points, and Stability

First, we establish the model. At time 𝑡, we split the pop-
ulation 𝑥 into 𝑛 distinct nonoverlapping age classes 𝑥𝑡 =(𝑥1,𝑡, . . . , 𝑥𝑛,𝑡)𝑇, where 𝑥 = ∑𝑥𝑖 is the total population. Next,
we introduce the Leslie matrix

𝐴 = (𝑓1 𝑓2 ⋅ ⋅ ⋅ 𝑓𝑛𝑝1 0 ⋅ ⋅ ⋅ 00 d d 00 0 𝑝𝑛−1 0 ), (1)

where 𝑓𝑖 is the average fecundity of a member of the 𝑖th age
class at time 𝑡, while 𝑝𝑖 denotes the survival probability of age
class 𝑖. Then the relation between 𝑥 at two consecutive time

Hindawi
Discrete Dynamics in Nature and Society
Volume 2017, Article ID 1964286, 11 pages
https://doi.org/10.1155/2017/1964286

https://doi.org/10.1155/2017/1964286


2 Discrete Dynamics in Nature and Society

steps is given by the map𝑓 : R𝑛 󳨀→ R
𝑛𝑥 󳨀→ 𝐴𝑥. (2)

The rationale behind model (2) is that sexual maturity is
linked to age or that other properties than age are irrelevant;
alternatively, if such relevant properties exist, they must be
highly correlated with age.

Map (2) covers species who possess a wide range of
different life histories. Indeed, if 𝑓𝑖 > 0 for all 𝑖 ≤ 𝑛, we
say that the species has an iteroparous life history and matrix𝐴 is classified as a nonnegative and primitive matrix. On
the other hand, if 𝑓𝑖 = 0, 𝑖 < 𝑛 and 𝑓𝑛 > 0, the species
possess a semelparous life history and in this case we say that𝐴 is an irreducible but imprimitive (cyclic) matrix. It is also
customary to divide both the iteroparous and semelparous
cases into two subclasses. If 𝑛 is small and 𝑓𝑖 > 0 for all𝑖, one says that a species possesses a precocious iteroparous
life history. Typical examples of species in this subclass are
small mammals and small rodents. The delayed iteroparous
subclass is characterized by 𝑓𝑖 = 0, 𝑖 < 𝑘 (𝑘 ≈ 𝑛/2 “very
roughly”) and𝑓𝑖 > 0, 𝑘 ≤ 𝑖 ≤ 𝑛. Humans and largemammals
fall into this category. Regarding semelparity, whenever the
number of age classes 𝑛 is small, we classify the species as
having a precocious semelparous life history. Examples may
be found among annual plants, biennials, and insects. In the
last subclass, delayed semelparity, we find species who may
live for many years and then reproduce only once. Excellent
examples are cicadas and several salmon species.

If all matrix elements are constant 𝑓𝑖 = 𝐹𝑖, 𝑝𝑖 = 𝑃𝑖,
model (2) is linear (constant terms are indicated by use of
capital letters). In fishery models, it is often assumed that
the survival probabilities are constants, 𝑝𝑖 = 𝑃𝑖, while the
fecundities are density dependent. In the striped bass fishery
model [12], it was assumed that 𝑓𝑖 = 𝑓𝑖(𝑦), where 𝑦 = ∑𝛼𝑖𝑥𝑖
is a weighted sum of age classes. Assuming two age classes
only, cannibalism may be accounted for by the assumption𝑝1 = 𝑝1(𝑥2) which suggests that individuals from the second
age class prey upon members from the first age class. A
third possibility is 𝑓𝑖 = 𝑓𝑖(𝑥) or 𝑝𝑖 = 𝑝𝑖(𝑥) which means
that the elements in (1) depend on the total population 𝑥.
Two of the most frequently used fecundity functions are the
compensatory Beverton and Holt relation 𝑓𝑖(𝑥) = 𝐹𝑖(1 +𝛽𝑥)−1; see [13, 36] and the overcompensatory Ricker relation,𝑓𝑖(𝑥) = 𝐹𝑖 exp(−𝛽𝑥), first proposed by [37] and later applied
in [11, 14, 16]. Note that both fecundity functions referred
to above are members of the Deriso Schnute family 𝑓𝑖(𝑥) =𝐹𝑖(1 − 𝛾𝛽𝑥)1/𝛾 (𝛾 = −1 gives the Beverton and Holt relation
while 𝛾 → 0 results in the Ricker case). Also, observe that𝑓𝑖(𝑥) is written as a product of a constant term𝐹𝑖 and a density
dependent part, for example, exp(−𝛽𝑥). A final comment is
that 𝑓󸀠𝑖 (𝑥) ≤ 0. Hence, except for Allee effects, a wide range
of different biological scenarios may be investigated through
model (2).

Next, let us turn to the analysis. Assuming 𝑓𝑖 = 𝑓𝑖(𝑥) and
(or) 𝑝𝑖 = 𝑝𝑖(𝑥), model (2) possesses a unique nontrivial fixed
point (𝑥∗1 , . . . , 𝑥∗𝑛 ) of hyperbolic type. 𝑥∗ = 𝑥∗1 + ⋅ ⋅ ⋅ + 𝑥∗𝑛

is the total equilibrium population. Stability analysis is
performed by linearizing about the fixed point which in
turn results in an eigenvalue equation of degree 𝑛. The
fixed point is locally asymptotically stable as long as all
eigenvalues 𝜆 are located inside the unit circle in the complex
plane. Provided the number of age classes 𝑛 is small, the
Jury criteria (see the books [38, 39]) give conditions for(𝑥∗1 , . . . , 𝑥∗𝑛 ) to be stable. In cases where 𝑛 is large, the
criteria become complicated and not applicable unless in
very special situations. It may be a severe problem to decide
if all 𝜆𝑖 satisfy |𝜆𝑖| < 1 when 𝑛 is large. If we increase
a parameter (𝐹 or 𝑃) such that an eigenvalue 𝜆 leaves the
unit circle, the fixed point becomes unstable. The threshold
where (𝑥∗1 , . . . , 𝑥∗𝑛 ) loses its hyperbolicity (i.e., where |𝜆| = 1)
is termed instability or bifurcation threshold. Moreover, the
location where an eigenvalue leaves the unit circle has crucial
impact on the dynamics just beyond instability threshold.
Considering themultidimensionalmodel (2), the eigenvalues
of the linearization may leave the unit circle through 𝜆 = 1,𝜆 = −1, or 𝜆 = ± exp(𝑖𝜃), where 𝜃 = 2𝜋𝑘/𝑛, 𝑘 = 0, 1, . . . ,𝑛 − 1. If 𝜆 = 1, the general case is that the fixed point
will undergo a saddle node bifurcation at threshold. The
other possibilities are the pitchfork and the transcritical
bifurcations; for details, see [40]. 𝜆 = −1 results in a flip
or periodic doubling bifurcation. Hence, assuming that the
bifurcation is of supercritical nature, an attracting period2 orbit is established when the fixed point goes unstable.
When a pair of complex modulus 1 eigenvalues leave the
unit circle, the fixed point will go through a Neimark Sacker
(Hopf) bifurcation. Then, in the supercritical case, assuming
we are outside the strongly resonant cases where 𝜆 is third
or fourth root of unity, an invariant attracting closed curve
is established around the unstable fixed point. Bifurcations
of subcritical nature appear to be rare events in population
models like (2), but an excellent example may be obtained in
the prey-predator model discussed in [26].

3. Examples

3.1. Example 1 (The Linear Case). Suppose that 𝑓𝑖 = 𝐹𝑖, 𝑖 =1, . . . , 𝑛, and 𝑝𝑖 = 𝑃𝑖, 𝑖 = 1, . . . , 𝑛 − 1. Then (2) is a linear map
of the form

𝑥 󳨀→ 𝐴𝐼𝑥, (3)

where𝐴𝐼 is nonnegative and primitive. On the other hand, if𝑓𝑖 = 0, 𝑖 < 𝑛, 𝑓𝑛 = 𝐹𝑛, and 𝑝𝑖 = 𝑃𝑖, 𝑖 = 1, . . . , 𝑛 − 1, map (2)
becomes

𝑥 󳨀→ 𝐴𝑆𝑥, (4)

where 𝐴𝑆 is an irreducible and imprimitive (cyclic) matrix.
In order to reveal the dynamics generated by (3) and

(4), we assume in both cases solutions of the form 𝑥𝑡 =𝜆𝑡𝑤 and apply the Perron-Frobenius theorem which may be
formulated as follows.
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Figure 1: (a) Dynamics generated by map (3). (b) Dynamics generated by map (4).

Theorem 1 (Perron-Frobenius).
(1) If 𝐴 is a positive or nonnegative and primitive, then

there exists a real eigenvalue 𝜆1 > 0 which is a simple
root of the characteristic equation |𝐴 − 𝜆𝐼| = 0.
Moreover, the eigenvalue is strictly greater than the
magnitude of any other eigenvalue, 𝜆1 > |𝜆𝑖| for𝑖 ̸= 1. The eigenvector 𝑤1 corresponding to 𝜆1 is real
and strictly positive. 𝜆1 may not be the only positive
eigenvalue, but if there are others, they do not have
nonnegative eigenvectors.

(2) If𝐴 is irreducible but imprimitive (cyclic) with index of
imprimitivity 𝑑+1, there exists a real eigenvalue 𝜆1 > 0
which is a simple root of |𝐴 − 𝜆𝐼| = 0 with associated
eigenvector𝑤1 > 0. The eigenvalues 𝜆𝑖 satisfy 𝜆1 ≥ |𝜆𝑖|
for 𝑖 ̸= 1, but there are 𝑑 complex eigenvalues equal
in magnitude to 𝜆1 whose values are 𝜆1 exp(2𝑘𝜋𝑖/(𝑑 +1)), 𝑘 = 1, . . . , 𝑑.

Proofs may be obtained in [39, 41, 42].
Now, considering map (3), it follows directly from the

assumption 𝑥𝑡 = 𝜆𝑡𝑤 and part 1 of the Perron-Frobenius
theorem that 𝑥𝑡 may be expressed as𝑥𝑡 = 𝑐1𝜆𝑡1𝑤1 + 𝑐2𝜆𝑡2𝑤2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝜆𝑡𝑛𝑤𝑛. (5)

Here, 𝑐𝑖 are numbers, 𝜆1 is real and positive, 𝜆1 > |𝜆𝑖|, 𝑖 ̸=1, and the eigenvalues in (5) are numbered in order of
decreasing magnitude. Moreover,

lim
𝑡→∞

𝑥𝑡𝜆𝑡1 = 𝑐1𝑤1. (6)

Consequently, the long-term dynamics of the population is
described by the growth rate 𝜆1 and the stable population
structure 𝑤1. Thus 𝜆1 > 1 implies an exponential increasing
population and 0 ≤ 𝜆1 < 1 an exponential decreasing popula-
tion, where we in all cases have the stable age distribution𝑤1.

Turning to map (4), we find in a similar way by use of part 2
of the Perron-Frobenius theorem that

lim
𝑡→∞

𝑥𝑡𝜆𝑡1 = 𝑐1𝑤1 + 𝑛∑
𝑘=2

𝑐𝑘𝑒(2𝑘𝜋/𝑛)𝑖𝑡𝑤𝑘. (7)

Thus, opposed to the findings from (6), it now follows from
(7) that𝑤1 is not stable in the sense that an initial population
not proportional to 𝑤1 will not converge to it. Instead the
limit in (7) is periodic with period 𝑛. These are the most
important cases whenmodel (2) is linear. In Figure 1, we show
the dynamics generated by maps (3) and (4) in the cases

𝐴𝐼 = ( 1 1 20.3 0 00 0.2 0) ,
𝐴𝑆 = ( 0 0 61/2 0 00 1/3 0) , (8)

respectively.
The dominant eigenvalue (the growth rate) of 𝐴𝐼 is 𝜆 =1.3, while the stable age distribution is given by the associated

eigenvector 𝑤1 = (0.97, 0.22, 0.03)𝑇. The eigenvalues of 𝐴𝑆
are 𝜆1 = 1, 𝜆2,3 = exp(±2𝜋𝑖/3), and𝐴3𝑆 = 𝐼. Consequently, 3-
cycle behaviour and no stable age distribution is the outcome.

3.2. Example 2 (Density Dependent Fecundity). Assume 𝑓𝑖 =𝐹𝑖𝑓(𝑥), 𝑖 = 1, . . . , 𝑛, where 𝐹𝑖 is a constant larger than unity
and 𝑓󸀠(𝑥) ≤ 0, 𝑝𝑖 = 𝑃𝑖, 0 < 𝑃𝑖 < 1, 𝑖 = 1, . . . , 𝑛 − 1. Then
model (2) possesses a unique nontrivial fixed point(𝑥∗1 , . . . , 𝑥∗𝑛 ) = (𝐿1𝐾 𝑥∗, . . . , 𝐿𝑛𝐾 𝑥∗) , (9)
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where 𝐿1 = 1, 𝐿 𝑖 = 𝑃1𝑃2 ⋅ . . . ⋅ 𝑃𝑖−1, 𝐾 = ∑𝑛𝑖=1 𝐿 𝑖, and 𝑥∗ =𝑓−1(1/𝑅). 𝑓−1 denotes the inverse of the function 𝑓 and 𝑅 =∑𝑛𝑖=1 𝐿 𝑖𝐹𝑖. Following [43], the eigenvalue equationmay be cast
in the form 𝜆𝑛 − 𝑛∑

𝑖=1

𝐿 𝑖 (𝑓∗𝑖 + 𝜃) 𝜆𝑛−𝑖 = 0, (10)

where the negative parameter 𝜃 is expressed as

𝜃 = 𝑓󸀠 (𝑥∗) 𝑥∗1 𝑛∑
𝑖=1

𝐿 𝑖𝐹𝑖. (11)

Note that (10) is valid for a wide range of fecundity functions
including all members of the Deriso Schnute family.

First, assume𝑓𝑖 = 𝐹 exp (−𝑥) (the Ricker case).Then𝑥∗ =∑𝐹𝐿 𝑖 and (10) may be written as

𝜆𝑛 − 1𝑥 𝑛∑
𝑖=1

𝐹𝐿 𝑖 (1 − 𝑥∗) 𝜆𝑛−𝑖 = 0. (12)

Now, rewrite (12) as 𝑔(𝜆)+ℎ(𝜆) = 0, where 𝑔(𝜆) = 𝜆𝑛. Clearly
the equation𝑔(𝜆) = 0 has 𝑛 roots located inside the unit circle𝐶. On the boundary, we have

|ℎ (𝜆)| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨− 1𝐾 (1 − 𝑥∗) 𝑛∑
𝑖=1

𝐿 𝑖𝜆𝑛−𝑖󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿1𝐾 (1 − 𝑥∗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿𝑛𝐾 (1 − 𝑥∗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 󵄨󵄨󵄨󵄨1 − 𝑥∗󵄨󵄨󵄨󵄨
(13)

and whenever 𝑥∗ < 2, |1 − 𝑥∗| < |𝑔(𝜆)| = 1. Thus according
toRouche’s theorem, the equations𝑔(𝜆)+ℎ(𝜆) = 0 and𝑔(𝜆) =0 have the same number of zeros located inside𝐶. Hence𝑥∗ =
ln (𝐹𝐿 𝑖) < 2 guarantees a stable fixed point.

Next, assume𝑓𝑖 = 𝐹(1+𝑥)−1 (the Beverton andHolt case).
Then 𝑥∗ = (∑𝐹𝐿 𝑖) − 1 and (10) takes the form

𝜆𝑛 − 1𝐾 11 + 𝑥∗ 𝑛∑
𝑖=1

𝐿 𝑖𝜆𝑛−1 = 0. (14)

Now, by use of exactly the same kind of arguments as in the
Ricker case, we find that stability is achieved if 𝑥∗ > −2
which of course is always satisfied. Consequently, by use of
the Beverton andHolt recruitment function, the only possible
dynamics is a stable fixed point. Regarding the Ricker case,
the dynamics may be nonstationary and possibly chaotic if𝑥∗ exceeds 2. We shall now explore this further.

To this end, consider a two-dimensional version of (1) and
(2), where 𝑓1 = 𝑓2 = 𝐹 exp (−𝑥) and 𝑝𝑖 = 𝑃, that is, the map(𝑥1, 𝑥2) 󳨀→ (𝐹𝑒−𝑥𝑥1 + 𝐹𝑒−𝑥𝑥2, 𝑃𝑥1) . (15)

The fixed point is easily found to be(𝑥∗1 , 𝑥∗2 ) = ( 11 + 𝑃𝑥∗, 𝑃1 + 𝑃𝑥∗) (16)

and by use of the Jury criteria (cf. [38, 39]), it is straightfor-
ward to show that (16) is stable provided𝑥∗ < 21 + 𝑃 0 < 𝑃 < 12 , (17a)

𝑥∗ < 1 + 2𝑃𝑃 12 < 𝑃 < 1. (17b)

Assuming 0 < 𝑃 < 1/2, the fixed point fails to be hyperbolic
at the threshold 𝑥∗ = 2(1 + 𝑃)−1 or equivalently when 𝐹 =(1 + 𝑃)−1 exp(2/(1 + 𝑃)) and undergoes a supercritical flip
bifurcation as proved in [16]. Hence, just beyond threshold
an attracting period 2 orbit is established. Through further
increase of 𝑥∗ (which is done by increasing𝐹 and fixing𝑃) we
observe stable orbits of period 2𝑘, 𝑘 = 1, 2, . . . .Eventually the
dynamics becomes chaotic as displayed in Figure 2(a). Note
that the attractor is divided into 4 disjoint subsets (branches)
which are visited once every fourth iteration. In case of higher𝐹 values, these branches merge together.

Consider the latter case, 1/2 < 𝑃 < 1, (𝑥∗1 , 𝑥∗2 ) is the
only stable attractor as long as 𝑥∗ is small, but when 𝑥∗
exceeds a certain threshold𝑥𝐴which is lower than bifurcation
threshold 𝑥𝐵 given by (17b), the third iterate 𝑔 of map (15)
undergoes a saddle node bifurcation. Hence, two 3-cycles,
one stable and one unstable, are created.This may be justified
along the following line: First, note that map 𝑔 (which has 7
fixed points) may be expressed as(𝑥1, 𝑥2) 󳨀→ {𝐹𝑒−[𝐹𝑒(𝐹𝑒−𝑥𝑥+𝑃𝑥1)(𝐹𝑒−𝑥𝑥+𝑃𝑥1)+𝑃𝐹𝑒−𝑥𝑥]⋅ [𝐹𝑒−(𝐹𝑒−𝑥𝑥+𝑃𝑥1) (𝐹𝑒−𝑥𝑥 + 𝑃𝑥1) + 𝑃𝐹𝑒−𝑥𝑥] ,𝑃𝐹𝑒−(𝐹𝑒−𝑥𝑥+𝑃𝑥1) (𝐹𝑒−𝑥𝑥 + 𝑃𝑥1)} . (18)

Thenwe compute the linearization𝐷𝑔(𝑥1, 𝑥2), where (𝑥1, 𝑥2)
is a fixed point of (18) and find for fixed values of 𝑃 the value
of 𝐹 where the 3-cycle attractor disappears. Next, we use this𝐹 and substitute a corresponding fixed point (𝑥1, 𝑥2) into𝐷𝑔(𝑥1, 𝑥2) and compute the eigenvalues𝜇1 and𝜇2.The results
of such calculations are 𝜇1 ≈ 1 and 0 < 𝜇2 < 1 from which
we conclude that a saddle node bifurcation takes place. For
example, if 𝑃 = 0.9, we find 𝐹 = 10.036 which implies that𝜇1 = 1.0005 and 𝜇2 = 0.48 and consequently that threshold𝑥𝐴 may be expressed as 𝑥𝐴 = ln (10.036 ⋅ 1.9) ≈ 2.94. Thus
there exists an interval 𝑥𝐴 < 𝑥∗ < 𝑥𝐵, where there are
two stable attractors, the stable 3-cycle and the stable fixed
point (16). At 𝑥𝐵 = 𝑃−1(1 + 2𝑃) (𝑥𝐵 = 3.11 in case of𝑃 = 0.9), the fixed point experiences a supercritical Neimark
Sacker bifurcation. Consequently, just above threshold, we
find coexistence between an attracting invariant curve where
the dynamics is quasiperiodic and a stable large amplitude3-cycle. This is displayed in Figure 2(b). In Figure 2(c), we
see the behaviour of points which belong to the trapping
region of the invariant curve, and in Figure 2(d) the initial
point belongs to the trapping region of the 3-cycle. The
scenario referred to above persists in an interval 𝑥𝐵 < 𝑥∗ <𝑥𝐶. At 𝑥𝐶 (𝑥𝐶 = 3.143 when 𝑃 = 0.9), the invariant curve
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Figure 2: (a) Dynamics generated by map (15). Parameter values (𝑃, 𝐹) = (0.2, 58.5). (b) Coexisting attractors. (𝑃, 𝐹) = (0.9, 11.83). (c)
Convergence towards the invariant curve. (𝑃, 𝐹) = (0.9, 11.83) and (𝑥1,0, 𝑥2,0) = (2.0, 1.78825). (d) Convergence towards the 3-cycle. (𝑃, 𝐹) =(0.9, 11.83) and (𝑥1,0, 𝑥2,0) = (2.0, 1.78830). (e) Chaotic dynamics generated by map (15). (𝑃, 𝐹) = (0.9, 18.5).
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is hit by the branches of the unstable 3-cycle and disappears.
Therefore, whenever 𝑥∗ > 𝑥𝐶 and |𝑥∗−𝑥𝐶| is small, the stable3-cycle is the only attractor. If we continue to increase 𝑥∗ (by
increasing 𝐹), successive flip bifurcations are the outcomes,
creating orbits of period 3 ⋅ 2𝑘. Eventually the dynamics
becomes chaotic here too. This is shown in Figure 2(e).
Thus to summarize, depending on parameter values, map
(15) may generate dynamics of stunning complexity, all
generic bifurcations (saddle node, flip, and Neimark Sacker)
occur, and there are coexisting attractors as well as chaotic
dynamics.

3.3. Example 3 (Density Dependent Survival). Now suppose
density dependent survival and consider the map(𝑥1, 𝑥2) 󳨀→ (𝐹𝑥2, 𝑃 (1 − 𝛾𝛽𝑥)1/𝛾 𝑥1) . (19)

The fixed point may be expressed as(𝑥∗1 , 𝑥∗2 )= ( 𝐹1 + 𝐹 1𝛽 (1 − (𝐹𝑃)−𝛾) , 11 + 𝐹 1𝛽 (1 − (𝐹𝑃)−𝛾)) (20)

and under the assumption𝛾 > 𝛾𝐶 = − 𝐹2 (1 + 𝐹) (21)

we prove in [44] that the fixed point (20) goes through a
supercritical Neimark Sacker bifurcation at the threshold𝑃 = 1𝐹 (1 + 𝛾2 (1 + 𝐹)𝐹 )1/𝛾 . (22)

Hence, beyond threshold an attracting invariant curve is
established. We shall now describe the dynamics on such a
curve. First, observe that, on the curve,map (19) is topological
equivalent to a circle map which actually means that the map
does nothing but move or rotate points around the curve.
Following [40], associated with a circle map, there is also a
rotation number 𝜎 which in the context under consideration
here may be expressed as𝜎 = 𝑐 + 𝑏𝑑𝑎 (𝐹𝐻 − 𝐹) , (23)

where 𝑐 = arg 𝜆 and𝐹𝐻 is the𝐹-value at bifurcation threshold
(22) for a fixed value of 𝑃. 𝜎 may be irrational or rational.
In the former case, it is customary to call the orbit of a
point quasiperiodic, and by performing a sufficiently large
number of iterations the orbit will cover the entire curve as
already exemplified in Figure 2(b). If 𝜎 = 1/𝑛, the dynamic
outcome is a periodic orbit of period 𝑛. Moreover, the implicit
function theorem guarantees that if 𝜎 is rational for a value𝐹, there is also an open interval around the parameter where
the periodicity is maintained. Actually, on several occasions
we have experienced that such intervals may be large. Now,
considering (19) we find at threshold (22) that the eigenvalues
become 𝜆 = − 1𝐹 ± √1 − 1𝐹2 𝑖 (24)

and from (22) it follows that 𝐹 is “large.” Therefore, 𝜆 is
located close to the imaginary axis in the left half plane
which again implies that 𝑐 = arg 𝜆 ≈ 𝜋/2, so 𝜎 ≈ 1/4.
Consequently, just beyond threshold (22), the dynamics is
an almost 4-periodic orbit restricted to the curve. As we
continue to increase 𝐹 we find through frequency locking
an exact 4-periodic orbit. This is shown in Figure 3(a) where𝛾 = −1/10. As we continue to increase 𝐹, periodic orbits of
period 4 ⋅ 2𝑘 are created. In Figure 3(b), we display an orbit
of period 16. Eventually the dynamics becomes chaotic. In
Figure 3(c), we show a chaotic attractor but clearly there is a
tendency towards 4-periodic dynamics in the chaotic regime
as well.

Through Examples 2 and 3, we have discussed several
mechanisms which may lead to periodic dynamics, both
of even and odd periods. However, there are still more
possibilities. Indeed, in the map(𝑥1, 𝑥2) 󳨀→ (𝐹𝑥2, 𝑃𝑒−𝑥1𝑥1) , (25)

where 0 < 𝑃 ≤ 1, 𝑃𝐹 > 1,𝜆 is found to be fourth root of unity
at bifurcations threshold 𝐹 = 𝑃−1 exp(2) and in the map(𝑥1, 𝑥2) 󳨀→ (𝐹 (𝑥1 + 𝑥2) 𝑒−(𝑥1+𝑥2), 𝑥1) (26)𝜆 is the third root of unity at threshold. These cases are
referred to as the strong resonant cases. They are more
difficult to analyze since the location of eigenvalues at
threshold violates the assumptions that are necessary in order
to prove that an invariant curve beyond bifurcation threshold
is established in the Neimark Sacker case.

In short, regarding (25), there is no invariant curve
beyond threshold. The fixed point bifurcates directly to a 4-
periodic orbit with infinitesimal small amplitude. From map
(26), one finds that when the fixed point becomes unstable, a
large amplitude 3-cycle is the only attractor beyond threshold.
3.4. Example 4 (Both Density Dependent Fecundity and
Survival). In our last example, we consider a semelparous
populationmodel where we assume density dependence both
in the fecundity and in the survival terms.Hence, in the Leslie
matrix (1), we assume 𝑓𝑖 = 0, 𝑖 < 𝑛, 𝑓𝑛 = 𝐹 exp (−𝛼𝑥),
and 𝑝𝑖 = 𝑃 exp (−𝛽𝑥), 𝑖 = 1, . . . , 𝑛 − 1. 𝛼 and 𝛽 may
be regarded as parameters which measure the “strength”
of density dependence. If 𝛼 > 𝛽 the strength of density
dependence is larger in the fecundity than in the survivals.

By defining 𝑅0, 𝑎, and𝐷 as𝑅0 = 𝐹𝑃𝑛−1, 𝐹𝑃𝑛−1 > 1,𝑎 = 𝑅−1/(𝛼+(𝑛−1)𝛽)0 ,
𝐷 = 𝑛−1∑
𝑖=0

(𝑃𝑎𝛽)𝑖 , (27)

we may express the total equilibrium population as𝑥∗ = 1𝛼 + ∑𝑛−1𝑖=1 𝛽𝑖 ln𝑅0 (28)
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Figure 3: (a) A 4-periodic orbit generated by map (19). 𝛾 = −0.1, (𝑃, 𝐹) = (0.6, 30). (b) A 16-periodic orbit generated by map (19). Parameter
values as in (a), except 𝐹 = 40. (c) Chaotic dynamics generated by map (19). The attractor is divided into 4 subsets which are visited once
every fourth iteration. Parameter values as in (a), except 𝐹 = 43.
while the fixed point may be written as

(𝑥∗1 , . . . , 𝑥∗𝑖 , . . . , 𝑥∗𝑛 )
= ( 1𝐷𝑥∗, . . . , (𝑃𝑎𝛽)𝑖−1𝐷 𝑥∗, . . . , (𝑃𝑎𝛽)𝑛−1𝐷 𝑥∗) . (29)

The eigenvalue equation may be cast in the form

𝜆𝑛 + 𝑎1𝜆𝑛−1 + 𝑎2𝜆𝑛−2 + ⋅ ⋅ ⋅ + 𝑎𝑛 = 0, (30)

where the coefficients are

𝑎1 = 𝛼𝑥∗1 + 𝛽 𝑛∑
𝑖=2

𝑥∗𝑖 ,
𝑎2 = 𝛼𝑥∗2 + 𝛽 𝑛∑

𝑖=1
𝑖 ̸=2

𝑥∗𝑖 ,
𝑎𝑛 = 𝛼𝑥∗𝑛 + 𝛽𝑛−1∑

𝑖=1

𝑥∗𝑖 − 1.
(31)

First let us comment on the parameter region where 𝛼 ≥ 𝛽.
Suppose that 𝑛 is even and 𝜆 = −1. Then LHS (left hand side)
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of (30) may be expressed as(𝑥∗1 − 𝑥∗2 ) (𝛽 − 𝛼) + (𝑥∗3 − 𝑥∗4 ) (𝛽 − 𝛼) + ⋅ ⋅ ⋅+ (𝑥∗𝑛−1 − 𝑥∗𝑛 ) (𝛽 − 𝛼) (32)

which clearly is ≤0. On the other hand, when 𝜆 → −∞, LHS
of (30)→ +∞; thus theremust be a root 𝜆̃ < −1 of (30) which
actually proves that fixed point (29) will always be unstable.

Still assuming 𝛼 ≥ 𝛽, let us scrutinize the case 𝑛 = 2 in
somewhatmore detail. In order for the fixedpoint to be stable,
it follows from the Jury criteria that the inequalities(𝛼 + 𝛽) 𝑥∗ > 0, (33a)(𝛽 − 𝛼) (𝑥∗1 − 𝑥∗2 ) > 0, (33b)2 − (𝛽𝑥∗1 + 𝛼𝑥∗2 ) > 0 (33c)

must hold, but as already accounted for, (33b) fails when 𝛼 ≥𝛽. Moreover, since (33b) is violated as an eigenvalue crosses
the unit circle through −1, it is natural to search for a 2-cycle
which should be stable provided 𝑥∗ is small. Evidently, such
a 2-cycle must be obtained from𝑥1,𝑡+2 = 𝑅0𝑒−𝛽(𝑥1,𝑡+𝑥2,𝑡)𝑒−𝛼(𝑥1,𝑡+1+𝑥2,𝑡+1)𝑥1,𝑡,𝑥2,𝑡+2 = 𝑅0𝑒−𝛼(𝑥1,𝑡+𝑥2,𝑡)𝑒−𝛽(𝑥1,𝑡+1+𝑥2,𝑡+1)𝑥2,𝑡 (34)

and here there are two possibilities:

(1) 𝑥𝑡 = 𝑥𝑡+1 which leads to the trivial 2-cycle where the
unstable fixed point (𝑥∗1 , 𝑥∗2 ) is the only point in the
cycle.

(2) The points are of the form (𝐴, 0) or (0, 𝐵). In this case,
it follows from (34) that 𝐴 and 𝐵 must satisfy the
equations

𝐴 − 1𝑃𝑒−𝛽𝐴𝐵 = 0,𝛽𝐴 − 𝛼𝐵 + ln𝑅0 = 0. (35)

In general, system (35) must be solved bymeans of numerical
methods, but in the special case 𝛽 = 0, we obtain 𝐴 =(𝛼𝑃)−1 ln𝑅0, 𝐵 = 𝛼−1 ln𝑅0. Hence there exists a 2-cycle
where only one age class is populated at each time, namely,
the cycle

( 1𝛼𝑃 ln𝑅0, 0) ,
(0, 1𝛼 ln𝑅0) . (36)

Dynamics where only one age class is populated at each time
as above is referred to as SYC (single year class) dynamics
or synchronization (cf. [18, 45]). A cycle like (36) is said to

be of SYC form. In Figure 4(a), we show an orbit starting at(𝑥1,0, 𝑥2,0) ̸= (0, 0) which converges to the 2-cycle (36). If we
increase𝐹we find that (36) goes unstable and cycles of period2𝑘, 𝑘 = 2, 3, . . ., are established. These cycles, which are all
of SYC form, are stable in smaller and smaller regions as 𝐹
is increased. Eventually, the dynamics becomes chaotic but
we emphasize that it is still of SYC form. These scenarios are
demonstrated in Figures 4(b) and 4(c).

We close this example by making a few comments of the
remaining case 𝛽 > 𝛼. Still assuming 𝑛 = 2, if 𝛼 = 0, then we
are essentially back in Example 3. Hence, the dynamics has a
strong resemblance of 4-cycles, either exact or approximate.
Whenever 𝛼 > 0, but 𝛽 > 𝛼, the eigenvalues at threshold
(which are found by use of (30) and (33c)) are not so close
to the imaginary axis as the eigenvalues given by (24). This
affects the dynamics beyond threshold. For “small” values
of 𝛼, we find the invariant curve but there is no tendency
towards 4-periodic dynamics. Instead we observe that when𝐹 is increased, the invariant curve becomes kinked and
not topological equivalent to a circle; see Figure 5(a) where(𝛼, 𝛽) = (0.1, 1.0). In order to scrutinize the dynamics in
somewhat more detail we have also computed the Lyapunov
exponent 𝐿 for 𝐹-values between 10 and 50 (cf. Figure 5(b)).
As long as 10 < 𝐹 < 20.341, 𝐿 < 0, which means that the
fixed point is stable. 𝐿 = 0 in the interval 20.341 ≤ 𝐹 <29.3, which corresponds to quasiperiodic orbits restricted to
invariant curves. 𝐿 < 0 in the parameter window 30.5 <𝐹 < 32.7. Here we find periodic dynamics of period 11.
Finally when 𝐹 exceeds 32.7 and in a tiny interval just below𝐹 = 30.5 we find that 𝐿 > 0, which means that the dynamics
is chaotic. These findings are visualized in Figure 5(c) too,
where the dynamics is shown in case of specific values of 𝐹
(10 ≤ 𝐹 ≤ 35).

When 𝛼 is close to 𝛽, we detect qualitatively much of the
same behaviour but since the value of 𝐹 at threshold in this
case is larger than in the former case, one may argue that
an increase of strength in the fecundity acts in a stabilizing
fashion. Finally, in case of intermediate values of 𝛼, 𝛼 ≈ 𝛽/2,
there is a significant change of dynamics. Through the same
mechanism as we described in Example 2, there exists an 𝐹-
interval where there is coexistence between the fixed point
and a large amplitude 3-cycle. There is also another interval
wherewe observe coexistence between an invariant curve and
the 3-cycle as exemplified in Figure 2(b).

4. Summary

As it is clear from the examples, nonlinear age-structured
population models are excellent tools in order to study the
dynamical outcomes of biological populations. Depending
on location of density dependent elements and parameter
values, the dynamics may vary from stable fixed point to
complicated chaotic behaviour. We close the paper by adding
a few more results. In Example 2 (the Ricker case), we have
to distinguish between even and odd age classes. When 𝑛
is odd, the transfer from stability to instability always goes
through a (supercritical) flip bifurcation (0 < 𝑃 < 1), but
when 𝑛 is even a Neimark Sacker bifurcation occurs when𝑃 is large (when 𝑛 = 4 the Neimark Sacker interval is
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Figure 4: (a) Convergence to a 2-cycle of SYC form. (𝑃, 𝐹) = (0.5, 10). (b) A 4-cycle of SYC form. (𝑃, 𝐹) = (0.5, 15). (c) Chaotic SYCdynamics.(𝑃, 𝐹) = (0.5, 40).
0.62 < 𝑃 < 1). Moreover, when 𝑛 is large, 𝑥∗(𝑃) is an
increasing function which clearly suggests that an increase
of 𝑛 acts stabilizing to the dynamics. For further reading,
see [12, 16]. Turning to Example 3, the 4-periodic dynamics
(exact or approximated) found when 𝑛 = 2 takes over when𝑛 becomes large. Formally, this may be proved through an
asymptotic argument where one shows that the dominant
eigenvalues of the linearization of the 𝑛-dimensional version
of map (19) cross the unit circle very close to the imaginary
axis at the threshold. For details, see [44]. Regarding Example
4, we want to stress the following: assuming 𝛼 > 𝛽 and 𝑛 is
odd, it is proved in a forthcoming paper that SYC dynamics
is the only possibility in cases of small and large equilibrium
populations 𝑥∗. However in case of intermediate values there
may exist a parameter region where the fixed point is stable.
Depending on initial conditions, an orbitmay converge to the

fixed point or settle on a chaotic attractor of SYC form. This
is demonstrated in [18] when 𝛽 = 0. Therefore, by combining
the results above with the findings presented in Example 4,
we find it natural to conclude that as long as the strength of
the density dependence in the fecundity is larger than in the
survivals, SYC dynamics is indeed the most likely dynamic
outcome. Finally, when 𝛽 > 𝛼, we find in contrast to the
iteroparous model discussed in Example 2 that an increase
of the number of age classes 𝑛 acts in a destabilizing fashion.
Actually, if 𝑃 is sufficiently small, it is not possible to achieve
a stable fixed point at all if 𝑛 = 5. Moreover, the periodic
dynamics found when 𝑛 = 2 persists also when 𝑛 = 3
(cf. the simpler model presented in [39]), but the route to
chaos is different from the 𝑛 = 2 case. When 𝑛 ≥ 4, only
quasiperiodic dynamics seems to occur beyond instability
threshold.
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Figure 5: (a) The invariant curve has become kinked. (𝛼, 𝛽) = (0.1, 1.0), (𝑃, 𝐹) = (0.5, 30). (b) Values of Lyapunov exponents for 𝐹-values in
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periodic dynamics, and chaos, respectively.
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