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Abstract

This Ph.D. thesis consists of an introduction and 7 papers where we investigate the require-
ments for finding integer or rational solutions to a selection of Diophantine equations leading
to problems connected to power means and homogenization.

In Paper 1 we present a modern view of classic number theory in a historic context. We
have also included some new interpretations of importance for this thesis. Some of the basic
discoveries and tools developed by Euclid and Diophantus in the classic period 300 BC - 300
AD are discussed. We also focus on some aspects about how Diophantus found a remarkable
way of solving a third degree equation in rational numbers, which, as far as we know, have
not been offered much attention in the literature. For the period 1650 - 1850 we investigate
some important works by Fermat, Euler and Gauss in a new light. Special attention has been
given to Euler’s work on rational or integer solutions to fourth degree equations. Especially,
we suggest some generalizations which are of importance for the new research result of this
thesis. Concerning the discoveries over the last 150 years, we have focused on the theory of
elliptic curves. In particular, by using this theory, we are able to solve a set of four simultaneous
second degree equations. This represents new results corresponding to a generalized Crossed
Ladders Problem. Finally, we present a summary of the discoveries that led up to Wiles’proof
of Fermat’s Last Theorem.

In Paper 2 we introduce the Crossed Ladders Problem and present a proof of an infinite
and complete parametric representation of integer valued solutions to a set of corresponding
Diophantine equations. Moreover, we point out a connection between certain classes of the
solutions and the Pell numbers series.

In Paper 3 we investigate a particular form of the Crossed Ladders Problem, finding many
parametrized solutions, some polynomial, and some involving Fibonacci and Lucas sequences.
We establish a connection between this particular form and a quartic equation studied by Euler,
giving corresponding solutions to the latter.

In Paper 4 we study the connection between the crossed ladders problem and certain power
means. We prove that we geometrically can construct a number of power means of two variables
of different lengths using the crossed ladders geometric structure.
In Paper 5 we consider the problem of determining integers a and b such that the corre-

sponding power mean of order k becomes integer valued. By using a variant of Fermat’s Last
Theorem we show that the problem has no solutions for the case |k| ≥ 3. All solutions for the
cases k = 0, ±1, ±2, and combinations of these, are found.
In Paper 6 we study a scale of two-component composite structures of equal proportions

with infinitely many microlevels. The structures are obtained recursively and we find that their
effective conductivities are power means of the local conductivities.

In Paper 7 we consider laminates with a power-law relation between the temperature gra-
dient and the heat flux characterized by some constant τ > 1. In particular, we discuss the
problem of determining what positive integer combinations of the local conductivities and the
power −r = 1/(τ − 1) which make the effective conductivity integer valued.
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Introduction - Short description of the
publications in this Ph.D.-thesis
1 A modern view of classic number theory, Paper 1

In Paper 1 we present a modern view of classic number theory in a historic context. We have
also included some new interpretations of importance for this thesis.
Some of the basic discoveries and tools developed by Euclid and Diophantus in the classic

period 300 BC - 300 AD are discussed. We also focus on some aspects about how Diophantus
found a remarkable way of solving a third degree equation in rational numbers, which, as far as
we know, have not been offered much attention in the literature. There is an important line of
thought between this particular discovery and recent analyses of cubic equations called elliptic
curves. Therefore, in this introduction we include a condensed version of Diophantus solution
of

Q2 = K3 + 2,

in addition to some words about our development of a modern extension of Diophantus‘method.
Diophantus introduced a parameter m and defined

K = m− 1,

Q =
3

2
m+ 1.

Inserting these values for K and Q in the cubic equation, he obtained

(
3

2
m+ 1)2 = (m− 1)3 + 2

giving

m1 =
21

4
, and (K1, Q1) = (

17

4
,
71

8
).

A modern extension of Diophantus method can be used to determine an infinite number
of rational solutions to the above cubic equation. This is done by defining a recursive relation
between an assumed rational solution K1, Q1 and a possible next order solution K2, Q2.We set

K2 = K1 +m2,

Q2 = Q1 +
3

2

K2
1

Q1
m2.

By inserting these values in the cubic equation we find

m2 =
1

4Q21

(
9K4

1 − 12K1Q
2
1

)
.

This lead to the next order solutions to the cubic equation

K2 =
1

4
K1
9K3

1 − 8Q21
Q21

,
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Q2 =
1

8

27K6
1 + 8Q

4
1 − 36K3

1Q
2
1

Q31
.

Inserting the values determined by Diophantus (K1, Q1) = (
17
4
, 71
8
) into these formulas, we get

the following new set of rational solutions to the cubic equations:

(K2, Q2) = (
66 113

80 656
,
36 583 777

22 906 304
).

By the above formulas we can determine infinitely many rational solutions. We also show
that if we insert (K0, Q0) = (−1, 1) (seen by inspection) into the formulas for K2 and Q2, we
regenerate Diophantus‘original solution (K1, Q1) = (

17
4
, 71
8
).

The use of parameters in determining a rational solution to a polynomial equation, and of
a recursive procedure to find more, possibly infinitely many, is a recurring theme in Paper 1.
We use these methods extensively both in the description of the works of Euler and in some
new developments presented in the last part of Paper 1.

For the period 1650 - 1850 we investigate some important works by Fermat, Euler and Gauss
in a new light. Special attention has been given to Euler’s work on rational or integer solutions
to fourth degree equations. Especially, we suggest some generalizations by applying the above
described use of parameters and of a recursive search for more solutions. These results are of
importance for some of the discoveries presented in this thesis.

Concerning the discoveries over the last 150 years, we have focused on the theory of elliptic
curves. In particular, by using this theory, we are able to solve a set of four simultaneous
second degree equations. This represents new results corresponding to a generalized Crossed
Ladders Problem. Finally, we present a summary of the discoveries that led up to Wiles’proof
of Fermat’s Last Theorem.
Since the solution of the generalized Crossed Ladders Problem represent some new discovery

and applies recently developed methods, we have included a short presentation here. We first
develop a set of parametric identities that give an infinite number of integer solutions to the
variables x, y, z, u, v, r in the following set of simultaneous equations

x2(1, 1, 1)− 3(y2, z2, (y + z)2) = (u2, v2, r2),

namely
(2(m2 −mp+ p2))2 − 3(m(m− 2p))2 =

(
2mp+m2 − 2p2

)2
,

(2(m2 −mp+ p2))2 − 3(p(2m− p))2 =
(
−2mp+ 2m2 − p2

)2
,

(2(m2 −mp+ p2))2 − 3(m2 − p2)2 =
(
−4mp+m2 + p2

)2
,

where m, p are integers.
This set of identities was used by J. Leech [4] to solve the problem of finding integer solutions

to the variables x, y, z, u, v, r, s in a more complex set of equations

x2(1, 1, 1, 1)− 3(y2, z2, (y + z)2, (y − z)2) = (u2, v2, r2, s2). (1)
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Figure 1: The generalized Crossed Ladders Problem.

A solution to this set of equation requires integer solution to m, p, s in the quartic equation

s2 = m4 + 16m3p− 42m2p2 + 16mp3 + p4. (2)

By transformation of this equation to the elliptic curve

j2 = (k + 108)(k + 96)(k + 72),

we can determine infinitely many rational solutions to this elliptic and transform these solutions
back to give integer solutions for m, p, s. in (2) Thereby we obtain infinitely many integer
solutions to the variables in (1).
We further in Paper 1 describe a generalized version of the Crossed Ladders Problem where

the challenge consists of finding integer solutions to all lines and line segments in Figure 1
The requirements for a solution to this problem lead to finding integer solutions to the

following set of equations

x2(1, 1, 1, 1) + (y2, z2, (y + z)2, (y − z)2) = (u2, v2, r2, s2) (3)

A method discovered by J. Leech in 1981 [4] that give infinitely many integer solutions to the
variables in (3) is described, whereby we determine solutions also to the generalized version of
the Crossed Ladders Problem. To our knowledge this discovery has not been published before.

2 Crossed Ladders Problem, Papers 2, 3 and 4.

The Crossed Ladders Problem (CLP) requires integer solutions to the set of simultaneous DEs
illustrated in Figure 2:

x2(1, 1) + (y2, z2) = (a2, b2)
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Figure 2: The Crossed Ladders Problem.

and

c =
yz

y + z
.

In Paper 2 we prove that the following formulas give a complete integer parametric repre-
sentation to the variables x,y,z,a,b,c:

x = S2m1n1m2n2,

y = Sm2n2(m
2
1 − n21),

z = Sm1n1(m
2
2 − n22),

a = Sm2n2(m
2
1 + n21),

b = Sm1n1(m
2
2 + n22)

and

c =
m1n1m2n2(m

2
1 − n21)(m2

2 − n22)
gcdF

,

where
F = (m1n1m2n2(m

2
1 − n21)(m2

2 − n22), m2n2(m
2
1 − n21) +m1n1(m

2
2 − n22))

and

S =
m2n2(m

2
1 − n21) +m1n1(m

2
2 − n22)

gcdF
.

Here, m1,n1,m2 and n2 are positive integers m1 > n1 and m2 > n2.
We further demonstrate the following infinite integer representation of the CLP using the

Pell numbers series {Pi} for i ≥ 1:
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(x, y, z, a, b, c) = (4P2iP2i+1, 4P
2
2iP

2
2i+1 − 1, 2(P 22i+1 − P 22i), 4P 22iP 22i+1 + 1,

2(P 22i+1 + P 22i), 2(2P2iP2i+1 − 1)).

Recall that Pell number series is defined by

Pi = 2pi−1 + Pi−2, with P0 = 0 and P1 = 1, i = 0, 1, 2, ...

From Figure 2 it can be seen that the length of the line c is half of the harmonic mean of y
and z. Moreover, the length of the line DC (not drawn in the figure) is twice the square mean
of y and z in the case when x = y + z. This led us to investigate if it is possible geometrically
to construct other power means of two variables. This is the object of Paper 4, where we
demonstrate that the power means

P 2−2, P
2
−1, P

2
− 1
2
, P 20 , P

2
1
2
, P 21 and P

2
2

all can be constructed geometrically in the same compact figure. For alternative considerations
of some of the cases, see e.g. [7] and [3].

Another question concerns the relation between integer valued y and z given in Figure 2.
In Paper 3 we consider the cases when the value of M in

M =
y

z
=
m2n2(m

2
1 − n21)

m1n1(m2
2 − n22)

(4)

is required to be an integer. We show that this problem is closely connected to finding integer
solutions to the so called Euler‘s quartic

r4 + dr2s2 + s4 = w2. (5)

We find that the representation (4) can be transformed to the problem of finding integer valued
M that give non-trivial integer solutions to the equation

X4 + (4M2 − 2)X2Y 2 + Y 4 = Z2. (6)

The literature on Euler‘s quartic is substantial. In particular, A. Bremner and J. W. Jones [1]
have determined all values for d < 3000 that give non-trivial solutions to (5). From (6) and
(5) we see that we are searching for solutions to d such that d = 4M2 − 2 also gives that M is
integer valued. The smallest such value is d = 194, giving M = 7. This result is obtained for
two sets of solutions in the Crossed Ladders Problem, namely

(x, y, z, a, b, c) = (96, 280, 40, 296, 104, 35) and (70, 168, 24, 182, 74, 21).

Considering (4) we obtain several sets of parametric representations for m1, n1,m2, n2 that give
integer valued M. In addition, we demonstrate a connection between Euler‘s quartic, integer
M, and recurring series like Fibonacci, Lucas and Pell number series, leading to infinite new
integer solutions for (4). Of some interest is the following representation:

(x, y, z, a, b) = (2Fk+1Fk, F
2
k+1F

2
k − 1, F 2k+1 − F 2k , F 2k+1F 2k + 1, F 2k+1 + F 2k ),
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where Fk is the k-th Fibonacci number given by Fk = Fk−1 + Fk−2, with F0 = 0 and F1 = 1,
i = 0, 1, 2... . Hence,

M =
y

z
=
F 2k+1F

2
k − 1

F 2k+1 − F 2k
= Fk+1Fk − (−1)k.

For k ≥ 3 this gives an infinite number of integer values for M :

M = 7, 14, 41, 103, 274, .... (7)

The equation (5) will then have an infinite number of non-trivial solutions that gives integer
valued r, s, w, d :

(r, s, w, d) = (Fk+2, Fk−1, 2(F
2
k+1F

2
k + 1), 4(Fk+1Fk − (−1)k))2 − 2.

In particular, for k = 3 we find the following solution to (5)

(r, s, w, d) = (5, 1, 74, 194),

since
54 + 194× 52 × 12 + 14 = 742.

3 Power means, Papers 5, 6 and 7

Averages and means of a number of variables have fascinated mathematicians since antiquity.
Mathematically there are many different types of means. Some of the most used ones are the
power means (of some positive numbers a1, a2, ...an), defined as follows:

P n
k =

[
ak1 + ak2 + ...+ akn

n

] 1
k

, if k 6= 0

and
P n
0 = [a1a2....an]

1
n , if k = 0.

There is a substantial literature on the subject of power means. It has been shown that
P n
k > P n

l if k > l if all the ai are not identical, that P n
k converge towards max ai 1 ≤ i ≤ n when

k → ∞ and towards min ai 1 ≤ i ≤ n when k → −∞, see e.g. [2], [5], [6] and [8]. Moreover it
is easy to see that P n

k (Ka1, Ka2, ..., Kan) = KP n
k (a1, a2, ..., an).

The most commonly used power means are the arithmetic mean (A = P n
1 ), the geometric

mean (G = P n
0 ), the harmonic mean (H = P n

−1) and the quadratic mean, also called the root
mean square (Q = P n

2 ).
Physical problems often lead to interconnected sets of variables where we search for the

effective property ("average value") of the variables, for instance the effective heat or current
conductivity. In many instances the effective property takes the form of the k-th power mean of
the variables. In Papers 5 and 6 we consider cases where the effective conductivity corresponds
to identified power means.
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In Paper 1 one of the requirements for a solution is that c in

c =
yz

y + z

must be an integer (where y and z also are integers). Recognizing the similarities with the
harmonic mean of two variables, we continue in Paper 5 and study sets of two variables that
lead to integer valued power means. We there present complete parametric representation to
the variables that give integer valued power means for P 2−2, P

2
−1, P

2
0 , P

2
1 , and P

2
2 , and also to

some combinations of these means simultaneously.
For the harmonic mean

P 2−1(a, b) =
2ab

a+ b

to be an integer, we found that a and b must be precisely of the form

a = tp(p+ q),

b = tq(p+ q),

or of the form
a = t(2p+ 1)(p+ q + 1),

b = t(2q + 1)(p+ q + 1),

where t,p,q are positive integers. This leads to the form

P 2−1(a, b) = 2tpq

or the form
P 2−1(a, b) = t(2p+ 1)(2q + 1),

respectively.
For the harmonic mean, the arithmetic mean and the geometric mean, that is P 2−1, P

2
0 , and P

2
1 ,

to be integer valued simultaneously, a and b must be precisely of the form

a = 2tp2(p2 + q2),

b = 2tq2(p2 + q2),

or of the form
a = t(2p+ 1)2(2p2 + 2p+ 2q2 + 2q + 1),

b = t(2q + 1)2(2p2 + 2p+ 2q2 + 2q + 1).

The integers a and b making P 22 (a, b) integer valued must be precisely of the form

a = t
∣∣p2 − 2pq − q2∣∣ ,

b = t
∣∣p2 + 2pq − q2∣∣ ,
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giving
P 22 (a, b) = t(p2 + q2).

For P 2−2(a, b) to be integer valued a and b must be precisely of the form

a = t(p2 + q2)
∣∣p2 − 2pq − q2∣∣ ,

b = t(p2 + q2)
∣∣p2 + 2pq − q2∣∣ ,

leading to
P 2−2(a, b) = t

∣∣p2 − 2pq − q2∣∣ ∣∣p2 + 2pq − q2∣∣ .
A further development of the methods developed in Paper 4 to study the requirements that

lead to integer valued power means when the number of variables n > 2, is an area for future
research.

In Paper 6 we study a two-component composite of laminate, chess-board and combined
structures whose effective conductivities are power means of the individual conductivities. We
identify two-component structures, where the effective conductivity matrix, σ∗, satisfies

σ∗ =

[
P 2k (λb, λw) 0

0 P 2−k(λb, λw)

]
.

Here P 2k and P 2−k are the power means of the individual conductivities, λw and λb, of the
two components. We further describe structures having this effective conductivity matrix for
k = 1

2n
, where n is any integer and k is the power of the k-th power mean. These structures are

obtained recursively by using a self-similar structure combined with a laminate structure. For
every fixed n we have identified two-component composite structures with local conductivity
matrices

Cb =

[
µb,1 0
0 µb,2

]
and Cw =

[
µw,1 0
0 µw,2

]
,

of equal proportions, such that the effective conductivity matrix is

σ∗ =

[
P 1
2n
(µb,1, µw,1) 0

0 P− 1
2n
(µb,2, µw,2)

]
,

for all µb,i and µw,i.
This result is obtained by using the fact that

Pk(a, b)P−k(a, b) = ab,

and by proving that
P 1
2n+1

(a, b) = P 1
2n
(P 1

2n
(a, b), P0(a, b))

and that
P− 1

2n+1
(a, b) = P− 1

2n
(P− 1

2n
(a, b), P0(a, b)).
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In Paper 7 we consider laminates with a power-law relation between the temperature gra-
dient and the heat flux. The effective conductivity, λ∗, orthogonal to the layers is given by

λ∗ = P k
1

1−τ
(λ1, ..., λk) =

λ 1
1−τ
1 + ...+ λ

1
1−τ
k

k

1−τ

,

where τ > 1 is the heat flux constant, λi is the conductivity of layer i, and k is the number of
layers. In particular we study the case where k = 2 and 1

1−τ = −1, i.e., τ = 2. For the effective
conductivity in this case to be integer valued, we prove that the individual conductivities must
be precisely of the form

λ1 = tp(p+ q), λ2 = tq(p+ q)

or of the form
λ1 = t(2p+ 1)(p+ q + 1), λ2 = t(2q + 1)(p+ q + 1),

where p,q and t are positive integers. We then obtain that the effective conductivities are of
the form

λ∗ = 2tpq,

or of the form
λ∗ = t(2p+ 1)(2q + 1).

We also verify that the individual conductivities for k = 2, and 1
1−τ = −2, i.e., τ =

3
2
, that give

integer effective conductivity, must be precisely of the form

λ1 = t(p2 + q2)
∣∣p2 − 2pq − q2∣∣ and λ2 = t(p2 + q2)

∣∣p2 + 2pq − q2∣∣ .
This leads to

λ∗ = t
∣∣p2 − 2pq − q2∣∣ ∣∣p2 + 2pq − q2∣∣ .

We further prove that for k = 2 and 1
1−τ ≤ −3, i.e., τ =

n+1
n
where n ≥ 3, there are no

values of λ1 6= λ2 that will result in an integer effective conductivity, λ
∗.

For the number of layers k ≥ 3 we show that for certain values of 1
1−τ ≤ −3, and for

particular individual conductivities, the effective conductivity λ∗ can still be integer valued.
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