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Abstract—With the growing concern of climate change and 

global warming, the reduction on carbon emissions of supply 

chain activities have been increasingly focused by both 

academics and corporates in the last two decades. The increased 

public awareness on sustainability and stringent environmental 

policies together enforce the companies to re-think their 

practices in supply chain design and operations in an efficient 

while environmentally friendly fashion. This paper proposes a 

mathematical programming model for green supply chain 

design taking into consideration of both efficiency and carbon-

emissions. First, a bi-objective MILP model is formulated for 

green supply chain design. Second, both weighting method and 

augmented 𝜺-constrained method are introduced for resolving 

the trade-off between the two objective functions. Third, 

through the numerical experiment, the quality and 

computational efficiency of the non-dominant Pareto optimal 

solutions calculated by both weighing method and augmented 𝜺-

constraint method are compared, and the result is discussed 

latter in this paper.       

Keywords-Green supply chain; optimization; network design; 

constraint method; Pareto optimal solution 

I.  INTRODUCTION 

The concept of supply chain management has been raised 
and extensively focused for over three decades. A typical 
supply chain includes several actors, i.e., raw material 
supplier, producer, distributor, wholesaler, retailer and 
customer [1]. Each actor adds value to the products and/or 
process and affects the material, information and cash flows 
of the supply chain. Due to this reason, the optimal design and 
planning of supply chain structure and operations are of great 
importance for companies to maintaining a sound efficiency, 
competitiveness and sustainability.  

 
The design of a supply chain structure and network is one 

of the most important decision-making problems in supply 
chain management [2], and it usually involves both strategic 
and operational decisions in order to determine the nodes 
(facility locations) and arcs (material flows and/or vehicle 
routes) in a supply chain network. Traditionally, the main 
focus of supply chain design and operation management is to 
manage an effective material flow while maintaining cost 
efficiency [3, 4]. In recent years, with the growing concern of 

climate change and global warming, the reduction on carbon 
emissions of supply chain activities have been increasingly 
focused by both academics and corporates in literature. The 
concepts of green supply chain and sustainable supply chain 
are proposed to address this problem. The definition of green 
supply chain has been given by many researchers [5], and the 
main focus is to achieve an optimal break-even point at which 
the efficiency and environmental impact of a supply chain, 
usually quantified and measured by carbon emissions [6-8], is 
balanced through decision-making at strategic, tactical and 
operational levels.  

The incorporation of “green thinking” in supply chain 
design usually affects the supply chain efficiency and 
profitability in a negative manner [4, 6, 7]. Thus, an optimal 
trade-off or Pareto optimal solution is desired and is worthy to 
be investigated. In order to provide a thorough understanding 
of the trade-off between efficiency and environmental impact 
in supply chain design, significant efforts have been invested 
in previous literature for developing advanced tools and 
decision methods. Comprehensive literature surveys of green 
supply chain design are given by several researchers with 
focuses on conceptual development [9], quantitative methods 
[10], mathematical optimization models and approaches [11, 
12].  

This paper investigates some recent publications with the 
focus on both methodological development and practices of 
green supply chain design. In order to balance the trade-off 
among cost efficiency, environmental impact and lead time, 
Boonsothonsatit et al. [13] develop a fuzzy goal programming 
with weighted min-max operator to determine the supply 
chain configuration. Coskun et al. [14] formulate a goal 
programming model for green supply chain design with the 
consideration of customer segment. The model aims at 
maximizing the overall utility of a supply chain through 
compensating the environmental influence. Through the use 
of two questionnaires and a fuzzy multi-criteria decision 
model, Diabat et al. [15] investigate the performance and 
practices of green supply chain management in the automotive 
industry. Yu and Solvang [16] formulate a goal programming 
for balancing the efficiency and carbon emission of green 
supply chain design. 

Jin et al. [17] formulates and investigates the influence of 
implementing three different policies on carbon control 
(carbon cap, carbon tariff, and cap-and-trade) on supply chain 
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design. Zhou et al. [8] formulate a mathematical optimization 
model for green supply chain design with focus on the 
implementation of carbon tariff policy. Taking into account of 
economic, environmental and social sustainability, Miret et al. 
[18] develop a multi-objective MILP model solved with goal 
programming approach for the planning of a bioethanol green 
supply chain. In this paper, the environmental impact is 
quantified by life cycle analysis, and the social indicator is 
measured by energy-food ratio and the number of jobs created 
by the supply chain. Wang et al. [4] investigate the Pareto 
optimal trade-off between efficiency and environmental 
influence of green supply chain design.  

Govindan et al. [19] propose a bi-objective mathematical 
model for decision support of both green supply chain design 
and sustainable order allocation, and the model is resolved 
with hybrid method incorporating both adapted multi-
objective variable neighborhood search and adapted multi-
objective electromagnetism mechanism algorithm. The 
integration of supplier selection with green supply chain 
design is also focused by Ameknassi et al. [20]. In their paper, 
a stochastic multi-objective mathematical programming is 
formulated and is resolved with 𝜀 -constraint method for 
designing a multi-product multi-period green supply chain 
structure. Govindan et al. [21] investigate a bi-objective 
location routing problem for the design and operation 
management of a perishable food supply chain, and the model 
aim at finding out the optimal trade-off between efficiency 
and environmental impact. 

Taking into account of the reverse direction of supply 
chain management for the value recapture from recycling and 
recovery of used merchandise, Yu and Solvang [21] propose 
a bi-objective MILP model for simultaneously minimizing the 
cost and carbon emission in the planning of a reverse logistics 
system. Considering the inexactness and uncertainty related to 
the input information of the decision model, Feito-Cespon et 
al. [22] develop a stochastic programming model for the 
redesign and re-optimization of a sustainable reverse supply 
chain. The model aims to determine the optimal trade-off 
among economic, environmental and social issues related to 
the reverse supply chain. Yu and Solvang [23] and Yu  and 
Solvang [7] formulate stochastic MILP models incorporating 
with soft and hard constraints on carbon emission requirement 
for sustainable design of a reverse supply chain. The result 
from the research works illustrates the influence of 
implementing two different carbon policies, namely, carbon 
tariff and carbon cap on sustainable reverse supply chain 
design under market fluctuation.  

Compared with previous research works in green supply 
chain design, the current paper focuses on the decision support 
through providing decision makers with a set of non-dominant 
optimal efficiency-versus-emission trade-offs for posteriori 
decision-making. In order to solve the trade-off problem, a 
MILP model is first formulated in Section II. Section III 
introduces the augmented 𝜀-constraint method as well as its 
advantages in determining the non-dominant optimal trade-
offs among several conflicting objectives comparing with 
traditional 𝜀-constraint method and the common scalarization 
method. Section IV validates the model and compares the 

results calculated with different solution methods. Section V 
provides the conclusion and future suggestions. 

II. MATHEMATICAL MODEL FOR GREEN SUPPLY CHAIN 

DESIGN WITH EFFICIENCY-VERSUS-EMISSION ANALYSIS 

Figure 1 presents a supply chain structure with four 
echelons including supplier, production plant, distribution 
center and customer. The supply chain design focuses on the 
optimal efficiency-versus-emission trade-offs through the 
decision-making on both strategic and tactical levels.  

 

 
Figure 1.  Supply chain structure [16]. 

In order to model the green supply chain design problem, 
common assumptions are made [6, 19, 24]: 

 The parameters are deterministic and known. 

 The planning is given on a single-period basis. 

 The material flow in the supply chain is featured 
with single product. 

 The material flow among nodes in the same 
echelon is prohibited. 

A. Sets 

The sets of the nodes in the supply chain network is first 
defined. 

 
S Set of suppliers, indexed by s 
P Set of candidates for production plant, indexed by 

p 
D Set of candidates for distribution center, indexed by 

d 
C Set of customers, indexed by c 

B. Decision Variables 

The decisions on the locations of production plants and 
distribution centers and the allocation of customer demands 
will be made in each optimal trade-off scenario. 
 

∅𝑝 Binary decision variable for production plant 

∅𝑑 Binary decision variable for distribution center 

𝐹𝑙𝑠𝑝 Material flow between nodes s and p 

𝐹𝑙𝑝𝑑 Material flow between nodes p and d 

𝐹𝑙𝑑𝑐 Material flow between nodes d and c 

C. Parameters  

The parameters of the decision model are given as follows. 
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𝑄𝑝 Opening cost of production plant 

𝑄𝑑 Opening cost of distribution center 

𝐺𝑝 Operation cost per unit of production plant 

𝐺𝑑 Operation cost per unit of distribution center 

𝜌𝑠𝑝 Transport cost per unit between nodes s and p  

𝜌𝑝𝑑 Transport cost per unit between nodes p and d 

𝜌𝑑𝑐 Transport cost per unit between nodes d and c 

𝐶𝑂𝐸𝑝 Carbon emission per unit at production plant 

𝐶𝑂𝐸𝑑 Carbon emission per unit at distribution center 

𝐸𝑠𝑝 Carbon emission per unit transport between 
nodes s and p 

𝐸𝑝𝑑 Carbon emission per unit transport between 
nodes p and d 

𝐸𝑑𝑐 Carbon emission per unit transport between 
nodes d and c 

𝜔𝑝 Capacity of production plant 

𝜔𝑑 Capacity of distribution center 

𝐷𝑒𝑚𝑐 Customer demand 

𝛽𝑑 Conversion ratio between raw materials and 
finished productions 

𝜇𝑝 Utilization ratio for fulfilling custom orders at 
distribution centers 

D. Objective Functions 

The MILP model includes two objective functions given 
in Eqs. (1) and (2). Eq. (1) optimizes the efficiency through 
minimizing the setup and operation costs of the supply chain. 
Eq. (2) reduces the environmental influence by minimizing 
the carbon emission. 

 

Min  𝑧(1) = ∑ ∅𝑝(𝑄𝑝 + 𝐺𝑝 ∑ 𝐹𝑙𝑠𝑝

𝑠∈𝑆

)

𝑝∈𝑃

+ ∑ ∅𝑑(𝑄
𝑑

+ 𝐺𝑑 ∑ 𝐹𝑙𝑝𝑑

𝑝∈𝑃

)

𝑑∈𝐷

+ ∑ ∑ 𝐹𝑙𝑠𝑝𝜌
𝑠𝑝

𝑝∈𝑃𝑠∈𝑆

+ ∑ ∑ 𝐹𝑙𝑝𝑑𝜌
𝑝𝑑

𝑑∈𝐷𝑝∈𝑃

+ ∑ ∑ 𝐹𝑙𝑑𝑐𝜌
𝑑𝑐

𝑐∈𝐶𝑑∈𝐷

 

(1) 

Min 𝑧(2) = ∑ ∑ 𝐶𝑂𝐸𝑝𝐹𝑙𝑠𝑝

𝑝∈𝑃𝑠∈𝑆

+ ∑ ∑ 𝐶𝑂𝐸𝑑𝐹𝑙𝑝𝑑

𝑑∈𝐷𝑝∈𝑃

+ ∑ ∑ 𝐹𝑙𝑠𝑝𝐸𝑠𝑝

𝑝∈𝑃𝑠∈𝑆

+ ∑ ∑ 𝐹𝑙𝑝𝑑𝐸𝑝𝑑

𝑑∈𝐷𝑝∈𝑃

+ ∑ ∑ 𝐹𝑙𝑑𝑐𝐸𝑑𝑐

𝑐∈𝐶𝑑∈𝐷

 

(2) 

E. Requirements of Decision Variables 

Eqs. (3) and (4) show the integer and non-negative 
requirements of the decision variables. 

 

∅𝑝, ∅𝑑 ∈ {0, 1} (3) 

𝐹𝑙𝑠𝑝, 𝐹𝑙𝑝𝑑 , 𝐹𝑙𝑑𝑐 ≥ 0 (4) 

F. Capacity limitation 

Eqs. (5) and (6) give the capacity limitation of production 
plants and distribution centers. 

 

∑ 𝐹𝑙𝑠𝑝

𝑠∈𝑆

≤ 𝜔𝑝, ∀𝑝 ∈ 𝑃 (5) 

∑ 𝐹𝑙𝑝𝑑

𝑝∈𝑃

≤ 𝜔𝑑 , ∀𝑑 ∈ 𝐷 (6) 

G. Flow Restriction 

Eqs. (7)-(11) are flow restrictions of the supply chain. Eq. 
(7) ensures the custom demands are met. Eqs. (8) and (9) 
specifies the input and output ratio at production plants and 
distribution centers. Herein, it is noted the input products at 
distribution centers may not be totally allocated to satisfy the 
customer due to the limitation of operation and transportation, 
otherwise, 𝛽𝑑  equals to 1. Eqs. (10) and (11) establish the 
requirements of the existence of material flow between different 
nodes in the supply chain network.  

 

∑ 𝐹𝑙𝑑𝑐

𝑑∈𝐷

= 𝐷𝑒𝑚𝑐 , ∀𝑐 ∈ 𝐶 (7) 

𝛽𝑑 ∑ 𝐹𝑙𝑝𝑑

𝑝∈𝑃

= ∑ 𝐹𝑙𝑑𝑐

𝑐∈𝐶

, ∀𝑑 ∈ 𝐷 (8) 

𝜇𝑝 ∑ 𝐹𝑙𝑠𝑝

𝑠∈𝑆

= ∑ 𝐹𝑙𝑝𝑑

𝑑∈𝐷

, ∀𝑝 ∈ 𝑃 (9) 

𝐹𝑙𝑠𝑝𝐹𝑙𝑝𝑑 ≤ ∅𝑝𝑈, ∀𝑠 ∈ 𝑆, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝐷 (10) 

𝐹𝑙𝑝𝑑𝐹𝑙𝑑𝑐 ≤ ∅𝑑𝑈, ∀𝑝 ∈ 𝑃, ∀𝑑 ∈ 𝐷, ∀𝑐 ∈ 𝐶 (11) 

III. SOLUTION METHOD 

The mathematical model formulated in this paper is a 
multi-objective MILP model, which aims at determining the 
optimal efficiency-versus-emission trade-off in green supply 
chain design. Considering the characteristics of a supply chain 
design problem with multiple conflicting objectives, the 
mathematical model can be given in a more general form with 
the help of the concepts of vector and matrix, as shown in Eq. 
(12).      

 
Min  𝑧1(𝑥⃗,𝑦⃗) = 𝑎1⃗⃗⃗⃗⃗ ∙ 𝑥⃗ + 𝑨𝟏 ∙ 𝑦⃗ 

Min  𝑧2(𝑥⃗,𝑦⃗) = 𝑎2⃗⃗⃗⃗⃗ ∙ 𝑥⃗ + 𝑨𝟐 ∙ 𝑦⃗ 
…… 

 

Min  𝑧𝑥(𝑥⃗,𝑦⃗) = 𝑎𝑥⃗⃗⃗⃗⃗ ∙ 𝑥⃗ + 𝑨𝒙 ∙ 𝑦⃗ 
 S.t. 

 

𝑥⃗ ∈ {0, 1} 

𝑦⃗ ≥ 0 

𝑪 ∙ 𝑦⃗ ≤ 𝑫 ∙ 𝑥⃗ 

𝑬 ∙ 𝑦⃗ = 𝑭 

(12) 

 
Eq. (12) formulates a general MILP model for supply 

chain design with objectives {𝑧1(𝑥⃗,𝑦⃗), 𝑧2(𝑥⃗,𝑦⃗), … , 𝑧𝑥(𝑥⃗,𝑦⃗)}, 
and it provides decision makers with the optimal decisions on 
facility locations with integer variable vector 𝑥⃗  and 
allocations of material follow among different facilities with 
continuous variable vector 𝑦⃗. The input parameters are given in 



This manuscript is a preprint version and final version is available on IEEE Xplore. 

Doi: 10.1109/ICITM.2018.8333934 

 

vectors {𝑎1⃗⃗⃗⃗⃗, 𝑎2⃗⃗⃗⃗⃗, … , 𝑎𝑥⃗⃗⃗⃗⃗} and matrixes {𝑨𝟏, 𝑨𝟐, … , 𝑨𝒙, 𝑪, 𝑫, 𝑬, 𝑭}. In 
addition, it is noteworthy that Eqs. (5) and (6) and Eqs. (10) and (11) 
in the MILP model are aggregated in the general form. 

In order to find out the optimal trade-offs among several 
conflicting objectives in supply chain design, a break-even 
point must be determined, and it is called Pareto optimality in 
operational research. The definition of Pareto optimality has 
been given by many authors [21, 25], based on the general 
model formulated above, a solution vector (𝑥𝑜⃗⃗⃗⃗⃗, 𝑦𝑜⃗⃗ ⃗⃗ )  is 
considered to be a Pareto optimality of the multi-objective 
programming if and only if it is impossible to find out another 
solution vector with 𝑧𝑘(𝑥⃗,𝑦⃗) ≤ 𝑧𝑘(𝑥𝑜⃗⃗⃗⃗⃗, 𝑦𝑜⃗⃗ ⃗⃗ ) for k=1, 2, …, x 
and  𝑧𝑖(𝑥⃗,𝑦⃗) ≠ 𝑧𝑖(𝑥𝑜⃗⃗⃗⃗⃗, 𝑦𝑜⃗⃗ ⃗⃗ ) for at least one i. Thus, it is obvious 
that a Pareto optimality of a multi-objective programming is 
the optimal trade-off among several conflicting objective 
functions, and the performance of one objective at the Pareto 
optimality cannot be improved without compensating the 
performance of the other objectives. Furthermore, it is 
obviously that an infinite set of Pareto optimality are existed 
in a multi-objective programming problem. 

The most commonly used method to find out the Pareto 
optimality of a multi-objective programming problem is 
scalarization method including weighted sum method and 
constraint method [25, 26]. 

A. Weighted sum method 

Due to its simplicity and effectiveness in resolving the 

trade-offs of multi-objective programming problems 

particularly the problems for priori decision-making [27], 

weighted sum method has been extensively used in literature 

[6]. With the weighted sum method, the importance of each 

objective function is first determined by the decision-makers 

and given as the weight, and then the objective functions can 

be aggregated through the summation of the weighted 

objective functions. Eventually, the problem becomes a 

single-objective MILP optimization and can be easily solved. 

Herein, it is noteworthy that the measures of each objective 

value may not be identical in some decision-making 

problems (e.g. the efficiency and emission in green supply 

chain design), and in those cases, the objective functions will 

first be normalized before they can be summed up.   

 
Min  𝑤1𝑧1(𝑥⃗,𝑦⃗) + 𝑤2𝑧2(𝑥⃗,𝑦⃗), … , 𝑤𝑥𝑧𝑥(𝑥⃗,𝑦⃗) 

 S.t. 

 

𝑥⃗ ∈ {0, 1} 

𝑦⃗ ≥ 0 

𝑪 ∙ 𝑦⃗ ≤ 𝑫 ∙ 𝑥⃗ 

𝑬 ∙ 𝑦⃗ = 𝑭 

(13) 

 

Even though weighted sum method has been widely used 

in resolving complex multicriteria decision-making problems, 

it do has some weaknesses [28]. First, the determination of 

the weights has to be done before the decision-making, which 

means decision-makers must have a very clear understanding 

of the importance of each objective, and this could be very 

difficult at the very beginning or sometimes even impossible. 

Second, when the weighted sum method is used to generate a 

set of Pareto optimality, it is not able to generate a full set of 

Pareto optimality. Furthermore, with the weighted sum 

method, the allocation of the Pareto optimality is not evenly 

distributed even if evenly distributed weights combination is 

used.     

B. Constraint method 

Constraint method is another very commonly used method 
to find out the Pareto optimality of a multi-objective 
optimization problem. The basic idea of constraint method is 
to take one objective function to optimize while converting the 
other objective functions into inequality constraints with an 
upper bound 𝜀𝑘 for k=1, 2, …, x, as illustrated in Eq. (14). Due 
to the introduction of the upper bound, it is alternatively 
named 𝜀-constraint method. 

 
Min  𝑧1(𝑥⃗,𝑦⃗) = 𝑎1⃗⃗⃗⃗⃗ ∙ 𝑥⃗ + 𝑨𝟏 ∙ 𝑦⃗ 

 S.t. 

𝑧2(𝑥⃗,𝑦⃗) ≤ 𝜀2 
…… 

 

𝑧𝑥(𝑥⃗,𝑦⃗) ≤ 𝜀𝑥 

𝑥⃗ ∈ {0, 1} 

𝑦⃗ ≥ 0 

𝑪 ∙ 𝑦⃗ ≤ 𝑫 ∙ 𝑥⃗ 

𝑬 ∙ 𝑦⃗ = 𝑭 

(14) 

 
The 𝜀 -constraint method can effectively resolve the 

problems of the weighted sum method and can generate a set 
of evenly distributed Pareto optimality without the input on 
the importance of each objective from decision-maker. 
Nevertheless, there are weaknesses of the traditional 𝜀 -
constraint method related to the selection of the values of 𝜀, 
and this may lead to dominant or weak solutions as discussed 
by Mavrotas [29]. Compare with the definition of Pareto 
optimality, a solution vector (𝑥𝑤⃗⃗⃗⃗⃗⃗ , 𝑦𝑤⃗⃗ ⃗⃗ ⃗) is considered to be a 
dominant or weak Pareto optimality of the multi-objective 
programming if and only if it is impossible to find out another 
solution vector with 𝑧𝑘(𝑥⃗,𝑦⃗) ≤ 𝑧𝑘(𝑥𝑤⃗⃗⃗⃗⃗⃗ , 𝑦𝑤⃗⃗ ⃗⃗ ⃗) for k=1, 2, …, x. 
Thus, it is obvious that the set of Pareto optimality is subset of 
weak Pareto optimality. 

 
Min  𝑧1(𝑥⃗,𝑦⃗) = 𝑎1⃗⃗⃗⃗⃗ ∙ 𝑥⃗ + 𝑨𝟏 ∙ 𝑦⃗ + 𝑒𝑝𝑠 × (𝑠2+, … , +𝑠𝑥) 

 S.t. 

𝑧2(𝑥⃗,𝑦⃗) + 𝑠2 = 𝜀2 
…… 

 

𝑧𝑥(𝑥⃗,𝑦⃗) + 𝑠𝑥 = 𝜀𝑥 

𝑥⃗ ∈ {0, 1} 

𝑦⃗ ≥ 0 

𝑪 ∙ 𝑦⃗ ≤ 𝑫 ∙ 𝑥⃗ 

𝑬 ∙ 𝑦⃗ = 𝑭 

(15) 

 
In order to determine a set of non-dominant Pareto 

optimality, Mavrotas [29] develops an augmented  𝜀 -
constraint method. First, the payoff matrix is calculated by a 
lexicographical method through the continuous optimization 
in order to find out the non-dominant payoff matrix. From the 
calculation of payoff matrix, the range of the solution area can 
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be divided in order to determine the benchmark value of each 
𝜀 . The second improvement made in the augmented  𝜀 -
constraint method is to convert the inequality constraints to 
equality constraints through the introduction of slack as 
shown in Eq. (15), where eps is a small enough number 
between 10-3 and 10-6 [29]. This change guarantees the 
efficient Pareto optimality through binding the x-1 constraints 
in Eq. (14) [30]. Therefore, the quality of non-dominant Pareto 
optimality calculated by the augmented 𝜀-constraint method 
has been significantly improved compared with the original 
one. 

IV. VALIDATION 

A numerical experiment is performed in order to validate 
the performance of the mathematical model and the two 
different solution methods. The structure of test parameters is 
adopted from a previous research work by Yu and Solvang [6] 
who employed a normalized weighted sum method to 
generate a set of ten Pareto optimality through the change of 
weight combination between cost efficiency and carbon 
emission. In this paper, the efficiency-versus-emission trade-
offs will be generated through augmented 𝜀 -constraint 
method, and the result is compared with the previous research.  

The research work by Yu and Solvang [6] focuses on a 
reverse supply chain, so the current model is adjusted through 
bounding the demand constraint from the customer who 
becomes the starting points of a reverse supply chain. The 
numerical experiment aims at determining the configuration 
of a reverse supply chain including 10 suppliers for used 
products, 28 candidates for production plants with different 
technologies, 10 distribution centers and 5 customers. It is 
assumed all the used product supplied can be properly treated 
and all the recycled products can be sold in market, so the flow 
restrictions are re-formulated to adapt this change. The 
parameters used in the test are generated randomly within a 
given interval as described in Yu and Solvang [6]. 

The numerical example is a medium-sized problem and is 
programmed and resolved by Lingo optimization solver on a 
laptop computer with Intel Core i5-6200 2.4GHz CPU and 8 
GB RAM. The decision-making problem of green supply 
chain design is first resolved with the normalized weighted 
sum method as given in the original research, and then the 
augmented 𝜀-constraint method is used to generate a set of 
Pareto optimality. 
 

 
Figure 2.  Optimal trade-offs solved by normalized weighted sum method. 

 

Figure 3.  Optimal trade-offs solved by augmented 𝜀-constraint method. 

The optimal efficiency-versus-emission trade-offs solved 
by normalized weighted sum method and augmented 𝜀 -
constraint method are given in Figures 2 and 3, respectively. 
Figure 4 shows the comparison of the Pareto optimality sets 
from the two solution methods. 
 

 
Figure 4.  Comparison of the Pareto optimality. 

 

Figure 5.  Comparison of the computational performance. 

As shown in the figures, both solution method can 
generate a set of optimal efficiency-versus-emission trade-
offs in green supply chain design. The augmented 𝜀-constraint 
method has a better performance than the weighted sum 
method in generating non-dominant optimal solutions, but this 
also leads to an increase on the computational time required 
as illustrated in Figure 5.  
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V. COUNCLUSION 

This paper investigates the efficiency-versus-emission 
trade-offs in green supply chain design. First, a bi-objective 
MILP model is formulated, and then two solutions methods 
are then introduced and tested. From the numerical validation, 
it is observed than the augmented 𝜀-constraint method has a 
better performance in determining non-dominant set of Pareto 
optimality while weighted sum method requires less 
computational time. For future improvement of the current 
research, the focus may be given to the development of high-
performance algorithm for large-scale integer programming 
problems in green supply chain design. 
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