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Abstract: In this paper the problem of real-time particle tracking is studied. Using sensor
measurements, a formation of uavs autonomously find the closest point with high particle
density where they enter a holding pattern. After converging to the holding pattern, one uav

will remain, while the rest will go looking for other maxima. To avoid collisions between the uavs
during the mission, a controller is presented which enables collision avoidance while tracking
the particles.

Keywords: Lyapunov stability, autonomous control, nonlinear control systems, obstacle
avoidance, gradient methods, potentials.

1. INTRODUCTION

Dynamic tracking of particles is of great importance to
Earth Science missions, both as to validate particle trans-
port models and to better understand the interactions in
the atmosphere. It is well known that as particle concen-
trations dissipate, they break down into smaller patches.
Using multiple uavs to perform in-situ measurements, it is
possible to track these patches as they move with the wind.
This will enable real-time information about the exact
position of the patches, which can serve as input to update
particle transport models with new initial conditions. With
a formation of uavs it is possible to obtain 3D measure-
ments of the particle density, which enables us to find
the gradient toward the closest patch with high particle
concentration. By following the gradient, the uavs can
locate these patches and enter a circular holding pattern
around them. After converging to the holding pattern, one
uav will remain, while the other uavs continue searching
for other patches.

Using the gradient information for guidance and control
was first proposed in Khatib (1986), and has since resulted
in a large amount of papers (cf. Koren and Borenstein
(1991), Rimon and Koditschek (1992), Kim and Khosla
(1992), Kyriakopoulos et al. (1995), Ge and Cui (2000),
Paul et al. (2008), Chunyu et al. (2009), Qu (2009),
Siciliano et al. (2010) and references therein). This method
is known as the potential field method, and it creates an
attractive potential towards the desired position, and can
create repulsive potentials around obstacles. By taking
the control signal equal to the negative gradient of the
resulting field, it enables the uav to converge to its desired
position while avoiding collision with obstacles.

The problem of using uavs to perform in-situ measure-
ments is very interesting and has resulted in many papers
on the subject such as Kuroki et al. (2010), Wegener et al.
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(2004), S̆mı́dl and Hofman (2013), where it is argued that
using multiple uavs as a mobile sensor network will be
less expensive and more accurate than what ground-based
sensors are able to provide. In Subchan et al. (2008) the
problem of tracking a cloud of contaminant was studied,
and where they propose an algorithm to track the contam-
inant cloud based on waypoints to map the entry and exit
points of the cloud to track the cloud itself.

In this paper, guidance laws are derived for tracking par-
ticle clouds and collision avoidance laws are implemented
to avoid collisions between uavs. It is assumed that the
same wind vector affects all particles such that there is zero
relative movement of the particles in the wind frame. Using
the guidance laws, a virtual leader is designed to represent
the desired trajectory, while a group of followers track
trajectories relative the virtual leader in a fixed formation.
Due to the possibility of a collision when working with
multiple uavs, a reactive controller is presented that makes
sure that the uavs converge to their desired trajectories
while avoiding collisions.

2. MODELING

2.1 Notation

In this paper the time derivative of a vector is denoted
as ẋ = dx/dt and the Euclidean length is written as

||x|| = (x⊤x)
1

2 . Superscript denote the reference frame
of the current vector, where n denotes the North East
Down (ned) frame, w denotes the wind frame, l denotes
the leader frame and v denotes the velocity frame of each
follower. The ned frame, assumed to be inertial, has its
xn-axis aligned towards the North, yn is pointing East
and zn is pointing towards the center of the Earth. The
wind frame is aligned with the wind vector, the leader
frame is defined through the orientation of the virtual
leader and the velocity frame is aligned with the velocity
vector of each of the followers. The rotation matrix is
defined as Rc

a ∈ SO(3) which rotates a vector from frame
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a to frame c, where its transpose (Rc
a)

⊤
= Ra

c , such

that (Ra
c )

⊤
Ra

c = Rc
aR

a
c = I, where I is the identity

matrix. The angular velocity vector is denoted ω
c
a,e which

represents the angular velocity of frame e relative frame
a referenced in frame c, and angular velocities between
different frames can be added as ωe

a,d = ω
e
a,c + ω

e
c,d. The

time derivative of the rotation matrix is found as Ṙc
a =

Rc
aS(ω

a
c,a) where the cross-product operator S(·) is such

that for two arbitrary vectors v1,v2 ∈ R
3 we have that

S(v1)v2 = v1 ×v2. The cross-product operator also holds
the properties that S(v1)v2 = −S(v2)v1, S(v1)v1 = 0

and that v⊤
1
S(v2)v1 = 0. Given v1 = [v1 v2 v3]

⊤
, the

cross-product operator is defined as

S(v1) :=

[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]

. (1)

2.2 Formation Flight

The problem of controlling a formation relative a particle
cloud that is moving with the wind can be decomposed into
two subproblems. The first problem is to design a a virtual
leader that tracks the patches in the wind frame, which will
be done through the guidance. The resulting trajectory can
then be written relative the ned frame which can be used
to generate desired trajectories for the followers such that
they maintain a rigid formation while tracking the high
particle density patches. The wind is assumed to have a
constant velocity in a fixed direction, such that Rn

w and
vn
n,w are known constants. From Fig. 1 we see that

pn
n,l = pn

n,w +Rn
wp

w
w,l (2)

vn
n,l = vn

n,w +Rn
wv

w
w,l (3)

ann,l = Rn
wa

w
w,l (4)

which produce the trajectory of the virtual leader relative
the ned frame. Desiring a rigid formation, meaning that
pl
l,f is a constant displacement away from the virtual

leader, the followers trajectories can be found as
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l S
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l S(ω̇
l
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l
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where ω
l
n,l and ω̇

l
n,l are the angular velocity and acceler-

ation of the virtual leader relative the ned frame. Since
the wind is moving in a constant direction, ωl

n,w = 0 and

it follows that ω
l
n,l = ω

l
n,w + ω

l
w,l = ω

l
w,l. Inserting (2)-

(4) into (5)-(7), and defining pn
d,i := pn

w,f , v
n
d,i := vn

w,f ,
and and,i := anw,f , the desired trajectory of the i’th follower
becomes

pn
d,i = pn

n,w +Rn
wp

w
w,l +Rn

l p
l
l,f (8)

vn
d,i = vn

n,w +Rn
wv

w
w,l +Rn

l S(ω
l
n,l)p

l
l,f (9)

and,i = Rn
wa

w
w,l +Rn

l S
2(ωl

n,l)p
l
l,f +Rn

l S(ω̇
l
n,l)p

l
l,f . (10)

3. GUIDANCE

Using sensor measurements of the particle density it is
possible to find the gradient ∇Pm towards the closest
patch of particles as shown in Fig. 2. We wish the uavs to
enter a circular holding pattern around the point with the
highest density, pm at a fixed radius, rd. The heading of
the uav is denoted χ, χd is the desired heading, λ is the
line of sight angle, φ is the angle between the tangent of
the circle and the look-ahead-distance L1, which is used
to smoothen the convergence to the circle. Proportional
Navigation (pn) is a very popular guidance law used for
tactical missile guidance systems. The pn guidance law for
intercepting a stationary target in the xy-plane is given by
Guelman (1971) as

aχ = NV λ̇ = −
NV 2 sin(χ− χd)

r
(11)

where N is the navigation constant, V is the total velocity,
r is the distance between the missile/uav and the target,

and λ̇ is the line of sight rate. This guidance law can be
modified to make the uav converge to a circle around a
given point as discussed in the work by Narayanachar and
Kristiansen (2012). Selecting N = 2, and using a constant



look-ahead-distance, L1 instead of r, the acceleration com-
mand becomes

aχ = −
2V 2 sin(χ− χd)

L1

. (12)

By studying Fig. 2 we see that χd = λ + π
2
+ φ where

φ = sin−1(L1/2rd). After inserting this, the acceleration
command which will make the uav enter a circular trajec-
tory around a maximum is given as

aχ = −
2V 2 cos(χ− λ− φ)

L1

. (13)

Similarly as in the xy plane, a guidance law for the altitude
can be chosen as

aγ = −
2V 2 sin(γ − γd)

L2

(14)

where L2 is another look-ahead constant, γ is the flight
path angle while γd is the desired flight path angle. Let
the reference heading rate and flight path rate be defined
as

χ̇r =
aχ
V

γ̇r =
aγ
V

(15)

which can be used as input to the first order filters

χ̈ = −
1

Tχ

(χ̇− χ̇r) (16)

γ̈ = −
1

Tγ

(γ̇ − γ̇r) (17)

to produce the second derivative of the heading and flight
path angle where Tχ, Tγ > 0. The angular velocity in wind
frame can be found as

ω
l
w,l=

[

0
γ̇
0

]

+

[

cos(γ) 0 − sin(γ)
0 1 0

sin(γ) 0 cos(γ)

][

0
0
χ̇

]

=

[

−χ̇ sin(γ)
γ̇

χ̇ cos(γ)

]

(18)

where the angular acceleration is found through differen-
tiation as

ω̇
l
w,l =

[

−χ̈ sin(γ)− χ̇γ̇ cos(γ)
γ̈

χ̈ cos(γ)− χ̇γ̇ sin(γ)

]

. (19)

A kinematic model of the virtual leader can now be defined
relative the wind frame as

vw
w,l =

[

V cos(χ) cos(γ)
V sin(χ) cos(γ)

−V sin(γ)

]

(20)

which can be differentiated assuming that the total veloc-
ity is constant resulting in the acceleration as

aww,l =

[

−V sin(χ) cos(γ)χ̇− V cos(χ) sin(γ)γ̇
V cos(χ) cos(γ)χ̇− V sin(χ) sin(γ)γ̇

−V cos(γ)γ̇

]

, (21)

and the rotation matrix from the leader frame to the wind
frame can be defined as

Rw
l =

[

cosχ − sin(χ) 0
sin(χ) cos(χ) 0

0 0 1

][

cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

]

, (22)

enabling the rotation from the leader frame to ned frame
to be found as Rn

l = Rn
wR

w
l .

3.1 Modeling the Particle Cloud

The guidance require the line of sight angle λ, and the
desired flight path angle γd which can be found by studying

the gradient of the particle cloud. A particle cloud contains
multiple patches with high density relative the surround-
ing air. To model the particle distribution a Gaussian
function is applied from each of the maximum points as

Pm,i =
1

2
A exp

(

−
1

σ2
||pw

w,l − pw
m,i||

2

)

(23)

where A is the amplitude, pw
w,l is the position of the virtual

leader, pw
m,i is the i’th maximum point, σ2 is the variance,

and the gradient of the Gaussian function is found as

∇Pm,i = −
A

σ2
(pw

w,l − pw
m,i) exp

(

−
1

σ2
||pw

w,l − pw
m,i||

2

)

.

(24)

Since there are multiple patches containing high density,
the gradient of the total attractive field is found as

∇Pm =
∑N

i=1
∇Pm,i, which can be used to find the line-

of-sight vector towards the closest maximum. Defining
[

∂Pm

∂x

∂Pm

∂y

∂Pm

∂z

]⊤

= ∇Pm

||∇Pm|| the line of sight angle and

the desired flight path angle are found as

λ = tan−1

(

∂Pm

∂y

∂Pm

∂x

)

− π (25)

γd = − sin−1

(

∂Pm

∂z

)

. (26)

These angles can then be inserted into the guidance
laws (13) and (14) providing the acceleration commands
which will make the virtual leader converge to a circular
trajectory around the maximum at a given altitude. After
converging to the circular holding pattern, one of the
uavs shall remain, while the other uavs go searching for
other maxima. This can be done by placing a repulsive
field, ∇Pr,i = −∇Pm,i at the maximum to cancel out the
attractive potential. By letting this repulsive field affect
all but the uav which remain, it will make the other uavs
go looking for other maxima. The exact position of the
maximum point can be found by using pw

m,i = pw
w,l +

rd
∇Pm

||∇Pm|| .

4. MODEL OF THE THE FOLLOWERS

Let the model of the follower uavs be given by the double
integrator

ṗn
n,f = vn

n,f (27)

v̇n
n,f = ann,f (28)

with attitude kinematics as

Ṙn
v = Rn

vS(ω
v
n,v) (29)

where ωv
n,v := [p q r]

⊤
and ||ωv

n,v|| ≤ ωmax where ωmax is
a bound on the angular rates. , and noting that the total
velocity in the velocity frame is aligned with the xv axis,
enables the model to be written as

ṗn
n,f = Rn

vv
v = Rn

v

[

V
0
0

]

(30)

v̇n
n,f = Rn

vS(ω
v
n,v)

[

V
0
0

]

+Rn
v





V̇
0
0



 . (31)



Let the control variables of the uav be defined as uv =
[

V̇ q r
]⊤

, then the acceleration can be rewritten as

v̇n
n,f = Rn

vBuv (32)

where

B =

[

1 0 0
0 0 V
0 −V 0

]

(33)

which has full rank as long as the total velocity is larger
than zero.

Remark 1. In order to make the system controllable with-
out angular singularities, we have exploited the properties
of the rotation matrix producing the angular velocities. If
we had used a similar model as for the virtual leader (21),
it would have been singular if the flight path angle had
been equal to ±π/2.

5. COLLISION AVOIDANCE

During the mission it is vital that no collisions occur and
a controller that ensures this will be derived based on
the artificial potential field method. This section is based
on the work by Oland and Kristiansen (2013) where the
resulting controller was applied to collision and terrain
avoidance for a formation of fixed-wing uavs. The position
of the i’th uav can be defined as pi := pn

n,f , and the
position of a j’th uav can be treated as an obstacle,
denoted po,j . The objective is to design a controller for
each of the followers, where we define ai := v̇n

n,f := ui

as the control signal in the ned frame, which then can
be transformed to the velocity frame for the individual
follower by inverting (32), giving

uv
i = B−1Rv

nui (34)

where ui is to be designed.

The controller which is derived in this section is based on
the artificial potential field method. The total potential
field consists of two types of potentials, an attractive
potential which will force the uavs to their desired trajec-
tories, and a set of repulsive potentials which will force the
uavs away from the other uavs. The combined potential
will make the uavs converge to their trajectories while
avoiding collisions.

Remark 2. The artificial potential field method has several
inherent limitations as discussed in Koren and Borenstein
(1991). When an obstacle is directly between a mobile
robot and its desired position, a local minimum will be
created. The mobile robot will then converge to a position
which is not its desired position, but will become stuck at
the local minimum. In the case of uavs where they are
treated as obstacles for each other, local saddle points will
arise, which may result in undesirable motion, but since
the uavs and the desired trajectories are nonstationary,
they will never become stuck at a saddle point.

5.1 Attractive Potential

The attractive potential for the i’th uav can be defined
using a paraboloidal and a conical potential as shown in
Siciliano et al. (2010) where

Pa =

{1

2
ka||pi − pd,i||

2 if ||pi − pd,i|| ≤ ra

ka||pi − pd,i|| otherwise
(35)

with the gradient of the attractive potential as

∇Pa =







ka(pi − pd,i) if ||pi − pd,i|| ≤ ra

ka
(pi − pd,i)

||pi − pd,i||
otherwise.

(36)

Here ka denotes the attractive gain while pi and pd,i

denote the current position and desired position of the
i’th uav. The radius ra denotes the boundary where
we switch between the paraboloidal attractive potential
(first) and the conical attractive potential (second). The
reason for this switching is to obtain a bounded attractive
force as well as to avoid the singularity of the conical
attractive potential when the uav is in its desired position.
By defining the radius ra = 1, the intersection between
the paraboloidal and the conical potentials is at the
unit sphere, and thus we obtain a continuous attractive
potential function for all pi ∈ R

3.

5.2 Repulsive Potential

The repulsive field for the j’th obstacle can be defined as

Pr,j =







1

2
kr

(

1

||pi − po,j ||
−

1

ro

)

2

if ||pi − po,j || < ro

0 otherwise

(37)

with its gradient as

∇Pr,j =







−kr(pi − po,j)

||pi − po,j ||3

(

1

||pi − po,j ||
−

1

ro

)

if ||pi − po,j || < ro

0 otherwise.

Here the repulsive gain is denoted kr, the position of the
j’th obstacle is denoted po,j and the radius ro denotes the
sphere of influence where the repulsive potential becomes
active.

5.3 Total Field

The total potential field is found as the sum of the
attractive field and repulsive fields

P = Pa +
M
∑

j=1

Pr,j (38)

which can be used to define a controller equal to the
negative gradient of the total field where the gradient is
defined as

∇P =

[

∂P

∂xi

∂P

∂yi

∂P

∂zi

]⊤

(39)

which will enable a uav to avoid obstacles and converge
to a desired position.

Remark 3. The attractive potential does not take velocity
into account, and thus it is similar to a simple P-controller
which will result in oscillations around its desired trajec-
tory. We have chosen to add the velocity feedback in the
reactive controller, but it is worth to mention that it can
be included directly in the attractive potential.

Remark 4. This controller does not take into account the
velocity and acceleration of other uavs, which must be
done in order to avoid collisions in a dynamic environment.

5.4 Controller

The controller is based on the work by Qu (2009) and
takes the velocity and acceleration of other uavs into
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account when calculating the control signal required to
avoid collisions and converge to its desired trajectory.

The controller is defined as

ui :=ai = ad,i − k

M
∑

j=1

∇2Pr,j(vi − vo,j)||vd,i − vo,j ||
2

− 2k
M
∑

j=1

∇Pr,j(vd,i − vo,j)
⊤(ad,i − ao,j)

− ξi(vi − vd,i)−∇Pa −

M
∑

j=1

∇Pr,j (40)

where ξi is a positive function that becomes zero in the
set Ωo and k > 0 is a constant and ∇2Pr,j is the Hessian
matrix and is given in Appendix A. Let the operational
set be defined as Ω ⊂ R

3, and two subsets as

Ωa = {pi ∈ Ω | ||pi − pd,i|| ≤ ra} (41)

Ωo = {pi ∈ Ω | ||pi − po,j || ≤ ro} (42)

where ra is the radius of the attractive set, ro the radius of
the obstacle set and the sets are illustrated in Fig. 3. In the
set Ω \ (Ωa ∪Ωo) the conic potential is active, producing a
bounded attractive force moving the uav towards the at-
tractive set Ωa. Once inside Ωa the paraboloidal potential
becomes active and forces the uav into its desired position.
If the uav enters the obstacle set, Ωo during its maneuver,
the repulsive potential will push the uav back to the set
Ω \ (Ωa ∪Ωo) from where it will continue towards Ωa. The
stability of the closed loop system is shown in Oland and
Kristiansen (2013) to be uniformly asymptotically stable
in the sets Ωa and Ω \ (Ωa ∪ Ωo); and uniformly stable in
Ωo meaning that no collisions will occur.

6. SIMULATION

Three uavs start with three arbitrary positions, marked
with square boxes as shown in Fig. 4. The followers have
the following positions relative the virtual leader: pl

l,f1 =

[0 0 0]
⊤
, pl

l,f2 = [−20 −20 0]
⊤

and pl
l,f3 = [−20 20 0]

⊤

which results in a triangular formation. Initially they
do not know where they are going, but by performing
measurements, they converge to their formation and follow
the gradient to the closest maximum which is located at
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(0,−200). After converging towards the first maximum,
Follower-1 and the Follower-2 continue searching for other
maxima, while Follower-3 remains in a holding pattern
around the first maximum point. The two uavs continue
with a reduced formation before they find the second
maximum at (200, 100), where Follower-2 remains while
Follower-1 continue to find the last maximum point at
(−200, 100). The final positions of the uavs at the end
of the simulation are shown with triangles.

By looking closely at Fig. 4 it can be seen that there
is chaotic movement before the uavs converge to their
trajectories, as well as when Follower-1 is moving away
from the second maximum. This is a result of the collision
avoidance method where the uavs avoid collision with each
other. The radius of the repulsive field has been defined to
be ro = 20m, which can be seen in Fig. 5, where no uavs
come closer than 20m.

Remark 5. Using a formation of uavs, 3D measurements
can be used to find the gradient toward the closest maxi-
mum. When Follower-1 is flying alone, it is assumed that it
has an observer which provides an estimate of the gradient.

7. CONCLUSION

In this paper a solution to the problem of real time
particle tracking has been presented. The result shows
that even though the uavs do not know where they are
going, they are able to find the patches with highest
particle density based on sensor measurements providing
the gradient of the resulting field. From the simulation it
is shown that the followers are able to track the virtual
leader without colliding with each other and converge to
circular holding patterns around the three high density
particle patches. The basic idea of using potential field to
guide an unmanned aerial vehicle to track particles, can
easily be extended to autonomous mapping of an area by
defining multiple points of interest. As the uavs pass close
to a given point, a repulsive field can be erected, forcing
the uavs to continue its mapping operation.
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Appendix A. HESSIAN MATRIX

With p̃ := pi−po,j = [x̃ ỹ z̃]
⊤
the Hessian matrix for the

repulsive field is found as

∇2Pr = kr

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]

(A.1)

a11 =
x̃2

||p̃||6
+

3x̃2

||p̃||5

(

1

||p̃||
−

1

ro

)

−
1

||p̃||3

(

1

||p̃||
−

1

ro

)

a12 =
x̃ỹ

||p̃||6
+

3x̃ỹ

||p̃||5

(

1

||p̃||
−

1

ro

)

a13 =
x̃z̃

||p̃||6
+

3x̃z̃

||p̃||5

(

1

||p̃||
−

1

ro

)

a21 =
x̃ỹ

||p̃||6
+

3x̃ỹ

||p̃||5

(

1

||p̃||
−

1

ro

)

a22 =
ỹ2

||p̃||6
+

3ỹ2

||p̃||5

(

1

||p̃||
−

1

ro

)

−
1

||p̃||3

(

1

||p̃||
−

1

ro

)

a23 =
ỹz̃

||p̃||6
+

3ỹz̃

||p̃||5

(

1

||p̃||
−

1

ro

)

a31 =
x̃z̃

||p̃||6
+

3x̃z̃

||p̃||5

(

1

||p̃||
−
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