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Abstract: A stochastic nonlinear model predictive controller (SNMPC) is designed for
automatic generator control of a proxy of the Nordic power system, and it is compared
with a multi-stage nonlinear model predictive controller (MNMPC). Both controllers are
scenario based, but originate in two different disturbance modeling paradigms; stochastic and
deterministic. A simulation study indicates that the two controllers behave similarly. The
MNMPC is however less exposed to infeasibility issues, and it also has better tractability than
the SNMPC. On the other hand, the SNMPC gives probabilistic guarantees for constraint
fulfillment; a feature whose practical implications are debatable.
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1. INTRODUCTION

Model predictive control (MPC) is a framework for ad-
vanced control that has its roots in optimal control, and
it is one of the few advanced control methods that has
made a significant impact on industrial control engineering
(Maciejowski, 2002). In short, the MPC solves a finite-
horizon optimal control problem (OCP) at each time step
and then implements the first instant of the solution in a
receding horizon manner.

The MPC relies on good knowledge of the system it
is controlling, and the system model is very important.
Full knowledge and 100% accurate models are however
extremely rare, and in practice the MPC must be able
to account for uncertainties and/or unmeasurable distur-
bances acting on the system. One way to systematically
address this issue is through robust MPC (RMPC), which
considers uncertainties that are assumed to be determin-
istic and lie in a bounded set (Mesbah, 2016; Bemporad
and Morari, 1999). The work on RMPC has been dom-
inated by min-max OCP formulations (Bemporad et al.,
2003; Scokaert and Mayne, 1998), and relaxations such
as tube-based MPC (Langson et al., 2004). The RMPC
is designed so that system constraints are fulfilled for all
possible disturbances within the prediction horizon, which
often can lead to conservative results. A practical approach
to achieve robust MPC which is not as conservative, is
multi-stage MPC. The multi-stage MPC is based on a
representation of the evolution of the uncertainty as a
scenario tree (Lucia et al., 2013), where the uncertainty
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is assumed to be discrete. The concept of future feedback
is also included by allowing different inputs for different
disturbance scenarios, reducing the conservativeness of the
robust approach (Lucia et al., 2013). Allowing feedback
in the MPC predictions results in what is often referred
to as feedback MPC Rawlings and Mayne (2009), and in
the presence of uncertainty feedback MPC is known to
be superior to nominal MPC, though resulting in a more
complex OCP (Rawlings and Mayne, 2009). An alternative
approach to implementing feedback MPC is optimizing
over control laws u = p(z), rather than control actions
(Rawlings and Mayne, 2009). This is used in e.g. tube-
base MPC. For the general nonlinear case, there are no
guarantees that the multi-stage MPC results in robust
constraints satisfaction for scenarios that are not included
in the scenario tree, but it has been shown to give good
results in practice (Lucia et al., 2013, 2014b).

An alternative to RMPC is stochastic MPC (SMPC),
where the uncertainties are considered to be of probabilis-
tic nature. The probabilistic description of uncertainties
are used to define chance constraints (Li et al., 2002;
Primbs and Sung, 2009) which enable systematic use of the
stochastic description of uncertainties to define stochastic
levels of acceptable closed-loop constraint violation (Mes-
bah, 2016), i.e. a small constraint violation probability
is allowed. Chance-constrained optimization problems are
hard to solve in general, and sample-based approximations
such as the scenario approach (Campi et al., 2009) have
been presented as tractable alternatives. In the scenario
approach only a finite number of uncertainty realizations
are considered, and the chance-constraint optimization
problem is approximated by replacing the chance con-



Af Frequency

AP, Produced power

APp Unpredicted power imbalance

AP;;. | Total power flow from the area to all other areas

H Inertia of the rotating masses

T;j Synchronizing torque coefficient between area ¢ and j

Ac Change in valve opening from csg

Aq Change in water flow rate from g¢gs

Tw Water starting time of the hydro turbine

Ay Factor that accounts for the different per-unit bases
in the turbine and generator

Ao Integral of the governor

A3 Valve opening of the main servo motor of the governor

Ty Time constant of the servo motor

T Time constant of the transient droop

r Transient-droop coefficient

p Constant-droop coefficient

Ac Saturated valve opening

Acr Reference point for valve opening

Aci J Reference point for valve opening in generator j in area @

a;. Participation factor for generator j in area @

Table 1. Definitions of symbols in Equation
(1). All variables are deviations from a given
operating point.

straint with hard constraints associated with the extracted
disturbance realizations only.

This work compares the performance of a stochastic non-
linear MPC (SNMPC) inspired by Campi et al. (2009) and
a multi-stage nonlinear MPC (MNMPC) similar to the
robustified NMPC in Ersdal et al. (2016b), for automatic
generator control (AGC) of the Nordic power system.
AGC is currently facing challenges related to stability
and reliability due to more intermittent energy resources
in the system as well as an increasing power demand,
and during the last decade there has been an increasing
interest in applying MPC for AGC, see for example Venkat
et al. (2008); Shiroei et al. (2013); Ersdal et al. (2016a,b).
SMPC has also been investigated as a method for reserve
scheduling for power systems with wind power generation
(Rostampour et al., 2013). In this work, the uncertainty
of the model is dominated by the fluctuations in produced
wind power, and the aim is to design an NMPC for AGC
which is robust against these fluctuations.

The remainder of this paper is organized as follows. In
Section 2 the system model is presented before the SNMPC
and the MNMPC are discussed in Section 3. In Section
4, the details of the case study are given and the results
from simulations on the proxy model are presented. The
concluding remarks are summarized in Section 5.

2. MODEL DESCRIPTION

In large, complex power systems, such as the Nordic power
system, one important control aspect is frequency control
(FC). This is a term applied to describe the continuous
operation of keeping the frequency of a power system
stable, which is strongly connected to the balancing of
produced and consumed power. It is vital for the power
system that this power balance is maintained and that
the produced power matches the consumed power at all
times, if not the generators could loose synchronism and
the power system would collapse.

AGC is the part of FC that automatically controls the
generator production set points, and in Ersdal et al.
(2016a) an NMPC is designed for AGC of the Nordic
power system. This is extended in Ersdal et al. (2016b) to
a robustified NMPC which is designed to be more robust
against fluctuations in produced wind power, by including
worst-case scenarios of these. In Ersdal et al. (2016a,b) the
NMPC is based on a simplified model, while tested on a
more rigorous and realistic proxy model. In this work, the
same models will be used, however, only the equations for
the NMPC prediction model (PM) are repeated here. The
interested reader is referred to Ersdal et al. (2016b) for
details of the SINTEF model, which is used as a proxy for
the physical system.

In the Nordic power system the hydro turbines account for
nearly 100% of the AGC, and so only the hydro turbine
dynamics are included in the model. Other turbines are
included as constant power inputs. The PM is divided into
N areas, and the equations for each area ¢ are as follows
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where i = 1,--- | N, and the variables and parameters are

explained in Table 1. The controllable input to the system
is the valve-opening setpoint for each area Ac; and the
participation factor for each generator j in area i; . The

disturbance acting on the system is the unpredicted power
imbalance for each area AP},.
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2.1 System disturbance

The only disturbance we consider is that of the unpre-
dicted power imbalance AP},. The main components of
the unpredicted power imbalance with regards to FC is the
imbalance in production and consumption from intermit-
tent generators and loads, respectively. When dealing with
power systems including a certain amount of wind power,
such as the Nordic system, one can for simplicity assume
that AP} is dominated by the fluctuations in produced
wind power. If, in addition, it is assumed that the majority
of wind power is situated in area p, APp of all the other
areas can be neglected, and the model is affected by one
single disturbance APp = APP. With the Nordic network
in mind, Denmark and South Sweden contribute with



about 80% of the total wind power production (Statnett,
2012).

The complete model is thus given by the nonlinear model

&= f(z,u,w) (2)
[Af" Aq" A Agy AP, uw = [Ac, af],
w=APp,i=1,---,N,j=1,-- ,mz, and mfl is the
number of hydro generators in area i. The system is also
subjected to both input and state constraints

g(x,u) <0 ()
including generation constraints, generator rate con-
straints, and constraints on the tie-line power transfer.

where © =

3. CONTROLLER
3.1 Disturbance modeling, deterministic vs stochastic.

When modeling a disturbance influence on a system,
it is common to differentiate between deterministic and
stochastic modeling. A system disturbance w is in general
defined by an admissible set of disturbance signals w € W,
and the difference between deterministic and stochastic
modeling is whether or not one attempts to assign prob-
abilities to the elements of the set W (Levine, 2010).
With a deterministic disturbance model all realizations in
W are bounded and considered equally likely to occur,
while they are appointed different probabilities P[w] and
are not necessarily bounded when applying a stochastic
disturbance model.

The disturbance acting on the system presented in Section
2 is the unpredicted power imbalance w = A Pp, which is
assumed to be dominated by fluctuations in produced wind
power in area p. For each wind farm in area p, the probabil-
ity space of the future variation from the predicted power
output can be estimated (Holttinen, 2004), and from this
one can find the probability space of the future variation
from the predicted power output for all wind farms in area
p combined, i.e. w € W, see Fig. 2. The estimate of W is
primarily based on weather prognoses, which are stochastic
by nature through the use of ensemble forecasting and
model output statistics (Barry and Chorley, 2003). Hence,
it would in many ways be natural to assign probabilities to
the elements of W. However, it is not necessarily the best
choice when taking other aspects into account, and in this
paper two scenario-based approaches are compared, the
SNMPC that is based on a stochastic disturbance model,
and the MNMPC that is based on a deterministic distur-
bance model. The aim of this paper is to compare the two
approaches, and discuss their strengths and weaknesses in
view of their performance in the case study.

3.2 Stochastic NMPC

Given a system such as (2), if the disturbance signal w is
modeled as a stochastic disturbance with probability space
W and probability distribution P[w] over W, then it makes
sense to replace hard constraints with chance constraints

Puwlg(x,u) <OV ] >1-0 (4)
where o € (0,1) is the admissible constraint violation pa-
rameter, t = 1,--- , T, T is the optimization horizon, and

P denotes the dependency of g (z,u) on the stochastic

signal w. It basically states that the constraints are allowed
to be violated with a probability no higher than 1 — o.

In scenario-based approaches to stochastic NMPC (Campi
et al., 2009), S independent identically distributed samples
of w (wh,---,w?) are used to approximate the chance
constraint, where only the constraints corresponding to
the extracted disturbance realizations are considered. The
result is the SNMPC which includes a standard OCP with
a finite number of constraints

s
mgnz J (:z:j,u) (5a)
j=1
i/ — f (27, u,w’) =0 System model (5b)
g (z7,u) <0 Constraints (5¢)
where j = 1,...,5, 7 and w’ are the state and distur-

bance associated with scenario j, u the input, and J (27, u)
the following objective function.

T
Jﬁhoa/aﬂ@ﬂ+ﬁﬁuﬁ (6)
t=0

For convex OCPs, the scenario approach can be used to
find the number of scenarios needed to guarantee that
the optimal solution to (5), u*, satisfies all constraints
except a user-chosen fraction that tends rapidly to zero
as S increases (Campi et al., 2009). The OCP (5) in the
SNMPC has a quadratic objective function and linear state
and input constraints. The constraints imposed by the
system model (5b) are however nonlinear because of the
saturations in (1), hence the OCP is non-convex. It can
however be argued that this is a modest nonlinearity, and
we will apply the theory in Campi et al. (2009) as if we
have a linear model and hence a convex OCP.

Generating scenarios  The scenarios used in the SNMPC
are found by applying random numbers to generate S
independent and identically distributed disturbance real-
izations w/(t) = APL(t), j=1,...,S,t=0,...,T using
the method in Cecilio et al. (2013) with the probability
space W as input. This method results in an unknown
probability distribution P, however, using the method
of Campi et al. (2009) there is no need to know W or
P explicitly, only S realizations fulfilling this probability
distribution are needed. When selecting the number of
scenarios S, Theorem 1 in Campi et al. (2009) states that
given the number of optimization variables n,,, if S fulfills

S > % (mé + nu> (7)

the resulting solution to (5), u*, will satisfy the chance

constraints (4) with a probability no smaller than 1 — g,
except for at most an e-fraction. Theorem 1 in Campi
et al. (2009) is developed with one common input u for
all scenarios, and so w is equal for all j in the SNMPC (5).

3.8 Multi-stage NMPC

In Ersdal et al. (2016b) an NMPC for AGC of the Nordic
power system which is robustified against fluctuations in
produced wind power is presented. It is a special case of
the multi-stage NMPC (MNMPC) presented in Lucia et al.
(2013), and it is also inspired by the min-max feedback
MPC presented in Scokaert and Mayne (1998). In both



Prediction horizon

Fig. 1. Scenario tree representation of the discrete uncer-
tainty evolution for multi-stage NMPC (Lucia et al.,
2013).

Lucia et al. (2013) and Scokaert and Mayne (1998) the
concept of future feedback is included in the MPC. The
idea is that the future control inputs can be adapted to
the future disturbance measurements/estimates, and that
only decisions based on the same information must be
equal (Lucia et al., 2013). A scenario tree is presented in
Lucia et al. (2013), where the uncertainty is represented
by discrete scenarios and the branches are combinations of
values from the assumed extreme values of the disturbance,
see Fig. 1. If future feedback is not included, as is the case
with the SNMPC, the input u would have to be equal for
all disturbances and state evolutions in the scenario-tree.
With a discrete disturbance representation, as depicted in
Fig. 1, this means that

1 2 3

2 1
Up = Uy = U,

— 2 _ _.9
Uy =Uy = = Uj.

With the MNMPC, however, only the inputs originating
in the same state must be equal, i.e.

1_.2_ .3 1_.2 3
Uy = Ug = Ug, Uy = Uy = Uy,
4 _ . 5_ .6 7 _ .8 9
Uy = Uy = Up, Up = Up = Uy

Hence, the future inputs are allowed to change in accor-
dance with new information received through feedback.
This increases the flexibility of the NMPC and reduces
the conservativeness (Lucia et al., 2013).

The robustified NMPC from Ersdal et al. (2016b) is from
now on referred to as the multi-stage NMPC (MNMPC),
and it is a multi-stage NMPC where three disturbance
realizations are considered; one following the positive
border of W, one following the negative border of W,
and one neutral in the middle. Compared to the scenario
tree in Fig. 1, this means that three paths are included:
wt = {wh, wiwl, ..}, w? = {wd,wiws .. .}, and w? =
{wd, w}, w3, ...}. These corresponds to wP, w?, and w"
in Fig. 2. In accordance to Lucia et al. (2013), the first
element of u must be equal for all three scenarios (ufj =
ug = uf), after this, they are free to vary in manners

optimal for their designated system states, see Fig. 2.

The OCP solved at each time instant in the MNMPC is
then

>
\

At =0 At

Fig. 2. Sketch of how the MNMPC works. For simplicity
of illustration, u is considered to be scalar.

; J 4
B%rjl Z J (27,47) (8a)
j={p,zn}
i/ — f (27,4’ ,w’) =0 System model (8b)
J a0

gz(a: ’up) s 2 } Constraints (8c)

Upg = Up = Up
where j = {p,z,n}, 2/, w’/, v/ the state, disturbance

and input associated with scenario j, and J(z7,u’) the
following objective function.

T
J (27, u) :/ T QIxd 4 T RIWI dt 9)
t=0

4. CASE STUDY

The SNMPC is tested on the SINTEF Nordic power
system test bed from Ersdal et al. (2016b) and compared
against the MNMPC. The PM in Section 2 is chosen
to have 2 areas, hence N = 2. One area covers South
Sweden and Eastern Denmark (area A), and the other
covers Norway, North Sweden and Finland (area B), and
according to the assumptions made in Section 2, APE =0
and APp = AP‘S. There is also a tie line between the
two areas which represents the total power flow between
them, and has a positive direction from area B to area
A. The extended Kalman filter (EKF) presented in Ersdal
et al. (2016b) is also applied here to close the control loop.
The proxy system and both NMPCs were implemented in
Python using Casadi, where the continuous time OCPs
(5) and (8) are discretized and transformed into nonlinear
programs. Collocation has been used for discretization,
and the OCPs are solved using the interior point optimizer
IPOPT (Wéchter and Biegler, 2006).

The SNMPC-OCP (8) has 32 optimization variables n,,,
and in order to obtain acceptable probability results in
(7), the number of scenarios should approach S = 1000.
With the hardware and software used in this work, such
a large number of scenarios imposes computer memory
issues that are difficult to handle. Computational issues
when implementing stochastic NMPC are not unexpected.
In Rostampour et al. (2015), for example, it takes more
than 5 days to solve the OCP with S = 100, while the
sampling time of the NMPC is 15 s. We therefore limited us
to S = 65. It is seen through simulations that the behavior
of the SNMPC in the test case does not change much from
S = 10 to S = 65, and so it is assumed that for the
purpose of comparison with the MNMPC, the simulation
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Fig. 3. Case A: Frequency deviation for MNMPC and
SNMPC.

results from S = 65 can be used as a representation of a
stochastic NMPC scheme with more realistic values for
and e.

In order to compare the two controllers, a control perfor-
mance measure (CPM) is applied, which is calculated in
the following manner: First, Af is averaged over windows
of 30 s to filter out fast fluctuations. Second, the CPM
is found by again averaging Af over all these windows.
This CPM is inspired by the CPS1 and CPS2 performance
criteria used by the North American electric reliability
corporation (NERC) (Gross and Lee, 2001).

4.1 Tuning the NMPC

The main tuning variables for the NMPCs are the pre-
diction horizon T and the objective function J(-). The
objective function for both the SNMPC and the MNMPC
is set to

J (27, u?) :/ 2T Qi) + T RIWI dt (10)

t=0
For both the SNMPC and the MNMPC, @ is real, sym-
metric and positive semidefinite, while R is real, sym-
metric and positive definite. The non-zero elements of Q)
are chosen so that the deviation in overall system 2fre—
1
quency is punished Ersdal et al. (2016b): ¢11 = 7(1{1}17H2)2’
H2)? 1772

466 =V (riypzzs d16 = d61 = 7%7 where y = 10°.
The matrix R is set to R = diag (nMbase), where Mmpase
is a vector containing the hydro generators’ base rating,
and n = 0.1. For the MNMPC QP = Q™ = 0.1Q* in
order to place more emphasis on deviations in z*. The
three systems are all punished equally when it comes to
deviations in input: R* = RP = R". For the SNMPC all
scenarios have the same @ and R.

The control horizon T is 3 minutes for both NMPCs,
a decision based on a compromise between system time
constants and complexity, and the time step of the NMPCs
is 10 s in order to match the control signal dispatching in
the system.

4.2 Simulation results

Case A Both the SNMPC and the MNMPC are simu-
lated with a disturbance w = w,, see Fig. 2, and a maxi-
mum transfer limit from area B to area A at APje mazr =
2000 MW. The resulting A f and APy, can be seen in Fig.
3 and 4. They show that the resulting frequency deviation
and tie-line power flow are very similar in the two cases.
Both controllers bring the frequency back to 50 Hz while
keeping a clearance to the tie-line limit of 2000 MW in case
of new disturbances. This is supported by the CPM given
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Fig. 4. Case A: Tie-line power flow for MNMPC and
SNMPC.

Table 2. CPM and average optimization time
T,pt for Case A.

Controller CPM (-10_5) Topt
Multi-stage  11.18 1.98 s
Stochastic 11.23 40.18 s
Difference +0.5% +1910%

in Table 2. It is assumed that the similarity in behavior
will increase concurrently with .S, which makes sense as
wP and w" define the boundaries for W and hence for the
scenarios w?. When the number of scenarios S is increased,
so will the scenario’s coverage of W, resulting in a SNMPC
which must take into account disturbance scenarios similar
to w™ and wP. The SNMPC will also naturally place more
emphasis on the average disturbance scenario through a
higher scenario density near the center of W, while the
MNMPC does the same by applying a higher weight to
@™ in the objective function.

However, as seen in Fig. 3 and 4, the SNMPC results in a
more “noisy” system behavior than the MNMPC. There
are two main reasons for this. First of all, the scenarios
used in the SNMPC fluctuate more than the smooth
disturbance scenarios used in the MNMPC. These high
frequency fluctuations will excite the fast system dynamics
in the predictions, resulting in a more fluctuating and con-
servative controller. Secondly, the fact that the SNMPC
has one common optimized input for all scenarios forces
the input to fluctuate in order to fulfill system constraints
for all scenarios, which again excites the dynamics of the
actual system.

Case B In Case B the transfer capacity on the tie line is
changed so that the transfer window is more narrow than
in Case A. The limits are now set to APije min = —100
MW and APicmar = 1000 MW, resulting in a transfer
window of 1100 MW. Fig. 5 shows the predictions associ-
ated with wP and w™ from the MNMPC-optimization at
t = 0, and Fig. 6 shows the predictions associated with
two of the disturbance realizations from the last attempt
at solving the SNMPC-optimization at ¢ = 0.

In this case, the SNMPC was not able to find a feasible
solution, and the reason for this is illustrated in Fig. 6.
It shows that the SNMPC is simply not able to find a
common input which fulfills the system constraints for all
disturbance scenarios over the entire prediction horizon.
Up until approximately 2.5 minutes into the prediction
horizon, the tie-line power transfer associated with w?3!
and w® are kept at, or within, the transfer limits by
keeping the total input relatively low. After this, however,
it seems that some adjustments are to made, and the input
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Fig. 6. Case B SNMPC: Predicted input and tie-line power
flow. A zoomed picture showing that AP violates
the upper limit.

is increased, likely as an effort to keep AP%i within the
lower transfer limit. This in turn causes AP};) to increase,
and violate the upper transfer limit, as seen in the zoomed

square of Fig. 6(a).

The MNMPC is on the other hand able to find a feasible
solution, and even though both AP],  and AP, stay
at the limits, they never violate them. Fig. 5(b) shows
how the inputs associated with wP and w" are free to
vary after the first time steps, and this is the reason why
the MNMPC is able to find a feasible solution while the

SNMPC is not.
4.8 Discussion
The benefit of the SNMPC is clearly the stochastic guaran-

tees for constraint fulfillment given by Theorem 1 in Campi
et al. (2009). With S = 1000, it would be guaranteed that

with no probability smaller than 0.99, u* would satisfy
all system constraints for all w € W except for a small
fraction of them whose probability is smaller than or equal
to 0.07. These are theoretical guarantees which cannot be
made for the MNMPC. They are however made under
unrealistic assumptions such as perfect prediction model,
and the practical implications are therefore arguable. It
is the authors’ opinion that the constraints of the control
problem presented in this paper are of such a nature that
the practical difference with respect to constraint fulfill-
ment is not prominent. However, it should be mentioned
that the SNMPC does have the advantage of freedom to
tune the conservativeness through the choice of 1 and
(and hence S), which is not as easy for the MNMPC.

There are also some issues with the tractability of the
SNMPC as S increases. The MNMPC considers much
fewer scenarios than the SNMPC, and therefore solves
a much smaller OCP. This is reflected in the maximum
optimization time in Case A, which was 2.1 s and 59.8
s for the MNMPC and the SNMPC, respectively, with an
average optimization time of 2.0 s and 40.2 s. If a successful
simulation of SNMPC with .S = 1000 could be conducted,
the optimization time would increase even further, and
with a time step of 10 s, this means that the MNMPC is
able to run in real time, whereas the SNMPC is not. It
can be argued that some of these tractability issues can be
resolved using more memory etc., however, the MNMPC
will still solve the OCP in less time.

Another issue is the feasibility and recursive feasibility
of the OCP. For both the MNMPC and the SNMPC
there are no guarantees for neither feasibility nor recur-
sive feasibility. However, in the MNMPC the optimization
variable u for each disturbance realization {w?, w?,w"}
only needs to be equal for the first instant, before they
are free to do what is optimal for their associated sys-
tem states {z*, 2P, 2"}, whereas for the SNMPC wu is
equal for all disturbance realizations and their associated
system states. This complicates matters for the SNMPC
with regards to feasibility, as seen in Case B. When the
scenarios included in the SNMPC results in diverging
system behavior and thereby diverging inputs needs, it
becomes increasingly difficult as S increases to find one
common input to satisfy them all. It could be argued that
feedback could be included in the SNMPC as well, this
would however increase the already prominent tractability
issues. If each of the scenarios of the SNMPC were to
have their own input, the size of the OCP would increase
substantially. In addition, since Theorem 1 from Campi
et al. (2009) is developed with one common input for all
scenarios, it may not hold if feedback was included. When
it comes to recursive feasibility, the MNMPC results in
a standard, nominal NMPC, and recursive feasibility can
be guaranteed using classical methods such as terminal
constraint regions which are control invariant (Maiworm
et al., 2015), provided that such terminal ingredients can
be calculated a priori. In the general nonlinear case it is
however very challenging to find the necessary terminal
ingredients, and if they can be found, they often lead to
overly conservative control laws (Lucia et al., 2014a).

An important strength of the SNMPC is the fact that the
number of scenarios S necessary to achieve probabilistic
guarantees, is independent of the number of uncertainties



included in the problem. This means that if the uncer-
tainty of produced wind power would enter the power
system in more than one area, the number of S would
not increase. The only thing that would change is the
way these S scenarios are generated. With the MNMPC
however, the scenario tree would include many more sce-
narios, and finding the worst case disturbance scenario
would be much more difficult. In this work, there is only
one disturbance acting on the system, so this feature of
the SNMPC is not displayed.

The MNMPC and the SNMPC are based upon two dif-
ferent disturbance modeling paradigms; deterministic and
stochastic. And even though it could be argued that it is
intuitive to view the future variation from the predicted
wind-power production as stochastic, the robust control
issue in this paper is mainly handling the worst case
disturbance, since handling of the worst-case disturbance
implies that less severe disturbances can be handled as
well. The case study presented in this paper illustrates
that the SNMPC and the MNMPC have some similarities
in practice, however, the MNMPC is less conservative and
less likely to encounter feasibility issues because it takes
into account feedback in its predictions.

5. CONCLUSION

This paper presents a stochastic NMPC (SNMPC) for fre-
quency control of the Nordic power system, and compares
it with the multi-stage NMPC (MNMPC) presented in
Ersdal et al. (2016b). The nonlinearities of the SNMPC
are very modest, and the theory on stochastic assurance
of constraint fulfillment from Campi et al. (2009) is used as
if the optimal control problem of the SNMPC was convex.

Simulations on a proxy of the Nordic power system show
that the SNMPC and the MNMPC behaves similarly,
and it argued that the SNMPC and the MNMPC share
some properties in practice. However, the MNMPC does
not give stochastic guarantees for constraint fulfillment,
such as the SNMPC. The practical consequences of this
are unclear, especially given that these guarantees do not
take into account other unknown disturbances and model
errors. On the other hand, the MNMPC is less likely to
encounter infeasibility, and there are also tractability and
real-time issues with the SNMPC which are not seen in
the MNMPC.
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