UiT Faculty of Science and Technology
Department of Computer Science

THE ARCTIC
UNIVERSITY
OF NORWAY Data management platform for citizen science education
projects
Nina Angelvik

INF-3990 Master’s Thesis in Computer Science, May 2018

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
F11000TETrnenrrieieririileliiiilrieiel lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIGIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
IIIC!ca!IIIIIIIIIIIIIIIIIIIIII LI0T070 000000000 0000007000000 702qiqiqiqairenarqaerenenenireninenen

IIIIIIIIIIIIIIIIIIIII IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:
§~§
B
~
B
~
v
~
-
~
~
~
~
~
~y
~
-
~
~
~
-
~
-~
~
-
~
~
~
-~
~
-~
~
~
~
-
~
-~
~
g
~
-~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
“~

J
i 111 101 I l
odbaaraedbbbiaroiny I IMIMIINININIANINS Illllllllllllllllllllllll ll Illlllllll e

1

N
N
~
~
~
-
~
~
~
~
~
~
N
~
~
-y
S
~
~
~
~
N
S~
~
~
~
-~
L
~
~
~
~

AN RRR RN ANV llllllllllll 40
verbaarrrdiaiinoy I IIIMIMINMNMMIMINMIMIMNMIMMININnn llllll ” ll

RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllll aunnng

veaaaaaareair MMM IR llllllllllllllllllllllll winn
ARIA ey il l 144 lllllllllllllllllllllll"
l 'llllllllllllllllllllllllll

qrraaaaaannnnnnnnnnnd
Wiy il llll

-

quraaananinininininen
AR RRaRaRaar 2NN 'lllll l'll'lllll ll'll'llllll'l 'lllll (4 lllll (A lllll llllllll'll lllllll'll"

[/

PO00000 J00 0000000000000 00000000000000000000000 0000000000000
AA0QRY 2000 00001
LY l""'""""""""""""""""'"'""'""'"'""'"""""""""""' LLLLLLILA
IAA00r 20000000000000000004. LLLLL] ANQR000000000 LLLLL] LILLL] 'l'l"""'l"
AL l'""""""""""""""""""""""""""""" """"" """' "

1AqNt 000000000000 0000000000000000000000000R0R0R0R0RARRRARARARARNRNRARARAGNRRRNRNNANAAS
LU """"""'"""""""""""""""""""""""""""""""""""

w l'""' " Serenany
17 J00000000000000000000000000R 000000000 RARARARARARARARRNNNARARARANNNARARARRINRARAGAIRNGNNNGAGNGNI
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

This thesis document was typeset using the UiT Thesis IATEX Template.
© 2018 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“It always seems impossible until it’s done.”
—Nelson Mandela

Abstract

The air:bit project is a computer science education project that we developed
in 2016 for use in North-Norwegian upper secondary (videregdende) schools.
Students build and code their own air quality sensor kits (air:bits), before
collecting air quality data in their local areas. They create their own air qual-
ity related research questions, which they answer by analyzing the collected
air:bit data in context of other air quality data sources. The task of managing
such datasets is too complex for such an introductory project and requires a
specialized service.

This thesis describes the air:bit platform, a scalable and cloud-based data man-
agement platform for citizen science education projects. It provides students
with a web application for storing, exploring, visualizing and downloading
air quality data from air:bits and other data sources. It processes, stores and
manages the air:bit data in the Google Cloud Platform, that provides an elas-
tic scaling of storage and computational resources, and in addition simplifies
managing the backend.

In 2018 the air:bit platform was used by 174 students from 11 school classes
across Northern Norway. The students successfully built and programmed 62
air:bits and they uploaded 222 air:bit data log files to the air:bit platform,
comprising 481,186 air quality measurements. We demonstrate the air:bit
platform’s ability to scale with regards to computational resources and that the
latency of data uploads and queries is good enough for this purpose. We also
provide the cost of processing and storing air:bit data in the cloud. The air:bit
platform uses, on average, 30 seconds to verify and insert data log files for
one week of per-minute measurements, and less than 2 seconds to process and
retrieve the same data for visualization. The total cost of the air:bit platform
is $211 per month or $1.20 per student.

We believe the air:bit platform is useful not only for the air:bit project, but also
for other education projects. It can be used by air quality related citizen science
projects and the open database provides street-level air quality data that can be
used in other analyses. The air:bit platform is online at airbit.uit.no and is open-
sourced at github.com/fjukstad/luft and github.com/ninaangelvik/luft.

http://airbit.uit.no
https://github.com/fjukstad/luft
https://github.com/ninaangelvik/luft

Acknowledgements

First I would like to thank my advisor, Associate Professor Lars Ailo Bongo,
and my co-advisor Bjgrn Fjukstad for their continous motivation and guidance
during the course of this project and the work related to the SIGCSE 2018 SRC
poster submission.

Further I would like to thank the air:bit team: Bjgrn Fjukstad, Julianne
Iversen, Margaret Dalseng, Fredrik Rasch, Morten Grgnnesby, Hedinn Gun-
hildrud, Maria Wulff Hauglann, Ken-Arne Jensen, Kai-Even Nilssen, Jon Ivar
Kristiansen and Pontus Aurdal. And the collaborators: Sonja Grossberndt,
Thomas Olsen, Juan Carlos Aviles Solis, Liv Ragnhild Hov and Geir Sagelv. For
creating such an exciting project, for sharing your ideas and your knowledge,
and for letting me be a part of it all. And to the teachers and students of the
participating school classes: Thank you for bringing the project to life.

Then I would like to thank the Department of Computer Science and the
School Laboratory for funding my poster presentation at SIGCSE2018. I am
truly grateful.

To my fellow classmates: The past five years have been hard, but they would
have been impossible without you. Thank you.

To my guys in Ai23: Einar Holsbg, Morten Grgnnesby and Bjgrn Fjukstad.
Thank you for your kindness and encouragement, and for the warm welcome
to your office.

I would like to thank my family, for always encouraging me to do my best.

Finally, to my girlfriend Hanne Bragmo: Thank you for your love and support.
You are the raisin to my oatmeal.

Nina, May 2018.

Contents

Abstract iii
Acknowledgements \
List of Figures ix
List of Tables xi
List of Abbreviations xiii

1 Introduction 1
1.1 Problems with existing data platforms 3
1.2 Our solution: the air:bit platform 4
1.3 Use of air:bit platform in high schools 4
1.4 Contributions oL 6
1.5 Outline 6

2 Background 7
2.1 Airpollution 7
2.2 Theprototypeair:bit. 8
2.3 The prototype backend web service 10
2.4 Pilot frontend service 10
2.5 The air:bit - current version L. 11
2.6 The air:bit platform educational resources 12

3 Architecture 15
3.1 The air:bit web application 15
3.2 Frontendwebserver 16
33 Backend 16

4 Design and implementation 17
4.1 Frontendservice it 18

4.1.1 The air:bit web application 18
4.1.2 Frontendserver 23

Vil

Vil CONTENTS

4.2 air:bit backend data management system 23
4.2.1 Cloud Storage, 23

4.2.2 CloudPub/Sub. 26

423 CloudSQL 26

4.2.4 DataprivaCy oot 27

4.2.5 air:bit backend data processing 28

426 AppEngne. 30

5 Air:bit education project 33
5.1 air:bit project schedule 34

6 Evaluation 37
6.1 DatalLogUploadLatency 38
6.2 DataQuerylLlatency 41
6.3 GCPResourceUsage oo v v i v v 44
6.4 GCPOperation Costo 45
6.5 GCP Scaling Resource Usage 46
6.6 GCPScalingCosto... 50

7 Related work 53
7.1 luftdaten.info, 53
7.2 Hackair. 54
7.3 PlumelLabs., 55
7.4 ResearchKit and ResearchDroid 56

8 Conclusion 59
9 Future Work 61
9.1 Data query optimization 61
9.2 Monitoring the backend 62
9.3 Expand integration with external sources 62
Bibliography 63
Appendices 69
A air:bit Poster 69
B air:bit Paper 73

C Source Code 81

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4

2.5

3.1

4.1
4.2

4.3

4.4

4.5

4.6

4.7
4.8

4.9

Map with air:bit measurements collected in Bodg in March

Charts visualizing the levels of PM10 and PM2.5 (left), tem-
perature (middle) and humidity (right) in March 2018 based
on collected air:bitdata.

The prototype air:bit.
Data visualization in the protype web application.
The currentair:bit.
The students are provided with detailed instructions on how
to build their air:bits. o0,
Informative lectures are filmed and posted to the air:bit web
application. e

The air:platform architecture.

The air:platform design.
The air:bit web application provides a simple upload interface
that also includes data format validation.
With the air:bit web application data exploration interface,
the students can query air quality data from the backend and

Charts visualizing the levels of PM10 and PM2.5 (left), tem-
perature (middle) and humidity (right) in Bodg in March
2018 based on collected air:bitdata.
With the live data exploration interface, the students can view
data collected within the past 24 hours.
air:bit backend design.
The air:bit database contains two tables, one for storing data
log file metadata and one for storing air:bit measurements. .
The GCP Cloud Console Dashboard, providing us with an in-
sight into the services used by our application.

iX

11
12

13

13

16

19

20

21

21

22

22
25

27

5.1

6.1

6.2

6.3

6.4

6.5
6.6

6.7

6.8

6.9

7.1

7.2

LIST OF FIGURES

Distribution of students and air:bits by area. 34

The size distribution of stored data log files in the backend
database, for files uploaded from February through April 2018. 38
The average upload time in minutes for the two synthetic
datasets, including the maximum and minimum upload time

for each number of parallel uploads. 39
The upload time for each of the six benchmark runs for the
717kBdataset. 40
The upload time for each of the six benchmark runs for the
32MBdataset. 41
Average query time for each of the six queries. 43
The actual student query latency in April 2018, retrieved from
the GCP Cloud Console tracing tool. 44
The size distribution of successfully parsed and inserted data
log files per month from February through April 2018.. . . . 47
The distribution of air:bit database entries per area. 48

The App Engine instance counts in April, displaying the num-
ber of active App Engine instances run throughout the month. 49

The luftdaten.info particulate matter map. By clicking one of

the coloured hexagons, a more detailed view (to the right) is

provided. L 54

The Flow air quality tracker. Source: https://plumelabs.com/en/press. 56

List of Tables

4.1 The RESTful interface of the frontend web server. 24
4.2 The RESTful interface of the air:bit backend system. 28

6.1 The number of active worker instances during the six bench-
mark runs for the 717kB dataset. An increase in workers dur-
ing the runs is denoted by a dash between the lowest and
highest number of active instances. 39
6.2 The number of active worker instances during the six bench-
mark runs of the 3.2MB dataset. An increase in workers dur-
ing the runs is denoted by a dash between the lowest and

highest number of active instances. 41
6.3 The six data queries used to measure the air:bit platform
querytime.o e e 42

6.4 The monthly resource usage of the default App Engine in-
stances and the Cloud SQL database instance from February

through April 2018. 44
6.5 Billing rates for App Engine instances located in Belgium. . . 45
6.6 Billing rates for the db-n1-standard-1 Cloud SQL instance. . 45

6.7 The monthly costs of the default App Engine instances and
the Cloud SQL database instance from February through April

2018. . . e 46
6.8 The number of successfully parsed and inserted data log files

per month from February through April 2018. 47
6.9 Upload and data query statistics from April 2018. 48
6.10 The number of scaled App Engine core hours from February

through April 2018., 49
6.11 The number of scaled App Engine GB hours from February

through April 2018. 50
6.12 Total backend cost. 51
6.13 Cost related to scaled core hours (highlighted in bold). . .. 51
6.14 Cost related to scaled GB hours (highlighted in bold). 52
6.15 Total cost of scaled resource usage (highlighted in bold). . . 52

Xi

List of Abbreviations

PM2.5 Particulate matter 2.5 micrometers or less in diameter
PMi1o Particulate matter 10 micrometers or less in diameter
NO2 Nitrogen dioxide

VOC Volatile organic compounds

CSV Comma-separated values

NILU Norwegian Institute for Air Research

MET Meteorological Institute of Norway

API Application programming interface

HTTP Hypertext Transfer Protocol

REST Representational state transfer

GCP Google Cloud Platform

vCPU Virtual CPU

Xiii

Introduction

Over the last decade, European societies and economics have experienced a
significant digital and technological innovation. The technological advance-
ment has created completely new job types and according to the European
Commission’s “White Paper on the Future” [1] it is likely that many children
entering primary school today will end up working in jobs that do not yet exist.
In the “Recommendation on Key competences for Lifelong Learning”, published
in 2018 [2], the authors highlight the need for adapting the current education
and training systems in order to cope with the complexity and change in our
societies. Whereas it used to be enough to equip young people with only a
fixed set of skills or knowledge, they now need to develop resilience, a wide
range of competencies such as creativity, logical thinking and problem solving,
and the ability to adapt to change.

Creativity, logical thinking and problem solving can all be fostered through
coding. Coding skills will also help to better understand today’s digitalised
society, therefore the benefits of integrating coding into the school curricula are
many. In 2015, European Schoolnet published a report providing an overview of
the coding initiatives and plans in both formal and informal learning initiatives
across Europe [3].The findings were based on a survey with 21 Ministries of
Education, in 20 European countries and Israel. The report revealed that 16
countries (including England, Estonia and France) were already integrating
coding in the curriculum at either a national, regional or local level. Finland
and Belgium Flanders had concrete plans to integrate it in the curriculum,
while Belgium Wallonia, the Netherlands and Norway had neither integrated

2 CHAPTER 1 / INTRODUCTION

coding into the school curriculum or had any current plans to do so.

In 2016, we developed the air:bit project [4] in collaboration with the School
Laboratory at the Faculty of Science and Technology at UiT - the Arctic Uni-
versity of Norway?, to counteract the lack of computer science education in
Norwegian upper secondary (videregdende) schools. The project aims to intro-
duce engineering and computer programming by combining computer science
and natural sciences, and is conducted in collaboration with the Norwegian
Institute for Air Research (NILU)2 and the Meteorological Institute of Norway
(MET)3. It is a maker-inspired citizen science approach focused on air pollution
data collecting and monitoring, where students work in groups of 2-3 to build
and code a portable air quality sensor kit (air:bit), which they use to collect
air pollution data in their local environment.

An important part of the education project is for the students to develop their
own air quality related research questions, such as “at what time during the day
do our local kindergartens experience the highest level of air pollution?”. They
will answer the questions by analyzing their own and their fellow students’ air
quality data, air quality data from NILU, and in the future, other sources such
as MET. However, the task of curating such datasets is too complex for such an
introductory project and it therefore requires a specialized service to collect,
store and integrate data, as well as query the the collected and integrated
data.

This service must satisfy the following requirements:

Usability It must be simple and intuitive to use, such that the students and
teachers should not need special training to understand how to use the
service.

Scalability It must scale with regards to data storage and data processing, as
the air:bit project expands to include more schools, students and air:bits.

Maintainability It should be easy to maintain since the air:bit project does
not have a dedicated staff for IT operations.

Performance It should provide fast data uploads and fast data retrievals.

We here present our solution: the air:platform - a scalable, cloud-based data
management platform for citizen science education projects.

1. uit.no/skolelab
2. api.nilu.no/docs/
3. api.met.no

http://uit.no/skolelab
http://api.nilu.no/docs/
http://api.met.no

1.1 / PROBLEMS WITH EXISTING DATA PLATFORMS 3

1.1 Problems with existing data platforms

Citizen science commonly refers to projects that engage the public to generate
and process research data [5]. There are several citizen science platforms
available on the Internet. While most are designed for a single project or
projects within the same, specific research field [6], some are large-scale and
generic, allowing smaller citizen science projects within all fields to create
their own data collection tools both with and without additional software
development [7]. However, these do not meet all needs for citizen science
education projects such as air:bit.

hackAIR# and luftdaten.info> are two projects that, like air:bit, aim to create
awareness on air pollution by enabling the public to collect outdoor air quality
data using self-built air quality sensors. Both projects have developed their own
data platforms that receive data from their respective sensor kits over WiFi,
where the public can explore the uploaded air quality data. Neither platforms
are suitable alternatives for the air:bit project, since their sensor kits are too
complicated for the students to code themselves and they depend on WiFi
coverage to collect data. The two platforms also do not provide interfaces or
APIs for querying and downloading data.

ResearchKit® and is an open-sourced framework by Apple that enables re-
searchers to create mobile applications that use the sensors and capabilities of
iPhone (and Android when using the ResearchDroid? library). The framework
provides customizable templates for surveys and active tasks (tasks where par-
ticipants perform activities while the smartphone sensors are actively collecting
data). The ResearchKit framework is unsuitable for the air:bit project for two
reasons: i) a smartphone does not have all of the necessary sensors for this
project, such as a dust particle sensor; and ii) we cannot require the students
to possess a smartphone in order to participate in the project.

The Plume API provides access to Plume Labs’ air quality platform, allowing
third-party companies access their data for a fee (some organizations, such as
universities, can apply for free access). The API does, however, not allow users
to upload data, and therefore we cannot use their data platform to store data
from the air:bits.

4. hackair.eu/about-hackair/

5. luftdaten.info/en/home-en/

6. researchkit.org/

7. blog.appliedinformaticsinc.com/researchdroid-an-android-forms-and-consent-library/

http://hackair.eu/about-hackair/
http://luftdaten.info/en/home-en/
http://researchkit.org/
http://blog.appliedinformaticsinc.com/researchdroid-an-android-forms-and-consent-library/

4 CHAPTER 1 / INTRODUCTION

1.2 Our solution: the air:bit platform

The air:bit platform is a service that collects, stores and queries air quality data,
and visualizes the results. Unlike other air quality data platforms, it accepts
air quality data from any air quality sensor kit as long as the data is formatted
correctly (described in more detail in chapter 2.5) and uploaded as a csv file.
The air:bit platform fulfils the platform requirements as follows:

Usability The air:bit web application provides the students and teachers with
educational resources and simple interfaces to upload air:bit data log
files, and explore and download their collected data through interactive
visualizations. The visualizations also integrate the student uploaded
data with external sources.

Scalability The computational parts of the air:bit platform are deployed to
the Google Cloud Platform, which provides automatic scaling of storage
and computational resources.

Maintainability The computational part of the air:bit platform are deployed
to the App Engine Platform as a Service (PaaS) in the Google Cloud
Platform, which manages infrastructure and maintenance.

Performance The air:bit platform performs timely uploads, but we identified
needs for optimization with regards to the data query latency.

1.3 Use of air:bit platform in high schools

We launched the air:bit project in the fall 2017 and invited all high schools in
Northern Norway where the students specialize in STEM subjects to partici-
pate. In spring 2018, 174 students from 11 North-Norwegian upper secondary
(videregaende) schools successfully built and programmed 62 air:bits. From
February through April the students uploaded 222 data log files, comprising
481,186 air:bit measurements. Figures 1.1 and 1.2 show screenshots of the web
application visualizing air quality measurements collected in Bodg in March
2018.

1.3 / USE OF AIR:BIT PLATFORM IN HIGH SCHOOLS

PM10: 1.95
PM25: 1
Temperature: 1.5
Humidity: 31.025

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

Figure 1.1: Map with air:bit measurements collected in Bodg in March 2018.

e = i

= e = i @ = i
Stovkonsentrasjon Temperatur Luftfuktighet
Pu10
° A Pu25 5
I\)
© |) /
5 \ /
P A /
- @ /
8 /
= A /
- \ A A
~./\ . AA /
) I\ A /
- \/ N\ V\ /
= v \ /
6 N
P
var4 er 11 or 18 War & Mar 11 Mar 18 e Mar 1 Var 18
2018 208

Figure 1.2: Charts visualizing the levels of PM1o and PM2.5 (left), temperature (mid-
dle) and humidity (right) in March 2018 based on collected air:bit data.

6 CHAPTER 1 / INTRODUCTION

1.4 Contributions
The contributions of this work are

* Design, implementation and deployment of a cloud-based citizen science
data management platform.

* Evaluation of a cloud-based citizen science data management platform
with more than 174 monthly active users.

* Demonstration of a cloud-based citizen science data management plat-
form that enables inexperienced programmers to store, visualize and
download air quality sets.

1.5 Outline

This thesis is structured as follows. Chapter 2 provides the information necessary
to understand the scope of this thesis, including an overview of the pilot air:bit
projected conducted in spring 2017 and an introduction to air pollution. In
chapter 3 we describe the complete air:bit platform architecture. The design
and implementation is described in chapter 4. In chapter 5 we describe the
project methodology. The evaluation of the air:bit platform is in chapter 6 with
regards to the backend’s resource usage, latency, scalability and cost. Related
work is in chapter 7. Concluding remarks are given in chapter 8 and in chapter
9 we present our future work, pinpointing areas of improvement for the air:bit
platform.

In February 2018 I participated in the Student Research Competition at SIGCSE
2018, the 49th ACM Technical Symposium on Computer Science and presented
a poster on the air:bit data management platform. I also co-authored a paper on
the air:bit project. The poster and paper are respectively included in Appendix
A and B. We have open-sourced the air:platform codebase on github and
included the repository urls in Appendix C.

The air:bit platform is online at airbit.uit.no. The source code for the air:bit
frontend service is available at github.com/fjukstad/luft and the code for the
backend data management system at github.com/ninaangelvik/luft.

http://airbit.uit.no
https://github.com/fjukstad/luft
https://github.com/ninaangelvik/luft

Background

In spring 2017 we piloted the air:bit project with a class of 28 students from
Kongsbakken VGS in Tromsg, for which we developed and evaluated a proto-
type air:bit, a prototype backend storage system and a pilot frontend service
for exploring and visualizing collected air quality measurements. Although the
pilot was successful, it also identified areas for improvement. The experiences
and results from the pilot were used to develop the current air:bit and the
air:bit platform. In this chapter we therefore describe i) the two prototypes,
pinpointing what worked and motivating the needed improvements before
making the project operational in the spring 2018; ii) the pilot frontend service
which formed the basis for the air:bit frontend service and the air:bit web
application at airbit.uit.no; iii) the current version of the air:bit and the air:bit
educational resources published at airbit.uit.no. But first we give a brief in-
troduction to air pollution, including why we want to monitor air quality and
what we are monitoring.

2.1 Air pollution

Air pollution affects our health, our environment and our climate [8]. The WHO
has termed it the largest single environmental health risk in the world [9],
and both short and long term exposure to poor air quality as a result of air
pollution contribute to respiratory disease, cardiovascular disease and certain
cancers [8, 10, 11, 12, 13].

http://airbit.uit.no
http://airbit.uit.no

8 CHAPTER 2 / BACKGROUND

Air pollution originates from a wide range of sources, including exhaust from
combustion engines burning fossil fuel, chemical emissions from factories and
micro-particles from cars driving with studded tires on snow-free roads [8, 14].
The different sources generate different pollutants, e.g. Particulate Matter
(PM), nitrogen oxides (NO,) and Ozone (O3). We focus on measuring PM
since it is the major cause of poor air quality in Norway and there are simple
and affordable sensors available to measure dust densities in the air. PM is often
divided into two categories: PM1o and PM2.5, the numbers indicating the size
of the dust particles. PM2.5 describes dust particles smaller than 2.5 pm and
PM1o describes dust particles smaller than 10 pm. PM1o thereby also include
all particles in PM2.5. We care about measuring dust particles smaller than
10 pum, as these can get deep into our lungs, possibly even our bloodstream,
affecting both our lungs and heart [15].

In Northern Norway the air quality is heavily affected by rapid changes in
weather in the winter months, especially while the seasons are changing.
This is mainly due to the use of studded tires on dry roads, generating dust
particles (PM) in the air, but also emissions from diesel powered cars are
contributing to worsening the air quality [8]. Reducing the use of cars will
improve air quality in these months and we believe that it can be done by
creating awareness on the local conditions and their impact on health, rather
than by enforcing it. European and Norwegian legislation ensure that the
air quality is monitored and that the air quality forecasts are made public to
the citizens (typically provided by the Norwegian Institute of Air Research
(NILU) and the Meteorological Institute of Norway (MET)). However, since the
monitoring is typically done using advanced stationary equipment that is too
expensive to locate throughout all populated areas, most citizens in Northern
Norway will not find available data in their city or neighborhood. This makes it
harder, if not impossible, to raise awareness around poor air quality and simple
measures to improve it.

2.2 The prototype air:bit

Figure 2.1 shows the prototype air:bit used in the pilot project?. Its total cost
was 41 USD and it consisted of an Arduino Uno, a NEO6M GPS module, a
Sharp GP2Y1010AUOF optical dust sensor, a DHT11 sensor measuring humidity
and temperature, and microSD card reader/writer. The prototype created a
single data log file on the memory card, appending data from all available
sensors as rows to the data log file, where each line (row) in the file equaled
one observation. The sensor data must be written to the data log file in a

1. Design and implementation by Bjgrn Fjukstad, Hedinn Gunhildrud and Morten Grgnnesby.

2.2 / THE PROTOTYPE AIR:BIT 9

Figure 2.1: The prototype air:bit.

specific order for the prototype backend to insert the data correnctly into the
database. The students programmed the prototype using the Arduino IDE,
writing code in the C++ like Arduino programming language shown by listing
2.1. During the pilot project, we experienced that the DHT11 sensor was not
able to register temperatures below 0°C. We also discovered that the Sharp
GP2Y1010AUOF could only measure the total amount of dust particles in the
air, not differentiating between PM1o and PM2.5, preventing us from directly
comparing the data to official air quality data. Since measuring PM is an essen-
tial part of the project, we wanted to differentiate between PM1o and PM2.5.
Norwegian winters also, more often than not, involve temperatures below 0°C.
We therefore needed to replace the two sensors in the next version of the air:bit.

void setup () {

Serial .begin(9600); // Start Serial communication to
dht.begin (); // receive messages from the Arduino
¥ // and initialize the DHT sensor.

void loop (O {
//Collect data and print them.
float humidity = dht.readHumidity ();
float temperature = dht.readTemperature ();
Serial . print (temperature);
Serial.print (", ");
Serial. print (humidity);
Serial.print("\n");
delay (1000);

Listing 2.1: A simplified code example to collect and print temperature and humidity
data from a DHT sensor every second

10 CHAPTER 2 / BACKGROUND

2.3 The prototype backend web service

I developed the prototype backend storage system as a part of my special
curriculum [16] in the fall 2016. For a monthly cost of 23 USD, the backend
collected and stored the air quality data gathered by the students. While it
served its purpose for the pilot study, it was designed as a proof of concept,
not to be used in an operational project. It therefore did not scale, it had a
task queue which proved to be unreliable and a database that needed a better
structure.

We implemented the backend system in Ruby on Rails 4 and deployed it on
the Heroku? cloud application platform. It provided a simple web interface for
uploading data, allowing the students to upload their data log files directly to
the backend system, as well as a simple API for retrieving data within a given
time range. Like App Engine that we now use, Heroku is a PaaS, enabling us to
focus on writing code, while they take care of infrastructure and maintenance.
They also provide “Add-ons”, which are fully managed cloud services that are
integrated into the Heroku platform. The Add-ons come in different pricing
plans, many also include a free plan for development, and simplify installing
new services and managing billing, credentials and configurations directly from
the Heroku Dashboard or CLI For our backend storage system, we used three
Add-ons: Heroku Postgres3, Memcachier4 and Redis To Go>. Together with
Ruby libraries, the Add-ons respectively provided us with a PostgreSQL database
of 10 million free records, a cache store and a Resque task queue.

2.4 Pilot frontend service

To simplify the process of accessing the collected air quality data, we also
created a pilot frontend service® consisting of a web application and a web
server. At the web application, the students and the public could use provided
interfaces to explore air quality data from the last 24 hours, see air quality
forecasts from luftkvalitet.info (a service provided by NILU), and view and
download data from any time period. The web server acted as a means of
communication between the web application and the data sources, translating
queries and providing the results to the web application.

Figure 2.2 shows a screenshot from the pilot web application, visualizing mea-

2. heroku.com

3. elements.heroku.com/addons/heroku-postgresql
4. elements.heroku.com/addons/memcachier

5. elements.heroku.com/addons/redistogo

6. Designed and implemented by Bjgrn Fjukstad

http://luftkvalitet.info
http://heroku.com
http://elements.heroku.com/addons/heroku-postgresql
http://elements.heroku.com/addons/memcachier
http://elements.heroku.com/addons/redistogo

2.5 / THE AIR:BIT - CURRENT VERSION "

Figure 2.2: Data visualization in the protype web application.

surements from two different air:bits carried around in Tromsg, Norway. The
green and orange dots represent data from the two stationary air monitoring
stations run by NILU. The web application worked well in the pilot project,
but it was tailored to explore and visualize air quality data collected only in
Tromsg. Expanding the project to schools in other parts of Northern Norway,
would require interfaces and visualization mechanisms that included the new
locations. We also wanted to create a more advanced data exploration inter-
face to enable the students to retrieve more specific datasets from the data
sources.

2.5 The air:bit - current version

In fall 2017 we created the second, current version of the air:bit”, shown in
figure 2.3. We have replaced the DHT11 sensor with the DHT22, enabling us to
register temperatures below 0°C. By replacing the Sharp GP2Y1010AUOF with
the Nova SDSo11 we can also register both PM2.5 and PM10 concentrations
in the air. The air:bit is otherwise very similar to the prototype, in regard to
physical components, source code and the format in which the data log files
are written (listing 2.2). The order of the data is still important in order for it
to be correcly inserted into the platform storage system.

Time, Latitude , Longitude, PM10, PM25, Humidity, Temperature

2018-03—15T06:39:35.000Z, 67.284576, 14.436530, 17.00, 1.10, 28.60, 3.60

2018-03—15T06:39:40.000Z, 67.284576, 14.436518, 15.50, 1.10, 25.70, 2.50

2018-03—15T06:39:45.000Z, 67.284584, 14.436503, 14.60, 1.10, 25.40, 2.40

2018-03-15T06:39:50.000Z, 67.284591, 14.436497, 2.40, 0.70, 25.30, 2.30
2018-03-15T06:39:55.000Z, 67.284591, 14.436492, 3.00, 0.60, 25.10, 2.20

Listing 2.2: The air:bit data log file format

7. Designed and implemented by Bjgrn Fjukstad, Hedinn Gunhildrud, Morten Grgnnesby,
Fredrik Rasch and Ken-Arne Jensen.

12 CHAPTER 2 / BACKGROUND

Figure 2.3: The current air:bit.

2.6 The air:bit platform educational resources

Since the participating schools are spread across Northern Norway, we are not
able to host every class at UiT and assist the students and teachers at all times.
Therefore, we have created educational resources for the project and published
them at airbit.uit.no. The resources consist of wiki pages® with instructions
on how to build and program the air:bits (figure 2.4), guides for installing the
required software, an introduction to Arduino programming and help with
debugging code. They also include video lectures® on air quality monitoring,
how air pollution affects our health, and tips and tricks for doing research
(figure 2.5).

8. airbit.uit.no/public/wiki/Home.html
9. airbit.uit.no/resources

http://airbit.uit.no
http:// airbit.uit.no/public/wiki/Home.html
http:// airbit.uit.no/resources

2.6 / THE AIR:BIT PLATFORM EDUCATIONAL RESOURCES 13

Lodde header shield Meny

« Hiem
I tedet for & 3 ett virvarr av ledninger, vil vi jare livet enklere ved bruke et header shield mellom Arduino'en * Guider
g de forskiellige komponentene. © Bygging og Lodding

N i i : ; o o Oppsettav
Viskal shieldet d sakan i lodd p3 shieldet. e
Inni plastplaten som utgjr shieldet finnes det en rekke koblinger som vl koble sensorene til de rette pinnene pa o P
Arduino'en. programmering
o airbit programmering
Dette trenger du o Fellsoking
Dutrenger: * Pinout
« Dataformat

* Arduino Uno

+ Header shieldet

+ ZipLock posen med smadeler

« Avbitertang
Sette pinner i Arduinoen Hielp meg! skolelaboratoriet@nt.uit.no

Med Arduino'en falger det en (eller to) lang rad med male header pinner. Det lange endestykke il pinnene skal inn
pluggene il Arduinoen. Bruk en avbitertang for & klippe av passende lengde med pinner for hver seksjon med
plugger p3 Arduinoen, slik som vist i bildet under

Figure 2.4: The students are provided with detailed instructions on how to build their
air:bits.

opp data

Programmering ~ Bygging Ressurser
Luftkvalitetsvarsling 2.0

Thomas Olsen fra Metrologisk institutt, Tromss

20.oktober 2017

46 Minuter 27 sekunder

Det er noe i luften: Luftkvaliteten i norske byer
Sonja Grossberndt, Forsker ved NILU
24, okober 2017

27 Minuter

sekunder

Forurensing og lungesykdom
Juan Carlos Aviles, Stipendiat Juan Carloos Aviles, allemenmedisin forskningsenhet
24.okober 2017

15 Minutter, 22 sekunder

Figure 2.5: Informative lectures are filmed and posted to the air:bit web application.

Architecture

The air:bit platform is a system for storing, exploring and visualizing air qual-
ity data from ait:bits and other, external data sources. Figure 3.1 illustrates
the air:bit platform architecture, which is three-tiered and consists of i) the
air:bit web application, an interactive system for uploads, downloads and visual
exploration of air quality data; ii) a frontend web server that translates user
interactions in the air:bit web application into queries for storing air:bit data
log files, retrieving air:bit data and integrating air quality data from external
data sources; and iii) a backend that stores and provides air:bit data for the
air:bit web application.

3.1 The air:bit web application

The air:bit web application is the point of interaction with the air:bit platform.
It provides users with different interfaces to upload air:bit data log files, and
explore and download their collected data through interactive visualizations.
The visualizations also integrate the student data with external sources. The
web application translates user inputs (air:bit data log files, pressed keys and
mouse clicks) from the interfaces into upload requests and data queries, which
are sent to the the frontend web server. It also interprets and visualizes the
responses and the data that is returned.

15

16 CHAPTER 3 / ARCHITECTURE

air:bit air:bit air:bit
web application """ web application ~°°~ web application
Frontend
Backend

Figure 3.1: The air:platform architecture.

3.2 Frontend web server

The frontend web server works as a middleman between the air:bit web appli-
cation, and the backend and the external sources. It exposes an API to the web
application, enabling multiple users to simultaneously upload air:bit data log
files and explore air quality data. The frontend web server translates the upload
requests from the web application into upload requests that are understood
by the backend. It also translates the web application queries into requests
that can be executed by the backend and the external sources. Returned query
results are formatted by the frontend according to their purpose in the web
application and returned to the web application and the users.

3.3 Backend

The backend is responsible for storing the air:bit data log files uploaded by
the air:bit web application users, for making the air:bit data searchable and for
providing the web application with air:bit data. It exposes a simple API which
the frontend web server uses to send it translated user uploads and queries.
The backend retrieves the air:bit data, which it processes according to the
queries before returning the result to the frontend web server.

Design and
implementation

The air:bit platform architecture consists of three components, the air:bit web
application, the frontend web server and the backend. We have designed and
implemented the three components as two microservices, a frontend service
including both the air:bit web application and the frontend web server, and a
backend service that is the data management system (figure 4.1). Microservices
are separate, autonomous services that communicate via network calls [17], in
our case an HTTP REST API There are several reasons to why this software
architecture suits our platform. First, since the microservices are indepen-
dent of each other, they can be modified and deployed by themselves. Using
microservices, we reduce the amount of affected/broken functionality when
something goes wrong during or after a deploy, and we minimize the area of
code that we need to debug in order to fix the error. Second, breaking the
codebase into smaller parts makes it easier to maintain. Third, by communicat-
ing using open HTTP APIs microservices allow us to implement each service
in the most suitable programming language and technology [17]. Right now
we have implemented the air:bit web application in HTML, Javascript and
CSS, the frontend web server in Go and the backend in Ruby on Rails in the
Google Cloud Platform. The final reason is that microservices allow us to scale
the parts of the platform individually. While the frontend service must scale
with respect to the number of users on the website, to handle an increasing
amount of traffic, the backend must scale according to the amount of data that

17

18 CHAPTER 4 / DESIGN AND IMPLEMENTATION

needs to be processed, to ensure timely database inserts and retrievals for the
users.

4.1 Frontend service

The frontend service includes the air:bit web application and the frontend web
server!. It is responsible for providing the students with services that enable
them to store and explore air:bit data, and explore integrated air quality data
and forecasts from NILU. We are currently also working on expanding the
data exploration interfaces, to enable exploration of integrated precipitation
data from MET. The air:bit web application runs in the web browser and is
accessible at airbit.uit.no. It is hosted by the frontend web server, which feeds
it data from the backend, NILU and MET.

4.1.1 The air:bit web application

The air:bit web application is the students’ point of interaction on the air:bit
platform. With the use of HTML and JavaScript libraries, it enables the students
to interactively upload and query air quality data in a web browser, either from
a computer or a smartphone, using the following three interfaces.

Uploading data log files

Figure 4.2 shows the interface for uploading air:bit data log files. It consists of
a file input field which opens a file dialog, allowing the students to select data
log files from their computer. Once selected, the students can select whether
they want to validate the format of the data log files or upload them to the
air:bit platform.

Exploration historical data

Figure 4.3 shows the interface for exploring historical data. The students can
retrieve the air quality datasets they need to answer their research questions
by specifying an area, a time range and the data sources they wish to include
data from. When specifying an area, the students either i) select an area from
a list of predefined options containing the eight areas where the participating

1. Bjgrn Fjukstad, Fredrik Rasch, Morten Grgnnesby and Pontus Aurdal contributed to the
implementation of the frontend service.

http://airbit.uit.no

4.1/ FRONTEND SERVICE 19

Air quality sensor kit

Norwegian ‘ . ‘

Meteorological
A Institute

A .
App Englne \
Storage
. Data
Cloug . Workers Cloud
Pub/Sub SQL

Figure 4.1: The air:platform design.

I LU Norsk institutt for luftforskning
Norwegian Institute for Air Research

20 CHAPTER 4 / DESIGN AND IMPLEMENTATION

air:bit Lastoppdata Sekitid Live

Last opp fil(er)

[S(UDEIEW Velg Datafil for opplastning

Kontakt: skolelaboratoriet@nt.uit.no
Bjern Fjukstad: bjorn.fjukstad@uit.no
Fredrik Hpiszether Rasch: fredrik.h.rasch@uit.no

Skotlelabovatoriet

o ©realfeg oy fek

Se ogsa prosjektets side pa GitHub.

Figure 4.2: The air:bit web application provides a simple upload interface that also
includes data format validation.

schools are located; or ii) define their own area by drawing a radius circle
on the map. The students are provided with four predefined options when
specifying a time range: past hour, past 24 hours, past 7 days, past month.
They can also use a custom time range by specifying a “to” and “from” time.
The students can choose to retrieve datasets from the backend, from NILU or
both.

Based on the user request, the retrieved data is either visualized on a map
and in charts using the JavaScript libraries D32 and Plotly3 (respectively), as
shown by figures 4.4 and 4.5, or downloaded to the local storage of the device
that runs the air:bit web application. The visualization tools help the students
discover air quality trends related to time and location.

Viewing “live” data

Figure 4.6 shows a screenshot of the interface for retrieving “live” data, i.e. air
quality data that has been collected within the past 24 hours. This interface
is a simplified version of the interface for exploring historical data, using the
same predefined list of areas and the same two data sources. The students can
also choose to view an air quality forecast from luftkvalitet.info.

2. dzjs.org/
3. plot.ly/

http://luftkvalitet.info
http://d3js.org/
http:// plot.ly/

4.1/ FRONTEND SERVICE 21

Angi omradet og tidsrommet du vil se Iuftkvalitetsdata fra:

Velg omrade

Tromse

Angi tidsintervall
Siste timen © Siste 24 timer ¢ Siste 7 dager © Siste maned (s} Spesifiser eget intervall

Fra mm/dd/yyyy, —-:-- - Til mm/ddlyyyy, --:- -

Inkluder data fra:
I Elever () NILU

@em

Tromso

Leaflet | Map data © OpenSireetMap contibutors, CC-BY-SA, Imagery © Mapbox

Figure 4.3: With the air:bit web application data exploration interface, the students
can query air quality data from the backend and NILU.

PM10: 1.95
PM25: 1
Temperature: 15
Humidity: 31.025

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

Figure 4.4: Map with air:bit measurements collected in Bodg in March 2018.

22 CHAPTER 4 / DESIGN AND IMPLEMENTATION

Q = Q = i Q =
Stovkonsentrasjon Temperatur Luftfuktighet
B . —
o I\ — PM25, - !
I\ /
‘ |\ 0 /
| /
5 |\ - /
2 w [\ 2 /
s [n \ 2 @ /
H g /
o IN\)
I\ d s A /
- | /\ \ A /
=\ I ; . = A/
o —\ I \/ \/ \ /
5 v \,
o vt e e s s s s
i o fot

Figure 4.5: Charts visualizing the levels of PM1o and PM2.5 (left), temperature (mid-
dle) and humidity (right) in Bodg in March 2018 based on collected air:bit
data.

Velg omrade
Tromsg
« Luftvarsel ¢ Elevdata ¢ NILU
Varsel
Torsdag ventes pa grunn av sng- og isdekte veier LITE luftforurensing.

Malinger fra elevene de siste 24 timene

Ingen data tilgjengelig

Malinger fra NILU de siste 24 timene
Q =
PM10

M l /W

Tromsg

vgim3

\Y
%

1800 0000 0600 1200
AprIL 2018 Apr 12,2018

Figure 4.6: With the live data exploration interface, the students can view data col-
lected within the past 24 hours.

4.2 [/ AIR:BIT BACKEND DATA MANAGEMENT SYSTEM 23

4.1.2 Frontend server

The frontend web server hosts the air:bit web application and acts as the
translation layer between the web application and the multiple data sources. It
is implemented as an API, and in addition to being used by the web application,
other visualization tools/apps can also use the API to query and visualize data
from the backend, NILU and MET. We provide a detailed description of the the
API resources in table 4.1. The frontend server runs in a Docker container on
a local server at the Department of Computer Science at UiT. Since the web
server is stateless we can scale it out horizontally by replicating the container
and placing the containers behind a HTTP load balancer such as nginx*.

4.2 air:bit backend data management system

The air:bit backend stores air:bit data log files uploaded by the students and
processes data queries generated by the data exploration interfaces at the
air:bit web application. It is run by a Ruby on Rails application deployed to
App Engine, a Platform as a Service delivered by the Google Cloud Platform®
(GCP). The application in App Engine consists of two services, a web service
and a worker service. When we deploy the two services to App engine, the
code is run on instances, i.e computing units used to automatically scale the
application [18]. Instances running the web service each run their own web
server and handle HTTP requests from the frontend web server, while instances
running the worker service process the uploaded air:bit data log files. The
application uses three GCP products in the process of storing the uploaded data
log files: Cloud Storage?, Cloud Pub/Sub® and Cloud SQL? (figure 4.7).

4.2.1 Cloud Storage

Google Cloud Storage is a microservice that allows us to store binary data in
a high-level container for storing binary objects, known as a bucket [19]. Each
bucket has three properties that are specified when the bucket is created: a
name, a location and a storage class describing the availability and minimum
storage duration of the bucket contents [20]. Using the Cloud Storage storage
classes, it is possible to implement a storage system similar to Facebook’s f4 and
Haystack, with designated buckets for hot and cold data [21]. However, since

4. docker.com/what-container
6. cloud.google.com/

7. cloud.google.com/storage
8. cloud.google.com/pubsub/
9. cloud.google.com/sql/

http:// docker.com/what-container
http://cloud.google.com/storage
http://cloud.google.com/pubsub/
http://cloud.google.com/sql/

24 CHAPTER 4 / DESIGN AND IMPLEMENTATION
Resource Description
Retrieves live air quality data from NILU
GET and returns GeoJSONS data points for map

/niluagis?area=area&from=[...]&to=[...]&
component=component

Parameter format:
from, to: [yyyy-mm-ddThh:mm:ss.sssZ]

visualization.

The component parameter describes the
air pollutant to search for, and is either
“PM10” or “NOZ”

GET
/historical?area=area&from=[...]&to=[...]&
component=component

Parameter format:
from, to: [yyyy-mm-ddThh:mm:ss.sssZ]

Retrieves historical data from NILU
based on query parameters, for charts
and download

GET /forecast?area=area

Retrieves air quality forecast from
luftkvalitet.info

GET

Predefined area:
/studentaqis?area=area&from=/[...]&to=[..]&
plotmap=true

Specified area on map:
/studentaqis?within=[..]&from=[...]&to=[..]&
plotmap=true

Parameter format:
within: [latitude,longitude,radius (in kilometers)]
from, to: [yyyy-mm-ddThh:mm:ss.sssZ]

Retrieves air:bit data points based on a
query and returns GeoJSON data points
for map visualization.

GET
Predefined area:
/student?area=area&from=/[...]&to=[..]

Specified area on map:
/student?within=[..]&from=[...]&to=[..]

Additional parameters:
plotchart: true

Parameter format:
within: [latitude,longitude,radius (in kilometers)]
from, to: [yyyy-mm-ddThh:mm:ss.sssZ]

Retrieves air:bit data based on query
parameters, and returns it in a CSV
format for visualization in charts
and download.

By adding the additional parameter
plotchart, the backend will return
aggregated data for the graphs.
Otherwise, raw data is returned.

Depending on the duration of the

time frame, the aggregated data is:

A minutely mean if (duration <1 hour)

An hourly mean if (1 hour <duration <7 days)
A daily mean if (7 days <duration <1 month)
A monthly mean if (duration >1 month)

Retrieves precipitation from MET

GET /precipitation This functionality has been implemented,
but we have not yet integrated it into
the visualization tools.
POST /sendfile Uploads data log files to the air:platform
GET / Renders views for index page
GET /live Renders views for live page
GET /history Renders views for data exploration page
GET /upload Renders views for upload page

GET /resources

Renders views for resources page

Table 4.1: The RESTful interface of the frontend web server.

4.2 [/ AIR:BIT BACKEND DATA MANAGEMENT SYSTEM 25

) Files Cloud
Rails web server | ————————
Storage

Data

Cloud Workers Cloud
Pub/Sub saL

Figure 4.7: air:bit backend design.

@ App Engine

we will not reach the amounts of data that Facebook has, we make use with one
bucket designed for high frequency access. When deploying an application in
the GCP, three additional buckets are created by default: i) a default application
bucket where the first 5GB of storage are free; ii) a bucket for storing backups
of the application’s Docker container images; and iii) a bucket for storing
temporary files (used for staging and test purposes). For the air:bit platform,
we use Cloud Storage to store the raw data log files. We store the data in the
default application storage bucket, which is multi-regional (i.e redundant in at
least two locations) and located in Europe. Due to incomplete Cloud Storage
documentation for the Ruby programming language, we initially created a new
bucket for the data log files which had a monthly cost per GB stored. This was
a multi-regional bucket located in the US, providing us with redundant storage
in at least two locations. We later discovered the default application bucket and
chose to transfer the data log files there since it too is multi-regional, allows
us to store the data for free and is located in Europe.

We store the data log files in Cloud Storage in case the database insertion
process fails. Based on experiences from the pilot project and software de-
velopment in general, things will fail. Since we are storing data from novice
programmers and failures may be due to wrongly formatted data log files, it
is important that we can inspect the files to find the cause of the error and
inform the teachers.

26 CHAPTER 4 / DESIGN AND IMPLEMENTATION

4.2.2 Cloud Pub/Sub

Google Cloud Pub/sub is a service that provides a secure, many-to-many,
asynchronous messaging [22]. Our platform uses Cloud Pub/Sub to enqueue the
data log files in a message queue, so that we can asynchronously parse and insert
their contents into our database using background worker processes.

To use this GCP service with our Rails application, we use the activejob-
google pub_sublibrary!°, which is a Google Cloud Pub/Sub adapter and worker
for ActiveJob!! 12, The library creates a topic (a queue) to which the data log
files are published, and creates a pull subscription!? which the background
workers collect data log files from. This enables fast uploads and asynchronous
data processing, allowing us to quickly inform the students about successful
or failed uploads. An upload is technically successful once the data log file
contents have been completely inserted into our database, but this might take
some time (depending on the number of parallel uploads and the size of the
data log files). However, the Cloud Pub/Sub durable messaging, guarantees
that a correctly formatted file added to the message queue, will be processed
and have its contents inserted into the database in the near future. Thus we
can deem a data log file upload successful once the file is successfully inserted
into the message queue and send a response message back to the student. Also,
should the system fail and the data log file is taken out of the message queue
before it is processed, the storing in Cloud Storage enables us to manually
re-insert the data log file into the message queue.

4.2.3 Cloud SQL

In order to enable students to query the air:bit data, the air:bit measurements
are stored in a relational Google Cloud SQL Second Generation MySQL database.
The GCP offers two types of MySQL instances, the First Generation MySQL
and the Second Generation MySQL. While the former is the legacy instance
type, the latter is the newest instance type and the recommended option for
a Cloud SQL database. In addition to being a fully-managed database service,
it also offers scalability [23] and simple mechanisms for changing the virtual
machine type of the database instance. The air:platform database is currently
run on an instance with 1 virtual CPU (vCPU), 3.75GB memory and 25 GB SSD,
and is located in Belgium.

10. github.com/ursm/activejob-google cloud pubsub

11. ActiveJob is Rails’ built-in framework for performing asynchronous queuing
12. edgeguides.rubyonrails.org/active_job_basics.html

13. cloud.google.com/pubsub/docs/subscriber

https://github.com/ursm/activejob-google_cloud_pubsub
http://edgeguides.rubyonrails.org/active_job_basics.html
http://cloud.google.com/pubsub/docs/subscriber

4.2 [/ AIR:BIT BACKEND DATA MANAGEMENT SYSTEM 27

Datafile WeatherData

D int (PK) ID int (PK)

Filename string Latitude decimal

Filetype string Longitude decimal

Size int Humidity float

OriginalFilename string Temperature float
Timestamp datetime
PmTen float
PmTwoFive float
Area string
Filename string

Figure 4.8: The air:bit database contains two tables, one for storing data log file
metadata and one for storing air:bit measurements.

The database currently holds two tables: Datafile and WeatherData (figure
4.8). The Datafile table stores metadata about the uploaded data log files,
such as filename, type, size and the original filename. The WeatherData table
stores the air:bit measurements. In addition to the sensor data (latitude,
longitude, humidity, temperature, timestamp, PM1o and PM2.5), we also store
the name of the data log file which the measurement derive from. Mapping
the measurements to their derived data log files has been very helpful as it
enables us to remove faulty data from the database at the students’ request.
For example, this spring some students discovered that they had switched the
columns for PM1o and PM2.5 in several of their data log files. This manifested
in the database and affected everyone’s data query results. Since we had
mapped the database measurements to filenames, their teacher could give us
the name of the affected files and we were able to identify and remove the
faulty data from the database. We also assign an area to the measurement if
it is within an 8 km radius of any of our eight predefined areas from the data
exploration interfaces at the air:bit web application. We do this to optimize
database queries and we have also added indexes on the table columns area,
latitude, longitude and timestamp for the same effect.

4.2.4 Data privacy

Since a big part of the air:bit project involves students collecting air quality data
in their local whereabouts, data privacy becomes a topic. If not anonymized
correctly, the air:bit data can reveal private information about the student that
collects it, such as where they live, where they go and who they spend time
with. We have been granted permission by the The Norwegian Data Protection
Authority to run the project only if we can ensure that the air:bit data cannot
be used to trace individual students. Our most effective measure to achieve
this is by preventing personal information from entering the air:bit platform.

28 CHAPTER 4 / DESIGN AND IMPLEMENTATION

Resource Description

Uploads a data log file to the air:bit data
management system

Returns all of the air:bit measurements
satisfying the given query

POST /api/upload

Additional parameters:
area: Returns air:bit measurements that
are mapped to the given area

GET /api/data?totime=/[...]&fromtime=[...]

Additional parameters:

area=area

within=[latitude,longitude,radius (in kilometers)]
plotmap=true

plotchart=true

within: Returns air:bit measurements collected
within the radius circle that is made of the
parameter values.

plotmap: Returns aggregated data for visualization
on map. Database entries are grouped by coordinates

Parameter format:
and for each key the mean of the values are calculated.

totime, fromtime: [yyyy-mm-ddThh:mm:ss.sssZ]

plotchart: Returns aggregated data for visualization in
charts. Database entries are grouped by timestamp and
for each key the mean of the values are calculated

Table 4.2: The RESTful interface of the air:bit backend system.

We have informed the students that they should not collect data as they are
leaving or arriving their home, or spending time at locations related to their
health, religion, etc. They should also not include their names or group name
in the air:bit data log files (or the filenames) that they upload to the air:bit
platform, since we store the files and filenames in our systems. This information
is, however, only visible to the administrators of the air:bit platform backend
data management system. In terms of data privacy, we guarantee that the
air:bit data which is returned to the air:bit platform after a query, can never
with complete certainty be traced to a specific air:bit or student based only on
the data itself.

4.2.5 air:bit backend data processing

The main responsibilities of the air:bit backend include processing air:bit
data, whether it is parsing data log files and inserting measurements into
the database, or retrieving data from the database based on a web query and
aggregating the data. The air:bit backend exposes an HTTP REST API, described
in table 4.2, enabling the frontend web server, as well as other applications and
users, to send air:bit data log files and web queries for it to process.

Database insert

When the backend receives a data log file, it creates a new entry in the Datafile
table. Since Cloud Storage does not have a way of handling duplicate filenames

4.2 [/ AIR:BIT BACKEND DATA MANAGEMENT SYSTEM 29

other than overwriting files, we query the database for data log files with the
same name. Based on the result, we either add the appropriate version number
to the filename or we do not, before storing the data log file in Cloud Storage
and adding the filename to the message queue.

A worker process polls the message queue, fetches a filename and proceeds
to search for the file in Cloud Storage. Sometimes the worker might pull the
filename from the queue before the file has been stored, in which case we allow
the worker 30 attempts before marking the file as non-existent and aborting
the processing process. If a worker cannot find the file in Cloud Storage, it is
most likely due to the file having an invalid filename. We are sanitizing the
filenames at the frontend web server and thus we can ensure that data log
files uploaded through the website have valid filenames. However, we keep the
limited amount of tries in case someone uploads a data log file using the HTTP
REST API directly, in order to avoid eternal search loops to Cloud Storage and
hogging of worker resources in App Engine.

When the worker successfully retrieves the data log file from Cloud Storage, it
parses the contents into air:bit measurements. Each measurement goes through
a simple validation (checking for null values, invalid timestamps and invalid
coordinates), in order to remove those that will cause the database insertion
to fail. As a means to optimize database queries later, we also assign an area
to the measurements if they are located within an 8 km radius of one of our
predefined areas at the air:bit web application. Finally we do a bulk insert!4
of all the data log file measurements into the WeatherData table, i.e. inserting
all measurements into the database in one transaction. Some of the students’
air:bit data log files contain more than 44,000 measurements and bulk inserts
greatly optimizes the insert process compared to doing the it the default way
of one database transaction per measurement.

Database retrieval

Queries that are generated by the data exploration interfaces in the air:bit web
application contain parameters specifying a time range (predefined options
are translated into a “to” and “from” time at the frontend web server) and an
area. If the students select an area from the predefined list of areas, the name
of the area is included in the query and later translated into coordinates by the
backend. If they specify an area on the map, the query will contain coordinates
and a radius. The queries may also contain a parameter specifying if the data
will be visualized in charts or on the map. If this is not provided, the data will
be downloaded by the students.

14. github.com/zdennis/activerecord-import

https://github.com/zdennis/activerecord-import

30 CHAPTER 4 / DESIGN AND IMPLEMENTATION

To process a data query, the web service starts by collecting all WeatherData
table entries that have been collected within the given time range. If the query
contains the parameter “area”, the web server will traverse the set of collected
entries, use a database index to find all entries that have been mapped to
the parameter value (e.g. Tromsg), and create a new subset of those. If the
query contains the parameter “within”, the web service will traverse the set of
collected entries, calculate the distance between each entry and the parameter
value (e.g. [69.68795, 18.944174, 4.752]) and generate a new subset of those
entries. If the data is to be downloaded, we return the latest subset of data
as JSON objects without any further processing, to provide students with raw
data.

Data that is to be visualized in charts or on the map needs to be aggregated
before it is returned to the frontend web server. Most of the data is very fine-
grained (one measurement per 2-5 seconds) and data queries might return
tens (sometimes hundreds) of thousands of measurements. Returning large
amounts of data points and having the web application visualize them all,
causes both the web application and backend to run out of memory and crash.
We reduce the number of data points returned to frontend web server, by
grouping the data based on GPS coordinates (map) or timestamp (charts) and
calculating an average for each of the remaining sensor data columns. The
result set is returned as JSON objects to the frontend web server.

4.2.6 App Engine

Applications in App Engine can run the App Engine flexible environment!s,
the App Engine standard environment!¢ or both. There are pros and cons to
both environments, but we chose to deploy the backend web application to
the App Engine flexible environment since it allows background processes and
modification of the runtime. It is also the only environment that supports Ruby
applications.

App Engine itself helps us satisfy the platforms maintainability and scalability
requirements. Being a Paa$, it provides a fully managed environment, abstract-
ing away the infrastructure. Using the GCP Cloud Console!” (figure 4.9) we
can easily manage and get insights into the services used by our application.
In the App Engine flexible environment we can specify how App Engine should
automatically scale the application according to the amount of data being
processed, and we can configure the resource settings of the application to

15. cloud.google.com/appengine/docs/flexible/
16. cloud.google.com/appengine/docs/standard/
17. cloud.google.com/cloud-console/

http://cloud.google.com/appengine/docs/flexible/
http://cloud.google.com/appengine/docs/standard/
http://cloud.google.com/cloud-console/

4.2 / AIR:BIT BACKEND DATA MANAGEMENT SYSTEM

31

ensure we have enough memory, disk space and vCPUs for our needs.

= Google Cloud Platform e luft ~

DASHBOARD ACTIVITY

$® Project info

Project name
luft

Project ID
luft-184208

Project number
277647672180

> 6o to project settings

€ Resources

-®- App Engine
90 versions

{&} Compute Engine
1instance

=3 Cloud Storage
4 buckets

“«

Cloud SQL.
1 instance

= Trace
URI 50th
(readiness_che. 3

/liveness_check 3

= Go to latency overview

® Getting Started

APL Enable APIs and get credentials like keys

@) Deploy a prebuilt solution

4. Add dynamic logging to a running application

() Monitor errors with Error Reporting

90th

-© App Engine

Summary (count/sec)

1230 1245 Lem

@ hitp/server/response_count: 0.033
> Go to the App Engine dashboard

£} Compute Engine

CPU (%)

|
H’—’/\J —_

1230 1245 Lem

@ instance/cpu/utilization: 0132

= Go to the Compute Engine dashboard

€ saL

Storage used (bytes)

_—

/' CUSTOMIZE

& Google Cloud Platform status

All services normal

> Go'toCloud status dashboard

& Billing

Estimated charges NOK kr1,211.33

For the billing period Apr 1 - 24, 2018

> View detailed charges

@ Error Reporting

No sign of any errors. Have you set up Error Reporting?

> Leam how to set up Error Reporting

EZ News

Kubernetes best practices: How and why to build small container
images
4 days ago

Cloud SQL for PostgreSaL now generally available and ready for
your production workloads

6 days ago

Exploring container security: Protecting and defending your
Kubernetes Engine network

6 days ago

> Readallnews

B Documentation
Learn about Compute Engine

Learn about Cloud Storage

Figure 4.9: The GCP Cloud Console Dashboard, providing us with an insight into the
services used by our application.

Deployment configurations

env: flex
runtime: custom
automatic_scaling:
min _num_instances: 2
max_num_instances: 4
cpu_utilization:
target_utilization: 0.5
resources:

memory_gb: 1.5

Listing 4.1: An extract from the app.yaml configuration file.

32 CHAPTER 4 / DESIGN AND IMPLEMENTATION

The web service and the worker service are deployed with the same source
code, but with an individual configuration files. Listing 4.1 shows an extract of
the configuration file for the web service. We have configured the service to
always run on two instances, with the possibility of scaling to maximum four
instances if the average CPU usage across all instances exceeds 50%. CPU usage
typically increases when handling data queries from the frontend web server,
especially when the queries are parallel and complex. We have configured the
web service to run on machine types that provides us with one virtual CPU
(vCPU) and 10 GB disk (default values), and at least 1.5 GB of memory (from
the default 0.6 GB) to avoid running out of memory while processing the data
queries. We initially had only one web instance with 1 vCPU, 1GB of RAM
and 10GB persistent disk. However, we experienced that the web server would
periodically crash and not restart, taking down the backend. We therefore
added a second default web instance for redundancy in mid-March.

The worker service always run one instance and can scale to a maximum of 15
instances (can be increased in need be) if the average CPU usage exceeds 40%.
Itis configured like the web service, but runs on machine types that provides one
vCPU, 1 GB of RAM and 10GB persistent disk. Worker instances spend all of their
computational power on parsing and inserting data log files into the database,
and the CPU usage typically increases when the workers are processing multiple
data log files containing tens of thousands of measurements.

Air:bit education project

The ait:bit project is a collaborative project between the School Laboratory at
the Faculty of Science and Technology at UiT - the Arctic University of Norway,
NILU and MET. It is offered to upper secondary schools across Northern Norway
that are participating in the Lektor2 initiative. The Lektor2 initiative is funded
by the Norwegian Ministry of Education, to enable educators to collaborate
with the industry to create learning resources that motivate students and raise
their interest in science and technology subjects!. In our pilot project in spring
2017 only one school class of about 30 students participated, building and
programming eight air:bit prototypes.

In 2018 there were 16 participating classes from 11 upper secondary (videregdende)
schools spread across Northern Norway. The 174 students built and pro-
grammed 62 air:bits during the project and figure 5.1 shows the distribution of
students and air:bits by the eight areas in which the students are located. The
16 teachers also built and programmed 15 air:bits during a two-day workshop
in the fall 2018, in order to be able to guide their students later in the project.
This raises the total number of air:bits that have been built and programmed
during the 2018 air:bit project to 77.

1. lektor2.no/c1336841/artikkel/vis.html?tid=2181301

33

http://lektor2.no/c1336841/artikkel/vis.html?tid=2181301

34 CHAPTER 5§ / AIR:BIT EDUCATION PROJECT

80 73
70
B0
50
a0
26
30 21 22 26
20
10] . 12 .

10 5, 4 : 5 I . 8
0 [| l [|

%‘?’ S a2 %\" & K o 6{9

2~ AF & & < <
R N o N A
& o

N students air:bits

Figure 5.1: Distribution of students and air:bits by area.

5.1 air:bit project schedule

The air:bit project runs from August to May/June. In August, the schools are
invited to participate in the project and in later in the fall the participating
teachers are invited to the Department of Computer Science at UiT for a two-
day workshop to learn how to build and program the air:bits. In January
the students begin building and programming the air:bits in groups of 2-
3. When the students are close to finishing building and programming the
air:bits, we arrange for them to come to the Department of Computer Science
at UiT for a day. There they are given a lecture on tips and tricks when
doing scientific research and we assist them with any difficulties they might
experience regarding their air:bits.

At some point early in the spring semester, the students develop their own air
quality related research questions, such as “at what time during the day do
our local kindergartens experience the highest level of air pollution?”. From
February to April/May, the students collect air quality data using the air:bits. In
the air:bit web application the students upload their data to the air:bit platform
and retrieve the datasets they need to analyze and answer their own research
questions. The project is done in May/June when the groups of students present
their findings and results to their fellow students and teacher.

The cost of participating in the air:bit project is based on the number of air:bit
kits each school buy. The schools are billed per air:bit kit and the cost of each
kit is 1,500 NOK. This covers the cost of the air:bit components, the air:bit

5.1 / AIR:BIT PROJECT SCHEDULE 35

workshop at UiT and support when they experience issues during the project.
The teachers pay a participation fee to attend the two-day workshop in the fall.
The fee is 3500 NOK per teacher, with a 500 NOK discount for each additional
teacher from the same school. The participation fee also includes an air:bit
kit.

Evaluation

In this chapter we evaluate the implementation of the air:bit platform with
regard to latency, resource usage, scalability, and cost. Specifically, we evaluate
the following six questions:

1. Data Log Upload Latency: What is the data log file upload time to the
air:bit platform?

2. Data Query Latency: What is the air:bit platform query time for air quality
data?

3. GCP Resource Usage: What is the resource usage on GCP with regards
to storage, computation, and the number of instances?

4. GCP Operation Cost: What are the operating costs of hosting the air:bit
platform backend management system on the GCP?

5. GCP Scaling Resource Usage: How does the air:bit platform scale with
regards to the number of parallel data log file uploads and queries?

6. GCP Scaling Cost: What is the scale-up cost of the GCP during high-traffic
periods?

37

38 CHAPTER 6 / EVALUATION

160
140
120
100
80
60
40 23 26 23

20
5 . . . 3 0 0 1 0 0 2
0 — _ -
0-99 100- 200- 300- 400- 500- 600- 700- B0O- 900- 1000- 1100-
199 299 399 499 599 g99 799 899 999 1099 1199

139

Data log files

Size range in kB

B Succesfully uploaded data log files

Figure 6.1: The size distribution of stored data log files in the backend database, for
files uploaded from February through April 2018.

6.1 Data Log Upload Latency

To evaluate the upload time for data log files to the air:bit platform, we define
an upload as the process that starts when a data log file is sent to the backend
and ends when the file contents are completely parsed and inserted into the
database. In the case of parallel uploads, latency time is measured from the first
data log file is sent to the backend to the last data log file is completely inserted
into the database. This is because Cloud Pub/Sub performs out-of-order delivery
and we cannot guarantee that a specific data log file has been processed until
all the parallel uploaded files are inserted into the database.

To measure upload latency we have generated two synthetic datasets!. We
performed these tests in February, before the students started uploading their
data. We then assumed that an average-sized data log file would be 717kB,
containing 10,080 measurements, and that a “worst case”-sized data log file
would be 3.2MB, containing 44,640 measurements. We chose these numbers
since they respectively equal per-minute measurements for a week and per-
minute measurements for a month. However, we overestimated the size of the
students’ data log files, since 97.2% of the uploaded air:bit data log files are
less than 500kB in size (figure 6.1). For each of the datasets, we measured the
latency of uploading one data log file, as well as the latency of parallel uploads
(6, 12, 24, 48 and 96 data log files). For each number of parallel uploads we ran
the benchmark six times. We configured the backend to scale to a maximum of
15 worker instances, and a target CPU of 40%, since these seemed reasonable
for our testing purposes.

1. All benchmark datasets and scripts are stored online in github.com/ninaangelvik/luft .

https://github.com/ninaangelvik/luft/

6.1 / DATA LOG UPLOAD LATENCY 39

Backend upload latency

16
14
12
10

Latency {min)

1 b 12 24 48 96

Number of parallel uploads

L= B - - <]

—717kB dataset 3.2MB dataset

Figure 6.2: The average upload time in minutes for the two synthetic datasets, includ-
ing the maximum and minimum upload time for each number of parallel
uploads.

In each test we sent the data log files as individual HTTP POST requests to
the backend, the same way the frontend web server sends data log files. To
evaluate when the data log files were completely inserted into the database, we
queried the database every three seconds for the number of unique filenames
in the WeatherData table. We truncated the database periodically, but not after
every test. Thus the size of the database might have affected the querying of
filenames in the database, and by that the upload latency test results.

Figure 6.2 shows the average upload latency in minutes for each of the datasets.
For each number of parallel uploads, we have marked the maximum and

parallel uploaded files | Number of workers
1 1

6 1-3

12 4-5

24 5-9

48 9-15

96 15

Table 6.1: The number of active worker instances during the six benchmark runs for
the 717kB dataset. An increase in workers during the runs is denoted by a
dash between the lowest and highest number of active instances.

40 CHAPTER 6 / EVALUATION

Upload latency, 717kB dataset
12
10

(=]

Latency (min)

Bkl
1 6 12 24 48 96
Number of parallel uploads

B Run 1 Run 2 Rumn 3 Run4 BMRun5> BRunéb

Figure 6.3: The upload time for each of the six benchmark runs for the 717kB dataset.

minimum upload time within the six benchmark runs. The upload latency of
the 717kB dataset (blue line) is over-all low and acceptable. In table 6.1 we see
how the backend managed to keep the latency low by adding more worker
instances as the workload increased. Figure 6.3 shows the upload time for
each of the six benchmark runs for each number of parallel uploads. They
are generally small, except for when parallel uploading 12 data log files, at
which the latency peaks and the upload time varies greatly from 1.8 - 11.3
minutes.

The orange line in figure 6.2 shows the upload latency for the 3.2MB dataset.
The upload latency is low until we reach 12 parallel uploads, at which we reach
max utilization of workers (table 6.2) and are unable to scale any more. This
is, however, easily solved by increasing the number of maximum workers. Our
only limit in terms of available instances is our quota on in-use addresses, i.e.
available ip-addresses for our instances, which can be increased by requesting
additional quota from GCP. The upload times for the six benchmark runs for
each of number of parallel uploads (figure 6.4) show large variations, especially
when uploading one file. While the first five runs completed in 30 seconds,
the last one took 10 minutes to complete, which greatly affected the average
upload latency. We believe it is caused by some files held up in the task queue
for a longer period before being processed. We inspected the source code of
the Google Cloud Pub/Sub adapter library? which enqueues and polls the task
queue, but could not find the reason for the variation.

Since the majority of the data log files uploaded by the students are much
smaller than the datasets generated for this evaluation, we believe that the

2. github.com/ursm/activejob-google cloud pubsub

http://github.com/ursm/activejob-google_cloud_pubsub

6.2 / DATA QUERY LATENCY 11

Upload latency, 3.2MB dataset

8
6
: w1
2
0 - - I. [| | II II I II II
6 12 24 48 96

1

Mumber of parallel uploads

HMRunl MRun2 Run 3 Run4 MBWRunS MRunb6

Figure 6.4: The upload time for each of the six benchmark runs for the 3.2MB dataset.

parallel uploaded files | Number of workers
1 1-3
6 18
12 15
24 15
48 15
96 15

Table 6.2: The number of active worker instances during the six benchmark runs of
the 3.2MB dataset. An increase in workers during the runs is denoted by a
dash between the lowest and highest number of active instances.

upload latency experienced by the students is most comparable with the latency
of the 717kB dataset. We cannot guarantee that a data log file will not be held
up in the queue, thus variations in the upload latency will also apply for the
students.

6.2 Data Query Latency

To evaluate the data query latency of the air:bit platform, we measure the
time from the frontend web server receives the selected interface options from
the air:bit web application (i.e when a student clicks the “search” button),
until the data results are ready for visualization or download. To do this we
generate six HTTP requests (table 6.3) to the frontend web server API, which
will be translated and sent to the backend for data retrieval and processing. In
addition to a time range, each request contains i) a parameter specifying if the

42 CHAPTER 6 / EVALUATION

Visualization tool/ | Area/

download GPS Path

http://airbit.uit.no/student?to=2018-04-29T11:39:48.000Z&
Chart GPS from=2018-03-01T11:39:48.000Z&within=69.6747430330008,
18.94003089717284,5.838591143813072&plotchart=true
http://airbit.uit.no/student?to=2018-04-29T11:39:48.000Z&
from=2018-03-01T11:39:48.000Z&area=Tromsg&plotchart=true
http://airbit.uit.no/studentaqis?to=2018-04-29T11:39:48.000Z&
Map GPS from=2018-03-01T11:39:48.000Z&within=69.6747430330008,
18.94003089717284,5.838591143813072&plotmap:true
http://airbit.uit.no/studentaqis?to=2018-04-29T11:39:48.000Z&
from=2018-03-01T11:39:48.000Z&area=Tromsg&plotmap=true
http://airbit.uit.no/student?to=2018-04-29T11:39:48.000Z&
Download GPS from=2018-03-01T11:39:48.000Z&within=69.6747430330008,
18.94003089717284,5.838591143813072
http://airbit.uit.no/student?t0=2018-04-29T11:39:48.000Z&
from=2018-03-01T11:39:48.000Z&area=Tromsg

Chart Area

Map Area

Download Area

Table 6.3: The six data queries used to measure the air:bit platform query time.

backend should process data for visualization on map or visualization in charts.
If parameter is absent, the data is meant for download; and ii) a parameter
specifying if the student searches for data within a predefined area or has
defined their own area by drawing a circle on the map. In case of a predefined
area, the backend will use a database index to find the air:bit measurements
mapped to the area. In case of a student-defined area, the backend will have
to calculate distances between each air:bit measurement and the parameter
value, to decide if it is within the defined circle.

For each query, we limit the number of elements processed by the backend
(aggregated if required and converted to JSON) to 500, 1000, 5000, 10,000 and
50,000. Aggregating elements (grouping database entries by time or location
and calculating averages for the air:bit sensor data values) and converting
them to JSON are the most time-consuming parts of the data queries, and we
therefore evaluate how the number of processed elements affects the query
latency. We limit the number of processed entries by collecting all air:bit
measurements that match the data query and selecting only the the first
n entries of the group (n = 500, 1000, 5000, 10 000 or 50,000). We have
configured the backend to scale to a maximum of 4 web instances, using a
target CPU of 40%.

For each number of processed elements, we ran each query 20 times back-to-
back in the following order:

1. Chart, GPS

2. Map, GPS

6.2 / DATA QUERY LATENCY 43

3. Download, GPS
4. Chart, area

5. Map, area

6. Download, area

Data query latency

14
12

Latency (s)

= T T

500 1000 5000 10000 50000

processed elements

B Chart (GPS) Chart (area) Map (GPS)

Map (area) B Download (GPS) M Download (area)

Figure 6.5: Average query time for each of the six queries.

Figure 6.5 shows the average query latency for each of the six queries. All
queries have a latency of less than 1.5 seconds when processing up to 5000
elements. Passing 5000 elements, there is a significant increase in latency when
downloading the data compared to visualizing it. This is, however, expected
since the data is not aggregated, thus the number of elements that need to
be converted into JSON is larger. There is also an increase in latency when
visualizing the data in charts compared to on the map. This might be due to
one retrieving more data points than the other, but we have not investigated
this hypothesis. In some cases there are differences in the latency of querying
data using in a predefined area compared to using GPS coordinates and a
radius, but these are not consistent enough to draw any conclusions on which
is faster.

We believe that a query latency of more than 2 seconds (except for when
downloading data), is too much. Figure 6.6 shows the actual query latency
at the backend in April (retrieved from the GCP Cloud Console tracing tool),
and the majority of the requests have a higher latency than what we deem
acceptable. An investigation of the requests that has produced highest latency
show that they involve processing more than 330 ooo elements. We must
therefore, in future work, optimize queries as discussed in chapter 9.

44 CHAPTER 6 / EVALUATION

(ms)
BOK

GOK

40K]

20K L 4

o8} . i .
o
Mar 31 Apr02 Apr 04 Apr 06 Apr 08 Apr 10 Apr 12 Aprl4 Apr 16 Apr 18 Apr 20 Apr 22 Apr 24 Apr 26 Apr 28

Figure 6.6: The actual student query latency in April 2018, retrieved from the GCP
Cloud Console tracing tool.

App Engine Cloud SQL
virtual CPUs (vCPUs) | Core hours | GB hours | Core hours
February | 2 1488 1488 659
March | 2/3 1944 2964 743
April 3 2160 3600 720

Table 6.4: The monthly resource usage of the default App Engine instances and the
Cloud SQL database instance from February through April 2018.

6.3 GCP Resource Usage

To evaluate the resource usage of hosting the backend on the Google Cloud
Platform, we measure how much resources are needed to keep the backend
able to serve requests, and process file uploads and data queries.

The backend runs three App Engine instances at all times, two web instances
and one worker instance. The web instances serve HTTP requests and the
worker instance is ready to process incoming data log files. The instances have
one vCPU and 10GB persistent disk each. The web instances also have 2GB RAM,
while the worker instance has 1GB RAM. The backend also continuously runs
one instance for the Google Cloud SQL database. We use a db-ni-standard-1
instance, which and has one vCPU, 3.75 GB RAM and 25 GB SSD. 25 GB SSD is
the minimum storage capacity for master instances.

Table 6.4 shows the monthly resource usage for the App Engine instances
and the Cloud SQL database instance from February through April 2018. The
number of App Engine vCPUs indicate the total number of virtual CPUs that
run in App Engine at all times. We initially started out with one web instance
and one worker instance with one vCPU each, but added a second web instance
in mid-March for redundancy. The number of core hours describe number of
hours the vCPUs have run combined (e.g. 2 vCPUs running for 1 hour equals
2 core hours). Similarly, the GB hours describe the number of gigabytes used
in the course of an hour (e.g. 2 web instances with 2GB RAM each running for

6.4 / GCP OPERATION COST 45

Billing rates in USD, App Engine instances
CPU RAM
0.0579 / core hour | 0.0078 / GB hour

Table 6.5: Billing rates for App Engine instances located in Belgium.

Billing rates in USD, Cloud SQL Instance (db-ni-standard-1)
CPU (30% discount) | RAM
0.0676 / hour 0.17 / GB month

Table 6.6: Billing rates for the db-ni-standard-1 Cloud SQL instance.

1 hour, equals 4 GB hours). In table 6.4 we see how the second web instance
created an increase in the number of App Engine core hours and GB hours.
The increase in GB hours is also due to our increasing the web instances’ RAM
from 1GB to 2GB in March, to stop them from running out of memory during
compute-intensive data queries. The increase in Cloud SQL core hours for
March and April is due to the length, days, of each month.

6.4 GCP Operation Cost

The minimum GCP operation cost is the cost of hosting the backend on the
GCP when no one is uploading or querying data, and no data is stored. Table
6.5 shows the billing rates of the App Engine instances in USD. Instances in
the App Engine flexible environment are billed on a per-second basis with a
one-minute minimum usage cost, using individual billing rates for VCPU usage
and RAM [24]. The billing rate for vCPU in Belgium (where our instances are
located) is $0.0579 US per core hour, while the billing rate for RAM is $0.0078
US per GB hour (May 2018). Table 6.6 shows the billing rates of the Cloud
SQL database instance. Similar to the App Engine instances, the vCPU usage
and RAM usage of the database instance is billed individually. The initial cost
of the database vCPU is $0.0965/hour, but since the database instance runs
continuously throughout the month, we are eligible for Google’s Sustained Use
Discounts® and get a 30% discount. For the 25 GB of database SSD, we are
billed $0.17/GB.

We calculate the operation cost by multiplying the resources usage described in
table 6.4 with the billing rates in this subchapter. Table 6.7 shows the monthly
cost of the default App Engine instances and the Cloud SQL database from
February through April 2018, both as separate services and combined. It is

3. cloud.google.com/compute/docs/sustained-use-discounts

http://cloud.google.com/compute/docs/sustained-use-discounts

46 CHAPTER 6 / EVALUATION

Cost in USD
App Engine | Cloud SQL | Total cost
CPU | RAM | CPU | RAM
February | 86 12 44 4 146
March 113 23 50 4 190
April 125 28 49 4 206

Table 6.7: The monthly costs of the default App Engine instances and the Cloud SQL
database instance from February through April 2018.

apparent that the majority of the operation costs is related to the App Engine
instances’ resource usage. The monthly operation cost of the backend in the
Google Cloud Platform, i.e. the minimum cost of keeping the air:bit platform
running online, is currently at about $206 US, which is acceptable for this
service. The alternative would be to have a dedicated staff for IT operations,
which would come to a higher cost.

6.5 GCP Scaling Resource Usage

To evaluate how the air:bit platform scales with regard to the number of data
file uploads and queries, we investigate the backend’s resource usage relative
to the students data file uploads and queries so far.

To measure the resource usage for file uploads, we count the data log files that
were processed by the platform from February through April and measure their
size. The air:bit platform database shows that as of May 1st 2018, the students
have uploaded in total 343 data log files, of which 222 were successfully parsed
and inserted into the database. In terms of air:bit measurements, this comprises
481,186 entries in the WeatherData table. The remaining files have most likely
been rejected due to wrongly formatted file contents. In table 6.8, showing
the distribution of successfully uploaded files and and air:bit measurements
per month from February through April, we see that the majority of data log
files (66.6%) and air:bit measurements (84,3%) were uploaded during March.
Figure 6.7 shows the distribution of the successfully uploaded data log files by
size. We see that 62.6% of the data files are < 100kB and that 97.2% are <
500KkB in size. A 100kB file contains about 1500 measurements.

Since the students decide for themselves the time interval at which their
air:bits register data, the size of the data log file alone cannot say anything
about the length of the measurement periods. Some 100kB files contain days
of coarse-grained measurements, while other contain hours of fine-grained

6.5 / GCP SCALING RESOURCE USAGE 47

February | March | April | Total
Successfully parsed and inserted files 31 148 43 222
Successfully parsed and inserted measurements | 5,522 405,648 | 70,016 | 481,186

Table 6.8: The number of successfully parsed and inserted data log files per month
from February through April 2018.

160
140
120
100
80
60
40 2 26 23

20
- BB 2 o e
I : :

0-99 100 - 200 - 300 - 400 - 500 - 600 - 700 - 800 - 900- 1000- 1100-
199 299 399 439 599 699 799 899 999 1099 1199

139

Data log files

Size range in kB

B Succesfully uploaded data log files

Figure 6.7: The size distribution of successfully parsed and inserted data log files per
month from February through April 2018.

measurements.

Figure 6.8 shows the distribution of the 481,186 air:bit measurements in the
database by area per 01.05.2018. The majority (69%) of the measurements are
collected by the students in Bodg. This averages to 83,054 measurements per
air:bit. In comparison, the students Tromsg, who have collected the second
largest portion (16.6%) of the air:bit measurements, have an average number of
3,073 measurements per air:bit. The third largest portion of database entries are
undefined, meaning they are not collected within an eight km radius of one of
our predefined areas. Some entries have an undefined area due to latitude and
longitude being wrongly formatted (e.g. as integers and not as floats). However,
we also know that a portion of the undefined entries are due to the students
in Mo i Rana collecting data in areas far away from Mo i Rana. To reduce the
number of undefined entries, we could have increased the radius used to map
measurements to an area. However, undefined entries are the reason why we
implemented the radius circle search in the data exploration interface. Since
the latency tests show that querying data using GPS coordinates is equally fast
as (and sometimes even faster than) retrieving data using a predefined area,
we do not consider the undefined entries to be a problem for now.

To measure the resource usage related to data queries, we count the number
of queries processed by the backend. Unfortunately, we do not have data on

48 CHAPTER 6 / EVALUATION

Database entries per area

300000
250000
& 200000
@ 150000
=
100000 79910
42184
20000 5577 BOS0 113 9773 5597 0 [
U — | | —
2 & & w3 c ¥ o) o] &
?g» o é@ _J:z, _Q_'b(\ %@.\ 406 O<<~‘= K\(\@
Q\’b \:D \O\ t“ '3}, .&{ b@

M Database entries

Figure 6.8: The distribution of air:bit database entries per area.

Data uploads | Data queries
April | 43 959

Table 6.9: Upload and data query statistics from April 2018.

the total number of processed queries during the course of the project, since
we did not monitor the traffic to the backend using Google Analytics and the
GCP monitoring tools only provide traces and logs for the past 6 weeks. We
have the traces and logs from April 2018, and will base our evaluation of the
scaled resource usage on these. Using the GCP Cloud Console tracing tool and
the GCP monitoring service Google Stackdriver4, we find that the backend
processed 959 data queries in April. According to some teachers, their students
started analyzing air quality data to answer their research question in April. We
therefore believe that the number of processed student data queries is higher
in April than in February and March.

Figure 6.9 shows the App Engine instance counts in April, i.e. the number of
active App Engine instances run throughout the month and the resources used
to process the 43 data log file uploads and 959 data queries in April (table 6.9).
We see that the uploads and data queries caused periodically increases in the
number of instances, meaning that the average CPU usage across either the web
instances or worker instances periodically exceeded 40%. However, the average
number of additional instances rarely exceeds one. This implies that the two

4. cloud.google.com/stackdriver/

http://cloud.google.com/stackdriver/

6.5 / GCP SCALING RESOURCE USAGE

Instance Counts

49

Figure 6.9: The App Engine instance counts in April, displaying the number of active
App Engine instances run throughout the month.

Core hours
Default vCPUs | Default instances | Scaled instances | Total
February | 2 1488 73 1561
March 2/3 1944 55 1999
April 3 2160 30 2190

Table 6.10: The number of scaled App Engine core hours from February through April
2018.

default web instances and the one worker instance manage to cover much of
the air:bit platform activities without starting additional instances. When the
additional number of instances exceeds 1, it peaks at 4. We have configured the
backend to scale to a maximum of 15 worker instances and 4 web instances.
This tells us that, during April, the students’ data log file uploads and data
queries never used more than 36% of the available instances. This implies that
the backend is provided with a sufficient amount of resources, but since we do
not know which of the services scaled, we cannot say for sure.

To find the exact number of core hours and GB hours used by scaled instances
from February through April, we examine the monthly billing transactions in
the GCP Cloud Console and subtract the resource usage described in chapter 6.3.
During the course of the project we have altered instances configurations and
performed optimizations on the data retrieval methods, which have affected
the usage of scaled core hours and scaled GB hours. We will come back to
these changes and how they affect the scaled resource usage later in this
subchapter.

Tables 6.10 and 6.11 show the total number of App Engine core hours and
GB hours, as well as the distribution between default and scaled instances
(highlighted in bold), from February through April 2018. Table 6.10 shows how

50 CHAPTER 6 / EVALUATION
GB hours
Default vCPUs | Default instances | Scaled instances | Total
February | 2 1488 73 1561
March 2/3 2964 109 3073
April 3 3600 57 3657

Table 6.11: The number of scaled App Engine GB hours from February through April
2018.

the monthly scaled core hour usage has decreased each month, after peaking
in February. February is the month in which we did the extensive performance
tests of upload latency, during which we maximized the utilization of worker
instances for a longer period of time. This resulted in a large number of scaled
core hours. In the beginning of April, we optimized the methods that calculate
the distance between two coordinates (used to collect measurements within a
radius circle). This optimization might also have affected the number of scaled
core hours in April.

Table 6.11 shows that the number of scaled GB hours peaks in March. However,
since we do not know what types of instances were scaled, we do not know
the exact cause. The students uploaded the most data log files in March and
it may have caused the worker service to scale. However, since the amount
of GB hours used by scaled instances is doubled the amount of scaled core
hours, it seems like the majority of scaled instances were web instances, which
implies that the air:bit platform experienced compute-intensive data queries.
Due to the very uneven distribution of air:bit measurements per area (figure
6.8), some data queries involve processing several hundreds of thousands of
elements. In those cases, the backend will have to scale the number of web
instances to balance the workload.

Based on these findings, we know that the backend is able to scale with regard
to the number of data file uploads and queries. For now we will not increase the
maximum available instances for the worker service, but we should increase
the number of available web instances in case of extra compute-intensive data
queries.

6.6 GCP Scaling Cost

To evaluate the cost related to scaled resources, we subtract the baseline costs
provided in chapter 6.4 from the total backend cost. The total monthly cost of
the backend, as well as the costs of the App engine instances (CPU and RAM)

6.6 / GCP SCALING COST 51

Cost in USD

February | March | April
App Engine CPU 91 116 126
App Engine RAM 12 24 29
Cloud SQL 48 54 53
Other 1 2 3
Total platform cost | 152 196 211

Table 6.12: Total backend cost.

Cost related to scaled core hours in USD | Total core hour cost in USD
February | 4 91
March 3 116
April 2 126

Table 6.13: Cost related to scaled core hours (highlighted in bold).

and the Cloud SQL database, are collected from the monthly billing transactions
in the GCP Cloud Console and shown in table 6.12. We have also included a
row for “other costs”, which includes all smaller costs related to requests to and
data retrieval from the storage bucket in Google Cloud Storage and storing
data in Google Cloud Storage. For the remaining part of this chapter we will
not discuss the cost of the Cloud SQL database, as it remains the same as in
chapter 6.4 until we exceed the storage limit of 25GB.

Tables 6.13 and 6.14 show the monthly cost of the scaled core hour usage and
GB hour usage (highlighted in bold) from February through April. The cost is
calculated based on the numbers provided in tables 6.10 and 6.11 in chapter
6.5 and the billing rates in chapter 6.4. In tables 6.13 and 6.14 we also compare
the scaled resource usage cost to the total resource usage cost, illustrating how
the scaled instances are responsible for only 2-5% of the total core hour cost
and 1-5% of the total GB hour cost. In table 6.15 we show the monthly total
cost related to the scaled instances from February through April (highlighted
in bold), and compare it to the monthly total cost of the backend. We have
included the costs related to “other” in table 6.12 to the scaled costs, since they
are generated by the students’ data uploads and data queries. For now, costs
related to the scaled resource usage are very small compared to the operation
costs of the air:bit platform. This is because we only pay for the scaled resources
we use and for now this usage is low.

52

CHAPTER 6 / EVALUATION

Cost related to scaled GB hours in USD | Total GB hour cost in USD
February | 1 12
March 1 24
April 1 29

Table 6.14: Cost related to scaled GB hours (highlighted in bold).

Total cost of scaled resources in USD

Total backend cost in USD

6

February 152
March 6 196
April 6 211

Table 6.15: Total cost of scaled resource usage (highlighted in bold).

Related work

There are many companies and recent projects that aim to create awareness
about air pollution and to engage the public to collect air quality data using
a citizen science approach using various air quality kits [25, 26, 27]. Some of
the kits are ‘out of the box’ [28], meaning that they can be used immediately
and no assembling or programming is required by the user. Others are based
on a microcontroller/tiny computers and low-cost micro-sensors [29, 30, 31],
and have to be built and/or programmed by the user before collecting data.
Through online air pollution data platforms and mobile apps the projects or
companies make the air quality data available to the public, enabling them
to learn about - and reduce their exposure to - air pollution. There also exist
frameworks for creating data collection tools, both with and without additional
software development [7]. In this chapter we present some of these frameworks,
projects and companies, as well as their data platforms and air quality sensor
kits.

7.1 luftdaten.info

The German project luftdaten.info is a citizen science project focusing on
particulate matter [26]. People around the world can participate by installing
their self-built fine dust sensors outside their home, which collects and uploads

53

54 CHAPTER 7 / RELATED WORK

(close)

Erklarung einblenden

W #Sensors 10

o
Budapest

.
Ma0yEieRes: o

Figure 7.1: The luftdaten.info particulate matter map. By clicking one of the coloured
hexagons, a more detailed view (to the right) is provided.

data to the luftdaten.info site! over WiFi. Like our air:bits, their sensor Kkits
measure dust particles using the Nova SDSo11 and humidity and temperature
using the DHT22, but they have use the NodeMCU ESP8266 microcontroller
instead of an Arduino. At their website, they provide instructions on how to
build the fine dust sensor and how to install the pre-programmed firmware,
and they also provide continuously updated particulate matter map2 based on
the uploaded data is generated and displayed, shown by figure 7.1.

Unlike luftdaten.info, we have decided to store the air:bit data measurements
to an on-board memory card, rather than uploading it over WiFi. This is
mostly because it i) simplifies the software; and ii) makes it possible to use
the kits without WiFi coverage. Since our aim is to introduce the students to
computer science, and most of them (as well as the teachers) do not have any
programming experience prior to this project, we want to keep the software
as simple as possible. luftdaten.info also does not provide an interface or API
for querying or downloading, which is one of the main services of the air:bit
platform.

7.2 Hackair

The hackAIR project is supported through the EU programme on “Collective
Awareness Platforms for Sustainability and Social Innovation” [25]. By enabling

1. luftdaten.info/
2. deutschland.maps.luftdaten.info

http:/luftdaten.info/
http://deutschland.maps.luftdaten.info

7.3 / PLUME LABS 55

citizens and organizations to engage in generating and publishing outdoor air
quality data, hackAIR aims to raise collective awareness about the daily levels
of human exposure to air pollution. They have developed two versions of a
home sensor? 4 that can be used to collect air quality data, and at their website
they provide all the information (list of materials and tools, online retailers,
etc) and instructions necessary to build one yourself. The first version only
measures PM and is based on an Arduino Uno. For the second version, they
have replaced the Arduino Uno with a Wemos D1 mini and added a sensor
that measures temperature and humidity. Both home sensors use the same air
quality sensor as our air:bit (the Nova SDSo11) and the second version also
use the same temperature and humidity sensor (DHT22). Similar to the air
quality sensor used in Luftdaten.info, both hackAIR home sensors upload air
quality data to the online hackAIR platform5 over WiFi. hackAIR also provide
the software for the sensors as a downloadable library, relieving the user from
programming the sensor kit to collect data and communicate with the platform.
They have, however, not open-sourced their platform. The platform integrates
data from Luftdaten.info, as well as another open air quality and metadata
platform powered by the open-source project OpenAQ¢, but they do not enable
data querying or data download.

7.3 Plume Labs

Plume Labs is a French environmental technology company that aim to equip
citizens around the world with information about their local air quality [32].
They have created the air pollution forecast app, Plume Air Report”, which
provide citizens with local air quality data (both historical and live) and a
24-hour air quality forecast. These forecasts are delivered by Al models, that
learn from atmospheric data, satellite-based estimates, weather information
and data from government-owned environmental monitoring stations [33, 34].
They also plan to add local, crowdsourced, sidewalk-level data to their data
sources, when they launch their smart air quality tracker Flow in July 2018
(figure 7.2). The air quality tracker is said to measure real-time concentrations
of NO,, PM10o, PM2.5 and VOC [27, 28], collecting both indoor and outdoor air
quality data. It is available for pre-order for $139 and will have a final price of
$199. As a part of a three year long test phase, Flow was taken to the streets
of London by 100 beta testers in summer 2017 [35], but to our knowledge no
specific test results have been published. We plan to test it once it becomes

3. hackair.eu/hackair-home/

4. hackair.eu/hackair-home-v2/

5. platform.hackair.eu/

6. openaq.org/

7. plumelabs.com/en/products/air-report

http://hackair.eu/hackair-home/
http://hackair.eu/hackair-home-v2/
http://platform.hackair.eu/
http://openaq.org/
http://plumelabs.com/en/products/air-report

56 CHAPTER 7 / RELATED WORK

1005 -

ESCAPE POLLUTION

Figure 7.2: The Flow air quality tracker. Source: https://plumelabs.com/en/press.

available.

In August 2017 Plume launched the Plume API, opening up their air quality
platform to third-party companies and organizations. Access to the API is
tiered, with prices ranging from $499 - $2999 per month. However, academic
researchers, non-governmental organizations and local community projects
can apply for free access. We applied for access to the API in fall 2017, hoping
to integrate their data with the student data on our platform, but have not
yet gotten a response from Plume Labs and therefore have not been able to
evaluate it.

7.4 ResearchKit and ResearchDroid

ResearchKit8 is an open-sourced framework by Apple that researchers and
developers can use to create apps for medical research [36]. It is designed
for the I0S platform and makes use of the sensors and capabilities of iPhone
(and Android when using the ResearchDroid? library) to record data, track

8. researchkit.org/
9. blog.appliedinformaticsinc.com/researchdroid-an-android-forms-and-consent-library/

http://researchkit.org/
http://blog.appliedinformaticsinc.com/researchdroid-an-android-forms-and-consent-library/

7.4 / RESEARCHKIT AND RESEARCHDROID 57

movement and take measurements. The framework provides customizable
modules helps creating surveys and creating active tasks (i.e. tasks in which
iPhone sensors are used to actively collect data while the participants perform
activities). We could have used this framework to create an app where the
students could answer surveys to register e.g weather, as a supplementary
means to the air:bit. Since iPhones (and smartphones in general) do not have
all of the sensors that are necessary for this project (e.g. a particulate matter
sensor) and we want the students to learn programming, we cannot replace
the air:bits with a smartphone. We also do not want the students’ ability to
participate to depend on having a smartphone.

Conclusion

This thesis describes the air:bit platform, a scalable, cloud-based data man-
agement platform for citizen science education projects, that we designed and
implemented in the air:bit project. Students use the air:bit platform to store,
explore, visualize and download air quality data from ait:bits and other data
air pollution related data sources.

The air:bit platform consists of three components: i) the air:bit web application,
an interactive system for uploading, downloading and visual exploration of
air quality data; ii) a frontend web server that translates user interactions
in the air:bit web application into queries for storing air:bit data log files,
retrieving air:bit data and integrating air quality data from external data
sources; and iii) a backend that stores and provides air:bit data for the air:bit
web application. We have deployed the backend to the Google Cloud Platform
(GCP) to make the air:bit platform scalable in regard to computational resources
and storage. This also makes the backend easier to maintain, since the GCP
manages infrastructure and maintenance on our behalf.

We have evaluated the backend with regard to resource usage, latency, scala-
bility and cost. The results show that the backend scales well as the workload
increases and that our scaling configurations are adequate for the students’
use of the air:bit platform. While the backend performs timely uploads of the
students’ air:bit data log files, the data query latency is too high. We suggests
data query optimization strategies in chapter 9. The current monthly cost of
the backend is about $211 US, which is acceptable for the service.

59

60 CHAPTER 8 / CONCLUSION

We have demonstrated that the air:bit platform successfully serves its purpose
in the air:bit project. In the spring 2018 it was used by 174 students from 11 upper
secondary (videregdende) school classes across Northern Norway. Guided by
the air:bit instructions in the air:bit web application, they successfully built
and programmed 62 air:bits, which they used to collect data. From February
through April 2018 they uploaded 222 air:bit data log files to the air:bit platform,
comprising 481,186 air quality measurements.

We believe the air:bit platform is a valuable service, not only for the air:bit
project, but also for other education projects. It relieves other air quality related
citizen science projects from implementing their own data management solu-
tion. Being an open air quality database, it provides others with air quality data
for analyses. We have also open-sourced the codebase for the air:bit platform,
with the aspiration of guiding other who wish to create similar platforms for
their citizen science education projects.

The air:bit web application is available at airbit.uit.no. We have open-sourced
the code for the frontend service at github.com/fjukstad/luft and the code for
the backend at github.com/ninaangelvik/luft.

http://airbit.uit.no
https://github.com/fjukstad/luft
https://github.com/ninaangelvik/luft

Future Work

During the course of the air:bit project in 2018, the air:bit platform successfully
provided students with services for storing and exploring air quality data from
air:bits and NILU. Based on current knowledge of the use of the air:bit platform,
we have identified areas of improvement that have not been implemented due
to time constraints. We also present future features that we plan to add to the
air:platform to improve the services provided to the students.

9.1 Data query optimization

The most urgent area of improvement for the air:bit platform is optimizing
data queries. To do this, the first step would be to identify the bottlenecks of
the backend using performance tools such as Bullet!. From there we would
look into caching and alterations of the source code to make the caching most
efficient. In chapter 6.2 we discussed how the number of processed elements in
a data query heavily affects the latency. A quick way to achieve faster queries
while waiting for a more permanent solution, would be to select a smaller
randomized subset of elements from the query result set if it contains too many
elements.

1. github.com/flyerhzm/bullet

61

http://github.com/flyerhzm/bullet

62 CHAPTER 9 / FUTURE WORK

9.2 Monitoring the backend

The evaluation process of the backend revealed the importance of adding
monitoring to a system as soon as it becomes operative. Due to the lack of
analytical data, we were not able to fully evaluate the actual upload and data
query latency of the backend as experienced by the students. We will therefore
add Google Analytics to the backend before the 2019 air:bit project.

9.3 Expand integration with external sources

An important feature of the air:bit platform is enabling students to query in-
tegrated data from external data sources. Currently, the only external data
source that the students can query is NILU. We have implemented the func-
tionality for retrieving precipitation data from MET, and are in the middle of
implementing the functionality for visualizing the data. In the future we also
aim to exchange with other data sources such as hackAIR. However, since they
have not yet open-sourced their platform or exposed a platform API, a data
exchange will require an integration process in close collaboration with the
hackAIR team.

Bibliography

[1]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

The European Commission, White Paper on the Future of Europe. The
European Commission, 2017.

The European Commission, Proposal for a Council Recommendation on
Key Competences for Lifelong Learning. The European Commission, 2018.

European Schoolnet, Computer programming and coding. FEuropean
Schoolnet, 2015.

B. Fjukstad, N. Angelvik, M. W. Hauglann, J. S. Knutsen, M. Grgnnesby,
H. Gunhildrud, and L. A. Bongo, “Low-cost programmable air quality
sensor Kkits in science education,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE 18, (New York, NY,
USA), pp. 227—232, ACM, 2018.

E. Law, K. Z. Gajos, A. Wiggins, M. L. Gray, and A. Williams, “Crowdsourc-
ing as a tool for research: Implications of uncertainty,” in Proceedings of
the 2017 ACM Conference on Computer Supported Cooperative Work and
Social Computing, CSCW ’17, (New York, NY, USA), pp. 1544-1561, ACM,
2017.

Azavea and SciStarter, Citizen Science Data Factory. A Distributed Data
Collection Platform for Citizen Science. Azavea and SciStarter, 2014.

Azavea and SciStarter, Citizen Science Data Factory. A Distributed Data
Collection Platform for Citizen Science. Azavea and SciStarter, 2014.

Guerreiro, Christina and de Leeuw, Frank amd Foltescu, Valentin, Air
Quality in Europe - 2013 report. 2013.

WHO, World Health Assembly closes, passing resolutions on air pollution
and epilepsy. 2015.

R. Beelen, O. Raaschou-Nielsen, M. Stafoggia, Z. J. Andersen, G. Weinmayr,

63

64

[11]

[12]

[13]

BIBLIOGRAPHY

B. Hoffmann, K. Wolf, E. Samoli, P. Fischer, M. Nieuwenhuijsen, P. Vineis,
W. W. Xun, K. Katsouyanni, K. Dimakopoulou, A. Oudin, B. Forsberg,
L. Modig, A. S. Havulinna, T. Lanki, A. Turunen, B. Oftedal, W. Nystad,
P. Nafstad, U. D. Faire, N. L. Pedersen, C.-G. Ostenson, L. Fratiglioni,
J. Penell, M. Korek, G. Pershagen, K. T. Eriksen, K. Overvad, T. Eller-
mann, M. Eeftens, P. H. Peeters, K. Meliefste, M. Wang, B. B. de Mesquita,
D. Sugiri, U. Kramer, J. Heinrich, K. de Hoogh, T. Key, A. Peters, R. Ham-
pel, H. Concin, G. Nagel, A. Ineichen, E. Schaffner, N. Probst-Hensch,
N. Kiinzli, C. Schindler, T. Schikowski, M. Adam, H. Phuleria, A. Vilier,
F. Clavel-Chapelon, C. Declercq, S. Grioni, V. Krogh, M.-Y. Tsai, F. Ricceri,
C. Sacerdote, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni,
F. Forastiere, I. Tamayo, P. Amiano, M. Dorronsoro, M. Katsoulis, A. Tri-
chopoulou, B. Brunekreef, and G. Hoek, “Effects of long-term exposure
to air pollution on natural-cause mortality: an analysis of 22 european co-
horts within the multicentre escape project,” The Lancet, vol. 383, no. 9919,
pp. 785 — 795, 2014.

R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V.
Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters,
D. Siscovick, S. C. Smith, L. Whitsel, and J. D. Kaufman, “Particulate
matter air pollution and cardiovascular disease,” Circulation, vol. 121,
no. 21, pp. 2331—2378, 2010.

O. Raaschou-Nielsen, Z. J. Andersen, R. Beelen, E. Samoli, M. Stafoggia,
G. Weinmayr, B. Hoffmann, P. Fischer, M. J. Nieuwenhuijsen, B. Brunekreef,
W. W. Xun, K. Katsouyanni, K. Dimakopoulou, J. Sommar, B. Forsberg,
L. Modig, A. Oudin, B. Oftedal, P. E. Schwarze, P. Nafstad, U. D. Faire, N. L.
Pedersen, C.-G. Ostenson, L. Fratiglioni, J. Penell, M. Korek, G. Pershagen,
K. T. Eriksen, M. Sgrensen, A. Tjgnneland, T. Ellermann, M. Eeftens, P. H.
Peeters, K. Meliefste, M. Wang, B. B. de Mesquita, T. J. Key, K. de Hoogh,
H. Concin, G. Nagel, A. Vilier, S. Grioni, V. Krogh, M.-Y. Tsai, F. Ricceri,
C. Sacerdote, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni,
F. Forastiere, I. Tamayo, P. Amiano, M. Dorronsoro, A. Trichopoulou,
C. Bamia, P. Vineis, and G. Hoek, “Air pollution and lung cancer incidence
in 17 european cohorts: prospective analyses from the european study of
cohorts for air pollution effects (escape),” The Lancet Oncology, vol. 14,
no. 9, pp. 813 — 822, 2013.

M. Pascal, M. Corso, O. Chanel, C. Declercq, C. Badaloni, G. Cesaroni,
S. Henschel, K. Meister, D. Haluza, P. Martin-Olmedo, and S. Medina,
“Assessing the public health impacts of urban air pollution in 25 european
cities: Results of the aphekom project,” Science of The Total Environment,

vol. 449, pp. 390 — 400, 2013.

BIBLIOGRAPHY 65

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. S. A. B. S. M. P. Hagen, JA; Nafstad, “Associations between outdoor
air pollutants and hospitalization for respiratory diseases,” Epidemiology,
vol. 11, pp. 136 — 140, 2000.

EPA, “Health and Environmental Effects of Particulate Matter (PM).”
https://www.epa.gov/pm-pollution/health-and-environmental-
effects-particulate-matter-pm. [Online; Accessed: 2018-04-16].

Angelvik, Nina, “Low-cost portable air quality sensor kit and cloud ser-
vice.”.

S. Newman, Building Microservices. O’Reilly Media, Inc., 1st ed., 2015.

Google Cloud Platform, “How Instances are Managed.” https:
//cloud.google.com/appengine/docs/standard/java/how-instances-
are-managed. [Online; Accessed: 2018-04-17].

Google Cloud Platform, “Using Cloud Storage with Ruby.” https://
cloud.google.com/ruby/getting-started/using-cloud-storage. [On-
line; Accessed: 2018-04-17].

Google Cloud Platform, “Storage Classes.” https://cloud.google.com/
storage/docs/storage-classes. [Online; Accessed: 2018-04-17].

S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, and S. Kumar, “F4: Facebook’s warm blob storage
system,” in Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI'14, (Berkeley, CA, USA), pp. 383-398,
USENIX Association, 2014.

Google Cloud Platform, “What Is Cloud Pub/Sub?.” https://cloud.
google.com/pubsub/docs/overview. [Online; Accessed: 2018-04-17].

Google Cloud Platform, “Cloud SQL.” https://cloud.google.com/sql/.
[Online; Accessed: 2018-04-17].

Google Cloud Platform, “App Engine Pricing.” https://cloud.google.
com/appengine/pricing#flexible-environment-instances. [Online; Ac-

cessed: 2018-05-01].

hackAIR, “About hackAIR.” http://www.hackair.eu/about-hackair/.
[Online; Accessed: 2018-03-22].

luftdaten.info, “Home.” https://luftdaten.info/en/home-en/. [Online;

https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
https://cloud.google.com/appengine/docs/standard/java/how-instances-are-managed
https://cloud.google.com/appengine/docs/standard/java/how-instances-are-managed
https://cloud.google.com/appengine/docs/standard/java/how-instances-are-managed
 https://cloud.google.com/ruby/getting-started/using-cloud-storage
 https://cloud.google.com/ruby/getting-started/using-cloud-storage
https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/sql/
https://cloud.google.com/appengine/pricing#flexible-environment-instances
https://cloud.google.com/appengine/pricing#flexible-environment-instances
http://www.hackair.eu/about-hackair/
https://luftdaten.info/en/home-en/

66

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

BIBLIOGRAPHY

Accessed: 2018-03-22].

Plume Labs, “Meet Flow, your smart mobile air quality tracker.”
https://blog.plumelabs.com/2017/01/03/meet-flow-your-smart-
mobile-air-quality-tracker/. [Online; Accessed: 2018-03-29].

Plume Labs, “Flow.” https://flow.plumelabs.com/. [Online; Accessed:
2018-03-29].

hackAIR, “hackAIR home vi1 sensor.” http://www.hackair.eu/hackair-
home/. [Online; Accessed: 2018-03-22].

hackAIR, “hackAIR home v2 sensor.” http://www.hackair.eu/hackair-
home-v2/. [Online; Accessed: 2018-03-22].

luftdaten.info, “Fine dust sensor - construction manual.” https://
luftdaten.info/en/construction-manual/. [Online; Accessed: 2018-03-
22].

Plume Labs, “About Us.” https://blog.plumelabs.com/about-us/ . [On-
line; Accessed: 2018-03-28].

Plume Labs, “Clean air—now there’s an API for that.” https://blog.
plumelabs.com/2017/08/01/clean-air-now-theres-an-api-for-that/.
[Online; Accessed: 2018-03-28].

Plume Labs, “Frequently Asked Questions (FAQ).” https://plume.io/en/
faq. [Online; Accessed: 2018-03-28].

Plume Labs, “Flow pre-orders now open.” https://blog.plumelabs.com/
2017/09/26/f1low-pre-orders-now-open/. [Online; Accessed: 2018-04-
17].

ResearchKit, “ResearchKit Framework Programming Guide.” http://
researchkit.org/docs/docs/0Overview/GuideOverview.html. [Online;
Accessed: 2018-04-16].

https://blog.plumelabs.com/2017/01/03/meet-flow-your-smart-mobile-air-quality-tracker/
https://blog.plumelabs.com/2017/01/03/meet-flow-your-smart-mobile-air-quality-tracker/
https://flow.plumelabs.com/
http://www.hackair.eu/hackair-home/
http://www.hackair.eu/hackair-home/
http://www.hackair.eu/hackair-home-v2/
http://www.hackair.eu/hackair-home-v2/
https://luftdaten.info/en/construction-manual/
https://luftdaten.info/en/construction-manual/
https://blog.plumelabs.com/about-us/
https://blog.plumelabs.com/2017/08/01/clean-air-now-theres-an-api-for-that/
https://blog.plumelabs.com/2017/08/01/clean-air-now-theres-an-api-for-that/
https://plume.io/en/faq
https://plume.io/en/faq
https://blog.plumelabs.com/2017/09/26/flow-pre-orders-now-open/
https://blog.plumelabs.com/2017/09/26/flow-pre-orders-now-open/
http://researchkit.org/docs/docs/Overview/GuideOverview.html
http://researchkit.org/docs/docs/Overview/GuideOverview.html

Appendices

67

air:bit Poster

This appendix includes a resized version of the poster presented at SIGCSE2018.

The full-size version is available at
github.com/ninaangelvik/sigcse2018/blob/master/poster nano16.pdf

69

https://github.com/ninaangelvik/sigcse2018/blob/master/poster_nan016.pdf

TS/ quswu0IIAUB [90] 113U7 Ul swianed Ayenb Jie Apmis 03 wioneld suy
Sa.ﬂm?%&. Buisn aie AemION UIBYUON Ul S8sse|d [00yds TT ‘8T0¢ buuds buung

wJojield ayy buisn
9Je AeMION UJDYIION Ul S|j00YydS TT

UIUOW/GETS$ INOGR 513502 |B103 3Y3 ‘SNdDA BIIXD 9Y3 JO 3SN [BUOISEID0 9}
pue 3sip juaisisiad ‘Alowaw Jo 3502 auy buipnpul “gz'0$ SI speoidn 3j1y AW Z'E 96 104
SNdDA ST BuIsn J0 3502 ayy ajdwexa 104 Mo S| SNdDA |euoiippe buisn speojdn uj s3sing
Bullpuey Jo 3502 eanxa 3yl "YIUOW/STT$~ SI SNdDIA 934U3 dY} JO 350D 3Y| "dseqeiep
9U) pue JayJom punobydeq e ‘I9AI9S gam Y} IO SNdDA 994U} By} 2Je 350D ulew
9y ‘Siseq puodas-1ad e U0 Pa||Iq a4 1.y} Saulydew |enuiA 03 pakoldap S| wiope|d JnO

abesn uno Joj 9|qeydadde sisiy |
e3ep Jo Yyuow T BujuieIuod Sajiy 10 SIINUILW T PUB e3ep JO 32am T buluieIuod sajly 4o}
sajnuUIW 9 ueyy ssa| s| speojdn [a)jesed g6 03 dn Joj Bwly sul abelaAe au3 1ey) Moys
S3INsaJ 9duewload [eniul (gW Z'€ 'SIUSWaINSeaW Oy9) SjuswaInNsesw ajnuiw-1ad
JO JJuow T pue (g4/T/ 'SIUSWSINSesW 08O0T) SIUSWINSeaW 3)NuIw-Iad JO y9am T
Buluejuod sa|iy e3ep Jo JSquunu sjgelieA e fuipeojdn 1oj Swiy U3SUl lep sy painsesw
aAey am wuopeld sy Jo Aljige|eas auy 1523 0] ‘3abuey NdD paieinblyuod e uo paseq
umop pue dn wuope|d sy} Sa|eds Ajjedewoine JusWUoIIAUg 3|qIxal4 aulbul ddy 8yl

$912W 1159 1502
pue s3NsaJ aduewllollad Aseulwiaid

yuow T ‘syuswainseal a)NUIW-19d e
¥99M T ‘SJUBWSINSESW BINUIW-Id emmmm—

speo|dn |ajjeted jo lequinN
96 8 e @n 9 T

0T
GF

(senuiw ur) Lasul aseqereq

sbo| erep
Jo speojdn |9|resed 1o} sawi 18suUl aseqered

s329foad uoneonpa asxuaids 193ndwod 10j waojield sisAjeue eyep uonnjjod a1y

YoUeRSEY A1y 404 FNyNSU| ueiFamloN
BUILSI0HN] J0} NJISUL HSION

ou'yIN‘yiquie//:diy
e wJaoje|d ano IsIA

$109[q0 NOS(se uonedidde gam
a3 03 paulniad ale synsal Ausnb ajiym ‘@nanb ayj 03 pappe A||NJSSa3dNSUN/A|INJSsaIdNs
U334 Sey 3y SU3 92U0 36eSS3W aSU0dsal B SAISIBI [[IM JUSID BYL ‘seqeiep 1OS pnojd
3U3 0Jul pauasul pue pasied si eyep sy pue pajjod s ananb Sy) JsuUUBW SNOUOIYDUASE
ue uj ‘ananb 3sey gns/gnd PnojD Y3 Ul pananbus S| 3USU0I Sy 210439 '96LI0IS PNojD
ul Ayus ue se palols Si 3l ayy 3diedal uodn IOS pNopD 316009 pue gns/and pnojd
316009 'sbe1035 pnojy 86009 Bulpnpul 'SVIAISS DD SdiINW JO SISISUOD pue S|iey
uo Agny ul payuawaldwi SI 3| (dD9) Wlojie|d pnoj 916005 ayy AQ paJaAl|dap 9JIAIBS e se
WwJ0jie|d B ‘JuswUoIIAUg 3(qIXal4 aulbug ddy ay) 03 pakojdap S| pudydeq ayl ‘IdV 1S3y
dLLH Buisn puaydeq 4no 03 Juds ale salanb uoped|idde gam pue sa|i} e3ep papeojdn ay L

wJojye|d siskjeue
e1ep Paseq PnNojd 3|ge|eds

—|v ouyn‘cure

ainjsu] AW

IN
|02j60)0J0818 W
‘- — uniBamionN O

+

1y Josuas Ayrenb a1y

ABMION JO AYSIDAIUN D13D4Y BY L - |10 '©2U3IDS 493ndwio)) 4O yuswpedag

21misu| [ed160|010919 W
uelbamION BU} pue ydleasay Jly 4oy &3n3sul uelbamioN
3YL Se UdNs 'SIDIN0S [BUIDIXD WOL) 1P SIRWID YIIM B3ep juspnis
2y} saesbajul 0Sje 3 ‘eyep JIsyy Sziensia pue Aisnb ‘peojumop
‘peojdn syuspms ayy alaym uonedjdde gam e 3jing SARY M

suJaned Ajenb Jie pazl|edo|
JO SISAjeue JoJ 92.e)Ia1ul oM

pJed AJowaw pJeog-uo ue uo d|ij ASD e Se eyep ay) Saloys pue
‘sg|oiJed 1snp pue Aypiwny ‘ainjesadwa) ‘UOIEO| ‘Bl SI19)SIbal
Ajleaiporiad ig:ie ayl ‘eyep paids||od Jiayy buizAleue Aq uonsanb
yoseasas e Bunebnssaul 210/9q 'NgUIe 2y} 'Sy Josuss Ajjenb
Jle UMO JISY) 8p0d pue p|INg Sjuspnis |ooyds Alepuodas Jaddn
aJaym sydafoud uopednpa 9dusIds Ul pasn sI wlope|d ygiae syl

S JOSUDS Ajljenb Uie umo
41941 2P0 pue PlINg SiUuspnis

R

AVMYON 40

ouIns0d®9Toueu ALISYIAINND
YIAjRBUY BUIN J11J4Y KL

ln

/B

air:bit Paper

73

Paper Session: Science Education

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

Low-Cost Programmable Air Quality Sensor Kits in Science
Education

Bjern Fjukstad

Department of Computer Science

Nina Angelvik

Department of Computer Science

Maria Wulftf Hauglann

Department of Computer Science

UiT The Arctic University of Norway UiT The Arctic University of Norway UiT The Arctic University of Norway

Joachim Sveia Knutsen
Kongsbakken Videregédende Skole

Morten Grennesby
Department of Molecular Biology

Hedinn Gunhildrud

Science Centre of Northern Norway

UiT The Arctic University of Norway

Lars Ailo Bongo
Department of Computer Science
UiT The Arctic University of Norway

ABSTRACT

We describe our citizen science approach and technologies designed
to introduce students in upper secondary schools to computational
thinking and engineering. Using an Arduino microcontroller and
low-cost sensors we have developed the air:bit, a programmable
sensor kit that students build and program to collect air quality
data. In our course, students develop their own research questions
regarding air quality before using their own air quality sensor kit to
answer their respective questions. This project combines electronics
and coding with natural sciences providing a truly interdisciplinary
course.

We have open-sourced the teaching materials including the build-
ing and coding instructions. In addition, students can contribute to
our web-based platform for storing, visualizing, and exploring the
collected air quality data. It also provides an open API for anyone
to download air quality data collected by the students. Through
the website, available at airbit.uit.no, students are motivated to
contribute air quality data open to the public.

We describe lessons learned from our pilot project in a Norwe-
gian upper secondary school and how we are deploying it in 10
schools across Northern Norway. In the pilot, students successfully
built and coded the air:bits, and after two months of data collection
they could correctly describe local patterns in the air quality. We
believe that by combining electronics and coding with the natural
sciences we motivate students to engage in all scientific disciplines.

ACM Reference Format:

Bjern Fjukstad, Nina Angelvik, Maria Wulff Hauglann, Joachim Sveia Knut-
sen, Morten Grennesby, Hedinn Gunhildrud, and Lars Ailo Bongo. 2018.
Low-Cost Programmable Air Quality Sensor Kits in Science Education. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 18, Feb. 21-24, 2018, Baltimore, MD, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159569

227

SIGCSE ’18: The 49th ACM Technical Symposium on Computer Science Ed-
ucation, Feb. 21-24, 2018, Baltimore, MD, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3159450.3159569

INTRODUCTION

From a recently published Norwegian Official Report on the future
of education in Norway, the authors argue that technology affects
all subjects in the Norwegian school system and that digital skills
should be expressed in these.[1] While countries such as the UK,
Finland, and Estonia have already, or are now, introducing program-
ming and computational thinking in school curricula from primary
school and upwards[2], Norway is falling behind. This is both due
to the lack of mandatory courses, teaching materials, tools, and
courses for teachers without any programming background.

We have developed a course that aims to introduce computer pro-
gramming and engineering to Norwegian upper secondary schools.
Our course combines engineering and computer programming with
natural sciences. We developed a maker-inspired citizen science
approach focused on air pollution data collection monitoring. We
believe this engages both male and female students that are not pri-
marily interested in programming and engineering. It also teaches
scientific thinking since students themselves have to collect and
verify data. As part of the course we developed an air pollution
sensor kit that we have named air:bit to collect data. We provide
teaching materials including the design, assembly instructions, ex-
ample source code for the sensors, and a cloud based service for
students to upload and explore their collected datasets.

The air:bit shown in Figure 1 measures air quality using low-cost
sensors and the Arduino UNO microcontroller.! It measures i) dust
particles, ii) temperature, iii) air humidity, iv) location, v) time and
date, and log these to a memory card in an open format. The total
cost of each kit is $40 USD. The cloud service provides data storage
and visualization that can be used by students and the public to
view current and previous trends in air quality. The cloud service
also facilitates download of the air quality datasets through an open
APL

The rest of this paper gives an introduction to air quality and
related projects that aim to create awareness and engagement;
describe our course and how it is structured; gives an overview of

larduino.cc

Paper Session: Science Education

Figure 1: The air:bit.

the air:bit and the computational resources; discuss our experiences
from a pilot project; and lastly we provide future directions for the
project.

BACKGROUND

We provide a background in air quality and describe related projects
that aim to create public awareness and information on air quality.

Air pollution

Air pollution is a global issue since it reduces quality of life in
polluted areas and causes diseases. The WHO has termed air pol-
lution as the largest single environmental health risk[3], and has
both health, environmental and climate effects.[4] Both short and
long term exposure to poor air quality as a result of air pollution
is contributing to respiratory disease, cardiovascular disease, and
certain cancers.[4-8] In Norway, both European and Norwegian
legislation ensure that the air quality is monitored and that air
quality forecasts are available to the public. Air pollution originate
from a range of different sources. From chemical emissions in fac-
tories, chemicals used as a fertilizer in agriculture, exhaust from
combustion engines burning fossil fuel, to micro-particles from
cars driving on snow-free roads with studded tires[4, 9]. This wide
range of sources generate different pollutants, e.g. nitrogen oxides
(NOy), Ozone (03), Particulate Matter (PM), and Carbon Monoxide
(CO).

In Northern Norway the air quality is rapidly changing in the
winter months, especially while the seasons are changing from
winter to spring, and fall to winter mainly due to the use of spiked
tires on dry roads that generate dust particles in the air, and the
emissions from diesel powered cars. Reducing the use of cars will
improve air quality in these months, and by creating awareness on
the local conditions and their impact on health we believe that it
is possible to reduce car usage without enforcing it. However, the
monitoring is typically done using stationary equipment that pro-
vides high-quality data, but due to their high cost are not affordable
to locate throughout all populated areas. Therefore citizens may not
find available data on the air quality in their city or neighborhood
and it’s not possible to increase awareness around poor air quality
and simple measures to improve it.

228

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

Recent initiatives to use low-cost, easy-to-use micro-sensors for
air quality monitoring[10-13] to replace the expensive instruments
currently to gather high-quality air quality data. These projects are
often targeted towards crowd sourcing air quality data, and must
therefore provide an easy-to-use platform that anyone can use. In
our project we focus on building the sensor kits to give the students
a deeper understanding on how the technology works and not just
how to use it. We have focused on measuring PM since it is the
major cause of poor air quality in Tromsg, and there are simple and
reasonably priced sensors available to measure dust densities in
the air.

Air Pollution Engagement Projects

There are many recent projects that aim to engage the public to col-
lect air quality data using a citizen science approach using various
air quality Kkits.

Friskby Bergen is a Norwegian project with a similar aim as our
project to develop a project for school classes to build air quality
monitoring base stations and collect air quality data. Their technol-
ogy is based on the Raspberry Pi computer and use low-cost sensors
to measure air quality. Their monitoring stations are stationary and
log data directly to their open web services over wifi. While the
Friskby sensor kits provide live monitoring of air quality by directly
uploading air quality measurement over wifi, our air:bit is equipped
with a memory card to store measurements before being uploaded
by the students afterwards. This simplifies both the software and
makes it possible to use the kits without any wifi coverage.

The aim of the hackAIR project is to develop a simple DIY kits
that enable citizens and organizations to engage in air quality data
generation and sharing.[14] We share the same technical platform
as the hackAIR project, and we have initiated a collaboration to
share both data and experiences between the two projects.

The CITI-SENSE project has developed ’citizens observatories’
for citizens to contribute to and participate in environmental
governance[11]. Citizens use the Little Environmental Observa-
tory (LEO) sensor packs to measure NO, NO3, O3, temperature and
relative humidity. Data is uploaded to a online service for users to
view and explore, similar to our approach.

Another project that share our technological platform is the
Luftdaten project which aims to promote air quality awareness in
Germany.[15] Through the luftdaten.info site they provide instruc-
tions on how to build and code the air quality sensor, in addition
to interactive maps with live data. The Luftdaten project also host
frequent meetups for citizens who need help with the air quality
kits or want to learn more about the project. We share the approach
with the Luftdaten project, but we target high-school students as
the main audience.

Computer Science Education

There is a wealth of platforms and software tools to introduce
programming and technology. One such approach is to combine
electronics and coding through the cheap Arduino microcontroller
architecture and electronic components such as LEDs, buttons or
other sensors.[16, 17] An example of one such approach was to
create or hack existing toys or build new ones to make "noise"[18].

Paper Session: Science Education

Figure 2: Students soldering different components of the air
quality sensor kits to the custom PCB Arduino Shield.

Another is to use Arduinos in Physics experiments in the areas of
Optics, Thermodynamics, and Waves.[19]

COURSE CONTENTS

Our course has been given once in spring 2017 at UiT The Arctic
University of Norway to science students at a local High School, and
is planned again in spring 2018 across 10 upper secondary schools
across Northern Norway. We host the course at the university both
to recruit new students but also as a part of the outreach program
at the university.

To make the course fit into different subjects in the upper sec-
ondary school in Norway, we have surveyed the relevant subjects
and their specific learning goals and requirements. By creating a
project where students build, code and use a sensor kit to investi-
gate air pollution we cover learning outcomes from the subjects
Technology and Research Learning (Teknologi og Forskningsleere),
Physics (Fysikk), Chemistry (Kjemi), Information Technology (In-
formasjonsteknologi), and Mathematics (Matematikk for realfag).

The course is run over the duration of a semester and given in
four segments; first an introduction to air quality and research on
the topic; a hands-on introduction to electronics and coding, as
well as assembling and coding the air:bit; air quality data collection;
and finally an evaluation where students summarize their work in
a written report and/or a presentation. We followed the students’
presentations both to get an overview of their learning outcome
and get feedback on the project.

229

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

Figure 3: Students browsing their collected air quality data
on the web site.

The course is designed for students in Norwegian upper sec-
ondary school, typically around 17-18 years old. Students may have
some experience with basic circuits and electronics through science
classes, but since there are no mandatory courses on computer pro-
gramming so we do not expect any prior experience with coding.
We can expect them to have basic computer skills and access to
individual laptops.

As for the teaching staff at the individual institutions we cannot
expect them to have more knowledge on air quality, microcon-
trollers, or extensive coding experience. Prior to the project we
therefore invite teachers for an intensive two-day workshop that
take the teachers through the four segments of the course. We host
this two-day workshop at our department.

Following the two-day workshop teachers will return to their
schools with parts and instructions to complete the course at their
respective institutions. We provide an online forum for questions
and answers, both from students and teachers, if they encounter any
difficulties with assembling, coding or collecting data. The project
is typically run in the spring months to capture the changing air
quality from winter to spring.

In the course, teachers can themselves choose if they want to
provide research questions to the students or if they want students
to develop these themself. The imporant point is that the students
all contribute to a large database with air quality measurements, but
each student group each decide on what aspect of air pollution they
want to investigate. For example, one student group investigated
the relationship between snow coverage of roads and dust particles
in the air.

SENSOR KIT AND CLOUD COMPUTE
INFRASTRUCTURE

In this section we describe our air quality measurement kit, its
relevant documentation, the backend storage system, and the fron-
tend visualization platform. The students collect air quality data
and upload it to the backend storage system. To view and down-
load data, users access a frontend web application. This application
interfaces with both student-collected data in our local backend
storage system, as well as open air quality data from the Norwegian

Paper Session: Science Education

Table 1: A list of the different components in the air:bit
along with their cost (as of August 2017).

Component Cost (USD)
Arduino Uno microcontroller $3.14
NEO6MV2 GPS module $8.19
Sharp GP2Y1010AUOF optical dust sensor | $5.99
DHT11 temperature and humidity sensor | $1.00

SD Card reader and 16GB memory card $4.74
Portable power bank $15.00
Two indicator leds and resistors $1.00
Custom PCB circuit board $2.00
Total: $41.06

Institute of Air Research (NILU) and the Norwegian Meteorological
Institute (MET).

air:bit

We have designed the air quality sensor kit as a small microcon-
troller based data logger that collects measurements of dust parti-
cles, air temperature, air humidity, location, and time and date. The
kit is enclosed in a laser cut box, equipped with an external power
source that makes the kit portable and withstanding of different
weather conditions. Figure 1 shows the first prototype. The kit was
built as simple as possible to facilitate use in an educational setting.
Table 1 lists the different components and their respective cost.

To simplify the assembly and soldering of the components to the
microcontroller we have designed a custom PCB circuit board. The
circuit board has pre-defined pins for each sensor, and fits on top of
the popular Arduino UNO board. Figure 4a shows the underlying
circuit and Figure 4b shows the custom designed PCB circuit board.

Students assemble the kit soldering the components to the cus-
tom PCB circuit board. The sensors and circuit board is then
mounted on top of an Arduino UNO before enclosed in the pre-cut
box.

To program the air:bit we use the standard Arduino IDE together
with additional libraries to interface with the different sensors.
Through the Arduino IDE students code and upload programs to
the Arduino. Arduino programs are written in C++ and by the end
of the project students will end up with a working solution at about
150 lines of code. While this is the final version, we expect students
to write at least 500 lines of code during the project to test sensors
and experiment with different solutions. The Arduino IDE features a
console for monitoring communication from the Arduino, allowing
students to read data in real time from the different sensors before
taking it outside.

Since the kits are programmed in upper secondary school classes
where both teachers and students have little or no coding experi-
ence, we aim to keep the code as simple as possible. In the project
we distribute example code to interface and collect data from the
individual sensors?. These are small 100 lines of code examples that
typically take 20 minutes each to implement. The students must
write their own program that collects data from all sensors simul-
taneously and write them to a memory card. We do not put any

2 Available online at airbit.uit.no

230

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

restrictions on how their code should look like, the only restriction
is on the format of the output data written to the memory card.

We designed a simple data exchange format for the air:bit based
on the simple CSV file format. Sensor kits create a single log file
and append to it as it collects new measurements. A line (row) in
the output file is an observation and consist of measurements for
all available sensors. Listing 2 shows an example data file. Using
simple Arduino libraries students write the data files to memory
cards and they can view them using standard applications, such as
Excel, on their laptops.

Listing 1: A simplified code example to collect and print tem-
perature and humidity data from a DHT sensor every sec-
ond.

void setup () {
Serial .begin (9600);
dht . begin (); /I receive messages from the Arduino
} // and initialize the DHT sensor.

// Start Serial communication to

void loop () {
/I Collect data and print them.
dht . readHumidity ();
dht . readTemperature ()

float humidity =
float temperature =
Serial . print (temperature);
Serial.print (", ");
Serial . print (humidity);
Serial.print ("\n");

delay (1000);

Listing 2: Example data file. Every line in the file is a mea-
surement.

Time and date, Latitude, Longitude, Dust, Temperature, Humidity
26/10/2016 18:48:41, 69.682121, 18.978985, 88.98, 21.00, 20.00
26/10/2016 18:48:46, 69.682114, 18.978952, 95.70, 22.00, 17.00
26/10/2016 18:48:51, 69.682114, 18.978891, 99.06, 22.00, 17.00

26/10/2016 18:48:55, 69.682106, 18.978865, 98.22, 22.00, 17.00

Backend data storage

We built a backend cloud based data storage system to handle the
large quantities of student data. Students upload data directly from
their memory cards to the backed system. The backend also serves
queries for air quality data within given time intervals. Since we
want to support a query-like interface to the collected air quality
data, we used a relational database to build the backend storage
system. Student access a lightweight web interface to upload data
files from the air:bits, which are parsed and inserted into the data-
base represented by a record for each measurement. Records are
indexed using a combination of the time and date, and location.
Invalid records are rejected and users will receive an error message
to indicate any invalid data or formatting. The backend data stor-
age system exposes a small REST API to allow the frontend (and
other applications) to retrieve air quality data. The API will accept
queries to retrieve all data within a given time interval. There is
no limitation on the length of the time interval, and the API will
return a single file with all measurements within the time period.

Frontend visualization

To simplify the process of accessing the collected air quality data,
we built a web application. Students and the public can explore
air quality data from the last 24 hours, or view and download
data from any time period. The web application is built around a

Paper Session: Science Education

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

Vaerlogger med stevmaling RESET

]

VETENSENTERET
...... —
NS hont
—_ — C
g 5 8 FuktTamp.
| L
L o =
I | |
i T
—]arer -
e .
—on o

Artino UNO.

{ = | GND

Tx GPS
w | Rx
B Vee

[L]]]
2

102 4601
L » Resd

2
270

L

(a) The Air Quality Sensor Kit circuit diagram.

[
=
=1
o
o
o
o
8
g8
o
=2
2
Q
«Q
=1
=t
g
=
g
g
El
=)
g
i
=4
F
£
=

(b) The custom PCB Arduino shield.

Figure 4: air:bit circuit diagram and custom PCB.

Velg tidsrommet du vil se luftkvalitetsdata fra

Fra 01/02/2017, 08:00 T 20/03/2017, 20:00

HANSMARK

Figure 5: Screenshot from the web application for exploring
collected air quality measurements.

paneled visualization consisting of a map with measurement points
plotted at their geographical location, in addition to other line
plots visualizing the different measurements over time. Figure 5
shows a screenshot from an early version the web application with
measurements from two different air:bits carried around in Tromsg,
Norway.

EXPERIENCES

Our course has been delivered once in spring 2017 at the University
of Tromsg to science students at a local High School (Kongsbakken

231

Vidergéende Skole). The class consisted of 26 students divided into
groups of 3-4 students. The teacher formed groups consisting of
students at the same level of experience. The students had varying
previous experience with soldering, and no one except one student
had coding experience.

The assembly of the kit went almost without any issues. The
groups had to present their soldering to one in the staff before
moving on to the coding. This allowed us to verify their soldering.
We observed that students took turns soldering, and offered each
other help. It was clear that some students had done more prior
soldering than others.

Coding the kit was a more challenging task. Since most students
had little experience writing software, it was oftentimes not clear
that they understood the structure of a program and where to
start debugging it. The Arduino IDE helped a bit, but most groups
had difficulties completing the coding without any help from the
instructors. We believe that this is related to the minimal code
examples and instructions we provided the students. An interesting
point made by one of the students was that it would be helpful with
some tool (test suite) that could verify that their implementation
was correct.

The students collected data over a 2 month period, each group
deciding on when and where to bring their kits on their own. This
resulted in measurements from different areas over different time
periods. We believe that this stems from our instructions not be-
ing clear enough that they should focus on collecting data at the
same locations and time of day to make the interpretation simpler.
One group ended up with mounting the kit outside their house
to simplify data collection. Another group also photographed the
road while they were collecting dust data to quantify the amount
of snow and ice later.

Due to the scattered data points, the students experienced some
difficulties interpreting the data. Because of this, groups with ’good’

Paper Session: Science Education

and complete datasets shared their data with other groups to help
them answer their respective research questions. However due to
the very simple dust sensor, groups had difficulties with comparing
their data with official PM measurements.

After the project was complete we collected oral feedback from
both the students and the teacher. Students enjoyed the interdici-
plinary nature of the project, especially in groups where students
could assign tasks evenly according to interest. The coding was by
far the most difficult part of the project for the students as well as
the teacher. Because the data interpretation was difficult because
of the sensors and scattered data, students had to reflect on the
study design and quality of the data before making any conclusions.
While we are going to improve the data quality by using improved
sensors, the teacher enjoyed the student’s reflection on study design
and data collection.

FUTURE WORK

While we successfully deployed the air:bit project in a upper sec-
ondary school class of 26 students, we have identified areas for
improvement and some future directions for the project.

We will improve data quality from the air:bit by using an air qual-
ity sensor that can measure both PM2.5 and PM10 concentrations
in the air. The current Sharp GP2Y1010AUOF optical dust sensor
measures only the total amount of dust particles and cannot be
directly compared with the air quality stations from the NILU. We
will use the Nova SDS0113 that both measures PM2.5 and PM10.
We will also replace the DHT11 temperature and humidity sensor
with the DHT22 temperature and humidity sensor since its read-
ings more accurate and can read temperatures below 0 °C. With
these new sensors we are aiming to perform a formal evaluation of
their accuracy by sampling air quality data at one of the air quality
measurement stations of NILU. We estimate that the new sensors
will increase the total cost of each kit by USD $15.

We are also re-writing both the interface for students to explore
their collected data, as well as redesigning both the backend storage
solution, and the frontend to facilitate users from different parts of
Norway. The current backend does not provide the low latencies
required by the frontend visualization interface.

To make it possible to scale the project to 10 new schools we are
improving the teaching materials that we distribute to the classes.
Since we cannot host every class ourselves, we provide video lec-
tures on the background material such as air quality and climate,
as well as instructional videos on assembly of the kit and soldering.
We are also re-writing the example code that we distribute to the
students with better documentation and clearer code. We believe
this will simplify and make the coding-part of the projects more
pedagogical.

CONCLUSIONS

We have shown how we designed the air:bit, a simple programmable
sensor kit for measuring air quality, and how we built a upper
secondary school course for students to build and program the kit.
We believe that by introducing students to electronics and coding
in a citizen science project we motivate students to engage in both
technology and the environment.

3aqgicn.org/sensor/sds011

232

SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

ACKNOWLEDGEMENTS

We would like to thank MET for providing open weather observa-
tions through data.met.no and yr.no. We would like to thank NILU
for providing air quality measurements through their luftkvalitet.
nilu.no portal. We would also like to thank Thomas Olsen, Torkjel
Sandanger, and Juan Carlos Aviles Solis for their presentations and
input on the projects.

REFERENCES

[1] “NOU 2015: 8 - fremtidens skole.” https://www.regjeringen.no/no/dokumenter/
nou-2015-8/id2417001.

European Schoolnet, “Computing our future. computer program-
ming and coding - priorities, school curricula and initiatives across
europe.” http://www.eun.org/c/document_library/get_file?uuid=
521cb928-6ec4-4a86-b522-9d8fd5cf60ce&groupld=43887, 2014.

W. H. Organization, “World health assembly closes, passing resolutions on air
pollution and epilepsy.” http://www.who.int/mediacentre/news/releases/2015/
wha-26-may-2015/en, 2015. [Online; Accesssed: 02.06.2017].

C. Guerreiro, “Air quality in europe: 2013 report,” 2013.

R. Beelen, O. Raaschou-Nielsen, M. Stafoggia, Z. J. Andersen, G. Weinmayr,
B. Hoffmann, K. Wolf, E. Samoli, P. Fischer, M. Nieuwenhuijsen, et al., “Effects of
long-term exposure to air pollution on natural-cause mortality: an analysis of
22 european cohorts within the multicentre escape project,” The Lancet, vol. 383,
no. 9919, pp. 785-795, 2014.

R. D. Brook, S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux,
F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, et al., “Particulate matter air
pollution and cardiovascular disease,” Circulation, vol. 121, no. 21, pp. 2331-2378,
2010.

O. Raaschou-Nielsen, Z. J. Andersen, R. Beelen, E. Samoli, M. Stafoggia, G. Wein-
mayr, B. Hoffmann, P. Fischer, M. J. Nieuwenhuijsen, B. Brunekreef, et al., “Air
pollution and lung cancer incidence in 17 european cohorts: prospective analyses
from the european study of cohorts for air pollution effects (escape),” The lancet
oncology, vol. 14, no. 9, pp. 813-822, 2013.

M. Pascal, M. Corso, O. Chanel, C. Declercq, C. Badaloni, G. Cesaroni, S. Henschel,
K. Meister, D. Haluza, P. Martin-Olmedo, et al., “Assessing the public health
impacts of urban air pollution in 25 european cities: results of the aphekom
project,” Science of the Total Environment, vol. 449, pp. 390-400, 2013.

J. A. Hagen, P. Nafstad, A. Skrondal, S. Bjerkly, and P. Magnus, “Associations
between outdoor air pollutants and hospitalization for respiratory diseases,”
Epidemiology, vol. 11, no. 2, pp. 136—140, 2000.

J. Dutta, C. Chowdhury, S. Roy, A. L. Middya, and F. Gazi, “Towards smart city:
Sensing air quality in city based on opportunistic crowd-sensing,” in Proceedings
of the 18th International Conference on Distributed Computing and Networking,
p. 42, ACM, 2017.

N. Castell, M. Kobernus, H.-Y. Liu, P. Schneider, W. Lahoz, A. J. Berre, and J. Noll,
“Mobile technologies and services for environmental monitoring: The citi-sense-
mob approach,” Urban climate, vol. 14, pp. 370-382, 2015.

A. Antoni¢, V. Bilas, M. Marjanovi¢, M. Matijasevi¢, D. Oleti¢, M. Paveli¢, L. P.
Zarko, K. Pripuzi¢, and L. Skorin-Kapov, “Urban crowd sensing demonstrator:
Sense the zagreb air,” in Software, Telecommunications and Computer Networks
(SoftCOM), 2014 22nd International Conference on, pp. 423-424, IEEE, 2014.

D. Oletic and V. Bilas, “Design of sensor node for air quality crowdsensing,” in
Sensors Applications Symposium (SAS), 2015 IEEE, pp. 1-5, IEEE, 2015.

hackAIR, “The hackair project.” http://www.hackair.eu/pages/about-hackair,
2017. [Online; Accesssed: 16.08.2017].

Luftdaten, “luftdaten.info - feinstaub selber messen.” http://luftdaten.info, 2017.
[Online; Accesssed: 16.08.2017].

J. D. Brock, R. F. Bruce, and S. L. Reiser, “Using arduino for introductory pro-
gramming courses,” Journal of Computing Sciences in Colleges, vol. 25, no. 2,
Pp. 129-130, 2009.

L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett, “The lilypad arduino:
using computational textiles to investigate engagement, aesthetics, and diversity
in computer science education,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 423-432, ACM, 2008.

E. Brunvand and N. McCurdy, “Making noise: Using sound-art to explore techno-
logical fluency,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pp. 87-92, ACM, 2017.

C. A. Petry, F. S. Pacheco, D. Lohmann, G. A. Correa, and P. Moura, “Project
teaching beyond physics: Integrating arduino to the laboratory,” in Technologies
Applied to Electronics Teaching (TAEE), 2016, pp. 1-6, IEEE, 2016.

(2]

G

[10

[11

[12

[13

=
2

[15

(16]

(17

(18

[19

Source Code

We have open-sourced the codebase for the air:bit platform on github:

The air:bit web application and frontend server:
github.com/fjukstad/luft

The backend:
github.com/ninaangelvik/luft

81

https://github.com/fjukstad/luft
https://github.com/ninaangelvik/luft

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problems with existing data platforms
	1.2 Our solution: the air:bit platform
	1.3 Use of air:bit platform in high schools
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Air pollution
	2.2 The prototype air:bit
	2.3 The prototype backend web service
	2.4 Pilot frontend service
	2.5 The air:bit - current version
	2.6 The air:bit platform educational resources

	3 Architecture
	3.1 The air:bit web application
	3.2 Frontend web server
	3.3 Backend

	4 Design and implementation
	4.1 Frontend service
	4.1.1 The air:bit web application
	4.1.2 Frontend server

	4.2 air:bit backend data management system
	4.2.1 Cloud Storage
	4.2.2 Cloud Pub/Sub
	4.2.3 Cloud SQL
	4.2.4 Data privacy
	4.2.5 air:bit backend data processing
	4.2.6 App Engine

	5 Air:bit education project
	5.1 air:bit project schedule

	6 Evaluation
	6.1 Data Log Upload Latency
	6.2 Data Query Latency
	6.3 GCP Resource Usage
	6.4 GCP Operation Cost
	6.5 GCP Scaling Resource Usage
	6.6 GCP Scaling Cost

	7 Related work
	7.1 luftdaten.info
	7.2 Hackair
	7.3 Plume Labs
	7.4 ResearchKit and ResearchDroid

	8 Conclusion
	9 Future Work
	9.1 Data query optimization
	9.2 Monitoring the backend
	9.3 Expand integration with external sources

	Bibliography
	Appendices
	A air:bit Poster
	B air:bit Paper
	C Source Code

