
Faculty of Science and Technology
Department of Computer Science

DMNI
Dynamic Mobile Network Infrastructure—
Simon Kristoffer Nilsen FagerliMaster thesis in INF-3981 - June 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Sleep when you find upcoming work”
–Emil Jønsson

“Start early, fail early”
–Otto Anshus

Abstract
Each winter the Climate-Ecological Observatory for Arctic Tundra (COAT)
project deploys a range of small devices to measure and monitor the climate
changes that occur in the Arctic regions in an attempt to gain better under-
standing of how the changes are affecting the Arctic tundra ecosystems. The
deployed devices are often limited in terms of energy and connectivity range.
Due to this, researchers face the issue of not being able to efficiently extract data
from the devices placed on the Arctic tundra - this is often a manual and tedious
task as researchers have to themselves collect data from the devices.

This dissertation describes and implements a simulation of detached, inter-
connected sub-networks consisting of energy efficient Observation Units (ous)
placed on the Arctic tundra. A mobile data gathering device, a Mobile Ubiq-
uitous LAN Extension (MULE), moving between the sub-networks creates a
dynamically, temporary on-demand network which the detached networks may
utilize to store and forward data reliably back to persistent storage. Dynamic
Mobile Network Infrastructure (DMNI) presents a three layered architecture
which forms the basis of the thesis - the application layer consisting of backend
services, the network layer consisting of mules and the data layer with the
isolated partitioned ad hoc networks of interconnected ous.

By utilizing data mules, we show through simulation and experiments that
we can mitigate the limitation that systems placed in remote areas may face -
permanent partitioning and complete disconnection from backend systems. By
using a mesh-like structure in the sub-networks, we show that a mule only
require a single connection to an ou part of the network to accumulate all data
- actively reducing the time, power and complexity to collect data. Simulation
and experiments show that we can reduce the package-loss ratio to below 5%,
even as low as 3.01%, by using a mule to ou ratio of 30%. It also shows that
the system has a low CPU and memory footprint on a real device, only using
2.2% total device CPU and 1.3% total device RAM.

dmni provides a solid first step towards a more refinedmule based system for
data accumulation from remote, partitioned ad hoc networks of interconnected
ous in the Arctic.

Acknowledgements
First and foremost, I would like to say thank you to my main advisor, Professor
Otto Anshus and my co-advisor, Professor John Markus Bjørndalen for all
the ideas, guidance and general input throughout the period of making this
dissertation. Your advice and knowledge has been greatly appreciated.

Secondly, I’d like to say thank you to all the IT and administrative staff at the
Department of Computer Science at uit for all assistance and guidance.

I’d like to give my sincerest gratitude to all my fellow co-students for providing
a memorable time with lots of laughter and joy.

Further, I’d like to say thank you to my family and girlfriend for being beside
me and supporting me and all my decisions. I would never have been able to
do this without all of you by my side.

Lastly, a special mention and thank you goes toMasterinos for being an amazing
group of friends. You guys have really been there when things have been tough
but we have all backed up each other and it has gotten us to this point. Again,
thank you guys.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

My list of definitions xv

List of Abbreviations xvii

1 Introduction 1
1.1 Problem definition . 2
1.2 Technical idea . 2
1.3 Contributions . 3
1.4 Limitations . 3

2 Related work 5
2.1 Mobile Ubiquitous LAN Extensions - MULEs 5
2.2 Ad hoc networks . 7

3 Architecture 9
3.1 DMNI Simulator . 11

3.1.1 Network abstraction 11
3.1.2 Device management abstraction 11
3.1.3 Environmental simulation abstraction 11

3.2 Application / Backend Layer 12
3.3 Network / MULE Layer . 13

3.3.1 Discovery of observation units 13
3.3.2 Join network . 14
3.3.3 Device interaction 14

3.3.3.1 Temporary network - store & forward 15
3.3.4 Network preservation 15

vii

viii CONTENTS

3.3.5 MULE movement 15
3.4 Data / Observation Unit Layer 16

3.4.1 Discovery abstraction 16
3.4.2 Connectivity . 16
3.4.3 Mesh preservation 17

4 Design 19
4.1 Simulator & visualizer . 19

4.1.1 HTTP Server . 20
4.1.1.1 Join handler 21

4.1.2 Broadcast handler 21
4.1.2.1 Leave handler 21
4.1.2.2 Status handler 21
4.1.2.3 Traffic handler 21

4.2 Mules & observation units 22
4.2.1 Broadcasting . 22
4.2.2 Joining sub-networks 22
4.2.3 Maintenance of network information 23
4.2.4 Data transmission 23

4.2.4.1 Forwarding 24
4.2.4.2 Flooding 24
4.2.4.3 Data accumulation 25
4.2.4.4 Data accumulation initialization 25
4.2.4.5 Data-path mapping 26
4.2.4.6 Data-accumulation timeout table 28
4.2.4.7 Accumulation initializer 28
4.2.4.8 Data accumulation 29

5 Implementation 33
5.1 Parameter settings . 34
5.2 DMNI simulator . 35

5.2.1 DMNI visualizer . 36
5.2.2 Environmental simulation 38

5.2.2.1 Data traffic handler 38
5.2.2.2 Join handler 40
5.2.2.3 Broadcast handler 40
5.2.2.4 Status & leave handle 42

5.3 Mule & Observation Unit 42
5.3.1 Update & shutdown handler 43
5.3.2 Ping handler . 43

5.4 Data-path mapping handler 43
5.5 Data Accumulation . 45

5.5.1 Sink handler (MULE only) 46
5.5.2 Collection of data 46

CONTENTS ix

5.6 Unique message identifiers 47

6 Evaluation 49
6.1 Experimental design . 49
6.2 Simulator experiments . 50

6.2.1 Package drop-rate vs. MULE count 50
6.2.2 Mule timeout . 52

6.3 Raspberry Pi experiments 54
6.3.1 Raspberry Pi WiFi Bandwidth 55
6.3.2 CPU, memory and network utilization 55

6.4 Results . 55
6.4.1 Raspberry Pi bandwidths 56
6.4.2 Package drop-rate vs. number of MULEs 56

6.4.2.1 50 Observation Units 57
6.4.2.2 75 Observation Units 59
6.4.2.3 100 Observation Units 60

6.4.3 Mule timeout . 62
6.4.4 Raspberry Pi CPU and memory utilization utilization 64
6.4.5 Raspberry Pi Network utilization 66

7 Discussion 69
7.1 Data accumulation from single devices 69
7.2 Network OU size vs. latency & energy consumption 70

7.2.1 Overall energy consumption 70
7.3 MULE routing . 71

7.3.1 Solutions where prior knowledge about network exists 72
7.3.1.1 Greedy Algorithm 72
7.3.1.2 Convex Hull-Based Algorithm 72
7.3.1.3 Partitioning Based Scheduling Algorithm . . 73

7.3.2 Mule routing without any prior knowledge 73
7.4 Network topology . 74

7.4.1 Implosion and overlap when accumulating data . . . 74
7.4.2 Limited number of request forwards 75
7.4.3 Knowledge of entire sub-networks vs. direct neighbours 76

7.5 Accumulation of data . 76
7.5.1 Chance of data-loss 77

7.6 When to stop waiting for accumulated data 77
7.7 Simulated bandwidth . 77
7.8 Device duty cycle . 78

7.8.1 Device duty-cycle vs. mule communication time . . . 79
7.9 Mule timeout . 79
7.10 Limited mule resources . 81
7.11 Multi-hop routing vs. single-hop routing 81
7.12 Reliability vs. power-efficiency 82

x CONTENTS

7.12.1 Two General’s Problem 82
7.13 Energy conservation by using data-accumulation timeout tables 82

8 Conclusion 85

9 Future work 87

Bibliography 89

Appendices 95

A Use of DMNI 95
A.1 Setup . 95
A.2 Dependencies . 95
A.3 Compiling and running the executables 96
A.4 Optional commandline parameters 97

B DAO - Flying network infrastructure experiment 99

C DMNI Visualization preview 101

List of Figures
3.1 DMNI architecture . 10
3.2 DMNI simulator integration 12
3.3 Mule discovery . 14
3.4 Package forwarding . 17

4.1 Simulation Design . 20
4.2 Observation unit only aware of direct neighbours 22
4.3 Example flooding in DMNI Network where package reaches

all nodes in sub-network. 25
4.4 First step of DMNI data-path mapping 26
4.5 Second step of DMNI data-path mapping 27
4.6 Third step of data-path mapping with first accumulation ini-

tializer defined . 27
4.7 Finalizing data-path mapping of sub-network 28
4.8 Example accumulation of data in sub-network 30
4.9 Race of which accumulation initializer will send their accu-

mulated data first. 30
4.10 Data accumulation from all sub-network reaches mule 31

5.1 DMNI Visualizer . 36
5.2 DMNI WebSockets implementation 37
5.3 DMNI TrafficHandler . 39
5.4 Simulation process of locating devices in range 41
5.5 Process of data-path mapping 44
5.6 Process of data accumulation 45
5.7 Data-accumulation package 46

6.1 Percentage of MULEs at 50, 75 and 100 Observation Units - 3
groups of 7 experiments . 52

6.2 Theoretical bandwidth at increasing MULE timeouts 53
6.3 WiFi Bandwidth measurements - Raspberry Pi to Raspberry Pi 57
6.4 Mule to observation unit ratio - 50 observation units 58
6.5 Mule to observation unit ratio - 75 observation units 59
6.6 Mule to observation unit ratio - 100 observation units 61

xi

xii L IST OF FIGURES

6.7 Comparison of packages dropped - 50, 75 and 100 Observa-
tion Units . 62

6.8 Timeout experiment results - 50 observation units, 8 mules . 63
6.9 Timeout experiment results - percentage of packages accumu-

lated vs. percentage of packages lost due to MULE going out
of range . 64

6.10 CPU and memory utilization - single MULE process 65
6.11 CPU and memory utilization - total system utilization 65
6.12 Network utilization - 10 iterations running for 10 minutes . . 66
6.13 Network utilization average 67
6.14 Network utilization per iteration average 68

7.1 Single Observation Unit range vs. sub-network of intercon-
nected Observation Units 70

7.2 Static sink - energy imbalance close to sink 71
7.3 Grid scan example . 74
7.4 Limited request range example 75
7.5 Mule accumulation delay example 80

C.1 DMNI Visualizer Screenshot 102

List of Tables
5.1 Simulator device broadcast management - broadcast list overview 40

6.1 Package-drops - 50 observation units 58
6.2 Package-drops - 75 observation units 60
6.3 Package-drops - 100 observation units 61

xiii

My list of definitions
2.1 Sink: Data-access point which has a connection to persistent,

non-volatile storage . 6

3.2 Partitioned network: Decomposition of a network into several
sub-networks . 10

3.3 Data fingerprint: Maps arbitrarily large data to a short string,
the fingerprint, that uniquely identifies the original data . . . 13

3.4 Metadata: Data or information that provides information about
other data . 14

3.5 Ad hoc network: Decentralised, wireless-network consisting
of nodes which cooperate in data routing by forwarding data
on behalf of other nodes in the network[34] 15

3.6 Duty-cycle: Portion of period in which a system is active . . . 17

4.7 Accumulation initializer: Device which initializes a data accu-
mulation due to being at the very edge of a sub-network of
devices . 29

xv

List of Abbreviations
b bit

coat Climate-Ecological Observatory for Arctic Tundra

dao Distributed Arctic Observation

dmni Dynamic Mobile Network Infrastructure

dtr Data Transfer Rate

gaf Geographic Adaptive Fidelity

http Hypertext Transfer Protocol

iot Internet Of Things

json JavaScript Object Notation

lan Local Area Network

mb Megabyte

mpdg Minimum-Path Data-Gathering

ms millisecond

mule Mobile Ubiquitous LAN Extension

ou Observation Unit

pbs Partitioning Based Scheduling

rpi Raspberry Pi 3 Model B

xvii

xviii L IST OF ABBREV IAT IONS

rr Round-Robin

s second

tgp Two General’s Problem

uav Unmanned Aerial Vehicle

uit University of Tromsø

umi Unique Message Identifier

wsn Wireless Senor Network

1
Introduction
With global warming being all over the media for the past decade, it has
become ever more important to monitor and preserve the globe which we
inhabit. Although there has been a rise in the amount of awareness, there is
unfortunately one area which has been given little attention compared to the
rest of earth - the Arctic tundra.

Researchers predict that the Arctic tundra will be one of the areas mostly
affected by the climate changes we are facing today and will most definitely
face in the future[26, 19].

It is with this in mind that the Climate-Ecological Observatory for Arctic Tundra
(coat)1 project[26] was initiated in 2010 by five Fram Centre2 institutions.
It is the goal of coat to become world-leading within the field of "Adaptive
long-term research in the face of climate change"[18]. The project aims to create
an observation system to be used for monitoring and documentation of the
impacts which climate changes has on the Arctic tundra ecosystems.

In 2018, the Distributed Arctic Observation (dao)[3] project out of the Univer-
sity of Tromsø (uit) was funded by the Norwegian Research Council (NRC)3
as a direct effort to solve some of the technical challenges and issues which

1. COAT: http://www.coat.no/
2. Framsenteret: http://www.framsenteret.no/english
3. NRC: https://www.forskningsradet.no/en/Home_page/1177315753906

1

http://www.coat.no/
http://www.framsenteret.no/english
https://www.forskningsradet.no/en/Home_page/1177315753906

2 CHAPTER 1 INTRODUCT ION

such an observation system may experience.
The proposed observation system from dao consists of small energy efficient,
wireless devices (Observation Units (ous)) placed on the Arctic tundra to
provide researchers with the data they require.

Due to the limitations that one is faced with by placing ous remotely in the
Arctic regions, such as a limited radio range for communication, there has to
be a method of extracting the data from the ous in an efficient manner.

1.1 Problem definition
This dissertation focuses on the extraction of data from ad hoc networks of
interconnected ous via a Mobile Ubiquitous LAN Extension (mule) in an
attempt to avoid permanent, or too long, partitioning of the networks. The
mules are considered data sinks and are used as a method of storing and
forwarding data from the ad hoc networks of ous to a backend system with
permanent, non-volatile storage.

The goal of the dissertation is to gain a better understanding of how one can
improve the dao system by utilizing a mule based data-collection system.
In addition, it is important to map out the limitations and pitfalls one can
experience by utilizing such a system.

This thesis presents the architecture, design and implementation of a mule
based data-collection system for the Arctic tundra. Due to the early stage which
Dynamic Mobile Network Infrastructure (dmni) and dao is at, a vast network
of ous are not deployed on the Arctic tundra. Instead, the thesis implements
a simulator of the Arctic tundra to be utilized for experimental and evaluation
purposes.

1.2 Technical idea
The idea of dmni is that ous are placed on the Arctic tundra, forming sub-
networks of interconnected devices. A mule, or multiple mules, are then to
physically move around until a sub-network of ous is reached. Once a sub-
network of ous is encountered, themule can accumulate data from the entire
sub-network by being in contact with one or more ous of said network.

ous that are connected in a sub-network will use those connections to forward
data on behalf of other members in the sub-network. This way data can then

1.3 CONTR IBUT IONS 3

be passed to the mule.

1.3 Contributions
This thesis makes the following contributions:

• A description of the utilization of mules in an Arctic environment

• A implementation of a simulator and visualizer which can be utilized to
simulate the Arctic environment and monitor the interaction between
mules and ous in a virtual grid

• A prototype for accumulation of data from ad hoc networks of intercon-
nected ous utilizing a mule

• An evaluation of the system

• Insights on future work and potential improvements which can be used
to improve the system and potentially allow for a prototype of a mule
based data accumulation system

1.4 Limitations
This dissertation focuses mainly on the interaction between ad hoc networks of
interconnected ous and mules and does not implement the backend section
which would be required in a fully functional system. mules act as data sinks
but what happens with the data once it has reached the mule is not part of
this dissertation. The same applies for the data itself as it is irrelevant what
type of data is sent and this dissertation simply creates dummy data which is
sent between devices.

2
Related work
Over the past decade, the field of Internet Of Things (iot) has grown signifi-
cantly and it has allowed researchers to utilize small energy efficient devices to
monitor remote areas. With this comes the complicated task of retrieving data
from remote and isolated data collecting devices. Most of the time it is the
responsibility of the researchers themselves to manually collect data, which
has proven to be a tiresome and ineffective method.
There are some systems and methods which has prioritized to reduce the
amount of manual labour which researchers has to go through to collect, but
most of these are based in milder climates than the Arctic tundra.

2.1 Mobile Ubiquitous LAN Extensions - MULEs
The term MULE, or Mobile Ubiquitous LAN Extension, was first coined in the
paper "Data mules: Modeling and analysis of a three-tier architecture for spare
sensor networks"[30] in 2003 with the goal to collect sensor data in sparse
Wireless Senor Networks (wsns). The core of the paper was to retain the
advantages one can gain by deploying remote, static base-stations in a sparse
wsn yet keeping it cost effective and energy effective enough to still be feasible.
This was achieved by utilizing only short-range radios to communicate with
the data Mobile Ubiquitous LAN Extensions (mules) and it was suggested
that Ultra-Wideband (UWD) radio technology would be an ideal candidate for
such communication.

5

6 CHAPTER 2 RELATED WORK

It was however stated that the approach would only be suitable for delay-
tolerant application due to the increased latency experienced by having mobile
data collectors.

Several other projects has experimented with mobile units to provide commu-
nication paths, such as ‘Ad Hoc Relay Wireless Networks over Moving Vehicles on
Highways‘[9] - in which the movement of vehicles on a highway is utilized to
relay data. Dynamic Mobile Network Infrastructure (dmni) does this to an
extend, but in contrast to [9], Observation Units (ous) are static and does not
move but it is the responsibility of temule to relay the data from the networks
to backend systems.

A project that is rather similar to dmni is ZebraNet[21] from 2002, in which
they experimented with mobile data carriers connected to zebras.
The principle which ZebraNet relies on is the movement patterns of the zebras
that actively carry data from access-point to access-point and data duplication
to ensure that data is successfully transmitted from the zebras to access-points.
Fundamentally, ZebraNet is a peer-to-peer system; gossiping data between
nodes(zebras). Further, ZebraNet’s protocol evaluation shows that a 100%
success rate for base station data transfer is possible using mobile agents and
a peer-to-peer system. Not only did this result in lower energy consumption
due to only using short-range radios which reached 6km instead of 11km, but
it also allowed redundancy in data. In contrast to ZebraNet, dmni utilizes the
structure of the ad hoc network to more efficiently extract data. In addition,
mules in dmni attempts to wait for data to accumulate from ad hoc networks
whilst ZebraNet has no guarantee that zebras will wait long enough for data
to move between the nodes.

Further work involving mobile data-collectors involve "Exploiting Mobility for
Energy Efficient Data Collection in Wireless Sensor Networks"[20] by Sushant
Jain et al. from 2006 where they addressed the issue of energy efficient data
collection in a sensor network. Much like dmni, they utilized mobile "agents"
to carry data from secluded areas to access-points where data is dropped
off, but using mobile agents solely as an alternative to ad hoc networks. The
sole purpose of the mobile agents was to collect data and reduce the energy
consumption of the system - dmni integrated the mobile agents as "part" of
the sub-networks and thus can be used for multiple other tasks. As an example,
mules can be placed in areas to bridge gaps between sub-networks to for
example allow for data to flow to a sink where the nodes closest to the sink
has gone offline.

Definition 1. Sink: Data-access point which has a connection to persistent,
non-volatile storage

2.2 AD HOC NETWORKS 7

The paper "Data Gathering by Mobile Mules in a Spatially Separated Wireless
Sensor Network"(2009)[35] by Fang-Jing Wu et al. explores the possibility
of utilizing mobile mules for collecting data from spatially separated wsn
and focuses on optimizing the routing of the mobile mule to reduce the
latency and energy consumption in the sub-networks. The paper formulates
the ‘MPDG, or Minimum Path Data-Gathering Problem‘ which is a generalization
of the Euclidean Traveling Salesman problem[28], in which the optimization
goal is to minimize the message drops. It is proven through simulation that
a convex-hull algorithm[2] is more useful when there is a large number of
sub-networks. dmni does not focus on the pathing of the mules, but instead
on the interaction between mules and ad hoc networks. This also applies to
papers such as ‘On Best Drone Tour Plans for Data Collection in Wireless Sensor
Network‘[10] where they consider the problem is to find the Best Drone Tour
Plan.

"To find (1) a sequence of C collecting points ci ∈ P where the
drone will hover for collecting data and (2) C disjoint sets of nodes
Si ⊆ N , where all nodes in Si will transmit their data to the drone
hovering at the collecting point ci and ∪Ck=1Sk = N so that the total
time needed to fly from p0 over the collecting points and return to p0
(Ttr ip) plus the time to collect all the data from the WSN (Tcollect inд),
which we denote as TBDT P , is minimized."[10]

2.2 Ad hoc networks
Ad hoc networks, orwsns are essential fordmni and are utilized together with
themules to together form a better fit solution for the Arctic tundra. Forwsns
placed on the Arctic tundra, energy conservation is of great importance.

The Power and Reliability Aware Protocol (PORAP) introduces work aimed at
lowering the energy consumption in wsns[23]. This is done by identifying
scenarios where a single hop communication scheme betweenmultipleous and
a sink is feasible and offers "..benefits with respect to power preservation.."[23].
Unlike dmni however, PORAP can only be used in applications where sources
are located within the range of static sinks. dmni on the other hand could
possibly use some of the energy preservation techniques found in PORAP as in
essence the mules in dmni are mobile sinks.

In contrast to PORAP,HEED introduces a distributed, energy efficient clustering
approach for ad hoc networks[36]. HEED preserves energy within the cluster
of connected devices by "rotating" on the Cluster Head (ch) probabilistically
depending on their residual energy level. A ch can be considered a "leader"

8 CHAPTER 2 RELATED WORK

within the cluster and can be utilizes for different tasks such as deciding on
what devices get to join the sub-network and what devices does not.

A similar approach could be used fordmni if chs were of importance, but since
dmni’smule data-accumulation routine does not rely on chs, this would not
be very efficient. An alternative solution to dmni however is to have chs as
part of the ad hoc networks and the mule only collecting data from the chs.
If this was the case, a solution such as HEED could possibly lower the energy
consumption considerably by balancing out the energy consumption in the
sub-networks.

3
Architecture
The core concept of Dynamic Mobile Network Infrastructure (dmni) is to
exploit highly mobile Local Area Network (lan) extensions, either in the
form of Unmanned Aerial Vehicles (uavs) or otherwise, to connect to remote,
isolated sub-networks and act as a gateway for Observation Units (ous) to
utilize.

There are three separate layers which together form the basis of dmni;

• The application layer consists of backend services, such as the Distributed
Arctic Observation (dao) store - This layer is not part of the implemen-
tation of this thesis and is strictly theoretical

• The network layer consists of mobile, temporary on-demand network
extensions - Mobile Ubiquitous LAN Extensions (mules) such as uavs

• The data layer consists of the isolated partitioned ad hoc networks of
interconnected ous

The implementation of dmni simulates the three layers using a simulator
which simulates the entire environment that the devices are part of. Section
Section 3.1 goes into further detail how the simulation server is merged into
the architecture of dmni whilst Figure 3.1 shows the overall architecture of

9

10 CHAPTER 3 ARCHITECTURE

Figure 3.1: DMNI architecture

dmni.

Definition 2. Partitioned network: Decomposition of a network into sev-
eral sub-networks

3.1 DMNI S IMULATOR 11

3.1 DMNI Simulator
As seen in Figure 3.1, dmni is built on a three tiered architecture where there
are both mobile and static devices interacting over a network. To achieve an
environment which resembles the Arctic tundra with devices placed remotely
and secluded from one another in partitioned networks, dmni also includes
a simulator which can be used to evaluate and experiment with the dmni
system.

The simulator contains three main sections:

• Network abstraction

• Device management abstraction

• Environmental simulation abstraction

The simulator creates an artificial environment that the devices in the sim-
ulation are not aware of and therefore goes between the layers as seen in
Figure 3.2.

3.1.1 Network abstraction
By going between the layers as explained previously, all traffic going from and to
devices in the simulation will go through the network abstraction. This means
that all traffic may be altered or re-routed as seen fit by the simulator.

3.1.2 Device management abstraction
In order for a device to join the simulation, it is essential that the device
registers in the simulator’s device management abstraction. Once a device
wishes to join the simulation, it will send a message to the simulator’s device
management abstraction which locally stores information about the device’s
status in the simulator. This information can be updated at a later point if the
device wishes to for example leave the simulation.

3.1.3 Environmental simulation abstraction
In a real-life scenario ous are placed on the Arctic tundra. dmni simulates
this via the simulator’s environmental simulation abstraction. All devices that
register in the device management abstraction are assigned a location in a grid-

12 CHAPTER 3 ARCHITECTURE

Figure 3.2: DMNI simulator integration

map structure so that all interactions between devices through the network
abstraction depends on whether or not they are close enough to each other
in the environmental simulation abstraction. It is the responsibility of the
environmental simulation abstraction to determine whether or not two devices
are close enough to each other in the simulated grid-map - the distance metric
may change depending on the simulation configuration.

3.2 Application / Backend Layer
The application layer is responsible for handling all incoming data in a appro-
priate manner:

3.3 NETWORK / MULE LAYER 13

• Ensuring that data is not corrupt - all data is tagged with Unique Message
Identifiers (umis) and data fingerprints and can therefore be checked
for corruption at the backend

• Removing duplicate data - the same data may be sent more than once
and it is the responsibility of the backend layer to ensure only a single
copy of the data is stored

• Making the appropriate log entries before appending the data to persis-
tent storage - data packages contain metadata about the origin of the
data and may be analysed at the backend

As previously mentioned, the backend layer has not been implemented in this
thesis.

Definition 3. Data fingerprint: Maps arbitrarily large data to a short string,
the fingerprint, that uniquely identifies the original data

3.3 Network / MULE Layer
The network layer, also called the mule layer, is the middle layer in dmni’s
architecture. The term ‘mule‘ was first coined in 2003 as a way to describe
mobile entities that are utilized to collect data from devices that are for some
reason unable to get a network connection[30].
The network layer is responsible for reliable transportation of data from the
data to the application layer - this is done using mobile data collectors or
‘mules‘. The focus of dmni is on mules and thus mules are the only part
of the network layer. In a real-life scenario there could potentially be other
methods of communication such as static sinks, but for dmni in particular,
mules are the only form for of communication between the application and
data layer.

3.3.1 Discovery of observation units
Each mule is equipped with a method of discovery which will discover all
nearby available nodes, with resources to respond, in a given radius around
the mule. Figure 3.3 shows the communication distance of a mule. Once
a new device has been discovered, the mule will store metadata about the
device locally on itself for future reference when it needs to interact with the
device. The data is kept indefinitely on the mule, but is updated once newer
information about the device is received. This may be from a successful ping

14 CHAPTER 3 ARCHITECTURE

from the device or that the device is unresponsive to network requests.

Definition 4. Metadata: Data or information that provides information
about other data

Figure 3.3: Mule discovery

3.3.2 Join network
A mule may join a sub-network as soon as it has discovered a device which
is part of said network. This is done by sharing metadata about itself with the
device - the mule may then be utilized as any other device which is part of
the sub-network.
It is important to note that the mule may change location due to the very
nature of amule - they are meant to be utilized as mobile network extensions
and thus may leave the network after a while. In the event of amule leaving a
sub-network, this will be handled as any other device leaving the sub-network
- it will be discovered that the mule is unreachable (due to being outside of
communication range) and the device will be removed from known, responsive
devices within range.

3.3.3 Device interaction
A mule may interact with ous for various reasons, such as collection of data,
or simply bridging gaps between multiple sub-networks. The use case depends

3.3 NETWORK / MULE LAYER 15

on the application which utilizes the mule as what exactly the mule may
be used for may be adjusted over time. However, the primary objective for the
mule is to act as a temporary, on-demand network that ous may utilize to
store and forward data to non-volatile, persistent storage.

3.3.3.1 Temporary network - store & forward
Once amule comes in contact with an ou, themule will announce its arrival
by sharing metadata about itself with the ou - thus joining the ad hoc network
which the ou is part of. In addition to this, themule will initialize a data store
and forward procedure in the ad hoc network which will accumulate the data
from all devices in the network and save it to the extended data buffer which
themule has onboard. Themule may therefore be considered a mobile data
sink. The data may then be forwarded and saved to persistent storage at a later
point once the mule comes close enough to the application layer. In the event
that amule dies, the data will be lost as dmni prioritizes power-efficiency and
performance over the guarantee of data reaching persistent storage. It follows
a ‘best-effort‘ delivery scheme - see Subsection 7.5.1 for further discussion on
this topic.

Definition 5. Ad hoc network: Decentralised, wireless-network consisting
of nodes which cooperate in data routing by forwarding data on behalf
of other nodes in the network[34]

3.3.4 Network preservation
A mule will locally store metadata about devices which it has discovered and
update said data once a device goes out of range. The updated data will be
information about the last known status of the device.

Everytime the mule attempts to discover new devices within range, it will
check the status of the already known devices to update their state. If it
discovers that a devices is down or unavailable, the local metadata in the
mule will be updated accordingly.

3.3.5 MULE movement
In order for amule to effectively accumulate data from different sub-networks,
the mule has a path which it will follow. The path depends on the predefined
route set by the routing algorithm discussed in Section 7.3.

16 CHAPTER 3 ARCHITECTURE

Once a mule discovers a nearby device and initiates a data accumulation
from the device’s sub-network, the mule will halt its location changes for a
specified timeout. Once the timeout has run out, themule will continue along
the path specified. Section 7.9 goes into detail on the issues that arise due to
this timeout.

3.4 Data / Observation Unit Layer
The bottom of the three-layer architecture is the data / ou layer. This layer is
responsible for collecting data and will create ad hoc networks of cooperative
ous which can be utilized to easier manage data accumulations from the
network layer. Each device which is part of the data layer will have methods of
collecting data and store it locally until a data-accumulation takes place.

Devices can operate independently, but seek to connect and maintain connec-
tions to other nearby dmni devices to increase the likelihood of successfully
passing data to persistent, non-volatile storage.

3.4.1 Discovery abstraction
Each ou is also equipped with a method of discovery. It works exactly in the
same way as themule discovery and can be seen as in figure 3.3. Once another
device has been discovered nearby, metadata about the device, such as address
and location, is stored locally on the device for future reference. This data
is updated accordingly when for example it is discovered that the device is
unresponsive.

3.4.2 Connectivity
At times, an ou may need to send data to another device in the network - be
that either another ou or a mule. This can be because it needs to forward
data on behalf of other devices in the network, but also instances where the
device can sense that it has for example low battery and will shut off within
a short span of time - then data may be forwarded to another device in the
system to ensure that data is not lost.

A locally stored dataset about the devices that are within range is preserved
and utilized for lookups when data is to be sent to another device. In addition
to initializing data transmissions, a device may have to forward data in the
sub-network on behalf of other devices. This is handled just as a regular data

3.4 DATA / OBSERVAT ION UNIT LAYER 17

Figure 3.4: Package forwarding

transmission, with the exception that the address for the package is extracted
from the ‘path‘ field within the package before being sent to the next step in
the path. Figure 3.4 gives an example of how this may look.

3.4.3 Mesh preservation
In order for a device to maintain the information about the network, it primarily
relies on responses from network requests - this is because the only way a
device can "observe" the network around it is to listen to the replies from
network requests. A device will send out "pings", a small package with no data,
to all the devices which has already been discovered close by.

Given that in dmni there is no defined duty-cycle per device, a device that
sends out a ping can assume that the receiving device is unresponsive or dead
if no response is received from the original ping. See Section 7.8 for a more
in-depth discussion on the topic of duty-cycle.

Definition 6. Duty-cycle: Portion of period inwhich a system is active

4
Design
Dynamic Mobile Network Infrastructure (dmni)’s aim is to bridge the gap
between isolated, remote ad hoc networks of interconnected Observation Units
(ous) and persistent storage. The goal is to equip Mobile Ubiquitous LAN Ex-
tensions (mules) with methods of discovering and communicating with these
ad hoc networks in an efficient and effective manner to void permanent parti-
tioning of the networks. Mainly, dmni is split into three components:

1. dmni simulator server & visualizer

2. dmni ous

3. dmni mules

4.1 Simulator & visualizer
The simulator is built with primarily four components as such:

1. HTTP Server & Client

2. Storage

3. Visualizer updater

19

20 CHAPTER 4 DES IGN

4. Websockets hub

Figure 4.1: Simulation Design

Figure 4.1 gives an illustration of the design of the dmni simulator.

4.1.1 HTTP Server
Themain component of the simulator is the Hypertext Transfer Protocol (http)
server and its fivehttp handlers. The five handlers are as follows: Join handler,
broadcast handler, leave handler, status handler and traffic handler.

4.1 S IMULATOR & V ISUAL IZER 21

4.1.1.1 Join handler
The join handler is used when a device is first initialized and wants to take
part in a simulation - the device will send a request to the simulator’s join
handler and thus informing the simulator about its presence. This allows the
simulator to store data such as network address, location etc about the device
in its data-store.

4.1.2 Broadcast handler
As part of the environmental simulation, the broadcast handler takes requests
from devices in the simulation and returns a list of devices which are located in
given proximity around the device that sent the original request. The proximity
varies on the simulation setup.

4.1.2.1 Leave handler
When a device wants to leave the simulation, it will send a request to the
simulator’s leave handler and this will remove the device from the active
devices in the simulation.

4.1.2.2 Status handler
A device may send updates regarding its status to the simulator if need be. The
most common kind of update is a location update which mules will send to
the simulator.

4.1.2.3 Traffic handler
The most crucial handler which the simulator has is the traffic handler. The
traffic handler handles all network traffic between devices currently in the sim-
ulation and may be used to alter the data which is sent between devices.

A delay relative to the size of network packages and network bandwidth is
added to all traffic which goes through the traffic handler, but the traffic handler
could potentially add several other features such as chance of data-loss and
corruption - see future work in Chapter 9.

22 CHAPTER 4 DES IGN

4.2 Mules & observation units
4.2.1 Broadcasting
Bothous andmules are equipped with a broadcasting method. The broadcast
will send out a "ping" that contains some metadata about the device, such as
address and location, and await a reply from any sources. Given that the ping
has a limited range, that implicitly means that if a reply is received, that device
is within range of communication.
If a reply is received, the reply will contain more metadata about the device
which sent the reply and this data is stored locally on the device for future use.
Figure 3.3 gives an example of the possible broadcast distance which a mule
may have, although this may vary depending on the simulator setup.

4.2.2 Joining sub-networks
Given that mules are able to be utilized as a part of a sub-network, both
the mules and ous requires a method of joining a sub-network. The device
will join a network by simply discovering other devices which are part of the
sub-network.

Figure 4.2: Observation unit only aware of direct neighbours

The sub-networks can be partitioned in a way resulting in devices not knowing
about everyone. Instead everyone knows simply about their direct neighbours
which they are able to contact. Figure 4.2 shows how device(0) only knows
about its direct neighbours device(1) & device(2), yet it forms a bigger network
with device(3), device(4) & device(5). All devices can be reached in the system

4.2 MULES & OBSERVAT ION UNITS 23

through multi-hop communication, but prior knowledge of the destination is
required. In most cases this sort of information is achieved through data-path
mapping as seen in subsubsection 4.2.4.5.

4.2.3 Maintenance of network information
All devices, both mule and ou, are themselves responsible for maintaining
a list of known devices and their status. This is done through broadcasting
and pinging both new devices, but also known devices within range, in the
network. If a device is unresponsive, it will be removed from the list of active
devices.

4.2.4 Data transmission
Due to the fact that ous are following a cycle in which they are collecting data
periodically and they have limited storage space, it is essential that they are
able to deliver the collected data to a stable, long-term, non-volatile storage to
avoid loss of data in the network.
Only when data has been successfully transferred to a mule can the data be
deleted locally from the ou.

Since there is a trade-off between reliability of service and energy-efficiency,
data is deleted locally from the device once it has been sent to the mule - this
is discussed further in Section 7.12. Data at the long-time storage may then at
a later point be processed and evaluated by researchers.
There are essentially three main functions which are served by both ous and
mules:

1. Forwarding - section 4.2.4.1

2. Data flooding - section 4.2.4.2

3. Data accumulation - section 4.2.4.3 - this is split up in two phases

• Data-path mapping

• Data accumulation

24 CHAPTER 4 DES IGN

4.2.4.1 Forwarding
Forwarding in dmni’s ad hoc networks is essential to facilitate for cooperative
networks and to ensure that data-communication is effective and efficient.
All devices (ous and mules) which are part of a sub-network, can at times
be part of a chain of devices which a package has to go through to reach
a destination. If a package is required to be sent to a specific destination,
metadata to the package is added about the specific path which the package
should traverse. Figure 3.4 gives an example of forwarding a package.

The package should go from device(0) to mule(4), in which the path itself
is found previously through a data-path mapping phase which a mule may
have initialized.
Device(0) will pass the data to device(1), where device(1) will send an ac-
knowledgement back to device(0) that the package was received. Device(1)
will then go through the metadata that contains the path and locate itself and
the position in the path. If device(1)’s address in the path is the last in the line,
it means that device(1) is the destination and no further forwarding is required.
If not, the next step in the path is extracted from the path and used as address
to send to.These steps are repeated until the destination is reached.

An issue that arises with this approach is the question when devices can delete
data locally with the knowledge that the message has been stored safely in
persistent storage. This comes down to the fact that networks may not be
reliable enough to ensure that an acknowledgement is sent and received as
expected. This is discussed further in Subsection 7.12.1.

4.2.4.2 Flooding
Anothermethod of data transmission is flooding - this is the action of forwarding
a message to all direct, known neighbours. Figure 4.3 gives an example of
this.

In the figure we see that the origin of the message is set to node(0) and it
wishes to spread the package to all the devices in the sub-network. Before
the package is sent, the package is labeled with a Unique Message Identifier
(umi) to identify the message (See Section 5.6 for implementation details).
The package is then sent to node(1), which will send it to all of its neighbours
as well. Node(1) will also in this case send it back to node(0), but since node(0)
can identify the message using the umi, it can see that it already received
the package and thus it does not need to process it again, nor forward it. This
is not shown in the figure to keep it easier to understand. The same process
is repeated for all nodes that receive the flooded package until node(7) that

4.2 MULES & OBSERVAT ION UNITS 25

Figure 4.3: Example flooding in DMNI Network where package reaches all nodes in
sub-network.

attempts to send it back to node(6) which refuses the package since it was
already received.

4.2.4.3 Data accumulation
The basis of dmni is for mules to act as temporary, on-demand networks for
sub-networks to dump data to whenever necessary. This is achieved through
the data-accumulation method which both mules and static data sinks may
be equipped with.

The method is split into two steps: data-path mapping(4.2.4.5) and data accu-
mulation(4.2.4.8).

4.2.4.4 Data accumulation initialization
A data accumulation is initialized by a mule or sink interacting with a device
which is part of a sub-network (Or not, see section Section 7.1). If the mule
has the objective to accumulate data from the entire sub-network, the mule
will send a request to the ou telling it to initialize a complete sub-network
data accumulation.
The mule will then await data for a given timeout(See section 7.9), as its
uncertain howmuch time exactly the accumulation may take. Once the timeout

26 CHAPTER 4 DES IGN

is up, the mule will continue on its path.

Figure 4.4: First step of DMNI data-path mapping

4.2.4.5 Data-path mapping
The goal of a data-path mapping is to map out paths to the source (mule
or otherwise) which initialized the accumulation in such a manner that every
single node in the sub-network is included in at least one of the paths.
Since the sub-networks devices are only aware of their closest neighbours
(discussed previously in Subsection 4.2.2), devices are unable to directly map
out the shortest path to a destination, especially if the network is of significant
size.

Data-path mapping takes advantage of both forwarding and flooding - the
data-path mapping package sent from the mule will be flooded to all the
neighbours of the ou and packages will be forwarded back to themule when
accumulating data.

In Figure 4.4,mule(0) initializes a data-path mapping by sending a data-path
mapping request to ou(1) with metadata about itself and a umi for future
use. As long as ou(1) have not seen the umi before and it is not on a data-
accumulation timeout for this specific mule(see subsubsection 4.2.4.6), it will
continue with the data-path mapping by flooding the instruction to all of its
neighbours. This step is repeated for ou(2) which has not seen this unique
data-path mapping identifier before, so it floods the message forward to all
its neighbours. Here it also floods back to ou(1), but the message is simply

4.2 MULES & OBSERVAT ION UNITS 27

Figure 4.5: Second step of DMNI data-path mapping

dropped as the umi has been seen before.

Figure 4.6: Third step of data-path mapping with first accumulation initializer defined

In Figure 4.5, the message is being spread further by ou 3, 4 & 6. It can also be
seen that the same message is being sent to sources which has already received
it and thus are declined for further flooding as their path is already set.

28 CHAPTER 4 DES IGN

Figure 4.7: Finalizing data-path mapping of sub-network

4.2.4.6 Data-accumulation timeout table
To avoid the issue of mules attempting to accumulate from several devices
which are part of the same sub-network at the same time, every device in dmni
is equipped with a data-accumulation timeout table.

Once a device receives a data-accumulation from a mule, it will map the
address of that specific mule to the current time. Whenever a device receives
a data-accumulation request, it will check the data-accumulation timeout table
and see how long it has been since the last data accumulation from that specific
mule. If there is still an active timeout in place for the specific mule, the
device simply rejects the data-accumulation request.

4.2.4.7 Accumulation initializer
In Figure 4.6, the first "end-destination" has been reached in ou(4) because
it has attempted to send the package to all of its neighbours but all requests
has been declined as all the neighbours has already received the same message
(identified with the unique umi). ou(4) is thus considered a accumulator
initializer and will initialize an accumulation on the path 4→ 2→ 1→ 0. Read
more about accumulation in subsubsection 4.2.4.8.

4.2 MULES & OBSERVAT ION UNITS 29

Finally, Figure 4.7 is the very end of the data-path mapping in which ou 5, 9
& 8 is set as accumulation initializers due to the fact that all their flooding has
been declined by all neighbours. All three will initialize an accumulation on
their set path and thus the entire sub-network is covered in one of the four
paths as follows:

• 4→ 2→ 1→ 0

• 5→ 3→ 2→ 1→ 0

• 8→ 7→ 6→ 2→ 1→ 0

• 9→ 7→ 6→ 2→ 1→ 0

Subsubsection 4.2.4.8 goes into further detail on the accumulation of the data
in the system.

Definition 7. Accumulation initializer: Device which initializes a data accu-
mulation due to being at the very edge of a sub-network of devices

4.2.4.8 Data accumulation
Once a device in the network has detected that it is indeed a data-accumulation
initializer (as explained in subsubsection 4.2.4.7), the device can initialize a
data-accumulation using the specified accumulation path previously found in
the data-path mapping. As seen in Figure 4.7, ou 4, 5, 8 & 9 may be defined
as accumulation initializers.

In Figure 4.8, all initializers will append their own data to the package before
forwarding the data to the next in their path. Note that the initializers does not
necessarily start at the same time - in this exampleou(8 & 9) will start at a later
point as they have gone through more steps than for example ou(4).

In Figure 4.9, ou(7) received the accumulation package first from ou(8) and
thus it appends its own data to the package. It does not append its data to the
package received from ou(9), but instead forwards it on the path described
in the metadata of the package. The same applies for ou(2) which receives a
package from ou(4) and ou(3) which received a package from ou(5) - both
append their data to the package before forwarding it.

Further, Figure 4.10 shows how the package from ou(2) has been received in
ou(1) and from there sent to the mule. The package from ou(5) has simply
been forwarded as both ou(2 & 1) has already appended their own data to

30 CHAPTER 4 DES IGN

Figure 4.8: Example accumulation of data in sub-network

Figure 4.9: Race of which accumulation initializer will send their accumulated data
first.

this accumulation. ou(6) has appended its data to the package received from
ou(7) which is originally from ou(8) and forwards the package originally from
ou(9). These packages are then forwarded all the way to the mule.

Once the timeout for the mule ends, it will continue on its path.

4.2 MULES & OBSERVAT ION UNITS 31

Figure 4.10: Data accumulation from all sub-network reaches mule

5
Implementation
The Dynamic Mobile Network Infrastructure (dmni) mesh network simulation
was implemented in golang version 1.101 on a Lenevo ThinkCentre MT-M 10FL-
S1S800 with an Intel(R) Core(TM) i5-6400T CPU @ 2.20GHz - 16GB DDR3
RAM. Linux, Ubuntu 17.10 64-bit.

The visualization server served using golang and utilized the ’net’2 package
for all network related elements such as Hypertext Transfer Protocol (http)
server and http client.

dmni is split up in four separate processes/programs that each can be executed
individually:

• Mobile Ubiquitous LAN Extension (mule) process

• Observation Unit (ou) process

• Simulator process

– Visualization process - started alongside the simulator process

• dmni process - used to initialize a complete simulation with simulator

1. Golang: https://golang.org/dl/
2. Net package: https://golang.org/pkg/net/

33

34 CHAPTER 5 IMPLEMENTAT ION

process, a defined amount of mule processes and a defined amount of
ou processes - this can all be defined in the ‘config.json‘ file as explained
under Section 5.1.

All processes utilize a ‘common‘ library implemented for networking and util-
ities purposes that can be used the same way by several different processes
such as logging.

All dependencies (with the exception of golang) will automatically be fetched
by utilizing the ‘Makefile‘ provided with the implementation. Appendix A gives
more information on this.

5.1 Parameter settings
There are several parameter settings that can be set in dmni, most of which are
located in the ‘config.json‘ file, or the ‘constants.go‘ file. The configuation file
is set up using the JavaScript Object Notation (json) format and configures
the following settings for the simulator:

• X & Y virtual grid size of simulation

• Number of ous (Will start a separate process per ou)

• Number of mules (Will start a separate process per mule)

• IP & Port of simulation server

• Range of communication - how many grids can a "radio" reach in the
virtual grid-map

• LogLevel - what kind of logs are visible to the user

1. TRACE

2. DEBUG

3. INFO

4. WARN

5. ERROR

5.2 DMNI S IMULATOR 35

6. FATAL

• ou buffer size (Amount of packages)

• ou package collection interval (millisecond (ms)) - how often does an
ou collect data

• mule accumulation timeout (second (s)) - how long does a mule wait
for accumulated data to be received before continuing on its path

In addition to these config settings, each individual program for the mule
and ou can be started with some parameter settings for setting for example
the start position in the virtual grid. These settings are described further in
Appendix A.

5.2 DMNI simulator
Due to the early stage at which dmni is at, it is not practically achievable nor
reasonable to deploy a vast network of ous on the Arctic tundra. Therefore,
dmni implements a simulation of a real-life environment with both a coop-
erative, mesh-network of ous that interact with each other and collect mock
data, in addition to mules that interact with the sub-networks to accumulate
data.

The simulator is split into two separate processes as such:

• dmni visualizer

– Visualizing the simulation to the users

– Interacting with browser clients

• dmni simulation environment

– Network simulation: handles all network traffic between devices

– Environmental simulation: creates an artificial environment where
devices reside

36 CHAPTER 5 IMPLEMENTAT ION

5.2.1 DMNI visualizer
The dmni visualizer can be seen in Figure 5.1 - the main purpose of the visual-
izer is to show the user how the network may appear and visualize connections
within the network to the user. Appendix C gives a higher resolution image of
this in addition to a video of the visualizer whilst running.

Figure 5.1: DMNI Visualizer

In addition to visualizing the network to the user, the visualizer is able to
modify the network in several different fashions such as:

1. Adding ous or mules

2. Removing random or specific ou or mule

3. Changing state of either a random or specific ou or mule (Unavail-
able/Available)

All interaction which the user has with the visualizer is pushed through
(Gorilla[6]) web-sockets3 to the simulator which then reacts to the command
sent by the visualizer. In the same way, updates from the visualization server
are pushed continuously through web-sockets to all the connected browser
clients. Figure 5.2 gives an example how the updates are pushed through a
websockets tunnel to and from the client(s) to and from the GorillaWeb-Sockets
hub[6].

3. WebSockets: https://developer.mozilla.org/en-US/docs/Web/API/
WebSockets_API

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

5.2 DMNI S IMULATOR 37

Figure 5.2: DMNI WebSockets implementation

The visualizer utilizes the JavaScript vis library[7] to output a visualiza-
tion of the network and is updated dynamically through the use of jQuery⁴,
JavaScript⁵ and web-sockets. In addition, the visualizer utilizes the Bootstrap
framework[25] for some of the front-end visualization.

In the visualization interface, eachou is represented by a simple coloured circle.
Eachouwill have their respective relations/connections represented by arrows
pointing to other devices in the system - ous or mules. Furthermore, mules
are represented by a "drone"-like symbol which will relocate following the path
represented by white dots. In the same way as ous, mule relationships are
also represented by arrows stretching to other devices in the network.

All devices in the system will have their status represented by the colour of
their icon - if their icon is anything but red, they are available and responsive.
If a device has their colour changed to red, this means that the node is either
unresponsive, unavailable or simply dead. In addition, the device’s "ID" is
represented by a white label for easier debugging.

Nodes represented by a green star is what can be considered Cluster Head (ch) -
this feature is not complete and was not used for the experiments nor evaluation
of dmni.

4. jQuery: https://jquery.com/
5. JavaScript: https://www.javascript.com/

https://jquery.com/
https://www.javascript.com/

38 CHAPTER 5 IMPLEMENTAT ION

5.2.2 Environmental simulation
The environmental simulation may be split into five different handlers as
following:

1. Data traffic

2. Join

3. Broadcasting

4. Status

5. Leave

5.2.2.1 Data traffic handler
All traffic which ous and mules create to communicate with one another will
always be routed through the simulator’s traffic http handler. This way all
traffic can be both monitored and altered as pleased by the simulator. All traffic
is sent using http to an address such as ‘http://localhost:8080/traffic‘ and
will contain a specific package format (using json) as seen below which the
simulator can then use to further forward the package to the correct destination.
Each data package contains metadata in the ‘type‘ fields which can be used to
identify the form of data which is sent as the ‘data‘ field is generic and may
change depending on the data transmission.

Listing 5.1: Golang data package structure
1
2 type DataPackage s t r u c t {
3 FromAddress s t r i n g ‘ j son : " fromaddress , omitempty " ‘
4 FromID i n t ‘ j son : " fromid , omitempty " ‘
5 Po s i t i on Po s i t i on ‘ j son : " pos i t i on , omitempty " ‘
6 Path [] i n t ‘ j son : " path , omitempty " ‘
7 URI s t r i n g ‘ j son : " ur i , omitempty " ‘
8 To s t r i n g ‘ j son : " to " ‘
9 Type s t r i n g ‘ j son : " type " ‘

10 Data i n t e r f a c e {} ‘ j son : " data " ‘
11 Forwarding bool ‘ j son : " forwarding " ‘
12 ForwardVia s t r i n g ‘ j son : " forwardvia " ‘
13 Msg Iden t i f i e r s t r i n g ‘ j son : " msg i d en t i f i e r " ‘
14 }

Figure 5.3 gives an example of how traffic by both ous and mules are han-
dled. Data going from device(0) to device(1) is forwarded as normal. Due to

5.2 DMNI S IMULATOR 39

Figure 5.3: DMNI TrafficHandler

device(2) being either down or unavailable, the package from device(1) cannot
be forwarded to device(2). The package is dropped by the traffic handler.

In addition to forwarding requests, the traffic handler also adds an artificial
delay corresponding to the computed transfer time of a packetwith a bandwidth
of 3.6817 Mbit/sec.

The number 3.6817 Mbit/sec is used as this is the average bandwidth achieved
through testing (See Subsection 6.4.1) and given that bandwidth and latency
will always differ depending on different factors, a static number as such was
used. Code listing 5.2 shows in detail the delay which is added to each request
through the traffic handler.

Listing 5.2: Code of bandwidth simulation
1 pkgSize := r . ContentLength
2
3 t c := make(chan bool)
4
5 delay := int64 ((f l oa t64 (pkgSize) /
6 f l oa t64 ((common . BandwidthMbitSec))))
7
8 go func (t c chan bool , delay int64) {
9 msDelay := time . Duration (delay)

10 time . Sleep (time . Mi l l i s e cond * msDelay)
11 t c <− t rue
12 }(tc , delay)
13 <−t c

40 CHAPTER 5 IMPLEMENTAT ION

The delay is calculated by taking the bits (bs) size of the request and dividing
by the bandwidth. A go routine is spawned and the main thread will wait
until it gets a message in the ‘tc‘ channel. The go-routine sleeps and once its
done it sends a message in the ‘tc‘ channel to continue execution in the traffic
handler.

5.2.2.2 Join handler
In order for a device to be recognized as either an ou or mule, the device
has to "join" the network. Once a device is started, the process will initialize
all its local variables and send a join request to the simulator server once done.
The join request will contain metadata about itself, such as network address
and port, location and type of device. Once the simulator server receives the
request, a new device ID will be picked by the simulator and sent back to
the device. In addition, the simulator will send an update to the visualization
updater which will update all connected browser clients. When the response
with ID is received by the device, the device can commence with the tasks it
has to commit.

5.2.2.3 Broadcast handler
In order for a device to effectively "broadcast", meaning find those devices
which are close by in a simulated environment, the device will send a broadcast
request to the simulator on an address such as ‘http://localhost:8080/broadcast‘.
Given that broadcast requests may be sent rather often and by multiple devices
at the same time, the simulator has to streamline the broadcast routine which
it has to go through. In order for the simulator to effectively and timely return
the devices which are within range of another device, the simulator keep three
separate lists for each device in the simulation as seen in Table 5.1.

Table 5.1: Simulator device broadcast management - broadcast list overview

List name: Type of list:
To examine for range (EFR) List of devices where the range has to be examined
Not within range (NWR) List of devices which are known to not be within range
Known devices within range (KDIR) List of devices which are known to be within range

When the simulation is initialized, all respective device lists in the simulation
will have all other devices in their broadcast list and all have empty not within
range lists. This way all devices will first check all the distances to all other

5.2 DMNI S IMULATOR 41

devices in the system.

√
(pos1.X − pos2.X)2 + (pos1.Y − pos2.Y)2 (5.1)

Equation 5.1 shows the calculation which the simulator has to go through in
order to see if two devices are within range of one another.

Figure 5.4: Simulation process of locating devices in range

Figure 5.4 shows the procedure which the simulator has to go through when
a broadcast request is received. First the simulation will go through all of the
already known devices which has been found to be in range - if some are not
available nor within range, they are removed from the within range list and
added to the list of devices which are no longer within range.

Once finished, the "to examine for range" list is iterated over. All the devices
within range are added to the known devices within range list and those not
are added to the not within range list. Both the list of devices within range and
those not are returned to the device which originally sent the request.

42 CHAPTER 5 IMPLEMENTAT ION

Once a device has been found to either be within range or not, the device will
be either appended to the known devices within range or the not within range
list - this way the "to examine for range" list will eventually be emptied out. The
next time the simulator has to handle a broadcast from the same device, the "to
examine for range" list is empty and thus the simulator does not have to spend
time examining the range for all devices in the simulation. This increases the
effectivity of the simulator.

It is due to the very nature of ous that it can be done this way - ous do not
move often. However, mules do and they may be part of the sub-networks.
Therefore, once a device changes its state or relocates, an update is sent to
the simulator with this info and the device is appended to the "to examine for
range" list of all other devices so the device’s distance from all other devices
may be recalculated.

5.2.2.4 Status & leave handle
As previously explained,updates of a device’s statusmay be sent to the simulator
through the status handle. In the same way, if a device is leaving the simulation,
it may send a message to the simulation leave handle so that the shutdown is
graceful and data is not sent to a network addresses which are not active.

The simulator will ensure that the update, for example that a device has left the
simulation, will be properly updated in both the visualizer and those devices
that needs the update. When a device attempts to broadcast, the device that
left the simulation will not be returned as within range and thus devices that
previously had the device within range will just see that is no longer within
range.

5.3 Mule & Observation Unit
Both the mules and ous are built using the ‘net.http‘ go library⁶ to create a
http server and client. They both serve the following handles:

• Ping handler

• Shutdown handler

• Update handler

6. Http: https://golang.org/pkg/net/http/

https://golang.org/pkg/net/http/

5.4 DATA-PATH MAPP ING HANDLER 43

• Path-mapping handler

• Accumulation handler

In addition to the following handles, the mule also serves a ‘sink‘ han-
dler.

5.3.1 Update & shutdown handler
The update and shutdown handler are primarily used for the simulation server
to either update or gracefully shut down devices which are part of the simulation
environment. If a device receives a request in the shutdown handler, the device
will call its shutdown method and thus gracefully shut down and leave the
simulation environment.

5.3.2 Ping handler
The mule and ous ping handler will receive requests from other devices that
are broadcasting. The request will be routed through the simulators broadcast
handler (See handler in subsubsection 5.2.2.3) and then forwarded to the
receiving device’s ping handler. The purpose of the ping handler is for the
device to stay updated in regards to which devices are still available and
running and new devices that are nearby. This implies that a device may
discover other nearby devices via either direct broadcasting or receiving a ping
in their ping handler.

Once a ping is received, the device will check if the request type is a ‘Data
Path Mapping‘ request - if true, the device will spawn a new go-routine⁷ that
initializes a data-path mapping routine - see Section 5.4.

Further, the device will check whether or not the sender of the request is already
known. If not, the device will add the sender of the request to the list of known
devices within range.

5.4 Data-path mapping handler
Given that both mules and ous may take part in data accumulations, the
data-path mapping routine applies to both types of devices. Figure 5.5 gives

7. Goroutine: https://gobyexample.com/goroutines

https://gobyexample.com/goroutines

44 CHAPTER 5 IMPLEMENTAT ION

an insight in how the procedure of data-path mapping functions.

Figure 5.5: Process of data-path mapping

Once a new package is received in the data-path mapping handler, the very
first thing the device does is to append its own path to the package’s ‘path‘
field. This way the path which the package has to take is tracked. Further,
the package is flooded to all the known direct neighbours of the device. To
effectively wait for replies, the implementation utilizes golang’s ‘channels‘⁸ and
the process will then await the exact number of flooded messages which are
sent out.

An issue arises here with the default implementation of golang’s ‘http.client‘,
as the implementation does not specify request timeouts and thus allowing
services to hijack the goroutines[33] - this is resolved by utilizing a custom
http client which specifically sets the timeout of requests to 25 seconds. In
addition to getting around the issue of the possibility of hijacked goroutines,
the timeout also resolves the issue of possible deadlocks in which the routine
will wait for-ever for a reply which never comes.

Once a reply is received, error checking is done and if there are no errors the
status code is checked. If the statuscode is 200, this means that one of the
neighbours that received the data-path mapping request has yet to be included
in one of the data-paths. In essence, this means that either that neighbour or
another device further out in the network will initialize a data accumulation.
If however the response does not contain the statuscode 200, this means that

8. Golang channels: https://tour.golang.org/concurrency/2

https://tour.golang.org/concurrency/2

5.5 DATA ACCUMULAT ION 45

the other neighbour that received the message have indeed been included in
one of the paths already and thus will not forward the data-path mapping. If no
more replies are expected then the device will initialize a data accumulation
as seen in Section 5.5.

5.5 Data Accumulation
When a request is received in the accumulation handler, the very first thing
that the device does is find the index which its own address resides at in the
package’s ‘path‘ field. The very first address in the path is the original sender,
in other words the mule. If the device’s address is not part of the package’s
path, an error is raised and the accumulation is exited.

If there are no errors, the device will check if it has already accumulated its
data as a device may be part of several data-path mappings. If a device is part
of multiple data-path mapping paths, there may be race for which path first
accumulates data from the device. This is checked using a hash-map structure
in which the original Unique Message Identifier (umi) is set as key and the
the value is a structure containing info whether data has been collected and a
timestamp for when.

Figure 5.6: Process of data accumulation

If the device has yet to accumulate data, the device will append its collected
data to the package. Depending on the index which was earlier extracted from

46 CHAPTER 5 IMPLEMENTAT ION

the package’s ‘path‘ field, the device will either forward the package to the next
address in the path or send it directly to the mule.

5.5.1 Sink handler (MULE only)
The sink handler is unique for mules as they would have an extended data-
buffer to store data before forwarding it to persistent storage. In the current
implementation of dmni, the extended buffer is only limited by the amount
of memory on the device itself.

Once a mule receives a request in its sink handler, the data will be structured
in a way so that the origin of the data may be tracked by analysing the data
- this is a step that would be taken at the backend and thus dmni does not
implement this.

As earlier shown in Listing 5.1, each data package contains a generic ‘data‘ field
in which all type of data may be stored. To track the origin of data, the ‘data‘
field in each package received in the sink handler is simply an array of more
data packages - this way each origin can be tracked and within each of the
packages’ ‘data‘ field again is the actual collected data. Figure 5.7 illustrates
the structure of the accumulated data package.

Figure 5.7: Data-accumulation package

5.5.2 Collection of data
The ous collect data - in the current implementation of dmni this data is
generated by the ous themselves.

Listing 5.3: Golang data collection
1
2 func Co l l e c tDa ta () Data {
3 data := Data{
4 Seqnum: time .Now() . Unix () ,
5 Data : GenerateRandomBytes (Random(10 , 150)) ,
6 }
7 data . F i nge rp r i n t = F inge rP r i n t (data . Data)

5.6 UNIQUE MESSAGE IDENT IFIERS 47

8 data . S ize = len (data . Data)
9 re turn data

10 }
11
12 func GenerateRandomBytes (num in t) [] byte {
13 token := make ([] byte , num)
14 rand . Read(token)
15 re turn token
16 }

Listing 5.3 shows how the data is generated. A ‘Data‘ data structure is generated
with a random number of bytes. The fingerprint and size of the data is also
collected and returned.

5.6 Unique message identifiers
All messages are labeledwith aumiwhich can later be used to identify whether
or not a message has previously been received. The umi is created as seen in
Listing 5.4.

Listing 5.4: Golang code showing how a Unique Message Identifier is created
1
2 func F inge rP r i n t (data [] byte) s t r i n g {
3 hasher := sha1 .New()
4 hasher . Write (data)
5 sha := base64 . URLEncoding . EncodeToString (hasher .Sum(n i l))
6 re turn sha
7 }
8
9 func Ge tDa t a I den t i f i e r (address s t r i n g) s t r i n g {

10 t := time .Now() . UnixNano ()
11 b := make ([] byte , 8)
12 binary . L i t t l eEnd i an . PutUint64 (b , uint64 (t))
13 c := append(b [:] , [] byte (address) . . .)
14 re turn F inge rP r i n t (c)
15 }

6
Evaluation
Given that the Dynamic Mobile Network Infrastructure (dmni) simulator
simulates the Arctic environment, it is possible to answer bigger questions which
are related to the system as a whole by utilizing explicitly the dmni simulator
to run simulations, but questions related specifically to Mobile Ubiquitous LAN
Extensions (mules), such as power consumption, cannot be answered this
way.

Therefore, the experiments conducted are split into two sub-groups in which
one contains experiments conducted utilizing the dmni simulator explicitly
and the second section contains experiments conducted utilizing a real device
in the form of a Raspberry Pi 3 Model B (rpi).

All experiments were designed to determine howwell the systemwould perform
on the Arctic tundra and reveal both devices capabilities and down-sides.

6.1 Experimental design
The configuration for each experiment differs and is therefore mentioned
specifically in each section. Section 6.2 goes into further detail on the simulator
experiment details whilst Section 6.3 explains the details around the rpi
experiments.

49

50 CHAPTER 6 EVALUAT ION

6.2 Simulator experiments
The experiments conducted explicitly using the dmni simulator was conducted
on a Lenevo ThinkCentre MT-M 10FL-S1S800 with an Intel(R) Core(TM) i5-
6400T CPU @ 2.20GHz - 16GB DDR3 RAM. Separate processes were spawned
for:

1. Environmental simulation

2. Simulation visualizer

3. mules

4. Observation Units (ous)

The number of ous and mules varies from experiment to experiment and
each experiment ran for specific duration and a number of iteration which
then was used to calculate an average. Each specific number of mules, ous,
duration and interval count is specified in each experiment.

6.2.1 Package drop-rate vs. MULE count
This experiment was designed to evaluate the package drop rate which can be
caused by a lack of mules to accumulate data on the Arctic tundra. An ou
will after a time drop packages due to their data buffer being full. The drop
rate can be defined as the relation between the amount of packages which
has been successfully accumulated vs. the amount of packages which had to
be dropped by the ou due to their data buffer being full. The setup of the
experiment was as follows:

• 3000x3000 virtual grid (size of simulated area)

• ous has a data-buffer with room for 1000 data packages

• ous are configured with a rounded buffer - once the data buffer is full,
the oldest data will be deleted

• Data collection in ous happen every 300ms

• Packages collected by ou vary in size from 10 to 150 bytes (bs) (random-
ized)

• Communication range is set to 150 virtual grids

6.2 S IMULATOR EXPER IMENTS 51

• No (artificial) delay in retrieving data

• mule timeout of 10 seconds

• The amount of ous varies (Specified)

• The amount of mules varies (Specified)

• Location of ous and mules in grid randomized

• All experiments ran for 10 minutes and repeated 10 times (10 iterations)
- the average collected result is shown

The large virtual grid size was purposely set in order to trigger package drops
in the simulation. As the grid size increases, the distance between ous increase.
As the distance increases, the chance of ous forming sub-networks decreases.
Sincemule can collect data from all members of sub-networks by only being in
contact with a single device part of said system, it is beneficial that sub-networks
do not form in order to trigger package drops.

If the virtual grid was set to for example 1500x1500 in size, the chances of data
packages being dropped would be low and thus not very interesting.

By looking at the settings above, the time before an ou starts to drop pack-
ages(t) can be calculated by the ‘ou data collection time(300ms) * ou data
buffer size(1000)‘, given in Equation 6.1.

t = 300ms × 1000 = 300000ms (6.1)

This equals 300 seconds or 5 minutes, meaning that in order for a ou to drop
a package it has to not be part of any data accumulations for at least 5 minutes
out of the 10 minutes the experiment ran.

The maximum packages a ou can drop during one iteration(n) of one experi-
ment is thus ‘Time of one experiment iteration (10min or 600 000ms) - time
before ou starts dropping packages (5min or 300 000ms) / time to collect one
data package (300ms)‘, this Equation 6.2.

n = (600000 − 300000) ÷ 300 = 1000 (6.2)

The experiment was first ran with 50 ous, then 75 ous and lastly with 100 ous.
All experiments was conducted with a different % of mules to ous count as

52 CHAPTER 6 EVALUAT ION

seen in Figure 6.1. The amount of experiments(ex) would therefore be equal
to ex = 3 × 7 = 21.

Each experiment was repeated 10 times, thus 210 total repetitions of 10 minutes
was conducted. The total time to run the experiments was therefore 210×10 =
2100 minutes or 35 hours.

Note that the experiment does not take into account that a ou’s data buffer will
be filled up with packages from other ous.

Figure 6.1: Percentage of MULEs at 50, 75 and 100 Observation Units - 3 groups of 7
experiments

6.2.2 Mule timeout
This experiment was aimed at examining whether or not the mule timeout
is of big significance when accumulating data from the ad hoc network. As
previously explained in subsubsection 5.2.2.1, the simulator applies a calculated
delay relative to the network request size equal to what would be achieved
with a bandwidth of 3.6817 Megabit (mbit)/sec. This can be seen in code
listing 5.2.

The setup of the experiment is as follows:

• 1500x1500 virtual grid (size of simulated area)

• Data collection in ous happen every 300ms

• Packages collected by ous vary in size from 10 to 150 bs(randomized)

6.2 S IMULATOR EXPER IMENTS 53

• Communication range is set to 150 virtual grids

• Simulator bandwidth of 3.6817 mbit/sec

• mule timeout varies from 0 - 15 seconds

• ou count of 50

• mule count set to 15% of ou count, thus 8 mules

• Location of ous and mules in grid randomized

• All experiments ran for 10 minutes and repeated 10 times (10 iterations)
- the average collected result is shown

Figure 6.2: Theoretical bandwidth at increasing MULE timeouts

Figure 6.2 gives an overview of the theoretically possible amount of data which
can be transmitted in relation to the mule timeout.

This means that for the maximum amount of data a single ou can collect in a
10 minute span for a single iteration is as follows:

b = 150bytes × (600000ms ÷ 300) = 300000bytes (6.3)

Following, the total amount of data that can be collected in the ad hoc network

54 CHAPTER 6 EVALUAT ION

is:
b = 50 × 300000 = 15000000bytes = 15MB (6.4)

This equals a maximum amount of data collected by all ous in the ad hoc
network to be 15 Megabyte (mb).

Each experiment was repeated 10 times, thus 16×10 = 160 total repetitions of
10 minutes was conducted. The total time to run the experiments was therefore
160 × 10 = 1600 minutes or 26.6 hours.

6.3 Raspberry Pi experiments
The rpi experiments were executed on a single rpi1 with the following hard-
ware:

• Quad Core 1.2GHz BMC2837 64bit CPU

• 1GB RAM

Alongside the rpi itself ran a simulation server with the following setup
experimental setup:

• 1500x1500 virtual grid (size of simulated area)

• 50 ous in simulation (Randomized position)

• 8 mules (Randomized position and pathing/routing)

• 150m communication range

• ous collect data every 300millisecond (ms)

• mule timeout set to 10 seconds

• Location of ous and mules in grid randomized

• The experiments was measured over 10 minutes and repeated 10 times
(10 iterations)

The rpi ran a single mule process which communicated with the other

1. Raspberry Pi 3 Model B: https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

6.4 RESULTS 55

devices (processes) spawned on another computer by the simulator via local
network.

The network measurements were taken by using the go library ‘gopsutil‘[31]
and it parses out the specific network utilization used by the single running
mule process. The CPU and memory measurements were taken by parsing
the ‘ps‘ command in linux to get the CPU and memory utilization per process
and not the device as a whole. All measurements were taken over a time of 10
minutes and was repeated 10 times (10 iterations).

Measurements for the energy consumption was not conducted due to time restric-
tions and issues whilst setting up the multimeter for the experiment.

6.3.1 Raspberry Pi WiFi Bandwidth
The main purpose of this experiment was to map out what one can expect
from a rpi in terms of bandwidth between two devices. Both devices were
connected to a router over a 2.4GHz WiFi connection. Two rpis were set up,
connected via WiFi to the same network and router, and via the tool ‘iperf ‘[11],
an average bandwidthwasmeasured over an interval of 100measurements (100
repetitions). The measurements were taken over a distance of approximately
10m and through a wall to the router.

6.3.2 CPU, memory and network utilization
dmni is to be executed on small, low-power devices that are to function on the
Arctic tundra, it is crucial that the system is lightweight in terms of computa-
tional power, memory footprint and network utilization. All CPU, memory and
network specific measurements were taken whilst running the mule specific
process alongside the simulator and the setup described previously.

6.4 Results
This section presents the results of the experiments conducted - both for the
rpi specific experiments and the simulator experiments.

56 CHAPTER 6 EVALUAT ION

6.4.1 Raspberry Pi bandwidths
Figure 6.3 shows the measured bandwidths between two rpis over a distance
of approximately 10mwith someminor physical blockage between(twowooden
walls). As expected, the bandwidth measurements fluctuates considerably as
one would expect between two WiFi points. The standard deviation in the
measurements is calculated to be 1.1616 Mbit/sec which is quite consider-
able.

Unfortunately, it is rather hard to predict the exact bandwidths[24] one can
expect to receive when sending over WiFi because a lot of factors has to be
taken into account such as:

• Physical distance between sources

• WiFi card and antenna on both sources

• Signal interruption / interference

– Especially relevant as the measurements were conducted at the Insti-
tute of Computer Science (IFI) at University of Tromsø (uit) where
many devices are connected wirelessly. This can cause interference
in signals

• Physical blockage

From the measurements, an average of 3.6817 mbit/sec from 100 measure-
ments was achieved. This value was used as a baseline for the simulated
bandwidth delay in the traffic handler for the remainder of the experiments
where this was relevant.

6.4.2 Package drop-rate vs. number of MULEs
The purpose of this experiment was to measure the relation between package
drop-rate and the number of mules in the simulation.

A package is defined as the data structure created by ous containing data collected
by sensors and metadata about the data collected.

6.4 RESULTS 57

Figure 6.3: WiFi Bandwidth measurements - Raspberry Pi to Raspberry Pi

6.4.2.1 50 Observation Units
The results provided in Figure 6.4 show, in the blue dotted line, the percentage
of packages dropped versus the amount of total packages collected in the
simulation. The black line with circles represents the total amount of packages
that were accumulated successfully to a mule. Lastly the starred orange
line represents the packages that were lost in transmissions, meaning those
packages that were sent from ous but never reached a mule.

As seen, when there are no mules available(0%), all packages are eventually
dropped. In the very firstmule percentage, we see that themule percentage
compared to ou count is set to 5% of 50 ous, thus 3 mules. The package
drop-rate is 36.44% - since a ou can maximum drop 1000 packages in one
iteration (as previously explained Equation 6.2) in of the experiment and there
are 50 ous, the total amount of packages lost by all ous (pl) would equal to:

pl = (1000 × 50) ×
36.44
100

= 18220 (6.5)

Table 6.1 shows the number of dropped packages for 50 ous with the respective
mule count.

Not surprisingly, the number of packages dropped goes down with the amount
of mules that are in the simulation. What is rather interesting is to see that

58 CHAPTER 6 EVALUAT ION

Figure 6.4: Mule to observation unit ratio - 50 observation units

Table 6.1: Package-drops - 50 observation units

Percentage mules Package drop % Dropped packages
5 36.44 18 220
10 22.15 11 075
15 12.73 6 365
20 13.43 6 715
25 8.77 4 385
30 5.72 2 860

the amount of accumulated packages stabilizes to an extend at around 82-84%
accumulated packages compared to total packages collected by the 50 ous.
In addition to this, when utilizing 13 mules (20% of 50 ous), the amount of
packages that are lost exceeds the amount of packages that are dropped by
the ous. From this we can see that the network related issues (due to lost
packages = packages sent tomule - packages accumulated bymule) exceeds
the amount of packages dropped by ous. It is expected that the reason behind
this is that as there are more mules in the simulation, especially since they
have a static set timeout of 10 second (s), the amount of network issues will
steadily increase due to for example a mule simply not waiting long enough
for all packages to accumulate from a sub-network.

In addition, a thing to note is that the amount of packages dropped actually
went up when using 20% mules compared to 15% of mules. This is most
likely an anomaly as we can see from the other experiments with 75 and 100

6.4 RESULTS 59

ous that this is not case. One can suspect that it might be that during one
of the experiment iterations, the simulator process crashed and thus did not
collect any data for that iteration, meaning the average calculation would be
incorrect compared to the other iterations.

6.4.2.2 75 Observation Units
Figure 6.5 gives rather similar results compared to what was achieved in
subsubsection 6.4.2.1. It does however show a generally lower percentage of
packages dropped and this comes down to the increased amount of ous in the
system.

By increasing the density of the ous, the chance of the ous being close to
each other is higher, thus the chance of collecting data from them is higher
as a sub-network of ous covers a bigger area than a single ou. As the area
they cover gets bigger, the chance of a mule discovering the sub-network
increases.

Figure 7.1 gives an illustration of this - the blue network consists of a single
ou whilst the green is a sub-network of interconnected ous. A mule needs
to come in contact with either the blue or the green and thus one can see that
it is easier to come in contact with the green than the blue, even though the
green does overlap.

Figure 6.5: Mule to observation unit ratio - 75 observation units

60 CHAPTER 6 EVALUAT ION

The package drop-rate when using 5% mules is 33.11% - since a ou can
maximum drop 1000 packages(As previously explained Equation 6.2) in one
iteration and there are 75 ous, the amount of packages lost(pl) for all ous
would equal to:

pl = (1000 × 75) ×
33.11
100

= 24832 (6.6)

Table 6.2 shows the number of packages dropped in a system with 75ous.

Table 6.2: Package-drops - 75 observation units

Percentage mules Package drop % Dropped packages
5 33.11 24 832
10 14.39 10 792
15 10.81 8 107
20 6.45 4 837
25 7.40 5 550
30 5.19 3 892

An interesting thing to see in Table 6.2 compared to Table 6.1 is that the total
amount of packages dropped in the two experiments are somewhat comparable.
This is even though the amount of ous has been increased by 50% from 50
ous to 75 ous.

The results here gives an indication that the amount of ous in the same sized
virtual grid has an impact on the amount of packages dropped - this is further
discussed in subsubsection 6.4.2.3.

6.4.2.3 100 Observation Units
In the experiment with 100 ous the trend is similar to what we have seen with
50 and 75 ous. We can see that the package-loss ratio decreases as the amount
of ous increases.

The package loss ratio keeps declining compared to the total amount of pack-
ages accumulated with 100 ous.

Figure 6.6 shows how the trend of declining package loss continues with a
starting package-loss(pl) of 21.92% for 5% of mules.

pl = (1000 × 100) ×
21.92
100

= 21920 (6.7)

6.4 RESULTS 61

Figure 6.6: Mule to observation unit ratio - 100 observation units

Table 6.3 gives an overview of the packages dropped with 100 ous.

Table 6.3: Package-drops - 100 observation units

Percentage mules Package drop % Dropped packages
5 21.92 21 920
10 12.73 12 730
15 7.17 7 170
20 4.73 4 730
25 4.15 4 150
30 3.01 3 010

The trend is that with an increasing amount in density of ous, the amount of
package-loss within the ad hoc network is decreased.

Figure 6.7 shows a comparison between the three experiments where the blue
bar represents the experiment with 50 ous, the red represents the experiment
with 75 ous and the orange represents the experiment with 100 ous. In
addition to plotting the amount of package drops, the figure shows the trend
line which each experiment has.

From looking at the trend lines, we can see that the experiments with the
highest amount of ous has a steeper decline compared to the experiments with
a lower number of ous.

62 CHAPTER 6 EVALUAT ION

Figure 6.7: Comparison of packages dropped - 50, 75 and 100 Observation Units

We can from this deduce that the number of ous has a direct impact on the
amount of packages that are dropped. This is because as the number of ous
increases, the density of ous also increases. With an increases density of ous,
the chance of ous forming sub-network is greater. As shown in figure 7.1,
sub-networks enabled ous to "reach" further and thus the chance of a mule
accumulating data from the sub-network increases.

From the experiment done, we can see that the package-loss rate can be
reduced to below 5%, even as low as 3.01%, when using a mule to ou ratio
of 30%.

6.4.3 Mule timeout
The goal of this experiment was to document the impact which the mule
timeout has on the amount of packages which are dropped by ous and accu-
mulated bymules. The experiment was conducted 10 times (10 iterations) for
a time period of 10 minutes (to obtain an average value) and with a different
timeout for the mules ranging from 0 to 15 seconds.

Figure 6.8 shows the results from the experiment where the mule timeout
increased from 0 to 15 seconds. The figure shows that the number of packages
sent to the mule (but not necessarily received) decreases as the timeout for
mule increases. This is because of the mule physically moving less as more

6.4 RESULTS 63

Figure 6.8: Timeout experiment results - 50 observation units, 8 mules

time is spent waiting for data accumulating from ous. Less movement for the
mule means that the mule will also initialize less data-accumulations from
sub-networks.

An interesting part however is that the number of packages which are accu-
mulated by the mules does not change too much when the timeout for the
mule is above 3 seconds. This is because as the mule timeout increases in
seconds, the mules will be able to wait for more packages even though not as
many packages are originally sent by the ous. This is also seen in the yellow
starred line which shows the number of packages which are lost in network
transmission between the ous and mules due to the mules going out of
range of the sending ous.

Figure 6.9 shows how the percentage of packages received and accumulated
by the mule increases as the timeout increases. We see that the percentage of
packages lost due to mules going out of range can be as low as 14.08% when
using a 15 seconds timeout for the mules.

It can therefore be concluded that as the mule timeout increases, the number
of packages lost decreases.

64 CHAPTER 6 EVALUAT ION

Figure 6.9: Timeout experiment results - percentage of packages accumulated vs.
percentage of packages lost due to MULE going out of range

6.4.4 Raspberry Pi CPU and memory utilization utilization
Figure 6.10 shows the results measured from the single rpi over a duration of
10 minutes which was repeated 10 times (10 iterations). It has to be pointed out
that the measured CPU and memory footprint is for the single mule process
and not the device as a whole.

From the figure we can see that both the CPU and memory footprint for the
single mule process is very low and stable. The memory footprint averages at
around 2.2% of total CPU whilst the memory (RAM) utilization is at around
1.3% of total RAM. 1.3% is of 1GB RAM (which the rpi has) is 13mb.

Figure 6.11 shows the total system CPU and memory usage with the results
from only running a single mule also plotted in dark blue and black. The
total system memory usage is seen spiking but by comparing it to the memory
footprint of the single mule process, one can deduce that it is another non-
dmni process causing this.

Further it can be concluded that running just a single mule process on a
rpi does not take up an excessive amount of resources. This comes down to
the hardware in the rpi which has a quad core CPU and 1GB of memory. In
addition, this proves to show that another device, the Raspberry Pi Zero, could
possibly turn out to suit dmni better as it is not require as much energy as the

6.4 RESULTS 65

Figure 6.10: CPU and memory utilization - single MULE process

Figure 6.11: CPU and memory utilization - total system utilization

rpi does.

Experiments were not conducted on a Raspberry Pi Zero due to network related
issues. This was because the Raspberry Pi Zero was connected to the Eduroam
network at uit which blocked access to the simulator.

66 CHAPTER 6 EVALUAT ION

6.4.5 Raspberry Pi Network utilization
Figure 6.12 shows the amount of file descriptors used by a singlemule process
over a matter of 10 minutes and repeated 10 times (10 iterations). It has to be
noted that the amount of open file descriptors due to having open files (such
as log files etc) is also included in these numbers.

Figure 6.12: Network utilization - 10 iterations running for 10 minutes

The figure shows how for each experiment conducted, the network utilization
for the rpi follows a wave like pattern which corresponds to the amount of
file descriptors which the rpi is utilizing. A higher number of file descriptors
in use means more open connections, thus more network traffic than if the
number of file descriptors was low.

The wave pattern is expected as the number of file descriptors in use will vary
depending on how many open connections to other devices there are. Since
the routing for mules in the simulation is randomized, the spikes seen in the
figure will also be randomized depending on where the mule was located in
the simulation grid.

One interesting thing however is that during iteration 5, after approximately
250 seconds, or about 4 minutes, the amount of open connections spiked up to
approximately 60 open connections. This number is rather high and seems to
be an anomaly in the measurements.

A possible reason for this may be due to the mule opening a number of

6.4 RESULTS 67

connections to a sub-network of ous, but relocating before they are able to
close the connection. Since each network connection has a timeout (of 25
seconds), themule could possibly have located to another sub-network before
the previous connections were closed. This could potentially lead to a high
number of open connections.

Figure 6.13: Network utilization average

Figure 6.13 shows the average number of open connections for the 10 times
the experiment was conducted. Here we can see that the average connections
is anywhere from 16 to 22 open connections which is reasonable. Again, the
simulator has a small grid size of 1500x1500, which would cause a lot of open
connections as the mule would encounter ous rather often.

Figure 6.14 shows the average number of open connections per iteration with
the relevant standard deviation. If compared to Figure 6.12, it can be seen
that for iteration 5, the standard deviation is quite high and this is due to the
anomaly which happened during the 5th iteration of the experiment.

Further the figure shows that an average of around 16-17 open connections.
This comes down to that mules will have open connections on hold whilst
data is being accumulated. This comes in addition to having open connections
towards the simulator server and open log files.

68 CHAPTER 6 EVALUAT ION

Figure 6.14: Network utilization per iteration average

7
Discussion
7.1 Data accumulation from single devices
Data accumulation from single devices are handled the same as accumulations
from devices which are part of sub-networks. If a device is separated, meaning
not part of a sub-network, its effective communication range is limited. This is
because the range which a Mobile Ubiquitous LAN Extension (mule) has to
be within to accumulate data from a device is directly related to the size of the
sub-network which the device is part of. Figure 7.1 shows this where the reach
of the blue node is limited to what its own communication device can provide,
the light blue circle. On the other hand, all the devices marked in green can
effectively reach out to the area marked in light green as they are connected
together in a sub-network.

Seeing how a device does not need direct contact, but may utilize multi-hop
routing to reach a mule, this implicitly implies that a device’s effective range
is directly related to the reach of the sub-network which it is a member of.
Section 7.6 goes into some detail on the impact which multi-hop may have on
the time a mule will have to wait for accumulated data to be received.

The result of this is that devices which are not part of any sub-network or are part
of very small networks will have limited reach and will in some situations have
to wait longer before being able to have data passed to persistent storage.

A possible way to solve this is for devices which are either alone or part of

69

70 CHAPTER 7 DISCUSS ION

Figure 7.1: Single Observation Unit range vs. sub-network of interconnected Observa-
tion Units

a small sub-network to utilize a long-range antenna for communicating with
mules. This would mean a trade of energy for communication range which
could prove to be reasonable. Chapter 9 goes into some further ideas to solve
this.

7.2 Network OU size vs. latency & energy
consumption

Although bigger Observation Unit (ou) sub-networks may result in a greater
chance for an ou to have its data passed back to persistent storage, the overall
network energy consumption and latency will increase as sub-networks grow
in size.

The size of an ou sub-network is determined by the area which the sub-network
effectively covers, as described in Figure 7.1.

7.2.1 Overall energy consumption
An issue that arises when utilizing multi-hop routing between devices in a
Wireless Senor Network (wsn) is that certain areas may become ‘hot-spots‘[32,
5] in the sense that there is an energy imbalance among the devices in the
network, especially close to static sinks as seen in Figure 7.2. This is since some
routes are predestined to be chosen more often when there are static sinks -
however due to the very nature of mules being mobile, this issue is limited
and comes down the very movement pattern that the mule uses. If a mule
follows the same path repeatedly, the mule based solution will also suffer

7.3 MULE ROUT ING 71

from energy imbalance. If for example the mules follows a randomized route,
different routes within the sub-networks will be used to reach the mule. See
Section 7.3 for further discussion.

Figure 7.2: Static sink - energy imbalance close to sink

There are proposed solutions for the power-consumption issue and power
imbalance, such as using a more intelligent transmission power control policy
which requires nodes further away from sinks to use longer transmission routes
to reach the sink instead of the shortest path possible[27].

7.3 MULE routing
In the given implementation ofDynamicMobile Network Infrastructure (dmni),
the path which the mules follows in the virtual grid is randomized - it does
not go from a specific point in the grid to another specific point in the grid.
It was decided to not focus on mule routing as this is a whole other topic in
itself.

There are several different solutions for solving this however - although most
depend on the question whether or not there is any information available for
the mule about the networks before selecting a route. Are the mules aware
of the location for ous or are they simply navigating blindly without any prior
knowledge.

Given that a system such asdmnimay be utilized in several different fashions, a
randomized routing seemedmost appropriate. Several other routing techniques
may be utilized, but as mentioned, this depends on the use case of the specific
system.

72 CHAPTER 7 DISCUSS ION

7.3.1 Solutions where prior knowledge about networkexists
In the first scenario, the goal is to solve the Minimum-Path Data-Gathering
(mpdg) problem - find a path which minimizes the path whilst still reaching
all sub-networks in a graph.

"Given a graph G = (V, E), vs , and Gs , the mpdg problem is to
find a gathering path P, starting from vs , connecting one landing
port in each subnetwork, and returning to an ending node inGs such
that the path length |P | is minimized."[35]

‘Data Gathering by Mobile Mules in a Spatially Separated Wireless Sensor Net-
work‘[35] proposes two heuristics algorithms for thempdg problem - a greedy
algorithm (7.3.1.1) and a convex hull-based algorithm (7.3.1.2).

7.3.1.1 Greedy Algorithm
The greedy algorithm is based on that the mule will choose the next node by
determining that the node is within an unvisited sub-network and the node
is the closest to the current location of the mule. This is repeated until all
sub-networks has been visited.

7.3.1.2 Convex Hull-Based Algorithm
The second solution proposed in [35] is based on a convex-hull concept which
was first proposed in [16].

"This algorithm is designed based on selecting a delegation node in
each subnetwork and constructing a convex hull from these delegations
for continuous polishment."[35]

The essence of this proposed solution is to for each sub-network calculate a
delegation node which is closest to the center-of-gravity - these nodes are
set as landing-nodes. Then a convex hull of the system is calculated and it is
attempted to keep the cost of paths to a minimum.

It is proven in [35], through simulation, that the algorithms perform rather
close to optimal solutions in most practical cases.

7.3 MULE ROUT ING 73

7.3.1.3 Partitioning Based Scheduling Algorithm
The Partitioning Based Scheduling (pbs) algorithm, bases its solution on the
fact that in many systems knowledge of data aggregation rate in sensors is
known[12]. This may also be true for a sensor network based on the Arctic
tundra.

In pbs, each nodena is associatedwith a buffer overflow time oa - the basic idea
behind pbs is that a path needs to be created so that two consecutive visits tona
are at themostoa apart. This is done by calculating themule route in two steps
- a partitioning phase and a scheduling phase. The partitioning phase groups
nodes with close buffer overflow times and closely located. The scheduling
phase within the groups themselves are calculated and then concatenated to
create a complete route through the sub-networks.

A similar system could possibly be created to also include sub-networks of
devices - not only single nodes. It would however require knowledge of the
overflow time for the ous.

7.3.2 Mule routing without any prior knowledge
In the event that no prior knowledge is known about the network which the
mule will operate in, there are some questions that has to be answered to
best choose the routing path for the mules:

• Are nodes in the network static or do they move?

• Can information about the network gradually be collected and used?

• Is there a fixed number of devices in the system or may this change?

In the event that devices in the network may change their position, a random-
ized routing algorithm may be the best fit. This comes down to that regardless
if a complex algorithm for pathing is used, the nodes can move. If not random-
ized, one can build up a map (split into sections like a grid) where the mule
has been and follow a ‘Round-Robin (rr)‘[4] sort of algorithm in which each
section of the map will be appended to an array. Each array element (map
area) will then be visited in sequence and repeated once the end of the array
is met. Much like rr, areas would be visited without any priority and in a
circular order.

In the event that information can be gradually built up, a mule can enter a
scanning routine in which it "scans" a grid and builds up the information it has

74 CHAPTER 7 DISCUSS ION

Figure 7.3: Grid scan example

about the devices in the area. Figure 7.3 gives an illustration of this in which
the device moves through each row and each column of the given grid.

7.4 Network topology
In the current implementation of dmni, the network topology design is that
there is no limitation nor control over which devices join which network. A
node will connect with all nearby dmni devices and thus implicitly join a
sub-network which consists of all the devices that are linked together in said
network.

Unfortunately, this limits the design in terms of scalability and reliability since
the sub-networks can (in theory) grow indefinitely. Subsection 7.4.2 goes into
some detail about how this can be resolved by limiting the number of forwards
a request can have.

7.4.1 Implosion and overlap when accumulating data
Given that dmni utilizes flooding for various reasons such as data-path map-
ping, there is a possibility of implosion and overlapping of requests[13, 1].
Implosion and overlapping occur when devices receive multiple copies of the
same message as a result of using flooding. When flooding, the devices does
not take into account who has already receives this message and who has not.
Chapter 9 goes into some suggested ways to solve this.

7.4 NETWORK TOPOLOGY 75

7.4.2 Limited number of request forwards
Since there is no limit on the length a request may reach in a sub-network of
devices, it may cause throttling of the network if the network is of significant
size. This is because, in theory, the sub-networks can grow to a size which is not
feasible. Since some requests are time sensitive, such as data-accumulations,
a large system would only slow the system and cause devices part of the sub-
network to have their energy drained as a large number of requests could
potentially flow through the sub-network.

Figure 7.4: Limited request range example

One way this could potentially be resolved is by limiting the amount of hops
a request can take in a sub-network before the request will no longer be
forwarded.

Figure 7.4 gives an example of how a limited range for requests can function.
In the example the blue node initiates a flooding request with may only reach
5 steps in the sub-network - once it has reached the 5 steps the flooding stops.
This means the two devices marked in black would not be affected by this
request nor would they even have knowledge that such a request took place.
The green circles are the devices which the request reached. This way sub-
network could grow in size without it affecting the entire sub-network and all
devices part of it.

76 CHAPTER 7 DISCUSS ION

7.4.3 Knowledge of entire sub-networks vs. directneighbours
As previously explained,dmni devices are only aware of their direct neighbours
- this is by design. Since the number of devices in a dmni network may be in
the order of tens, hundreds or even thousands, it crucial that the networks can
scale without it affecting the performance of each device too much. Devices
have limited computational power and memory and it would not be feasible
nor scalable to constantly have to update the information about the entire
sub-network if it is of significant size.

It is possible for a device to have knowledge of the entire sub-network which
it is part of by gossiping data between nodes in the network. It does however
raise a scalability and consistency issue once the network grows in size.

If the device only has knowledge of its direct neighbours, the amount of data
which the device has to keep track of and update is considerably lower than if
the device had to keep information about the entire network. In addition, data
about the direct neighbours is fetched directly from the neighbours themselves
and does not have to be routed (gossiped) through a number of nodes to reach
the destination.

7.5 Accumulation of data
Accumulation of data in dmni is of big importance and it is therefore crucial to
do this in an effective manner. To increase the likelihood of successfully accu-
mulating data from all devices in a sub-network, dmni bases its accumulation
routine on these outlines:

1. Every device in a sub-network may be utilized to accumulate data from

2. dmni should function both with and without prior knowledge of the
sub-networks

3. The chance of duplicated data should be minimal - ous will only send
data once

4. dmni prioritizes performance over consistency - performance and power-
efficiency is prioritized over the chance of data-loss

7.6 WHEN TO STOP WAIT ING FOR ACCUMULATED DATA 77

7.5.1 Chance of data-loss
With these points in mind, it is clear that one drawback that dmni has to
deal with is the chance of data-loss due to the fact that once data has been
accumulated from a device, the device will not await for any confirmation or
acknowledgement that the data has been successfully transferred to persistent
storage. This results in devices possibly deleting data which has yet to either
reach a mule or be duplicated on another device in the network.

7.6 When to stop waiting for accumulated data
In dmni once a mule initiates a data accumulation, the mule will wait for
a static amount of time (default 10 seconds) before continuing on its path. In
the case for the dmni simulation, this is sufficient for data-accumulation from
a large amount of nodes. However in a real life scenario, the amount of time a
mule would have to wait for a data would vary from time to time. The reasons
for this may be due to[22]:

• Radio fluctuations

• Temporary node failures

• Imbalanced/unknown network size

In addition, themules need to account for multi-hop latency which will occur
within the sub-network. Multi-hop latency is the time which is used to forward
data via multi-hop routing in a sub-network of ous. As Subsection 6.4.3 shows,
the multi-hop latency is hard to determine when the mule is unaware of
the amount of ous which it is accumulating data from. In the event that
the system limits the number of forwards a request can take, as discussed
in Subsection 7.4.2, the mule can better predict how long it has to wait for
accumulated data to arrive in its sink handler. This is further discussed in
Chapter 9.

7.7 Simulated bandwidth
In dmni, there is a simulated bandwidth delay which the simulator will add to
all traffic which goes over the traffic handler - the implementation details for
this is found in code listing 5.2. The delay is calculated depending on the size
of the request, but the bandwidth itself is static and does not change.

78 CHAPTER 7 DISCUSS ION

It is known that such a static solution is not sufficient in providing simulation
accuracy compared to how it is in real life. The bandwidth between devices
placed on the Arctic tundra will vary for numerous reasons, some of which are
mentioned in Subsection 6.4.1.

It does give some insight into the challenges which the ous will face on the
Arctic tundra and thus is acceptable for such an early stage of prototyping.
Implementing a more complex system was not done because of time constraints
but would be an interesting area to investigate in the future.

7.8 Device duty cycle
An issue that has not been addressed in dmni is duty cycle of devices. Nonethe-
less, it is a requirement for devices which are places on the Arctic tundra to
follow some sort of duty cycle in which it sleeps in inactive periods and then
is awaken to take sensor recordings or to finish other tasks. Duty cycle can
help reduce the overall energy consumption of the devices and since listening
consumes as much energy as actually receiving[8], it is crucial that a device
has the option to save energy when not in active use.

There has been work done on duty cycle, some of which are not mainly oriented
towards a mule based solution but could potentially be used in combination
with other works.

One solution as an example is Geographic Adaptive Fidelity (gaf)[17] in which
the devices that are closely located cooperates in saving energy. Only necessary
nodes participate in transmissions whilst other enter sleep mode. A similar
system togaf is Span[8], where a power-saving technique formulti-hop ad hoc
wsn was developed. Span builds on the fact that when a region for a shared
channel wsn has a sufficient density of nodes, only a small number of them
needs to be used at any time to forward traffic for active connections.

There is a potential for extending these sort of systems to sub-networks in
dmni where nodes that are closely located can take turns in powering down
and saving energy.

An interesting issue that arises due to this is the tradeoff between device duty
cycle and time in which a device will be able to communicate with a mule -
this is further discussed in Subsection 7.8.1.

7.9 MULE T IMEOUT 79

7.8.1 Device duty-cycle vs. mule communication time
In a system which utilizes duty-cycles for ous where mules are used for data
collection, there are several impacts which has to be considered. ‘Exploiting
Mobility for Energy Efficient Data Collection in Wireless Sensor Networks‘[20]
goes into further detail about these issues and lists the following points which
impacts the sensor duty-cycle:

1. "A MULE may not be discovered at all because the sensor was
asleep during the time the MULE was in communica- tion range
of sensor..."

2. "The amount of data that can be transferred (K) in one
contact may decrease if the MULE is discovered in the middle of
the duration it is in the communication range of the sensor..."

Point two is the reason why dmni utilizes timeout for the mule - it will halt
its location change if a data-accumulation has begun. This effectively increases
the time the mule will remain within communication distance.

By using timeouts instead of completely relying on the Data Transfer Rate
(dtr) to successfully transferring the required data to the mule, the mule
can fine-tune the time it waits for accumulated data to be received in its
sink handler. This way the amount of data that can be sent from ous can be
increased and themule can accumulate data frommultiple ous at once.

7.9 Mule timeout
In the model proposed in dmni, devices and mules can only communicate
with one another if they are within a certain range of rmeters in the virtual grid.
Since the system relies on multi-hop communication to accumulate data, there
is no telling how long a mule will have to wait for all data to be accumulated
and to arrive in the sink handler. This is because in the current implementation
of dmni, there is no limitation of number of devices in a sub-network - a
solution for this was previously discussed in Subsection 7.4.1.

The time (t) a mule has to wait relies on the following criterias1

• Amount of data collected, bits (B)

1. Ignoring multi-hop communication delay

80 CHAPTER 7 DISCUSS ION

• Bandwidth between each device, Mbit/sec (m)

– Converted to bits/sec in Equation 7.1 (1 Mbit = 1 000 000 bits)

• Number of devices collected from (n)

t =
B

m × 1000000
× n (7.1)

In addition to these points, there is some latency in the data-path mapping
algorithm introduced in dmni - although minimal, it has to be accounted for as
it will indeed affect the time amule has to wait. Not only that, but the transfer
time between the devices themselves will vary from where in the accumulation
path the device is located.

Figure 7.5: Mule accumulation delay example

As an example, Figure 7.5, shows how the accumulation from three ous will
occur:

1. First, a data-path mapping routine is carried through - the time this takes
depends on size of the sub-network and if the "tree" is balanced or not -
it takes t1 time.

2. ou(2) sends 1 500 000 bits to ou(0) - with the average transfer band-
width of 3.6817Mbit/sec, this will take 407ms.

3. ou(1) sends 1 000 000 bits to ou(0) - again with an average transfer
bandwidth of 3.6817Mbit/sec, this takes 272ms

4. In this example, ou(0) receives the data from ou(2) first and following
the data-accumulation algorithm in dmni, it appends its own data (500
000 bits), equaling 2 000 000 bits. The data is then sent to the mule.
The time equals 543ms

5. Lastly, ou(0) receives from ou(1), but since it has already added and

7.10 L IM ITED MULE RESOURCES 81

sent its own data, it simply forwards the data to the mule, again with a
time of 272ms

The minimum communication time for the mule in this case is thus:

t = t1 + 407ms + 272ms + 534ms + 272ms = t1 + 1485ms (7.2)

If one follows the equation 7.1, the result is thus:

t = (3000000 ÷ (3.6817 × 100000)) × 2 = t1 + 1629ms (7.3)

As seen, the results are not equal and it can thus be deducted that the equation
in 7.1 is incorrect due to multi-hop communication not being accounted for. In
addition, some ou’s will not append their own data to the request (As seen in
step 5 above) but just forward the request.

Section Subsection 6.4.3 goes into some detail about the achieved results when
testing different timeouts in dmni.

7.10 Limited mule resources
In the current implementation of dmni, it is not taken into account that
Unmanned Aerial Vehicles (uavs) have a limited power-supply and range. As
previously discussed in Section 2.1, there has been work done which focuses
mainly on the energy-efficiency of mules, more specifically uavs. A more
complete prototype would require this to be investigated further.

7.11 Multi-hop routing vs. single-hop routing
One of the decisions that were taken for dmni is to utilize multi-hop routing
within the ad hoc network. Some of the reasons behind this decision is as
follows:

1. Multi-hop routing allows for a broader reach within the ad hoc network:
instead of having to directly visit a ou, a mule simply needs contact
with another ou which is in contact with the specific ou

2. Sincemules can move in the ad hoc network, the classic power depletion
close to the sink commonly seen in multi-hop ad hoc networks can be
avoided: if a static sink is placed in a multi-hop environment, the ous

82 CHAPTER 7 DISCUSS ION

close to the sink will quickly run out of energy - this can be avoided with
mules by flying to another device in the sub-network the next time it
flies by

3. Multi-hop communication allows the ous to utilize their low-range radio
instead of long-range radio to reach far away sinks as they can use the
other devices in the network to reach the sink.

7.12 Reliability vs. power-efficiency
As previously discussed in Subsection 7.5.1, dmni data accumulations come
with the risk of data-loss. It is a deliberate decision in the design of dmni not
to send acknowledgements on data once it has been accumulated in order to
save energy.

In addition to this, the complexity of adding acknowledgements on data trans-
missions is higher than one would expect. This boils down to the problemwhich
is known as "Two General’s Problem (tgp)"[15], also known as the ‘Coordinated
Attack Problem‘. See section 7.12.1 for a further discussion on this.

7.12.1 Two General’s Problem
The ‘tgp‘ is an experiment meant to show the challenges one has to face by
attempting to communicate and coordinate over an unreliable link/network.
The basic problem lies in that no matter how many times you send an acknowl-
edgement to a message, be that the original message or an acknowledgement
to an acknowledgement, you cannot be sure whether or not the receiver has
actually received the acknowledgement.

This problem is especially relevant for ad hoc networks where data-links may
fail at any given time. Therefore dmni chose to simply accept the fact that
data may be lost and it thus provides a ‘best-effort‘ delivery scheme.

7.13 Energy conservation by using
data-accumulation timeout tables

Previous work show through experimental measurements that in general, data
transmissions are expensive compared to data processing due to power aware-

7.13 ENERGY CONSERVAT ION BY US ING DATA-ACCUMULAT ION T IMEOUT
TABLES 83

ness within the field of radio subsystems remain rather unexplored[29].

Therefore, dmni implements a timeout for ous which is active for a given
amount of time after every data-accumulation. Not only does this avoid the
problem with mule contacting several ous in the same sub-network, but in
addition it preserves energy by simply not allowing data-accumulations to take
place too often.

The exact timeout for this has to be further experimentet with and is discussed
in Chapter 9.

8
Conclusion
The goal of this Master’s thesis was to design and implement a Mobile Ubiq-
uitous LAN Extension (mule) based data-accumulation system for the Arctic
tundra. A prototype, namely Dynamic Mobile Network Infrastructure (dmni),
was designed and implemented together with a simulator in this dissertation.
The thesis also includes documentation and experiments conducted for the
system.

dmni is an attempt at utilizing amule based data-accumulation system which
utilizes the mobility of mobile agents,mules, to initiate and collect data from
Observation Units (ous) placed on the Arctic tundra. By allowing the ous to
discover and communicate with each other, the ous are able to form ad hoc
networks - sub-networks of interconnected ous. Within these networks, ous
are able to send network requests through a series of other ou’s, effectively
using multi-hop communication to send requests further than just their direct
neighbours.

The mules exploit the mesh-network structure found in the ad hoc networks
as by having minimum one node part of said network enables the mule to
accumulate data from the entire sub-network. The sub-network uses flooding
and forwarding of packages to accumulate packages from all ou’s in the
sub-network.

We show through experiments and simulation that a mule based system
can reduce the chance for permanent partitioning in an ad hoc network of

85

86 CHAPTER 8 CONCLUS ION

interconnected ous. Through experiments conducted on an actual device, a
Raspberry Pi 3 Model B (rpi), we show that the system has little impact on
the overall system resource utilization. Experiments show that the system, on
average, utilizes as low as 2.2% CPU and 1.3% memory. This indicates that the
system could potentially run on other types of devices as well.

9
Future work
At the given point in time there still remains a fair amount of work to be done
in relation to Dynamic Mobile Network Infrastructure (dmni) and simulating
the Arctic tundra. The first step to improving dmni is to improve the simulator
to make it more realistic and to add more options to it, such as being able to
add network corruption and package loss. In addition, the network bandwidth
delay has to be fine-tuned to make it more realistic in relation to the exact type
of data one can expect the Observation Unit (ou) to collect.

Further, the Mobile Ubiquitous LAN Extension (mule) has to be prototyped
using a an actual Unmanned Aerial Vehicle (uav) - possibly a drone such as
a quadcopter. Some experiments has been conducted at University of Tromsø
(uit) where results were quite promising. The experiment can be read about
in Appendix B.

Not only does a real prototype has to be used, but the type of device connected
to themule has to be thoroughly tested. Testing of CPU, memory and network
has been done on a Raspberry Pi 3 Model B (rpi) and it is believed that the
power-demand that such a device requires is simply too great. A possibility is
to utilize a Raspberry Pi Zero which according to sources utilizes around half
of the energy that a rpi does[14].

In order for themule to be able to collect data from the networks, the networks
themselves has to be limited in size. From the experiments conducted in this
dissertation, it is clear that the timeout which mules has to wait will grow

87

88 CHAPTER 9 FUTURE WORK

depending on the size of the sub-networks. In theory, since there is no limitation
on number of ous in a sub-network, a mule could potentially be collecting
data from the entire network of ous by simply being connected to a single
ou and this does not scale. Therefore it is clear that an improvement for
the system would be to put a limit on the size of the ad hoc networks that
could be created. An alternative to this is to limit the number of forwards a
request within a sub-network can go through - this was previously discussed
in Subsection 7.4.2.

Further work has to be done to keep the energy consumption of the ad hoc
networks to a minimum. As an example, the data-accumulation timeout which
the ous has could be further improved. This could be done by experimenting
with the exact timeout they should have for data-accumulations to ensure that
they do not reject data-accumulations when they should in fact accept it.
As an alternative, devices in the ad hoc network could reject data-accumulation
requests if they have less than a given amount of data collected.

To further improve the accumulation of the system, one could implement a
rendezvous-based-based solution. If the ous are aware of the path for the
mule, they could accumulate data to the ou which is closest to that path
before the mule arrives. This way the time the mule waits for accumulated
data to be receives can be decreased. It would however require that the ou
know what path the mule will take - this could potentially be solved with the
mule utilizing a long-range radio to announce its path to ous. It would mean
that the mule would utilize more energy but could potentially make up for
that by reducing the data-accumulation timeout.

Bibliography
[1] I. F. Akyildiz,Weilian Su,Y. Sankarasubramaniam,and E. Cayirci. A survey

on sensor networks. IEEE Communications Magazine, 40(8):102–114, Aug
2002.

[2] A.M. Andrew. Another efficient algorithm for convex hulls in two dimen-
sions. Information Processing Letters, 9(5):216 – 219, 1979.

[3] O. Anshus. Distributed arctic observatory (dao): A cyber-
physical system for ubiquitous data and services covering
the arctic tundra. https://www.forskningsradet.no/prognett-
iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_
Ubiquitous_data_and_services/1254032932215?lang=no, 2018. Norwe-
gian Research Council (NRC) - Project no: 270672.

[4] R. Arpaci-Dussea and A. Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. Arpaci-Dusseau Books, 2014.

[5] MuhammadAyaz,Azween Abdullah, and Low Tang Jung. Dynamic cluster
based routing for underwater wireless sensor networks. 2009.

[6] G. Burd and J. Bauch. Gorilla websocket. https://github.com/gorilla/
websocket, 2018.

[7] Almende B.V. vis.js, 2010.

[8] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span:
An energy-efficient coordination algorithm for topology maintenance in
ad hoc wireless networks. Wirel. Netw., 8(5):481–494, September 2002.

[9] Zong Da Chen, H.T. Kung, and Dario Vlah. Ad hoc relay wireless net-
works over moving vehicles on highways. In Proceedings of the 2Nd ACM
International Symposium on Mobile Ad Hoc Networking &Amp; Computing,
MobiHoc ’01, pages 247–250, New York, NY, USA, 2001. ACM.

89

https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no
https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no
https://www.forskningsradet.no/prognett-iktpluss/Nyheter/NOK_200_million_for_13_research_projects_on_Ubiquitous_data_and_services/1254032932215?lang=no
https://github.com/gorilla/websocket
https://github.com/gorilla/websocket

90 BIBL IOGRAPHY

[10] Rone Ilídio da Silva and Mario A. Nascimento. On best drone tour plans
for data collection in wireless sensor network. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC ’16, pages 703–708,
New York, NY, USA, 2016. ACM.

[11] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. iperf - the
ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/, 2018.

[12] Eylem Ekici, Yaoyao Gu, and Doruk Bozdag. Mobility-based commu-
nication in wireless sensor networks. IEEE Communications Magazine,
44(7):56–62, 2006.

[13] Luis Javier García Villalba, Ana Lucila Sandoval Orozco, Alicia Triv-
iño Cabrera, and Cláudia Jacy Barenco Abbas. Routing protocols in
wireless sensor networks. Sensors, 9(11):8399–8421, 2009.

[14] J. Geerling. Power consumption benchmarks. https://www.pidramble.
com/wiki/benchmarks/power-consumption, 2018.

[15] Piotr J. Gmytrasiewicz and Edmund H. Durfee. Decision-theoretic recur-
sive modeling and the coordinated attack problem. In Proceedings of the
First International Conference on Artificial Intelligence Planning Systems,
pages 88–95, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers
Inc.

[16] Bruce Golden, Lawrence Bodin, T Doyle, and W Stewart Jr. Approximate
traveling salesman algorithms. Operations research, 28(3-part-ii):694–711,
1980.

[17] JitenderGrover, Shikha Sharma, andMohit Sharma. A study of geographic
adaptive fidelity routing protocol in wireless sensor network. 16:2278–661,
10 2014.

[18] R. A. Ims, J. Jepsen, A. Stien, Å. Ø. Pedersen, E. Soininen, J. E. Knutsen,
and S. T. Pedersen. Climate-ecological observatory for arctic tundra (coat).
https://coat.no/, 2010.

[19] R. A. Ims, J. Jepsen, A. Stien, and N. Yoccoz. Science plan for coat:
Climate-ecological observatory for actic tundra, 2013.

[20] Sushant Jain, Rahul C. Shah, Waylon Brunette, Gaetano Borriello, and
Sumit Roy. Exploiting mobility for energy efficient data collection in
wireless sensor networks. Mobile Networks and Applications, 11(3):327–
339, Jun 2006.

https://iperf.fr/
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://coat.no/

B IBL IOGRAPHY 91

[21] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife track-
ing: Design tradeoffs and early experiences with zebranet. SIGARCH
Comput. Archit. News, 30(5):96–107, October 2002.

[22] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons, Ltd, 2006.

[23] I. Khemapech, I. Duncan, and A. Miller. Energy preservation in environ-
mental monitoring wsn. In 2010 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing, pages 312–319, June
2010.

[24] William Lehr and Lee W McKnight. Wireless internet access: 3g vs. wifi?
Telecommunications Policy, 27(5):351 – 370, 2003. Compeitition inWireless:
Spectrum, Service and Technology Wars.

[25] M. Otto and J. Thornton Twitter Inc. Bootstrap. http://getbootstrap.
com/, 2018.

[26] Å. Ø. Pedersen, A. Stien, E. Soininen, and R. A. Ims. Climate- ecological ob-
servatory for arctic tundra - status 2016. https://issuu.com/framcentre/
docs/framforum-2016-issu, March 2016.

[27] M. Perillo, Z. Cheng, and W. Heinzelman. An analysis of strategies for
mitigating the sensor network hot spot problem. In The Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking
and Services, pages 474–478, July 2005.

[28] Samuel Raff. Routing and scheduling of vehicles and crews: The state of
the art. Computers & Operations Research, 10(2):63 – 211, 1983. Routing
and Scheduling of Vehicles and Crews. The State of the Art.

[29] V. Raghunathan, C. Schurgers, Sung Park, and M. B. Srivastava. Energy-
aware wireless microsensor networks. IEEE Signal Processing Magazine,
19(2):40–50, Mar 2002.

[30] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data
mules: modeling and analysis of a three-tier architecture for sparse sen-
sor networks. Ad Hoc Networks, 1(2):215 – 233, 2003. Sensor Network
Protocols and Applications.

[31] W. Shirou. gopsutil. https://github.com/shirou/gopsutil, 2018.

http://getbootstrap.com/
http://getbootstrap.com/
https://issuu.com/framcentre/docs/framforum-2016-issu
https://issuu.com/framcentre/docs/framforum-2016-issu
https://github.com/shirou/gopsutil

92 BIBL IOGRAPHY

[32] Shio Kumar Singh, MP Singh, Dharmendra K Singh, et al. Routing pro-
tocols in wireless sensor networks–a survey. International journal of
computer science & engineering survey (IJCSES) Vol, 1(63-83):29–31, 2010.

[33] N. Smith. Don’t use go’s default http client (in produc-
tion). https://medium.com/@nate510/don-t-use-go-s-default-http-
client-4804cb19f779, 2016.

[34] C.K. Toh. Wireless Atm and Ad-Hoc Networks: Protocols and Architectures.
Kluwer Academic Publisherb Group, 1997.

[35] F. J. Wu, C. F. Huang, and Y. C. Tseng. Data gathering by mobile mules in
a spatially separated wireless sensor network. In 2009 Tenth International
Conference on Mobile Data Management: Systems, Services and Middleware,
pages 293–298, May 2009.

[36] O. Younis and S. Fahmy. Heed: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks. IEEE Transactions on
Mobile Computing, 3(4):366–379, Oct 2004.

https://medium.com/@nate510/don-t-use-go-s-default-http-client-4804cb19f779
https://medium.com/@nate510/don-t-use-go-s-default-http-client-4804cb19f779

Appendices

93

A
Use of DMNI
dmni requires that golang is installed. This can be installed via the following
link: https://golang.org/dl/. Version 1.10.2 was used - there is not a guarantee
that older nor newer versions of golang will function as expected.

A.1 Setup
The source code of dmni has to be placed in golang’s GOPATH - this defaults
to ‘$HOME/go/‘. The following folder structure has to be used in order for
dmni to function as expected:

‘$HOME/go/src/github.com/fagerli93/dmni‘

A.2 Dependencies
There are several dependencies required to run dmni. By utilizing the Makefile
provided in the project, all dependencies with the exception of golang can be
installed by using the command:

Listing A.1: Make command for installing dependencies and compiling DMNI execute-
ables

95

https://golang.org/dl/

96 APPENDIX A USE OF DMNI

1 $ make c lean && make a l l

All dependencies can also be installed manually via the the command seen in
Listing A.2.

Listing A.2: Terminal commands for installing dependencies manually
1 $ go get g i thub . com/ sh i rou / gop su t i l
2 $ go get g i thub . com/ g o r i l l a /websocket
3 $ go get g i thub . com/mi t che l lh /mapstructure
4 $ go get golang . org /x/ sys / unix

A.3 Compiling and running the executables
By executing the command given in Listing A.1, the executeables will also
be compiled. These can also be installed manually as follows (when current
directory is ‘$HOME/go/src/github.com/fagerli93/dmni‘:

Listing A.3: Terminal command for compiling executables manually
1 go i n s t a l l . / . . .

All executeables in the dmni will be compiled and will be located under
‘$HOME/go/bin/‘ - the following executeables will be compiled:

• dmni - dmni process

– Directory: ‘$HOME/go/src/github.com/fagerli93/dmni/‘

• ou - ou process

– Directory: ‘$HOME/go/src/github.com/fagerli93/dmni/cmd/ou‘

• mule - mule process

– Directory: ‘$HOME/go/src/github.com/fagerli93/dmni/cmd/mule‘

• simulator - simulator process

– Directory: ‘$HOME/go/src/github.com/fagerli93/dmni/cmd/simulator‘

Each executeable can also be individually compiled via the command found in
Listing A.4. You need to be in the correct folder as seen in the list above where

A .4 OPT IONAL COMMANDL INE PARAMETERS 97

there will be a single ‘main.go‘ file.

Listing A.4: Go build command
1 go bu i ld
2 . / dmni

A.4 Optional commandline parameters
The executables allow for the following commandline parameters:

• dmni

– -ob <number of observation units in simulation>

– -m <number of mules in simulation>

– -ll <log level: 1 = Trace, 2 = Debug, 3 = Info, 4 = Warn, 5 = Error,
6 = Fatal>

– -t <timeout (s) for mule>

• mule

– -x <x coordinate of the mule in the virtual grid>

– -y <y coordinate of the mule in the virtual grid>

– -p <port of the mule HTTP server>

• ou

– -x <x coordinate of the mule in the virtual grid>

– -y <y coordinate of the mule in the virtual grid>

– -p <port of the mule HTTP server>

– -ll <log level: 1 = Trace, 2 = Debug, 3 = Info, 4 = Warn, 5 = Error,
6 = Fatal>

• simulator

B
DAO - Flying networkinfrastructure experiment
An experiment was conducted at the University of Tromsø (UiT) in December
2017 by members of the Distributed Arctic Observation (DAO) project where
a uav (quadcopter drone) was equipped with a radio and relayed LTE (4G)
mobile network down to a ground station.

The purpose of the experiment was to see if LTE could be forwarded via the
drone and effectively increasing the bandwidth for the basestation placed on
the ground.

The speed which the basestation originally got was less than 0.1 Mb/sec.

With the drone flying 35 meters above the ground, the basestation could
effectively achieve a speed of 25 Mb/sec download and 3 Mb/sec upload
speed.

At the highest altitude, 118 meters above the ground, the basestation achieved
a speed of approximately 65 Mb/sec download and approximately 10 Mb/sec
upload speed.

The experiment was documented and uploaded to YouTube on the following
link: https://www.youtube.com/watch?v=CIrZgZWUgpE

99

https://www.youtube.com/watch?v=CIrZgZWUgpE

C
DMNI Visualization preview
Figure C.1 shows a screenshot of the visualizer whilst running with 50 ous and
5 mules in a 2000x2000 virtual grid. Each device has a communication range
of 150 grids.

A video of the visualizer can be seen by following the link:

https://www.youtube.com/watch?v=ycHo1Egft74&feature=youtu.be

It can also be seen in the deliverywith the file name: ‘dmni_visualizer .mkv ‘

101

https://www.youtube.com/watch?v=ycHo1Egft74&feature=youtu.be

102 APPENDIX C DMNI V ISUAL IZAT ION PREV IEW

Figure C.1: DMNI Visualizer Screenshot

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	My list of definitions
	List of Abbreviations
	1 Introduction
	1.1 Problem definition
	1.2 Technical idea
	1.3 Contributions
	1.4 Limitations

	2 Related work
	2.1 Mobile Ubiquitous LAN Extensions - MULEs
	2.2 Ad hoc networks

	3 Architecture
	3.1 DMNI Simulator
	3.1.1 Network abstraction
	3.1.2 Device management abstraction
	3.1.3 Environmental simulation abstraction

	3.2 Application / Backend Layer
	3.3 Network / MULE Layer
	3.3.1 Discovery of observation units
	3.3.2 Join network
	3.3.3 Device interaction
	3.3.3.1 Temporary network - store & forward

	3.3.4 Network preservation
	3.3.5 MULE movement

	3.4 Data / Observation Unit Layer
	3.4.1 Discovery abstraction
	3.4.2 Connectivity
	3.4.3 Mesh preservation

	4 Design
	4.1 Simulator & visualizer
	4.1.1 HTTP Server
	4.1.1.1 Join handler

	4.1.2 Broadcast handler
	4.1.2.1 Leave handler
	4.1.2.2 Status handler
	4.1.2.3 Traffic handler

	4.2 Mules & observation units
	4.2.1 Broadcasting
	4.2.2 Joining sub-networks
	4.2.3 Maintenance of network information
	4.2.4 Data transmission
	4.2.4.1 Forwarding
	4.2.4.2 Flooding
	4.2.4.3 Data accumulation
	4.2.4.4 Data accumulation initialization
	4.2.4.5 Data-path mapping
	4.2.4.6 Data-accumulation timeout table
	4.2.4.7 Accumulation initializer
	4.2.4.8 Data accumulation

	5 Implementation
	5.1 Parameter settings
	5.2 DMNI simulator
	5.2.1 DMNI visualizer
	5.2.2 Environmental simulation
	5.2.2.1 Data traffic handler
	5.2.2.2 Join handler
	5.2.2.3 Broadcast handler
	5.2.2.4 Status & leave handle

	5.3 Mule & Observation Unit
	5.3.1 Update & shutdown handler
	5.3.2 Ping handler

	5.4 Data-path mapping handler
	5.5 Data Accumulation
	5.5.1 Sink handler (MULE only)
	5.5.2 Collection of data

	5.6 Unique message identifiers

	6 Evaluation
	6.1 Experimental design
	6.2 Simulator experiments
	6.2.1 Package drop-rate vs. MULE count
	6.2.2 Mule timeout

	6.3 Raspberry Pi experiments
	6.3.1 Raspberry Pi WiFi Bandwidth
	6.3.2 CPU, memory and network utilization

	6.4 Results
	6.4.1 Raspberry Pi bandwidths
	6.4.2 Package drop-rate vs. number of MULEs
	6.4.2.1 50 Observation Units
	6.4.2.2 75 Observation Units
	6.4.2.3 100 Observation Units

	6.4.3 Mule timeout
	6.4.4 Raspberry Pi CPU and memory utilization utilization
	6.4.5 Raspberry Pi Network utilization

	7 Discussion
	7.1 Data accumulation from single devices
	7.2 Network OU size vs. latency & energy consumption
	7.2.1 Overall energy consumption

	7.3 MULE routing
	7.3.1 Solutions where prior knowledge about network exists
	7.3.1.1 Greedy Algorithm
	7.3.1.2 Convex Hull-Based Algorithm
	7.3.1.3 Partitioning Based Scheduling Algorithm

	7.3.2 Mule routing without any prior knowledge

	7.4 Network topology
	7.4.1 Implosion and overlap when accumulating data
	7.4.2 Limited number of request forwards
	7.4.3 Knowledge of entire sub-networks vs. direct neighbours

	7.5 Accumulation of data
	7.5.1 Chance of data-loss

	7.6 When to stop waiting for accumulated data
	7.7 Simulated bandwidth
	7.8 Device duty cycle
	7.8.1 Device duty-cycle vs. mule communication time

	7.9 Mule timeout
	7.10 Limited mule resources
	7.11 Multi-hop routing vs. single-hop routing
	7.12 Reliability vs. power-efficiency
	7.12.1 Two General's Problem

	7.13 Energy conservation by using data-accumulation timeout tables

	8 Conclusion
	9 Future work
	Bibliography
	Appendices
	A Use of DMNI
	A.1 Setup
	A.2 Dependencies
	A.3 Compiling and running the executables
	A.4 Optional commandline parameters

	B DAO - Flying network infrastructure experiment
	C DMNI Visualization preview

