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Abstract

Fractional Gaussian noise (fGn) is a stationary stochastic process used to model anti-persistent
or persistent dependency structures in observed time series. Properties of the autocovariance
function of fGn are characterised by the Hurst exponent (H), which in Bayesian contexts typi-
cally has been assigned a uniform prior on the unit interval. This paper argues why a uniform
prior is unreasonable and introduces the use of a penalised complexity (PC) prior forH . The PC
prior is computed to penalise divergence from the special case of white noise, and is invariant
to reparameterisations. An immediate advantage is that the exact same prior can be used for the
autocorrelation coefficient φ of a first-order autoregressive process AR(1), as this model also
reflects a flexible version of white noise. Within the general setting of latent Gaussian models,
this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding
confounding effects of prior choices for the two hyperparameters H and φ. Among others, this
is useful in climate regression models where inference for underlying linear or smooth trends
depends heavily on the assumed noise model.
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1 Introduction

Many real time series exhibit statistical properties which can be modelled by self-similar stochastic
processes. Such processes have probability distributions which are invariant to changes of scale
in time (or space), and are particularly useful to model long-range dependency structures. Long-
memory is observed within a wide range of fields, among others economics, climatology, geophysics
and network engineering (Beran et al., 2013). Of specific use is fractional Brownian motion (fBm)
(Kolmogorov, 1940; Mandelbrot and Ness, 1968), which is the only self-similar continuous-time
Gaussian process with stationary increments. Its discrete-time increment process, referred to as
fractional Gaussian noise (fGn), has autocovariance function characterised by the self-similarity
parameter H ∈ (0, 1). This parameter is often referred to as the Hurst exponent, known to quantify
the Hurst phenomenon (Hurst, 1951).

Several methods to estimate H have been proposed in the literature, among others heuristic ap-
proaches like the rescaled range method (Hurst, 1951), detrended fluctuation analysis (Peng et al.,
1994) and the rescaled variance method (Giraitis et al., 2003). Alternative approaches include use of
wavelets (McCoy and Walden, 1996; Abry and Veitch, 1998), and maximum likelihood and Whittle
estimation, see Beran et al. (2013) for a comprehensive overview. Using a Bayesian framework,
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H has typically been assigned a uniform prior (Benhmehdi et al., 2011; Makarava et al., 2011;
Makarava and Holschneider, 2012). This is computationally simple and in lack of prior knowledge,
a non-informative prior might seem like a good choice. However, one major drawback is that the
uniform prior is not invariant to reparameterisations, and as seen in Section 2 this can give surprising
results when the prior is transformed.

This paper introduces the use of penalised complexity (PC) priors (Simpson et al., 2017), in
estimating the Hurst exponent H . We also use a PC prior for the precision of the process. PC priors
represent a new principle-based approach to compute priors for a wide range of hyperparameters in
hierarchical models, where a given model component can be seen as a flexible version of a simple
base model. The simplest base model in the case of fGn is to have no random effect, corresponding
to infinite precision. For a fixed precision, the fGn process represents a flexible version of white
noise (H = 0.5). The PC prior is computed to penalise model component complexity. This is
achieved by assigning a prior to a measure of distance from the flexible model to the base model,
which is then transformed to give a prior for the hyperparameter of interest. The informativeness of
the prior is adjusted by an intuitive and interpretable used-defined scaling criterion.

The framework of PC priors has several beneficial properties, including robustness, invariance
to reparameterisations, and it also provides meaningful priors with a clear interpretation (Simpson
et al., 2017; Riebler et al., 2016). This paper utilises the invariance property to compare fGn with a
first-order autoregressive process, AR(1), using Bayes factor. Similarly to fGn, the AR(1) process
represents a flexible version of uncorrelated white noise, where the first-lag autocorrelation coeffi-
cient φ = 0. This implies that the PC priors for the hyperparameters H and φ can be chosen as
transformations of the exact same prior assigned to the distance measure. This eliminates confound-
ing effects of prior choices in the calculation of Bayes factor which is very important as the Bayes
factor is known to be sensitive to prior choices (Kass and Raftery, 1995). A comparison of the AR
and fGn models is for example relevant in analysing climatic time series (Løvsletten and Rypdal,
2016), identifying short versus long-range dependency structures in temperature series at different
temporal and/or spatial scales. However, the given ideas could also be used in comparing other
models as long as these represent flexible versions of the same base model.

The structure of this paper is as follows. Section 2 gives a brief review of the principles underlying
PC priors and utilises these to derive the PC prior for H . Specifically, the model complexity of fGn
is seen to be non-symmetric around H = 0.5 which implies that the prior for H should also be
non-symmetric. Section 2 also illustrates how Beta priors onH would shift the mode of the prior for
distance away from the natural simple base model. In section 3, we focus on model comparison of
fGn and the first-order AR process using Bayes factor. We perform a simulation study and also apply
the given ideas to check for fGn structure in global land and sea-surface temperatures, respectively.
Both the estimation and the comparison of models can be computed within the general framework of
latent Gaussian models, using the methodology of integrated nested Laplace approximations (INLA)
(Rue et al., 2009). This implies that inference for fGn models is made easily available and that fGn
can be combined with other model components in constructing an additive predictor, for example
including covariates and non-linear or oscillatory random effects. Concluding remarks are given in
section 4, while Appendix 5 describes the implementation of fGn using the R-interface R-INLA,
combined with generic functions.

2 Penalised complexity priors for the parameters of fractional Gaus-
sian noise

Prior selection for hyperparameters is a difficult issue in Bayesian statistics and often subject to
rather ad-hoc choices. A computationally simple choice is to adopt flat, non-informative priors. In
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the case of fGn, the Hurst parameter H has typically been assigned a uniform prior, argued for in
terms of having no knowledge about the parameter (Benhmehdi et al., 2011; Makarava et al., 2011;
Makarava and Holschneider, 2012). Also, it is suggested to use the Jeffrey’s prior for the marginal
standard deviation of the model, i.e. π(τ−1/2) ∼ τ1/2. In this section, we derive the penalised
complexity prior (Simpson et al., 2017) for H and suggest to use a PC prior also for the precision τ .
We also describe drawbacks in using a uniform, or more generally a Beta prior, for H .

2.1 Penalising divergence from a base model

Define fractional Gaussian noise as a zero-mean multinormal vectorx′ = (x1, . . . , xn) ∼ N(0, τ−1Σ).
The correlation matrix Σ is Toeplitz with first-row elements

γ(k) =
1

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k = 0, . . . , n− 1,

where H ∈ (0, 1) is referred to as the Hurst exponent, while τ denotes the precision parameter. For
large k, the autocorrelation function of fGn has a power-law decay, γ(k) ≈ H(2H−1)|k|2(H−1).We
notice that fGn reduces to uncorrelated white noise when H = 0.5. When H > 0.5, the process has
positive correlation reflecting a persistent autocorrelation structure. Similarly, the autocorrelation is
negative when H < 0.5, and the resulting process is then referred to as being anti-persistent.

The specific structure of the autocorrelation function of fGn implies that the process can be seen
as a flexible version of white noise, where H represents a flexibility parameter. The framework of
penalised complexity priors (Simpson et al., 2017) takes advantage of this inherit nested structure,
which is seen in many model components where hyperparameters can be used to define flexible
versions of a simple base model structure. A key idea is to assign a prior to the divergence from the
flexible model to the base model and transform this to give a prior for the hyperparameter of interest.
Specifically, the prior is calculated based on four principles, stated in Simpson et al. (2017). These
are as follows:

1. The PC prior is calculated to support Occam’s razor, emphasising that model simplicity should
be preferred over model complexity. Specifically, a model component is seen as a flexible
version of a simple base model specification. In the fGn case, let f1(H) = π(x | Σ) represent
the flexible version of a white noise base model f0 = π(x | I), where I is the identity matrix.
The PC prior for H is then designed to give shrinkage to the fixed value H = 0.5.

2. The second principle in deriving a PC prior implies penalisation of model complexity using a
measure of distance from the flexible version of a model component to its base model. This is
achieved by making use of the Kullback-Leibler divergence, which in the zero-mean Gaussian
case simplifies to KLD(f1(H) ‖ f0) = −1

2 ln |Σ|. For the fGn process, the determinant will
be of order n and we can define a distance measure from f1 to f0 as

d(H) =

√
1

n
2KLD(f1(H) ‖ f0) =

√
− 1

n
ln |Σ| =

{
d1(H), 0 ≤ H ≤ 0.5
d2(H), 0.5 ≤ H ≤ 1.

(1)

which is invariant to n.

3. The third principle used to derive PC priors assumes constant rate penalisation. This implies
that the relative change in the prior is constant, independent of the actual value of the distance
measure. Consequently, the prior assigned to the distance d will be exponential. In the fGn
case, the PC prior is calculated separately for the two distances d1(H) and d2(H),

π(di(H)) =
1

2
λ exp(−λdi(H)), i = 1, 2,
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where H ∈ [0, 1] and λ > 0 denotes the rate parameter. The prior for H is then obtained by
an ordinary change of variable transformation,

πi(H) = π(di(H))

∣∣∣∣di(H)

dH

∣∣∣∣ , i = 1, 2, (2)

where the derivative is found numerically. In practice, truncation due to the bounded interval
of H is avoided by calculating the prior for the logit transformation ρ = logit(H), which also
has a variance-stabilising effect.

4. The last principle in deriving PC priors states that the rate λ, controlling shrinkage of the
prior, should be governed by a user-defined and interpretable scaling criterion. This needs
to be chosen for each specific model component of interest. In the given case, a natural and
easily-implemented choice is to define a tail probability, like

P (U < H < 1) = α (3)

where α is a specified small probability. Alternatively, the given probability statement could
for example define the median of the prior. In any of these cases, the corresponding rate
parameter is

λ =
− ln(2α)

d(U)
.

2.2 Implications using Beta versus PC priors

The calculated distance function in (1) is non-symmetric around H = 0.5 (Figure 1), clearly illus-
trating that the properties of fractional Gaussian noise depend on the value of H . Specifically, the
distance measure for volatility or anti-persistent behaviour (0 < H < 0.5) is seen to decrease more
slowly than in the case of having positive correlation and long memory properties (0.5 < H < 1).
Also, notice that the given distance measure increases rapidly as H → 0 and H → 1, reflecting the
major change in the properties of the fGn process as it approaches its limiting non-stationary cases.

Figure 1: The distance measure d(H), from a general fractional Gaussian process, seen as a function
of H and to white noise base model where H = 0.5.

By transforming the exponential prior on the given distance measure, the resulting PC prior for
H will preserve the properties of the distance function. Specifically, the PC prior will always have
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its mode at the white noise base model (H = 0.5), independent of the parameter specifications for
U and α in (3). Also, it preserves the non-symmetry of the distance function and it goes to infinity
when H → 0 and H → 1. The PC prior for H is illustrated in Figure 2 (a), using three different
tail probabilities in (3). Specifically P (0.9 < H < 1) is set equal to 0.10, 0.15 and 0.20, in which
the last two cases express an increased prior belief in persistent versus anti-persistent behaviour.
Alternatively, if we knew in advance that a given process has long memory properties, we could
consider to define the prior only for the interval H ∈ (0.5, 1).

Using the given tail probabilities, the corresponding values for the rate parameter λ of the expo-
nential distribution are approximately equal to 1.70, 1.27 and 0.97. Figure 2 (b) illustrates the corre-
sponding Beta priors, where the shape parameters are chosen to give the same probability statements
as for the PC priors. Naturally, this can be obtained choosing the shape parameters of the Beta dis-
tribution in numerous way. Here, we just make a specific choice in which the first shape parameter
of the Beta distribution is set equal to 1.0,1.8 and 2.5, respectively. Specifically, the first case gives
the uniform distribution which equals the Beta(1,1) case.

(a) (b)

(c) (d)

Figure 2: Panel a) and b) illustrate PC priors and Beta priors for H using three different scalings
where P (0.9 < H < 1) is set equal to 0.1 (solid), 0.15 (dashed) and 0.2 (dotted). Panel c) and d)
give the corresponding priors for the distance measure d.

In order to understand the implications of different priors on H , we consider the corresponding
priors for the distance measure, see Figure 2 (c) and (d). Here, we use negative distance to illustrate
the priors when H < 0.5. Notice that when the parameters of the PC prior is changed, the mode of
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the prior for distance is still at the base model, implying that we would not impose a more compli-
cated model if the true data are in fact white noise. However, we do change the rate of shrinkage to
the base model and increase the probability of large positive distances. In changing the parameters
of the Beta prior, the mode of the prior for distance is shifted and pulled away from the base model.
Especially, by assigning a uniform prior to H , the corresponding prior on distance is shifted to the
left of the base model. The given negative distance corresponds to a mode at around H ≈ 0.28.
This seems like an unreasonable assumption, expect for cases where prior knowledge actually sup-
ports this. For example, theoretical results suggest that the Hurst exponent is around 1/3 for various
turbulence processes (Kang and Vidakovic, 2016).

2.3 The PC prior for the precision

The PC prior for H is derived assuming a fixed precision parameter τ . An alternative base model
for fGn is to have no random effect (1/τ = 0). Using the same principles as above, the resulting PC
prior for τ is the type-2 Gumbel distribution (Simpson et al., 2017)

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), λ > 0, (4)

which prescribes the size of the marginal precision of the fGn process. This density corresponds to
using an exponential prior on the standard deviation.

Adopting the strategy of Simpson et al. (2017), the rate parameter λ is inferred using the prob-
ability statement P (1/

√
τ > U) = α, where α is a small probability while U specifies an upper

limit for the marginal standard deviation 1/
√
τ . For example, if α = 0.01, the marginal standard

deviation is 0.31U , after the precision τ is integrated out. In practice, the PC prior for the precision
is assigned to the log-precision κ = log(τ), which is represented in closed form as

π(κ) =
λ

2
exp

(
−λ exp(−κ

2
)− κ

2

)
, λ = − ln(α)/U. (5)

3 Identifying long- versus short-range dependency using Bayes factor

In analysing real time series, it is of major importance to model the true underlying dependency
structure correctly as this will influence the inference made. Consider a stochastic regression model,

yt = νt + εt, (6)

where νt represents an underlying smooth trend while the noise term εt models random fluctuations.
In analysing temperature data for different geographical regions, significance of a linear trend νt =
β0 + β1t is seen to depend heavily on whether the noise term is modelled by fGn or a first-order
autoregressive process (Løvsletten and Rypdal, 2016).

3.1 Imposing identical priors for the hyperparameters of fGn and a first-order AR
model

Autoregressive (AR) processes represent a commonly-applied class of stochastic processes, used
to model short-range dependencies in time series. Specifically, assume a first-order AR(1) process
defined by

xt = φxt−1 + wt, t = 2, . . . , n,

where the first-lag autocorrelation coefficient |φ| < 1. The innovations are assumed Gaussian,
wt ∼ N(0, κ−1), and x1 has zero-mean and precision τ = κ(1 − φ2). The resulting covariance
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matrix of x = (x1, . . . , xn) is Toeplitz and defined by the autocorrelation function γ(k) = φk for
lags k = 0, . . . , n− 1.

Similarly to fGn, the first-order AR process represents a flexible version of uncorrelated white
noise (φ = 0). The Kullback-Leibler divergence is of order n− 1 and an invariant distance measure
from AR(1) to white noise is

d(φ) =
√
− ln(1− φ2).

The resulting PC prior for φ (Simpson et al., 2017; Sørbye and Rue, 2017) is then expressed as

π(φ) =
λ

2
exp

(
−λ
√
− ln(1− φ2)

) |φ|
(1− φ2)

√
− ln(1− φ2)

, |φ| < 1 (7)

where λ > 0.
In general, let M0 and M1 denote two different model components for the noise term ε in (6).

Within a Bayesian framework, the two models can be compared using Bayes factor which quantifies
the evidence in favour of one statistical model. The Bayes factor is defined as as the ratio of the
marginal likelihoods

π(ε |M0)

π(ε |M1)
=

π(M0 | ε)
π(M1 | ε)

π(M1)

π(M0)
, (8)

where π(M0) and π(M1) represent priors for the two model components. In general, Bayes factors
are sensitive to the choices of π(M0) and π(M1) (Kass and Raftery, 1995). When the aim is to
compare a model with an fGn component to a model with an AR(1) component, the Bayes factor
will depend on the prior distributions for the precision parameters of the models and the priors for
the parameters φ and H . The precision parameters have the same interpretation for both fGn and
AR(1), hence we will use the same prior distribution for the precision of both models. Since we
are using PC priors for both φ and H , these parameters are just a reparameterisation of the distance
from the (unit variance) AR(1) and fGn model, to the same base model. By choosing the same rate
parameter λ for the PC priorof both φ and H , the prior distributions will be the same even if the
models and hyperparameters are different. This is a very convenient feature of PC priors which we
make use of in the following examples.

3.2 Simulation results

To illustrate the capability of Bayes factor to identify fGn versus AR(1) structure, we perform a
simulation study and generate fGn processes of different lengths n, for specified values of the Hurst
parameter, scaled to have variance 1. The selected values for the Hurst parameter are H = 0.7, H =
0.8 and H = 0.9. These all give persistent fGn processes and are selected to mimic realistic values
of the Hurst parameter in analysing long-memory processes. The PC prior for H is implemented
using the scaling criterion P (0.9 < H < 1) = 0.10. This implies that the rate parameter of the
exponential distribution of the distance measure is λ ≈ 1.70. This rate parameter is used to find the
corresponding prior for the first-lag correlation coefficient in fitting an AR(1) model to the data. The
marginal precisions of both the fGn and AR(1) models are assigned the PC prior using U = 1 and
α = 0.01 in (5).

In evaluating the evidence given by Bayes factors, we have chosen to apply the categories given
in Kass and Raftery (1995), in which Bayes factor should be larger than 3 to give a positive evidence
in favour of one model. Note that these categories could also be specified in terms of twice the
natural logarithm of the Bayes factor, which would have the same scale as the likelihood ratio test
statistic. Table 1 illustrates that rather long time series are needed in order for the Bayes factor to
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Bayes factor: Strength of evidence
False No conclusion Positive Strong Very Strong Total

n H BF < 1/3 1/3 < BF < 3 3 < BF < 20 20 < BF < 150 BF > 150 BF> 3

100 0.7 0.226 0.685 0.077 0.009 0.003 0.089
200 0.7 0.232 0.493 0192 0.063 0.020 0.275
500 0.7 0.097 0.224 0.220 0.186 0.273 0.679
100 0.8 0.366 0.513 0.105 0.015 0.001 0.121
200 0.8 0.260 0.353 0.219 0.123 0.045 0.387
500 0.8 0.072 0.099 0.121 0.153 0.555 0.829
100 0.9 0.521 0.352 0.096 0.029 0.002 0.127
200 0.9 0.316 0.252 0.189 0.146 0.097 0.432
500 0.9 0.060 0.073 0.091 0.104 0.672 0.867

Table 1: Estimated proportion of Bayes factors in each of five groups, showing strength of evidence
of the underlying process being fGN. Results are based on 1000 simulations for each value of the
Hurst parameter H and for each time series length n.

give correct identification of the underlying fGn process. This seems natural as the long-memory
properties might not be clearly apparent if the time series is short. We also notice that the results
improve with higher values of the Hurst parameter for all lengths n, in which the long-memory
structure of fGn would get more apparent. Especially, if H = 0.9 and the length of the time series is
n = 500, we have very strong evidence of fGn in two-thirds of the cases. Naturally, the given results
could be improved upon using a prior for H that puts more probability mass to the upper tail of the
distribution.

3.3 Temperature data example

In this section, we analyse a real temperature data set to investigate whether we find evidence of fGn
compared with AR(1) structure, using Bayes factor. The dataset ”NOAA-CIRES 20th Century Re-
analysis V2c”, downloaded from http://www.esrl.noaa.gov/psd/data/20thC_Rean,
contains reanalysed data from the period 1851 - 2014. The data are available for a 2 degree latitude
times a 2 degree longitude global grid covering the earth and combine temperature measurements
with model estimated data.

We assume a regression model for temperature as given in (6), where the trend is assumed to be
either linear or non-linear. The non-linear trend is modelled using an intrinsic CAR model (Besag
et al., 1991), also referred to as a second-order intrinsic Gaussian Markov random field defined on a
line, see Rue and Held (2005, Ch. 3). The precision parameter of the model is assigned the penalised
complexity prior in (4), using scaling parameters (U,α) = (0.10, 0.01) in (5). By choosing a small
value of U , the prior imposes only small deviation from a straight line. Note that the given IGMRF
model needs to be scaled to have a generalised variance equal to 1, such that we can use the same
prior for τ independently of the time scale used for the analysis (Sørbye and Rue, 2014). Further,
the hyperprior specifications for the AR(1) and fGn components used to model climate noise, are
chosen to be the same as in the simulation study of Section 3.2.

Using the given data, it would be interesting to study evidence of fGn for different geographical
regions, but here we only report results for aggregated data over land areas and sea-surfaces, re-
spectively. We calculate the Bayes factor (8) in each case, using both an annual and quarterly time
scale. The results are displayed in Table ??, which clearly illustrates that the evidence of fGn is
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Trend parameter estimates fGn parameter estimates Evidence fGn
Time series β̂1 95% CI Ĥ 95% CI σ̂ 95% CI Category
Land (a) 0.006 (0.004, 0.008) 0.76 (0.67, 0.84) 0.22 (0.19, 0.26) Strong
Land (q) 0.006 (0.004, 0.008) 0.77 (0.72, 0.82) 0.31 (0.29, 0.34) Very strong
Sea (a) 0.004 (0.003, 0.006) 0.95 (0.91, 0.99) 0.21 (0.13, 0.37) Strong
Sea (q) 0.004 (0.003, 0.006) 0.99 (0.97,1.00) 0.39 (0.21, 0.74) Very strong

Table 2: The mean estimates, 95% credible intervals and the evidence of fGn versus AR(1) given by
Bayes factor, fitting a regression model with linear trend to global land and sea temperatures. We
use both annual (a) and quarterly (q) time scales for the years 1851 - 2014.

Trend parameter estimates fGn parameter estimates Evidence fGn
Time series σ̂ 95% CI Ĥ 95% CI σ̂ 95% CI Category
Land (a) 0.047 (0.015, 0.102) 0.69 (0.58, 0.79) 0.20 (0.18, 0.23) No conclusion
Land (q) 0.038 (0.008, 0.093) 0.75 (0.69, 0.80) 0.30 (0.28, 0.33) Positive
Sea (a) 0.041 (0.012, 0.095) 0.92 (0.83, 0.98) 0.15 (0.10, 0.23) No conclusion
Sea (q) 0.039 (0.012, 0.091) 0.98 (0.95, 1.00) 0.34 (0.16, 0.66) No conclusion

Table 3: The mean estimates, 95% credible intervals and the evidence of fGn versus AR(1) given
by Bayes factor, fitting a regression model with a smooth non-linear trend to global land and sea
temperatures. We use both annual (a) and quarterly (q) time scales for the years 1851 - 2014.

very sensitive to the trend model. Using a linear trend, the evidence of fGn compared with AR(1) is
strong (BF> 20) or very strong (BF> 150). Using a non-linear trend, the test using Bayes factor is
inconclusive, except for the quarterly land data where there is weak evidence of fGn structure. It is
well-known that non-linear trends can easily be interpreted incorrectly as long memory (Beran et al.,
2013).The given results illustrates that a non-linear trend, even a very weak one (Figure 3), typically
captures some of the long-range dependency structure of the time series, influencing the Bayes fac-
tor. However, it does not change the estimate of H , radically. We also notice that the quarterly data
give higher values for the Hurst parameter and stronger evidence of fGn, than the annual data, which
among others could be explained by the length of these series being four times longer than for the
annual data.

The estimated Hurst parameter is seen to be higher for the sea-surface temperatures than the land
temperatures, both using different trend models and different time scales. In fact, in the cases where
the Hurst parameter is very close to 1 this could indicate that more components should be included
in the model, for example to explain oscillatory behaviour. It is well-known that estimation of the
Hurst parameter is not robust against departures from stationarity and trends and maybe also other
models for the climate noise should be considered. Alternatively, the variability of the trend model
could be adjusted to explain more of the fluctuations of the temperatures. A big advantage of using
PC priors is that such adjustments are easily made, simply choosing a larger upper value of U in (5).

4 Concluding remarks

Penalised complexity priors (Simpson et al., 2017) is a recently developed framework to calculate
priors for hyperparameters in Bayesian hierarchical models. The PC priors are intuitive in the sense
that they are designed to shrink towards well-defined simple base model and will always have a
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Figure 3: The upper panels show annual global land temperature (a) and annual global sea temper-
ature (b) in the period 1851 - 2014, with estimated linear (red) and non-linear (blue) trends. The
lower panels show the corresponding quarterly global land temperature (c) and sea temperature (d).

local mode at this base model where the distance measure is 0. Also, the parameters of the prior
have a clear interpretation as they govern the rate of shrinkage to the base model and thereby the
informativeness of the prior. In estimating the Hurst parameter of fractional Gaussian noise, the
argument of having no knowledge about the parameter has encouraged the use of a non-informative
prior. If we accept that a given prior on H should give reasonable results also on the distance scale,
the uniform prior needs be ruled out. Similarly, changes in the parameters of Beta priors would shift
the mode at distance scale and pull estimates away from the base model, making interpretation of
these parameters non-intuitive and non-transparent.

In calculating Bayes factor, we take advantage of the fact that PC priors are invariant to reparame-
terisations. This implies that priors for two different hyperparameters simply represent two different
transformations of the same prior on distance scale, as long as the corresponding model components
represent flexible versions of the same base model. This is very useful in calculation of Bayes factors
as these are known to be rather sensitive to prior choices. In the current analysis, we have focused
on identifying the underlying noise term in a regression model as either AR(1) or fGn but the given
ideas could also be applied for other model components as long as these share the same base model.
The given analysis demonstrates that it is difficult to separate the trend from the model noise and
that potential non-linearity in the trend could easily be interpreted as long memory. This makes it
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important to control the smoothness of the underlying trend, in which a linear model is considered
as the base model and deviation from the base model is controlled by a PC prior on the precision
parameter. In general, the use of PC priors is very helpful to control the effect of different random
effects and make the model components identifiable.

The option to combine generic functions with R-INLA, is a flexible and easy way to incorporate
an fGn model component within the general class of latent Gaussian models. This makes it possible
to analyse also more complex additive regression models than the ones presented here, in which an
fGn component can be combined with for example smooth effects of covariates, seasonal and oscil-
latory effects, non-linear trend models and also spatial model components. However, to make full
use of the computational power of R-INLA, the fGn model should be approximated to have Markov
properties as this would give a sparse precision matrix of the underlying latent field. One alterna-
tive to achieve this is to approximate fGn with a weighted sum of AR(1) processes. Preliminary
results (Myrvoll-Nilsen, 2016) indicate that such an approximation is promising, using only a few
AR(1) components. In fact, we have seen that aggregation of just three or four AR(1) processes give
an excellent approximation of fGn, when the weights and coefficients of the AR components are
chosen to match the autocorrelation structure of fGn (Myrvoll-Nilsen et al., 2017). The resulting de-
composition of fGn can potentially be linked to linear multibox energy balance models (Fredriksen
and Rypdal, 2017), in analysing temperature data. This requires further study and will be reported
elsewhere.
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5 Appendix: Incorporating fGn models within latent Gaussian models

We have implemented the fGn model within the R-INLA package (see www.r-inla.org) which
uses nested Laplace approximations to do Bayesian inference for the class of latent Gaussian models
(Rue et al., 2009; Martins et al., 2013). We used the generic model “rgeneric” allowing a (Gaus-
sian) latent model component to be defined using R and it is passed into the inla-program which
is written in C. This is a convenient feature that allows us to prototype new models easily, despite the
fact that the fGn model does not have any Markov properties. In general, Markov properties would
improve the computational efficiency significantly, see Rue and Held (2005, Ch. 2).

The rgeneric code to represent the fGn model is given below. We make use of the Toeplitz
structure of the covariance matrix to speed up the computations. The models is defined as a function
returning properties of the Gaussian model, like its graph, the precision matrix, the normalising
constant, and so on.

rgeneric.fgn =
function (cmd = c("graph", "Q", "initial", "log.norm.const",

"log.prior", "quit", "mu"), theta = NULL)
{

stopifnot(require(ltsa) && require(FGN) && require(HKprocess))
theta.fun = function() {

return(list(prec = function (x) exp(x),
H = function(x) exp(x)/(1 + exp(x))))

}
interpret.theta = function() {

fun = theta.fun()
return(list(prec = fun[[1]](theta[1]),

H = fun[[2]](theta[2])))
}
graph = function()

return (inla.as.sparse(matrix(1, n, n)))
Q = function() {

param = interpret.theta()
S = toeplitz(acvfFGN(param$H, n-1))
return (inla.as.sparse(param$prec * TrenchInverse(S)))

}
log.norm.const = function() {

param = interpret.theta()
r = acvfFGN(param$H, n-1)
S = toeplitz(r) / param$prec
val = ltzc(r, rep(0, n))
val2 = -n/2 * log(2*pi) -0.5*val[2] + n/2 * log(param$prec)
return(val2)

}
log.prior = function() {

param = interpret.theta()
lprior = inla.pc.dprec(param$prec, u=1, alpha=0.01, log=TRUE) +

log(param$prec)
return (lprior + LPRIOR.FUN.H(theta[2]))

}
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mu = function() {
return (numeric(0))

}
initial = function() {

return(c(4, 0))
}
quit = function() {

return(invisible())
}

cmd = match.arg(cmd)
val = do.call(cmd, args = list())
return(val)

}

We can now include the given fGn model component together with other latent components. This
is an easy example, where the function returning the log-prior for ρ (the internal representation of
H) is defined in the file fgn-prior.R (not included here).

library(INLA); library(FGN)
n=200; H=0.8
lprior.H = function(theta) return (0) ## replace this fun
model = inla.rgeneric.define(model = rgeneric.fgn, n=n,

LPRIOR.FUN.H = lprior.H)
y = scale(SimulateFGN(n,H))
r = inla(y ˜ -1 + f(idx, model=model),

data = data.frame(y = y, idx = 1:n, iidx = 1:n),
control.family = list(hyper = list(

prec = list(initial = 12, fixed=TRUE))))
summary(r)
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